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Abstract 

As a result of the global warming potential of fossil fuels there has been a rapid growth in the 

installation of photovoltaic generating capacity in the last decade. While this market is dominated by 

crystalline silicon, thin-film photovoltaics are still expected to make a substantial contribution to 

global electricity supply in future, due both to lower production costs and to recent increases in 

conversion efficiency. At present, cadmium telluride (CdTe) and copper-indium-gallium diselenide 

(CuInxGa1-xSe2) seem to be the most promising materials and currently have a share of ≈9% of the 

photovoltaic market. An expected stronger market penetration by these thin-film technologies raises 

the question as to the supply risks associated with the constituent elements. Against this 

background, we report here a semi-quantitative, relative assessment of mid- to long-term supply risk 

associated with the elements Cd, Te, Cu, In, Ga, Se and Mo. In this approach, the supply risk is 

measured using 11 indicators in the four categories “Risk of Supply Reduction”, “Risk of Demand 

Increase”, “Concentration Risk” and “Political Risk”. In a second step, the single indicator values, 

which are derived from publicly accessible databases, are weighted relative to each other specifically 

for the case of thin film photovoltaics. For this purpose, a survey among colleagues and an Analytic 

Hierarchy Process (AHP) approach are used, in order to obtain a relative, element-specific value for 

the supply risk. The aggregation of these elemental values (based on mass share, cost share, etc.) 

gives an overall value for each material. Both elemental and “technology material” supply risk scores 

are subject to an uncertainty analysis using Monte Carlo simulation. CdTe shows slightly lower supply 

risk values for all aggregation options. 
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1 Introduction 

The advantages of photovoltaic (PV) solar energy are direct electricity production, simple mechanical 

construction and, most importantly, a very substantial reduction in greenhouse gas emissions 

compared to fossil fuels [1–3]. As a result, there has recently been an astonishing growth in 

photovoltaic capacity worldwide, despite the serious problem of intermittency and the apparent 

reluctance to address the resulting storage challenges. In fact, the annual growth in globally installed 

photovoltaic capacity has been around 40% per annum in recent years, resulting in a cumulative total 

of 177 GWp in 2014 [4], corresponding to a contribution to global electricity supply (in terms of 

energy) of about 190 TWh, or 1% [5]. This strong market growth – aided in many countries by 

subsidies and generous feed-in tariffs – has been accompanied by substantial price decreases in 

recent years. The market for photovoltaic modules is currently dominated by crystalline silicon 

technology, in the form of single crystal or polycrystalline wafers. Although the market share of thin-

film photovoltaics, consisting mainly of cadmium telluride (CdTe) and copper-indium-gallium 

diselenide, or CIGS (CuInxGa1-xSe2) has recently fallen, there is reason to believe (Section 2) that 

these technologies will soon be able to position themselves more strongly in the market. 

If thin-film photovoltaics were indeed to make a substantial contribution to global electricity supply 

later in this century, and – a second assumption – if CdTe and CIGS modules were to dominate this 

market, then the question arises as to the mid- to long-term supply risks associated with the 

constituent elements of these two materials. Supply risks describe the possible lack of availability of 

minerals and elements; they can be assessed, at least in a qualitative or semi-quantitative way. For 

elements, for which it is perceived that there could be a supply risk problem in coming years, the 

term “critical” is often used [6–9]. The debate concerning the availability of minerals and their 

constituent elements has been going on for over half a century [10–14]. Initially, it focused on the 

(limited) quantities contained in the mineral deposits of the Earth’s crust and was driven by the fear 

that there would not be sufficient amounts to cover the requirements of a technologically advanced 

society with a growing population. Thus, Goeller and Weinberg, for example, warned about the 

impending mineral depletion problem and how it could perhaps be overcome through recycling and 

substitution (and a considerable amount of energy!) [11]. They were contradicted in a vigorous 

rebuttal by Simon, a well-known “cornucopian” [12]. The last two decades have actually seen a 

massive increase in the use of many “rare” metals for a variety of new, high-tech applications. (The 

term “rare” is often used when the elemental concentration in the continental crust is lower than 

about 0.1% [15].) This in turn has led to considerable interest in supply risk assessments [7,16–23]. As 

noted above, early studies concentrated on the possibility of a serious depletion of mineral stocks in 

the Earth’s crust. There are usually two “indicators” in such assessments that are associated with the 

extent of the known reserves as well as with the known and putative resources of a particular 

element. In recent years, further indicators have been formulated to account for the many other 

factors that can contribute to the supply risk. Extraction as a by-product during the mining of another 

metal is, for example, a further supply risk, since availability depends on the technology and 

profitability of extraction of the “parent” metal [24]. Many by-product metals are also rare and/or 

characterized by a lack of economically viable deposits; they often lack recycling potential, which is 

another supply risk aspect [25,26]. Other indicators cover factors such as concentration risk when 

supply is in the hands of only a few companies and/or countries, possible future demand for other 

technological applications, and political risks such as instability and governance standards in 

producing countries. From the numerous studies of supply risk for raw materials published in the last 
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ten years Achzet and Helbig [19] have recently identified as many as 20 indicators used by various 

authors. 

 

How can supply risks be assessed using such indicators? A study published by the EU Commission is 

perhaps a good example [7]. It uses a so-called risk assessment matrix, based on the two composite 

indicators “supply risk” (consisting of various different supply risk indicators) and “economic 

importance”, and sets threshold values for each. Materials exceeding both of these values are 

designated as being critical. Forty-one non-fuel metals and minerals were investigated, of which 14 

were designated as critical. In a second study [27] some years later using the same indicators and, 

most importantly, the same thresholds, the list was modified. Several recent studies have been 

concerned specifically with energy-related materials, i.e. materials that are required for the 

generation, transmission, storage and utilization of energy, in particular those that will be needed for 

the transformation to a low-carbon energy economy [20,21,28–40]. 

Several authors have recently considered thin-film CdTe and CIGS photovoltaics from the point of 

view of technological relevance [3], environmental impacts [41], demand- and supply-side economics 

or costs [42–47], and materials supply risk [20,48–53]. Graedel and Nuss [50] have made a multi-

element, multi-indicator study of supply risk for CdTe and CIGS absorber materials based on their 

extensive “criticality” data bank of the elements [18,54,55]. Goe and Gaustad [20] have also studied 

photovoltaic materials using mainly U.S.-based data and several indicators but, like Graedel and 

Nuss, do not broach the problem of aggregation, i.e. the determination of the relative supply risks 

associated with the two compounds. In the present paper, we first determine the supply risk 

associated with the two elements, Cd and Te, as well as the supply risk associated with the five 

elements Cu, In, Ga, Se and Mo. Our philosophy is, however, somewhat different than that of the 

two previous papers, in that our eleven indicators are chosen and categorized (as in a previous study 

of some of the authors [56]) and weighted (using a questionnaire answered by colleagues in both 

academia and industry) for the specific case of thin film photovoltaics. Moreover, in order to assess 

relative supply risks for the two compounds, various aggregation procedures for the supply risks 

associated with the individual elements, are explored and tested. Whilst acknowledging the 

importance of environmental and sustainability factors, we emphasize that our composite indicators 

are intentionally based on supply risk only. Despite these differences in methodology, the present 

investigation can be seen as a further development of the Graedel and Nuss approach. We 

demonstrate not only the importance of a multi-indicator analysis that is as comprehensive as 

possible, but also of a product-oriented weighting of the indicators. Moreover, we show that the 

concept of supply risk on a comparative basis can be applied at the product, or technology, level, if 

thought is given to the aggregation problem. 

The structure of the paper is as follows. In the next section we briefly describe the CdTe and CIGS 

technologies and report latest module efficiency data. Section 3 describes the supply risk evaluation 

model in detail. Section 4 shows the application of the technique first on the level of the elements 

themselves and then for the two technologies. The article concludes (Section 5) with a discussion and 

a summary. 

2 Thin-film photovoltaics 

By way of illustration, typical CdTe and CIGS solar cells are shown schematically in cross-section in 

Figure 1 (after Ref. [32,57]). Note that only those (functional) layers are shown which are essential 

for the operation of the cell. The absorber layers have typically a thickness of 1-3 micrometer. A 
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typical thin-film photovoltaic module of ≈1m2 may contain up to 80 cells which are appropriately 

interconnected. The physics background, technical details and future R&D directions are described in 

the literature [3,58]. For present purposes it suffices to summarize briefly some general aspects, 

concentrating on the market situation and performance data of the last few years. 

 

Figure 1: Layers of CdTe and CIGS photovoltaic cells. Only the functional layers which are essential for each 
technology are depicted. 

In Table 1 the first row shows the figures for the total global production of photovoltaic modules 

(sum of thin film and crystalline silicon) in GWp for the five years up to, and including 2014. There 

may be a slight inconsistency in the data, because the figures for the first three years actually refer to 

installed capacity, whereas those for 2013 and 2014 refer to production [59]. The strong growth rate 

of about 40% per year noted in the Introduction is immediately apparent. The second, third and 

fourth rows give the total contribution of thin-film modules as well as the contributions of CdTe and 

CIGS modules, respectively. We note that in a rapidly expanding photovoltaic market the production 

figures for thin-film modules have remained more or less constant during this period, but that their 

market share has fallen to 9%; crystalline silicon now has over 90%. Also shown are the highest 

module efficiency data from Green et al. [60] for CdTe and CIGS, in the fourth and sixth rows, 

respectively. For inclusion in the data tables, the efficiency determination must be made under 

standard conditions in a recognized testing laboratory. There are some interesting general points to 

note in connection with Table 1. Firstly, it should be recalled that the highest module efficiency is 

understandably always a few percent lower than the highest (research) cell efficiency, which is also a 

frequently quoted, if less meaningful parameter. Secondly, we note the very strong increase in 

module efficiency for CdTe in the last few years, namely, from 10.9% to 18.6%. The latter is a value 

comparable to that for polycrystalline silicon (18.5%), although still lower than that for single crystal 

silicon (22.4%). The highest efficiency measured for thin-film silicon, actually a-Si/nc-Si, i.e. 

amorphous/nanocrystalline, is 12.3%. Thirdly, the increase in efficiency for CIGS in recent years has 

not been so dramatic, although it should be pointed out that a value of 17.5% was reported in 2014 

for a small CIGS Cd-free module (≈800cm2) from Solar Frontier [60]. This compares to the “standard 

value” in Table 1 of 15.7% for a large module, which has been constant for some years. 

