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NUMERICAL HOMOGENIZATION OF HETEROGENEOUS
FRACTIONAL LAPLACIANS*
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A b s tr a c t .  In this paper, wc develop a numerical m ultiscalc m ethod to  solve the  fractional
Laplacian with a heterogeneous diffusion coefficient. W hen th e  coefficient is heterogeneous, this
adds to  the  com putational costs. Moreover, the  fractional Laplacian is a  nonlocal operato r in its
s tandard  form; however, the  Caffarelli—Silvestre extension allows for a  localization of the  equations.
T his adds a  complexity of an ex tra  spacial dimension and a  singu lar/degenerate  coefficient depend­
ing on the  fractional order. Using a subgrid correction m ethod, wc correct the  basis functions in a
natural weighted Sobolev space and  show th a t  these corrections arc able to  be truncated  to  design
a com putationally  efficient scheme w ith optim al convergence ra tes. A key ingredient of this m ethod
is the  use of quasi-interpolation operato rs to  construct the  fine scale spaces. Since the solution
of the  extended problem  on th e  critical boundary  is our main in terest, wc construct a projective
quasi-interpolation th a t has both  d and d +  1 dim ensional averages over subsets in th e  sp irit of the
S co tt-Z hang  operator. W e show th a t  th is operato r satisfies local stab ility  and local approxim ation
properties in weighted Sobolev spaces. We further show th a t wc can ob tain  a  greater ra te  of con­
vergence for sufficient sm ooth forces, utilizing a global L 2  projection on th e  critical boundary. Wc
present some numerical exam ples, utilizing our projective quasi-interpolation in dim ension 2 + 1  for
analy tic and heterogeneous cases to  dem onstrate  the  ra tes and effectiveness of the  m ethod.

K e y  w o rd s , localization, m ultiscale m ethods, fractional Laplacian, heterogeneous diffusion,
nonlocal models
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1. Introduction. In the modeling and simulation of porous media or composite
materials, the multiscale nature of the materials is a challenging mathematical prob­
lem. In addition to this challenge, the modeling of nonlocal behavior that naturally
occurs in particular media is of great interest, for example in the modeling of nonlocal
mechanics [55], in fractional (and thus nonlocal) Kcller-Segcl models of chemotaxis
[56]. and in ground water flow by fractional (non-Fickian) transport [22. 45). The
areas of multiscale problems and nonlocal fractional problems have significant over­
lap in these applications. In particular, it is well known in hydrology and reservoir
engineering that the permeability of the subsurface is highly heterogeneous. The
macrodispersion experiment (MADE) [53] demonstrated experimentally non-Darcy
transport that exhibits nonlocal effects. The challenge of simulating these types of
problems is two-fold: (1) the heterogeneity of the subsurface properties creates the
need for higher resolutions, and (2) the nonlocality effects the band structure of the
linear solvers creating often dense matrices as well as requiring global quadratures.
In this work, we present a multiscalc method to mitigate both issues of nonlocality
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and the heterogeneous properties.
The model we will focus on in this work is the heterogeneous fractional Laplacian.

This is the Darcy flow model with a multiscale permeability coefficient and a fractional
derivative power to incorporate the nonlocal behavior. There is a vast literature on the
analysis and simulation of the fractional Laplacian. Due to a relatively recent result of
Caffarelli and Silvestre [16], the solution of the fractional Laplacian is more tractable
in terms of both analysis and computation. By adding an extra spatial dimension,
the fractional Laplacian is transformed into a weighted harmonic extension problem
or a singular/degenerate (depending on fractional degree) linear elliptic problem. The
numerical solution of such problems has been approached by several authors: in [49],
quasi-interpolation is used: in [7], a novel integral representation formula is used: in
[36]. fractional equations arc solved via a Pctrov-Galcrkin method: and in [5], they are
solved for tensor finite elements, to name a few. A recent survey article of numerical
methods for fractional diffusion equations in homogeneous media can be found in [6],

The new challenge to be addressed in this paper is the derivation of effective
numerical methods for fractional diffusion in heterogeneous media. The application of
numerical homogenization techniques has, to our knowledge, not yet been considered.
The key idea of numerical homogenization is to incorporate scales on the fine-grid to
the coarse-grid in a computationally feasible way. Several approaches exist to this end:
the multiscale finite element method [34], where local basis functions are computed;
the heterogeneous multiscale method [1], where local problems are solved to obtain
coarse-grid coefficients; and the variational multiscale method [35], which is related to
the technique we will use. We will employ the local orthogonal decomposition (LOD)
method. The LOD method is a numerical homogenization method whereby the coarse-
grid is augmented so that the corrections arc localizablc and truncated to design a
comput ationally efficient scheme [33, 37, 44. 50]. This has been used successfully in
many applications, such as scmilincar problems [31], thermo- and poroclasticity [4, 43],
perforated media [14], hyperbolic problems [2, 42], and diminishing the pollution in
high-frequency problems [12, 13, 27, 51], to name a few.

A key component of this method is a quasi-interpolation operator that is uti­
lized to construct a fine-scale space. The construction of such an operator for the
fractional Laplacian is slightly more delicate due to the extra resolution one wants
near the trace of the weighted extension problem. The authors in [49] utilize a quasi-
interpolation based on regularized Taylor polynomials [11], which are a generalization
of the Clement quasi-interpolation [19]. However, these quasi-intcrpolations are not
projective. We proceed similarly to [14], where the authors utilized a local L2 pro­
jection onto the coarse-grid space, and prove local L2 stability and approxiinability
properties in weighted Sobolev spaces based on arguments in [8, 9]. For the weighted
extension problem of the fractional Laplacian we would like to further resolve the
information on the trace of the original domain. To this end, we develop a hybrid
projective quasi-interpolation operator using techniques from [8, 54]. whereby we use
local L2 projections for both d and d + 1 dimensional simplices to generate nodal
values. With this quasi-interpolation, we prove the canonical convergence rate of
//-coarse mesh size and «-fractional derivative degree, of the multiscalc method on
quasi-uniform meshes. Supposing more smoothness on the data and utilizing a slightly
modified projection based on the global L2 projection on the critical boundary, we
arc able to prove order II convergence on the coarse-grid. We also prove the standard
estimates with truncated corrections [31].

We present numerical results for two benchmark examples with the same forc­
ing, but different diffusion coefficients, in the computational domain that is a subset
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of R2 x (0,T). The first is a homogeneous problem having an analytic solution,
and the second utilizes a heterogeneous coefficient from a two dimensional slice of a
standard benchmark problem. We show that we numerically obtain optimal rates of
convergence in these examples once we pass the pre-asymptotic regime in terms of
the truncation of the correctors. We compute solutions for various fractional orders
s above and below the critical fractional value of .s = | .

This paper is organized as follows. We begin in section 2 with the heterogeneous
fractional Laplacian and the singular/degenerate elliptic problem of the Caffarelli-
Silvcstre extension. The weighted extension problem decays exponentially in the
extended direction and thus can be truncated on a finite domain: this is the problem
we shall focus on in this work. In section 3, we define the relevant fractional Sobolev
spaces for completeness and develop the theory of weighted Sobolev spaces critical to
the setup and analysis of the Caffarelli -Silvestre extension. We also present various
relevant weighted inequalities, such as the weighted Poincaré inequality. Then, in
section 4, we define the weighted quasi-interpolation operator that will be used to
construct the LOD method. Local approximability and stability in the weighted
spaces arc proved. The multiscalc method and related errors arc introduced in section
5. We then present two numerical examples in section 6. Finally, the proofs for the
truncation of correctors in weighted norms arc given in Appendix A.

2. P re lim in aries . It is well known that fractional Laplacian problems arc non­
local. Therefore, applying standard two-grid techniques to handle heterogeneous co­
efficients locally is not possible, as the subgrid problems will too be nonlocal and not
decaying exponentially. However, due to the Caffarelli-Silvestre extension [16], one is
able to rewrite the nonlocal fractional Laplacian as a Dirichlct-to-Ncumann mapping
problem. This problem is localizable at the cost of a one dimension higher infinite do­
main and singular or degenerate coefficients depending on the fractional degree .s. In
this section we present the background on the fractional Laplace operator with a het­
erogeneous coefficient as well as the background on the Caffarelli-Silvestre extension
problem.

