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Abstract. The field of variability management deals with the formalization of
mandatory, alternative and optional domain concepts in product line engineering.
Ontologies in turn, describe domain knowledge in form of predicates,
subjects and constraints in various forms. Based on existing ontology mapping
approaches, we developed a method to organize a set of modular ontologies using
the concepts of variability management (MOVO). This ontology driven variabil-
ity model can be stepwise adapted to the needs of a business driven one, resulting
in a variability model that fits the needs of business and makes modular ontolo-
gies reusable in a simple manner. In order to avoid a technological break and to
benefit from the opportunities that ontologies offer, the resulting variability model
is expressed in an ontology itself. The approach is evaluated by one case study
with enterprise architecture ontologies.

Keywords: Modular Ontology Management, Variability Management, Feature
Models, Ontology Mapping.

1 Introduction

Knowledge management (KM) is a central aspect in organizations. KM tools mainly
rely on knowledge models, specifying how knowledge is represented. In general, there
is not one single knowledge model which could be used within all applications or tools.
In contrast, the knowledge models used in KM tools are largely dependent on the appli-
cation and/or the customer’s/department’s needs. Within one organization, different de-
partments might need different models to describe their knowledge, even though parts
of their models describe similar aspects. Since the creation of knowledge models is
costly and error prone, it is desirable to reuse existing knowledge models which have
proven to be useful and only customize them to specific needs. Modular developed
knowledge models allow to reuse parts and ease the customization. Similar to software
products, knowledge models have certain logical and functional dependencies. What
we need, is a mechanism to make these dependencies between modules of knowledge
models transparent in order to enable a flexible combination of them.

In classical software product lines, the variability management has proven to be
useful. Thereby, commonalities and differences between domain concepts are made ex-
plicit and allow an effective management of the variability in the product development
process. This systematical approach enables a consequent reuse of existing concepts and
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makes possible combinations and dependencies transparent [7]. This general-purpose
and reusable methodology is not only applicable to software products.

Ontologies, and in particular the Web Ontology Language OWL 2!, have become
very popular for the representation of knowledge. Ontologies offer a flexible and pow-
erful way to represent a shared understanding of a conceptualization of some domain
[15]. Efficient reuse of (parts of) ontologies is one of the main goals behind modular
ontology development [24]. OWL offers some mechanisms, such as the owl : import
relation, to combine and integrate ontologies. The use of logical axioms contained in
different ontologies, however, restricts the possible combinations. A formalism repre-
senting these restrictions is needed.

The management of possible combinations of modular knowledge models is similar
to the management of variabilities in software products. In this paper, we describe the
use of variability management for the management of modular ontologies (MOVO), i.e.,
to describe the logical and functional dependencies between ontologies. Each possible
variant is described through a set of features, that are linked to ontology modules. In our
scenario, the knowledge engineer (KE) iteratively selects ontology modules from the
ontology repository and creates the variability model (VM) using these ontology mod-
ules. In each iterative step, validations are run on the ontology to check the consistency
of the VM. The resulting VMs are realized with feature models, formalized in OWL,
and stored in a VM Repository. They are instantiated to create specific customized ap-
plication ontologies. Formalizing feature models with OWL avoids a technology break
and enables the use of reasoning capabilities to support the KE by detecting and dis-
solving inconsistencies in individual and aligned ontologies. We evaluate our approach
with an enterprise architecture (EA) case study.

The remainder of the paper is organized as follows: in section 2 we describe the state
of the art in modular ontology development and variability management, followed by an
overview of related work in section 3. Based on this, we describe our proposed method
in section 4 and their technical realization in section 5. The evaluation is done with the
aid of our use case in section 6, before we conclude our work in section 7.

