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Abstract—A large percentage of relevant radiologic patient
information is currently only available in unstructured formats
such as free text reports. In particular measurements are impor-
tant since they are comparable and thus provide insight into the
change of the health status over time, for example in response
to some treatment. In radiology most of the measurements in
reports describe the size of anatomical entities. Even though
it is possible to extract measurements and anatomical entities
from text using standard information extraction techniques, it is
difficult to extract the relation between the measurement and the
corresponding anatomical entity. Here we present a knowledge-
based approach to extract this relation for size measurements
using a model about typical size descriptions of anatomical
entities in combination with hierarchical knowledge of existing
medical ontologies. We evaluate our approach on two data sets of
German radiology reports reaching an Fl-measure of 0.85 and
0.79 respectively.

I. INTRODUCTION

A large percentage of clinically relevant radiologic patient
information is represented in unstructured formats such as free
text reports. Measurements represent important information
documented in reports. On the one hand clinicians measure
only things of importance, and on the other hand measurements
are comparable and thus provide valuable insights into the
change of the patient’s health status over time. In radiology we
mainly have size measurements describing the spatial extent
of anatomical entities. For instance, radiologists measure the
size of tumors and metastatic lesions (characteristic changes
of parenchyma in different organs, enlarged lymph nodes) in
consecutive examinations to evaluate response to treatment.
Currently, radiologists and clinicians need to manually collect
measurements from different reports in order to compare the
respective values. Sometimes they even need to go back to the
original image and measure the entities again.

We present a mechanism to extract measurement-entity rela-
tions automatically from text. The aim is to facilitate and speed
up the comparison of measurements from consecutive reports.
To illustrate the challenge of extracting measurement-entity
relations, consider the sentence “Enlarged lymph node right
paraaortal below the renal pedicle now 23 mm”. There are
established Information Extraction (IE) techniques to detect
and extract the measurement value “23” and unit “mm”.
Further ontologies are used in IE, e.g., to recognize and
extract ontology concepts representing anatomical entities such
as “lymph node”, “inferior para-aortic lymph node”, “renal
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pedicle”, “kidney” and others. It is however difficult to ex-
tract the binary relation between the measurement and the
corresponding anatomical entity the measurement is about,
i.e. to resolve isAbout (23 mm, paraaortal lymph
node) . This is especially challenging in long sentences where
many different entities occur with the measurement and the
measurement is not close to the entity described.

Thus the idea is to abstract from the sentence structure and use
a knowledge model containing information about the typical
size of anatomical entities in combination with hierarchical
information of medical ontologies. Our knowledge-based ap-
proach incorporates the following three components:

o Knowledge Model: Contains typical size specifica-
tions for anatomical entities commonly measured by
radiologists such as lesions, lymph nodes or organs.
The model is linked to existing medical ontologies.

Annotator: Responsible for the linguistic prepro-
cessing of the texts. In particular sentence splitting,
measurement extraction and named entity recognition
(annotation of ontology concepts).

Resolution Algorithm: Builds on top of the knowl-
edge model and the annotator. The measurement-entity
relations are resolved, combining the output of the
annotator with the knowledge model and also the
structure of the ontology used for annotation.

The remainder is organized as follows: In Section II we
give an overview of measurements typically found in radiology
reports. Then we present the knowledge model in Section III
and describe the annotator in Section IV. The main contri-
bution is the relation extraction described in Section V where
we present the resolution algorithm. Our approach is evaluated
in Section VI before we give an overview of related work in
Section VII and conclude with a discussion in Section VIII.