Other technologies involving organic compounds, polymers or dye-sensitized nano-structured films 

have so far not played a major role commercially, although some are available as modules. It remains 

to be seen whether the spectacularly improving performance of perovskite research cells [61] will 

lead to commercially viable modules, for which the degradation problem has been solved. It should 

also be noted that there are numbers to show that the fabrication costs for thin-film modules are 

marginally lower than those for crystalline silicon modules [59]. Moreover, the energy payback time 

for thin-film modules (particularly CdTe) is substantially lower than that for crystalline silicon 
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modules [62]. In summary, we conclude from the present discussion that thin-film modules are in a 

position to establish themselves more strongly on the market in coming years. 

Table 1: Module production and best module efficiency 2010 – 2015. Production/installed capacity data are 
from the Fraunhofer Institute for Solar Energy Systems [59]; the data for 2010 are extrapolated from plots for 

2011. The first row “global module production” corresponds to the sum of crystalline silicon and thin-film 
modules. The best module efficiency data are from Green et al. [60] and references to earlier papers therein. 

The one exception to the latter is the 2015 value for CdTe modules, which is taken from a First Solar press 
release [63] reporting a value of 18.6%, as measured by a recognized testing laboratory. nya: not yet available. 

 2010 2011 2012 2013 2014 2015 

Global module production, GWp 17.5 22.8 ≈30 ≈35 ≈48 nya 

Thin-film module production, GWp 2.3 3.2 4.3 3.2 4.4 nya 

CdTe module production, GWp 1.4 1.9 1.9 1.8 1.9 nya 

CdTe best module efficiency, % 10.9 12.8 15.3 16.1 17.5 18.6 

CIGS module production, GWp 0.3 0.7 1.05 0.7 1.7 nya 

CIGS best module efficiency, % 13.5 15.7 15.7 15.7 15.7 15.7 

 

Several authors have already looked at aspects of the supply risk problem in connection with 

photovoltaic materials, which is the central question of the present paper. Jean et al. [3] have 

estimated the quantities of those elements that would be required for generating a substantial 

proportion of global electricity using photovoltaics (corresponding to 25 TWp installed capacity in 

their scenario) by the year 2050. In an interesting discussion they emphasize the general constraints 

associated with the large-scale use of by-product elements (As, Ge, Cd, Se, In, Ga, Te), as also 

encountered in the case of CdTe and CIGS technologies. They point out that thin-film PV 

requirements could be up to 1500 higher than current annual production for some metals and that 

relative crustal abundances can still provide a rough guide to future accessibility. Moreover, 

according to the assessment of Jean et al, the host metals considered (Si, Ag, Cu, S, Zn, Pb, Sn) are far 

less subject to constraints [3]. Kavlak et al. [47] go into greater detail on this point, showing that the 

increase in production of In, Ga, Se, Cd and Te required to match global PV deployment targets (e.g., 

reaching 8% of global electricity generation by 2030) would vastly exceed historically observed metal 

production growth rates. In particular, global tellurium production would need to grow by 23% per 

year, in contrast to an historical annual production rate for altogether 32 metals of only 9% per year. 

The required silicon production growth rate (2.5% per year) would be comparable with data from the 

recent past. In addition, the crustal abundance of silicon is many orders of magnitude higher than 

that of Te, Se, In etc. In a similar study Elshkaki and Graedel [46] point out that in such a situation, a 

strong increase in demand for a PV-relevant by-product metal could lead to overproduction of its 

host metal (gold, silver, zinc, copper or aluminum) and other accompanying metals (e.g., arsenic). In 

practice, given the small contribution normally made by such by-product metals to the profitability of 

a refining process, this is perhaps unlikely. The studies mentioned so far, as well as several others 

[42,48,53], have concentrated on the extent of reserves and resources of the rare metals concerned. 

In a study similar to the present one, Graedel and Nuss [50] have recently applied several supply risk 

indicators to the problem, using their methodology for the individual elements [18]. We return to 

this paper in the discussion. 

Two life cycle-based assessments of thin-film photovoltaics have treated further aspects. Marwede 

and Reller [44] have demonstrated how material efficiency measures in the life cycle of a PV module 
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can reduce the requirements for the metals concerned and thus the material costs. Their analysis 

shows how higher resource efficiency and increased recycling efforts can lead to drastic reductions, 

for example, by a factor four, in resource consumption. For CIGS, they observed greater efficiency 

improvements, and therefore a higher cost reduction potential, than for CdTe. Bergesen et al. [41] 

have compared thin-film photovoltaic electricity generation with the 2010 United States grid 

electricity mix with respect not only to resource aspects, but also to environmental and health 

impacts along the life cycle. CdTe modules show lower impacts compared to CIGS with respect to 

climate change impact, carcinogens and metal depletion. This preference for CdTe also remains when 

recycling, efficiency and dematerialization improvements projected for 2030 are taken into account. 

3 Methodology 

In the following we describe an evaluation model to assess technological supply risk [56]. It has been 

specifically adapted for the comparison of the two photovoltaic technologies based on CdTe 

(elements Cd and Te) and CIGS (elements Cu, In, Ga, Se and Mo). We do not take into account the 

much larger amount of copper used for interconnects on the modules and for wiring up the modules 

themselves. Molybdenum is an essential substrate material for high performance CIGS cells, due to 

its relative stability at the processing temperature, resistance to alloying with Cu and In, and its low 

contact resistance to the CIGS layer [64,65]. (Various different solutions, have been, and are used for 

CdTe [66,67]). Mo is therefore included in the present analysis for CIGS. The model calculates the 

relative supply risk using technical and market data for each element and combines these to assess 

the technological supply risk associated with the product, in this case the solar cell or module. 

As described above, various indicators can be used for the semi-quantitative assessment of the 

supply risk. Indicators express the likelihood of supply disruption. In this context, the specific 

contribution of Graedel et al. towards raising awareness for the topic of “critical” raw materials and 

their efforts to develop a method of supply risk evaluation should be expressly mentioned [9,18,68]. 

The selection and categorization of indicators in the present article is a synthesis of previous supply 

risk assessments in the critical raw materials context [19,56]. The indicators used in the present study 

are displayed in Figure 2. In total, four general risk criteria are considered, corresponding to four 

different supply disruption scenarios: risk of supply reduction, risk of demand increase, concentration 

risk and political risk. In the following, we consider the indicators in each category. They are also 

listed in Table S1 of the Supplementary Material, where the method of calculation and the 

appropriate references to previous work are summarized in each case. 

Supply reduction could in principle occur due to dwindling reserves and resources [13]. The term 

“reserves” gives an estimate of the amount of natural stocks for which extraction is technically 

feasible and economically viable at the present time [69]. The term “resources” refers to the total 

amount of natural stocks for which extraction is potentially feasible; further sub-classifications of 

“resources” are possible [69]. We apply the two indicators by calculating the ratio between the 

amount of reserves/resources and annual primary production, usually called “depletion time” or 

“static reach”, both giving a measure of the market pressure for further mineral prospecting and 

subsequent mining activity. A potential, but perhaps only perceived, scarcity due to dwindling 

reserves/resources can be partially compensated by secondary production, which is the reason why 

the end-of-life (EoL) recycling rate is used as a third indicator in this risk category [70]. 

Secondly, there is the risk of the supply of a particular metal being unable to keep up with a (sudden) 

increase in demand, particularly for by-product metals, which are only extracted when a 

corresponding host metal is mined. Although mining of the by-product would not be profitable on its 
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own, the status of a metal as a by-product is not a supply reduction risk. Rather, it may limit the 

opportunities to increase mining production, particularly at short notice, and therefore belongs in 

our view in the demand-centered risk category [24,71]. The expectation of future increases in 

demand for a particular metal from other technologies is also considered as a risk factor in this 

category. Angerer et al. [72] have, for example, reviewed possible future demand in this respect, 

which is a challenging task and accompanied by potentially serious forecast errors. “Substitutability” 

of metals [27] (possibly in different design stages of a product [73]), is, on the other hand, a risk-

reducing factor in this category and gives a measure of the ease of shift in demand from one metal to 

another. It has been estimated, e.g. by Graedel et al. [74], in a semi-quantitative way. Each 

commodity is considered based on the functionality and price of the best possible, readily available 

substitute material for each of the main applications of an element, weighted by the percentage 

amount (tonnage) required for that application. It is noteworthy that future technology demand and 

substitutability are indicators that are frequently used as indicators both in “supply risk” and 

“vulnerability” assessments, but each with a somewhat different definition [75]. 

The third risk category is the possibility of market failure due to a high market concentration, 

measured using the Herfindahl-Hirschman Index (HHI), which is the sum over the squares of the 

production shares. On the national level, this indicator takes into account the annual country-specific 

metal production figures (mining or refining). On the corporate level, the indicator uses production 

figures of the producing companies. Both indicators attempt to put on a more quantitative basis 

those aspects of monopolistic or oligopolistic market situations that are linked to low levels of 

competition, potential strategic misuse and higher price levels [76]. 

The fourth category political risk is a measure of the potential disruption of commodity markets due 

to political issues and contains three indicators. These breakdowns in supply can occur due to 

instability in producing countries, estimated by the Worldwide Governance Indicator (WGI) “Political 

stability and absence of violence/terrorism” as published by the World Bank [77,78]. They can also 

occur due to increasingly strict mining regulation in producing countries; this can be estimated by the 

Policy Perception Index (PPI) of the Fraser Institute [79]. The third political risk indicator is the 

possibility of increasingly strict environmental regulation in producing countries, estimated by the 

Human Development Index (HDI) in these producing countries [80]. These three political indicators 

are reported on country-level and are aggregated at the elemental level by a weighted average based 

on each country’s production tonnage. 