2 State of the Art

2.1 Modular Ontology Development

Large ontologies have certain disadvantages regarding reuse and performance. Modu-
lar ontology development tries to overcome these obstacles. The general idea is to keep
ontologies small in creating ontology modules focusing on one particular aspect to en-
hance (partial) reuse and performance (e.g. more efficient reasoning), ease maintenance
(smaller ontologies are easier to comprehend) and collaborative development as well as
harmonization and interoperability (using common upper ontologies, it is easier to iden-
tify mappings). Details can be found in [24] and [25]. These modules themselves are
again ontologies [12]. Application ontologies, which have to cover different topics, are
created using several small ontologies (modules). A number of different promising ap-
proaches have already been investigated and evaluated [25]. In accord with [21], modu-
larized ontologies cover two separate topics: (1) module extraction (i.e., modularization

1http://www.w3.org/TR/owlZ—overview/
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of existing large ontologies into smaller logically consistent modules) and (2) modular
development (i.e., the creation of modular (non-redundant, orthogonal) ontologies). Our
work targets the management of ontology modules and their composition into one appli-
cation ontology. With OWL 2, we have a standardized vocabulary for the description of
ontology meta data such as the ontology IRI, owl :versionInfo, or owl:versionIRI
and relations between ontologies such as owl : imports, owl:backwardCompatible-
With, owl:incompatibleWith or owl:priorVersion. All relations between ontolo-
gies, except owl:imports, are annotation properties and have only a documentation
purpose or describe functional dependencies.

Similarly, the Vocabulary of a Friend ontology? (VOAF) defines properties to express
relations between RDFS vocabularies or OWL ontologies: for instance, voaf : reliesOn,
voaf:extends,voaf:specializesorvoaf:generalizes canbeusedtoindicate how
some ontology is related to others. Besides relations between ontologies, OWL also of-
fers relations between concepts of different ontologies, e.g., stating equivalence between
individuals and classes respectively. These relations are regarded by standard reasoners.
With owl : imports, other ontologies can be included into an ontology through reference
onto the other ontology’s IRI. Critic concerning this approach has come up, because it
is not possible to only import parts of another ontology, but only all the axioms of the
other ontology. Therefore, if just a subset of another ontology is needed, a modulariza-
tion can be helpful. Simply referencing single entities of another ontology, without using
the owl : imports construct, does not transfer its semantics and context. Working with
modules leads to ontology mappings to align different modules. According to [8] there
are three types of mappings: i. ) mapping between one integrated global ontology and var-
ious local ontologies; ii.) mapping between different local ontologies; and iii. ) ontology
merging and alignment. Since our work focuses on the management and composition of
ontology modules, we mainly deal with the second and third type of mappings.

2.2 Variability Management

The discipline of variability management deals with the consequent and explicit docu-
mentation of the variability of software artifacts in product line engineering [7]. Vari-
ability is the "ability of a system or artifact to be extended, changed, customized, or
configured for use in a specific context" [23]. Through a consequent and explicit repre-
sentation of variabilities using variability modeling techniques, the software engineers
are able to manage those and thus complexity in the development process can be re-
duced [23]. An overview of variability techniques can be found in [7] and [23]. One of
the major benefits is the systematic reuse of existing artifacts [6,18,7]. The development
of a product in product families is done in two steps: first, in the domain engineering,
the commonalities and differences of the products are determined and a set of reusable
artifacts like a product family architecture and a set of components is created. Second,
during application engineering, the final products are build through configuration of the
reusable artifacts [23,6].

Features are a widely used concept for the identification and documentation of vari-
abilities. In the context of software product lines, they are defined as logical units of

2 http://purl.org/vocommons/voaf
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behavior that are visible to the end-user [13,3]. These features are encapsulated within
components at the architectural level and thus enable an easy inclusion or exclusion of
single components [18].

Kang et al. introduced in 1990 Car
the Feature-Oriented Domain Analysis —_— —
(FODA) with the first Feature Mod- features eature
els. They replaced the formerly used Hpiaehen RenEss  ATEIER
sequence diagrams. The intent of the ”f?ﬂ:'/a\ Compostionrler
author was "to capture in a model Mariual Automatic

Rationale:
Manual more fuel efficient

the end-user’s (and customer’s) under-
standing of the general capabilities of
applications in a domain" [17]. Fig-
ure 1 depicts the graphical notation of
Kang’s feature models. The different features of a domain are structured in Parent-
Child-Relationships, which result in a feature tree. Depending on the connection be-
tween parent and child, the semantics between both is defined as follows:

Fig. 1. Graphical notation of the FODA Feature
model [17]

Optional defined by a line with a circle at its end; can, but has not to be, chosen,
Feature: if the parent feature is selected.
Mandatory defined by a line without an additional decoration; has to be selected, if
Feature: the parent feature is selected.
Alternate defined by two or more lines, that are connected via an arc; exactly one
Feature: of those has be chosen if the parent feature is selected.
Composition dependencies between features of different sub-trees, that can not be
Rule: expressed in the hierarchical way of the feature tree.