2.1. H eterogeneous frac tiona l L aplacian . Let Q C RJ  be a bounded, open,
and connected Lipschitz domain for d > 1. We let CA u =  -d iv ;c (A(t )V.t u ), where
.4 G is assumed to be symmetric and satisfies for all ./■ e  Î2, £ G RJ  and
some a , /3 > 0

a|«|2 < (-4 (x )Ç ,0 < M -

We consider the following fractional Laplace equation with the Dirichlet boundary
condition; that is, we seek a solution u that satisfies for s E (0,1) and given data f

(la) £ A u — f  bi ^5
(lb) u =  0 on <9Q.

As shown in [17], one can write the heterogeneous fractional Laplacian (1) as

(2) £ s
A u = [  (u(x) -  u(y))K s (x. y) dy,

Ju
where K s (x,y) is the fundamental heat kernel to the operator £ A u and satisfies the
bounds
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In this work, we will write a < b to mean that there exists a constant C > 0 indepen­
dent of the mesh parameters (but possibly depending on the domain, dimension, s,
a, and ß but not on variations of A) such that a < Cb. Note that for the above inte­
gral formulation, one must compute the heat kernel for the heterogeneous operator,
which is computationally costly. We would like to note another interesting approach
that circumvents this calculation, where the fractional Laplacian is rewritten as a
pscudoparabolic operator and again adds another dimension in time to localize the
problem; cf. [58].

The fractional Laplacian operator may also be defined via the eigenfunctions of
CA  given by

(3a) —divx  (A(x)VT c>k) = in Q,
(3b) <bk = 0 on (9Q,

where the eigenpairs (/a-,öjt) € R+  x Hg(Q), for k G N, can be chosen such that
{<Pfc}k6N form an orthonormal basis for £2 (Q). Supposing u G Dom(/?4 ), we expand
u as u(x) = Wfc^*;(a ') aI1d define

C8
A

U = kku k<Pk,
tew

where Uk = (bk'udx.
2.2. Caffarelli—Silvestre extension problem . Using the formulation devel­

oped in [17, 49], we reformulate the fractional Laplacian problem (1) as an extension
in Q x (0,ex:) C Rd + 1 . We denote the cylinder C =  fix (0, oo), spatial variables x G R<y

and y G R, and the lateral boundary dk C = d$l x [0,oo). We let U =  [7(x. y) : C —> R
be a solution to the following singular/degenerate elliptic equation with coefficients
ya :

(4a) -d iv  (y" B(x)VU) =  0 in C,

(4b) = -ya^- =  cs /(x ) on Q,
dva dy

j/=0

(4c) U = 0 o n d LC.

The solution to (1) is given by u(x) = U(x. 0) for x  G Q.
Above, differential operators are given with respect to x G RJ  and y G R, i.c.,

V = (Vc.iïy)1 , and the tensor B G R'/+1 x R</+1 is given by

B(x) = A(x) Odxi
0 l x d  1

for a =  1 — 2.s G ( — 1,1) or s =  ^̂ 4. g (0,1). We will often move freely between the
fractional degree .s and the power of the weight a. Here, - is the co-nonnal exterior
derivative with outer unit normal p and cs =  2l ~2s 1 > 0 is a positive constant
that solely depends on s.

Wc note that, supposing appropriate data f ,  u is a solution of the heteroge­
neous fractional Laplacian (1) if and only if U is a solution to the weighted har­
monic extension (4). The solution to the weighted harmonic extension is related
to the spectral representation of the solution of the fractional Laplace. We write
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u(x) = Uk<Pk(x)i where {</>*.-}a€N satisfy (3); then we have from [10. 18] that we
may write

U(x,y) =  y^7/fc0fc(-T)^fc(?/),
fc€N

where t/^(y) satisfies
i/jk  + -V’fc -  MfcV’fc = 0 in (0,oo),

with the boundary conditions V’fc(O) = 1, and liniy^oo V’fc(y) = 0, for all k G N. The
equation above has a known solution from [15, 18], that is, V>k(y) =  cxp( — y/ÿïy) ifs =
i  and ^k(y) = Cs  (y/ïïky)a Katyfiïïy), for s G (0,1)\{ |} , where Ks is the modified
Bessel function of the second kind. Therefore the solution decreases exponentially in
the ^/-direction, allowing one to truncate the computational domain.

Remark 2.1. Naturally, f  is in the dual-space H - S (Q) of the fractional space EF
(to be defined more precisely in section 3.1). However, we will often take f  to be
more regular and suppose that f  G L2 (Q) or in H1 “ s (fi) when the extra regularity is
useful or needed for existence and uniqueness.

Remark 2.2. We will further suppose that f  is compatible with the Dirichlet
boundary condition; cf. [49, Remark 2.8]. In particular, we will suppose that in the
regime s G (0, | ) ,  the data vanishes sufficiently fast near cM2; in the regime s G ( | ,  1),
f  G H1 - S (Q) is sufficient. The case s =  |  is the nonweighted standard harmonic
extension.

To facilitate the solution of (4) we need additional notation and properties of
weighted Sobolev spaces, explored in great detail in [39]. For x G R'z and y € R+ , we
write x = (x, y) and let dx = dx dy be the standard tensor product Lebesgue measure
on R'/ + 1 . For uj C Ra  x R+ , an open set, and a := 1 — 2s G (—1,1), we define L2 (cu, <y")
to be all measurable functions u on a; such that

IMlLqu,,»-) =  /  “ 2 y° < °°’

and define H x (w.ya ) similarly, by all measurable functions u on at such that
1

IIu IIh i (w,v“) : =  (|Iu IIl 2(w,v«) + < °°-

Finally, we define the space incorporating the homogeneous Dirichlet boundary con­
dition on the outer cylinder as

=  {u G H x (C,ya ) : w =  0 on dL C}.

Integrating (4) by parts we obtain the following weak form: find U G H x
L (C.y'') such

that

(5) B([7,0) =  F(0) fo ra lU ’ G

where the bilinear and linear forms read as

:= /  B(xyVU ■'V'ipy“ dx and F(V’) := /  cs f(x)ib(x,0)dx.
Jc Ai

As the above problem is in an infinite domain, we introduce a truncated cylinder
.solution for computations, which is extended by zero to the infinite domain. We
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denote the truncated domain Ct  =  Î2 x (0, T), and Bl Ct  = {Bit x [0. T]) U (Q x {T}),
for some T  > 0. We have the related truncated space given by

Hl{CT ,ya ) = { u e  H \C r .y a ) : u =  0on BL CT }.

We then solve for Ut  € H L
x (Cr,ya ) such that

(6) B t (Ut ^ )  = F (V ) for all

where we introduce the natural notation for the truncated bilinear form

B t (Ut , V’) := /  B(x)VUr • V ÿ y u dx.
J Cr

Extending Ut  by zero into C we may obtain an infinite domain approximation which
we do not relabel. The following exponential error estimate was proven in [49. Lemma
3.3], which we restate here for completeness.

T h e o r e m  2.3. Let T > 1, let U be a solution to (5). and let Ut  satisfy (6) for
f  E then we have

l |V (( /- t/T ) |lL2( c . , . ) < e - C T ||/llH - . (11)

for C > 0 independent of T.
Thus, the solution of the truncated problem will suffice for a sufficiently large

T ~  log(//)|. In the remaining parts of this paper, we will merely consider the
numerical approximation of Ut  extended by zero into C. We will drop the truncation
notation in the following sections, as well as the capital lettering U for the solution
to the weighted harmonic extension if there is no ambiguity.

Remark 2.4. For a full discussion on the regularity and approximation of the
fine-grid problem we refer the reader again to [49. section 2.6], For our numerical
homogenization method, we will not consider the fine-grid error and focus merely on
the coarsc-grid error.

