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Abstract—Enterprise Architecture (EA) analysis is an impor-
tant tool for leveraging EA models. However, due to the diverse
nature of the EA field, analysis techniques must be able to deal
with variability caused by different modeling standards as well as
their adaption to specific organizational needs. Additionally, the
definitions of the relevant measures often vary between different
stakeholders and organizations. To address these challenges we
propose a (meta) model independent framework for the analysis
of architecture models. Based on a generic representation of
architectural data, we employ a data-flow based analysis ap-
proach to enable a context-sensitive evaluation of organization
specific measures. We demonstrate the generic applicability of
this framework through a re-implementation of three different
analyses from literature.

I. INTRODUCTION

Today’s IT landscapes in organizations are getting more
complex and affect more and more business domains. The
dependencies between the IT layer and the business layer are
difficult to grasp. Enterprise Architecture (EA) supports an
organization in getting a clear understanding of the essential
business and IT elements [1]. It is a holistic approach covering
all layers in an organization, thereby enabling not only local
optimization within one domain.

Several EA frameworks (i.e Zachman [2], TOGAF [3],
DoDAF in the military domain [4], RM-ODP for open dis-
tributed systems [5], the FEAF for US federal agencies and
other governmental agencies [6] or the 4+1 View model of
Architecture [7]) have been established, defining elements and
layers of an enterprise architecture. Such EA meta models
consist merely of concepts and relationships between these
concepts (i.e. nodes and edges). In practice, the organizational
business and IT landscapes are often very diverse. As a
consequence, existing (EA) frameworks have to be adapted to
each organization’s specific needs. It is obvious, that this can
easily lead to problems when applying techniques that aim to
extract information from enterprise models. On the one hand,
there exists a wide variety of different modeling standards for
the description of EA systems, that in turn may be modified
for different application scenarios. Analyses of EA models that
rely on a specific meta model, therefore have to be adapted for
each application. On the other hand, many analysis techniques
only provide a limited set of features, that may be suitable
only for a certain set of use cases.

Nevertheless, EA analysis is an important issue, when
trying to get benefit from the established enterprise models.
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To support decision making, the as-is architecture, as well as
planned future architectures can be assessed [8]. One tech-
nique is the quantification of the models according to defined
measures like cost or benefit. The values of such measures
can be used to indicate weaknesses in the current model,
as well as compare different planned future architectures to
the current one as well as to each other. Such a global
assessment on the overall architecture provides a valuable input
for making decision, especially in an early design stage [9].
Apart from cost and benefit further measures can be properties
like business IT-alignment and security [10].

Despite the benefits that analyses bring to enterprise mod-
els, this concept is not very common in current architecture
practice [10]. In contrast, a lot has been done for how
to represent an architecture model best, but less for using
these models for analysis purposes [11]. One drawback for a
widespread use of analysis techniques is certainly the lack of
general and easy adaptive methods. Existing approaches often
hardly rely on a specific analysis meta model [10] or require a
model normalization before execution [15]. Both cases require
a transformation of the original EA model respectively a meta
model mapping to be able to perform the analysis. Since
the techniques used for execution rely on the meta model,
routines for handling missing data are difficult to integrate.
Additionally regarding current analysis approaches, a quantita-
tive one, considering all architecture layers, is hard to find [9].
On a technical level, the Object Constraint Language (OCL)
enables the specification of constraints on modeling languages.
However, it suffers from several shortcomings which render it
unsuitable for the intended purposes. More specifically, the
presented methodology relies on the principles of information
propagation and fixed-point computation, both of which are
not supported by OCL.

As a solution to these problems, we propose the usage of
a combination of two techniques: We employ a very generic
meta model, that is able to act as a universal interchange
format for EA data, specified in an arbitrary modeling language
(section III-A). Based on this unified representation, we are
then able to implement different kinds of static analyses
(section III-C). For this purpose, we employ the Data-flow
Analysis formalism, a powerful method originating from the
area of compiler construction, that allows the computation of
context-sensitive information based on declarative specifica-
tions (section III-B). Since flow analysis relies on the principle
of information propagation rather than fixed navigation state-



ments, it is possible to anticipate a wide array of changes and
adaptions to the underlying modeling language. In a sense, this
method can be interpreted as an extension of the capabilities
of traditional model-based techniques such as OCL.

Our approach enables us to combine semantic-less graph
analysis like reachability or shortest paths with a semantic-
full determination of quantitative measures like cost or per-
formance. The declarative specification of information propa-
gation enables the execution of quantitative analyses, without
adapting the EA meta model with analysis specific concepts.
Nevertheless the analysis specifications have to be adapted, if
semantic knowledge i.e. names of specific concepts, is used.

