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A conserved influenza A virus nucleoprotein code
controls specific viral genome packaging
Étori Aguiar Moreira1,2,3, Anna Weber1, Hardin Bolte1,2,3, Larissa Kolesnikova4, Sebastian Giese1,

Seema Lakdawala5, Martin Beer6, Gert Zimmer7, Adolfo Garcı́a-Sastre8,9,10, Martin Schwemmle1

& Mindaugas Juozapaitis1

Packaging of the eight genomic RNA segments of influenza A viruses (IAV) into viral particles

is coordinated by segment-specific packaging sequences. How the packaging signals regulate

the specific incorporation of each RNA segment into virions and whether other viral or host

factors are involved in this process is unknown. Here, we show that distinct amino acids of

the viral nucleoprotein (NP) are required for packaging of specific RNA segments. This was

determined by studying the NP of a bat influenza A-like virus, HL17NL10, in the context of a

conventional IAV (SC35M). Replacement of conserved SC35M NP residues by those of

HL17NL10 NP resulted in RNA packaging defective IAV. Surprisingly, substitution of these

conserved SC35M amino acids with HL17NL10 NP residues led to IAV with altered packaging

efficiencies for specific subsets of RNA segments. This suggests that NP harbours an amino

acid code that dictates genome packaging into infectious virions.
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T
he influenza A virus (IAV) genome is composed of
eight negative-sense RNA segments (vRNA), which are
encapsidated by multiple copies of the viral nucleoprotein

NP1. This viral ribonucleoprotein (vRNP) is associated with the
polymerase complex consisting of the three subunits PB2, PB1
and PA1,2. A typical feature of IAV is the exchange of viral
genome segments (reassortment) in cells that have been
co-infected with at least two different IAV. In avian species,
which represent the natural reservoir of IAV, reassortment occurs
frequently and affects almost all genome segments3,4. The
exchange of viral genome segments increases the chance for
IAV to escape immune pressure from the host or to adapt to new
hosts5. Indeed, reassortment has often preceded the emergence of
pandemic IAV strains in the past6. For example, the 2009
pandemic H1N1 virus (pH1N1) originated from a quadruple
reassortant virus bearing genome segments from swine, human
and avian IAV subtypes7,8. Likewise, human IAV reassort with
co-circulating strains at high frequency, giving rise to seasonal
strains that are sometimes more virulent5,9.

The incorporation of the eight different genome segments into
newly formed viral particles seems to be a highly coordinated
process. In budding virions, vRNPs form a highly ordered 7þ 1
arrangement with one of the larger segments usually found in the
centre of the bundle10–13. Each of the vRNA segments contains
essential packaging sequences encompassing both coding and
non-coding regions at the 30 and 50 ends. These sequences
comprise 50–200 nucleotides (nt), depending on the segment and
the virus investigated14,15. While the sequences in the non-coding
regions of the RNA segments are important for the incorporation
of the vRNPs into viral particles (also referred to as ‘incorporation
signals’), the sequences in the 30 and 50 regions of the open
reading frames (ORF) seem to be involved in the formation of the
7þ 1 genome bundle (also referred to as ‘bundling signals’)16. In
addition to these specific packaging sequences, internal short
regions have been identified in the viral genome that contribute to
genome packaging by interacting with complementary RNA
sequences of other segments17,18. However, it remains to be
shown whether vRNA-vRNA interactions play an important role
in genome packaging. On the basis of the visualization of vRNAs
by fluorescence in situ hybridization (FISH) it has been proposed
that vRNPs might assemble into bundles at Rab11-positive
recycling endosomes en route to the plasma membrane19,20.
However, the spatial-temporal coordination of vRNP assembly
has not been resolved yet.

Recently, the genomes of two new influenza A-like viruses,
provisionally designated HL17NL10 and HL18NL11, have been
discovered in bats21,22. Serological surveys indicated that these
two subtypes circulate among different bat species in Central and
South America. Bat influenza viruses are distantly related to
conventional IAV and share 50–70% identity on the nucleotide
level, depending on the segment analyzed22. As a consequence of
this divergence, only some bat influenza virus-encoded proteins
are functionally compatible with conventional IAV proteins. This
includes the nucleoprotein (NP) of bat influenza A-like viruses,
which fully supports the polymerase activity of several IAV
subtypes23,24. Until now, infectious bat influenza A-like viruses
have not been isolated nor have been generated by reverse genetic
approaches. However, recombinant bat chimeric viruses
containing six gene segments of a bat virus and two segments
encoding hemagglutinin (HA) and neuraminidase (NA) of a
classical IAV could be rescued in vitro23,24. Of note, packaging of
these two segments was only achieved if the authentic 30 and 50

genome regions were maintained, suggesting that the packaging
sequences of bat influenza A-like viruses and conventional IAV
are not compatible. In accordance with this, chimeric bat
influenza viruses did not reassort with conventional IAV

subtypes H1N1, H3N2 or H7N7, whereas the exchange
of segments between bat chimeric viruses of the subtypes
HL17NL10 and HL18NL11 was tolerated23,24. Thus,
independent evolution of conventional IAV and bat influenza
A-like viruses in their respective hosts might have resulted not
only in viral proteins that are mostly functionally incompatible
but also in different vRNA packaging sequences.