Figure 2: Supply risk criteria and indicators used for the supply risk assessment. After [56], modified. [1.5-
column fitting image] 
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The next stage in our methodology is a normalization of the indicator scores to a common scale in 

order to compare these eleven supply risk indicators. We use a scale from 0 to 100, whereby lower 

values correspond to lower supply risk and are thus preferred. This corresponds closely to the 

approach of Graedel et al. [18]. For the case of conversion from non-linear functions, the 

normalization procedures are taken from the literature and listed in the Supplementary Material 

(Tables S1, S2) [18,81]. In order to determine the weighting of all eleven supply risk indicators for the 

specific case of thin-film photovoltaics, we depart from the procedure in previous work: Ten 

international experts (from basic and applied research, industry and government labs) were asked to 

participate in an Analytic Hierarchy Process (AHP) [82]. AHP is a well-established method for solving 

multi-criteria decision problems based on pairwise comparisons of evaluation criteria. It is limited by 

the need for a low number of indicators in each category (seven is normally given as the limit) and 

the possibility of inconsistency in the completion of the questionnaire (our results however pass the 

consistency tests). The experts were asked to assess the relative importance of each indicator for the 

supply risk associated with each of the elements concerned using a text-based questionnaire. The 

first task was to weight the four general risk criteria and then to weight the indicators within each 

risk criterion. The AHP questionnaire is shown in the Supplementary Material (Figures S1 to S3). The 

supply risk scores for each of the seven elements are calculated as a weighted average of the eleven 

normalized risk indicator scores (0 to 100) using the weightings calculated from the AHP. In a 

subsequent sensitivity analysis these AHP supply risk scores for each element are compared with 

those obtained with two alternative weightings. In the so-called “group weighting” all four risk 

categories are weighted equally and then each indicator in that category is given equal weighting. In 

“equal weighting” all indicators are given the same weight. 

In order to determine the relative supply risks associated with the two technologies, we further 

aggregate the AHP-determined scores for the elements, namely, for Cd and Te, on the one hand, and 

for Cu, In, Ga, Se and Mo, on the other. There are various possibilities for carrying out this 

aggregation process, of which we have used four in the present paper. Firstly, the simplest approach 

is to take the arithmetic mean, without any further weighting of the elements. Secondly, the “mass 

share” approach aggregates all elements according to their mass share in the solar cell. This 

aggregation would be in line with “mass allocation” approach in life cycle assessment studies [81]. 

Thirdly, the “cost share” approach considers only the economic risk of increased commodity prices 

due to supply risk by weighting each element according to its material cost share (calculated from 

mass share and commodity price [83]). This approach corresponds to the “economic allocation” in 

life cycle assessment studies [84]. It also reflects the school of thought in classical risk assessments 

which consider the likelihood of supply disruptions and economic consequences [85]. It assumes that 

price volatility is the main effect of supply disruptions – a consequence which is problematic only for 

those materials of high economic value. The fourth method is the “maximum” approach, which 

considers only the element with the highest supply risk score used in each technology. The above-

mentioned sensitivity analysis is also applied to these aggregated supply risks at the technology level. 

Finally, we perform a Monte-Carlo-based uncertainty analysis in order to calculate the effect of 

uncertainty distributions for all raw data on the supply risk scores at both the elemental and 

technology levels [86]. Differing raw data scales and varying data quality lead to differences in the 

uncertainty distribution, which are reported in the Supplementary Material. The result of this 

uncertainty analysis is a box-plot illustrating the possible overlap of resulting supply risk scores. 
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4 Results 

4.1 Supply risk data 

We first assess and tabulate the raw supply risk data for the seven elements according to the eleven 

indicators. Looking at the value chain from extraction to tradeable products, we note that there are 

some fundamental differences between the seven elements which should not be underestimated. In 

the periodic table, cadmium, copper and molybdenum are transition metals, gallium and indium 

post-transition metals, tellurium is a metalloid and selenium a non-metal. Copper and molybdenum 

(although Mo is sometimes also extracted as a by-product in Cu mining) are mined in their own right. 

Their production tonnage is therefore generally reported as mining production [69,87,88]. The other 

elements are all by-products: Cd and In depend on zinc mining, Te and Se depend on copper, while 

Ga is a by-product of bauxite mining, which is the main ore of aluminum [24]. The production 

tonnages of by-products are generally reported in terms of refinery production [69,89]. Table 2 

shows a summary of the data for all eleven supply risk indicators before normalization. A more 

detailed version with explanatory notes can be found in the Supplementary Material (Tables S11, 

S12, S13, S14, S15). Figures for the reserves and resources (needed for the static reaches) of mass 

metals like copper are readily available [90] and well discussed in the literature [91,92]. For minor 

metals, these estimates are sometimes more difficult to make and have therefore been calculated 

from by-product to host element ratios, and corresponding figures for reserves and resources of the 

host metal. These ratios may not be completely reliable, since they depend on the mineral extracted,  

the separation technology and the market situation, which taken together could lead to an 

overestimation of the long-term supply potential [93]. At this point it should be emphasized again 

that the term “static reach” is seen by the present authors more as measure of the market pressure 

for further mineral prospecting and subsequent mining activity than as a measure of possible supply 

risk due to mineral depletion [13]. 

4.1.1 Risk of supply reduction 

Static reaches of reserves of the seven elements range from 23 years for In to more than 3000 years 

for Ga. Static reaches of resources range from 73 years for Mo to more than 6000 years for Ga. For 

gallium, the annual production volume could significantly increase, if the existing supply potential 

from bauxite, sulphidic zinc ores and coal were to be exploited [94]. End-of-life recycling is estimated 

to be negligible for Te, In and Ga [95] (it is indeed negligible for many “rare” by-product metals), and 

unlikely to increase in the near future [96]. Although First Solar, for example, has operated a 

recycling service since 2005 [97], the amount of secondary material to become available is limited at 

present by the 25+ year lifetime of the modules and by the fact that the large upsurge in installations 

only began in the last decade. The highest end-of-life recycling rate is found for Cu, with 43% [95]. 

4.1.2 Risk of demand increase 

As mentioned above, many of the elements are only extracted as by-products in the mining of the 

host metal. For Cd, Te, In, Ga and Se, by-product dependence is taken as 100%, with the host 

materials being Zn, Cu/Pb, Zn, bauxite and Cu, respectively. Copper is sometimes (9%) mined as a by-

product of nickel or gold. A significant amount of molybdenum is produced as a by-product of Cu. It is 

expected that some of the seven elements will show a strong growth in demand due to them being 

essential functional components in future technologies: Angerer and colleagues [72] have estimated 

that from 2006 to 2030 Ga demand could grow by 581% (due to white LEDs, high-performance 
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integrated circuits and thin-film photovoltaics), and that for In could grow by 289% (due to white 

LEDs, ITO for displays and thin-film photovoltaics). Cd, Te and Mo were not considered as essential 

for future technologies in that study. Nevertheless, these metals are also characterized by increasing 

production volumes; a lower boundary for future technology demand can be estimated in 

accordance with Kavlak et al. [47] based on historic production statistics. As the units for the expert 

opinion on “substitutability” are arbitrary, the results are displayed on a scale from 0 to 100. 

Generally, Cd, Te, and Ga have quite rather well performing substitutes (e.g., Li, Bi, Si), but for Cu and 

Mo it is hard to find replacements for their main applications (e.g. electrical circuits and power lines, 

steel, respectively). 

4.1.3 Concentration risk 

The “country” or “company” concentration, as expressed by the Herfindahl-Hirschman Index (HHI) 

has values between 0 and 10000, expressed as the sum over the squares of percentage market share. 

Te, In and Ga show high country concentrations above 3000. The main reason is that not all countries 

use their refinery potential for these by-products [98]. Company concentration is generally lower 

than country concentration [99]. Nevertheless, the estimated company concentration scores for In 

and Ga are much higher (in a negative sense) than those for the other metals. 

4.1.4 Political risk 

The political risk scores do not vary much over the seven elements. Political stability, as expressed by 

the Worldwide Governance Indicator (WGI) score for political stability and absence of 

violence/terrorism, is given on a scale between -2.5 (very instable) and 2.5 (very stable) [78]. 

Selenium stands out in this regard, as it is predominantly used by the chemical industry and 

therefore its refining is concentrated in rather stable and industrialized countries. The Policy 

Perception Index (PPI) of the elements always refers to the host metal, with copper-mining countries 

being evaluated as being slightly more friendly to mining than is the case for countries where zinc, 

molybdenum and bauxite are extracted [79]. Since selenium is mainly produced in developed 

countries which are more likely to implement “not in my backyard” regulations, the corresponding 

regulation risk score is higher for selenium compared to other elements [80]. 
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Table 2: Supply risk indicators on the elemental level before normalization. For explanations of the indicators 
and further information on assumptions concerning the data, see Supplementary Material. ⊕: High figures 

mean high risk. ⊖: Low figures mean high risk. 

Indicator Dimension Risk Cd Te Cu In Ga Se Mo 

Static Reach Reserves years ⊖ 28a 44a 37a 23a 3182a 53a 41a 

Static Reach Resources years ⊖ 267a 349a 299a 152a 6250a 422a 73a 

End-of-Life Recycling Rate % ⊖ 15% <1% 43% <1% <1% <5% 30% 

By-product dependence 

(Host metal/mineral) 

% ⊕ 100% 

(Zn) 

100% 

(Cu, 

Pb) 

9% 

(Ni, Au) 

100% 

(Zn)  

100% 

(Bauxite)  

100% 

(Cu)  

46% 

(Cu) 

Future Technology 

Demand 

% ⊕ 15% 40% 15% 289% 581% 11% 85% 

Substitutability qualitative ⊖ 62 62 30 40 62 53 30 

Country Concentration  HHI ⊕ 1670 3338 1443 3159 3785 2268 2323 

Company Concentration  HHI ⊕ rather 

low 

1108 1108 1867 1667 1108 2183 

WGI-PV  qualitative ⊖ -0.03 0.06 0.05 0.02 -0.4 0.79 -

0.02 

PPI qualitative ⊖ 43 55 55 43 47 55 47 

HDI qualitative ⊕ 0.79 0.73 0.76 0.80 0.71 0.88 0.79 

4.2 Normalization & weighting 

The result of putting the values from the different indicators onto a common scale of 0 to 100 is 

shown in Figure 3. The results from the normalization are listed in the Supplementary Material 

(Table S16). On this scale, high values always mean high supply risk. The range of values is narrow for 

“substitutability”, “country concentration” and the “policy risk” indicators WGI, PPI and HDI. 