We demonstrate the viability of this framework, as well as
its generic applicability in the context of three existing analyses
described in the literature which have been re-implemented
based on the presented techniques (section IV). As a result,
all of these analyses are not only built on the same underlying
technology, but they also prove to be very robust towards
changes to the employed EA language.

II. QUANTITATIVE EA ANALYSIS

Enterprise architecture analysis can be defined as the "applica-
tion of property assessment criteria on enterprise architecture
models" [12]. Whereas architectural models "provide only
visual and qualitative support” [13], the use of analysis tech-
niques enables the quantification of these models. Especially
in case of appearing changes, such quantified measures enable
the comparison of different alternatives and measurement of
the efficiency of investments [14]. But it is still a challenge for
an organization to quantify the information in the models and
make the value or cost of a change visible [14]. EA analysis
does not encompass only one domain, quite the contrary, the
greatest benefit will be reached if a method considers all
architectural domains. E.g. architectural layers are dependent
on each other in a manner that higher layers impose workload
on lower layers and vice versa, the performance of the lower
layers (i.e. server capacity) has influence on the higher layers
(i.e. availability of a service) [9].

Nirman et al. [10] define a process for EA analysis in the
context of decision making. The five steps towards a decision
are: (1) Define scenarios, (2) Determine properties of interest,
(3) Modeling scenarios using a meta model, (4) Analyze the
scenario properties, and (5) Make a decision. In this work we
focus on step four, how to analyze a given enterprise model
with a given measure for the property.

Buckl et al. [8] compared current analysis approaches
according to the categorization schema they developed. Every
characteristic of the classification is covered by at least one
approach (except multi-level self-referentiality). They identi-
fied further work to establish approaches that cover multiple
characteristics, for example through an integration of existing
ones. As example they propose a combination of rule based
analysis with indicator based analysis. A rule based analysis
refers to certain architectural constellations, that should be
present or absent. An indicator based analysis is used to
quantify the model using architectural properties [8].

When regarding the assessment of specific quantitative
measurement, i.e. analyses for one specific use case a lot of
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work has to be done. Jonkers and Iacob describe a perfor-
mance and cost analysis through a top-down calculation and
propagation of the workloads from the top layer, followed by
a bottom-up calculation and propagation of the performance
measures [15]. Their analysis is defined with and following
limited to the use of ArchiMate. The authors also do not
propose an implementation to integrate the analysis in a tool. In
[16] a meta model for enterprise systems modifiability analysis
is presented, i.e. assessing the cost of making changes to
enterprise-wide systems. In their work probabilistic relational
models (PRM) are used for the formalization. Furthermore,
Nirmann et al. present a framework with four viewpoints for
information system analysis [10]. These are application usage,
data accuracy, service availability and service response time.
For each viewpoint they established a meta model and p-OCL
code to execute the analysis. Each approach describes merely
the calculation of one specific measurement. Additionally they
are restricted to the specific underlying meta model. Using
them with another meta model in another context requires
adaption. None of these approaches proposes a technique how
to define a specific analysis.

For the definition of analyses, techniques like XML [17],
SPARQL [18], extended influence diagrams [19], probabilistic
relational models [20], p-OCL [21] or architecture theory
diagrams [22] have been proposed in current literature. These
techniques are dependent on the underlying meta model or
schema, an adaption of defined analyses to another context or
due to changes requires much effort.

To cope with the variability of meta models, Jonkers
and lacob propose a differentiation between design space
and analysis space. The design space is expressed by using
languages like UML, business process modeling languages
or architectural description languages. The analysis space is
expressed by using special-purpose languages, which enable
the later analysis. Following their method to perform analysis
includes a model transformation, then the execution of the
analysis with calculation of the properties, and finally a reverse
transformation back to the design space (with the results of the
analysis) [15].

III. UNIFIED FRAMEWORK FOR EA ANALYSIS

Analyses are typically dependent on the meta model, since
the techniques, commonly used for implementation of them,
are closey related to the meta model (cf. section II). If an
organization wants to execute a specific analysis, they must
use the respective analysis meta model (or define a meta
model mapping). In the following we describe techniques and
how they work together to enable meta model independent
analyses. The application of the developed techniques will
be demonstrated in the context of the MIDWagen example
(figure 1), a model that is shipped with MID’s Innovator
for Enterprise Architects tool [23]. The MIDWagen model
specifies the organizational structure of a car rental company,
consisting of business processes, applications and the under-
lying infrastructure along with their respective services.

