Theory of invariants-based formulation of k - p Hamiltonians
with application to strained zinc-blende crystals

Johannes Wanner, Ulrich Eckern*

Group theoretical methods and k - p theory are combined
to determine spin-dependent contributions to the effective
conduction band Hamiltonian. To obtain the constants in
the effective Hamiltonian, in general all invariants of the
Hamiltonian have to be determined. Hence, we present a
systematic approach to keep track of all possible invariants
and apply it to the k - p Hamiltonian of crystals with zinc-
blende symmetry, in order to find all possible contributions
to effective quantities such as effective mass, g-factor and
Dresselhaus constant. Additional spin-dependent contribu-
tions to the effective Hamiltonian arise in the presence of
strain. In particular, with regard to the constants Cs and D
which describe spin-splitting linear in the components of k
and e, considering all possible terms allowed by symmetry
is crucial.

1 Introduction

An effective description of bulk electrons and holes is
crucial for the development and understanding of semi-
conductor based devices. The standard model for the
calculation of the band structure E (k) close to the funda-
mental band gap is the k - p theory [1-6], or for quantum
heterostructures its generalization, the envelope-
function approximation. The full k-p Hamiltonian
yields the exact description of the carriers in a periodic
potential. Since it is an infinite-dimensional matrix,
approximations are inevitable in order to diagonalize
it. A very successful method is the limitation to bands
close to the fundamental band gap. The most prominent
ones are the 8 x 8 and the 14 x 14 Kane models, which
include the valence and conduction band, and a second
conduction band, respectively [7]. Contributions from
distant bands are usually taken into account by means
of quasi-degenerate perturbation theory (“Lowdin par-
titioning” [8]; a brief summary of this approach is given
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in appendix B of Ref. [9]) in second order. For the de-
scription of larger regions in the first Brillouin zone more
bands have to be taken into account, and higher-band
models, like a 30-band model [6, 10, 11], have been
developed.

The effect of strain on the band structure was first ex-
amined by Bir and Pikus [12] within a 6-band model, and
later generalized to higher-band models which also in-
clude strain-dependent terms originating from the spin-
orbit interaction [13, 14].

In order to diagonalize such a finite-dimensional
k - p Hamiltonian, all matrix elements have to be de-
termined. Due to the crystal symmetry, not all of them
are independent, and by applying group theoretical
methods, identical as well as vanishing matrix elements
can be identified. Within k - p theory, the non-vanishing
materix elements (“invariants”) are considered as pa-
rameters; they have to be obtained experimentally or
by different theories, e.g., density functional theory.
Although the numerical diagonalization of finite k- p
Hamiltonians with a number of bands larger than 30 is a
trivial task for today’s computers, increasing the number
of bands leads to an increasing number of independent
invariants. These invariants, however, are usually not
easily obtained. Thus, instead of increasing the number
of bands, remote bands are often taken into account by
quasi-degenerate perturbation theory.

In simple k - p models the spin-orbit interaction is ne-
glected, and all invariants are given by the non-vanishing
matrix elements of the momentum operator p. In more
elaborated models including spin-orbit interaction, elec-
tromagnetic fields, or strain, a considerable number of
additional invariants has to be considered. Hence, in sec-
tion 2 we present a systematic approach which is inde-
pendent of the selected symmetry group to keep track
of all possibilities. Subsequently, in sections 3-5 we ap-
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ply this formulation to the k - p Hamiltonian of the zinc-
blende structure to re-derive the effective mass m, and
g-factor of the conduction band electrons, as well as the
constants C; and D describing strain-dependent spin-
splitting. A brief conclusion is given in section 6. Some
technical details are presented in three appendices.