Simultaneously, the “static reach” for reserves and resources, the “by-product dependence” and the 

“future technology demand” show both very high and very low risk values. No element shows a very 

low risk for “end-of-life recycling rate”, nor is a very high risk for “company concentration” apparent. 

The highest risk for a particular indicator is reached five times by gallium, four times by indium, three 

times by molybdenum, twice each by cadmium, tellurium and selenium, and once by copper. The 

lowest risk values are reached five times by copper, four times each by gallium, cadmium and 

tellurium, three times by selenium, and once by molybdenum. Indium is the exception in that it 

never has the lowest risk value. 
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Figure 3: Supply risk values for all eleven indicators and all elements after normalization. [1.5-column fitting 
image] 

As mentioned above, the relative weighting of the eleven supply risk indicators for the case of thin-

film photovoltaics was performed via an Analytic Hierarchy Process (AHP) involving ten international 

experts. The average of the weightings from all experts was then used as the overall weighting of the 

supply risk indicators, as given in Table 3. The consistency ratios of all comparison matrices for the 

AHP were below the threshold and therefore the resulting weighting can be utilized. The highest 

single indicator weighting was found to be the “country concentration” (21.9%), followed by “future 

technology demand” with 11.2% and company concentration with 9.4%. Lowest weightings were 

assigned by the experts to “static reach of resources” (4.0%) and “policy perception” with 5.5%. 

  



Postprint Helbig et al. (2016): Applied Energy 178, 422-433 10.1016/j.apenergy.2016.06.102 

12 

Table 3: Indicator weighting according to the expert-based Analytic Hierarchy Process. For details on the AHP, 
see Supplementary Material. 

Category Indicator Weighting 

Risk of Supply Reduction (20.0%) Static Reach Reserves 6.6% 

Static Reach Resources 4.0% 

End-of-Life Recycling Rate 9.3% 

Risk of Demand Increase (23.4%) By-Product Dependence 8.4% 

Future Technology Demand 11.2% 

Substitutability 9.7% 

Concentration Risk (31.3%) Country Concentration 21.9% 

Company Concentration 9.4% 

Policy Risk (19.4%) Political Stability 7.8% 

Policy Perception 5.5% 

Regulation 6.1% 

4.3 Supply risk on the elemental level 

Using the elemental supply risk indicators, the normalization routines and the indicator weightings 

determined via the Analytic Hierarchy Process, we obtain the overall risk values for substantial supply 

disruption of the seven elements considered, namely, cadmium, tellurium, copper, indium, gallium, 

selenium and molybdenum. These are given in Figure 4. (Figure S4 in the Supplementary Material 

shows a more detailed graph.) Indium shows the highest overall value (73), whereas copper shows 

the lowest (48). The high value for indium results from the low static reach, low end-of-life recycling 

rate, extraction as a by-product and the highest risk with respect to policy perception. Copper, on the 

other hand, is characterized by a high static reach of resources and the highest end-of-life recycling 

rate among these elements. Moreover, it is mostly extracted as a host metal, and shows a low 

country concentration as well as a low risk associated with policy perception. The other supply risk 

values are gallium (66), molybdenum (60), tellurium (59), selenium (58) and cadmium (52). A 

comparison with the other weighting scenarios in the sensitivity analysis (Supplementary Material, 

Table S24 and Figure S5) shows that for most of the elements a higher supply risk is obtained with 

the AHP-weighting than for equal weighting or group weighting. The largest difference is observed 

for Ga which is characterized by a supply risk of only 59 in the case of equal weighting (6 points less). 

The exception is Mo, which shows slightly higher supply risks for both alternative weightings. Thus, 

although the quantitative details differ, the order of the supply risk scores remains the same for the 

two alternative weightings. 
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Figure 4: Elemental supply risks after aggregation of all indicators to a single value, following the AHP-
determined weightings. [single-column fitting image] 

4.4 Supply risk aggregation on the technology level 

Since the purpose of the present paper is a comparison of the two technologies rather than an 

analysis just involving the elements concerned, an aggregation of the results of Figure 4 is necessary. 

Of the many possible approaches only four have been chosen, as described in the methodology 

section. The results are shown in Figure 5. Using the arithmetic mean, CIGS (supply risk of 62) shows 

an about 5 points higher supply risk than CdTe (supply risk of 57). As Cd and Te have approximately 

the same weight in the CdTe layer, their relative contributions in the “mass share” approach hardly 

change, whereas the high mass share of Mo in the CIGS panel increases its importance for  the CIGS 

supply risk value However, the overall “technology” supply risk remains approximately the same as 

for the arithmetic mean. The high commodity prices of Te and In increase the relative importance of 

these elements in the “cost share” approach. This increases the overall supply risk for both 

technologies as well as the difference between them (70 for CIGS against 61 for CdTe). In the fourth, 

“maximum” approach, which considers only the element with the highest supply risk score used in 

each technology, the supply risk values are determined by Te for CdTe and In for CIGS. In any case, 

the message comes across clearly that CdTe is characterized by somewhat lower supply risk values 

than CIGS for all aggregation options. This result is also obtained consistently for the alternative 

weighting scenarios, as shown by the sensitivity analysis (Supplementary Material, Figure S6). The 

equal weighting and group weighting again show lower supply risk scores in most cases (except for 

“CIGS mass share” where Mo has a high impact). 
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Figure 5: Overall supply risks for the two technologies: results from different aggregation procedures. 
Arithmetic mean: each element has same weighting. “Mass-share” aggregation: elements are weighted 

according to their mass share in the photovoltaic layer. “Cost-share” aggregation: elements are weighted 
according to their raw material cost share. “Maximum” weighting: the element with highest supply risk 

determines the supply risk for the technology. [single-column fitting image] 

4.5 Uncertainty analysis 

Starting from the reported production data for individual countries, we have performed a Monte 

Carlo simulation for all of our collected data [86]. The results of this simulation lead to a box-plot 

chart for the supply risk results at the elemental and technology levels (see Figure 6). This chart 

shows a statistical summary (mean, median, quartiles, and outliers) of the supply risk results after 

10000 random-number generated instances. The assumed distributions for all raw data within the 

simulation can be found in the Supplementary Material, table S25.  

Half of the instances lead to supply risk values within a box between the 25th and 75th percentile. For 

the elemental level, the overlap of these boxes is low; standard deviations of the resulting elemental 

supply risk deviations are between 2 and 4. Only Te und Mo show a strong overlap in the Monte 

Carlo simulation, making it impossible to state which of the two elements has the higher supply risk 

(which is not the intention here). On the technology level, the large gap between the two 

technologies is also persistent for all aggregation options. Thus, the main result of the article, namely 

the preference for CdTe over CIGS from a supply risk perspective is not compromised by data 

uncertainty. 
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Figure 6: Comparison of supply risk scores on element level (left) and technology level (right). Box-plots display 
the median (thick line), mean (squares), the 25% and 75% percentiles (box), 1.5 interquartile ranges (whiskers), 

and outliers. Assumed distributions are listed in the Supplementary Material. [single-column fitting image] 

5 Discussion 

The results of the aggregation shown in Figure 5 can be used to identify which of the thin-film 

photovoltaic technologies is preferable from a supply risk point of view. The figures, resulting from 

the semi-quantitative supply risk assessment described above, are not a physical expression of 

scarcity, but rather a relative expression of mid- to long-term supply risks. We note that one of the 

major obstacles encountered during the present approach is data availability, which is particularly 

problematic for by-products and company data. Sometimes, data for single countries is withheld for 

reasons of confidentiality. The sources of the data for most indicators such as production and 

reserves as well as political indices, are normally revised annually, but some indicators such as future 

technology demand and recycling rate are only available from single publications that are not 

regularly updated. Filling the ensuing gaps with information from different sources can be 

problematic, since the precise definitions of terms such as “reserves” and “recycling-rates” may differ 

and assumptions made in secondary sources may be unclear. However, our overall results, in 

particular the preference obtained for CdTe over CIGS from a supply risk perspective, are robust 

against assumed data uncertainties, as illustrated by the Monte Carlo simulation. 

The weighting of indicators by experts both directly in the field and in associated fields, rather than 

using equal or arbitrary weighting is a potential advantage, since it helps relevant risk criteria to be 

identified from different perspectives. However, our finding is that the number of experts prepared 

to co-operate in such an exercise is unfortunately low. We concede that at least double the number 

would have been ideal, with perhaps stronger participation by industry. Interestingly, the preference 
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for CdTe is also the result obtained with group weighting and equal weighting, although the 

quantitative details differ. It will be interesting to see whether a similar observation will be made 

when our method is applied in future to the comparison of other technologies.  