II. MEASUREMENTS IN RADIOLOGY

In radiology reports we mainly have measurements spec-
ifying the size of anatomical entities in terms of volume,
area or length. Our analysis of radiology reports yielded that
length measurements are most frequent, so we concentrate on
them. A length measurement describes the extension of an
anatomical entity or structure into one dimension. For instance
“mediastinal lymph node with diameter 21 mm”, “hepatic



duct dilated up to 1.1 cm”, “wall of gallbladder 12 mm” or
“liver with anterior-posterior diameter of 15.5 cm”. Simplified
a length measurement comprises the following components:

e Anatomical entity: lymph node, liver, wall of gall
bladder, lesion etc.

e  Value specification: 21 mm, 1.1 cm etc.

e Measured quality (optional): width, diameter,

anterior-posterior diameter, height, thickness etc.

Two or three length measurements might be grouped
together to describe the extension of a certain entity along
orthogonal axes: e.g. “lesion in segment 7/8 with 1.4 cm x
1.1 em” or “spleen with 3.8 x 9 x 10.5 cm not enlarged.”
For organs these measurements are mainly taken in parallel
to the main body axes to specify height, width or depth. For
smaller entities the axes are mostly defined by the form of the
entity itself: For the evaluation of tumors or metastatic lesions
in computed tomography (CT) or magnetic resonance imaging
(MRI) the radiologist firstly measures the longest diameter in
the axial slices and then the longest perpendicular extension
[1]. This form of standardized measuring procedure allows to
compare measurements from consecutive examinations.

III. KNOWLEDGE MODEL

The medical literature contains much information about the
normal size of anatomical entities as well as descriptions of
typical abnormal or pathological structures like, e.g., cysts,
lesions or enlarged lymph nodes. The following types of size
specifications are commonly used:

e Interval: ¢.g. “anterior-posterior diameter of liver 10-
13 cm” or “enlarged lymph node 1-5 cm”.

e Normal value with deviation: e.g. “truncus pul-
monalis: 1.4 cm +0.4 cm”.

e Upper bound: e.g. “normal lymph node < 1 cm”.

e Lower bound: e.g. “aorta diameter > 4 cm at root”.

The main function of these specifications is to define which
size of some anatomical entity is considered to be normal and
which not. Obviously lower bounds are problematic for that
purpose since they include unreasonably high values (e.g. an
aorta diameter of 10 cm is nor normal). In cases where we
could find only a lower bound, we asked a radiologist to define
a clinically reasonable upper bound to avoid this problem.
Upper bounds are interpreted as the interval [0, z]. Thus the
resulting model contains only interval specifications. We say
that a value x is in the range of some size specification if x
is contained within the respective interval.

A. Representation of the Knowledge Model

The knowledge model is formalized in a semantic model
represented in RDFS [2]. Similar to measurements, we have
three components as shown in Figure 1!: the anatomical entity,
the quality described and the size specification. The knowledge
model is based on our Model for Clinical Information (MCI)

'For better readability we write any concepts by prefixed annotation
properties, i.e. we write ‘radlex:liver’ instead of radlex:RIDS5S.
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described in [3], which is an information model based on well
defined upper ontologies from the OBO Foundry [4]. It is used
in combinations with Radiological Lexicon RadlLex [5] and
the Foundational Model of Anatomy (FMA) [6] to reference
anatomical entities. To represent the quality described by a
specification (e.g. diameter, length, thickness etc.) we use
concepts from the Phenotypic quality ontology (PATO) [7].
For size specification we take concepts from the Ontology for
Biomedical Investigations (OBI) [8].

size specification quality anatomical
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Fig. 1. Example representation of normal interval specification “the anterior-
posterior diameter of a liver is normally 11-13 cm”. The white rounded
rectangles are classes, the black rectangles instances. Thick arrows are rdf:type
relations.

The current model was created manually using a clini-
cal book about normal findings [9] and Radiopedia [10]. It
contains 50 size specifications about 38 different anatomical
entities of clinical interest and typically measured in radio-
logical examinations. For instance we have size descriptions
for spleen, kidney, gallbladder, pancreas, lymph nodes, aorta,
lesion, bile ducts etc. Size specifications might depend on the
patient (e.g. on age and gender) or at least on some reference
population. Inclusion of this information is ongoing work.