The analysis framework relies on the combination of
two techniques: (1) A generic meta model which provides
a unified representation for enterprise architecture data and
(2) a method that allows the extraction of context-sensitive
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Fig. 1. Archimate model of the MIDWagen Use Case [23]

information from models. The former implements a generic
data structure on which the analyses can be defined. To fulfill
this requirement, the generic meta model - described in detail
in section III-A - must be abstract enough to accommodate
mappings to arbitrary architectural modeling formats while, at
the same time preserving the relevant meta information. The
chosen method for model analyses is inspired by the Data-flow
Analysis (DFA) approach commonly employed in the field of
compiler construction to derive semantic information from a
program’s control-flow graph. In section III-B, we summarize
the approach proposed in [24] which adapts the DFA technique
for use in the modeling domain. Finally, in section III-C, we
show how these two methods can be combined to realize a
universal framework for enterprise architecture analysis.

A. Generic meta model

To derive meaningful information from a model, an analysis
must incorporate knowledge about the semantics of the lan-
guage constructs. In general, the structure of any modeling
language therefore has a significant impact on the way analyses
are implemented and executed. This can present a problem
in areas such as enterprise architecture modeling, where a
large number of competing standards and practices exist. To
circumvent this complication, we introduce a generic meta
model (GMM) which acts as a universal interchange format
for EA models, and provides a common ground for analysis
specifications.

As mentioned before, analyses heavily rely on semantic
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information since the evaluation of a model element usually
depends on its meta model type. The GMM therefore not only
has to encode the actual model data but also the related meta
information, i.e. the classes and associations of the respective
meta model, and establish proper «instanceof» relationships
between both artifacts. As a consequence, each instance of the
GMM conforms to a representation of the target EA model as
well as the EA language itself.

This approach has to benefits: On the one hand, the
established EA meta models includes only those concepts, that
are are actually used in the EA model. On the other hand, it
enables to define any analysis over the EA, without adapting
the EA meta model. All required adaptions can be covered
through an adequate analysis specification (c.f. section III-C)

The depiction of the GMM shown in figure 2 aligns the
concepts of the meta model according to their responsibilities.
The root element EAModelContainer contains an EAMeta-
Model, an EAModel and a Configuration element, each of
which acts as a container for the elements of the respective
artifact type. The GMM defines several additional types such
as NamedElement which have been omitted in this illustration
for reasons of clarity.

The layout of the proposed format conforms to a directed
graph in which each node may possess an arbitrary amount of
data fields (named properties). For this purpose, each node,
edge and property type defined in the EAMetaModel spe-
cializes the abstract MetaModelStereotype class. On the other
hand, each instance of a node, edge or property in the EAModel
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Fig. 2. Meta model for generic measure calculation

is a StereotypedElement which references a stereotype from
EAMetaModel.

In order to map the structure of an existing EA model-
ing language to the GMM format, the defined classes have
to be translated to MetaModelNodes while their associated
class attributes become MetaModelProperties. Edge types, on
the other hand, require a mapping to two concepts: Meta-
ModelEdge and MetaModelEdgeConnection. This distinction
is motivated by the fact that the specifications of various
EA standards may conflict with restrictions imposed by the
current state of modeling technology. In the Unified Modeling
Language (UML) for example, it is not possible for a class to
declare two incoming or outgoing associations with the same
name. This usually requires to implement workarounds such
as assigning a unique numeric index to each association. The
downside to this approach is the loss of semantic information
as associations of the same type but with different indices are
treated as separate entities by modeling tools. The definition
of a MetaModelEdge type that can be shared by multiple
MetaModelEdgeConnections solves this problem.

As mentioned above, the EAModel as part of the GMM,
specifies the structure for instances of the type declarations in
the EAMetaModel. More specifically, it defines ModelNodes
along with ModelProperties (which possess a value field that
accommodates the property’s data) and ModelEdges which
establish connections between ModelNodes.

The last section of the GMM consists of the Configuration
which provides the possibility to encode analysis-specific data
in the model. The contained elements can be adapted to
suite the needs of a particular use case. Here, the Configu-
ration is used to restrict the computation of paths between
model elements to paths of a specific length (PathConfigu-
ration—maxHops) and to ignore transitions of certain types
(EdgeConfiguration—ignore). An advantage of this approach
is that the analysis configuration is directly tied to the respec-
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tive elements of EAMetaModel and EAModel and can therefore
be easily processed by the analyzer.

Figure 3 shows an excerpt of the MIDWagen use case to
illustrate the use of the GMM.

EAMetaModel EAModel

Business Service : MetaModelNode Reservation by phone : ModelNode

target

used by: MetaModelEdge

target

incoming e incoming

Reservation used by booking:

: MetaModelEdgeConnection

outgoing outgoing

source

source

Business Process : MetaModelNode Booking a car : ModelNode

Fig. 3. Example for the instantiation of the generic meta model.
The left hand side shows the type definitions of EAMeta-
Model while the right hand side contains the model data.

