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Abstract We study uniqueness of Nash equilibria in atomic splittable congestion
games and derive a uniqueness result based on polymatroid theory: when the strategy
space of every player is a bidirectional flow polymatroid, then equilibria are unique.
Bidirectional flow polymatroids are introduced as a subclass of polymatroids possess-
ing certain exchange properties. We show that important cases such as base orderable
matroids can be recovered as a special case of bidirectional flow polymatroids. On the
other hand we show that matroidal set systems are in some sense necessary to guaran-
tee uniqueness of equilibria: for every atomic splittable congestion game with at least
three players and non-matroidal set systems per player, there is an isomorphic game
having multiple equilibria. Our results leave a gap between base orderable matroids
and general matroids for which we do not know whether equilibria are unique.

Keywords Polymatroid · Congestion game · Uniqueness of equilibria

1 Introduction

Congestion games as introduced in Rosenthal (1973) constitute an elegant game-
theoretic model describing the distributed allocation of resources among selfish
players. Specifically, such a game comprises a finite set of players, a finite set of
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resources and the pure strategies of a player are given by a set of allowable subsets of
resources. In the context of network games, the resources may correspond to edges of
a graph and the allowable subsets correspond to paths connecting a source and a sink.
Resources have cost functions that depend on the number of players currently using
the resource. For a given strategy profile (collection of pure strategies of the players),
the disutility of each player is just the sum of resource’ costs of the chosen subset of
resources. Rosenthal proved in his seminal paper that congestion games always admit
a pure Nash equilibrium.

1.1 Atomic splittable congestion games

Since the initial work of Rosenthal, several works studied related or generalized vari-
ants of congestion games. One such variant that we consider in this paper are so-called
atomic splittable congestion games. In this model, every player has a demand di > 0
that she may split fractionally over the allowable subsets. The cost of a resource is
then a function of the total load assigned to it. This class of games has applications in
modeling packet-routing in communication networks (see Orda et al. 1993; Korilis
et al. 1997, 1995), traffic networks ( Haurie andMarcotte 1985) and logistics networks
( Cominetti et al. 2009a).

Formally, there is a finite set of resources E , a finite set of players N , and each
player i ∈ N is associated with a weight di ≥ 0 and a collection of allowable subsets
of resources Si ⊆ 2E , where 2E denotes the power set of E . A strategy for player i is
then a (possibly fractional) distribution �xi ∈ R≥0

|Si | of the weight over the allowable
subsets S ∈ Si . Thus, one can compactly represent the strategy space of every player
i ∈ N by the following polytope:

Pi :=
⎧
⎨

⎩
�xi ∈ R

|Si |
≥0 :

∑

S∈Si

xS = di

⎫
⎬

⎭
. (1)

We denote by �x = (�xi )i∈N the overall strategy profile. The induced load under �xi at
e is defined as xi,e := ∑

S∈Si :e∈S xS and the total load on e is then given as xe :=∑
i∈N xi,e. Resources have player-specific cost functions ci,e : R≥0 → R≥0 which

are assumed to be non-negative, increasing, differentiable and convex. The total cost
of player i in strategy distribution �x is defined as

πi (�x) =
∑

e∈E
ci,e(xe) xi,e.

Each player wants to minimize the total cost on the used resources and a Nash equilib-
rium is a strategy profile �x from which no player can unilaterally deviate and reduce
its total cost. Using that the strategy space is compact and cost functions are increasing
and convexKakutanis’ fixed point theorem implies the existence of aNash equilibrium
(Rosen 1965, Theorem 1).
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1.2 Uniqueness of equilibria

A fundamental property of a strategic game is the uniqueness of equilibria. This
property is key to actually predict the outcome of distributed resource allocation: if
there are multiple equilibria it is not clear upfront which equilibrium will be selected
by the players. This issue has been raised explicitly by Aumann (1985) quoted below:
“…it is by no means clear how the players would arrive at an equilibrium, why they
should play equilibrium strategies, and how a specific equilibrium would be chosen
from among the set of all equilibria”.