IV. ANNOTATOR

The component that takes care of the extraction of relevant
information from unstructured clinical texts is the annotator.
Information Extraction (IE), as a task of Natural Language
Processing (NLP), is a technique to find important information
pieces in unstructured texts and to extract them as structured
information [11]. For instance, IE is used to detect semantic
entities such as date values, names, measurements, etc., in
texts. Our annotator extracts two main information pieces:
measurements as well as ontology concepts such as anatomical
entities, morphological structures and clinical findings.

While measurements are extracted using pattern-based tech-
niques (i.e. through detection of utterances by using a set
of regular expressions that express predefined combinations
of measurement values and units), we use ontology-based IE
techniques for the extraction of anatomical entities. The latter
technique facilitates the controlled vocabulary of an ontology
to map the ontological concepts to the corresponding words
in the text. This task is also referred to as named entity
recognition or semantic annotation.

For this work we use RadLex, which contains about 38,000
anatomical entities and other concepts like clinical findings or
imaging observations relevant for the radiology domain. More
precisely we map the concepts listed in the ontology to the



words in clinical reports. There are freely available annotators
like, e.g., the annotator of the BioPortal [12] for annotation of
text with concepts from biomedical ontologics. However, we
need a more specific annotator tailored for German texts.

A. Functional Scope of the Annotator
There are three features that our annotator supports:

e It detects multiword terms independent from the or-

dering of the individual tokens.

e The annotator respects the sentence boundaries and
maps multiword terms only when they occur within
these boundaries.

e It recognizes inflected forms of ontological concepts

in the text such as detection of plural form or other
grammatical inflections based on stemmed forms.

B. Technical Realization of the Annotator

The implementation of the annotation pipeline builds on
the UIMA framework?. The annotator itself is an adapted
version of the UIMA Concept Mapper, which annotates texts
preprocessed by an own medical text preprocessing pipeline
including sentence splitting and tokenization, and subsequently
normalizes and stems the medical language tokens. The output
of the annotator is a set of measurement, anatomical entities’
and other ontology concepts’ annotations in the form of RDF
triples. Thus annotations can be easily integrated with the
knowledge model for subsequent analysis.

V. RESOLUTION ALGORITHM

The resolution of measurement-entity relations is based

on the annotations, the knowledge model and the structure
of RadLex. We illustrate the different steps of the resolution
algorithm along the example sentence: “Enlarged lymph node
right paraaortal below the renal pedicle now 23 mm” (origi-
nal in German: “VergroBerter Lymphknoten rechts paraaortal
unterhalb des Nierenstiels jetzt 23 mm.”). The algorithm
has to extract that “23 mm” specifies the size of a lymph
node (or better a paraaortal lymph node), i.e. the relation
isAbout (23 mm, paraaortal lymph node). Using
the annotator described in the previous section the follow-
ing set of RadLex annotations are obtained: ‘radlex:lateral
aortic lymph node’,‘radlex:right’, ‘radlex:lymphadenopathy’,
‘radlex:enlarged’, ‘radlex:lymph node’, ‘radlex:inferior para-
aortic lymph node’, ‘radlex:renal pedicle’, ‘radlex:inferior’,
‘radlex:paraaortic’ and ‘radlex:kidney’.
For each sentence containing measurements we analyze the set
of annotations to infer the anatomical entity the measurement
is about. The algorithm relies on eight steps: First, we check
whether the sentence in our scope (1). For all sentences in
scope we filter (2) and extend (3) the set of annotations using
the ontology structure of RadLex. We then create a spanning
tree (4) covering the annotations, attach corresponding size
specifications (5) from the knowledge model to it, compare
them to the measurement values (6) and compute a ranking (7)
of entities. Finally the best entity is selected (8) in dependence
of some threshold criteria.