To execute an analysis on a GMM instance, the (meta)
model must first be translated. This requires the implementa-
tion of an adapter for each language (or EA tool). The simplest
way to accomplish this task consists of a traversal of the
source model, creating corresponding GMM nodes, properties
and edges on-the-fly. As part of this process, the meta in-
formation of the element has to be evaluated as well, and the
EAMetaModel has to be extended or updated accordingly. This
approach ensures that all relevant information is transferred
into the GMM representation while unused parts of the original
EA language are automatically excluded.

Figure 4 shows a refined version of the meta model that



has been extracted for the MIDWagen model depicted in 1.
In contrast to the Archimate meta model, it only contains a
subset of EA classes and relationships, namely the concepts
which are actively used in the example.

In conclusion, we can state that this approach can be
applied to all architectural models that are defined in an object
oriented manner, i.c. models which distinguish between type
definitions and instances.

B. Data-flow based Model Analysis

Data-flow Analysis (DFA, [25]) is a technique that originates
from the area of compiler construction. During the process
of translating source code into machine code, a variety of
validation and optimization steps are applied to the program.
DFA is commonly used to statically derive optimizations based
on the structural composition of program instructions. By ex-
amining each basic block in its overall context, it is possible to
derive information that holds true for each possible execution
of a program. Canonical examples include the calculation of
reaching definitions and variable liveness.

For this purpose, the program is usually represented as a
control-flow graph with the nodes conforming to the basic
blocks and the edges denoting the flow of control. Subse-
quently, a set of data-flow equations is computed at each node.
The output of this function not only relies on the contents of
the respective node itself but also - recursively - on the results
computed at its predecessors. As a consequence, results are
propagated along the graph’s edges and the evaluation of each
node incorporates the context of its predecessors. Since the
presence of loops leads to an infinite number of execution
paths (and consequently cyclic DFA equation systems), fixed-
point evaluation semantics are employed to approximate the -
otherwise undecidable - runtime behavior of programs.

In [24] we discussed how this analysis technique can
be adapted to the modeling domain, resulting in a “generic
"programming language’ for context-sensitive model analysis”.
The approach defines a declarative specification language that
allows the annotation of data-flow attributes at meta model
classes. These attributes can subsequently be instantiated and
cvaluated for arbitrary models. This technique provides two
significant advantages: Since information can be propagated
along model edges, each model element can be evaluated
in its overall context thus eliminating the need for static
navigational expressions as are common in languages such
as OCL. This is an important benefit in the EAM domain
where both the structure of meta models and models is highly
dynamic. Secondly, the usage of fixed-point semantics allows
the implementation of a correct handling of cyclic paths.

The application of flow-based model analysis can be il-
lustrated in the context of a simple example: We assume the
existence of a simple meta model for control-flow graphs
that specifies the class node along with two specializations
startnode and endnode as well as a class edge. A Data-flow
Analysis can easily determine whether a node is reachable
from the startnode. For this purpose we assign a data-flow
attribute is_reachable of type boolean to the node class (and
thereby implicitly to its sub-classes). We then define two
data-flow equations for is_reachable. Since, by definition, a
startnode is always reachable, its equation always returns frue.
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The second equation is used for the other node types and only
returns frue if the value computed for is_reachable at one of
its direct predecessors is frue. The instantiation of this analysis
for a specific model attaches an instance of the is_reachable
attribute to each node. The DFA solver is then responsible for
determining the dependencies between the attribute instances
and executing the data-flow equations in a valid order.

A reference implementation of this approach exists in the
form of the Model Analysis Framework (MAF, [26]) which has
been successfully employed to specify and carry out analyses
in different domains, for example the analysis of AUTOSAR
models [27].

C. Analysis Execution

In the following, we will demonstrate how the techniques,
which have been presented in the previous sections, can be
combined to construct a framework for the computation of
quantitative measures. For this purpose, the respective measure
has to be clearly defined and it must be known, how it can be
derived from the model data. The required information for the
calculation must be available in the EA model.

At this point, we assume that a transformation is available
that converts the EA artifacts into the unified GMM representa-
tion (section II1-A). In the first step of the analysis specification
process, the quantitative measure has to be formalized. We
exemplify this process by using the workload calculation
developed by [15]. The authors propose a framework for
performance analysis, which is defined through a top-down
calculation of the workload, followed by a bottom-up prop-
agation of the respective performance. Thereby the workload
for a node a in an architectural model is defined as

dt

Ao = fa + Zna,kﬂ\k,
=1

1=

M

where f, denotes the node’s arrival frequency, d} the out-
degree, n the edges weight and k; a child of a. This definition
requires a property arrival frequency for nodes and a property
weight at the model edges. To calculate the measure it must
be ensured, that this information is available.