Here, we show that although bat influenza virus NP fully
supported the polymerase activity of conventional IAV,
generation of an IAV strain SC35M (H7N7) containing the NP
vRNA of HL17NL10 failed. Surprisingly, even when the bat
influenza virus NP ORF was flanked with the packaging
sequences of SC35M NP vRNA segment no virus could be
rescued. Therefore, we generated recombinant viruses with
chimeric SC35M and bat NP proteins to tease apart the
mechanism behind this incompatibility. Using a mutational
approach, we provide evidence that substitution of highly
conserved amino acids in the SC35M NP with the corresponding
amino acid residues of HL17NL10 NP causes irregular packaging
of genome segments. Depending on which amino acids of bat NP
are inserted, different sets of viral genome segments were
preferentially incorporated into viral particles, suggesting that
NPs of conventional IAV harbour a conserved amino acid code
that, together with the eight segment-specific RNA packaging
sequences, coordinate viral genome packaging.

Results
Mutations in the body domain of NP impair genome packaging.
Previously, it has been shown that chimeric bat influenza A-like
viruses fail to reassort with conventional IAV, including
A/SC35M (H7N7), due to an incompatibility of the internal viral
proteins as well as differences in the packaging sequences23,24.
Since the bat influenza A-like NP protein (herein referred to as
‘Bat NP’) of the HL17NL10 subtype (A/little yellow-shouldered
bat/Guatemala/164/2009) supported the polymerase activity of
SC35M in a polymerase reconstitution assay (Fig. 1a)23, we
hypothesized that the generation of recombinant SC35M
encoding Bat NP might be possible by employing the packaging
sequences of the SC35M NP segment (Fig. 1b). However, in
contrast to our expectations such viruses could not be generated
(Fig. 1b), even so Bat NP expressed from the pHW2000 rescue
plasmid SC35M250-NPORF-Bat was expressed and supported
SC35M polymerase activity albeit to lower levels than wild-type
(wt) SC35M NP (Supplementary Fig. 1). To identify regions of
Bat NP that could rescue a recombinant SC35M virus, NP
segments and expression plasmids were generated encoding five
SC35M/Bat NP chimeras (CH1–CH5) that varied in the amount
of Bat NP-specific amino acids and nucleotides (Fig. 1c).
Although all SC35M/Bat NP chimeras except CH5 supported
polymerase activity of SC35M in polymerase reconstitution assay,
only recombinant SC35M encoding the chimera CH2 (herein
referred to as ‘rCH2’) with 18 Bat NP-specific amino acids located
in the so-called body domain of NP (Supplementary Fig. 2) could
be successfully generated (Fig. 1c). Infection of MDCKII cells
with rCH2 at a multiplicity of infection (MOI) of 0.001 resulted
in a 35-fold reduction in viral titres 24 h post infection (h.p.i.)
(Fig. 1d), indicating that although the CH2 chimeric NP
supported the generation of infectious IAV, the resulting rCH2
virus was attenuated in viral growth. A similar level of attenuation
was observed in single cycle infection experiments (MOI of 5) at 6
and 8 h.p.i. with rCH2 (Supplementary Fig. 3). Nevertheless,
under the same conditions, comparable mRNA, cRNA and vRNA
levels were detected in cells infected with wild-type (wt)
SC35M and rCH2 viruses at 6 h.p.i. (Fig. 1e) and in a
polymerase reconstitution assay using the SC35M NP segment
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Figure 1 | Limited compatibility of SC35M/bat NP chimeras to rescue and package viral genomes of SC35M. (a) SC35M polymerase activity in the

presence of Bat NP. HEK293T cells were transiently transfected with expression plasmids coding for PB2, PB1, PA of SC35M, the indicated NP proteins, a

minigenome encoding the firefly luciferase and a Renilla luciferase expression plasmid to normalize for variations in transfection efficiency. In the negative

control (Neg.) PB1 was omitted. Western blot analysis was performed to determine the expression levels of NP. (b) Cartoon depicting NP segments of

A/SC35M (SC35M NP), HL17NL10 (Bat NP) or a NP segment (SC35M250-NPORF-Bat) harbouring the non-coding regions of SC35M NP, 50 and 30 coding

sequences of SC35M NP and the complete ORF of Bat NP. þ successful rescue; � no rescue. (c) Relative SC35M polymerase activities in the presence of

the mutant NP proteins (CH1–CH5). Mean and s.d. of three independent experiments are indicated in parenthesis. SC35M rescue experiments were

performed with NP segments encoding the indicated mutant proteins. þ successful rescue; � no rescue. (d) MDCKII cells were infected at an MOI of

0.001 with wt SC35M or rCH2. At the indicated time points post infection (p.i.), virus titres were determined by plaque assay. (e) Relative ratio of the viral

transcript level in wt SC35M- or rCH2-infected cells. Steady state levels of viral transcripts (mRNA, cRNA and vRNA) and 5S ribosomal RNA (5S rRNA)

were determined by primer extension analysis using total RNA from MDCKII cells infected at an MOI of 5 with wt SC35M or rCH2 for 6 h. Signal intensities

were normalized to the signal intensities obtained with 5S rRNA. Normalized values obtained in wt SC35M-infected cells were set to 1 (all non-significant).