Zhttp://uima.apache.org/
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1) Scope: The classification of sentences being in or out of
our scope is a preprocessing step before we get to the core of
the resolution algorithm. Most of the sentences of radiology
reports contain one or two measurements, but we also have
sentences with up to 14 measurements. For simplicity the
current algorithm resolves only one measurement-entity rela-
tion per sentence. Thus we restrict the scope of the algorithm
to sentences with one or two measurements. Sentences with
more than two measurements are out of scope of the current
implementation. The underlying assumption is that sentences
with more measurements can be resolved using the same tech-
nique looping over all contained measurements. For sentences
with two measurements we require that they represent a size
comparison of the same entity to different times. For instance
in “Spleen now with 10.5 x 4.5 cm slightly smaller than in
previous examination with 13.3 x 6.7 cm.” both measurements
are about the same anatomical entity (the spleen), while in
“Splenomegaly with 23.0 x 14.5 x 8.5 cm and approx. 1.0 cm
lesion.” the measurements are about different entities. Using
simple heuristic we check whether both measurements have the
same dimension and not too different values. Further certain
keywords like ‘previous examination’ or ‘progressive’ have to
occur in the sentence.

2) Filter Annotations: Not all annotations are good can-
didates for the measurement-entity resolution: For instance,
while ‘radlex:lymph node’ is a good candidate ‘radlex:inferior’
is not. In RadLex we do expect to find good candidates
only under ‘radlex:anatomical entity’, ‘radlex:imaging ob-
servation’ and ‘radlex:clinical finding’. Annotations under
these classes are referred to as relevant annotations. All
other annotations, for instance those under ‘radlex:imaging
modality’, ‘radlex:procedure’ or ‘radlex:Radlex descriptor’ are
filtered out. This removes ‘radlex:right’, ‘radlex:enlarged’,
‘radlex:inferior’, and ‘radlex:paraaortic’ from the list of an-
notations of the example sentence.

3) Extend Annotations: In RadLex, clinical findings are
linked by the property radlex:Anatomical_Site to respective
anatomical entities. E.g. ‘radlex:hepatomegaly’ is linked to
‘radlex:liver’ by this property. We take advantage of these links
and extend the initial set of annotations. I.e., for each initial
annotation we query RadLex for related anatomical entities add
them to the set of annotations. Thus we add annotations for of
anatomical concepts the annotator could not detect directly.

4) Create Spanning Tree: Using the set of relevant anno-
tations we create a minimal spanning tree from the RadLex
subclass hierarchy. The spanning tree for the annotations of
the example sentence is shown in Figure 2. The spanning tree
is represented in RDF, like the knowledge model.

5) Attach Size Specifications: For all concepts of the span-
ning tree we check the knowledge model for size information
about the respective concept and attach it to the spanning
tree. Regarding our example we find size specifications for
‘radlex:kidney’ and ‘radlex:lymph node’. Using the hierarchy
of the ontology in form of the spanning tree has two ad-
vantages: Firstly, we can propagate size information down to
subclasses. Thus, as shown in the next step, each size assertion
in the knowledge model implicitly applies to many concepts.
Secondly, the spanning tree with subclass paths enhances the
chance to find a matching concept in the knowledge model.
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Fig. 2. Minimal spanning tree for RadLex annotations relevant for relation
resolution for the sentence “Enlarged lymph node right paraaortal below the
renal pedicle now 23 mm”. Arrows represent a subclass relationship, dots
indicate that a subclass path is omitted.

6) Compare Size Specifications: For all concepts c of the
spanning tree with size specifications we compute a compar-
ison value indicating how well the measurement value z fits
into typical size range [m, M] of ¢

m—x

~L ,x<m.
compValue(c,z) :=< 0 , x € [m, M]. (1)
s> M.

