
Toward a Consistent and Strictly Model-Based Interpretation of the
ISO/IEC/IEEE 29119 for Early Testing Activities

Reinhard Pröll and Bernhard Bauer
Institute for Software & Systems Engineering, University of Augsburg, Germany

Keywords: Model-Based Testing, Test Management, Mutation Testing, ISO/IEC/IEEE 29119, Software Testing Lifecycle.

Abstract: Effective and sufficient testing has always been a challenging task in software development. The ongoing
increase of software complexity forces developers and testers to make extensive use of the concept of
abstraction, thereby leading to model-based approaches. Further, standardization organizations aim for
harmonized process templates to assure a certain quality level of the processes behind. In order to combine
the process-level advice as well as the concept-level advice, we aim for a consistent and strict application
of model-based methodologies throughout the testing processes, introduced by the ISO/IEC/IEEE 29119
standard for software testing. After a brief introduction to the standards content and a critical view on it, we
focus on our model-based interpretation of the postulated processes. Thereby, we extend the original idea of
model-based testing, incorporating the separation of concerns on the model-level, to form a broad information
basis. Subsequent activities are aligned with these concepts, in order to make sure a purely model-based
testing life cycle, with respect to consistency and quality of development artifacts. Following the related work
of impacted research areas, we end up with a conclusive statement on the intended combination of approaches.

1 INTRODUCTION

Over the last decades, the level of software
complexity steadily increased. Ongoing research in
the fields of software development and testing tries
to tackle the complexity by advanced approaches.
Beside the continuous improvement of applied
working techniques, standardization organizations
tend to aggregate and generalize knowledge about
field-proven approaches, in order to give users
guidance and support certification of products.
Especially in the field of software testing, many
standards were published, subsumed by the
ISO/IEC/IEEE 29119. In order to align the testing
activities with the increased requirements, imposed
by the higher complexity level, active standards
force the application of advanced techniques, such as
Model-Based or Risk-Based Testing.

Problem Statement

Nevertheless, we identified three major challenges for
test-related activities and processes in the context of
highly software-intensive systems.

First, we see a strong need for the consistent

automation of testing activities. For nearly every
dedicated part of the software testing life cycle, a huge
variety of valuable approaches ready for automation
has been investigated by Felderer and Schieferdecker
(2014), Elbaum et al. (2002), Utting et al. (2012), and
Jia and Harman (2011). Combining a subset of these
approaches, to fully instantiate a software testing life
cycle, still manual steps bridging the conceptual gaps
between the dedicated parts are necessary. In order
to overcome this weakness, we propose a consistent
conceptual and knowledge basis throughout all test
disciplines.

Second, we are convinced that future software
testing has to take place in early stages of
development. Due to the fact, that costs for errors,
detected in late phases, are extremely high, the
overall costs for software testing in early development
stages are expected to be much lower. This
effect raises in scenarios, where the overall level of
complexity is much higher. Therefore, we envision
a complete instantiation of the software testing life
cycle applicable to the early development artifacts,
namely design-time artifacts, which are meant to
evolve over time. Further, drawbacks about the
expressiveness of testing activities in such early
stages are not expected to have a great impact on the

Pröll, R. and Bauer, B.
Toward a Consistent and Strictly Model-Based Interpretation of the ISO/IEC/IEEE 29119 for Early Testing Activities.
DOI: 10.5220/0006749606990706
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 699-706
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

699



feedback, which is generated based on test results.
Last, we are convinced that future testing needs

to make extensive use of the concept of abstraction,
to overcome complexity. For example, Test Case
Explosion in our opinion is mostly reasoned in
a too detailed level of test activities. In many
cases, this ends up in thousands of tests challenging
mostly low-level concepts, that could also be assured
by adequate code/model quality techniques during
development. Consequently, this imposes higher
requirements on the quality of involved development
artifacts, representing the abstract interpretation of the
test specification. The resulting high-quality set of
models again supports the early testing activities.