The partitioning technique in quasi-degenerate per-
turbation theory was developed in a series of papers by
Lowdin, see Ref. [15] and references therein. While our
focus in this work is on his approach, which is predomi-
nantly used in the context of k - p theory, we also wish to
mention other relevant developments [16, 17]. In brief,
Brandow’s [16] and Lindgrens’s [17] approaches can be
characterized as generalizations of Brillouin-Wigner and
Rayleigh-Schrédinger perturbation theory, respectively.
Differences between the various schemes become ap-
parent only in higher order. In particular, Lindgren’s ex-
pansion obeys the linked-cluster theorem in each or-
der which implies the correct particle-number scaling in
any finite order. A detailed discussion and comparison of
Brandow’s and Lindgren’s schemes, as well as an appli-
cation to a relevant correlated-electron model, was pre-
sented recently [18].

2 Theory

In this work we concentrate on the influence of symme-
try on various effective Hamiltonians within the frame-
work of k- p theory. First, we briefly recall some group
theoretical concepts, but refer the reader to the literature
(Refs. [19-22]) for more details. As a start we consider the
general Hamiltonian

H=> Ki 0L, 6))

oy

where u, y, and o refer to the irreducible representa-
tion, the components of the operator with respect to the
irreducible represenation, and the repetition index:
the latter is introduced to describe cases where the same
irreducible representation appears more than once. The
operators O}, transform according to

B0y, B = YD1, (910, @

Wy

under the symmetry operation P, of the group element
g, and DF’ ,(g) [23] denotes the correspondlng matrix
representatlon of the irreducible representation I'**. The
pre-factors K, — depending on the Hamiltonian un-
der consideration — either are a constant or given by the
external parameters such as the components of the wave
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vector k or the strain tensor . Moreover, we choose as a
basis |I'¢(8)), where all degenerate states with band index
i transform under the symmetry operation P, according
the same irreducible representation I'*:

B¢ ®) = 3. DL (g) |rE ). 3)
~

Symmetry arguments imply that only those terms
of the matrix elements H;%;, = (I¢(8)| 7 T} (8)) which
transform according to I'! are non-zero. Furthermore, as
the Hamiltonian has to remain invariant under all sym-
metry operations, not all matrix elements of 7{ are in-
dependent. According to the generalized Wigner-Eckart
theorem [19], each matrix element of the Hamiltonian
can therefore be decomposed as follows:

aﬁ;/t of; i /: aﬂ,u
z]M’ - ZIC trv;ij;r\‘r\" - ZIOl] ]C yh‘h’” (4)
oy oy
i.e., into a product of an invariant Ig‘/f ]", which is in-

dependent of y, 8, and &, and X%/ which denotes the
Clebsch-Gordan coefficients. In the above, (¢, i, §) and
(B, j, 8') are the matrix indices, written in the appropri-
ate compound form. Generally a multiplicity index is re-
quired in Eq. (4) (and has been taken into account in
appendix B where further details about the matrices X
are given). In order to keep the notation “lean”, we have
dropped this index in the main text, as it would appear
only in the explicit expressions given at the end of sec-
tion 3, namely Eqgs. (22) and (23). The invariants can be
obtained by

Biu afii Bos e
Izt] Z Oo;y;ij;zizi/ Xy;é/é' (5)

88"

For an infinite number of bands the matrix 7" is
infinite-dimensional, and contains all relevant infor-
mation of the operators Of,. On the other hand, the
matrices X’/ depend only on the selected symmetry
class. Therefore the expression (4) represents a conve-
nient separation of the material-dependent quantities
745 from the parameter-dependent matrices Ky, X‘;ﬁ”‘,
which contain the information on the symmetry group.
This separation can be directly translated into each block
of the Hamiltonian,

HYP — Z Igﬁ;u

oy

® (Iclé,y Xﬁﬂ;“) , (6)

where ® denotes the direct product. Note that Eq. (6) is
a short-hand version of Eq. (4). The fact that this separa-
tion keeps its form even after applying quasi-degenerate
Lowdin perturbation theory [8, 15], renders it especially



convenient for calculating, e.g., the effective mass or the
effective g-factor of the charge carriers. Up to second-
order, the Hamiltonian for the degenerate I'f bands is
then given by the following expression:

AY =B+ YTl K, X+

oy

Zozﬂ swrposi
+ ) ‘35” (Kt Kol XSG ) )
oy a;i = LB
dll,}’/
B j#i

3 Effective conduction band Hamiltonians
without strain

Each symmetry of a crystal structure corresponds to a
specific feature in the energy spectrum, i.e., at points of
symmetry bands are degenerate. In semiconductors, the
splitting of energy bands in the vicinity of such points
can efficiently be described within k - p theory which in-
volves an expansion of the energy spectrum in terms of
the Bloch states of this symmetry point. Instead of cal-
culating the energy spectrum E;(k) of each band inde-
pendently, within k - p theory a different approach com-
monly is used. With the help of quasi-degenerate pertur-
bation theory, Eq. (7), all bands of the considered energy
spectrum are decoupled from remote bands resulting in
effective Hamiltonians H;(k). The energy spectrum can
then be obtained by diagonalizing H; (k).

We apply the general considerations of section 2 to
the k- p Hamiltonian of an electron in a crystal with
zinc-blende structure. Information on the corresponding
symmetry group T; ® DV/? can be found in the literature
(see, e.g., Refs. [9, 20, 22, 24-26]).

Without strain, the Hamiltonian is given by [7, 9, 13,
27, 28]

H = To + Hso + Tl + Hicp + T, @8)

with

N p’

Ho=—+ WX, 9
2my

Heo=H —L(VV)X o (10)

so = 1 4”%62 0 p B
. . h2k?
Hx = Hnp = —, (11
2my

(12)
(13)

In order to apply perturbation theory, one has to split
the above Hamiltonian in an unperturbed part and a
small perturbation. In the literature [7, 9, 13] this is of-
ten done by declaring 7{, the unperturbed part and the
rest as perturbation. Unfortunately, this choice has the
disadvantage that it leads to higher-order contributions
to effective quantities such as the effective mass, due to
a coupling between 71, and the spin-orbit part Hs,. To
avoid these complications, we choose Ho + Hso as un-
perturbed part, and
(Ho + Hso) [T5 (8)) =

E,;|re®)). (14)

Let us now consider the effective Hamiltonian of the
bands with I' symmetry, with the most prominent repre-
sentative being the conduction band. The trivial Hamil-
tonian 7y is already diagonal, hence we need only pay
attention to Hj; and Hy. Both Hamiltonians contain the
same parameter K7; = K, = k, thus we combine their

operators as follows:

———0 x (VVp), (15)

h
_p + rn% >
which transform according to I'°.

For the conduction band in first-order perturbation
theory, symmetry allows only operators which transform
according to I'' or I'*. Hence, the first contributions from
Hip and Hy to the effective Hamiltonian of a |F?) band
arise only in second-order perturbation theory, and are

given by (B = irk x k/e):
R2K?
as Ee,+—+gluBB v, (16)
2m, 2
where
67;5.776;5 68;5.786;5
i_ hz +12 Ikl]Ik]l + Ikl]ijl 17
2mi 21710 E(;;I—E7;] E;,‘—Eg;J ’

which defines the effective mass, and

67,5776;5 68;5786;5
2my (Ikz]Ik]L _ Ikt]ijz )
J#

o 18
§i =72 Eei— EBrj 2 Es;i— Eg;; (18)

the effective g-factor. Hence, up to second order — with-
out an external magnetic field — there is no spin-splitting
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for bands with I'® symmetry. However, a spin-dependent
splitting arises in higher order. The lowest-order term
thatleads to such a spin-splitting is called the cubic Dres-
selhaus term [27]:

HP = )hi[kx(kf/_ kﬁ)(fx

Fh (= R)o” + k(K- )l 19)
This contribution to the effective Hamiltonian couples
the motion of the electrons in I'® bands to their spin. The
structure of Eq. (6) is very convenient for finding the rele-
vant matrix products which are responsible for the cubic
Dresselhaus term. These are:

Ky XTOXTOX00, 20
klkj ]QX?&SX?'?;SX’;G;S, (21)
Kk kXWX X0, 22)

where Einstein’s summation convention is implied. Note
that for the derivation of these matrix products, no infor-
mation about the invariants is necessary. Moreover, this
selection of the relevant matrix products is directly con-
ferred upon the invariants. The material constant of the
Dresselhaus term is thus readily given by
[ - )
f==]=

2V 2 I (Es.i — Ez.j) (Es.i — Es.1)

68;5.788;5(b) 7-86;5
1 Tt Lo Ligri }

+
2+/2 (Es.i — Es1) (Es.i — Es.1)

(23)

where once again the expression holds for arbitrary
bands with I'® symmetry. See appendix B for the expla-
nation of the superscript “(b)” in Egs. (22) and (23).

4 Strain induced spin-orbit splitting

In this section we include strain effects which lead, in ad-
dition to the Dresselhaus term, to spin-orbit coupling. In
the presence of linear strain the symmetry of the crys-
tal and thus of the potential V;(r) — V.(r) is reduced.
The symmetry of the unstrained crystal can, however,
be restored by following the method of Bir and Pikus
[12, 13, 29] who instead of deforming the crystal con-
sider a deformed coordinate system. The potential V;
then has the same periodicity as the potential in the ab-
sence of strain, and can be expanded in terms of &. As
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a consequence of the coordinate transformation, there
are additional strain-dependent terms in the Hamilto-
nian, H — H + Dy + Dxpp + Dso + D,,. Up to first order
in strain they are [13]:

N N 1 A
Dy = Hy = Z [—% pipj+ Vij(r)] &ij = Z Djjeij, (24)

ij ij
L h
Dy = ey Zgijvvij(r)xp-a

ij

— (VW) -e) xp-o

— V@) x (e-p)-o|, (25)
. N h
a(szVll—__p & k, (26)
b, =1 L K
o = VIII:W ZéijVVij(l‘)X o

ij

- (Vhh®-e)xk-o |, 27)
with
V() = — lim Y2 1+ &M = %(®) 28)

2 —8jj =0 &ij

Since all symmetry operations of the unstrained Hamil-
tonian still apply, the influence of strain on the en-
ergy spectrum E(k, €) can again be derived according to
Eq. (7). Nevertheless, since the additional terms in the
Hamiltonian are limited to first order in strain, we also re-
strict ourselves to terms linear in ¢ in the effective Hamil-
tonian. In order to derive this effective Hamiltonian, ad-
ditional invariants, and thus the symmetry properties
of the operators of the strain-dependent Hamiltonians,
have to be determined.

Considering the symmetry properties of the strain
tensor, there are three different symmetry adapted strain
components:

Kl =Tre, (29)

3 — <2822—£xx—8yy Exx—Syy> 7 30)

’ V6 T2



K2 = (g2 821, Exy)- @1
In first order only operators with I'' or I'* symmetry need
to be considered. As the strain tensor is symmetric, there
is no operator O with I'* symmetry, and only the oper-
ator O} remains. Hence, up to first order a hydrostatic
strain-dependent contribution to the effective Hamilto-
nian

HS = aTre (32)

with

1
1-66

e,ii

(33)

arises. As a consequence, linear strain is not able to lift
the degeneracy of I'® bands at the gamma point.

