Translation of QVT Relations into
QVT Operational Mappings

Raphael Romeikat, Stephan Roser, Pascal Miillender, and Bernhard Bauer

Programming Distributed Systems Lab,
University of Augsburg, Germany
{romeikat,roser,bauer}@ds-lab.org,
p-muellenderQusers.sourceforge.net

Abstract. Model transformations play a key role in Model-Driven En-
gineering solutions. To efficiently develop, specify, and manage model
transformations, it is often necessary to use a combination of languages
that stand for different transformation approaches. To provide a basis for
such hybrid model transformation specification solutions, we developed
and implemented a translation of the declarative QV'T Relations into the
imperative QV'T Operational Mappings language.

1 Introduction

Model Driven Engineering (MDE) treats models as primary development arti-
facts as they are used for model and code generation. MDE uses models to raise
the level of abstraction at which developers create and evolve software [8] and
reduces complexity of the software artifacts by separating concerns and aspects
of a system under development [9]. Largely automated model transformations
refine abstract models to more concrete models or simply describe mappings
between models of the same level of abstraction.

Model transformations are considered as a kind of metaprogramming since
they are specified on the basis of metamodels. People developing model transfor-
mations have to respect the rich semantics of the metadata upon which the model
transformations operate [4]. Not surprisingly, various authors suggest to use dif-
ferent model transformation approaches for the diverse transformation problems.
Declarative transformation approaches are best applied to specify simple trans-
formations and relations between source and target model elements, while im-
perative approaches lend themselves for implementing complex transformations
that involve detailed model analysis [7]. As it is done with other programming
languages, it seems beneficial to use several model transformation language to
solve complex problems [11]. In the OMG standard for model transformations
QVT [12], the imperative QVT Operational Mappings (OM) language is defined
as an extension of the declarative QVT Relations (Relations) language.

Having a closer look at model transformation approaches, one can observe
that the various approaches and their implementations support model trans-
formation features like automatic updates, directionality, traceability, etc. to a

138

different extent [7,11]. In the case of the QVT standard, update is automatically
supported by the Relations language, while the user of OM has to implement
this transformation feature by hand. The Relations language also allows to spec-
ify bidirectional transformations, which reduces effort in model synchronization
scenarios. In OM it is in general necessary to specify multiple unidirectional
transformations. However, it may not be possible and sensible for people using
model transformation languages to construct complex transformations using a
fully declarative approach [7].

Though the QVT standard allows to extend Relations with OM (hybrid trans-
formation approach), no engine exists that can execute such a hybrid approach.
Some MDE platforms will only provide one optimized execution engine onto
which the transformation programs of different model transformation languages
are mapped. When implementing such an approach, it is a good heuristic to map
declarative and hybrid languages onto imperative languages and provide an ex-
ecution engine for the imperative language. It is expected that e.g. translating
Relations into OM does not expose obstacles [11]. However, the advanced fea-
tures such as multidirectionality, automatic traccability, special transformation
scenarios, etc., that are only supported natively by the Relations language and
not by the OM language, have to be translated into imperative OM code and
separate transformations.

In this paper we develop a translation of Relations into OM and implement
it as a higher-order model transformation. Higher-order transformations take
transformations as input and produce other transformations as output [2]. Our
translation allows model transformation developers to specify the ’easy’ things in
a declarative way and profit from the additional features of Relations like support
for model synchronization and model updates. By using our translation, one can
implement "hard’ model transformation code in OM, execute the Relations code
on a possibly optimized OM engine, and use tool support that is available for
OM like debuggers, profilers, etc.. We implement our translation approach to
show its feasibility and evaluate it with a UML to RDBMS transformation.

This paper is structured as follows: Section 2 gives an introduction to QVT
and the Relations and the OM language. Section 3 describes the approach we
follow for the translation and Section 4 presents the details of the translation.
Section 5 describes the implementation, evaluates our Relations to OM transla-
tion and compares it with related work. The paper concludes with a summary
in Section 6.

2 Basics

The OMG adopted the Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation specification (QVT) [12] as standard for model transformations. The
QVT specification defines a hybrid transformation language. The three trans-
formation languages Relations, Core, and Operational Mappings (OM) provide
declarative and imperative transformation constructs. The languages Relations
and Core can be used to specify declarative transformations. QVT provides

139

two options to extend declarative specifications with imperative transformation
constructs, the OM language and Black Box operations.