Le. if the measurement value is within the range we
assign a comparison value 0, otherwise we compute a value
> 0. If we have multiple attached size specifications, the
lowest (best) comparison value is saved. Other nodes of the
spanning tree then get the comparison value of the closest
superclass assigned if available. E.g. ‘radlex:lymph node’ has
comparison values 1.3 (“normal lymph nodes are [0,1] cm”
and 0 (“enlarged lymph nodes are [1,5] cm”) so we assign the
value 0. ‘radlex:kidney’ gets comparison value 0.73 (“anterior-
posterior diameter of kidney is normally 4 cm”). Then infor-
mation is propagated: ‘radlex:lateral aortic lymph node’ and
‘radlex:inferior para-aortic lymph node’ get comparison value
0 assigned since ‘radlex:lymph node’ is their closest superclass
with size specification. The knowledge model does not cover
‘radlex:lymphadenopathy’ and ‘radlex:renal pedicle’, so these
concepts will not be further processed.

7) Compute Ranking: The final ranking value includes also
the position of the concept ¢ within the RadLex hierarchy:

1

+ depth(c) @

rankValue(c) := compV alue(c, x)

Thus, in case of equal comparison values more special
concepts (deeper in the hierarchy) are preferred. This again
shows the advantage of using the ontology hierarchy.

8) Select: Finally we select the RadLex concept with
the lowest ranking value if it is below some predefined
threshold. In our example case the concept ‘radlex:inferior
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para-aortic lymph node’ is selected and the resulting relation
isAbout (23 mm, inferior para-aortic lymph

node) is obtained. Not selecting any entity can have two
reasons: Either the knowledge model does not contain
information about the annotated entities or all entities have
bad comparison values and thus do not fit. Using the threshold,
we avoid to select wrong entities and thus enhance precision.

VI. EVALUATION

We evaluate our approach on two different data sets of
German radiology reports. We analyzed the sections for finding
descriptions and assessment. Both data sets are described in the
following subsection, before we present the evaluation results.

A. Data Sets

1) Lymphoma Patients: This data set consists of 2584
German radiology reports (27 different readers) of 377 lym-
phoma patients. The imaging modality was mainly computed
tomography (CT), but also magnetic resonance imaging (MRI)
and ultrasound (US). The inspected body regions were mainly
abdomen, thorax and head, but includes also various other
regions from the whole body. In total the reports contain 5200
sentences with 6790 length measurements. The lymphoma data
set was used during the development of our knowledge model.

2) Diverse Internistic Patients: This dataset consists of
6007 German radiology reports (27 different readers), where
imaging modality was computed tomography (CT). The reports
contain 14225 sentences with 22063 length measurements.

B. Evaluation of Resolution Results

As explained above in the current implementation resolu-
tion is restricted to sentences in scope as defined in Section
V-1. In the lymphoma data set 8.25% and in the internistic
data set 16.15% of all sentences with measurements are out
of scope. These sentences are not regarded in the following
analysis, since we did not attempt to resolve them.

1) Evaluation schema: Resolution results were evaluated
by a radiologist based on a randomly selected subset of 500
sentences for each data set. We generated a list containing all
sentences and the resolved entity (if available). Evaluation was
done according to the following schema:

e  correct: The entity resolved is exactly what the mea-
surement of the sentence is about. The radiologist

cannot find a better entity.

(correct): The entity resolved is correct however it
could be more specific (e.g., “lymph node in jaw
angle with 1 cm” with resolution to ‘lymph node’) or
the measurement is not only about the resolved entity
(e.g., “Mediastinal and axillary lymph nodes up to 1.5
cm.” with resolution ‘mediastinal lymph node’).

false: The resolved entity is false or the entity was not
resolved, but the radiologist can identify the correct
entity within the sentence.

unresolvable: The sentence does not allow a reso-
lution (e.g. “The biggest is now 2.7 cm.”) or the
measurement does not represent a size description



(e.g. “Tracheal tube 4 cm above the carina.”) and the
algorithm did not resolve to a false entity.