Requires: a feature has to be selected, based on the selection of

another feature.
Mutually a feature must not be selected if another feature is al-

exclusive with: ready selected.

This kind of feature model is restricted to the analysis phase of a software project.
Kang et al. extended his approach to the design phase of a project (Feature-oriented
reuse method, FORM) [16]. In order to be able to reference possible implementations
of a feature in code, Kang et al. introduced the concept of layers, explicit generalizations
and an implemented-by reference. Czarnecki et al. extended the FODA Feature model
with concepts for the assignment of cardinalities to features and feature groups, the
assignment of data types to features and the definition of references from features to the
root of another feature tree [10].

3 Related Work

The state of the art regarding modular ontologies, as well as mappings, are described
in section 2.1. There, we also described existing vocabularies for relations between on-
tologies like, e.g., those provided by OWL or VOAF. In this section, we describe related
work regarding the use of ontologies to represent feature models and to use established
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reasoning mechanisms to validate them. The expressiveness of feature models (FM)
in comparison to ontologies is analyzed, for instance, in [11]. They identified, that ba-
sic feature models are less expressive than OWL ontologies. However, there exist sev-
eral extensions of basic feature models enhancing the expressiveness, e.g., the addition
of attributes, the cloning of entities or feature value constraints. [26] describe, which
requirements should be fulfilled by a Semantic Web technology-based feature model:
automated inconsistency detection, reasoning efficiency, scalability, expressivity and
debugging aids. They state, that "OWL can be adopted to reason and check feature
models effectively". OWL DL syntax is used to represent feature models, where fea-
ture nodes are represented as OWL classes. They demonstrate that all of the standard
feature model relations (mandatory, optional, alternative, or) as well as simple con-
straints (excludes, requires) can be represented. Similarly, [27] use OWL DL to rep-
resent feature models, even though the modeling is significantly different to [26]. In
[27], classes are used to represent features, compositions, feature attributes and feature
relations. OWL properties are used to represent feature to feature constraints, attribute
value constraints and compositional properties. The consistency is checked using an
OWL DL reasoner and SWRL rules, e.g., the mutual exclusiveness of certain proper-
ties. In summary, the model presented by [27] is even more expressive than the one
presented by [26]. Another approach of using ontologies for modeling variability in a
product/service family domain is presented in [19]. In this approach not only the vari-
ability itself is captured in an ontology, but also the reasons that led to the respective
variability point.

[20] use FMs and ontologies to support the selection of features in multi-cloud con-
figurations. Their method proposes to create the FM first, then map a cloud (the domain)
ontology’s concepts to the FM’s features until every connection is established. These
procedures are performed manually by domain experts. Afterwards, they are validating
their model. In contrast to our approach, they are using EMF meta models, resp. XMI
models, that represent their FMs, as well as their ontologies and mapping models. This
way, ontological (OWL) reasoning cannot be performed, but they propose using a SAT
solver, for instance Sat4j [2], for checking the FM’s configuration validity.

4 Method
In the following, we propose our method for so1 | a0z |[ o3 ron_
the management of variability in modular ontol- FoiP|| S5 | S5 ene [P
ogy development (MOVO). This method aims to T 7 " oavatdsarcaonomoiony . 1

. CJ [
address the issues of modular ontology develop- @/E% o o
ment described in section 3. Thereby, our method wixvi || waxve | wava
focuses on dealing with the complexity of manda- 4 step : Defintion and adapion o

