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Abstract 

Purpose: To determine the thyroid clearance effective half-life     with a common 

handheld electronic dosimeter (ED) in patients undergoing radioiodine treatment for 

hyperthyroidism. 

Methods: Dose rates from twelve inpatients were measured daily with an ED and with 

a clinical uptake counter. The ED was attached to the patient with two different setups, 

one using a cervical collar and another employing a neck strap. Estimation of   was 

performed by linear regression analysis of the log of both the ED and the uptake 

counter measurements versus time. The latter provided the reference data. 

Results: Based on repeated neck strap dose rate measurements, individual  s were 

determined with clinically required accuracy. The mean difference from the reference 

method equaled to -0.090.35 days. 

Conclusions: Determination of individual   is feasible with a common handheld ED 

using the simple and easy to instruct neck strap measurement setup. This simple 

method complements stationary uptake counter measurements and thus may improve 

the accuracy of radioiodine treatment planning by adding an individual   for dose 

calculation.. 

Key words: thyroid, hyperthyroidism, radioiodine, effective half-life, electronic 

dosimeter  
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Introduction  

Since its introduction more than seven decades ago, radioiodine (131I) has become a 

standard treatment of hyperthyroidism 1. As for all radio-therapeutic treatments, 

prescribed radiation doses in the thyroid gland should be planned individually to avoid 

overdosing and to minimize radiation burden to non-target organs 2-4. The necessary 

131I activity to deposit a desired radiation dose depends amongst other factors on 

thyroid mass, thyroidal uptake, and uptake kinetics. A two compartment model is being 

used to model 131I uptake kinetics 4. However, three or more uptake measurements are 

suggested, namely between 4 to 6 h, 1 to 2 days and 5 to 8 days after administration 

of radioiodine. This practice is time consuming and often not practicable in an 

outpatient setting. 

Given the effort and complexity of repeated uptake measurements using a calibrated 

stationary thyroid uptake counter on an outpatient basis, disease specific mean 

effective half-lives            are usually employed in clinical routine instead of 

individually measured thyroid clearance effective half-lives     3, 5. This semi-individual 

approach remains inaccurate in a substantial proportion of patients, as individual  -

values may differ considerably from          6. Therefore, an alternative to stationary 

thyroid uptake counter measurements is desirable to make individual  -values 

available for dosimetry.  

Within a quality assurance project for stationary uptake counters, a common electronic 

dosimeter (ED) was used for auxiliary measurements. These measurements, in a 

controlled setup on inpatients undergoing radioiodine treatment, allowed us to 

investigate the feasibility and accuracy of determining   by measurements with a 

common handheld ED. 
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Material and Methods 

Thyroid clearance effective half-live   was determined in twelve patients undergoing 

radioiodine treatment for hyperthyroidism (Graves’ disease, n=7; toxic adenoma, n=2; 

toxic multinodular goiter, n=3) based on measurements with a handheld ED. A 

dedicated thyroid uptake counter served as the reference method. The additional dose 

rate measurements had no influence on radioiodine therapy conduction or on the 

discharge of patients. All study participants provided informed consent and their data 

were processed anonymously. 

Dose rate measurements were performed with four multi-purpose survey meters 

(RDS-31, MIRION Technologies RADOS Oy, Finland). The technical datasheet 

specifies a dose rate linearity of 15 % in the range from 0.05 μSvh-1 to 0.1 Svh-1. The 

dose rate linearity of all EDs was verified by comparing the measured dose rate        
of a decaying 2.1 GBq Technetium-99m (99mTc) source to its theoretical exponential 

decay             (Equation 1). The radionuclide 99mTc was chosen for this test due to 

its short radioactive half-life of 6.02 h and its ubiquity. 

                        (1) 

Here     equals the first measured value of     ,   is the decay constant of 99mTc (0.115 

h-1) and t is decay time. For this measurement setup EDs were oriented with respect to 

the 99mTc-source, as the ED to the thyroid in the neck strap setup (FIG. 1A). The 

distance between the EDs and the 99mTc-source amounted to 8 cm and      values 

were stored every 5 min over the course of 5 half-lives. 

Two different setups were investigated to reproducibly position the ED to the patient. In 

setup A (FIG. 1A), the ED was connected to a neck strap with quick release buckles 

and positioned 6 cm below the jugulum. All patients received an individual neck strap 

to ensure the same distance between ED and thyroid gland for repeated dose rate 
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measurements. In setup B (FIG. 1B), the ED was attached to a cervical collar with hook 

and loop fastener and was thereby closer to the thyroid gland. Measurements with 

both setups were performed twice per weekday and lasted a minimum of three 

minutes each. Dose rate values were recorded automatically by the ED every 10 

seconds, resulting in at least 18 recorded dose rate values per measurement. For 

further analysis, single dose rate values of one measurement were averaged and 

assigned to the time point corresponding to the center of the acquisition period. During 

measurements, patients were requested to cease any head and neck movements. 