Next we consider linear combinations of the k vector
and the strain tensor ¢. With the three components of k,
and the six independent ones of &, there are a total of 18
different combinations k;¢ j;. Thus there are also 18 in-
dependent components of the parameters ;. Regard-
ing the direct product of the irreducible representatlons
PeTlerPer’) =Tr'el?e2lr*e3r’ there is ei-
ther one combination transforming according to I' and
'3, two according to T4, and three according to I'°. The
parameters needed for the conduction band are:

15 oB5ilges  Eyzke teaky +egk
’Cks - ’Ck;yny’ ’Cs;y’ - ﬁ ) (34)
(Syy — €2) kx
’Cﬁsl;k = ICk yxi?);; ICS v = E (Ezz - 8xx)ky s (35)
(exx — Syy)kz
55:4 1 Erz
Kieezs = Ky Xy Ky = —=k x| (36)
V2 oy
The resulting effective Hamiltonians therefore are:
Hlfslt = b; (8yzkx + szky + Exykz), (37)
Hl((ie‘i i =Di [(SZZ —ep)ko”
+(exx _Szz)ky0y+ (eyy — Sxx)kzgz] , (38)
and
s L k x
ke2;i :§ 3;i [(Exy y — exl)o
+(5yzkz - Sxykx)ay + (ezxkc — Syzky)(fz] s (39)

where we introduced the material constants Cs;; and D;
according to Ref. [30].

There are two possible ways for generating this type
of effective Hamiltonians. One possibility is first-order
perturbation theory with respect to the Hamiltonians
HAy;; and Hyyp. The second source of such terms orig-
inates from second-order perturbation theory includ-
ing combinations of the Hamiltonians Hy; and Hyy with
Hy and Hy;, respectively. Starting with the first-order
contributions originating from Hyyy, their correspond-
ing operators are Oks, Ol‘isl o and Okez ;.- Again, in first
order the contributions from Hyy vanish due to symme-
try. With these operators given, the required invariants
Ilfglll Iﬁfl‘ln, and Z, 6524” follow directly from Eq. (5).

According to Egs. (34)-(36) the second-order contri-
butions to the effective Hamiltonians (37)-(39) are gen-
erated by a coupling of the invariants of (’A)ﬁ with those
of &3 and O3, respectively. For an arbitrary band with '®
symmetry, the material constants are finally given by:

6;1 67;5+76;5 68;5+86;5
b — I]((is ii -z Z Ikz] Is Jji + Iklj Is S Ji (40)
i = ,
EGI_E7J E;i_ES;]
2
66;4 8;586;3 68;3786;5
_ Ikel ii IGU Zs 3 ji +Z€ sij Ik]z
D= Z : (a1)
2 2\/— Eﬁ;l - E8;]
and
67;5+76;5 67;5+76;5
C3-‘—1664 +IZ Ikl]IE‘]l I&‘l]Ik]l
I ke2;ii E6;t _ E7;j
68;5+-86;5 68;5+86;5
_ 1Ikz] Is Ji Ie ij Zk]l (42)
2 Es;i — Eg;)j

So far we considered general bands with I'® symmetry.
If, in addition, time reversal invariance is imposed, see
the next section, it is apparent that b; vanishes; compare
Eq. (37).

5 S-like conduction band

The bands with I'® symmetry considered so far (cf. ap-
pendix A) consist in general of a spatial part with T'! and
I'* symmetry. The conduction band, however, is usually
assumed to be “s”-like, and consists therefore only of a
spatial part with |T'!) symmetry (% = 0). Taking this re-
striction into account, not every term in the above op-
erators is able to contribute to its corresponding invari-
ant. Instead of discussing this point for every material
constant derived above, we focus on the constants D,
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and Cs,. which describe the coupling strength of a strain-
dependent spin-splitting.

To determine the non-vanishing terms, the opera-
tors Ol have to be separated into a “spatial” operator
05, and a Pauli matrix. The operators OV . =00, Ofm =
03, and OV;~A = O, are already spin-independent, and
the remaining operators can be found by decomposing
them with the help of

Oy =D 06y o X35 43)

KAS

into a product of a spatial operator égw and a Pauli
matrix. ‘

First-order contributions to the conduction band are
then only possible if an operator (A)}w which transforms
according to I'! is contained in the above decomposition.
This is not the case for the operator @ﬁsm, and the in-
variant corresponding to the conduction band constant
D, vanishes, IES;‘CC = 0. The invariant IES;CC of the sec-
ond material constant Cs,., however, is non-zero, and the

corresponding spatial operator is given by

L V2h
VI — n%cz

As the first-order contribution is prohibited by symme-
try, the material constant D, has to arise in second-order
perturbation theory which couples the invariants of @i/\