This definition has to be translated into a data-flow speci-
fication. Since we want to calculate the workload, we conse-
quently define a data-flow attribute workload in the context of
the class MetaModelNode. Instance results are computed by
the following data-flow equation:

Algorithm 1 Data-flow equation for the attribute workload

public Object node_workload (Object context) {
float result node.arrivalFrequency;

for (ModelEdge outEdge : context.getOutgoing() {
if (outEdge.target.stereotype != context.stereotype)
result+=outEdge.weight+outEdge.target.getWorkload();
}

1:
2
3
4:
5:
6:
7: return result;
8

o

The DFA solver invokes this function with a parameter con-
text which signifies the current execution context (comparable
to OCL’s self variable). Line 2 initializes resuit with the value
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Fig. 4. Specific meta model for the MIDWagen Use Case

of the property arrivalFrequency of the currently processed
node (if available). The loop in lines 3-6 then iterates over
all outgoing edges. If the stereotype of the referenced object
differs from the type of the context object (line 4), the result
is updated accordingly. This check is required, to get only the
children with a different type; connections between elements
of the same type, for example between two business processes,
are ignored.

Line 5 then multiplies the value of the edge’s weight
attribute with the workload result computed at the edge’s target
node. Since workload is a data-flow attribute, the invocation
of getWorkload() informs the solver, that a recursive fixed-
point evaluation is required at this point. It should also be
noted that the data-flow functions are also able to access the
contents of the GMM'’s Configuration, allowing to parametrize
their behavior.

The workload calculation is done for every node in the EA
model, depending only on the information of child elements.
Thereby we interpret a child, as any connected element, that
can be reached via an outgoing edge and must not be of
the same type. Of course, this characteristic can also be
implemented using different interpretations. The benefit of
our interpretation is, that it does not required more semantic
information about the EA model, i.e. the specification does not
use EA meta model specific concepts. If an analysis required
the use of EA specific concepts, this will be implemented using
constant, which map to one or more concepts of the EA meta
model. This has to be done manually.

IV. EVALUATION

To evaluate the generic applicability of the analysis framework,
we implemented three different measures from literature (c.f.
subsections IV-A, IV-B, IV-C) and applied them to the MID-
Wagen example (figure 1).

Obviously the use case is not eligible for all of those
analyses, since every analysis requires different information.
Independently from the analysis technique, a measure can only
be determined if the required information is modeled. For this
purpose, we modified the use case (model and meta model)
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to incorporate the required information for each analysis. Al-
though we used the notation provided by Archimate to model
the use cases, the way the concepts are used differs. Following
each adaption results in a different EA meta model, which
reflects the variability encountered in real-world scenarios.

However, changes to the EA meta model are not limited
to the modification of class attributes. In fact, the structural
composition of the elements itself - both in the meta model
and in the model - can be highly dynamic. Consider the meta
model shown in figure 4: In this definition, business roles and
business processes may be connected either directly or indi-
rectly via intermediary services. Depending on organization
specific adaptions, only one of these paths may be available
or additional alternatives may be introduced. In addition, the
interpretation of these alternatives also depends on the respec-
tive measure, that is to be computed. This presents a problem
in traditional methods for analysis specification that rely on
fixed navigational statements. In the previous section, we
described how the GMM can be used to handle the technical
issues arising from this situation. The propagation of data-
flow values along model edges allows the abstraction from the
concrete structure of model elements by making information
available along transitive paths. As the computation of some
measures requires the examination of neighboring elements,
we implemented a flow attribute allpaths that computes the set
of paths starting at the local element to arbitrary target objects
and made this information available to subsequent analyses.
Alternatively, a computation of the shortest path to each target
element can be executed.

In the following, we will describe the implementation of
three different application scenarios:

A. KPI Calculation

Matthes et al. defined 52 KPI's to measure EA management
goals, based on a literature study [29]. From this set, we
chose the calculation of "the coverage of IT continuity plans
in respect to business-critical processes", as defined in ( [29],
page 66) to exemplify the computation of EA KPIs.

In their catalog the authors provide the following specifica-
tion for this measure: "Number of business-critical processes



relying on business applications not covered by IT continuity
plan divided by total number of business-critical processes”.
We therefore extend the MIDWagen use case with

e the boolean attribute IT Continuity Plan and corre-
sponding values for application components and
e the boolean attribute business critical and correspond-

ing values for business processes.