FIG. 1. The two setups used for dose rate measurements. Neck strap setup (A): The 

distance between the ED and the jugulum was about 6 cm. Cervical collar setup (B): 

The upper edges of the ED and the cervical collar were aligned for all patients (white 

arrow). 

 

Reference measurements were performed with a dedicated thyroid uptake counter 

ISOMED 2162 (MED Nuklear-Medizintechnik Dresden GmbH, Germany). Whole body 

count rates were measured with and without shielded thyroid gland. The difference 

between the two measurements yielded the count rate due to the 131I activity in the 

thyroid gland1. Each measurement lasted one minute and was performed twice every 

weekday until patient discharge. 

Thyroid clearance effective half-lives derived from the thyroid uptake counter 

(          ), the neck strap (      ) and the cervical collar (       ) measurements were 

                                                
1
 Manual Schilddrüsenprogramm Uptake 2000, Version 2.0.1.14, MED Dresden, Germany 
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obtained by log-linear regression analysis (SPSS Statistics Version 21.0, IBM, 

Armonk, NY). Only data points acquired 1.5 days after radioiodine administration were 

included in the analysis to ensure that measurements were performed during the 

clearance phase only (cf. Supplemental Material). The fit quality of the linear 

regression between averaged dose rates and uptake values versus time was 

measured with the coefficient of determination (R2) 7. Bland-Altman analysis was 

applied to assess differences between the three different  s and           . 

 

                                                                                 

(2a) 

(2b) 

(2c) 

 

Results 

In FIG. 2 the percentage difference                 between measured and theoretical 

dose rates is exemplarily shown for one ED 

                         (3) 

 

as a function of         . Percentage differences were less than 1 % for all EDs in the 

relevant dose rate range between 300 µSvh-1 and ~4 mSvh-1, demonstrating the 

suitability of the EDs to determine  . 
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FIG. 2. Percentage difference between measured and theoretical dose rate responses 

of one ED in the radiation field of a decaying 99mTc source. 

 

Dose rates measured with the neck strap and with the cervical collar setup covered a 

range from 350 to 1400 µSvh-1 and from 700 to 4000 µSvh-1, respectively. Dose rate 

curves from both setups displayed similar shapes, but the cervical collar rates were 

positively offset from the neck strap dose rate curves (Figure 3). The average standard 

deviation of the single dose rate values      per measurement for all patients was 

2.7 % (neck strap setup) and 3.2 % (cervical collar setup). 

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

FIG. 3. Example of dose rate measurements of a single patient during hospitalization. 

 

The thyroid clearance effective half-lives of       ,        ,            and          are shown in TABLE I. 

Considerable variations of            were observed for patients with Graves’ disease (from 2.1 d to 7.0 d) 

and to a lesser extent for toxic multinodular goiter (from 5.0 d to 6.9 d) and for toxic adenoma (from 4.3 d 

to 5.3 d). 
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TABLE I. Comparison of disease specific standard effective half-lives          5 and effective half-lives derived from the reference method 

(thyroid uptake counter)            and from ED dose rate measurements        and        . The administered 131I activity A for each patient is 

listed in the 2nd column. 

Graves’ disease (GD), toxic multinodular goiter (TMNG), toxic adenoma (TA) 

Diagnosis A                     R2        R2         R2                         

 (MBq) (d) (d)  (d)  (d)  (d) (d) (d) 

GD 684 5.4±1.6 7.00.1 1.00 7.50.1 1.00 6.90.3 0.95 0.4 -0.1 -1.6 

GD 494 5.4±1.6 7.00.5 0.98 6.90.4 0.97 7.50.8 0.92 -0.1 0.5 -1.6 

GD 451 5.4±1.6 5.70.8 0.93 5.40.3 0.97 6.40.4 0.96 -0.3 0.7 -0.3 

GD 378 5.4±1.6 6.10.2 1.00 5.30.3 0.99 5.61.2 0.81 -0.7 -0.5 -0.7 

GD 304 5.4±1.6 5.50.3 0.99 5.00.3 0.98 4.40.3 0.96 -0.6 -1.1 -0.1 

GD 473 5.4±1.6 2.10.1 1.00 2.30.4 0.95 2.50.2 0.99 0.2 0.4 3.3 

GD 271 5.4±1.6 6.82.0 0.92 6.71.5 0.91 3.50.8 0.91 -0.1 -3.3 -1.4 

TMNG 745 6.6±1.2 5.00.2 0.99 5.10.1 1.00 4.60.2 0.96 0.1 -0.4 1.6 

TMNG 555 6.6±1.2 6.90.4 0.98 6.70.6 0.93 6.80.8 0.89 -0.3 -0.1 -0.3 

TMNG 763 6.6±1.2 5.50.1 1.00 5.60.1 0.99 6.20.2 0.99 0.1 0.8 1.1 

TA 358 5.7±1.5 4.30.4 0.99 4.10.5 0.96 3.51.4 0.77 -0.3 -0.8 1.4 

TA 533 5.7±1.5 5.30.2 0.99 5.60.2 0.99 5.90.3 0.95 0.3 0.6 0.4 
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The coefficients of determination R2 were greater than or equal to 0.92 for           , 

0.91 for        and 0.77 for        . The best estimate of            was provided by       . The difference        was smaller than         in 9 out of 12 patients and smaller 

than or equal to          in 11 out of 12 patients. A Bland-Altman plot of        versus            placed all data points within the 95% confidence interval (FIG. 4). Mean 

difference and mean absolute deviation of        were -0.090.35 d and 0.290.20 d, 

respectively. 