Several studies in the past have discussed the supply risk aspects associated with photovoltaic 

technologies, but usually on the basis of a single indicator, or only a few indicators. In a very early 

assessment, well before the current explosive growth in the installation of photovoltaic modules, 

Andersson [48] estimated that tellurium and indium availability (reserves/resources) would limit the 

deployment of CdTe and CIGS photovoltaics, as would germanium for amorphous silicon cells and 

ruthenium for dye-sensitized devices. The constraint was identified at 20 GWp per year for CdTe and 

70 GWp per year for CIGS. [53]. In a review on different thin-film material, Candelise et al. [42] 

concluded in 2011 that the material prices (of indium and tellurium) are much more of a concern for 

the future of these technologies than the availability in terms of “reserves/resources”. The main 

reason is that they would still have to compete with crystalline silicon as well as with emerging thin-

film technologies. (The latter have recently been described by Jean et al. [3].) According to the study 

of Kavlak et al. [47], the total deployment level of CdTe and CIGS modules could only reach 3% and 

10%, respectively, of global electricity generation by 2030, if the historically observed 14.7% annual 

growth rate for all metals were to be reached. Jean et al. [3] estimated that for tellurium in CdTe it 

would require 1500 years at current production rates to reach a deployment level of 25 TWp 

(corresponding to 100% electricity production by the year 2050). Correspondingly shorter times 

would be required for gallium, indium and selenium for CIGS. In the case of cadmium, the current 

production rate would be sufficient to satisfy material demand, while the copper for CIGS would 

require only a fraction of current annual production. For the specific case of tellurium, it has been 

pointed out [32,93] that reserve and resource figures are particularly difficult to estimate, because 

the metal, like selenium, is extracted mainly from the anode slime produced in electrolytic copper 

refining. However, the increased use of new electrowinning processes which do not allow tellurium 

to be captured, could impact future supply. Moreover, there are copper ores, mainly carbonates 

(malachites), which do not contain selenium or tellurium at all. The situation for selenium may be of 

less concern, since it could also be obtained as a by-product from nickel or coal. Viebahn et al. [53] 

have assessed the demand for rare metals required for an expansion of renewable energies in 

Germany up to 2050. In particular, they conclude that the supply of indium and selenium does not 

appear to be “secure” for CIGS in the long term. Reasons for this are geochemical availability, 

competing demand from other technologies, a high dependence on single suppliers and extraction as 

a by-product. Interestingly, they conclude that future research in thin-film photovoltaics should 

concentrate on cells containing little or no indium and selenium! Another interesting aspect has 

recently been discussed by Elshkaki and Graedel [46]. They point out that the increased demand for 

indium, for example, in photovoltaic applications could lead to an oversupply in the parent metal, 

zinc, as well as in another important by-product, cadmium. However, the latter could be partially 

mitigated by demand from the increasing deployment of CdTe modules. 

Summing up these raw material evaluations for thin-film photovoltaics, we note that, with two 

exceptions, hitherto only reserve/resource availability has been investigated, i.e. technology-induced 

raw material demand is compared with reserves and resources. In the set of indicators used in the 

present work, these aspects are closely related to the two static reach indicators, end-of-life 

recycling rate and future technology demand. Interestingly, these four indicators combined account 

only for a weighting of 31.1% by the experts in the survey. Static reach of reserves and resources 

were only given a 10.4% weighting. Possibly, the low weighting given to these “classical” resource 

availability indicators is due to the fact that the experts were aware of the dynamic character of the 
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reserve-to-production ratio and therefore did not want to overestimate the impact of this indicator. 

Indeed, several authors have in recent years warned against attaching too much significance to the 

figures for reserves and resources. A comparison of the reserves/resources data as reported by, for 

example, the USGS with the amounts of the elements contained in the Earth’s continental crust 

reveals that the latter are generally many orders of magnitude higher. This seemingly paradoxical 

situation comes about because minerals are normally extracted from deposits where the average 

concentration of the element concerned (the mineral grade) is much higher than the crustal 

concentration. We still, however, speak of mineral depletion when mining companies are forced to 

exploit deposits of increasingly lower grade, or to mine under conditions of increasing difficulty, e.g. 

at greater depth, so that production costs increase. Due to more efficient techniques in the 

prospecting, mining and processing of ores these costs can in principle be absorbed, which is what 

has happened for most of the 20th century. Taken together, the terms “depletion” and 

“reserves/resources” imply, however, that exhaustion is close, which is not necessarily the case. This 

point makes clear why the definition, at least of reserves, and thus of the static reach of reserves, as 

used here, contains an economic component: In this paper we use the standard definition of reserves 

as being the quantity of the element concerned in those ores for which at the present time 

extraction is both technically and economically feasible (Section 3). The value gives an indication of 

the market pressure for further exploration and the development of new extraction technologies 

(Section 4.1). The corresponding value for resources is unfortunately less well defined because of the 

uncertainty in the data for the not yet identified resources, but may give some indication of possible 

future scarcity. This discussion demonstrates the importance in supply risk analyses of using a 

sufficient number of indicators (not just reserve/resource-linked ones) and to weight them 

specifically for the product or technological application under consideration. 

In previous work, Goe and Gaustad [20] have identified critical materials for photovoltaics (silicon-

based and thin-film) from the U.S. perspective using four supply-risk indicators, as well as an 

environmental and economic risk indicators. Due to their broader technology perspective, 17 

elements are compared in total. Of the materials contained in CdTe and CIGS, In and Se have the 

highest “criticalities”, Ga, Cu and Mo the lowest. Aggregation of the elemental values to compare 

CdTe and CIGS are not attempted in their study; however, the article includes policy 

recommendations for reducing the criticality of individual elements [20]. On the other hand, Graedel 

and Nuss [50], in their comparison of materials for thin-film photovoltaics using a multi-criteria 

catalogue, compare CdTe and CIGS as an example of the use of their “criticality” formalism and its 

applicability to product, or technology evaluation. They use previously determined “criticality values” 

(“criticality vector magnitude” - CVM) for each element based on an analysis using seven indicators 

covering three categories: supply risk aspects, vulnerability to supply risk and environmental impacts 

of raw material production. They employ an equal weighting for their indicators but also refrain from 

carrying out an aggregation at the product, or technology level. Instead, they discuss the CVM values 

for the individual elements and conclude that CdTe had a slight advantage over CIGS, in agreement 

with the present study. Decisive for their study was the high criticality value associated with indium, 

while still bearing in mind the lower one for cadmium [50]. 

6 Summary 

When an increase in the market penetration of a promising future technology such as thin-film 

photovoltaics is expected, questions are raised concerning the mid- to long-term supply situation of 

the functional elements required. As new technologies typically involve more than one functional 
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element, such as cadmium telluride (CdTe) and copper-indium-gallium diselenide (CuInxGa1-xSe2), a 

multi-element assessment is required. Moreover, as many as possible relevant supply risks should be 

taken into account. Most assessments have hitherto focused only on some aspects of the problem, 

such as the availability of primary and secondary resources (in relation to current and future 

demand) or the by-product dependence. Moreover, the corresponding indicators are normally given 

an equal weighting which is not necessarily justified. When more than one element is involved, an 

appropriate aggregation procedure is also required for comparison of the technologies or devices. 

In the present paper we use a set of eleven indicators, the choice of which is based on a broad 

literature survey. These indicators are then weighted with the help of an expert survey involving 

interviewees in research and industry. The results are especially evaluated for the comparison of the 

two photovoltaic technologies using an Analytic Hierarchy Process, which shows good consistency 

ratios. The highest weighting is given to the indicator “country concentration” (21.9%), followed by 

“future technology demand” (11.2%) and “company concentration” (9.4%). The lowest weightings 

are given to “static reach of resources” (4.0%) and the “policy perception” (5.5%). We apply the 

eleven supply risk indicators to each functional element of CdTe and CIGS: cadmium, tellurium, 

copper, indium, gallium, selenium and molybdenum. Among these, copper and cadmium show the 

lowest supply risk, indium and gallium the highest. The rather low risk for copper emerges from a low 

country and company concentration combined with a moderate future technology demand and the 

fact that copper is mainly a host metal. The same indicators are responsible for the higher supply 

risks for indium and gallium. 

In a second step, four different aggregation methods are compared in order to evaluate whole 

technologies: “average supply risks” of the single elements, the “mass-weighted supply risk”, the 

“cost-weighted supply risk” and the “maximum supply risk”. CdTe shows a slightly lower supply risk 

for all aggregation options than CIGS. The mass-weighted supply risk for CIGS is mainly determined 

by molybdenum. While the cost-based supply risk for CdTe is determined largely by cadmium, the 

cost-based supply risk of CIGS is strongly influenced by indium. These different aggregation options 

at the technology level could reflect different priorities set by decision-makers and can be chosen in 

such a way as to be compatible with a particular supply risk assessment. 

In conclusion, we have presented in this paper a semi-quantitative, relative supply risk assessment of 

the two thin-film photovoltaic technologies, CdTe and CIGS. It transpires that marginally less supply 

risk is associated with the use of CdTe technology than with CIGS. The significance of the present 

analysis lies not just in this result, but also in the successful application of the procedure on a 

comparative basis at the technology level. It has been demonstrated that suitable indicators can be 

identified, the required data are generally available and the normalization and weighting procedures 

are feasible. Moreover, the preference for CdTe is maintained for other, simpler weightings 

(although the quantitative details vary) and the results are robust with respect to data uncertainties. 

Our procedure can now be applied to other technologies where such a comparative supply risk 

assessment is required. In principle, the procedure could be extended to include environmental and 

social aspects. Whilst these aspects are of course very important, there is, however, no a priori 

reason why they should be included in an analysis of supply risk. 
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1. Short explanation of the eleven indicators 

Table S4: Explanation of supply risk indicators in the categories “risk of supply reduction” and “risk of demand increase”. 

 Indicator Indicator Description Unit Min Max Calculation Sources 

R
is

k 
o

f 
Su

p
p

ly
 R

ed
u

ct
io

n
 

Static Reach 

Reserves 

The static reach of the reserves (SR) of a raw material is measured by the ratio of annual 

primary production to the estimated global reserves. Reserves are the ores currently 

technically and economically extractable from known deposits. The value gives an 

indication of the market pressure for further exploration and for the development of new 

extraction capabilities, possibly leading to higher price levels. 

years 0 years infinite 

(∞ years)  

𝑆1 = 100 − 0.2SR − 0.008SR2 [1] [2] 

Static Reach 

Resources 

The static reach of the resources (RR) of a raw material is measured by the ratio of annual 

production to estimated global resources. Resources are deposits from which the economic 

extraction of the ore is potentially feasible, but not at present. The value is the best 

available measure of a possible physical scarcity of a raw material due to potential mineral 

depletion, independent of current price levels. 

years 0 years infinite 

(∞ years) 

𝑆2 = 100 − 0.1RR − 0.002RR2 [1] [2] 

EoL-Recycling 

Rate 

The end-of-life recycling rate (EoL-RR) of a raw material is measured by the ratio of current 

annual recycled material flow to the annual discard rate of the raw material. The value 

gives an estimate of the amount of available secondary material, which is independent of 

mining and primary refining activities and can thus smooth out supply disruptions or price 

peaks. 