Only when this information is present, the coverage mea-
sure can be calculated. The KPI is computed by two data
flow attributes: relevant application components and continuity
covered. While the values of these attributes are not themselves
propagated throughout the model, they nevertheless rely on
context-sensitive information, namely the allpaths result for
each element. The first attribute represents the set of appli-
cation components supporting a business process and can be
calculated by cvaluating the following data-flow rule in the
context of business processes:

Algorithm 2 Data-flow rule for the attribute relevant applica-
tion components

1: public Object node_relevantapplicationcomponents (Node

currentNode) {
2: for (Path path : currentNode.getAllPaths() {
3: if (path.getTarget().type !=

Constants.APPLICATIONCOMPONENT)
continue;

ignorePath false

for (PathEntry pathEntry : path.getEntries() {

= YR 0 oA

if (pathEntry instanceOf ModelNode) {
predecessor = pathEntry;
continue;
1 }
1 if (pathEntry.type != (Constants.REALIZE |
Constants.USEDBY) {
12: ignorePath = true;
13: break;
14: }
15: if (pathEntry.getSource() != predecessor) {
16: ignorePath = true;
17: break;
18: }
19: }
20: if (ignorePath)
21: continue;
22: relevantApplicationComponents.add(path.getTarget ())
23: 1}
24: return relevantApplicationComponents;
25: }

Note that this definition does not presume a specific path
structure between business processes and application compo-
nents. Instead, we rely on the value of allpaths to identify
the relevant connection(s). Lines 3 - 4 ensure that only paths
targeting an application component are regarded. For each
alternative path, leading to an application component, we then
check if the local business process actually relies on the
target component. This is implemented by examining the edge
stereotypes which must be either match the constant USEDBY
or REALIZE (line 11 - 14). The constants provide a mapping to
the actual used stereotypes in the EA meta model. Additionally,
the connection has to be an incoming edge, i.e. opposed to the
path direction (line 15 - 18). The path will be discarded if
either of these two conditions is not met (line 20). Otherwise,
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it is determined that the application component supports the
business process and it is therefore added to the set of relevant
components (line 22).

The second attribute, continuity covered, evaluates to true
for a business process, if all of its supporting application
components are covered by an IT continuity plan. The com-
putation of the final KPI only requires to divide the amount
of business critical processes where continuity covered is true
by the number of all business critical processes in the model.
The screenshot shown in figure 5 shows the result for the
MIDWagen example in the analysis plugin developed for the
MID Innovator.
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Fig. 5. Screenshot of the calculation of "coverage of IT continuity plans" in
the MID Innovator [23].

B. Performance analysis

Jonkers and Iacob propose a performance analysis based on a
top-down propagation of workloads and a bottom-up propaga-
tion of the utility [15]. The analysis relies on the following set
of properties which have to be incorporated into the EA meta
model:

e  Weight n. for any relation e

e Service time S, for service a

e Capacity C, for any resource r (= actor, application
component, device and node)

e Arrival frequency f, for business services and business

processes

In [15] formulas are given that iteratively calculate the
respective measures workload 1,, processing time T,, response
time R, and utilization Ug. The computation of the workload
was already presented in section III-C. Algorithm 3 shows
the rule for calculating the response time which is defined as

R, = 1TT&~, where 1, denotes the realizing resource of a.
ra

For the definition of the realizing resource r, we consider
two cases: (1) the realizing resource is directly connected to
the service and (2) it is indirectly connected via a behavior
clement. Therefore the rule first iterates over all incoming
realizing edges (line 2 and line 3). If the respective source
element has a utilization attribute, this one will be used. If
not, all indirectly connected elements will be determined (line
8), and the utilization of the assigned element will be chosen



(line 9) instead. The utilization as well as the processing time
(line 14) are also defined as data flow attributes according to
the formulas in [15]. Calling their get-Methods instructs the
solver to retrieve the respective values, potentially triggering
the recursive invocation of other rules.

Algorithm 3 Data-flow rule for the attribute responsetime

public Object node_responsetime (Node currentNode) {

for (ModelEdge inEdge : currentNode.getIncoming() {
if (inEdge.type != "REALIZE")
continue;

1:
2
3
4
5: utilization inEdge.source.getUtilization ()
6. if (utilization >= 0)
7 continue;
8 for (Node referencedNode :
inEdge.source.getConnectedNodeSet () {

if (edge.type != "ASSIGN")

continue;
utilization

10:
11:
12: }

13}
14:

referencedNode.getUtilization();

return currentNode.getProcessingtime() / (1 -
utilization);

15: 1}

In contrast to Jonkers and lacob it is not necessary to
perform a normalization step before running the analysis and
we do not have to make the assumption of a 1-to-1 mapping
of a behavior element to a service/resource.