2.1 UML to RDBMS Transformation Example

This paper presents a translation of Relations into OM, which we illustrate via
the UML to RDBMS transformation described in the QVT specification [12].

+ namespace + Classifier . —
(3 Package L HEMEHALE SRR s O I::Iasmﬁer (3 PrimitiveDataType
) 1+ tvpe
+ namespace <
* |+ association ~ + typeCf
- + sourceOf + source i
(3 Association & - B (3 Class JaTDRIEY ok attrlbutni (& attribute
+ destingtionOf + destination *
e R + subtlas
0..1/+ general
Fig. 1. Simple UML metamodel
+ schema + table
(® Schema - b (3 Table
5 S+ Ourer
+ schema y Sl
=7+ owner + owner
+ haskey
+ forgigrkey, | * * ¥ hasFareigrkey * |+ column - b1
. ; : + hiaskey
© Foreignkey -e; hasForeigrikesy + culumrl © Caiamn : calurmn - I Gkey
* | 4 referedBy + rafersTo | 0.1

Fig. 2. Simple RDBMS metamodel

The UML to RDBMS transformation maps persistent classes of a UML model
to tables of a model of a relational database management system (RDBMS).
Figures 1 and 2 show the respective metamodels. The transformation basically
works as follows: A persistent class maps to a table. Attributes of the persistent
class map to columns of the table. An association between two persistent classes
maps to a foreign key relationship between the corresponding tables.

2.2 QVT Relations

Listing 1.1 depicts an excerpt of the UML to RDBMS model transformation
implemented in Relations. We will explain the concepts of Relations on the
basis of this code.

In the Relations code the transformation UmlToRdbms is specified between
the candidate models uml and rdbms as a set of relations that must hold for the
transformation to be successful. A candidate model is any model that conforms
to a model type. For example, the element types of the uml model are restricted
to those within the SimpleUML metamodel. Relations in a transformation like

140

PackageToSchema or ClassToTable declare constraints that must be satisfied
by the elements of the wml and rdbms models. The relation ClassToTable is
presented in more detail now.

First, a source and a target domain are declared that match elements in
the wml and rdbms models respectively. ClassToTable is further constrained
by two sets of predicates, a when clause and a where clause. The when clause
specifies the conditions under which the relationship must hold, i.e. the relation
ClassToTable must hold only when the PackageToSchema relation holds between
the Package containing the Class and the Schema containing the Table. The
where clause specifies the condition that must be satisfied by all model elements
participating in the relation. Whenever the ClassToTable relation holds, the
relation AttributeToColumn must also hold.

Listing 1.1. UML to RDBMS transformation in QVT Relations

=

transformation UmlToRdbms(uml: SimpleUML; rdbms: SimpleRDBMS) {
2 key Table {schema, name};

4 top relation PackageToSchema {...}
top relation ClassToTable {
6 cn, prefix: String;
checkonly domain uml c:Class {
3 namespace = p:Package {},
kind = 'Persistent',
10 name = cn
1
12 enforce domain rdbms t:Table {
schema = s:Schema {},
14 name = cn,
column = cl:Column {
16 name = cn+'_tid"',
type = 'NUMBER'
18 },
hasKey=k:Key {
20 name = cn+'_pk',
column = cl
22 }
};
24 when A{
PackageToSchema(p, s);
26 ¥
where {
28 prefix = '"';
AttributeToColumn(c, t, prefix);
30 ¥
}
32 top relation AssocToFKey {...}
34|}

Each of the domains is also associated with several object template expressions
used to match patterns in the candidate models. A template expression match for
the uml domain results in a binding of the matching classes to the root variable
c of the uml domain. Such template expression matches are only performed with
regard to to the free variables of the domain. For the uml domain this applies to
the variables ¢, p, and cn. The variable p is not free as it already has a binding
resulting from the evaluation of the when clause expression. Pattern matching

141

proceeds by filtering any class with its kind property not set to ’Persistent’. As
cn is free, it gets a binding to the value of the name property for all remaining
classes. Matching proceeds to the property pattern namespace = p:Package. As
p is already bound in the when clause, the pattern only matches those classes
whose namespace property has a reference to the same package that is bound
to p. The three variables ¢, p, and cn make a three tuple and each valid match
results in a unique tuple representing the binding.