% 0% 100% 𝑆3 = 100 − EoL-RR [3] 

R
is

k 
o

f 
D

em
an

d
 In

cr
ea

se
 

By-Product 

Dependence 

The by-product dependence (BPD) is the percentage of the element mined as a byproduct 

of the global production of another element. This is normally the case, when mining solely 

for the raw material itself is not economically feasible. This figure is a measure of the 

potential inability to increase primary production in response to an increase in demand. 

% 0% 100% 𝑆4 = BPD [4] 

Future 

Technology 

Demand  

Future technology demand (FTD) is given by the ratio of expected additional demand in a 

future year due to new, future technologies and global production in a past year. The value 

gives an indication of the market pressure for increasing global extraction due to future 

technologies and therefore of potential additional competition in the commodity markets. 

% 0% infinite 

(∞ %)  

𝑆5 = ((√(1 + FTD)𝑡
) − 1) ∗ 1000 

t=24 years [5] 

[6] 

Substitutability Substitutability (Subst) is an estimate of the extent to which a raw material can be replaced 

by another raw material, without there being a too great a loss of essential properties. It is 

gauged by expert assessment. The value gives an estimates of the extent to which demand 

can be shifted to other materials in case of supply shortage and thus of the potential to 

smooth out supply disruptions or price peaks. 

dimension-

less 

0 100 𝑆6 = 100 − Subst [7] 
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Table S5: Explanation of supply risk indicators in the categories “concentration risk” and “political risk”. 

# Indicator Indicator Description Unit Min Max Calculation Sources 

C
o

n
ce

n
tr

at
io

n
 R

is
k 

Country 

Concentration 

The concentration of the annual production of a raw material at the country level 

is measured by the Herfindahl-Hirschman Index, which is the sum over the 

squares of the production shares of the countries in percent. The value indicates 

directly market concentration in a few countries and thus the possibility of 

strategic exploitation of a monopolistic position at times of international crisis or 

dispute. 

Herfindahl-Hirschman-Index 0 10000 𝑆7 = 21.64 ln(HHI) − 99.31 [2] 

Company 

Concentration 

The concentration of the annual production of a raw material at the company 

level is measured by the Herfindahl-Hirschman Index, which is the sum over the 

squares of the production shares of the companies in percent. The value indicates 

directly market concentration in a few companies and thus the likelihood of 

oligopolistic structures, which are linked in turn to higher price levels, low levels of 

competition and strategic misuse. 

Herfindahl-Hirschman-Index 0 10000 𝑆8 = 15.81 ln(HHI) − 45.62 [8] 

P
o

lit
ic

al
 R

is
k 

Country Risk 

Political Stability  

The risk of political instability in producing countries is measured by the 

Worldwide Governance Indicator for Political Stability and Absence of 

Violence/Terrorism, presented by the World Bank, weighted by the production 

share in each producing country. The value is an indication of the likelihood of 

disruption in production and export in the countries concerned due to unrest, 

coups d’état, terrorism or other situations involving violence. 

Worldwide Governance 

Indicator – Political Stability 

and Absence of 

Violence/Terrorism 

-2.5 2.5 𝑆9 = 20 ∗ (2.5 − WGI) [9] 

Country Risk 

Policy Perception 

The indicator Policy Perception is an assessment of the ability of producing 

countries to implement new mining projects, weighted by the production share in 

each country. The Policy Perception is evaluated by mining industry experts and 

summarized by the Fraser Institute. The value is a measure of the ability of the 

market to continue to function and/or of primary production to increase further 

based on the rule of law and governance procedures in producing countries. 

Policy Perception Index 0 100 𝑆10 = 100 − PPI [10] 

Country Risk 

Regulation 

The “regulation risk” attempts to measure the likelihood of the producing 

countries to actually implement restrictions on mining, refining and trade, as 

indicated by their level of societal development. This in turn is measured by the 

HDI (Human Development Index), as presented by the United Nations 

Development Programme and weighted by the production share in each 

producing country. The value assesses the likelihood that further mineral 

extraction and refining activities are prevented due to regulations, taxes, tariffs or 

taxes in producing countries. 

Human Development Index 0 1 𝑆11 = 100 ∗ HDI [11] 
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2. Country-specific elemental data tables 

Four of the supply risk indicators (“country concentration”, “political stability”, “policy perception”, 

and “regulation risk”) rely on country-specific production data. Tables S3, S4, S5, S6, S7 and S8 

therefore show the country-specific data used in the assessment of cadmium, tellurium, copper, 

indium, selenium and molybdenum. Tables S9 and S10 show data used for the host metal zinc and 

the host mineral bauxite. Country-specific data for gallium is unavailable. The PPI is given on a 

regional level for USA, Australia and Canada instead of a national level, which is why regionalized 

mining production is necessary for these elements [10]. Withheld (W) or unavailable (n/av) 

production data are excluded from the calculation of country concentration and political risk scores. 

Table S6: Country-specific cadmium data. 

Country (Region) 2014 Production1, t [2] WGI-PV [9] HDI [11] 

USA W2 0.62 0.91 

Australia 380 1.08 0.93 

Bulgaria 400 0.08 0.78 

Canada 1270 1.18 0.90 

China 7300 -0.46 0.72 

India 450 -0.96 0.59 

Japan 1790 1.02 0.89 

Kazakhstan 1200 0.05 0.76 

Korea, Rep. of 4090 0.19 0.89 

Mexico 1440 -0.76 0.76 

Netherlands 570 1.05 0.92 

Peru 710 -0.52 0.74 

Poland 400 0.87 0.83 

Russia 1200 -0.84 0.78 

Other3 1000 0 0.702 

 

Table S7: Country-specific tellurium data. 

Country (Region) 2014 Production, t [2] WGI-PV [9] HDI [11] 

USA 134 0.62 0.91 

Canada 10 1.18 0.9 

Japan 45 1.02 0.89 

Russia 40 -0.84 0.78 

Other3 n/av 0 0.702 

 

                                                           

1 80% primary production, 20% secondary production [2] 
2 W: figure withheld by the data source, i.e. for reasons of confidentiality 
3 for “other” countries, the mean value was assumed for all country-specific indicators (WGI-PV 0, PPI 50, HDI 0.702) 
4 [17] 
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Table S8: Country-specific copper data. 

Country (Region) 2014 Production, kt 

[2,12,13] 

WGI-PV [9] PPI [10] HDI [11] 

USA (Arizona) 924 0.62 71.7 0.91 

USA (New Mexico) 81 0.62 63.2 0.91 

USA (Other) 364 0.62 505 0.91 

Australia (South Australia) 312 1.08 76.1 0.93 

Australia (Queensland) 270 1.08 66.1 0.93 

Australia (New South Wales) 178 1.08 67 0.93 

Australia (Western Territory) 209 1.08 84.6 0.93 

Australia (Tasmania) 31 1.08 70.2 0.93 

Canada (Newfoundland and Labrador) 52 1.18 88.4 0.9 

Canada (Quebec) 42 1.18 83.6 0.9 

Canada (Ontario) 204 1.18 72.4 0.9 

Canada (Manitoba) 37 1.18 85.6 0.9 

Canada (Saskatchewan) 1 1.18 89.7 0.9 

Canada (British Columbia) 322 1.18 60.7 0.9 

Canada (Yukon) 21 1.18 70.4 0.9 

Chile 5800 0.49 72.2 0.82 

China 1620 -0.46 20.7 0.72 

Congo, Dem. Rep. of 1100 -2.27 27.9 0.34 

Indonesia 400 -0.37 15.83 0.68 

Kazakhstan 430 0.05 42.4 0.76 

Mexico 520 -0.76 52 0.76 

Peru 1400 -0.52 53.9 0.74 

Poland 425 0.87 40.6 0.83 

Russia 850 -0.84 30.5 0.78 

Zambia 730 0.21 52.4 0.56 

Other6 2400 0 50 0.702 

 

                                                           

5 some regions do not have a Policy Perception Index, in which case the mean PPI of 50 was assumed 
6 for “other” countries, the mean value was assumed for all country-specific indicators (WGI-PV 0, PPI 50, HDI 0.702) 
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Table S9: Country-specific indium data. 

Country (Region) 2014 Production, t [2] WGI-PV [9] HDI [11] 

Belgium 30 0.71 0.88 

Canada 65 1.18 0.9 

China 420 -0.46 0.72 

France 48 0.36 0.88 

Germany 10 0.93 0.91 

Japan 72 1.02 0.89 

Korea, Rep. of 150 0.19 0.89 

Peru 11 -0.52 0.74 

Russia 13 -0.84 0.78 

 
Table S10: Country-specific selenium data. 

Country (Region) 2014 Production, t [2] WGI-PV [9] HDI [11] 

USA W 0.62 0.91 

Belgium 200 0.71 0.88 

Canada 150 1.18 0.9 

Chile 70 0.49 0.82 

China n/av7 -0.46 0.72 

Finland 75 1.28 0.88 

Germany 700 0.93 0.91 

Japan 760 1.02 0.89 

Peru 40 -0.52 0.74 

Poland 80 0.87 0.83 

Russia 150 -0.84 0.78 

Other6 50 0 0.702 

 

  

                                                           

7 n/av: not available 
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Table S11: Country-specific molybdenum data. 

Country (Region) 2014 Production, t 

[2,13,14] 

WGI-PV [9] PPI [10] HDI [11] 

USA (Arizona) 20090 0.62 71.7 0.91 

USA (Colorado) 23623 0.62 71.2 0.91 

USA (Idaho) 10179 0.62 67.4 0.91 

USA (Utah) 6120 0.62 80 0.91 

USA (New Mexico) 1074 0.62 63.2 0.91 

USA (Montana) 3221 0.62 59.5 0.91 

USA (Other) 1192 0.62 508 0.91 

Armenia 6700 -0.21 509 0.88 

Canada (British Columbia) 9500 1.18 60.7 0.9 

Chile 39000 0.49 72.2 0.82 

China 100000 -0.46 20.7 0.72 

Iran 6300 -0.91 509 0.75 

Kyrgyzstan n/av10 -0.78 42.4 0.63 

Mexico 11000 -0.76 52 0.76 

Mongolia 2000 0.87 17.1 0.7 

Peru 18100 -0.52 53.9 0.74 

Russia 4800 -0.84 30.5 0.78 

Turkey 2800 -1.06 44.2 0.76 

Uzbekistan 550 -0.23 509 0.66 

 

                                                           

8 some regions do not have a Policy Perception Index, in which case the mean PPI of 50 was assumed 
9 some countries do not have a Policy Perception Index, in which case the mean PPI of 50 was assumed 
10 n/av: not available 
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Table S12: Country-specific zinc data. 