(f) Viral infectivity of SC35M and rCH2 (PFU) using identical HA titre. **Po0.01. (g) Relative ratio of the number of viral particles (counted by electron

microscopy) divided by the number of infectious particles (determined by plaque assay) between wt SC35M and rCH2. Values obtained for SC35M were

set to 1. *Po0.05. (h) Ratio of incorporated NP protein in viral particles between SC35M and rCH2. Protein levels were determined by Western blot

analysis of virus stocks with equal infectivity (PFU). **Po0.01. (i) Relative ratio of genome segments in viral particles preparations of SC35M and rCH2.

RNA was prepared from virus stocks with equal PFU and subjected to quantitative RT-PCR. Levels of viral genome transcripts obtained with SC35M were

set to 1. *Po0.05; **Po0.01; ***Po0.001. Student’s t test was used for two-group comparisons. Error bars indicate the mean and s.d. of at least three

independent experiments.
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(Supplementary Fig. 4), indicating that viral polymerase activity
and RNA synthesis was not affected by the NP changes in the
rCH2 virus, and that this was not the cause for the attenuation of
the virus. The small differences of the polymerase activity using
the reporter minigenome (Fig. 1c) and the authentic NP segment
(Supplementary Fig. 4) are likely to be caused by the artificial
nature of the reporter segment. By contrast, at equal
hemagglutination titres, supernatants from rCH2 virus-infected
cells displayed 10-fold less infectious viruses than wt SC35M
(Fig. 1f). Moreover, the ratio of total viral particles to infectious
particles, determined by electron microscopy (Supplementary
Fig. 5) and plaque assay, was found to be almost fourfold higher
in rCH2 than in wt SC35M virus stocks (Fig. 1g). Using equal
numbers of infectious viral particles significant higher NP protein
levels were detected in rCH2 virus preparations compared
with wt SC35M (Fig. 1h). This suggests that relatively more
non-infectious viral particles were produced in rCH2-infected
cells. To compare the genome equivalents between viral particles
released from rCH2 and SC35M-infected cells, we determined the
relative ratio of all 8 viral segments by quantitative RT-PCR using
an equal number of infectious viral particles as determined by
plaque assay. With this approach, the PB2, PB1, NP, M and NS
vRNA segments were found to be significantly enriched in the
rCH2 preparations compared with the PA, HA and NA segments
(Fig. 1i). Together these results suggest that the SC35M/Bat NP
chimera rCH2 is characterized by an increased production of
non-infectious particles harbouring an irregular set of viral
genomes.

To understand why rescue of SC35M with the NP chimeras
CH1, CH3 and CH4 failed, we focused on CH4 because it is
nested inside both CH1 and CH3, contains only 19 Bat
NP-specific amino acids, and harbours the fewest number of
Bat NP-specific nucleotides. Moreover, it supported SC35M
polymerase activity in polymerase reconstitution assays as
efficiently as SC35M NP (Fig. 1c). CH4 was further modified
to contain either 14 (CH4.14), 4 (CH4.4) or 0 (CH4.0) Bat
NP-specific amino acids (Fig. 2a,b). In CH4.14 the five most
divergent residues of the 19 bat NP-specific amino acids with
respect to charge and size were replaced with SC35M ones, while

only four Bat NP-specific amino acids were left in CH4.4. All NP
mutants supported the polymerase activity of SC35M; however,
only recombinant SC35M encoding either CH4.4 (rCH4.4) or
CH4.0 (rCH4.0) could be successfully generated (Fig. 2b). As
expected, rCH4.0 replicated to similar titres as wt SC35M, while
rCH4.4 replication was slightly reduced at 12 and 24 h.p.i.
(Fig. 2c). These results suggest that the 10 Bat NP-specific amino
acids in CH4.14 prevent successful rescue of SC35M.

Mutations in the head domain of NP affect genome packaging.
To further analyze the effect of Bat NP-specific amino acids on
the production of recombinant SC35M, we first introduced the 14
Bat NP-specific amino acids of CH4.14 into SC35M NP resulting
in the SC35M NP14 mutant (Fig. 3a). NP14 was identical on
amino acid level with CH4.14 but lacked the large amount of Bat
NP-specific nucleotides (Fig. 2b). In addition to NP14, we
generated additional SC35M NP mutants with either 10 (NP10)
or 7 (NP7) Bat NP-specific amino acids (Fig. 3a). The majority of
the inserted Bat NP-specific amino acids are unique and not
conserved among conventional IAV strains (Fig. 3a). Most of
these residues are found on the surface of the NP head domain
(Fig. 3b). NP14, NP10 as well as NP7 supported viral polymerase
activity, although to varying degrees (Fig. 3c). However, only
recombinant SC35M encoding NP7 (rNP7) could be successfully
generated (Fig. 3c). Infection of MDCKII cells with rNP7 at an
MOI of 0.001 (Fig. 3d) or 5 (Supplementary Fig. 3) resulted in up
to 100-fold lower virus titres compared with wt SC35M.
To further determine which of the seven amino acids of NP7
contributed to impaired virus yield, a series of NP7 variants
lacking either individual or clusters of Bat NP-specific amino
acids was generated (Supplementary Fig. 6a). All of these mutants
supported polymerase activity and in all cases SC35M viruses
containing these NP mutants could be successfully generated
(Supplementary Fig. 6b). SC35M virus encoding a NP7 variant
with only six Bat NP-specific mutations, designated rNP7(2-7),
was still attenuated in MDCKII cells and replicated to 50-fold
lower virus titres than wt SC35M at 24 h.p.i. (Supplementary
Fig. 6c). In contrast, replication of the other rNP7 variants was
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not significantly attenuated (Supplementary Fig. 6c). These
findings suggest that attenuation of rNP7 is caused by several Bat
NP-specific amino acids acting in a concerted manner.