The uml domain is marked checkonly and the rdbms domain is marked enforce.
Thus, when executing the transformation in the direction of the uml domain,
no elements are created in the uml model. If for example a table in rdbms exists
with no corresponding class in uml, this is simply reported as an inconsistency.
If the transformation is executed in the direction of the enforced domain rdbms,
elements are created or modified in the target model rdbms so the relations
between the candidate models hold. For example, for each valid class there must
exist at least one valid table that satisfies the where clause. Otherwise, tables are
created and properties are set as specified in the template expression associated
with the rdbms domain. Also, for each valid table there must exist at least one
valid class that satisfies the where clause. Otherwise, tables are deleted from the
rdbms model so there it is no longer a valid match.

To create objects in the target model, object template expressions of the
target domain are used. The template associated with Table specifies that a
table object is created with the properties schema, name, column, and hasKey
set to values as specified in the template expression. When creating objects,
Relations ensures that duplicate objects are not created if the required objects
already exist. The existing objects are updated. For this purpose, the concept of
key is used defining a set of properties that uniquely identify an object instance.
A Table is uniquely identified by its name and the schema it belongs to.

2.3 QVT Operational Mappings

OM is the target language of our translation. In the following, we shortly in-
troduce the basic language concepts of OM. The concepts and the presented
language constructs are used to specify the Relations into OM translation in
Sections 3 and 4. Listing 1.2 illustrates a short example of OM code.

Listing 1.2. QV'T Operational Mappings example

ju—

modeltype UML "strict" SimpleUml;

2| modeltype RDBMS "strict" uses SimpleRDBMS;
transformation UmlToRdbms(in uml:UML,out rdbms:RDBMS) {
4 main () {

uml.objects0fType(Package)->map packageToSchema();

6 }
mapping Package::packageToSchema() : Schema {
8 init { ... }
population { ... }
10 end { ... }
b

12|}

142

An operational transformation represents the definition of a unidirectional
transformation that is expressed imperatively. It defines a signature indicating
the models involved in the transformation. The signature of the UmlToRdbms
transformation declares that an rdbms model of type RDBMS' is produced from
an uml model of type UML. The UML and RDBMS symbols represent model
types. The model types are defined by the metamodels Simple UML and Sim-
pleRDBMS.

A operational transformation defines an entry operation for its execution
named main. The main operation first retrieves the list of objects of type Package
and then applies a mapping operation called packageToSchema on each Pack-
age of the list. A mapping operation like packageToSchema is an operation that
implements a mapping between one or more source model elements into one or
more target model elements. The init section contains some code to be executed
before the instantiation of the declared outputs. The population section contains
code to populate the result parameters and the end section contains additional
code to be executed before exiting the operation. Between the init and the popu-
lation scctions, there is an implicit instantiation section which creates all output
parameters that have a null value at the end of the init section.

3 Translation Approach

In this section we describe requirements, restrictions, and challenges for the
translation of Relations into OM and introduce the overall translation algorithm.

3.1 Transformation Execution Direction

A crucial difference between the two languages is the execution direction of the
transformation. OM transformations are unidirectional. Their execution direc-
tion is explicitly defined by their imperative statements, specifying which models
are read and which ones are written. Relations transformations can be executed
in any direction by selecting one of the candidate models as target. One may
change the execution direction of a Relations transformation by selecting an-
other target model, which is not possible in OM. The QVT specification does
not clarify whether multiple target models are supported in the enforce mode.
Examples are only provided for transformations with one target model. Hence,
the described translation algorithm is restricted to one target model, which is
is assumed to be the last parameter of the transformation and to appear as en-
force domain in at least one relation. The translation algorithm generates the
operational transformation in one direction towards the target model.

3.2 Model Transformation Execution Semantics

In the translation of programming languages into other programming languages,
it is not sufficient to only map statements of the source language onto statements
of the target language. The crucial and normally more challenging part is to

143

develop an accurate mapping of the execution semantics. This is also the main
challenge when translating Relations into OM.