3. Sobolev spaces and inequalities. In this section we will introduce the no­
tation of fractional and weighted Sobolev spaces. First, we recall the results and
notation of fractional and weighted Poincaré inequalities presented in [49] and refer­
ences therein. We also present and prove some useful inverse and trace inequalities in
the weighted Sobolev space, thus linking the two kinds of Sobolev spaces.

3.1. Fractional Sobolev spaces. Here, we recall some details of fractional
Sobolev spaces, as they will be related to the trace spaces of the weighted spaces
we will consider, as well as being the natural space for the solution u to (1). There
is a vast literature on this subject, and for details we refer the reader to [23]. We
loosely follow the presentation of [49] in the following. We begin by introducing the
Gagliardo-Slobodcckij seminorm for s € (0,1),

H ’(U) / I2 ./n |x - æ '|d + 2 s  d  '

and the related norm ||u ||//>(q ) = IIw IIl 2(q ) + Iu Ih ’(Q)- We define the Sobolev space
H S(Q) to be the measurable functions such that ||u||//«(U ) < oc. For a detailed
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construction we refer the reader to [57]. We define the space /Äq (Q) to be the closure
of C'qc (Q) with respect to the norm IHIh '(q )-

If the boundary' of Q is smooth enough, an interpolation space interpretation is
possible [40]. We may write the Sobolev space with s G [0,1] and 0 =  1 — s as the
interpolation space pair

= [ / / ‘(Si), L2 ((1)]„ and H;(O) = [H*(O), L2 (O)]„,

For the critical case s = this is the so-called Lions-Magencs space

=["»(!!)■ f-2 (S!)]. ;

this space satisfies

1 I i /

We summarize this in a general notation as

HF(Q) =  <
for s G (0, | ) ,
for s =  I ,
for s G ( | .  1).

3.2. W eighted  Sobolev spaces an d  inequalities. We now give the back­
ground for weighted Sobolev spaces as well as present some critical inequalities. A
key property of the weight y" is that it belongs to the Muckenhoupt class A2(R'/ + 1 )
[28, 47]. For a general weight, w G Ljo c(R</+1), wc say that w G .42 (Rd + 1 ) if there
exists a C2.W > 0 such that

(7)

for all balls B C Rf /+ 1 . Wc will denote the Muckenhoupt weight constant for y" as
C2.a • Wc will now give a few of the critical inequalities and properties related to this
class of weighted Sobolev spaces.

A key inequality for the analysis is the weighted Poincaré inequality. The weighted
Poincaré inequality for Muckenhoupt weights is well studied in nonlinear potential
theory of degenerate problems [26, 29] and references therein. Wc will state the result
here without proof.

Le mm a  3.1 (weighted Poincaré inequality). Let üü C Q x (0,oo) be a bounded,
star-shaped domain (with respect to the ball B), and let diam(jj) ~  H. For w G
H l (üü.ya ) it holds that

(8) llw -  M  .
where the constants are independent of H and (w)^ =  -4- [ w dx.

Remark 3.2. Note that the above inequality may be extended to a connected
union of star-shaped domains where the average can be taken over a subdomain [49,
Corollary 4.4], We will refer to both of these results simply as the weighted Poincaré
inequality when there is no ambiguity.
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Wc have the following L°° —> I 2 weighted inverse inequality. For this we suppose
that wc have a coarse quasi-unifonn, shape-regular discretization Tc t  of the domain
Ct  with characteristic mesh size I I . Similarly, wc denote the restricted mesh onto the
lower dimensional space il to be T<n. Wc denote by Pi (A') the linear polynomials on
K e TCt .

P r o po s it io n  3.3. For p € Pi(A'), we have

CO ~  1^ I 1 l|y 2 IIl 2(k ) •

Proof. We begin by utilizing the following result from classical finite element
inverse inequalities:

IIp IIl -(K) ~  \K \ ^  Hp IIm (K) f o r  1 < Q < r < oo.

For r — oo, q = 1, wc obtain

IIp II1 »<k ) < |K | 1 IM1 .<k > =  I«-| ' [  \m "/ 2 \u ", 2 d x < m  « L  •

This completes the proof. □
Let tr (•) denote the canonical trace operator for the space II^C . yu ) and trivially

also the zero-extension truncated space H^(Cr,ya )- Wc state the following trace
lemma.

Le mma  3.4. For- u € ya ), we have tr u E HS (Q), and

(io) IIu IIh 3(s2) ~  IIu IIl 2(Ct ,v°) +

Thus, H L
v (CT ,ya ) C EF(Q).

Proof. See [15] for s = |  and [41] for s € (0 .1 ) \{ |}. For a general discussion on
trace spaces of weighted spaces wc refer the reader to [48]. □

Remark 3.5. Note that L l (il) is the canonical trace space for H 11 (Cj-) [3], and
by a trivial argument

(n )  IIu IIl ‘(Ct ) =  \\u y 2 y 2 IIl >(c t ) ~ ^ , - “(^T )"î r lli 2 (c T,y°)’

where C^.a (Cr) — f C T y~a dx, which is finite on a bounded domain. Similarly, the
result holds for Vu. Thus, wc have the embeddings Hj^Cr-y“) C W’1-1(Ct ) C A^Q).
This L 1 embedding structure suggests the use of quasi-intcrpolation operators of
Scott-Zhang type [54], which is discussed in section 4.

Wc have the following trace inequalities for elements A' E Tc t  and faces (edges)
FG7Ï2-

Le mm a  3.6. Let K € Tc t , and let F = dK  D Q be the face (edge) adjacent to Q.
Then, for u E we have the following inequality:

(12) | |u ||£ 1 ( F )  <  W  ( M l . (K )  + «  IP x IIp c k )) •

Proof. This is an application of the trace inequality and scaling arguments; cf.
[46. section 2.4]. □
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We also have the following weighted trace inequality.
LEMMA 3.7. Let K  e Tc t , let F = dK  n h  be the face (edge) adjacent to Q. and

let u Ç. Then we have the following inequality:

(13) II'u IIl 2(F) ~  1 llU llL2(K,y°) + ^ S |l^ U llz,2 (K,y“)-

Proof. We proceed by using mapping arguments similar to [25. Lemma 7.2] and
weighted-scaling arguments from [20, 21]. We prove the result for a simplex K  G
7cr , such that F := dK  O 0  is a face or edge (not a vertex only). We denote the
reference (unit size) element /V and similarly the reference boundary face F. We let
Ak  : K  —> K be an affine mapping, and denote û = u o  A ^ . x = A j)(x ), for x G K,
and diam(Æ) ~  diam(F) ~  /7. Note that from [20, Lemma 3.2] and from shape
regularity we have that (4/<(ÿ))" > CH"ya ; thus,

(14)

v J 1 J k  | A | Jk  | A |
By using standard trace inequality arguments, the trace bound (10), and the above
scaling (14), in the weighted norm we obtain

(  | F | \ 5 » / . \
II, / IIl 2(F) =  l ïp jy  il7/'!L2(F) ~ I 2 ( jl" llt2(k.ÿn ) +  l|Vu)|t 2(^..n ))

< |F |l|K |-* //-5  (iMLa,«,,.) + ||VXK || ||Vu||La(K jzO )]

Thus, with a. =  1 — 2.s we obtain the estimate (13). □
Finally, we will need the Caccioppoli inequality for truncation arguments of the

subgrid correctors in Appendix A. Here, we recall the Caccioppoli inequality presenta­
tion as in [17]. Let B, .(r0 ) be the r-ball in centered at z0 - and define the cylinder
ßr(x0 )* = Br(xo) X (0. 7‘) C Cr- Choosing x« = 0 and suppressing this notation we
consider the following problem: find u G H l (By.ya ) such that

(15a) div(ÿ
a B(x)Vu) =  div(î/a p) in B*,

du(15b) -y "  —  = f  o n B bd y ly=o
with gi G L2 (B J,t/“), i = 1 ,...  ,d. and g,/+i — 0. Suppose without loss of generality
that B(0) =  7; then we have the following lemma.