In order to bring together existing approaches for
dedicated parts of the software testing life cycle, as
well as targeting the challenges previously identified,
we propose an orchestration of model-based
techniques to ease early testing efforts.

Outline

Throughout section 2 an introduction to testing
processes and the orchestration of activities
incorporated by the ISO/IEC/IEEE Standard 29119 is
presented. Based on the included process templates
and a critical view of the standard itself, section 3
describes the consistent and strictly model-based
interpretation of processes and their activities.
Section 4 presents related research, which impacts
our contribution. Finally, section 5 concludes the
benefits and shortcomings of a strictly model-based
instantiation of test management and dynamic testing
processes.

2 THE ISO/IEC/IEEE 29119
STANDARD FOR SOFTWARE
TESTING

In order to define a widely agreed assistance in
the field of software testing, the ISO/IEC/IEEE
29119 standard has been developed. It is meant to
replace a set of pre-existing standards in this field,
such as IEEE 829 (2008) for test documentation,
the ANSI/IEEE 1008 (1987) for unit testing, the
ANSI/IEEE 1012 (2012) for system and software
verification and validation, the BS 7925-1 (1998)
representing the vocabulary of terms in software
testing and finally the BS 7925-2 (1998) incorporating
the software component testing topics. Targeting a
holistic presentation of best practices as well as state

of the art processes, the standard is split up into five
parts covering the most important aspects.

ISO 29119-1 (2013) introduces basic concepts and
definitions, to set up a common understanding across
professionals having in mind the earlier standards.

In contrast to the rework of predominant
knowledge, ISO 29119-2 (2013) details the process
artifacts contributing to the standards generic
definition of a potential software testing reference
process. Additionally, it focuses on the cross
relations between process artifacts of the distinct
areas investigated in section 2.1, section 2.2 and
section 2.3 of this paper. Altogether, this part
can be seen as the central artifact integrating the
topics formerly distributed and isolated in multiple
standards and books.

ISO 29119-3 (2013) again focuses on integrating
work already presented within the IEEE 829 standard,
last updated in 2008. Its main purpose is to define
the essential test documentation artifacts and their
purpose within the presented test related processes.
Thereby the general structure and central aspects of
the technical documentation are defined.

Furthermore, ISO 29119-4 (2015) investigates
on a set of test design techniques applied by a
conventional testing process. Apart from the set of
techniques described within the BS 7925-2 standard,
more state of the art test concepts are incorporated.
Additionally, the respective set of test coverage
metrics is presented in the second part of this
document.

ISO 29119-5 (2016) introduces an efficient and
consistent reference approach for keyword-driven
testing, representing a field-proven and intuitive
technique. Further, requirements on related tooling
are specified enabling testers to use intermediate
work products across a heterogeneous tool landscape.
Advanced topics covered by this part of the standard
address the concept of hierarchical keywords and
templates for technical keywords.

Beside the partitioning of concepts across the
five distinct documents, the content is further
structured into three test process levels with mutual
dependencies, shown in fig. 1.

2.1 Organizational Test Process

The standard defines an organizational test process
to specify knowledge, relevant for the whole
organization and not dedicated to a certain project,
in a controlled way. This process template
may flexibly be applied to diverse scenarios,
e.g. the process for development and management
of the organizations test policy as well as the

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

700



Organizational Test Process

Test Management Processes

Dynamic Test Processes

Test Planning 
Process

Test Monitoring 
& Control 
Process

Test Completion 
Process

Test Design & 
Implementation 

Process

Test 
Environment 

Set-Up & 
Maintenance 

Process

Test Execution 
Process

Test Incident 
Reporting 
Process

Figure 1: Multi-layer model of test processes (as per ISO
29119-2 (2013)).

therefrom-derived test strategy. The template
consists of three activities, namely Development of
Organizational Test Specification (OT1), Monitor And
Control Use Of Organizational Test Specification
(OT2), and Update Organizational Test Specification
(OT3). OT1 represents the first and singular task of
creating an Organizational Test Specification (OTS),
since OT2 and OT3 constitute an iterative feedback
loop for updating and maintaining the specified
artifacts.