Relations performs a model transformation in a declarative way based on a
powerful pattern matching mechanism and OCL constraints on the candidate
models. This facilitates developing a consistent transformation for the user, but
at the same time involves complex execution semantics with nested loops of ob-
ject tuples for the execution engine [12]. In contrast, a transformation in OM
is defined as sequence of statements executed by the engine step by step in
the defined order. When performing a translation from Relations into OM, the
transformation semantics must remain the same in spite of the different pro-
gramming paradigms. The following aspects of the execution semantics have to
be considered when translating Relations into OM:

Rule Scheduling. Relations uses implicit rule scheduling which is based on the
dependencies among the relations. OM uses explicit internal scheduling where
the sequence of applying the transformation rules is specified within the trans-
formation rules. Our Relations into OM translation has to make the implicit rule
scheduling of the Relations execution semantics explicit in the OM transforma-
tions. This has to be done in a way that has no (bad) side effects on the pattern
matching and binding of the variables in the transformation occurs.

Pattern Matching. Relations uses pattern matching to find bindings of source
and target model elements to the variables declared by the transformation. Pat-
tern matching is based on the internal rule scheduling of Relations. When trans-
lating this mechanism to OM, the expressions in the relation domains must be
organized into a sequential order and one has to take care that in the final OM
code only variables are accessed that have been bound or at least defined before
(cp. [12, p.171]). Hence, we deal with pattern matching at various points in our
translation; the most important issues are described in the Sections 3.3 and 4.4.

Check-Before-Enforce Semantics. The Relations semantics first performs a
step where it checks whether a valid match exists in the target model that sat-
isfies the relationship with the source model. Based on the checking results, the
enforcement semantics modifies the target model so it satisfies the relationship
with the source model. Through this check-before-enforce semantics Relations
provides support for both generating new and updating existing target models.
OM does not support updates of existing models automatically by its execution
semantics. In OM this has to be implemented in the model transformation. The
generation scenario can be realized by translating the checking semantics into
rules that generate new model transformation elements. For update scenarios
this has to be enhanced with functionality to modify and delete model elements.

3.3 Overall Translation Algorithm

Algorithm 1 gives an overview about the different steps performed during the
translation. The algorithm first translates the transformation declaration. Before

144

the relations are translated one after another, they are sorted topologically to
account for dependencies between them.

The main building blocks of a relation are domains, when clause, and where
clause. In order to address the challenges and to keep the relational execution
semantics in the imperative environment, it is essential to translate the building
blocks in the designated sequence. The main issue is to ensure that assigned
expressions only contain variables that have been bound before. For this purpose,
the algorithm stores all variable values for each relation at all times in order to
determine which variables have already been bound and which ones are still free.

Algorithm 1. Translation algorithm overview

1: procedure RELATIONSTOOPERATIONALMAPPING (RelTrans) : OperationMapping
2: OmTrans «— ()
: OmTrans < TRANSLATETRANSFORMATIONDECLARATION(RelTrans)

3
4 Relations < SORTRELATIONSTOPOLOGICALLY (RelTrans)

5 for all relation € Relations do

6: OmTrans <— OmTrans U TRANSLATERELATIONDECLARATION(relation)
7 OmTrans < OmTrans U TRANSLATEDOMAINDECLARATION(relation)
8

9: OmTrans «<— OmTrans U TRANSLATEWHENCLAUSE(relation)
10: OmTrans <— OmTrans U TRANSLATESOURCEDOMAINS(relation)
11:

12: OmTrans < OmTrans U TRANSLATEWHERECLAUSE(relation)
13: OmTrans «<— OmTrans U TRANSLATETARGETDOMAIN(relation)
14: end for

15: return OmTrans

16: end procedure

4 Realizing the Translation

In this section, the rules of the translation algorithm that implement the Rela-
tions into OM translation are presented. The structure of this section is aligned
with the steps of the overall translation algorithm (cp. Algorithm 1).

The translation rules we describe in this paper cover all Relations language
concepts that are relevant for the UML to RDBMS transformation. These are
transformation and modeltypes, relations and domains, when and where clauses,
pattern matching and restriction expressions, as well as keys and object creation.