LEMMA 3.8 (Caccioppoli inequality). Let u be a weak solution to (15); then for
q € Co c (ß^), which vanishes on dB ^\B \, we have

(16)
[  ya y2 \Vu\2 d x<  [  yn (|Vz/ |2u2 +  |^|2 ,/2 ) d x +  [  (z?(x,0))2 |u(x,0)||/(x)|dx.

•ZB; J  By J  B l

Proof. Sec [17, Lemma 3.2]. □
Remark 3.9. Note that away from the critical boundary, the standard Caccioppoli

inequality will also hold due to the boundedness of the weight y" on bounded domains.
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4. Q u asi-in te rp o la tio n  in w eighted Sobolev spaces. Here, we construct a
quasi-interpolation operator for weighted Sobolev spaces using a hybrid of local £2

projections onto d and <7+1 dimensional simplices [8, 54]. Wc begin by introducing
the discretization with a classical nodal basis. From here, we arc able to build a
quasi-intcrpolation based on local weighted L2 projections. The novelty is that we
not only include the weighted spaces, but we also augment the quasi-intcrpolation on
the critical trace Q. We have two types of local L2 projections, one onto the nodes
of the cylinder domain Ct  and a lower dimensional projection onto nodes on Q. We
then state the local stability and approximability properties of these operators both
in the interior of the domain and for the canonical traces. We utilize arguments of
proof along the lines of [46].

4.1. C lassical nodal basis. The key idea is the resulting quasi-intcrpolation
being stable in the weighted Sobolev norm and stable on Q in the lower regularity
space HTS'(Q). Following much of the notation in [44], recall that we suppose that we
have a coarse quasi-uniform, shape-regular discretization 7cT of the domain Ct  with
characteristic mesh size H. Similarly, we denote the restricted mesh onto the lower
dimensional space Q to be 77i-

We denote all the nodes of the mesh as Af. We denote the interior nodes of Tc,
(including neither nodes on Q nor vanishing Dirichlet conditions) as the free
nodes on Q arc denoted as A/q , and the Dirichlet nodes arc denoted as Ndi r . Also, it
will be useful to combine all the nodes with degrees of freedom: we denote those as
■Ndof = A/înt UA/”q . Wc will write Af(cu) for nodes in cJ, similarly for interior, boundary,
or Dirichlet nodes.

Let the classical conforming Pi finite element space over Tc t  be given by Sh , and
let Vh  = S h  A Ilj^CT-y“)- Utilizing the notation in [49], wc denote v e A/as nodal
values. The Pi nodal basis functions Av , for all nodes v 6 A/”, form a basis for Vh
and are defined for a node v 6 JV as

(17) Av (v) = 1 and Aw (v) = O.v w 6 A/-.

We define the patch around v as

for K  € 7c t . Using the definition and notation in [32], we define for any patch cjv

the extension patch

(18a)
(18b)

=  cjv .o = supp(Av ),
=  int(U{/< G TCt \I< Fl i Ï  0})

for k G N+ . Due to shape regularity of the mesh l i < 1 for some ball B containing
wv ,fc, thus wc have the bound
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where we utilized the bound (7). Hence, we can apply the Muckenhoupt weight
bounds to the patches utv .fc-

We will also need to define the boundary-Q patches. Let v G A/"n, take tr (Av ) =
Av (x,0), and denote

(20a) = dwv ,o — supp(tr (Av )),
(20b) ôcjv.fc =  int(U{/< G 7q |7< A dwv ,fc-i $})•

We will denote VH \UJ to be the coarsc-grid space restricted to some domain c j.
4.2. Q u asi-in te rp o la tio n  o p e ra to r . The authors in [49] construct a quasi­

interpolation based on a higher order Clément type of operator. However, in this
section, we develop a quasi-interpolation operator that is also a projection in the
weighted Sobolev space and satisfies beneficial properties on the trace. This projective
quasi-interpolation gives stability properties required for the localization theory. This
is a modification of the operator of [8] and was utilized in perforated domains in [14].
Here, we adapt this technique to the y"-weighted setting with a slight modification of
the Q boundary terms in the flavor of Scott and Zhang [54].

We now define the two local weighted L2 projections. For v G Af,,^, P v  •
L2 (cjv ,?7n ) —> Vh Lv is the local projection operator such that

(21) (Pv u)vH ya  dx = j  uvH ya  dx for all v h  G Vh  Lv ,

and for v G A/q , P^ : L2 (cLj v ) —> Vh |ôwv  is the boundary operator such that

(22) /  (P ^u )v h  dx = / uvH dx for all G Vh |öWv .
■/ öu>v  •/ d<vv

From this we define the quasi-interpolation operator Th  : H ^C r-y") —> Vu for
u G ya ) as

(23) T«u(x) = 52  (Pv u)(v)A,(x) + £  (P?u)(v)A„(x).
veAT.ni v e .y .

Remark 4.1. Note that for a node v G i.c., on d^Cr- the local L2 boundary
projection operator may be defined as

(24) [  ( P ^ C Tu)vHyn d y=  [  uvH ya dy for all vH  G VH |W vna, C r .
C\Öl Ct  J ijJvCtf) l,Ct

However, (P^ l Ct u)(v) = 0. since u = 0. Thus, we take the sum over all the nodes,
unlike the ease of utilizing a d -I- 1 dimensional operator also on the boundary, where
(Pv «)(v) 0 for v G Ndir- This simplifies the analysis of the quasi-interpolation
operator near the Dirichlet boundary slightly.

4.3. Local s tab ility  an d  approx im ability . We have the following stability
and local approximation properties of the quasi-interpolation operator Th  defined by
(23). The proof of this lemma is based on that presented in [46].

Le m ma  4.2. Let Th  be given by (23), and let v G Af. The quasi-interpolation
satisfies the following stability estimate for all u G H L

l {Cr-ya ):

(2 5 a ) < llw lll,’(ww.i,y«) +
(25b)



1316 DONALD L. BROWN, JOSCHA GEDICKE, AND DANIEL PETERSEIM

Further, the following approximation estimates hold:

(26a) ||u -  TH u\\L2(U v ya ) < # l|V u ||£2(Wv

(266) ||V(u -  TH u)\\L2(Uv y „} < ||Vu||i2(W v

Moreover, the quasi-interpolation Th is a projection.
Proof. With the quasi-intcrpolant (23) including the Dirichlet nodes it has the

same property as Scott and Zhang [54] of preserving the vanishing Dirichlet boundary
conditions. Thus, we implicitly sum over the Dirichlet nodes in what follows and need
not take special care of boundary nodes as in Clément quasi-interpolation.

In the first case, suppose that v ' E A/]n t(wv ) is an interior node: then, noting that
Pv'U is finite dimensional and using Proposition 3.3, we arrive at

1
( \ 5

/  y~a ( ^ ]  ll^v'W||£ 2(u,v, ij/a) .

From (21), letting vh =P v'U, wc  get

\Pv 'u\2y“dx = £  u(Pv 'u)ya dx < ||u||L1(<>yO ) •

Thus, manipulating the two above identities yields

and so, by taking a larger patch, wc have

(27) |Pv.u(v')l <  U  » - d x )

In the second case, suppose that v' G Afn^-v) is a node on the boundary Q, and
so we use the local (unweighted) I.2 projection on the boundary given by (22). Again,
noting that P^,u is finite dimensional and using an inverse inequality, we get

||^’v ',Z||Loo(ötUv, ) I^Wv'l 2 ||^’v 'U ||L2(9Wv, ) •

From (22), wc obtain

= /  |P ? u |2 d x=  I  u (P“ u) dx < ||U ||1 1 ( ) .