2.2 Test Management Processes

Apart from the organization-wide test processes,
project-specific processes are further refined. In
contrast to the presented process template, test
management processes follow a high-level division
into three sub processes.

Test Planning Process - This process determines a
sequence of nine activities (TP1 - TP9) representing
the essential steps toward a valid test plan artifact.
Starting with activities correctly interpreting context
information and allocating workload (TP1 - TP2),
later steps focus the identification, mitigation, and
deduction of a strategy for a risk-driven plan (TP3
- TP6). At this point, the standard emphasizes, that
these sequential steps may be carried out iteratively,
in order to raise the overall quality and focussedness
of the final test plan. The closing activities aim for
the serialization and communication of the agreed test
plan (TP7 - TP9).

Test Monitoring & Control Process - Addressing
subsequent work of the test management processes,
the test monitoring and control process manages
the gap between the planned testing activities and
the actually executed set of tests. Following the
set-up of monitoring structures (TMC1), previously

identified test measures are monitored (TMC2) and in
consequence, trigger control structures (TMC3). This
potentially iteratively carried out monitor-and-control
loop steadily collects information about the dynamic
testing processes captured within detailed reports
(TMC4). Further, based on this set of monitoring and
control information, the decision whether testing is
completed or not is made.

Test Completion Process - Initiated by the
test-monitoring infrastructure, active testing
terminates triggering a final test completion process.
The template completion process splits up into
four different activities, again either executed in
a sequential or iterative way. Starting off with
archiving of test assets (TC1) and cleaning up the test
environment (TC2), the major contributions of this
process are reflective and documenting tasks (TC3
and TC4), to continuously improve the overall testing
process landscape.

2.3 Dynamic Test Processes

Tightly coupled to the test management processes,
the dynamic testing processes dealing with topics
around the creation and execution of concrete tests are
further detailed. Fig. 2 introduces the process-level
integration of the concepts, no matter which test phase
or test type defines the context.

Test Management Processes

Dynamic Test Processes

Test Design & 
Implementation

Test 
Environment 

Setup & 
Maintenance

Test 
Execution

Test 
Incident 

Reporting
Test Environment

Requirements
Test Environment
Readiness Report

Test
Specification

Test
Results

[Issue Noticed 
OR

Retest Result]

[No Issue
Noticed]

Incident
Report

Test
Plan

Test
Measures

Control
Directives

Figure 2: Process-level integration of Dynamic Test
Processes (as per ISO 29119-2 (2013)).

Test Design & Implementation Process - This
process includes the work to be done before the
real testing may start. Impacted by the previously
introduced test plan, representing the strategic and
policy-driven view on the activities, the test design
and implementation is developed (TD1 - TD6).
Mainly, three different process artifacts are generated.
The Test Design Specification, which is derived from

Toward a Consistent and Strictly Model-Based Interpretation of the ISO/IEC/IEEE 29119 for Early Testing Activities

701



a certain set of features and related test conditions.
The Test Case Specification additionally defines test
coverage items, connected to monitoring processes
to check meta-information of test cases. Based on
these two artifacts the Test Procedure Specification is
specified by assembling test sets and implementing
related test procedures.

Test Environment Set-up & Maintenance Process
- Beside the initial set-up of the test environment,
included activities assure the seamless integration and
executability of tests inside the test environment by
continuous maintenance (ES1 and ES2).

Test Execution Process - Based on a working test
environment, processes assuring the test execution
take place. The proposed test execution process
scheme consists of three activities. Following the
execution of previously specified test procedures
(TE1) the outcomes are further evaluated (TE2)
and documented (TE3), thereby triggering multiple
feedback loops to improve the overall testing process.