. . . integrated Variability Models VM,
tory and optional dependencies between the sin- ———— — =
gle modules as well as mandatory exclusions | é/g Variability Model |
between them. Figure 2 shows the main concepts B R AP Sy R‘;gf,"s'iiﬁzy)/

of MOVO as well as the two phases of the method. . _
In the first step, the KE has to select the modular Fig-2. Overview of the concepts in

ontologies, which will be stored in the ontology MOVO
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repository. Based on those ontologies an ontological variability model VM is defined.
VM formalizes the dependencies between the modular ontologies that are annotated
in the ontologies. It defines allowed and not allowed variants of the application on-
tology. The variants are defined using features which could/should be (not) included.
Each feature can, but has not to, be linked to one or more modular ontologies. Based on
VMpy, the KE creates VM, through selection of features and relationships and addition
of stronger constraints according to specific domain requirements. This model formal-
izes the dependencies according to the requirements from the domain while considering
the ontological restrictions. In other words, it formalizes which variants make sense and
which not in combination with what is allowed and what is not allowed.

VMpy formalizes the dependencies annotated in the ontologies whereas VM; cus-
tomizes these constraints according to specific domain requirements. We differentiate
between these models to be able to differentiate between ontological and domain spe-
cific requirements and therefore enable the creation of several VM, for different do-
mains upon one set of ontological modules. The method ensures that the created VM;
is consistent according to the owl:import and owl:incompatibleWith assertions,
which can be made in the single ontological modules. After the creation of a consistent
VM by the KE, the domain expert can easily create consistent configurations for his
application ontology. Figure 3 illustrates the relationships between the concepts used in
MOVO.

A Iic:;t};n < Integrated LJ Ontological 5
Opln)tolo AN Variability 7 %) ¢ Variability =7 7 17 Ontology
1 \ S Model VM, =5 O Model VMo (= — —  Repository == o
| instance of + I onform to A | formalize A

dependencies

Fig. 3. Concepts and their relationships required for the definition of the VM

In the following, the definition of the ontological VM, along with the creation of the
ontology repository, the definition of the integrated VM as well as the configuration of
an application ontology, are described in more detail. The technical realization of those
steps is described in section 5.

4.1 Define Ontological Variability Model VM,

Before the ontological variability model VM can be determined, the KE has to fill the
ontology repository. There are several sources for modular ontologies: reuse of exist-
ing ontologies, modularization of existing bigger ontologies or creation of new ontolo-
gies. Creating mappings between different vocabularies can either be done manually or
with the assistance of automated methods. These methods for matching heterogeneous
resource models with semantic technologies are introduced and explained in [22].

In the next step, the meta data and assertions of the modular ontologies in the
repository are analyzed to determine the dependencies between them. For this work
we decided to focus on the assertions that can be realized using OWL 2. These are
the owl:import and the version informations. Whereas from the later one only the
owl:incompatibleWith has effects for the definition of consistent variants. At the
moment, OWL 2 does not offer an annotation property that expresses an inconsistency
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between two different ontologies. Therefore, we introduce an movo: inconsistent re-
lationship, to be able to assert such an information. To create VMg for each modular
ontology, one feature will be created with a link to the corresponding ontology. The
dependencies between the ontologies are then formalized in the ontological VM. This
model is consistent in sense of allowed combinations of the modular ontologies, but
it must not necessarily fulfill certain requirements of the domain. This newly created
VMo acts as the bootstrapping VM for the following creation of V Mj.

4.2 Define Integrated Variability Model VM;

The integrated Variability Model VM; can extend and restrict VM to be conform to
specific requirements of the application domain. Thereby, new features or relations can
be added and existing relations between features can be strengthened. For the creation
of VM|, the KE has to select a root feature(existing from VMo or new one), and then
repeats the following loop until all desired features are considered.

i.) Select a parent feature from VM| or a new one
ii.) Select a child feature from VM or VM| or a new one
iii.) Determination of valid relations that can be used to connect those features
iv.) Select the new features’ type of relation
v.) Automatic addition of the features with their relations to VM;
vi.) Optional: add further cross-tree constraints

Cross-tree constraints can be necessary, for example, when defining that a specific map-
ping ontology OntA20ntB should be always used for two ontologies OntA and OntB.
In this case, the constraint OntA A\ OntB — OntA20ntB is necessary to ensure that the
mapping ontology OntA20ntB is selected when OntA and OntB are selected. Finally
the KE has an integrated VM which represents all allowed and useful variants of the
application ontology.