(O Vo + 0y Vi + 92 V). (44)

to those of O3,
The operator O, contains only the spatial operator
A 2h?
O}y, = el 14 (45)

anic?

in its decomposition. The spatial operators of @f( thus
both transform according to I'°, and the s-like conduc-
tion band couples only to bands with spatial symmetry
I'>. According to Egs. (41) and (42) there are therefore
only spatial operators with I'> symmetry allowed for the
invariants of 0%, and O2,. Both of them possess such
operators:

V3h
8mi 2

is contained in the decomposition of O3, , and

OVIa;l = V(‘/yy ‘/Zz) Xp- éx (46)

V2h
4mic

(VVaxp-&.—VVyxp-2) 47)

A5
OVIb;l

in A3
in O3;

At
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6 Conclusion

The general approach described in section 2 enables
a systematic derivation of all invariants. This is partic-
ularly important for all finite-band models as well as
for k- p models which include remote bands by quasi-
degenerate perturbation theory. We demonstrated this
by discussing the strain-dependent spin-splitting contri-
butions to the effective conduction band Hamiltonian.

As an important result, we find, in particular, that the
constant D, can only arise from the invariants of (A)f‘,la;l,
i.e., a part of the first term of the Hamiltonian Hyp; this
term, however, has been neglected in previous works
[13, 14, 29]. Hence, in these previous studies there is no
spin-splitting of the type (41), and D, = 0. In contrast, the
experiments of Refs. [30-33] show that D, is non-zero,
though by a factor of ~100 smaller than Cs. The exper-
imental result thus indicates that either the invariants
of Of‘,laﬂ are not negligible; or that the general assump-
tion of a pure s-like conduction band is not valid. This
question can, in principle, be decided theoretically by a
more detailed calculation which would require, however,
a precise determination of the single-particle pseudo po-
tential V4 (r), e.g., based on density functional theory. The
results of such a study, which is beyond the scope of the
present work, would thus allow a direct calculation of
the invariants based on the solution of the Hamiltonian
7:(0 + 7:[50.

In summary, this work shows that band parameters
can be obtained in a convenient way by a consequent
treatment in terms of symmetry arguments. This be-
comes especially obvious in the presence of strain where
the invariants of higher-order tensor operators (in Hyr,
e.g., fourth order) have to be calculated.

Acknowledgments. Supported by the Deutsche Forschungsge-
meinschaft through TRR 80.

Appendix A: Basis states

In crystals with zinc-blende structure the eigenstates

have to transform either according to I'®, I'’, or T'8, re-
spectively. The states used in this work are given as fol-

lows:
rH\  n r#@)
6 _ i\ _ i i
rim) = 0> V3 r;*(1)+ir;*(2)>’ (AD
600 1] 0 ni |THD) —iT4(2)
T? @) =i r}>_ﬁ -r4@) | (A2)




rz\  n r?(3)
7 —p2 i\ _ i i
) =n; o> /3 r§(1)+ir§(2)> (A3)
T _ 2| O\ nf [T —ir? @)
|Fi (2)) =1; Flg>_ ﬁ _1—-?(3) s (A4)
8r1vt 0 [T —irt@)
rP@) =~ F3(1)>+ J/6 2T4(3) >
5 5
_Zli r; (U;w (2)>’ 45
K@) = ri@\ _n 0
0 V2 M) —irt@)
5 5
n; —2I';7(3)
NG r§(1>+ir?(2>> (A6)
0 m r(1) +ir} )
n; | TP — il"?(Z)
+ /6 2I%(3) > A7
rsm\ ni | -2r{®
8 3| _ i i
[ri ) =i 0 > N r;*(1)+ir;*(2)>
m 0
V2 | —irs@) > (A8)