Similar to rCH2, the impaired viral growth of rNP7 might be
linked to a deficit in genome packaging. Indeed, the ratio of total
viral particles to infectious particles, determined by electron
microscopy (Supplementary Fig. 5) and plaque assay, was found
to be threefold higher in rNP7 than in wt SC35M virus stocks
(Fig. 3e). Using equal numbers of infectious viral particles
significant higher NP and M1 protein levels were detected in
rNP7 virus preparations compared with wt SC35M (Fig. 3f).
Interestingly, we also found significantly higher levels of four viral
genome segments, PB2, PA, NP and NS, in rNP7 particle
preparations (Fig. 3g). These observations suggest that an
irregular number of genome segments was incorporated into
the viral particles following infection of cells with rNP7.
Compared with wt SC35M, infection of MDCKII cells with
rNP7 (MOI of 5) resulted in slightly lower levels of mRNA, cRNA
and vRNA (Fig. 3h) of the PB1, M and NA segments at 6 h.p.i.
These segments were underrepresented in the viral particles
(Fig. 3g). At high MOI, the differences in the segment-specific
composition of non-infectious rNP7 and rCH2 viral particles
might account for the lower expression levels of mRNA, cRNA
and vRNA of some genes in rNP7-infected cells. In addition, no
alterations in the subcellular localization of M1, NP or HA were
observed between cells infected with wt SC35M and rNP7 during
the course of infection (Supplementary Fig. 7).

Serial passage of rNP7 in MDCKII cells resulted in a virus
strain that replicated almost as efficiently as wt SC35M.
Sequencing of the NP ORF revealed that the passaged rNP7
virus contained a single point mutation in the body domain of NP
at position 31 (R31G) (Fig. 4a), suggesting that this mutation
improved viral growth. In agreement with this hypothesis, a
recombinant rNP7 harbouring this additional mutation (rNP7-
R31G) replicated in MDCKII cells to markedly higher viral titres
than rNP7 (Fig. 4b). We speculated that this mutation might also
restore the packaging of the vRNA segments. Indeed, using equal
numbers of infectious SC35M and rNP7-R31G viruses, a similar
proportion of viral genome segments was detected in rNP7-R31G
and wt S35M (Fig. 4c).

In summary, these results indicate that substitution of
conserved amino acids in the head domain of SC35M NP with
Bat NP-specific amino acids resulted in attenuation of SC35M to
variable degrees. As demonstrated by the virus mutant rNP7,
attenuation was correlated with an increased production of non-
infectious particles that incorporated a restricted set of genome
segments. This attenuation could be partially overcome by the
compensatory amino acid mutation R31G in NP. Most interest-
ingly, the introduction of Bat NP-specific mutations into the head
or body domain of SC35M NP resulted in the accumulation of
viral particles with distinct sets of viral RNA segments (compare
Fig. 1i and Fig. 3g).

NP7 and CH2 inefficiently package all eight viral genomes. The
observation that cells infected with either rCH2 or rNP7 released
large numbers of viral particles with an incomplete set of viral
genomes suggested that both NP proteins CH2 and NP7 fail to
support coordinated packaging of all eight segments. To
demonstrate this, we made use of a recently published virus-like
particle (VLP)-based RNA segment packaging assay16. In this
assay, an NP segment based reporter minigenome encoding green
fluorescent protein (GFP) is efficiently packaged in the presence
of the seven remaining viral genome segments only if the reporter
is flanked with both the non-coding regions also known as
incorporation signals (IS) and the additional packaging sequences

located in the terminal 30 and 50 regions of the NP ORF, which
have been designated genome bundling sequences (BS)16. The IS
are believed to be required for the incorporation of the genome
segments into viral particles, while the BS have been proposed to
be responsible for correct bundling of all eight viral genome
segments16.

We constructed a GFP reporter minigenome containing either
the IS of the SC35M NP segment (IS�GFP) or both the IS and
BS elements (ISþBS�GFP) and compared the efficacy of CH2
and NP7 NP proteins to package these reporter minigenomes into
viral particles in the absence of the other seven segments. For this
purpose, SC35M VLPs were generated in human 293 T cells in
the presence of the reporter minigenome (IS�GFP or ISþBS�
GFP) and NP protein, either wt SC35M NP or mutant CH2 or
NP7. The incorporation of the GFP reporter minigenomes into
VLPs was subsequently quantified by co-infection of MDCKII
cells with VLPs and wt SC35M virus. No differences were
observed in the amount of VLPs released from 293 T cells as
evidenced by the number of GFP-positive MDCKII cells
(Fig. 5a,b). This finding indicates that the incorporation of a
single genome segment into viral particles is not affected,
irrespective of the presence of the bundling sequence.

We next tested the efficacy with which the reporter
minigenomes were incorporated into VLPs in the presence of
the seven remaining genome segments. As expected, infection of
MDCKII cells with VLPs reconstituted with wt SC35M NP along
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with a reporter segment lacking the BS (IS�GFP) and all seven
wt SC35M genome segments resulted in significantly lower
numbers of GFP-positive cells than infection with VLPs
reconstituted without the seven genome segments (Fig. 5c).