4.1 Transformation Declaration

First, the transformation declaration is translated from Relations into OM. Lines
1 to 3 of Listing 1.3 depict the OM transformation declaration that is generated
in the UML to RDBMS Relations example (cp. Listing 1.1). As a relational trans-
formation is bidirectional, the direction of the parameters must be determined
for OM. Source models are translated into in parameters. If the target model

145

is only used as enforce domain, it is translated into an out parameter; if it is
used as checkonly domain in one or more relations, it is translated into an nout
parameter. Each parameter of the relational declaration is also translated into
a modeltype reference to import the respective metamodel packages. According
to the Relations specification, type checking for the modeltypes is strict. This
implies that all objects passed as parameter of the translation must be instances
of the respective modeltype; subclasses of that type are not allowed.

4.2 Calculate Relations Topology Tree

In Relations it is not necessary to specify an explicit sequence of execution as
rule scheduling automatically considers dependencies between relations. This is
e.g. the case if a relation occurs as precondition in the when clause of another
relation. In OM rule scheduling is explicit. OM requires a main operation as an
entrance point as shown in lines 4 to 8 of Listing 1.3. For each toplevel relation
in Relations, invocations are generated in that main operation that specify in
which sequence the OM mappings are executed. If there are no dependencies
between the toplevel relations, the respective OM mappings can be executed in
arbitrary sequence. Otherwise, the correct sequence of execution is determined
by a topological sorting algorithm in an iterative process.

That sorting algorithm regards the dependencies between the toplevel rela-
tions as a directed acyclic graph (DAG) whereas a node represents a relation and
an edge represents a dependency between two relations. The initial structure of
the DAG is built as follows. For each relation, a node is added. If a relation R1
is referenced in the when clause of another relation R2, an edge from R1 to R2
is added. If the where clause of R2 contains a reference to R3, an edge from
R2 to R3 is added. For each toplevel relation, the algorithm now determines
the number of incoming edges. In the first iteration, all toplevel relations are
determined that have no incoming edges, which means they are not dependent
from any other relation. The respective nodes and outgoing edges are removed
from the DAG. This may result in some more toplevel relations that have no
incoming edges, which are then processed in the same way in the next iteration.
The algorithm terminates as soon as there are no toplevel relations with zero
incoming edges left. Finally, calls to the respective OM mappings are generated
in the main operation according to the determined sequence.

4.3 Relation and Domain Declarations

Relation declarations are translated into OM mapping declarations (cp. lines 9,
10, and 31 of Listing 1.3). For each domain in a relation, the algorithm generates
a parameter with same type and name in the respective OM mapping. In doing
so, the translation differentiates between the three kinds of domains.

— Primitive domains represent simple datatypes and are translated into in-
out parameters in OM.

— The enforce domain is translated into the result variable in OM. If the
relation is not top level, the result variable has already been bound before

146

the OM mapping is executed. For this reason, the generated mapping re-
quires a parameter to which the previously bound result is passed and which
initializes the result variable in the init block.

— All other domains are checkonly domains. The first one is translated into
the context variable, which is then accessible using the self keyword in OM.
Any further checkonly domains are translated into in parameters.

Listing 1.3. UML to RDBMS transformation in QV'T Operational Mappings

1| modeltype SimpleUML "strict" uses UmlMM;
2| modeltype SimpleRDBMS "strict" uses RdbmsMM;
transformation UmlToRdbms(in uml: SimpleUML, out rdbms: SimpleRDBMS) {
4 main() {
uml.objects [Package]->map PackageToSchema();
6 uml.objects [Class]->map ClassToTable();
uml.objects [Association] ->map AssocToFKey();
8 }
mapping Package :: PackageToSchema () : Schema {...}
10 mapping Class :: ClassToTable () : Table {
when {
12 self .kind = 'Persistent';
self .namespace <> null;
14 self .namespace.resolveoneIn(PackageToSchema) <> null;
}
16 population {
self .map AttributeToColumn(result);
18 result.schema := self.namespace.resolveoneIn(PackageToSchema);
result .name := self.name;
20 var cl := object Column {
name := self.name + '_tid';
22 type := 'NUMBER';
s
24 result.column += cl;
result.hasKey := object Key {
26 name := self.name + '_pk';
column := cl;
28 }
}
30 }
mapping Association :: AssocToFKey () : ForeignKey {...}
32|}

4.4 When Clause and Source Domains

In Relations, statements and OCL constraints in the source domains and in the
when clause are used for filtering candidate models from the source domains.
This is done by assigning objects and values to bound variables of a source
domain. The purpose of unbound variables is to temporarily store values for the
reuse in other domains of the relation, which e.g. allows for adopting a value
from a source to the target domain. OCL constraints over the relation domains
that are compliant with the QV'T specification are supported by our algorithm.