Thus, again manipulating the two above identities yields

ll^v'«||£ oo(0Wv/) ~  Î Wv'l < l^ v 'l  1 ll«ll£ i(aw;) ||^v 'w ||£ oo(aWv/) •

and so, by taking a larger patch and utilizing the trace inequality (12), wc obtain

(28)
p ? « (v ') | < S  k v . i l -  ( i M h ^ . , )  +  H , , ) .
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Finally, wo note that by taking a larger patch cjv .i , we have

(29)
/ \  5 / .  \  I

I|Av IIl »(„v .„.) < /  V° * 0  and l|VA,.||I .I („v ,r )  < H ' 1 /  V" dx
\ 7 w v ,i /  y-'Wv.i /

For the quasi-intcrpolation Z//(n) we have

ZH (u )=  2 2  (Pv'u)(v')Av , +  J 2  (P?,u)(v')Av , in_uv .
v'gA/’m« (wv  ) v ' gA/n(wv )

For the L2 stability we note that from (27)-(29) we get

I|Zm(«) <  E  l(P v«)(v ') |||A v . | | I,î ( „ v .„.1
V z € A / i n t ( W v )

+  E  Kp " “ )(v ')| l|Av . | | t ! ( U v  # a )

v'eMiIwv)

Now we analyze each part carefully. Note that
1

( r \  2

y y" llU llL2(wv..1,y“)-

Since yn  belongs to the Muckenhoupt class /12(^d + 1 ); we get from (19)

For the second term we use (31) again, also for the derivative terms: thus

~  C 2 ,a  (|I«IIl 2(wv  li?yo) +  #l|V « ||I ,2(Wv 1(Wa)) •

Returning to (30) we obtain

(32) I|Zh (u )II£,2(w v .j,.) < + H\\^u\\L ^ ija)
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For the H 1 stability, first noting that (u) = Th ((«)u .v ! )- w e  (le n o t e  “ =
u — (u)^ i . Thus, from (27)-(29), and arguments used to obtain (32), we arrive at

l|VIw(«)||£2(u,v ,yO) = I|VZW (Ü)|| Z,2 (wv ,ÿo )

< £  l(Pvfi)(v')ll|VAv .||t 2 (^ , e . )
v'6Ar,n t (ivv )

+ £  |(^a )(v ') |||V A v .||£ 2(„v ,s . )
v'6A/n(u>v)

(33) < H 1 ^ | |ö | |£ 2(Wv +  ^ l l ^ “ IL 2 (wv ,1 ,y“ ) )  ~  II 7̂u IIl 2(wv.i ,!/“)’

where for the last inequality we used the weighted Poincaré inequality from Lemma
3.1.

To prove the local L2 approximability we note that for ü = u — (u)Wv , using
Lemma 3.1 and (32) we get

(34)
llU  ~  -^w (w) ||L 2(Wv 4/O) =  ||û  — Th  (w ) ||£ 2(Wv i J,<») <  l |ü ||£ 2(W v jj,o) +  ll-^w(Ü)||£ 2(W v tj,a)

< ^ | | ^ w IIl 2(Wv -î,o ) +  ( ll“ ll£
2 (wv .x ,y«) +  ^ H ^ 7“ l k 2 (wv .l,»“) )  ~  ^ H ^ MIIl 2 (wv .1,»“)’

Thus, local approximability holds, and result (26b) trivially holds from /71 stability.
From arguments in [14, Appendix B, proof of Lemma 3.2] it follows that Th  is also a
projection. □

Co r o l l a r y  4.3. Suppose v € JVj>- Then, for all u G it holds that

(35) \ \u - T H (n)\\L 2 { M  < ir \ \^ n \ \L2{uJvi y a } .

Proof. Recall the weighted trace inequality (Lemma 3.7), and using stability and
approximability in the interior from Lemma 4.2 we deduce

II« -  Ï h (u )||l 2 (ô u ;v ) < H ^ \\u  -  +  / r i l V u l l ^ ^ o )  <  H ’||V u || l 2 ( u ,v  i >y O ) .

This completes the proof. □
5. N um erical hom ogenization . We will now construct the multiscale approxi­

mation space to handle the oscillations created by the heterogeneities in the coefficient,
of the Caffarelli-Silvestre extension problem [16]. The main ideas of this splitting can
be found in [14, 32, 44] and references therein. In our computational approach we
will for simplicity only consider the truncated cylinder Ct  in what follows due to the
exponential convergence of the truncated problem to the infinite cylinder problem on
C.

5.1. M ultiscale  m eth o d . In this section we construct the multiscalc approxi­
mation. The main ideas of the splitting into a fine-scale and a coarse-scale space can
be found in [32, 44] and references therein. As noted before, the coarse mesh space
restricted to Ct  cannot resolve the features of the microstructure, and these fine-scale
features must be captured in the multiscale basis. We begin by constructing fine-scale
spaces.

We define the kernel of the quasi-intcrpolation operator (23) to be

V/  =  {u G ^ ( C t , j/“) |Z h u =  O},
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where T h  is defined by (23). This space will capture the small-scale features not
resolved by Vh - We define the fine-scale projection QcT  : Vh  —> V f  to be the
operator such that for v h  G Vh  wc compute Qc t O’h ) f  a s

(36) / H(x )VQc t (v w ) • Vici/'1 dx = / B(x )Vi?h  • Vu’7/n dx for all w G V f .
JCt JCt

This projection gives an orthogonal splitting H L
x (CT.ya ) = V™ © with the mod­

ified coarse space
Vh s  =  (Vh - Q c t (Vh )).

We can decompose any u G H L
x (Cr,ya } as u = um s  + t /  with B (x )^u m a  •

V u f  ya dx = 0. This modified coarse space is referred to as the ideal multiscalc
space. The multiscalc Galerkin approximation u7fis G Vffs  satisfies

(37) [  B (x)V u^ s  -V v y a dx = [  cs f(x)v(x ,0) dx for all v G V™.
J Ct

The issue with constructing the solution to (37) is that the computation of the
corrector is global. However, it has been shown that the corrector decays exponentially
[33. 37, 38. 44]. In Lemma 5.3 wc will show that this also applies to the weighted
corrector problems. Therefore, we define the localized fine-scale space to be the fine-
scale space extended by zero outside the patch, that is,

= {« e v'\ = o}.

For some v G A6/o/ and k G N wc let the localized corrector operator Qv .a- ■ Vh  —>
V^(uJv .a-) be defined such that given a u/i G Vh

(38)
I  B (x)V Q v ,k(uH) • V w y a dx =  I  Xv B(x ) ^ u h  M w y n dx  for all w E V f (a>v .k),

JüJV .k J^v

where Av

of unity.

Ay
^ v '6 JV d o /  A v' is augmented so that the collection {Âv }vcJVdo/ is a partition

As in [14], this is augmented because the Dirichlet condition makes the
standard basis not a partition of unity near the boundary. Wc denote the global
truncated corrector operator as

(39) Qa-(»h ) = Qv.fc(uH).
v E J J d n f

With this notation, wc write the truncated multiscalc space as

V H.k = span{uH  -  Qk(uH )\uH  € VH }.

Moreover, note also that for sufficiently large k. wc recover the full domain and obtain
the ideal corrector, denoted by QcT , with functions of global support from (36). The
corresponding multiscale approximation to (6) is as follows: find y ^ s

k G V ffk  such
that

(40) /  H(x)Vt/^\. • Vu y" dx = f  cs f(x)v(x . 0) dx
JC t  ’ JP

for all v G V £ s
k .
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5.2. E rror analysis. In tins section we present the error introduced by using
(37) on the global domain to compute the solution to (6). Then, we show how lo­
calization effects the error when we use (40) on truncated domains to compute the
same solution. We also show that, supposing more smoothness in the initial data, and
augmenting the quasi-intcrpolation operator to have a global orthogonality condition
on Q. that wo may obtain a better rate of convergence.

5.2.1. E rror w ith global support.
THEOREM 5.1. Suppose that u G II[(Cr,ya ) satisfies (6) and that u™ G V ffs

satisfies (37). Suppose the data is such that f  € £ 2 (Q). Then, we have the following
error estimate:

(41) |V u  -  V u g 'W . , . )  < H ‘ ||/||L 1(1 1).