4.3 Configuration of a Specific Knowledge Model

Preliminary for this step is the defined VM;. The domain expert is then able to create
a specific configuration which serves as an application ontology. Therefore, he selects
those features from a list of selectable features he wants to have included in his config-
uration. After each feature he selects, a consistency check will take place. First, it will
be checked, if there is any required feature that is not yet included in the final configu-
ration. If so, then this feature will be included. Second, after the addition of a feature,
all features that are excluded by this feature will be deleted from the list of selectable
features. At the beginning, the list of selectable features SF includes all features that
are in VMy: SF :={f | f € VM;}. The list of selected features in the configuration C
is empty at the beginning. If a feature f from SF should be inserted into C the insert
function is defined as followed:

insert(f) := addToConfiguration(f) N\ removeExludedFeatures(f)N\
(VreqF.((reqF € SF N\ f — reqF ) — insert(reqF))
With addToConfiguration(f) : C :=CU{f}
removeExludedFeatures(f) : SF := SF\{exclF | exclF € SF A\ f — —exclF}
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SF ensures that only features can be selected that fit to the current state of the con-
figuration. The last point ensures that no feature will be dismissed that is required by a
selected feature in the configuration. After the domain experts has defined his configu-
ration of features, the corresponding ontologies to the features have to be selected and
composed to the resulting application ontology.

5 Technical Realization

Along with our method described in the previous chapter, we describe the technical re-
alization of the two main steps: the creation of the ontological and integrated variability
model (VMg and VMj) and the instantiation of VM;. The technical realization is exem-
plary demonstrated using the FODA feature model from [17] described in section 3. In
this context, we are using Protégé’ to create our ontologies and a Fuseki Server* as a

triple store for our prototype implementation.

5.1 Variability Model Ontology

The VMp is specified using OWL 2 semantics. The central class of the VM is
movo:Feature. An instance of movo:Feature represents a node of the VM and might
be related to some ontology of the ontology repository using the object property movo:
isRealizedIn. As described in section 3, OWL and especially OWL 2 specify sev-
eral annotation properties for meta information of ontologies and relations between
ontologies. Some of them are shown in figure 4. These annotation properties are not
interpreted by reasoners, thus the idea is to translate these annotation properties (which
describe the coherence between different ontologies) to object properties in
VMp. For instance, we defined the object properties movo:excludes (for
owl:incompatibleWith) and movo:requires (for owl:imports). The property
movo: excludes is a symmetric property and is mutual exclusive with movo:requires
(using owl :propertyDisjointWith).

y v N
| Structure of OWL 2 Ontologies Structure of feature model

N 0.1
IRI ) onsistsOfFeatur - Composition |
——— versionIRI \Z : 4

',‘7* /, ~ o s
annotationAnnotatiofis directlylmportsDocuments TO"I \
v * Y ontologylRI 3 Feature )|
4 ) X ” hasAlternativeFeatures
{ Annotation |}€———ontologyAnnotations: ) exc]udesJ * P —
N y / \

Alternative
requires: -

| Ontology e * Composition
axioms— / =

axiomAnnotations__{ Axiom 4*_|
\ S

hasOptionalFeature—|

- / imports hasMandatoryFeature-
/ directlyimports

Fig. 4. The Variability Model Ontology combined with OWL 2 Ontology structure [4]

This is similar to ideas presented in [27] where "Incompatible and Excludes are
defined as symmetric properties. Some are mutual exclusive: (Requires, Excludes),
(Requires, Incompatible), (Uses, Excludes), (Extends, Incompatible)". Other OWL
annotation properties like owl:backwardCompatibleWith, owl:priorVersion,

3 http://protege.stanford.edu/; 11/09/2013
4 http://jena.apache.org/documentation/serving data/; 11/09/2013
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owl :deprecated, etc. can be used or realized in VM as well and will be consid-
ered. In addition to the representation of OWL properties, VM has to capture feature
model semantics presented in section 2 so that the KE can express further dependencies.
For instance, we define properties for optional and mandatory properties, i.e., the re-
lations movo:hasOptionalFeature and movo:hasMandatoryFeature. Again, these
properties are mutually exclusive. In our prototype implementation we are using the
movo:hasMandatoryFeature and movo:requires relations as logically equivalent
properties, because the difference is only important for the graphically distinguished
visualization as a feature model tree for the user.