Country (Region) 2014 Production, kt 

[2,12,13] 

WGI-PV [10] PPI [10] HDI [11] 

USA (Alaska) 670 0.62 71.7 0.91 

USA (Other) 150 0.62 508 0.91 

Australia (Queensland) 998 1.08 66.1 0.93 

Australia (New South Wales) 141 1.08 67 0.93 

Australia (Western Australia) 76 1.08 84.6 0.93 

Australia (Northern Territory) 197 1.08 69.2 0.93 

Australia (Tasmania) 87 1.08 70.2 0.93 

Bolivia 410 -0.36 20.1 0.67 

Canada (Newfoundland and Labrador) 18 1.18 88.4 0.9 

Canada (Quebec) 130 1.18 83.6 0.9 

Canada (Ontario) 59 1.18 72.4 0.9 

Canada (Manitoba) 83 1.18 85.6 0.9 

Canada (Saskatchewan) 2 1.18 89.7 0.9 

Canada (British Columbia) 31 1.18 60.7 0.9 

Canada (Yukon) 28 1.18 70.4 0.9 

China 5000 -0.49 20.7 0.72 

India 700 -0.96 47.5 0.59 

Ireland 300 1.07 96 0.9 

Kazakhstan 330 0.05 42.4 0.76 

Mexico 700 -0.76 52 0.76 

Peru 1300 -0.52 53.9 0.74 

Other11 1900 0 50 0.702 

 

                                                           

11 for “other” countries, the mean value was assumed for all country-specific indicators (WGI-PV 0, PPI 50, HDI 0.702) 
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Table S13: Country-specific alumina/bauxite data. 

Country (Region) 2014 Production, 

kt dry [2,13] 

WGI-PV [10] PPI [10] HDI [11] 

USA n/av12 0.62 5013 0.91 

Canada (Queensland) 49410 1.18 66.1 0.93 

Canada (Western Australia) 28350 1.18 84.6 0.93 

Canada (Northern Territory) 3240 1.18 69.2 0.93 

Brazil 32500 -0.01 33 0.74 

China 47000 -0.49 20.7 0.72 

Greece 2100 0.02 35.5 0.85 

Guinea 19300 -0.93 32 0.56 

Guyana 1800 -0.16 50.9 0.64 

India 19000 -0.96 47.5 0.59 

Indonesia 500 -0.37 5013 0.68 

Jamaika 9800 0.09 5013 0.72 

Kazakhstan 5500 0.05 42.4 0.76 

Russia 5300 -0.84 30.5 0.78 

Suriname 2700 0.23 5013 0.71 

Venezuela 2200 -0.83 15.4 0.76 

Vietnam 1000 0.00 26 0.64 

Other14 4760 0 50 0.702 

  

                                                           

12 n/av: not available 
13 some countries do not have a Policy Perception Index, in which case the mean PPI of 50 was assumed 
14 for “other” countries, the mean value was assumed for all country-specific indicators (WGI-PV 0, PPI 50, HDI 0.702) 
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3. Supply risk data table with notes and comments 

Many of the supply risk indicators used in our assessment rely on data from multiple sources or on 

assumptions. Therefore, the tables S11, S12, S13, S14 and S15 below repeat all indicator figures from 

the main article, alongside additional data and annotations concerning the assumptions. 

Table S14: Supply risk data on elemental level. 

Indicator Cd Te Cu In Ga Se Mo 

Primary production15 17.8 kt16 550 t17 18.7 Mt 820 t 440 t 2.275 kt18 266 kt 

Production type refinery refinery mine refinery refinery refinery mine 

Main host metal 

(mineral) 

Zn Cu - Zn Al 

(Bauxite) 

Cu - 

Reserves15 500 kt19 24 kt20 700 Mt 18.8 kt [15] 1.4 Mt21 120 kt 11 Mt 

Resources15 4.75-

9.5 Mt22 

192 kt23 5.6 Gt24 125 kt [15] 2.75-

3.75 Mt25 

960 kt26 19,4 Mt27 

 

Table S15: Elemental data on risk of supply reduction. ⊕: High figures mean high risk. ⊖: Low figures mean high 
risk. 

Indicator Dimension Risk Cd Te Cu In Ga Se Mo 

Static Reach Reserves years ⊖ 28 a 44 a28 37 a 23 a 3182 a 53 a 41 a 

Static Reach Resources years ⊖ 267 a29 349 a28 299 a 152 a 6250 a29 422 a 73 a 

EoL-Recycling Rate [3] % ⊖ 15% <1% 43-53%30 <1% <1% <5% 30% 

 

                                                           

15 estimation for 2014 unless otherwise noted [2] 
16 80% primary production of 22.2 kt total production (excl. USA and Italy) [2] 
17 lowest estimate from USGS Minerals Yearbook 2012 [23] 
18 excluding USA, China and other countries 
19 latest available figure from 2014 [24] 
20 “only tellurium contained in copper reserves. These estimates assume that more than one-half of the tellurium contained in unrefined 
copper anodes is recoverable” [2] 
21 calculated from 28 Gt bauxite reserves and a concentration of 50 ppm Ga in bauxite ore [2] 
22 calculated from zinc resources (1.9 Gt) assuming a Cd:Zn-ratio of 1:400 to 1:200 [24] 
23 calculated from copper resources (5.6 Gt) assuming the same Te:Cu-ratio as for reserves (24:700,000) 
24 includes 2.1 Gt identified and 3.5 Gt unidentified resources [25] 
25 calculated from bauxite resources (55-75 Gt) and a concentration of 50ppm Ga in bauxite ore [2] 
26 calculated from copper resources (5.6 Gt) assuming the same Se:Cu-ratio as for reserves (120:700,000) 
27 identified resources in the US (5.4 Mt) and the rest of the world (14 Mt) 
28 assuming the lower boundary of estimated primary production volume 
29 assuming the lower boundary of estimated resources volume 
30 from both figures given in the reference, 43% recycling rate implies higher supply risk and is therefore used 
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Table S16: Elemental data on risk of demand increase. ⊕: High figures mean high risk. ⊖: Low figures mean high 
risk. 

Indicator Dimension Risk Cd Te Cu In Ga Se Mo 

By-product 

dependence 

% ⊕ 100% 

(Zn) [16] 

100% 

(Cu, Pb) 

[17] 

9% [4] 100% 

(Zn) 

[16] 

100% 

(Bauxite) 

[16] 

100% 

(Cu) 

[17] 

46% 

(Cu)31  

Future Technology 

Demand32 

% ⊕ n/av33 n/av33 15% 289% 581% 11% n/av33 

Substitutability34 qualitative ⊖ 62 62 30 40 62 53 30 

 

Table S17: Elemental data on concentration risk. ⊕: High figures mean high risk. ⊖: Low figures mean high risk. 

Indicator Dimension Risk Cd Te Cu In Ga Se Mo 

Country Concentration35 HHI ⊕ 167036 333837 144338 315939 378540 226841 232342 

Company 

Concentration43 

HHI ⊕ rather 

low 

[18] 

110844 1108 186745 166746 110847 2183 

 

Table S18: Elemental data on political risk. ⊕: High figures mean high risk. ⊖: Low figures mean high risk. 

Indicator Dimension Risk Cd Te Cu In Ga Se Mo 

Political Stability 

(WGI-PV)48 

qualitative ⊖ -0.24 0.0737 0.27 -0.35 -0.440 1.07 -0.19 

Policy Perception (PPI)49 qualitative ⊖ 4350 5551 5551 4350 4752 5551 4753 

Regulation Risk (HDI)54 qualitative ⊕ 0.79 0.7337 0.76 0.80 0.7140 0.88 0.79 

 

                                                           

31 [14] (version from 30 September 2014) 
32 ratio of future technology demand by 2030 compared to annual production 2006 [6] 
33 cadmium, tellurium and molybdenum were not identified as key elements for future technologies with high demand tendencies [6] 
34 order inverted from [7] in order to represent the name in a more satisfactory way: here figure 100 means “fully substitutable”, figure 0 
means “not substitutable” 
35 [2], unless otherwise noted, other countries assumed as a single country (worst case scenario) 
36 22.1 kt produced in 13 countries and 1 kt in other countries, USA and Italy not included 
37 only US [17] for 2008 as well as Canada, Japan and Russia for 2014 
38 16.325 Mt produced in 13 countries and 2.4 Mt in other countries 
39 819 t produced in 9 countries 
40 [16] for year 2008 
41 2225kt produced in 9 countries, 50 in other countries, USA withheld, Australia, China, Iran, Kazakhstan, Philippines and Uzbekistan not 
included 
42 266.25kt produced in 12 countries 
43 [8] unless otherwise noted 
44 Company Concentration of tellurium applies to copper 
45 Top 3: 56%, Asian Metals (2007) [26] 
46 Top 3: 50%, [26] 
47 Company Concentration of selenium applies to copper 
48 Production shares 2014 from [2] unless otherwise noted, WGI-PV values 2013 from [9] 
49 Production shares 2014 from [2] unless otherwise noted, PPI values 2014 from [10], PPI values apply to host metal production countries, 
which is zinc for cadmium and indium, copper for tellurium and selenium, and bauxite for gallium. 
50 Zinc production: US state production for year 2012 [23], Australian state/territory production for year 2012 [12], Canadian 
province/territory production for year 2014 [13] 
51 Copper production: US state production for year 2011 [23], Australian state/territory production for year 2012 [12], Canadian 
province/territory production for year 2014 [13] 
52 Australian state/territory production from distribution of assessable economic demonstrated resources [12]. 
53 Molybdenum mining production: US state production for year 2013 [14], Canadian province/territory production for year 2014 [13] 
54 Production shares 2014 from [2] unless otherwise noted, HDI values 2013 from [11] 
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Table S19: Normalized elemental supply risk scores in all eleven indicators. High figures mean high risk. 