Similar results were obtained with both CH2 and NP7 proteins
(Fig. 5c). Infection of MDCKII cells with VLPs reconstituted with
SC35M NP, seven wt SC35M genome segments, and the ISþ
BS�GFP reporter minigenome resulted in significantly higher
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numbers of GFP-positive cells compared with infections with
VLPs reconstituted with the reporter minigenome only (Fig. 5d).
In contrast, CH2 and NP7 NP proteins were unable to efficiently
reconstitute VLPs in the presence of all seven wt SC35M genome
segments (Fig. 5d). As expected, the R31G mutation in NP7
(NP7�R31G) was a reversion that almost restored the packaging
efficiency to wt SC35M NP levels (Fig. 5d). Using this VLP-based
packaging assay, we also found that wt Bat NP in combination
with the additional seven wt SC35M genome segments did not
mediate efficient packaging of an ISþBS�GFP reporter
minigenome (Supplementary Fig. 8). Taken together, these
results strongly suggest that the attenuation of SC35M virus

following the introduction of Bat NP-specific amino acids into
SC35M NP is due to a defect in packaging of a full complement of
eight viral RNA segments and that the incompatibility between
human IAV and bat influenza A-like viruses might be a
consequence of this packaging defect.

Discussion
In this study, we altered highly conserved amino acid residues in
the NP protein of the conventional SC35M IAV with residues
only present in the NP protein of a newly discovered bat influenza
A-like virus (Bat NP)(Fig. 3a,b; Supplementary Fig. 2). We

Wild-type NP code and
RNA packaging sequence

Mutant NP code and/or
RNA packaging sequence

8 vRNPs

Figure 6 | Genome packaging sequence or NP code mutations disrupt coordinated packaging of eight influenza genome segments into viral particles.

Wt NP code and vRNA packaging sequences ensure coordinated incorporation of the eight different genome segments into influenza A virus particles,

resulting in an equal ratio of the individual viral genome segments (left panel). As indicated by dashed lines, packaging could be coordinated by various

interactions between segment-specific vRNPs, including interactions between vRNA packaging sequences, between vRNA packaging sequences in one

vRNP and amino acids of the NP code (indicated in yellow) in a second vRNP, and direct interactions of the NP code amino acids. Mutations in the NP code

and/or vRNA packaging sequence result in the loss of coordinated packaging of the eight different genome segments into viral particles and a

disproportional ratio of the viral segments (right panel). Loss of coordinated packaging might be caused by impaired interactions between vRNPs mediated

by amino acids of the NP code and/or nucleotides of the RNA packaging sequences.
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provide for the first time evidence for the important role of
NP-specific amino acid residues in mediating efficient packaging
of all eight genome RNA segments into viral particles. We refer to
this hitherto unrecognized set of amino acids as the ‘NP
packaging code’. These amino acid residues seem to be important
for the coordinated packaging of multiple segments, but not for
incorporation of a single segment into virus particles. Moreover,
we have identified amino acids in NP that have a distinct function
in genome packaging, but do not impair viral polymerase activity
and RNA synthesis.

Although the full breadth of this putative ‘NP packaging code’
needs to be determined, our data suggest that the amino acids
comprising this code are at least present in both the head and the
body domain of NP. Whether other highly conserved amino acids
in NP are part of this NP packaging code remains to be
determined. Analysis of conserved amino acids at the C-terminus
of IAV NP using SC35M/Bat NP chimeras was not possible, since
such fusion proteins turned out to be inactive in our polymerase
reconstitution assays. Previous studies exploring the importance
of highly conserved NP amino acid residues between influenza A,
B and C viruses identified single amino acids in the head domain
that abrogated viral growth, but still allowed packaging of at least
one but not eight genome segments using a VLP-based packaging
assay25. Although packaging in the context of a viral infection
could not be studied, these single amino acids might also
constitute essential key residues of the ‘NP packaging code’.

Surprisingly, mutation of conserved amino acid residues in the
NP body domain resulted in the incorporation of a different
subset of viral genome segments than those seen with alteration
of the NP head domain. Similarly, irregular genome packaging
has been observed after mutating packaging signal sequences of
IAV genomes18,26–32. Depending on the nucleotide mutations
introduced into individual packaging sequences, coordinated
packaging was lost and different sets of viral genomes were
incorporated into viral particles. Thus disruption of either the
RNA packaging sequences or amino acids of the NP packaging
code can block coordinated packaging of the eight genome
segments and, as a consequence, may cause impaired release of
infectious viral particles (Fig. 6). Although formal proof is still
missing, this might suggest that the ‘NP packaging code’ is
complex and has to match to individual genome packaging
sequences in order to coordinate the incorporation of a full
complement of eight genome segments into budding viral
particles. Since RNA loop regions are believed to interact
with each other thereby orchestrating the coordinated
packaging of the different genome segments14, it is tempting to
speculate that the ‘NP packaging code’ provides the required
vRNP conformations that facilitate RNA loop interactions
between different vRNPs.