Sentences evaluated as correct and (correct) are regarded
as true positive, unresolvable as frue negative (since the
algorithm did not resolve to a false entity). Sentences evaluated
as false are regarded as false positive if the algorithm resolved
to a false entity and as false negative if nothing was resolved.

2) Results: As shown in Table I our approach has a recall
of 0.87 and 0.79 respectively for the sentences within our scope
and a precision of 0.84 and 0.79 respectively. Accordingly the
F1-measure is 0.85 and 0.79. As expected we see a drop in
recall and precision for the internistic dataset since we used
only the lymphoma data set during the development of the
knowledge model. As explained below in the evaluation of the
annotator, both, precision and recall, can be further enhanced
with small adaptations to RadLex.

TABLE 1. EVALUATION RESULTS FOR 500 RANDOMLY SELECTED

SENTENCES IFOR EACH DATA SET.

data set || recall | precision | Fl-measure
lymphoma 0.8698 0.8389 0.8540
internistic 0.7904 0.7864 0.7884

3) Evaluation by Anatomical Entity: In sum we resolve
relations to 86 different anatomical entities. Figure 3 illustrates
the evaluation results for 55 of these entities which occurred
in the randomly selected subset. That is, in using the RadLex
hierarchy we extend the coverage of the knowledge model to
more concepts. For instance size descriptions for ‘lymph node’
apply for all 250 subclasses. Figure 3 shows that we achieve
good results for lesion and various lymph nodes, even though
resolution could be more precise. This is due to the fact that
RadLex has a relatively detailed subclass hierarchy for lymph
nodes, however not all of the subclasses have German labels.
Thus in many cases the annotator detects only ‘lymph node’
even though the sentence contains a more precise description.
We notice that false resolution is concentrated mostly on mass
related entities. Further we see that the algorithm has problems
with aorta, liver, and cyst, but performs very good for spleen,
renal cyst or ascending aorta. From all sentences 25 from the
lymphoma dataset and 19 from the internistic dataset were
classified as unresolvable as explained above.

4) Evaluation of Annotator: The annotator was able to
annotate multiword terms and recognize inflected forms. This
was of high relevance since ontology concept labels often
consist of many terms while in reports these terms do not occur
in the same order and form. For instance the sentence “Some
enlarged lymph nodes up to 1.8 cm in mediastinum” gets the
annotation ‘radlex:mediastinal lymph node’ which is correct.
The annotator creates 0 — 22 relevant annotations per sentence
(average 2.93 ). In general more annotations enhance recall,
however wrong annotations reduce precision. So the quality of
the annotator strongly depends on the quality of the ontology.
Using RadLex brings the following two issues:

e Missing annotation: RadLex does not cover all
anatomical entities occurring in reports (and only
about 25% of all RadLex concepts have German
labels). Thus the correct entity gets not always anno-
tated: About 6.59% of all sentences have no relevant

annotation. Further, in 50% of the false resolutions, the

153

wall of gallbladder T T

ancreas

tail of
rior mesent
menta
carina

correct
(correct)
HEm false

u hl lo%e

rena
retrod ra
retrocava ymp
pulmonar% art ry
AR
Pneumothorax
ple

ural effusion
ovarian cyst

neolglasm
metastasys
mediastinal lymph n

lymph node of abdomen ﬂ)rogje
llver

left adrenal fanH
lateral aortic lymph g node

ney
I]lléull)dl%d\trl(. node
nguinal Tfymph
mﬁltrate
ena cava
Panc cas

der

1ter L

A"lhall CCl ent
verticulum

common iliac lyn‘{)ph r:jode

ARl w0
bronchopulmonary lyrg l]nooﬂa
reast asx

ascendm%
aortopulmonary lymph n
accessory Sp! een
abdominal aorta |~ | | | |
50 100 150 200
#sentences

Fig. 3. Resolution results by resolved anatomical entities based on 500
randomly selected sentences from the lymphoma data set and 500 from the
internistic data set respectively.

correct entity was not annotated. Thus the resolution
algorithm had no chance to pick the right entity.