Indicator Cd Te Cu In Ga Se Mo 

Static Reach Reserves 88 76 81 91 0 67 78 

Static Reach Resources 0 0 0 38 0 0 82 

EoL-Recycling Rate 85 99 57 99 99 95 70 

By-product dependence 100 100 9 100 100 100 46 

Future Technology Demand 6 14 6 58 83 4 26 

Substitutability 38 38 70 60 38 47 70 

Country Concentration 61 76 58 75 79 68 68 

Company Concentration 0 65 65 73 72 65 76 

Political Stability 51 49 49 50 58 34 50 

Policy Perception 57 45 45 57 53 45 53 

Regulation Risk 79 73 76 80 71 88 79 
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4. Expert questionnaire for supply risk indicator weighting 

  
Figure S7: Questionnaire for AHP, part 1 
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Figure S8: Questionnaire for AHP, part 2 
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 Figure S9: Questionnaire for AHP, part 3 

Pages 4 and 5 of the questionnaire are identical with pages S2 and S3 of this Supplementary Material. 
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Table S20: AHP matrix for categories of supply risk. 

CR55: 0.004 Supply Reduction Demand Increase Concentration Political Risk Local Weight 

Supply Reduction 1 0.71 0.57 1.12 0.20 

Demand Increase 1.41 1 0.94 1.60 0.29 

Concentration 1.76 1.06 1 1.43 0.31 

Political Risk 0.90 0.63 0.70 1 0.19 

 

Table S21: AHP matrix for risks of supply reduction. 

CR55: 0.060 Static Reach Resource Reach EoL-RR Local Weight Global Weight 

Static Reach 1 2.12 0.55 0.33 0.066 

Resource Reach 0.47 1 0.55 0.20 0.040 

EoL-RR 1.82 1.83 1 0.47 0.093 

 

Table S22: AHP matrix for risks of demand increase. 

CR55: 0.007 By-Product Future Demand Substitutability Local Weight Global Weight 

By-Product  1 0.82 0.79 0.29 0.084 

Future Demand 1.22 1 1.27 0.38 0.112 

Substitutability 1.26 0.79 1 0.33 0.097 

 

Table S23: AHP matrix for concentration risks. 

CR55: 0.000 Static Reach Resource Reach  Local Weight Global Weight 

Static Reach 1 2.34  0.70 0.219 

Resource Reach 0.43 1  0.30 0.094 

 

Table S24: AHP matrix for policy risks. 

CR55: 0.001 WGI-PV PPI HDI Local Weight Global Weight 

WGI-PV 1 1.47 1.24 0.40 0.078 

PPI 0.68 1 0.93 0.28 0.055 

HDI 0.81 1.07 1 0.31 0.061 

 

  

                                                           

55 CR: consistency ratio, which needs to be below 0.1 for each comparison table. 
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5. Supply risk aggregation for CdTe and CIGS 

Figure S4 displays all indicator values (points) for the supply risk assessment on an elemental level, 

similar to figure 3 in the article. The bars are the resulting supply risk scores on the elemental level 

after aggregation of the indicators with AHP-determined weightings. 

 

Figure S10: Elemental supply risks after aggregation of all indicators to a single value, following the AHP-
determined weightings. 

Mass shares of each element in each technology and the commodity prices of each material and the 

resulting weight of each element in the “mass share” and “cost share” aggregation methods are 

displayed in table S22 (for CdTe) and table S23 (for CIGS). 

 

Table S25: Material intensity data and commodity price data for CdTe cells. 

Data Cd Te 

Mass, kg/MWp 153.4 [19] 137.7 [19] 

Mass share, % 52.7 47.3 

Specific material costs, USD/kg56 0.8657 77.558 

Raw material costs, USD/MWp 131.92 10672 

Cost share, % 1.2 98.8 

 

                                                           

56 commodity prices as of August 2015 [27] 
57 Cadmium, MB free market, min. 99.95%, in warehouse 
58 Tellurium, min. 99.99%, Europe 
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Table S26: Material intensity and commodity price data for CIGS cells. 

Data Cu In Ga Se Mo 

Mass, kg/MWp 21.0 [20] 19.0 [20] 2.3 [20] 9.6 [20] 90.0 [21] 

Mass share, % 14.8 13.4 1.6 6.7 63.4 

Specific material costs, USD/kg56 5.08959 315.6360 144.461 24.1162 12.8663 

Raw material costs, USD/MWp 106.97 5993.8 337.9 230.49 1157.4 

Cost share, % 1.4 76.6 4.3 2.9 14.8 

 

  

                                                           

59 Copper, grade A, LME, cash, in LME warehouse 
60 Indium, ingots, min. 99.97%, free market, in warehouse 
61 Gallium, min. 99.99% fob China 
62 Selenium, min. 99.5%, free market, in warehouse 
63 Molybdenum, oxide, drummed, Europe, free market, in warehouse, price per kg Mo 
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6. Sensitivity analysis: Alternative weightings 

To illustrate the sensitivity of the results to the indicator weighting within the Analytic Hierarchy 

Process (AHP), we calculate the supply risks on the element-level and technology levels for two 

alternative (simple) weighting possibilities and compare them with the results of our assessment. 

Table S24 lists the weighting of each indicator for the AHP case as well as for the two alternatives 

“group weighting” and “equal weighting”. Figure S5 illustrates the results obtained from our 

assessments in comparison with the two alternative weightings. For six out of seven elements (Cd, 

Te, Cu, In, Ga and Se), the AHP weightings gives the highest supply risk value. Only for molybdenum 

the opposite is true: Group weighting and equal weighting would result in a higher supply risk value 

than for the AHP case. The largest change in supply risk values occurs for gallium (more than 5 supply 

risk points extra in the AHP weighting). Overall, the sequence of elements (if sorted by supply risk) 

does not change between the three weightings. 

Table 27: Alternatives to the weightings determined by the Analytic Hierarchy Process: “Group weighting” 
weights all risk categories equally (weighting depends on number of indicators in each risk category), “equal 

weighting” weights all eleven indicators equally. 

Category Indicator AHP weighting Group weighting Equal weighting 

Risk of Supply Reduction Static Reach Reserves 6.6% 8.3% 9.2% 

Static Reach Resources 4.0% 8.3% 9.2% 

End-of-Life Recycling Rate 9.3% 8.3% 9.2% 

Risk of Demand Increase By-Product Dependence 8.4% 8.3% 9.2% 

Future Technology Demand 11.2% 8.3% 9.2% 

Substitutability 9.7% 8.3% 9.2% 

Concentration Risk Country Concentration 21.9% 12.5% 9.2% 

Company Concentration 9.4% 12.5% 9.2% 

Policy Risk Political Stability 7.8% 8.3% 9.2% 

Policy Perception 5.5% 8.3% 9.2% 

Regulation 6.1% 8.3% 9.2% 
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 Figure S11: Supply risk on the elemental level” for different weighting scenarios: AHP weighting uses indicator 
weightings as presented in the main article; “group weighting” uses equal weightings for all risk categories; 

“equal weighting” uses equal weightings for all eleven indicators. 

 Figure S12: Supply risk on the technology level for different weighting and aggregation scenarios. Individual 
element results: see figure S5. “AHP weighting” uses indicator weightings as presented in the main article; 

“group weighting” uses equal weightings for all risk categories; “equal weighting” uses equal weightings for all 
eleven indicators. Arithmetic “mean”: each element has same weighting. “Mass-share” aggregation: elements 
are weighted according to their mass share in the photovoltaic layer. “Cost-share” aggregation: elements are 

weighted according to their raw material cost share. “Maximum” weighting: the element with the highest 
supply risk determines the supply risk for the technology. 
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7. Monte Carlo simulation for uncertainty analysis 

In order to test the results of our assessment with respect to data gaps and uncertainties, we have 

performed a Monte Carlo simulation. Raw data were given an assumed distribution (lognormal, 

normal, triangular or equal) and 10000 sequences with software-generated random numbers 

according to these distributions were used to calculate resulting distributions of the elemental and 

technology supply risk scores. Lognormal distributions were used mostly for physical values from 

literature (production volumes, reserves and resources, future technology demand, company 

concentration). Triangular distributions were used for data with a per-definition minimum and 

maximum value (e.g., 0 to 100). Normal distributions were given for Worldwide Governance 

Indicator values. Equal distributions were used if the PPI score of a country was unknown. PPI scores 

and HDI scores are the results of estimates made by others and are not explicitly modelled with 

uncertainties (but each production share of a country has a simulated distribution). Table S25 gives a 

list for all quantitative uncertainty distributions for raw data. The resulting box plot graph is given 

illustrated in the manuscript as Figure 6. 

Table S28: Assumptions for the distributions required for Monte Carlo (MC) simulation 

Data point Distribution for MC simulation Standard deviation [1,9,22] 

Production volume (country-specific) Lognormal GSD² = 1.22864 

Reserves (global) Lognormal GSD² = 1.237 

Resources (global) Lognormal GSD² = 1.237 

EoL-Recycling Rate Triangular Min: 0%, Max: 100%, Mean: given 

By-Product Dependence Triangular Min: 0%, Max: 100%, Mean: given 

Future Technology Demand Lognormal GSD² = 1.228 

Substitutability Triangular Min: 0, Max: 100, Mean: given 

Country Concentration calculated from country-specific 

production volumes 

- 

Company Concentration Lognormal GSD² = 1.228 

WGI-PV (country-specific) Normal taken from data source 

PPI (country-specific) PPI available: no data uncertainty 

assumed 

PPI unavailable: equal distribution 

-; Min: 0, Max: 100 

HDI (country-specific) no data uncertainty assumed - 

Mass, kg/MWp Lognormal, Triangular GSD² = 1.228 

Cd-Min: 140.1, Cd-Max: 166.6 

Te-Min: 93.3, Te-Max: 182.0 

Commodity price Lognormal GSD² = 1.237 

 

  

                                                           

64 GSD²: squared geometric standard deviation 
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