Conventional IAV share both highly compatible packaging
sequences and functionally exchangeable NP proteins, thereby
enabling genome reassortment among all known IAV subtypes
tested so far5,6,15,33–37. Similarly, the known bat influenza A-like
virus subtypes also share compatible packaging sequences,
compatible NP proteins, and the ability to reassort among
them23,24. However, bat influenza A-like viruses, unlike
conventional IAV, circulate in bat species and developed RNA
packaging sequences and an NP packaging code, which are
incompatible with those of conventional IAV23,24. This suggests
that co-evolution of the specific RNA packaging signals and the
‘NP packaging code’ resulted in optimal interactions between the
eight viral RNA segment bundles during the process of genome
packaging. Thus, independent viral evolution in different natural
hosts21 was probably the driving force that shaped the genome
packaging sequences and the ‘NP packaging code’ for different
Orthomyxoviruses, including influenza B viruses.

Our study suggests that besides the known RNA packaging
sequences, conserved residues on the NP protein are essential for
coordinated incorporation of the eight different IAV genome
segments into viral particles. This finding might not only pave the
way to understand the functional interactions of the packaging
sequences and NP, resulting in infectious IAV with a full
complement of viral RNAs, but also highlights novel attractive
targets in the NP for the development of new antivirals that
inhibit full viral genome assembly. Finally, the discovery of an
amino acid code in an RNA binding protein, such as the one
described here for the influenza virus NP that coordinates
intricate RNA–RNA interactions leading to specific RNA
complexes might be a more general principle applicable to the
assembly of other functional multi-RNA complexes.

Methods
Plasmids. pHW2000 rescue vectors to generate recombinant SC35M, bat
HL17NL10 NP genome and pCAGGS plasmids coding for SC35M proteins or Bat
NP have been previously described23,38. For generation of the SC35M250-NPORF-
Bat pHW2000 rescue vector, the 30 and 50 non-coding regions of the Bat NP
genome segment were replaced with nucleotides 1–141 and 1,444–1,565 of the
SC35M NP segment. In addition, ATG codons in the 50 coding sequence of the
newly inserted SC35M NP ORF were mutated to ACGs to prevent initiation of
translation at these sites. The NP chimeras encoding pHW2000 rescue vectors
(Supplementary Table 1) were generated by assembly PCR using various primers
(Supplementary Table 2). The NP chimeras were re-cloned into pCAGGS plasmids
via internal ORF cloning sites. All sequences of newly generated NP chimeras were
deposited in the GenBank database (Supplementary Table 1) In NP chimera CH1,
CH2, CH3, CH4 and CH5 the parts of SC35M NP ORF of different lengths were
replaced with sequences encoding corresponding parts of the Bat NP
(Supplementary Table 3). To generate SC35M NP genome segment based
reporters, the GFP protein coding sequence was fused by assembly PCR either with
50 and 30 non-coding regions (NCRs) of SC35M NP genome segment (denoted
hereafter as IS) or with NCRs plus 60 and 120 nt comprising 50 and 30 ends of the
NP ORF (denoted hereafter as ISþBS), respectively. The newly generated
reporters were cloned into a pHW400 vector allowing polI-driven expression of the
reporter minigenome. pHW400 was generated by removing the polII promoter and
terminator from the pHW2000 rescue vector. The same pHW400 vector was used
to generate SC35M PB2, PB1, PA, HA, NA, M and NS genome segments.

Cell lines. Canine MDCKII39 and HEK293T cells40 were mycoplasma free and
maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal calf serum (FCS), 2 mM L-glutamine, 100 U penicillin per ml and 100 mg
streptomycin per ml.

Infection of cell cultures. MDCKII cells were washed with phosphate-buffered
saline (PBS) and infected with viruses diluted in PBS containing 0.2% bovine serum
albumin (BSA). The infection solution was replaced 1 h.p.i. with DMEM containing
0.2% (v/w) BSA, 2 mM L-glutamine, 100 U penicillin per ml and 100 mg strepto-
mycin per ml and further incubated at 37 �C. For single cycle infection assays, cells
were first incubated with viruses diluted in PBS containing 0.2% BSA at 4 �C. After
1 h, cells were incubated for 10 min at 37 �C, washed with PBS,
incubated in PBS (pH¼ 2) for 45 s, washed again with PBS and further incubated
at 37 �C in DMEM containing 0.2% (v/w) BSA, 2 mM L-glutamine, 100 U penicillin
per ml and 100 mg streptomycin per ml for the indicated time points.

Formation of VLPs. VLPs were generated essentially as described41. Briefly,
HEK293T cells seeded in six-well plates were transfected with 1 mg of pCAGGS
expression plasmid coding for PB2, PB1, HA, NA, NP and NEP, 0.1 mg of pCAGGS
expression plasmid coding for PA and M2, and 2 mg of pCAGGS expression
plasmid coding for M1, plus 1 mg of a GFP-encoding minigenome harbouring
either IS or ISþBS of SC35M NP genome segment, using the Lipofectamin2000
transfection reagent (PAA Laboratories) in 2 ml of Opti-MEM (Invitrogen)
according to the manufacturer’s protocol. Culture medium was replaced by DMEM
containing 0.2% BSA 8 h post transfection. After 48 h, 1 ml of cell supernatant was
transferred to MDCKII cells in six-well plates, infected with A/SC35M (MOI of 5)
and incubated for further 10 h. GFP signals were monitored by live imaging. At
10 h post infection, the cells were rinsed with PBS and trypsinized to prepare a
single cell suspension containing 1% BSA. GFP expression was analyzed in an FL1
detector of FACSCalibur (Becton Dickinson). To produce VLPs in the presence of
the remaining seven wt genome segments, HEK 293 T cells were transfected with
0.2 mg of GFP-encoding minigenome plus 0.2 mg of each of the seven polI
(pHW400) plasmids, for vRNA generation, together with the described set of
plasmids required for viral protein production.
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Polymerase reconstitution assay. The polymerase reconstitution was essentially
carried out as described38,42. pCAGGS plasmids encoding PB2, PB1, PA (each
50 ng) and NP (200 ng) were co-transfected with the firefly luciferase-encoding
viral minigenome construct pPolI-FFLuc-RT (200 ng) and plasmid (pRL-SV40;
50 ng) coding for renilla luciferase in HEK 293 T. Firefly and renilla luciferase
activities were measured using the dual luciferase reporter assay 24 h post
transfection.