Translating the When Clause. The when clause of a relation references
other relations to represent preconditions of that relation. For each reference, the
algorithm generates a call to the respective OM mapping. The sorting algorithm
ensures that the called mapping has been executed before the calling mapping.

147

The execution semantics of Relations performs a pattern matching of the
passed variables to the model elements for which the referenced relation holds.
In OM, resolve expressions are used to perform such pattern matching. An ap-
propriate resolveln expression is generated in the population body of OM if a
set of objects is passed; otherwise, a resolveOneln expression is generated. This
can be seen with the variable s in the relation call PackageToSchema(p,s) in the
when clause (cp. lines 8 and 25 of Listing 1.1). As s is assigned to the bound
variable namespace in the source domain, the resolveln expression is performed
on the respective variable self.namespace in OM (cp. line 18 of Listing 1.3).

Translating the Source Domain. An assignment to a bound variable ac-
cording to pattern matching semantics filters model elements from the candidate
models. Therefore, a respective condition is generated in the when block of OM.
If a single value or object is assigned, the statement is adopted straightforward.
In the example, the variable kind is used to filter all classes having that variable
set to the value 'Persistent’. This is translated into the operational statement
self.kind="Persistent’ (cp. line 12 of Listing 1.3). If a set is assigned to such a
variable, an wselect condition is generated in OM instead. That xselect iterates
over the candidate models and uses a condition that corresponds to the assigned
set. The algorithm also considers cases that are not covered by the example such
as multiple assignments to the same bound variable, which are translated into
one combined expression using the logical and operator.

Assignments to unbound variables according to pattern matching semantics
are not translated directly. Whenever such a variable is used at another place
in the relation, the assigned value is used by the translation algorithm instead
of the variable itself. This eliminates those variables in OM. The variable cn in
lines 10 and 14 of Listing 1.1 gives an example. It is used to store the value of the
attribute name of a Class and assign it to the variable name of the respective
Table. The translation of such an assignment affects the target domain.

Furthermore, each variable bound to an object template must not be null.
Therefore, respective conditions are generated in the when block of OM.

4.5 Where Clause and Target Domain

For candidate models that do match in the Relations source domain, the re-
spective target models are generated according to the statements and OCL
constraints in the where clause and the target domain. The respective model
elements are created, changed, or deleted. If a target model does not exist, it is
created from scratch.

Translating the Where Clause. In contrast to the when clause, a relation
reference in the where clause represents a postcondition of the relation. Such a
reference is directly translated into an invocation of the respective OM mapping
at the beginning of the population block; cp. AttributeToColumn(c,t) in line 29
of Listing 1.1. Here, the passed variable ¢ in the where clause represents the
source domain and is therefore translated to the self attribute in OM. For the
passed variable t, the algorithm generates the result attribute.

148

Translating the Target Domain. Variable assignments that modify the tar-
get model still remain to be translated. An example is given by the variable cn
in lines 10 and 14 of Listing 1.1. In the source domain uml, the root variable ¢
is represented by the variable self in OM. The attribute name is assigned to the
variable cn. In the target domain rdbms, the root variable ¢ is represented by the
variable result in OM and the value of cn is assigned to the target variable name.
The algorithm generates the respective assignment result.name:=self.name in
the population body of OM (cp. line 19 of Listing 1.3).

If the assigned value occurs within an object template in the source and
in the target domain, the translation is more complicated as the assignment
happens within a set of objects. In this case, an appropriate zcollect expression
is generated in OM and the += operator instead of := is used. That zcollect adds
for each object in the source domain a respective object in the target domain.

In either case, an object expression is generated whenever an object template
is used and its bound variable is bound for the first time. Thus, a new object
must, be instantiated in the imperative environment, which is e.g. the case with
the variable c1 in line 20 of Listing 1.3.