In the states above we used the notation

I\
NGV

IT)11) + T2 1)

Appendix B: Definition of the matrices X

For the derivation of the matrices X it is convenient to
define the operator P!, as follows [21]:

. l
o b
Pw’ -

h (B1)

(Dy,(9)" P,
4

where [, denotes the dimension of D‘W, hthe order of the
group, and the asterisk complex conjugation. This op-
erator has the property to project any quantity O onto
(9" provided p = « and y’ = A, more precisely: 73‘/ O =

0" 8,8, Applying P!, to the Hamiltonian (1) twice, we
obtain:

P, (Pl H) =P, ZIC“ o,

= K, 00 (B [P @) @)1)
o
58

(B2)

According to Eq. (3) each symmetry operation applied
to a basis state |F‘,?‘ (8)) leaves the band index i as well as
the index 1 of the irreducible representation unchanged.
If the irreducible representation I'** is contained in the
direct product of I'* ® I'?, the above expression can be
written as follows:

u N
731 H,] =

(D‘ ,(8) Djs (8)
x (DI (8)) K, Ot [T G0) T 641

_Z}COV glj]u %l)‘/ |Fa()‘)) r‘ﬁ()t)|

o

(B3)

for all combinations ij and «f. On the other hand, if the
irreducible representation I'* is not contained in the di-
rect product of I'* ® I'#, all matrix elements of H?jﬂ are
zero. Hence, each matrix X‘;ﬂx’; can be obtained from
Eq. (B3). Note that if I'* is contained in I'* ® I'¥ more
than once, each appearance of I'* corresponds to an in-
variant and a matrix. If needed, we take these mutual
independent invariants and matrices formally into ac-
count by replacing © — p(p). All matrices X are in accor-
dance with their definition, Eq. (B3), orthogonal and nor-
malized in the following sense:

inﬂaét(ﬂ)xﬁaal/lﬁ(ﬂ) inﬂsgt(n) ( al/‘islzts:(n')>*
88" 88

= Buudyy8pp - (B4)
Note that the definition of the matrices X depends on the
choice of the matrices D;;/ (g) which are not unique and
can differ by a similarity transformation. This ambiguity,
however, is, except for a trivial phase factor €', lifted by
the choice of basis with respect to the crystallographic
orientation.

All matrices X for the double group T; ® D'/?, used in
this work, were chosen to coincide — up to a normaliz-
ing prefactor — with the matrices of Refs. [9, 26], except
for the matrices J, and J3 which transform according
to I'*. In order to ensure ofthogonality, (B4), we defined
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X884@ = ], /4/5, and X884 = ((5/3) ]2 — (41/12)],)/+/5.
In addition, with respect to quantities which transform
according to I', we introduced X}**@ = {J s J24/+/3 and
X?g;s(h) = {(]y2 —J3, J.}/+/3, plus cyclic permutations,
respectively, where {A, B} denotes half the anticom-
mutator, (AB+ BA)/2. See also appendix A, especially
table A.9, in Ref. 24. The corresponding invariants are de-
noted as 7, and ;57" cf. Eq. (23).

Appendix C: Irreducible tensor operators

In the following we present the operators used in sec-
tions 3-5 for the calculation of effective Hamiltonians:

—_

O =0} + O} = Z(Dyr + Dy + Dz

wi

o V(Vix+ Vyy+ Ve =2V xp-o.  (C1)

12mgc2

2D,— Dix—Dyy

03 = O3+ 0%, = v —
v+ COu DXX\}zD, T e

2V,

X -V zz— Vxx—

pXxo 76
Vi—V,

pxo. VEZE 4 L

+ == VVoxp (=o*, —07Y,20%
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For the operators with I'* and I'> symmetry only the first
component is given, the remaining components are ob-
tained by cyclic permutation of all indices.

Key words. Effective Hamiltonian, zinc-blende symmetry, group
theoretical methods, k - p theory, strained crystals.
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