Test Incident Reporting Process - In case of
unforeseen incidents, a special type of process is
integrated to the standard proceeding. In a two
step sub-process, the observed incidents are analyzed
(IR1) and further documented by a report (IR2),
specific to the stakeholders responsible on that
feature.

As we have seen, the standard tries to template
a solution for the orchestration of heterogeneous
test-related processes. Nevertheless, the targeted
domain, where adaptability and context-awareness of
applied approaches is essential, marks a problematic
case for standardization efforts.

2.4 Standardization of Software Testing

Standardization means to incorporate predominant
approaches of a domain and extract the agreed
consensus, to ensure quality across application
scenarios. In the testing domain, which lives from the
creativity of testers and their abilities to do structured
problem-solving, standardization is hindering. For
example, setting up a standard-conform test process,
may restrict the intended approach to a degree, where
its meaningfulness is cut down to a significantly
lower level. Here standard-conformance is preferred
over appropriacy of testing. In case of inverted
preferences, the missing standard-conformance may
further affect the customers’ acceptance of the
developed product.

Consequently, we see the ISO/IEC/IEEE 29119
standard as a reference for basic test-related building
blocks and as a collection of template processes
in the area of testing. Therefore, we aim for
an interpretation (and not an instantiation) of the
presented standard satisfying the needs of our
focused application context, namely design-time
testing activities.

3 A MODEL-BASED SOFTWARE
TESTING LIFE CYCLE

Targeting a strictly model-based interpretation of
the previously presented processes, we hereafter
introduce the set of methodologies covering most
of the different aspects of the ISO/IEC/IEEE 29119
standard. In order to overcome the identified
problems, we further try to incorporate and combine
multiple field-proven techniques in model-based
testing and testing in general. Beyond, we aim for
the adaption of concepts, applied in different contexts,
and the use of their beneficial effects. All over,
we aim for a combination of testing methodologies
consequently tackling the origins of test complexity,
further applicable throughout all stages of software
development, starting with the design phase.

Fig. 3 provides an overview of the essential steps
incorporated into this work.

Model-Based ISO 29119

Model-Based 
Test 

Management

Model-Based 
Test Generation

Model-Based 
Mutation 
Analysis

Abstract Test 
Execution

Model-Based 
Test Report

Integrated 
Model Basis

Create/Update 
Model Basis 

Scoped 
Test 

Model
Test

Cases

Ranked
Test

Cases

Test
Results

Structured 
Feedback

Structured 
Feedback

Figure 3: Model-based and standard-oriented software
testing life cycle.

In contrast to the mainly sequential process
descriptions of the addressed standard, we clearly
state the need for an iteratively carried out testing
process, reflected by its cyclic nature. Further, we
like to underline that the presented process is not
only limited to the early testing activities stated in the
introduction. It may also be carried out in later testing
phases.

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

702



3.1 Integrated Model Basis

Starting with the most essential part of the
model-based interpretation of testing activities, we
introduce a model repository called Integrated Model
Basis. This model repository includes various
domain-specific models, connected by a so-called
integration model. Whenever we use the term
domain, we talk about purpose-specific views on
the system under development resulting in separated
model artifacts, e.g. the test model artifact
specified within the UML Testing Profile or the
reliability model artifact specified via fault trees, in
case of a safety critical system. The integration
model artifact further acts as a storage for data
reflecting organizational or management aspects, as
far as these are quantifiable. With the integrated
model basis sometimes called the Omni Model -
the domain-specific knowledge, its cross-domain
relations, as well as organizational/management
aspects - is expanded to its greatest. As introduced
by Rumpold et al. (2017), the Architecture and
Analysis Framework (A3F) represents a prototypical
implementation of the Omni Model approach.

Beside the pure integration of knowledge, the
framework enables the user to flexibly define analyses
on top of this model data. Analyses may for
example be used for code generation tasks or the
general task of producing purpose-specific data, e.g.
dynamic cross-domain documentation artifacts or
change impact analysis results.