Furthermore, we have a class movo: Composition with the subclass movo:Alterna-
tive_Composition to represent alternative compositions (AC). When the AC is
created, the source feature is related to the movo:Alternative_Composition via the
object property movo:hasAlternativeFeatures. Other compositions, for instance an
OR composition can be added. Furthermore, enhancements can be made in order to
consider the extensions of the FORM feature model, e.g., the cardinalities. The work
of [27] demonstrates that OWL DL in combination with some rule language like, e.g.,
SWRL can be used to represent even more sophisticated feature model constraints.

5.2 Creation of VM with Mapping Semantic

Our prototype implementation is realized using a Apache Jena Fuseki triple store with
two data sets, one for the ontology repository (ontrepo) and one for the Variability
Model Ontology (vmo). We separate ontologies in our repository using named graphs
and use the following procedure to create the ontological variability model VMg: First,
for all ontologies in the repository, instances of movo: Feature are created in the dataset
vmo. Second, the dependencies between ontologies, such as import relations, are trans-
ferred to relations between features (see listing 1.1).

INSERT {
?feature a movo:Feature ;
movo:isRealizedIn ?ont ;
movo:requires ?req
}
WHERE {
SERVICE <http://localhost:3030/ontrepo/query> {
SELECT ?feature ?ont ?reqg ?excl WHERE {

?x owl:ontologyIRI ?ont

OPTIONAL { ?ont owl:imports ?r
BIND (URI (CONCAT ("http://www.ds-lab.org/¢

ontologies/2013/7/variabilityOntology#", <«
strafter (str(?r), "http://www.ds-lab.org/+
movo/ea/"))) AS ?req) }

BIND (URI (CONCAT ("http://www.ds-lab.org/ontologies<+
/2013/7/variabilityOntology #", strafter (str (?<+
ont), "http://www.ds-lab.org/movo/ea/"))) AS ?¢
feature)

i3S

Listing 1.1. Extract of SPARQL statement example for the creation of the ontological Variability
Model VM,
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The feature is related to its source ontology by the movo:isRealizedIn property.
Furthermore, the dependencies between different ontologies are extracted and inter-
preted, e.g., owl:imports to movo:requires, using the same SPARQL statement.
For other dependencies, such as owl : incompatibleWith or movo:inconsistent, we
have similar update queries. More precisely, for each relation between ontologies, a
corresponding relation is added for the respective features. Since the import and in-
compatible relations only exist occasionally, we use the OPTIONAL statement for these
object properties. In this context, we are substituting the resources’ URI paths from
the ontology repository’s source ontologies’ location with the new feature ontology’s
URI path. Thus, the dependencies between ontologies are transformed to the variability
model ontology.

During the creation of VM, the OWL reasoner and additional SPARQL queries can
be used to check the consistency of the created feature model [26]. For instance, it is
checked that there are no features related with contradictory properties movo: excludes
and movo:requires at the same time. We are also using SPARQL queries to receive all
dependent features, i.e., the required features of the selected feature and thus can add
them automatically to our VM. Following the principles of the Semantic Web Stack,
it is generally advised to use the Rule Interchange Format (RIF) for expressing rules.
For instance, RIF would be suitable for stating complex composition rules. Since up to
now, RIF is still immature and tool support is hardly available, we use SPARQL in our
implementation to insert relations between features.

5.3 Creation of VM,

The creation of VMj is done according to section 4.2. Thereby, the features created for
VMo can be reused, but it is also possible to add new features as place-holder features,
that do not yet have a relation to an ontology of the ontology repository. For each new
feature, a new instance of movo:Feature is created and stored in a named graph for
the respective VM. To ensure that VM is conform to VM, the integrated variability
model will be defined iteratively. In each step, only consistent constraints can be added
to the model. The following pseudo code 1.2 represents this procedure.

select ROOT FEATURE root
insert (root)