4.6 Updates of Existing Target Models

Updates of existing target models are automatically supported by the Relations
semantics. In OM updates must be specified in the transformation explicitly.
Model elements in Relations are uniquely identified by a set attributes specified
by key expressions (cp. line 2 of Listing 1.1). For this purpose, the algorithm
generates queries in OM that search for those model elements in the target model
which have the same values for the identifying attributes as the respective model
elements in the source model. These queries are performed before model element
instantiation. The result object of an OM mapping is initialized with the result of
the respective query as illustrated in Listing 1.4. If no respective model element
is found, a new instance is created in the implicit instantiation section.

Listing 1.4. Updating an existing target model in QV'T Operational Mappings

query findTable(name: String, schema: Schema): Table {
rdbms .objects () [Table]->xselectOne(t | t.name = name and t.schema = schema);

[N

}

4| mapping Class::ClassToTable(): Table {

init {

6 result := findTable(self.name, self.namespace.resolveone(Schema));
}

8|}

Relations also supports the deletion of model elements which are no longer
valid. In OM the deletion of model elements must also be specified explicitly,
which is not a trivial task. One approach is to delete all objects from the target
model that cannot be found in the trace data of the transformation execution
after all mappings have been executed (cp. Listing 1.5). However, there are issues
with regard to object expressions as they do not generate trace data according

149

to the QVT specification [12]. Object expressions could be realized as mappings
that do generate trace data. This again involves issues since the transformations
would increase in length, for example.

Listing 1.5. Deleting objects in QV'T Operational Mappings

=

main () {
uml.objects () [Package] ->map PackageToSchema();
uml.objects () [Class]->map ClassToTable();
4 uml.objects () [Association] ->map AssocToFKey();
rdbms .objects () ->xselect (obj | obj.invresolve(true) = null)->forEach(obj) {
6 dest.removeElement (obj);

};

N

8|}

A second approach is tagging all model elements that should not be deleted,
which applies to model elements that are bound by the queries and that are newly
created. A effective implementation of that approach depends on the concrete
transformations and is not further regarded in this paper.

5 Implementation and Evaluation

In this section we present the implementation of the compiler and evaluate it
with respect to the experience gained in the UML to RDBMS example.

5.1 Implementation

In order to demonstrate our translation approach, we developed an implementa-
tion of our algorithm as Eclipse plugin under the GNU General Public License
[14]. The compiler is called QVT-Rel20p and performs a translation from Rela-
tions to OM as described in Sections 3 and 4.

For this purpose, the compiler frontend takes two inputs: the Relations trans-
formation as a textfile and the respective metamodels as emof models. A parser
[13] generates a representation of the Relations transformation as emof model,
which is passed to the compiler backend. In the backend an 0AW workflow con-
trols the further steps of the translation. The translation logic is implemented
in Java and subsequently generates the respective OM transformation as emof
model. A code generator and a beautifier generate a textual representation of
that emof model and return an OM textfile as the result of the compilation.

The compiler implements important features of the Relations language. These
are transformations, modeltypes, relations, domains, when clauses, where clauses,
pattern matching, restriction expressions, keys, and object creation. However,
some restrictions are made to the relational transformation. The compiler only
allows two non-primitive domains, one source and one target domain. The check-
only mode of Relations is not supported. For each binding of the root variable
of the source domain, only one binding in the target domain is allowed.

150

5.2 Evaluation

Besides some other small examples, the UML to RDBMS transformation was
taken to evaluate our translation approach and implementation. For this purpose,
we executed a series of Relations transformations with ModelMorf [15], which
is an execution engine for Relations. We then used our compiler to generate the
respective OM transformation and executed the resulting transformation with
SmartQVT [6], which is an execution engine for OM.

As SmartQV'T does not support resolveln expressions, a minor modification
of the translation was required. For this purpose, the compiler offers a compat-
ibility mode that generates appropriate resolve expressions instead, which are
supported by SmartQVT. This works fine if all OM mappings return different
object types. Finally, we compared the results of both transformations to each
other and observed that the generated OM transformation returns the same re-
sults as the Relations transformation. This indicates that our algorithm correctly
translates the relational execution semantics into the imperative environment.