Investigating on the relation between the
ISO/IEC/IEEE 29119 standard and our intended
model-based interpretation of activities, the Omni
Model approach tackles nearly every process artifact
of the standard. Due to the incorporation of multiple
viewpoints into a joint model basis, all layers of
the standard are affected. The Organizational Test
Process, the Test Management Processes, and the
Dynamic Test Processes are based on the modeled
information, also reflected by fig. 3.

3.2 Model-Based Test Management

Beyond, the Test Management Processes presented
by the standard either serve a documentation or
reporting purpose for the organizational part, or an
planning purpose impacting on the Dynamic Testing
Processes. The latter is focused by our Model-Based
Test Management approach, extending traditional
risk management or risk-based testing efforts to the
multi-domain application scenario.

Aiming for the reduction, prioritization, and
selection of a set of test cases, our test management

process targets a reduced and strongly focused
sub-model of the original test model, i.e. a scoped
test model. In order to end up with such a scoped
test model, the test purpose needs to be narrowed
by constraining so-called aspects, defined within the
integration model. Aspects may either represent a
certain characteristic of a connected domain-specific
model (intrinsic aspect), or a quantifiable risk
value imposed by some management decisions
(synthetic aspect). The aspect concept together
with its constraint mechanism enables users to plan
their testing activities within a multi risk-aware
methodology. Beside the use case of test planning,
a beneficial use in regression testing scenarios is
thinkable.

A prototypical implementation of the
Model-Based Test Management approach within
the A3F reveals promising results. Technically,
we realized the scoping mechanism within a chain
of analyses finally producing a scoped model
artifact. Another positive property of this kind of
test management is its guidance for subsequent
Dynamic Test Processes, by specifying the model
basis for the test case generation steps and thereby
closing the automation gap between these two
process groups. Further, there is no more room for
misinterpretation of the test plan, due to the direct
mapping of information across domains.

3.3 Model-Based Test Generation

Switching over from the Test Management Process
related activities to the Dynamic Test Processes, we
further introduce our approach for test generation
based on the before mentioned Omni Model
approach. Especially the Scoped Test Model,
representing a reduced version of the original test
model with respect to management aspects in
conjunction with the test plan, is the focus of this
processing step. Based on the Model Analysis
Framework (MAF) Saad and Bauer (2013), which
works on graph representations, structural features
and annotated data are evaluated regarding certain
metrics to derive test cases. The chosen set of metrics
may additionally be varied by structured feedback of
previous runs of test suites. In our case a generic
control flow graph representation of the test model
is processed by MAF in order to generate test cases.
The resulting set of test cases is represented by a
set of paths through the input graph structure. This
format of test cases gives us the flexibility to adapt to
a certain target representation or leave it untouched to
stay on the model level, which is preferable in early
development stages.

Toward a Consistent and Strictly Model-Based Interpretation of the ISO/IEC/IEEE 29119 for Early Testing Activities

703



Based on the highly-scalable Model Analysis
Framework, the presented concept for the Test
Implementation Process and related activities,
continues the model-based and automatable chain of
methodologies.

3.4 Model-Based Mutations and
Abstract Execution

With respect to the challenge of increasing model
quality and generated test cases identified in section
1, we introduce an intermediate quality assurance
step. This kind of activity is not foreseen in the
ISO/IEC/IEEE 29119 standard, although we strongly
recommend some comparable activities in every
testing process. Beyond the pure conformity with
a certain coverage metric, which just awards the
attribute of a completeness to the generated set of test
cases, mutation testing challenges each test case for
its ability to detect defects, which was first introduced
by DeMillo et al. (1978). So far, mutation testing
approaches are widely focused on injecting faults into
a target code basis. In contrast to this, we focus
on mutations of an abstract graph representation of
behavioral models of the system under development.
This enables to assess test cases, before any fragment
of code needs to be written or generated.