C. Application Usage

In their EA framework for multi-attribute information system
analysis Nédrman et al. describe an application usage analysis
[10]. It addresses voluntary application usage, i.e. why users
apply a certain application and not another. The application
component usage attribute is derived through the following
linear regression model:

Usage = o + 1 * TTF; + ... + B, * TTG,, + Bp+1 * PU
+ Bn+1 * PEoU with

e «, (1, .... Constants determined by processing empir-
ical survey of data of application usage

e  PU: Perceived Usefulness (comes from evaluation)

e PEoU: Perceived Ease of Use (comes from evaluation)

o TTF: Task Technology Fit (calculated from Task Ful-

fillment of the Business Process and the Functionality
of the Application Service)

This use case depends on the properties Task Fulfillment for
Business Process, Functionality for Application Service and
Application Function, PU and PEoU for Actor-Component
relationships, Regression Coefficient TTF, Regression Coeffi-
cient PU and Domain Constant for application components
and finally Regression Coefficient PEoU for Process-Service
relationships. We also introduced a new relationship used by
between application components and actors.

For the analysis of the usage, we define the following
data flow attributes: weightedTTF for used by edges from
application services to business processes and weightedTAM
for application components. The weighted TTF is calculated
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for each used by edge connecting an application service to a
business process. The values of these attributes are propagated
to the corresponding application components via the applica-
tion functions of those services. The weighted TAM (weighted
PU + PEoU) is calculated for each application component by
iterating over all outgoing edges to an actor. To get the final
usage result, each component has to add both values to the
domain constant.

In contrast to the implementation described in [10], our
technique does not require an extension of the model with
intermediate helper entities to support the aggregation of
values.

D. Discussion

The presented framework addresses two major challenges:
The lack of a standard EA meta model combined with the
fact that analysis specifications are highly dependent on the
underlying modeling language as well as overcoming the
limitations in current analysis techniques such as OCL. The
challenge of diversity in EA languages is addressed by a
common representational format and generic analysis defini-
tions. Consequently, it is only necessary to adapt the semantic
mappings to be able to execute specified analyses for any EA
language (provided that the required information to calculate
the measure is contained in the model). With the proposed
data-flow based analysis technique, the measure itself and po-
tential interim results are modeled as data-flow attributes. This
method enables the specification of an information propagation
mechanism on the meta level. The declarative specifications
possess a distinct advantage over imperative methods since
the propagation is automatically managed by the underlying
DFA solver, thus freeing the developer from having to deal
with implementation-specific details. Furthermore, the inherent
capability to process cyclic dependencies enables the compu-
tation of fixed-point results.

A potential weakness of this approach consists of the static
mapping technique for semantic concepts as it only allows
straightforward one to one or one to many mappings. This
can for example present a problem if a single edge concept in
the generic analysis specification maps to a chain of multiple
relationships in the actual EA model. In future work we
will therefore examine the application of more sophisticated
mapping methods based, for example, on semantic web tech-
nologies.

In general, there are two approaches for the implementation
of analysis capabilities into enterprise architecture tools: (1)
Integration of the analysis framework in the tool or (2)
exporting the model data and executing the analysis outside
of the tool (decoupled). While the latter method is easier to
accomplish, the former approach is more user friendly.

Suitable tools for the development of enterprise architecture
models include for example PlanningIT!, Innovator [23] or
iteraplan®. In many cases, plugin interfaces can be used to in-
tegrate analysis capabilities into existing tooling environments.
In our case study, we implemented a plugin for Innovator
which transmits the model data to MAF’s analysis server and

Uhttp://www.alfabet.com/en/offering/product//main.aspx
Zhttp://www.iteraplan.de/en



interprets the received results. To (de)serialize the model, we
developed a textual notation for the GMM using the Xtext
language workbench [28].

V. RELATED WORK

One research area regarding related work is querying languages
like SQL [30] for databases and SPARQL [31] for ontologies
(proposed for EA in [18]). Both have the weakness, that they
are highly dependent on the underlying structure (database
schema, respective t-box for ontologies). The constraint lan-
guage OCL allows the annotation of constraints at meta model
elements and their evaluation for models. The expressiveness
of OCL is limited due to its static navigational expressions
[32], [33]. OCL has also a closure () operator®, which was
introduced in version 2.3.1 (January 2012) of the specification.
But it can only be used with the type Set types and for the
calculation of the transitive closure of a relationship.