Wrong annotation: The extensive usage of synonyms
in RadLex for mass related classes leads to wrong an-
notations and in consequence to false resolutions. For
instance ‘radlex:breast mass’ has synonyms ‘mass’,
‘nodule’, ‘lesion’, ‘nodular enhancement’ and ‘area
of enhancement’. Thus each time a ‘mass’ or ‘le-
sion’ is mentioned in a report the annotator assigns
‘radlex:breast mass’ and then the resolution algorithm
falsely resolves to ‘breast mass’.

The quality of the vocabulary provided by the ontology is
critical for our approach. Simple adaptations of the ontology
can significantly enhance precision and recall results.

VII. RELATED WORK

Medical text analytics has been conducted in the context
of the cTAKES project [13], which is also based on the
UIMA framework, and MedLee [14]. While cTAKES approach
to measurement detection is based on finite state machines,
the MedLee system is rule-based. Relations between medical
entities like conditions (e.g. diseases or disorders), symptoms
and indicated treatment are extracted e.g. in [15] or [16]. The
vocabulary of medical ontologies like those from the Unified
Medical Language System are commonly used for the extrac-
tion of medical entities (e.g. in [16]). Existing approaches
for relation extraction mostly use machine learning (ML)
techniques in combination with linguistic parse trees [13].



While we concentrate on measurecment-entity relations these
methods are more general. However we could not find evalu-
ations of these approaches for the extraction of measurement-
entity relations. Within the i2b2 Relations Challenge in 2010
the supervised ML system described in [17] showed the
best results for the extraction of relations between medical
problems, treatments and tests with an F-measure of 0.74. The
i2b2 Challenge on Temporal Relation extraction showed that
ML outperforms other systems in detection of events, while
hybrid approaches were better at classification of temporal
relations [18]. Similarly in [16] a hybrid approach (combine
relation patterns and ML) yields an F-measure of 0.94 for
the extraction of relations between disease and treatment. It
is however difficult to compare these results to the specific
relation extracted with our approach.

VIII.

We demonstrated that a rather simple knowledge-based
approach is able to resolve measurement-entity relations. In
combination with a large ontology, a small knowledge model
has a great effect. We expect that our results can be further
enhanced using more than one ontology and extending the
knowledge model. We further emphasize that even though here
we concentrated on length measurements, our approach can
be applied to other measurements (e.g. density) as well. But
a pure knowledge-based approach has two limitations. Firstly,
intervals overlap: An enlarged lymph node might be 3.2 cm
- the aorta diameter as well. That is why our model fails for
certain concepts, which are often used for location description,
but rarely measured itself, such as the aorta. The overlap is
especially problematic for concepts with a wide variation in
size like lesions. Secondly, in reports we often have deviations
from normal range. In “Splenomegaly with 23.0 x 14.5 x 8.5
cm.” the size measurement of the spleen is above the normal
range, but within the typical range for an enlarged spleen.
We suggest that through incorporation of the measurements’
context in the resolution algorithm and the usage of additional
classifiers these limitation can be overcome.

CONCLUSION

A. Outlook

In future work we will address the mentioned limita-
tions: (1) Adjust the comparison function, in using annota-
tions such as ‘enlarged’, ‘thickened’, ‘normal’ ctc., which
are currently filtered out. (2) Include other classifiers such as
the measurement-entity distance within the sentence. (3) Use
context information: E.g. DICOM headers of reports contain
information about the examined body regions. (4) Enhance
annotation coverage by adding more German labels to RadLex.
A promising next step is the usage of the resolved relations.
We can link findings from consecutive reports and thus make
the change transparent. In general, extraction and structured
presentation of relevant findings described in unstructured
free text reports potentially facilitates the radiological read-
ing process. In combination with automatic detection and
segmentation methods it provides the basis for automatic
navigation between corresponding image and text information.
Investigation of these issues is subject of our ongoing work.
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