For the assessment of test cases, mutation testing
needs to execute the test cases against a mutated
system under test. In order to make comparable
functionality on the model level, we developed a
prototypical abstract execution framework, which
executes two graph representations in sync. Each
of these graphs represents a certain interpretation of
the specified behavior (control flow) of the system,
e.g. from a testers and a developers viewpoint.
The graph representations are generated out of the
respective domain-specific models. Processed by a
model-to-model transformation, each of them leads
to a uniform graph structure including attribution
data. The ongoing abstract execution, synchronized
via the integration model, on the one hand runs
the graph model representing the mutated system
under development and on the other hand the graph
model of the considered test case. The incorporation
of the connected Omni Model information enables
our graph interpreter to simulate whether the defect
is detected by the test case or not. With
this methodology, we aim for competeable results
about the mutation analysis process as well as the
expressiveness of abstract test execution runs.

Traditional Mutation Testing approaches are
known to be very time consuming due to the
extremely high number of test cases to be run for

several times. The model-level adaption of mutation
testing again reduces the efforts to be made and time
to be spent for running test cases. The reason for that
is the uniform execution environment, which abstracts
from detailed timing, performance, or concurrency
considerations of the target platform. The overall cost
reduction hopefully forces users to apply this quality
assurance technique in practical scenarios, to cut the
amount of test cases to be executed on the product, to
a minimal extent of high-quality test cases.

3.5 Model-Based Test Report

Targeting the consistent automation of all included
processing steps and completing our model-based
interpretation of the ISO/IEC/IEEE 29119 standard,
we take a deeper look at the generated test results
and how they may be used for structured feedback.
The results produced by the abstract execution
of test cases are collected and aggregated to a
model-based test report. This report includes
specific information about model elements affected
by failed test runs, enabling the tester to use
the Architecture And Analysis Framework of
Rumpold et al. (2017) to generate purpose-specific
data, e.g. human-interpretable test reports or
machine-interpretable test reports for advisory
tooling. Due to the fact, that the model-level
description of information has never been obfuscated
during the processing chain, we can clearly separate
the affected model elements and their connected
information in the Omni model repository. Based on
the set of affected model elements valuable guidance
may be generated automatically, forcing the test
engineer to either investigate on the test model or any
other connected domain-specific model of the system
under development. As previously mentioned, the
machine-interpretable advice represents feedback for
the test generation step, by improving and adapting
the test metrics applied.

3.6 Shortcomings of the Model-Based
STLC

Beside the introduction to the concepts behind the
model-based software testing life cycle and the
beneficial effects of the contributing methodologies,
we now discuss potential shortcomings. It is out of
the question, that the presented approach, especially
its Omni Model basis poses strong requirements to the
underlying infrastructure and general methodology
of developing software. The strict application
of separation of concerns within the Omni Model
concept is positive for the subsequent application of

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

704



model-based approaches, but forces developers to so
specify and support the cross-domain connections
needed by nearly every step of the life cycle, e.g. the
abstract synchronized test execution.

Beside the positive aspects of a fully automated
testing approach, the danger of an evolution toward a
black-box approach, not satisfying the testers needs,
is omnipresent. Therefore, we strongly recommend a
transparent way of automating the overall processing
chain, to guarantee a comprehensible action-to-effect
mapping through all phases of our testing life
cycle. The documenting and reporting process
steps of the addressed standard aim for such
transparent processes, not explicitly incorporated by
this contribution.

Furthermore, we think the quality of the included
domain-specific models decides on the success
of the combined methodologies. These days,
model-based development artifacts are predominantly
used for structured documentation, therefore mostly
focused on manual (human) processing. The
largely missing focus on design-for-automation and
design-for-testability, which is reflected by current
development artifacts, needs to be overcome to make
such approaches applicable in practical scenarios.