Since the GMM encapsulates both meta and model data, it
somewhat resembles use of MOF reflection. However, GMM
encapsulates domain-specific information relevant to DFA
(which concepts are nodes/edges, where information should
be propagated), radically simplifies analysis specification and
circumvents the problem that some EA standards are not MOF-
compatible.

OCL is applied for EA analysis in P2AMF, a general
framework for the prediction of element properties in order to
compare design alternatives [34]. Thereby the authors consider
the calculation of multi-properties, dependencies between the
properties as well as uncertainties regarding the existence of
elements and relationships. The value of properties can be
described by using probability distributions as well as OCL
expressions [34]. Their probabilistic inferencing approach
lacks procedures of how to deal with cyclic dependencies as
well as they are restricted to the expressiveness of OCL. In
earlier publications Johnson et al. propose the use of extended
influence diagrams as formal language for EA analysis in [19].
This technique is an extension of bayesian networks, where
cach node represents a variable with a number of states. CPTs
are used to determine the probability that a variable is in
state x, under the assumption that its "predecessor" is in state
y. They extend this techniques to be able to consider goals
and decision alternatives as well as to consider definitional
uncertainty. Johnson et al. propose in [12] an EA analysis
tool, where they extend ea meta models with attributes and
at least attribute relationships, using conditional probability
table (CPT) to express the influence of the attributes to each
other. They also consider the probability of correctness of any
evidence that is used to create concrete scenario models [12].
Their work is limited to use defined scenarios, how can you
ensure that the relevant instances are in the scenario. There
is also no procedure mentioned of how to deal with cyclic
dependencies. Additionally, a lot of the analysis complexity
lies in the meta model and is therefore difficult to adapt to
different use cases.

Razavi et al. describe in their paper an AHP based approach
for the quantitative assessment of quality attributes in different

enforcement
Classifiers:

3An example use case would be the
of non-cyclic generalization hierarchies for
self->closure (superClass)->excludes (self)

235

scenarios. This is an expert-based EA analysis supporting the
selection of the scenario that fits best to prioritized enterprise
utilities. In their work the measures for the criteria are deter-
mined by experts, but there is no automatic calculation of them
[35].

De Boer et al. propose the use of XML for static and
dynamic EA analysis. They demonstrate how to represent an
enterprise architecture in XML and propose the use of XML
parsing tools as well as RML (tools) for executing the analysis
[17]. They do not provide detailed implementation details,
especially for the static analysis.

The combined representation of meta and model data in the
GMM facilitates the specification of generic analyses which
are able to dynamically adjust their behavior to the structure
of the underlying EA language. In some respects, this approach
resembles the MOF reflection mechanism. However, the GMM
focuses on the representation of domain-specific information
relevant to DFA while employing a fixed graph structure which
serves as a foundation for the definition of universal analysis
specifications. It furthermore circumvents the problem that
some EA standards are not MOF-compatible.

VI. CONCLUSIONS

Although enterprise architecture analysis is a highly relevant
topic since it allows one to get additional benefits from
EA modeling, it is currently not very widely employed in
practice. A major challenge for the application of analysis
technology can be found in the high diversity of available
and customized meta models in the EA field. Since existing
analysis specifications usually presuppose a specific structure
of meta models and models, it is very difficult to reuse them
with organizational models that do not conform to the respec-
tive assumptions. They required a high effort to transform
the actual EA model in a manner, that the analysis can be
executed, additionally the respective meta model does not
make any statements about what concepts are actually used. An
additional challenge consists of the need of evaluating model
objects in their overall context.

In this paper, we presented a meta model independent
analysis framework which addresses these problems. Through
the implementation of a generic meta model for the EA domain
and the use of an analysis technique based on information
propagation, it enables the specification of robust, context-
sensitive analyses. The generic meta model enables a rep-
resention of EA data which is independent from a concrete
modeling language. The method of data-flow analysis for
models - inspired by the well-researched practices in the com-
piler construction domain - enables the replacement of fixed
navigational statements with a demand-driven propagation of
values along model edges. It also enables the implementation
of advanced analyses, which rely on the convergence towards
a fixed-point value in the case of circular information flow
paths.

To demonstrate the generic applicability of the framework,
we implemented three different existing analysis approaches
from literature, which can be executed on any EA model that
has been translated into the GMM format and comprise the
necessary information. If only semantic-less analyses should
be executed, like shortest past or the presented workload



calculation, no adaption of the analysis specification is nec-
essary. More semantic-full analyses require the adaptation of
the stereotype constants such as "application component" to the
respective name of the class in the target modeling language.
At the moment the analysis specifications are defined and
compiled during design time. Future work has to be done to
enable a dynamic definition of analyses. Also the generic meta
model approach can be further enhanced to directly include
often used concepts like generalization relationships.
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