 

FIG. 4. Bland-Altman plot of        versus            Data labeled according to the 

underlying thyroid disease (GD ( ), TA ( ) and TMNG ( )). 

 

In FIG. 5 the Bland-Altman plot         versus           . for the cervical collar setup is 

shown. For this setup mean difference and mean absolute deviation of         yielded -

0.271.13 d and 0.770.84 d, respectively. 
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FIG. 5. Bland-Altman plot of         versus           . Data labeled according to the 

underlying thyroid disease (GD ( ), TA ( ) and TMNG ( )). 

 

 

Discussion 

The thyroid clearance effective half-life        determined with the neck strap setup 

agreed well with            from the reference method as verified by the small mean 

difference and standard deviation (SD) of -0.090.35 d. The mean difference and SD 

between the cervical collar setup         and            were larger and equaled -

0.271.13 d. One reason for the larger SD is the outlier at        =-3.3 d in FIG. 5. 

Assuming this data point was a still unclear measurement error, recalculating the 

mean difference yields 0.000.65 d. Even after exclusion of the outlier from the 

cervical collar setup data set, the neck strap setup remains superior due to its smaller 

SD. Another possible reason for the higher variance of the cervical collar setup is 

given by its proximal location to the thyroid. Here, steeper dose gradients will amplify 

positioning errors. This explanation is as well supported by the larger variation of R2 

values (TABLE I) encountered with the cervical collar setup. In contrast, the neck strap 

setup provided better reproducibility of the ED position with respect to the thyroid 

gland, and thus yielded better estimates of  . It also appeared simpler and easier to 
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instruct compared to the cervical collar setup. Our data demonstrate the feasibility and 

accuracy of dose rate measurements using a neck strap setup to determine individual 

thyroid clearance effective half-lives in a therapeutic setting. 

One limitation of the proposed method is that ED measurements are suited for 

effective half-life determination only. This restriction is caused by non-thyroid uptake 

contributions to the dose rate measurements. Only at times past the uptake maximum 

the ratio between the contribution of thyroid and non-thyroid uptake to the dose rate 

measurements approximates a steady state and allows for determination of the 

effective half-life by an ED. In addition, at the clearance phase the non-thyroid uptake 

is small compared to the uptake in the thyroid gland. 

Absolute measurements, such as those of radioiodine uptake, still need to be obtained 

with calibrated thyroid uptake counters. Therefore, ED measurements can only 

supplement thyroid dosimetry, and necessitate at least one single stationary uptake 

measurement. Moreover, reproducibility of ED positioning on the patient may not be as 

precise as with dedicated thyroid uptake counters, and thus a higher number of dose 

rate measurements has to compensate for this higher uncertainty. 

Given the high variability of individual and disease specific  -values reported in the 

literature and also determined in our small patient sample, the use of standard 

effective half-lives          bear the risk of over- or under-treatment in a substantial 

portion of patients. While underdosing may not affect the clinical outcome, overdosing 

unnecessarily increases the radiation burden on healthy tissue 3, 6. Accordingly, the 

Euratom Council directive states that individual dosimetry is strongly recommended in 

treatment planning in any radiation therapy 8. In this context, neck strap setup ED 

measurements appear to be a promising method to determine individual patient   not 

only in the therapeutic, but also in the pre-therapeutic setting. The use of an individual   for radioiodine dose calculation, determined by portable radiation detector 
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measurements in an outpatient setting, could complement already common individual 

determinations of target thyroid tissue mass and uptake counter measurements in a 

simple and cost-effective way. In patients with hyperthyroidism, the availability of 

individual   to replace disease specific average half-lives would allow for an 

individually more accurate pre-therapeutic 131I dosimetry, and reduces the risk of either 

under- or over-dosing. 

 

Conclusion 

In patients undergoing radioiodine treatment for hyperthyroidism,   could be 

determined with the clinically required accuracy from measurements with a common 

handheld ED. Of the two tested setups, the neck strap setup better fulfilled the 

requirement of reproducible ED positioning. The prospect of individual   determination 

based on outpatient measurements holds the potential for a simple and cost-efficient 

optimization of pre-therapeutic dosimetry in radioiodine treatment.  
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