4 RELATED WORK

The work on the model-based testing life cycle
is affected by concepts distributed across multiple
areas of software testing. Comparable in its basic
approach, but missing the model quality assurance
mechanisms, Daoudagh et al. (2015) introduced
a toolchain for model-based design and testing.
Another shortcoming compared to our contribution
is its highly focussedness on so-called access
control systems, which curtails potential application
scenarios.

Further, the key concept of the presented
life cycle, its integrated model basis, relates to
earlier research in the area of domain-specific
(meta-)modeling. de Lara et al. (2015) and Zschaler
et al. (2009) both worked on approaches dealing
with the orchestration of modeling languages and
cross-relations on a meta-level. Beside this essential
and versatile related concepts, our contribution is
impacted by research of three distinct fields.

Model-Based Testing

Apfelbaum and Doyle (1997) original approach,
which generates test cases from model-based
specifications of the intended system, inspired our

first versions of the consistent model-based testing
life cycle. The even more restrictive definition
by Utting et al. (2012), strictly separating the
domain-specific data together with its positive
effects, forced us to adapt the general idea behind to
our Integrated Model Basis.
The authors furthermore introduced a taxonomy
for model-based testing approaches, among others
focusing on criteria like the Paradigm of the Model
Specification, and the Test Selection Criteria applied
for Test Generation, which again affected our work.

Test Management

The selection, prioritization, and reduction of test
cases are driven by factors negatively affecting the
targeted project result. Felderer and Schieferdecker
(2014) evaluated multiple approaches dealing with
these risk factors. Further, the set of risk-based testing
approaches was ranked according to their potential for
automation, which marks an important point of the
previously presented life cycle. Instead of focusing on
how to manage risks, Elbaum et al. (2002) presented
work on how to rank test cases. The overlap of both
contributions represents the major inspiration for our
presented work.

Fault-Based/Mutation Testing

Beside, purely coverage-oriented test selection
criteria extensively used in code-based testing
approaches, we additionally focused on the
expressiveness and effectiveness of tests, DeMillo
et al. (1978) formerly investigated on with his
contribution on mutation. Originated from this work,
many modified versions of mutation testing evolved,
widely surveyed by Jia and Harman (2011). Further,
the challenge of generating meaningful test cases
from UML-based models with respect to robustness,
Krenn et al. (2015) orchestrated a set of tools called
MoMuT. Concepts applied by these tools again
inspired parts of our Model-based STLC, whereas
their purpose is a slightly different one in our context.

5 CONCLUSIONS

We have presented our concept of a consistent
and strictly model-based software-testing life cycle,
which is in line with the ISO/IEC/IEEE 29119
standard for software testing. As postulated in the
problem statement, there are three major challenges
we overcome with this approach. First, due to the
Omni Model approach, which serves as a central

Toward a Consistent and Strictly Model-Based Interpretation of the ISO/IEC/IEEE 29119 for Early Testing Activities

705



model connecting dedicated activities of the testing
life cycle via model artifacts, the basis for consistent
automation throughout all steps of the testing process
is given. Second, the model-based nature of all
activities gives testers the possibility to perform
tests on early development artifacts and thus gain
information about the presence of defects as soon
as possible. Additionally, the model-based way of
specifying information, in turn, enables testers to
focus on the conceptual tasks by abstracting from
details. The abstraction from details, which is
carried out consistently, prevents effects like test
case explosion to take place during testing, due
to steadily encapsulating details and concentrating
on the essential. Further, our approach is not
only focused on the Dynamic Test Processes of
the ISO/IEC/IEEE 29119 standard. Organizational
and Test Management aspects are also aligned
to the model-based way of specifying and using
information. The testers view and the management
view on the project are thereby harmonized, to
produce high-quality products. All over, we
introduced a new model-based approach, aiming for
the detection of defects, introduced in early stages
of software development, which is applicable to
design-time artifacts as well as code.