LOOP
select PARENT FEATURE p
select CHILD FEATURE[S] ¢ = {cl, .., cn}
if (Jc] = 1)
then ask(required), ask(hasMandatoryFeature), ask<¢
(excludes)

else ask(alternateComposition)
select POSSIBLE RELATION relation
for all (x in (¢ or p); x not in VMI)

insert (x)
insert (relation)
OPT: if (ask(crossTreeConstraint))

then insert(crossTreeConstraint)
END LOOP

Listing 1.2. The procedure for creating V M;
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To ensure the consistency, the following SPARQL queries are defined:

insert(feature): adds an existing feature from VMp to VM; with all (transitively)
required features

ask/insert(requiredlhasMandatoryFeaturelexcludes): asks if possible or inserts the
respective relationship between a parent and one child

ask/insert(alternateComposition): asks if possible or inserts an alternate composition
between a parent and a set of childs

ask/insert(crossTreeConstraint): asks if possible or inserts a specific cross tree con-
straint, typically in a manner like ’feature| requires feature,’ or ’feature excludes
featurey’

For selecting a specific feature, the following constraints must be satisfied:

select ROOT FEATURE: root € VM, or root is a new feature
select PARENT FEATURE: parent € VMo UV M or parent is a new feature
select CHILD FEATURES: c =cy, .., c; with ¢; € {VMoUVM;} or ¢; is a new feature

During the creation of object properties between the selected features, some constraints
have to be fulfilled: for the sake of simplicity, we only allow the creation of relations
between exactly two different features (an exception is the alternative composition(see
below)). Additionally, there can only be exactly one or zero relations between two dif-
ferent features. These constraints will be checked using the ask queries. Only when
these queries return true, the KE can fulfill an insert of the relationship. Adding the
movo:hasOptionalFeature or the movo:requires relation is only valid if there is no
movo: excludes between the source feature and an existing transitive movo: requires
path to the target feature. Adding a movo:excludes relation is only valid if there is no
transitive movo:requires or movo:hasOptionalFeature in VM or VM;.

A precondition for the creation of the alternative composition (AC) is the non-
existence of any relationship from the source feature to any of its target features. We
also forbid a transitive movo : requires relation between any two features that are in the
set of the AC. Besides, to keep it simple, another constraint is that we do not allow the
creation of nested or overlapping ACs. This constraint could be relaxed in the future.
When the AC is created, the source feature is related to the movo:Alternative_Com-
position via the object property movo:hasAlternativeFeatures. Simultaneously,
we add movo:excludes relations between all members of the AC, since it represents
an XOR selection. The AC is the only existing relation between more than two features.
Once VM, is finished, it is saved in a fresh data store.

5.4 Instantiation of VM,

The instantiation of V M; corresponds to the creation of the user configuration C (com-
pare section 4). We create a new data set and add a property to each feature in VM;
that expresses its status: selectable, selected and not selectable. According to the rules
already described earlier, we automatically select all required features by querying the
transitive paths and disable the not selectable features in case of amovo: excludes resp.
AC relation. The validation of our user configuration using OWL is not part of this pa-
per, because there already exist some reliable approaches (see, e.g., [26] or [27]). Once
the final configuration has been found, the qualified ontologies, including the mappings
between them, are deployed as the compound application ontology .
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6 Evaluation

The design and implementation of enterprise architecture (EA) methods and analyses
are dependent on the meta model used in the organization. Typical for EA is, that each
organization has its own meta model for EA. Typical for EA is also, that this meta model
depends on already existing ones in the different organization units. For example, the
process modelers have their model about processes, the I'T administrator has its model
about the infrastructure and the software development unit has its meta model about the
application landscape. To increase the acceptance of the enterprise architecture in the
organization, it should be built with respect to those existing models.
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Fig. 5. Modules and their relationships in the EA Use Case

Especially for those providing tool support for EA, this issue is a challenge. On the
one hand, the organizations want to rely on existing frameworks and meta models, but,
on the other hand, they also want to adapt them to their specific needs. To illustrate this
problem, we choose two meta models for enterprise architecture, modularize them, and
establish a variant model, which allows a flexible combination of different parts of the
meta model. This enables the tool provider, who plays the role of the KE, to establish
methods, that support the enterprise architect, independently from the final meta model
or with respect to a special selection. The enterprise architect, which will be the domain
expert, can easily create his desired configuration which will act as his customized meta
model.