Proof. We utilize the local approximation property of Th  from Lemma 4.2, and
in particular the trace estimate of Corollary 4.3. From the orthogonal splitting of the
spaces it is clear that u — u™ = u^ E and 2j/(u^) — 0. Thus, utilizing Galerkin
orthogonality, taking the test function in the variational form to be v = v f  = u — uffS ,
we have

||V u -Vu h *||£2(C o) < [  B(x)\7uf  \7uf  ya d* = [  cs f(x)(u{ (x,0) -  Tu (uf  (x,0))) dx
J C'j' J Q

S ll/llw n > ||u ' < H‘ ||/ ||t 2 ,n , I VU' | | t i (C T  ,

where we used the approximation property (35). Dividing the last || yll)
term yields the result. □

Remark 5.2. Note that we obtain the expected convergence rate of H s for the
fractional Laplacian-type problems on quasi-uniform meshes. Further, we do not
need to utilize second order derivatives of a as in the analysis of [49. section 5]. In
that setting, the term ||«!/y||£/2(CT yielded a convergence rate of Ce H s ~£ , for all
e > 0, with the constant blowing up as e —> 0. However, the subgrid fine h standard
finite elements may suffer from these effects. Here, we focus merely on the error
accumulated from the coarsc-grid.

5.2.2. E rror w ith localization. In this section, we discuss the error due to the
truncation of the corrector problems to patches of k layers. The key lemma needed
is the following lemma, which gives the decay in the error as the truncated corrector
approaches the ideal corrector of global support in the weighted Sobolev norm.

Le mma  5.3. Let u h  G Vh , let Qk be constructed from (38) and (39), and let QcT
be defined as the ideal corrector without truncation in (36); then for some 0 G (0,1)

(42) IIV(Qc t M  -  Q1.(u h ))||l 2(C t .„.) < « :^ l|V u H ||t 2 ( C l d r ) .

Proof. Sec Appendix A. □
T h e o r e m  5.4. Suppose that u G H [(Cr,ya ) satisfies (6) and that u*f}s

k  G V^'k ,
with local correctors calculated from (38). satisfies (40). Suppose f  G £ 2 (fi). Then,
we have the following error estimate for some 0 G (0,1);

(43) ||v u  -  v u r || l 3((.t  r )  < (//« + k«e‘ ) | / | | £ 2 ( n ) .
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Proof. We let u’̂ s =  u h  — Qc t (u h ) be the ideal global multiscale solution satisfy­
ing (37). and we let = un.k — Qk{uH,k) be the corresponding truncated solution
to (40). Then, by Galerkin approximations being minimal in energy norm we have

||V îz -  V(uH>fc -  Qk(uH.k))\\L 2(cT tV*) < ||Vw -  V(uH  -  Qk{un))\\L 2(C r y n } .

Using this fact and Theorem 5.1 and Lemma 5.3. we have

||Vn -  VmEM|l 2(Ct  < ||V>< -  V(«H  -  Qc t M  + Qc t («h ) -  Qi («h ))IIi .2(c t . , . )

< || V« -  ( C t^  + ||V(QC r («„) -

<H’ ll/l|t I ( ! ! )  + ^ e ‘ l|Vn„||t2(CT.!,.) .

In addition note that, by construction, Zh (’' h ')  =  T h ^u m ) = u h - Thus, using local
stability (25b) and a priori bounds from (37), obtained via the trace inequality in
Lemma 3.4. we have

IIV w h IIl 2(Ct  .ya ) ~ II ( u  H S ) Il L 2 (CT .yn  ) ~  H L2 (CT .yn ) ~  Ĥ Hl 2(Q) • □

5.2.3. E rror w ith L 2 projection on Î2. By augmenting our quasi-intcrpolation
(23) on t he boundary Q we may obt ain a bet ter order of convergence given sufficiently
smooth data f .  We instead define the quasi-interpolation

(44) Z £ \(x )  = (^v«)(v)Av (x) + ^ 2  (nß2u)(v)Äv (x),
vE-A/int v6A/"<>

where llff : L2 (Q) —> Vh |q  is the (global on 12) 12 projection

/ (IIq  ïl )v h  dx = / u v h  dr for all t’H € Vh |I2.
■Az Az

From this we sec that by construction for fu  € Vw|n we have

(45) I fn v d x  = 0 for v € kcr (Z^

Remark 5.5. We suppose T[{ given by (44) satisfies the stability relations in
Lemma 4.2 and Corollary 4.3, as similar arguments provided in those proofs will
hold.

THEOREM 5.6. Suppose that u G H ](Cr,yn ) satisfies (6) and that uf^s E Vffis
satisfies (37), where the spaces are constructed using Tfa from (44). IVe suppose the
additional regularity f  E H1 - *. Then, we have the following error estimate:

(46) ||V„ -  V a g 'I W , .„•) £  W  , "(J (ii/ / mIIl 2^!)} ~ h  II/IIh 1- ’ (« ) •

Proof. We again utilize the local approximation property of Th  from Lemma
4.2. and in particular the trace estimate of Corollary 4.3. Tims, utilizing Galerkin
orthogonality and the orthogonality relation (45), and taking the test function in the
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variational form to be v = vS = u — u™, we arrive at

Il Va -  VuZril^c™«) < Jc  B(x}Vuf  ■ \7uf ya dx = (uf  (x,0) ~ Th  (uf  (ar. 0))) dx

= [  cs ( f  -  f H )(uf ( x ,O ) - lh \u f (x,Q)))dx
h

SII/-/H|lL=,n>||“/ -lH ('‘')||12(n)

SH' II/

Dividing the last ||Vu ^ ||/2 (C t  y„ ( and using the standard interpolation estimate

r cv ( ll/ - ~  II/IIh 1 - ^ « )
/ h €V/z |q  \  /

yields the result. □
Remark 5.7. The use of the global L~ projection on Q in the construction of the

method does not require global-on-Q computation. In fact, the quasi-interpolation
operator (44) does not need to be computed at all. The method solely requires the
characterization of its kernel, which can be realized via local functional constraints
associated with coarse nodes, i.e.. Pv (■) (v) = 0, for all interior coarse nodes Af,n t,
and (-, Av )n = 0 for nodes A/q , on Q.

Remark 5.8. A similar truncation argument from section 5.2.2 can be shown to
also hold in this setting.

6. N um erica l exam ples. In this section we present some numerical examples
for Q C R2 or Ct  C R2 x R+  to illustrate the convergence behavior of the multiscale
method. In particular, we observe higher order convergence for a simple generic an­
alytic example even for local boundary project ions onto Q. using P “ , as indicated
by Remark 5.7. However, we demonstrate that with a heterogeneous coefficient this
is not the ease. We will compare the multiscale approximation nr̂ s

k  to a fine-scale
approximation «/, by replacing u by u>, in the theoretical results. For .s < 0.5, we
truncate the domain in the extension direction at T  =  1, and for s > 0.5 at T  =  1.5.
These truncation lengths have been empirically found to be sufficient for the fine-grid
approximations. For numerical efficiency we truncate the computations of the correc­
tors to a local element patch of size k = 2 or k = 3 from the truncation estimate in
Lemma 5.3. We shall emphasize that k is a rather critical parameter with regards to
computational complexity, in particular in three dimensional problems in the absence
of any (local) periodicity that could be exploited, since the size of the local corrector
problems grows as However, computational experience shows that k can be
kept rather small for typical mesh sizes. For details of the efficient implementation
of the method we refer the reader to [24]. Apart from the obvious exploitation of
periodic structures to reduce the computational cost, a more sophisticated treatment
of the tensor product structure of the present problem could improve the computa­
tional efficiency. One possibility is properly graded meshes in the y direction [49, 5].
Another idea is to approximate y locally on each patch as a constant and thereby
get identical local problems along the y direction. This technique was successfully
used in the context of evolution problems with time dependent diffusion to reduce the
number of patch problems by a factor of 1//7 [30]. In all experiments we use linear
Lagrange finite elements. We will give two examples, one with a homogeneous and
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F ig . 1. Convergence for the analytic example.

one with a heterogeneous coefficient, and test s-values above and below the critical
s =  0.5 vainc.