Virus rescue. The recombinant SC35M/bat chimeras were generated by the eight
plasmid reverse-genetics system38. The viral cDNA is inserted between the RNA
polymerase I (polI) promoter and terminator sequences and the entire polI
transcription unit is flanked by an RNA polymerase II (polII) promoter and a
polyadenylation site. All viruses were plaque purified and viral titres were
determined by plaque assay on MDCKII cells. The introduced changes in the
NP segment were confirmed by sequencing.

Primer extension analysis. Primer extension was essentially carried out as
described42 with few modifications. For determination of viral transcript levels of
all eight influenza segments, confluent MDCKII cells were infected for 1 h in 6-well
plates at 4 �C. The cells were then incubated for further 10 minutes at 37 �C before
being washed with PBS and treated with PBS (pH¼ 2) for 45 s, washed with PBS
and further incubated at 37 �C in DMEM containing 0.2% (v/w) BSA, 2 mM
L-glutamine, 100U penicillin per ml and 100 mg streptomycin per ml. At 6 h p.i.,
cells were collected in 1 ml of TRIzol reagent (Invitrogen) and RNA was purified
with Direct-zolt RNA MiniPrep Kit (Zymo Research) according to the
manufacturer’s protocol. Primer extension analysis was performed as described
before42 using specific primers for the influenza virus segments and cellular
ribosomal RNA (5S RNA: 50-TCCCAGGCGGTCTCCCATCC-30). The primers
used for primer extension analysis are specified in Supplementary Table 4.
The specific RNA bands were visualized after exposing the gel overnight to a
phophoimage plate and quantified using ImageJ43. Uncropped scan of the primer
extension data can be found in Supplementary Fig. 9.

Western blot analysis. Proteins from cell lysates were separated by 10%
acrylamide SDS–PAGE and subjected to western blot analysis using polyclonal
rabbit anti-NP antibody (catalogue number: PA5-32242; Thermo Fisher; diluted
1:2,500), monoclonal mouse anti-b-tubulin antibody (catalogue number: T4026;
Sigma-Aldrich; diluted 1:1,000) and the corresponding secondary antibodies IRDye
680RD goat anti-rabbit IgG (Hþ L) (LI-COR Biosciences; diluted 1:5,000) or
IRDye 800CW goat (polyclonal) anti-mouse (LI-COR Biosciences; diluted 1:5,000).
Signals were visualized by Odyssey Imaging System (LI-COR Biosciences). Proteins
of purified viral particles were separated as described above and detected by
western blot analysis using polyclonal rabbit anti-NP, polyclonal mouse anti-M1
(provided by Dr. Jovan Pavlovic; diluted 1:100) and corresponding peroxidase-
conjugated goat anti-mouse IgG (Hþ L) (Jackson ImmunoResearch; diluted
1:5,000) or peroxidase-conjugated goat anti-rabbit IgG (Hþ L) (Jackson
ImmunoResearch; diluted 1:5,000) antibodies. Signals were detected with an
Odyssey Imaging System (LI-COR Biosciences). Uncropped western blots can be
found in Supplementary Fig. 9.

Immunofluorescence. After the indicated time post infection, the cells on glass
slides were fixed with paraformaldehyde 4% for 10 min, washed with PBS,
permeabilized with 0.5% Triton X-100 in PBS for 5 min (for H7 extracellular
staining cells were not permeabilized) and incubated with antibodies against NP
(catalogue number: PA5-32242; Thermo Fisher; 1:2000), H7 (ref. 44) (1:100),
or M1 (provided by Dr. Jovan Pavlovic; 1:10) for 1 h at room temperature. After
washing with PBS and incubation with corresponding secondary antibody Cy3 goat
anti-rabbit IgG (Hþ L) (Jackson ImmunoResearch; diluted 1:200), Alexa Fluor 488
donkey anti-chicken IgY (IgG) (Hþ L) (Jackson ImmunoResearch; diluted 1:500)
or Cy3 goat anti-mouse IgG (Hþ L) (Jackson ImmunoResearch; diluted 1:200) for
30 min at room temperature, nuclei were stained for 5 min with DAPI (diluted
1:10,000 in PBS). The glass slides were examined on an Axioplan 2 Imaging System
(Carl Zeiss, Oberkochen, Germany) equipped with an ApoTome.