Nevertheless, we previously discussed the
shortcomings, potentially hindering the practical
application as well as the acceptance by the testing
community.

REFERENCES

ANSI/IEEE 1008 (1987). IEEE Standard for Software Unit
Testing. Standard, IEEE Computer Society Press,
Washington, USA.

ANSI/IEEE 1012 (2012). IEEE Standard for System and
Software Verification and Validation. Standard, IEEE
Computer Society Press, Washington, USA.

Apfelbaum, L. and Doyle, J. (1997). Model based testing.
In Software Quality Week Conference, pages 296–300.

BS 7925-1 (1998). Software testing. Vocabulary. Standard,
BSI British Standards, London, UK.

BS 7925-2 (1998). Software testing. Software Component
Testing. Standard, BSI British Standards, London,
UK.

Daoudagh, S., Kateb, D. E., Lonetti, F., Marchetti,
E., and Mouelhi, T. (2015). A toolchain for
model-based design and testing of access control
systems. In 2015 3rd International Conference
on Model-Driven Engineering and Software
Development (MODELSWARD), pages 411–418.

de Lara, J., Guerra, E., and Cuadrado, J. S. (2015).
Model-driven engineering with domain-specific

meta-modelling languages. Software & Systems
Modeling, 14(1):429–459.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41.

Elbaum, S., Malishevsky, A. G., and Rothermel, G.
(2002). Test case prioritization: A family of empirical
studies. IEEE transactions on software engineering,
28(2):159–182.

Felderer, M. and Schieferdecker, I. (2014). A taxonomy of
risk-based testing. International Journal on Software
Tools for Technology Transfer (STTT), 16(5):559–568.

IEEE 829 (2008). IEEE Standard for Software and System
Test Documentation. Standard, IEEE Computer
Society Press, Washington, USA.

ISO 29119-1 (2013). Software and systems engineering
– Software testing – Part 1: Concepts and
definitions. Standard, International Organization for
Standardization, Geneva, CH.

ISO 29119-2 (2013). Software and systems engineering –
Software testing – Part 2: Test Processes. Standard,
International Organization for Standardization,
Geneva, CH.

ISO 29119-3 (2013). Software and systems
engineering – Software testing – Part 3: Test
Documentation. Standard, International Organization
for Standardization, Geneva, CH.

ISO 29119-4 (2015). Software and systems engineering –
Software testing – Part 4: Test Techniques. Standard,
International Organization for Standardization,
Geneva, CH.

ISO 29119-5 (2016). Software and systems engineering
– Software testing – Part 5: Keyword-Driven
Testing. Standard, International Organization for
Standardization, Geneva, CH.

Jia, Y. and Harman, M. (2011). An analysis and survey
of the development of mutation testing. IEEE
transactions on software engineering, 37(5):649–678.

Krenn, W., Schlick, R., Tiran, S., Aichernig, B.,
Jobstl, E., and Brandl, H. (2015). Momut::uml
model-based mutation testing for uml. In 2015 IEEE
8th International Conference on Software Testing,
Verification and Validation (ICST), pages 1–8.

Rumpold, A., Pröll, R., and Bauer, B. (2017). A
domain-aware framework for integrated model-based
system analysis and design. In MODELSWARD17,
pages 157–168.

Saad, C. and Bauer, B. (2013). Data-flow based model
analysis and its applications. In International
Conference on Model Driven Engineering Languages
and Systems, pages 707–723. Springer.

Utting, M., Pretschner, A., and Legeard, B. (2012).
A taxonomy of model-based testing approaches.
Software Testing, Verification and Reliability,
22(5):297–312.

Zschaler, S., Kolovos, D. S., Drivalos, N., Paige, R. F., and
Rashid, A. (2009). Domain-specific metamodelling
languages for software language engineering. SLE,
9:334–353.

AMARETTO 2018 - Special Session on domAin specific Model-based AppRoaches to vErificaTion and validaTiOn

706