6.1. A naly tic  exam ple . We take the analytic example from [49, section 6.1]
with Q = (0.1)2 and so Ct  = (0, l ) 2 x (0. T) with the forcing

J(xi,X2) — (27r2 )Äsin(7ra:i)sin(7r2’2)-

The exact solution on Q is then given by u(xi,X2) — sin(7rxi)sin(7FT2) and the exact
solution on the extended domain Ct  by

2 i - s
(27T2 )s /2 sin ( 7T.7- ! ) sin(7r.T2 ) ys  K„ ( x/2 tt?y ).

where K a denotes the modified Bessel function of the second kind.
Note that f  is smooth in this example: hence the estimate in Theorem 5.6 can be

improved to
||V,„, -  V u E’ IIl ’«:™-) < l l ' + ’ ll/ll«.«» •

Here, Figure 1 shows the convergence of the error HV?//, -  for H =
2- 1 , . . . ,  2- 4 , h = 2- 6 , and k = 2. As predicted by the theory, we observe numerical
convergence close to O (H l + s ) for s = 0.2.0.4.0.6 and s =  0.8. Note that in this
particular example we get improved convergence rates despite the fact that we used
local projections P “ and truncate the corrector problems at k = 2. This indicates that
the sum of the local projections is close to the Q-global L2 projection in this simple
example. Since the diffusion coefficient is constant, the number of local corrector
problems can be reduced to essent ially O( ) in this example. This statement
remains valid under the structural assumption of periodicity.

6.2. H eterogeneous exam ple . In this example we choose again Q = (0.1)2 so
that CT  = (0 ,1)2 x (0.T), and

/(x i ,x 2 ) =  (27T2 )s sin(7rxi)sin(7ra;2).

However, we chose a nonconstant diffusion coefficient that varies on the fine-scale be­
tween 5 • 10“3 and 2 • 104 . The values arc taken from the SPE10 benchmark problem.
The logarithm of the chosen values is displayed in Figure 2a. A discrete multiscale
solution for .s = 0.2 is displayed in Figure 2b, and the fine-scale approximation for
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s =  0.2 and h — 2- 6  is displayed in Figure 2c. Comparing Figures 2b and 2c one
can observe that the LOD method captures the fine-scale features of the solution very
well. We shall emphasize that the theory of localization (Lemma 5.3 and Appendix A)
docs not allow meaningful predictions on the performance of the multiscalc method
in the present regime of very high contrast. Still, the experimental results for k = 3
in Figure 3 arc promising. This has also been observed before for high-contrast local
PDEs in [14, 52]. The theory therein also indicates that the success of numerical
homogenization may depend on the geometric properties of the diffusion coefficient
and its phases relative to the coarse mesh. In particular, a nonmonotonic behavior of
the error may occur depending on the relative position of coarse nodes and high and
low permeability regions of the medium. In Figure 3, the convergence of the error
IlVUh -  f°r  H =  2- 1 , • - • >2- 4 , h =  2- 6 , and k =  3 is shown. Because
of the heterogeneous coefficient, we cannot expect the local projections to be close
to the Q-global L2 projection: hence we expect convergence rates of O(H N) from The­
orem 5.4. As shown in Figure 3 we observe even higher convergence rates than O(H S )
despite the high contrast of the diffusion coefficient and the truncated patches of the
corrector problems. For s = 0.4, ,s = 0.6, and s =  0.8 the convergence is improved by
O(H0-4 ) due to the boundary projections, while for s = 0.2 the convergence is only
improved by (9(//0 2 ), which is lower due to the truncation of the corrector problems
at layer k =  3. Note that the error of the fine-grid solution is probably much higher,
so that higher computational costs for larger k are not justified.

7. Conclusion. In this paper, we developed a multiscalc method for heteroge­
neous fractional Laplacians. The method utilized a localization of multiscalc correc­
tors to obtain an efficient numerical scheme with optimal rates of convergence for the
coarse-grid. We developed this method in the context of weighted Sobolev spaces to
be applied to the extended domain problem of the fractional Laplacian where the co­
efficient of the extension has a singular/degenerate value. To this end, we constructed
a quasi-interpolation that utilizes averages on cl and d 4-1 dimensional subsets so that
the critical boundary is better resolved. We proved the local stability and approxima-
bility of this operator in weighted Sobolev spaces. We then proved the error estimates
and truncation arguments in this weighted setting. To confirm our theoretical results
we gave two numerical experiments with various fractional orders s.

A ppendix A. T runcation proofs. Now we will prove and state the auxiliary
lemmas used to prove the localized error estimate in Lemma 5.3 and Theorem 5.4.
These proofs arc largely based on the works [32, 44] and references therein. There are a
few interesting nuances with respect to the weighted inverse and Poincaré inequalities,
the Muckcnhoupt constant bounds, and the Caccioppoli inequality in Lemma 3.8.

We begin with some notation. For v, v' 6 N<iof and l, k G N and m — 0 ,1 ,. .. ,
with k > I > 2 we have the following quasi-inclusion property:

(47) if wv ',m + i A (u;v ,fc\a;v ,z) 0, then wv <.i C (wv .fc + m + i \ j v .i-m -i).
We will use the cutoff functions defined in [32]. For v 6 and k > I € N, let
</v-/ : Ct  ~> [0,1] be a continuous weakly differentiable function so that
(48a) W J ) L,.»-, =  0.
(48b) („;■') |C t > v  > =  1,

(48c)

where Cco is only dependent on the shape regularity of the mesh Tc t - We choose
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(b)

1- IG. 2. (a) Logarithm of the chosen permeability, (b) discrete multiscale solution for s = 0.2
and k 2. and (c) fine-scale approximation for s = 0.2 and h — 2~® in the heterogeneous example.

F ig . 3. Convergence for the heterogeneous example.
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here the cutoff function as in [44], where we choose a function in the space of Pi
Lagrange finite elements over l c T , such that

t/v‘Z(v / ) =  0  f o r  a11 v ?  6  Ndof A
t/v Z(v ') =  1 f o r  a11 v ' e  J^dof LI (Cr\a;v ,fc),

r/v’Z(v') =  I  f o r  a11 X/o/ nu/v.k-Z+j, .7 =  o, 1 ,... ,7.

We will now prove the quasi-invariance of the fine-scale functions under multiplication
by cutoff functions in weighted Sobolev spaces.

Le m m a  A.l. Let k > I € N and v e Nd<>f- Suppose that w E ; then we have
the estimate

Proof. Fix v and k, and denote the average as (z?v 'Z)oj , t =  — / Hy '1 dx.
For an estimate on a single patch Ll>v ', using the fact that Z//(w) =  0 and the stability
(25b), we have

= ||VZ„((  ̂- < Ä v,„)w)||L̂

< (H«-* - ("v'U + - ̂ ( “ »11^,,.,.)) ■

Summing over all v ' e Ndof and using the quasi-inclusion property (47) yields

ILW-'w)|lb(CT„,.) < E ||(̂ ' - <o5JU.,)v«-||2 _ B
U v',lC W v.*+l\w v . * - l - l  '  V

(«) + E iive'(«-iHw)ii2L2(„v,]„.).Wv '.)  C « v ,* + l \" v .* - l - l

Note that we used that V t/^,z /  0 only if uzv ,k\wv.k-z and (?^,z — (zjv’2)^ , ) /  0 only
if u>v',i intersects cjv ,fc\^’v.k-z; hence we obtained the slightly better bound.

We now denote /z^z =  rfa1 — ; and let K  be a simplex in a?v '.i such that
the supremum ||^v*Z . ) *s  obtained. On K, p * 1 is an affine function: using the
fact that z/y'Z is taken to be Pi, we have by using the inverse estimate (9) that

S |AT* b-’ ILw  I|/4'||l î (k .,.)
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Using the above estimate and the weighted Poincaré inequality, we see that

K & l üv >a

K€wv z !