For the case study we choose the TOGAF Core Content Metamodel®, a standard
from the Open Group, and the meta model behind the enterprise architecture tool iter-
aplan®. To get modular ontologies, we first divided the two meta models into smaller
modules according to the architecture layers the frameworks present. The relationships
between these layers are represented through import relationships and mapping ontolo-
gies. L.e. there exist two different mappings from Iterplan Information System to the
TOGAF Application module, that cannot be used together. All determined modules
with the mapping ontologies and imports are shown in figure 5. This set of modules
represents the ontology repository. The generated VMo formalizes the owl:imports

5 http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap34.html
S http://www.iteraplan.de
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Fig. 6. Feature Model V M; in the EA Use Case

and owl:incompatibleWith relationships. All relationships are correctly transformed
into required and exclude relationships.

For the further evaluation, we define and establish an integrated variability model
by selecting the desired features and adding further constraints. The shaded rectangles
highlight a possible configuration. The integrated variability model with the configura-
tion is shown in figure 6. VM| is conform to VM and we are able to model all require-
ments from the domain. All ask queries enable us to insert the desired relationships.
Additionally, every other required module, that we do not explicitly select, is inserted.
To model the alternate choice between the iteraplan business and the TOGAF business
module, we create a feature, that is not linked to any ontology. This enables the mod-
eling of a choice between several features. We also introduce such empty features for
the other architectural layers, since the resulting feature model is more comprehensive
for a domain expert. These empty features are depicted by dashed lines surrounding
the rectangles. Furthermore, we introduce one more feature that is not related to any
ontology. This ontology has to be added if this feature is selected in a configuration.

Our test set for the evaluation, including the data sets, queries and a documentation,
has been published at http: //megastore.uni-augsburg.de/get /HAthOVS7qw/.

7 Conclusion

In this paper, we proposed a method for the management of modular ontological mod-
els. We especially addressed the problem that the dependencies between the single mod-
ules can not be specified using the standard OWL vocabulary. We use the concept of
variability management in software product line engineering and adapted it to the do-
main of modular ontology management to be able to formalize possible combinations of
the modules. Therefore, we defined a mapping from the OWL concepts owl: imports
and owl:incompatiblewWith as well as from movo:inconsistent to the concepts
movo:requires, movo:excludes, movo:hasMandatoryFeature and movo:Alter-
native_Composition to determine an ontological variability model. Additionally, we
provide a method to create an integrated variability model which is, on the one hand,
conform to the ontological variability model, which specifies what is allowed and what
not. On the other hand, it specifies what makes sense and what not in the resp. business
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domain. Based on the integrated variability model, a domain expert can easily create
her application ontology through selection of those features she wants to have. The re-
quired set of ontologies to create the application ontology can then be retrieved from the
variability model using existing feature model solver. To be able to use the reasoning
techniques of ontologies we defined the variability model ontology to express the VMs
in ontologies.

Our method enables the reuse and flexible combination of knowledge modules in
several application ontologies. Thereby, it ensures that the resulting application ontol-
ogy is conform to the annotations that are made in the ontology modules and also to
the requirements that the KE specified. Our goal is to support KEs in assembling a
customized ontology set by providing a modeling environment that applies semantic
technologies.

Future work has to be done to explicitly provide methods to adapt the variability
model when changes in the ontology or requirements for the features have taken place.
In our prototype implementation, we are just using two annotations of the given OWL
functionality for combining modular ontologies. In the future, we want to cover ad-
ditional annotation possibilities in OWL, vocabularies like VOAF and also consider
more expressive approaches for defining coherences between the ontologies. Alterna-
tive approaches, like £-Connections [9], Package Based Description Logics (P-DL) [1],
Distributed Description Logics (DLL) [5] or the Interface-based modular ontology For-
malism (IBF) [14] are eligible alternatives and extensions for modular ontologies. These
approaches offer similar functionalities: they offer bridge rules between multiple on-
tologies, a specific point of views interpretation for modular ontologies or the support
for well-defined interfaces between the ontological modules. Therefore, we also want to
extend the expressiveness of the method and the variability model ontology, e.g., with
an OR composition or cardinalities.
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