We also compared our translation approach and implementation to others.
As described in [10], there exist model transformation compilers for impera-
tive model transformations. Thereby, languages like ATL or OM are mapped
onto the ATL VM language [5,10], which serves as a basis for the execution of
imperative model transformations. Other implementations compile model trans-
formations into Java code. SmartQVT [6] generates Java code to execute OM
transformations. [1] compiles model transformations defined by a combination of
graph transformation and abstract state machine rules into transformer plugins
for the EJB 3.0 platform. [17] provides an overview and comparison of further
graph-based approaches compiling transformation rules into native executable
code (Java, C, C++). Higher-order model transformations are also an elegant
way to specify the semantics of model transformation languages [3]; the QVT
specification [12] e.g. describes a translation of the Relations to the Core lan-
guage. Other objectives of higher-order model transformation are to refactor and
improve model transformations, increase the performance of model transforma-
tions, and maintain or upgrade model transformations [3,16].

6 Conclusions

In this paper we presented a higher-order model transformation that takes Rela-
tions model transformations as input and produces OM model transformations
as output. Our implementation is a first realization of translating QV'T declar-
ative specifications into QV'T operational specifications. Hence, it provides the
basis for realizing the development of hybrid model transformations with QVT.
Translating Relations into OM and not the other way round seems to be the
natural way of realizing a hybrid approach for two reasons: first, all features of
the declarative language can be translated into the imperative language without
restrictions, which is not the case for the other direction [11]; second, hybrid
approaches normally use declarative relations first, which are manually refined
into operational rules later on [16].

151

Our translation allows developers to specify the 'easy’ things in Relations and
extend and execute their transformations as OM. It saves them implementing
update functionality in OM code and gives them means to specify bidirectional
transformations instead of several unidirectional OM transformations. This is
especially beneficial in synchronization and conformance checking scenarios. The
generated code can be executed on an optimized OM engine and developers can
use tool support that is available for OM (editors, debuggers, profilers, etc.).

As future work, we will apply our approach and implementation to further
transformations and case studies in order to gather more experience and address
further scenarios. Moreover, we will realize further concepts of the Relations
language such as in-place updates or support for multiple source domains.

References

1. Balogh, A., Varré, G., Varré, D., Pataricza, A.: Compiling model transformations
to EJB3-specific transformer plugins. In: 21st ACM SAC, pp. 1288-1295 (2006)

2. Bézivin, J.: On the unification power of models. Software and System Model-
ing 4(2), 171-188 (2005)

3. Bézivin, J., et al.: Model Transformations? Transformation Models! In 9th MoDELS
Conference. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 440-453. Springer, Heidelberg (2006)

4. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621-645 (2006)

5. Eclipse Project, A.T.L.: Use Case - QVT to ATL Virtual Machine Compiler,

http://www.eclipse.org/m2m/atl/usecases/QVT2ATLVM/

. France Telecom R&D. SmartQVT, http://smartqvt.elibel.tm.fr/

Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0 Query

/ Views / Transformations Submissions and Recommendations towards the final

Standard. In: 1st MetaModelling for MDA Workshop, pp. 178-197 (2003)

8. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Appli-
cations with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)
9. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45(3), 451-461 (2006)
10. Jouault, F., Kurtev, I.: On the architectural alignment of ATL and QVT. In: 21st
ACM Symposium on Applied Computing, pp. 1188-1195. ACM Press, New York
2006
11. gouatflt, F., Kurtev, I.: On the interoperability of model-to-model transformation
languages. Science of Computer Programming 68(3), 114-137 (2007)
12. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
- Final Adopted Specification. ptc/07-07-07 (July 2007)

13. Sourceforge. QV'T Relations Parser,

http://sourceforge.net/projects/qvtparser/.

14. Sourceforge. QVT Relations to Operational Mappings (2007),

http://sourceforge.net/projects/qvtrel2op/

15. TRDDC. ModelMorf, http://wuw.tcs-trddc.com/ModelMorf/

16. Varré, D., Pataricza, A.: Generic and Meta-transformations for Model Transfor-

mation Engineering. In: 7th UML Conference. LNCS, pp. 290-304 (2004)
17. Varré, G., Schurr, A., Varrd, D.: Benchmarking for Graph Transformation. In:
IEEE Symposium on VL/HCC, pp. 79-88. IEEE, Los Alamitos (2005)

~N o