qPCR analysis of packaged vRNAs. The qPCR analysis of packaged vRNAs has
been described previously45. Briefly, to analyze packaged vRNAs, virus stocks were
prepared and adjusted to equal plaque forming units (PFU) titres. Genomic vRNAs
were extracted by Direct-zol RNA MiniPrep (Zymo Research) and eluted in 50 ml
of water. Overall, 5 ml of RNA were reverse transcribed using RevertAid H Minus
Reverse Transcriptase (Thermo Scientific) using two primers (50-AGCAAAAGC
AGG-30 and 50-AGCGAAAGCAGG-30). The RT product was then diluted (1:5)
and used as template for quantitative PCR with SensiFAST SYBR Hi-ROX Kit
(Bioline) and the 7300 Real Time PCR System (Applied Biosystems). The SC35M
segment-specific PCR primers used are indicated on Supplementary Table 5.
Relative concentrations of vRNAs were determined on the basis of analysis of cycle
threshold values of standard curves designed for each viral segment consisting of
serial 1:10 dilutions of a wt SC35M cDNA. The incorporation of vRNA for each
segment of SC35M was then compared with the corresponding segment of the

chimeric viruses. Results are presented as the average incorporations of
vRNA±s.d., resulting from at least three independent virus stocks.

Multiple alignment. A total of 27,675 sequences of NP protein of influenza A
isolates were downloaded from National Center for Biotechnology Information
database and aligned in MEGA6 (ref. 46). The consensus was illustrated as
sequence logo using Geneious software suite v. 6.1.8.

Hemmaglutination assay. A volume of 50 ml of a working solution of 0.25% red
blood cells from chicken was added to the serially 1:2 diluted virus of interest in a
round-bottomed 96-well dish and kept at room temperature for 30–60 min to
develop. The HA titre of the corresponding virus was determined as the number of
the highest dilution factor that produced a uniform reddish colour across the well.

Particle counting by transmission electron microscopy. Viral supernatant from
MDCKII-infected cells was fixed with 4% paraformaldehyde, and after virus
inactivation by fixation was combined with an equal volume of polysterene beads
of a known concentration (7.08� 1011 per ml, 137 nm in diameter, Plano,
Germany). The virus-bead mixtures were deposited onto Formvar-coated
400-mesh grids pretreated with 1% alcian blue and allowed to adhere for 10 min.
Then, grids were negatively stained with 2% phosphotungstic acid. The viral
particles and beads were counted in 10 different randomly chosen squares using a
JEM 1400 transmission electron microscope (TEM). The total number of virus
particles per millilitre was determined according equation: (mean value of virus
particles per square)� (concentration of latex beads)/(mean number of latex beads
per square). The number of viral particles present per millilitre was divided by the
number of PFU per millilitre to yield the particle/PFU ratio.

Molecular modelling. The program I-TASSER (zhanglab.ccmb.med.umich.edu/I-
TASSER) was used to generate full-length models of CH2 and NP7. The program
PyMOL (www.pymol.org) was used to assign the indicated positions in the gen-
erated structural models.

Structural analysis by transmission electron microscopy. For analysis of virus
stocks, confluent MDCKII cells were infected with SC35M, rCH2, or rNP7 in
6-well plates at an MOI of 0.001. At 24 h.p.i. 10 ml of culture supernatant of
infected MDCK II cells were centrifuged at 780g for 5 min to remove cell debris and
then ultracentrifuged at 90,000g for 1.5 h at 4 �C. The pelleted viral particles were
suspended in 200 ml of PBS and fixed with 4% paraformaldehyde. After the fixation
viral samples were contrasted with uranyl acetate and lead citrate and analyzed
with a JEM 1400 transmission electron microscope at 120 kV. The representative
images for each preparation were acquired using a TVIPS TemCam F416 camera.
For ultrathin section analysis of infected cells, confluent MDCKII cells were
infected with wt SC35M, rCH2 or rNP7 for 1 h in 6-well plates at 4 �C at an
MOI of 10. At 24 h.p.i. cells were fixed directly in wells with 4% PFA and
0.1% glutaraldehyde in a 100 mM PHEM buffer (60 mM piperazine-N,
N0-bis(2-ethanesulfonic acid) (PIPES), 25 mM HEPES, 2 mM MgCl2, 10 mM
EGTA (pH 6.9)) for 60 min at room temperature. The method of in situ
pre-fixation allowed preserving virus particles localized on the cell surface. Then,
cells were scraped, pelleted and incubated overnight with 4% PFA in the 100 mM
PHEM buffer at 4 �C. After washing with a 100 mM HEPES buffer, cells were
post-fixed for 60 min with 1% osmium tetroxide in the 100 mM HEPES buffer
(pH 7.4), dehydrated in ultra-pure grade ethanol, embedded in a mixture of Epon
and Araldite, and polymerized at 60 �C for 24 h. Ultrathin sections (60–90 nm) of
the cells were cut with a Leica EM UC6 microtome. The sections were contrasted
with uranyl acetate and lead citrate and analyzed with TEM as described above for
the analysis of virus stocks.

Statistics. Student’s t test was used for two-group comparisons. The *P value
o0.05, **P value o0.01, ***P value o0.001 and ****P value o0.0001 were
considered significant. Error bars indicate the mean and s.d. of at least three
independent experiments.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files,
or from the authors upon request. The DNA sequences of the NP chimeras used in
this study were deposited in the GenBank database and the accession codes are
indicated in Supplementary Table 1.
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