(50)

where we used the Muckcnhoupt weight bound (7), as well as quasi-uniformity of the
grid. Returning to (49). using the above relation on the first term and the approxi­
mation property (26a) on the second term, we obtain

||VZH(»J'w)||2l I ( ( .r .i r )  < w 2 ||v ^ ' | | 2 _ (Ct )

+ II2 ||v ^ ‘| | ^ (Ct ) I|Vw ||L („v 1+A„V

Finally, we arrive at

||vzH(1/t J »)||L(Cr.„..) £ '- 2 ll^ llU ,, , +s\„v

where we used ||Vj/£,z ||2 $  1 /G #)2 - □

For the weighted Sobolev space, we have the following decay of the fine-scale
space.

Lemma  A.2. Fix some v 6 Na<>j, let (V^)' be the dual o fV ^ , and let F € (V^)z

satisfy F(w) =  0 for all w € V’f(C r\vv ,i )■ Let u E be the solution of

I  B(x)\7u ■ V w ya  dx. = F(w) for all w E
J Ct

then there exists a constant 0 E (0.1) such that for k E N we have

l|Vu|| L 2 (Cr\<*»v .fe,!/0 ) ~  H ^ u l lL 2 (CT ,yo ) '

Proof Let r/*-z be the cut-off function as in the previous lemma for I < k — 1,
ù = — 2j7(zjt zu) G V f(C r\uv  A--z-i). and note that from Lemma A.l we have
(51)

||V (,i 'u  -  ù )||t I ( C T ,#. ) =  ||VZw (,e-, «)||t 3 ( C r .i r )  < C '||V u || t . („v ( + A „v t

Since F(û) vanishes, we have

(52) I  B (x)Vu ■ V ù ya dx = I  B(x)\7u - Vr7 ?/' dx =  F(û) = 0.
JcT\wv.k-i-i -'C t
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Wc utilize a version of the Caccioppoli inequality from Lemma 3.8 to deduce

J C r \ ^ v . k - i - i

V u ■ (V(rç*J îi) -  wVi£') ya dx.

Using the fact that 2j/(u) = 0, estimate (51), the relation (52), and the approximation
property (26a), wc have

l l ^ l f c (C T W vJ1,„.) < /  Vu ■ (V foJ'u -  Ù)) y- dx
J C r \ ^ v . k - i - i

-  I  Vu • (u -  ZH (u ))V ^ J  ya dx

<  1 fc_j 2 j/O)

+ (ZH)-1 ||Vu||L2(CTXwvfc , 1^ ) 1 I« - Îh (U)||l 2(C t \Wv ,  ,
<  / x i iv u ||22(C t \w v  2 y n ) .

Successive applications of the above estimate lead to

IIVu|ll2(cT \„v J!,a .) J i  l IIV’'llz.2(cT \u,v l ,_,_2 ,B.)

< r tW J | |V u | | l !(C T il,a ) .

Finally, noting that
k -  1
1 + 2

taking 0 = 1 yields the result.

'k  -  I -  21 k
1 + 2 -  1 + 2

We arc now ready to restate our result on the error introduced from localization.
This is merely Lemma 5.3 restated. When k is sufficiently large so that the corrector
problem is all of Ct , we denote Qv .fe =  Qv.Cr- Let uy  e Vh , let Qk be constructed
from (38), and let QcT  defined as the ideal corrector without truncation; then

(53) I|V(QCt (u „) -  % ( u h ))||£ I(C t 4 ,. ) < * :^ ‘ ||VuH ||£ I ( t .T ,# a)

Wc begin the proof similarly to [14].
Proof of Lemma 5.3. Wc denote v = Qc t (u h ) ~ Qk(un) G V^; hence T//(v) = 0.

Taking the cut-off function t/*’1 wc  have

(54) ||Vv||2ta (C T iy O ) <  £  /  B ^ ( Q v . c T ( u H ) -Q v .k (uH ) ) ^ ( v ( l - y v
k A ))y l l dx

J c T

(55) + 52 / ß (x)V (Q v .cT (u //) -Q v ,4 « H )) -  V ( e ^ 1)y "dx .
v6.Vd o / J c T

Estimating the right-hand side of (54) for each v. and using the boundedness of B(x),
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we have

/  B(x)V(Q v .C r (7t H ) -  Qv.fc(uw)) • V (v(l -  z ^ 1 )) ya dx
J Cr

< ||V(Qv .Ct (Mh ) — Qv.fr (ï<H)) II £2(C T ! /n) V(v(l — 7]v  ) ) Il £.2(tx,v )

< I|V(Qv ,Ct (u H ) — Qv.k(u H ))IIl 2(Ct  y a)
X (l|V î’||L 2(u,v +  l|t’V (l -  1 )) ||L 2(u;v fcXu;v ^yO))

< IIV(Q v .c t (?z h ) — Qv.fr(w//))||£2(C r  y«)

X ( l|V < a(Wv.fc,r )  +

||V(Qv .Ct («h ) -  Qv,k(UH))||L 2(C r y )

X llV ü lll,2(a>v .fc+i,!r)-

As in the proof of Lemma A.2. we denote v = y ^ l v — T h ( t]^a v ) € V'^(Cr), and so v
satisfies

I B [x )V {Q v ,c t (u h ) -  Q„.k(uH y) V v y a dx =  0.
JCt

We now have the estimate for (55) for v  e X oy using the above identity and (51):

[  B (x )V (Q v ,C t (u h ) -  Qy,k(uH )) ■ -  v) y" dx
J Ct

$  II^(Qv .Ct (“ h ) — ^ v -fc(U W ^llz.2(CT.ÿn ) ^ ( , |l i2 <^v.i+3.!*")'

Combining the estimates for (54) and (55) we obtain

IÎ 7v IIl 2 (Ct ,V'’) ~  II^(Q v -c t (u h ) — Qv,fc(uH))||£2(C T iy«)l|Vv||L2(Wv fc+2 yO^

1

( \  2
E  l|V(Qv .CT (U H )-Q v . t (« H )) ||^ (C T ,i r )

V f z N t l o f /

supposing that # { v  € C -Jv ,jt+2 } A:d , as guaranteed by quasi-uniformitv
of the coarsc-grid.

For v € X m/ ,  we estimate ||V(Q v .C t (u h ) -  Qv.fc(uw))ll£,2(C T .ya) and we use the
Galerkin orthogonality of the local problem, that is,

I|V(Qv .c t («h ) -Q v .fr(u //))||L2(C T yO} <  inf IIV(Q v .Ct ( « « ) - 9 ) H£2{CT.yO )-

Letting c/v =  (1 -  z/v - 1 )  I )Qv.Cr(n w) - ^ w ( ( l  -  9 v - 1 ) 1 )Qv .c t («h )) € W (u;v .fc), we
have

I|V(<2v .Ct (’' h ) -  <?v .*(’*h ))H1î (c t ,v .)

< ||v (n t‘ - ‘>-, Qv x T («H) +  ! „ ( ( !  -  > 4 ^ 1 |-1 )Qv .c t («h ) ) ) | | 'J (C t

< ||VQ v .c t (u w )||12(C t X„v  , 2 „ .)  +  | |v ( z „ ( 4 l- '> - ‘<?v.C T («H)))||2t 2 ( C r  ï . ) .
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Using Lemmas A.l and A.2 on the second term wo arrive at

||V(Qv ,Ct (u #)  “  Q v ,f c ( « H ) ) |l l 2 ( C r t J / a)

~  ||VQv ,Ct («H)I|'l 2(Ct \wv .k -2 -y a ) +

~  IÎ 7Qv .Ct («H)!IL2(Ct \ u;v  fc 4 i J /a)

< ô 2 ( f c - 4 ) | |V Q v . C T ( u / / ) | | 2
L 2 ( C T ,y O ) .

From the definition of Q v .c r  from (38) with global corrector patches, we get

I|V(<2v ,Ct (u h ) -  Qv ,ii (u h ))||1=((:i .„.) <

Thus, summing over all v € N d o f  a n d combining the above with (5G) concludes the
proof. □
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