An intriguing question in the field of atomic splittable congestion games is the
possible non-uniqueness of equilibria.Let �x and �y be two equilibria. We say that �x and
�y are different whenever there exists a player i and resource e such that xi,e �= yi,e. A
variant on this question is whether or not there exist multiple equilibria such that there
exists at least one resource e for which xe �= ye. We call this variant “uniqueness up
to induced load on the resources”.

For non-atomic players and network congestion games on directed graphs, Milch-
taich (2005) proved that Nash equilibria are not unique when cost functions are
player-specific. Uniqueness is only guaranteed if the underlying graph is two ter-
minal s-t-nearly-parallel. Richman and Shimkin (2007) extended this result to hold
for atomic splittable network games. Bhaskar et al. (2015) looked at uniqueness up to
induced load on the resources. They proved that even when all players experience the
same cost on a resource, there can exist multiple equilibria. They further proved that
for two players, the Nash equilibrium is unique if and only if the underlying undirected
graph is generalized series-parallel. For multiple players of two types (players are of
the same type if they have the same weight and share the same origin-destination
pair), there is a unique equilibrium if and only if the underlying undirected graph is
s-t-series-parallel. For more than two types of players, there is a unique equilibrium
if and only if the underlying undirected graph is generalized nearly-parallel.

1.3 Our results and outline of the paper

In this paper we study the uniqueness of equilibria for general set systems (Si )i∈N .
Interesting combinatorial structures of the Si ’s beyond paths may be trees, forests,
Steiner trees or tours all in a directed or undirected graph or bases of matroids.

As our main result we give a sufficient condition for uniqueness based on the theory
of polymatroids. We show that if the strategy space of every player is a polymatroid
base polytope satisfying a special exchange property—we term this class of polyma-
troids bidirectional flow polymatroids—the equilibria are unique.1 We demonstrate
that bidirectional flow polymatroids are quite general as they contain base-orderable
matroids, gammoids, transversal and laminar matroids. For an overview of special
cases that follow from our main result, see Fig. 1.

The uniqueness result is stated in Sect. 4. In Sect. 5 we show that base-orderable
matroids are a special case of bidirectional flow polymatroids. Definitions of polyma-

1 The formal definition of bidirectional flow polymatroids appears in Definition 3.3.
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Fig. 1 Several well-known classes of matroids and the relations between them. Here GSP is short for
generalized series-parallel. References and arguments for the seven inclusions can be found in “Appendix
A”

troid congestion games and bidirectional flow polymatroids are introduced in Sects. 2
and 3, respectively.

In Sects. 6 and 7 we complement our uniqueness result by showing multiple equi-
libria exist when certain assumptions are dropped. In Sect. 6 we discuss why it is
necesarry for cost functions to be differentiable. In Sect. 7 we consider a game with at
least three players for which the set systems Si of all players i ∈ N are not bases of a
matroid. Then there exists a game with strategy spaces φ(Si ) isomorphic to Si which
admits multiple equilibria. Here, the term isomorphic means that there is no a priori
description on how the individual strategy spaces of players interweave in the ground
set of resources. Our results leave a gap between general matroids and base orderable
matroids for which we do not know whether or not equilibria are unique.

In Sect. 8 we consider uniqueness of equilibria if the set systems Si correspond to
paths in an undirected graph. The instance used for showing multiplicity of equilibria
of non-matroid games can be seen as a 3-player game played on an undirected 3-
vertex cycle graph. From this we can derive a new characterization of uniqueness of
equilibria in undirected graphs. If we assume at least three players and if we do not
specify beforehand which vertices of the graph serve as sources or sinks, an undirected
graph induces unique equilibria if and only if the graph has no cycle of length at least
3.

1.4 Further related work

Atomic splittable (network) congestion games have been first proposed by Orda et al.
(1993) and Altman et al. (2002) in the context of modeling routing in communication
networks. Other applications include traffic and freight networks (cf. Cominetti et al.
2009b) and scheduling (cf. Huang 2011). Haurie and Marcotte (1985) showed that
classical nonatomic congestion games (cf. Beckmann et al. 1956; Wardrop 1952)
can be modeled as atomic splittable congestion games by constructing a sequence of
games and taking the limit with respect to the number of players. It follows that atomic
splittable congestion games are strictly more general as their nonatomic counterpart.
Cominetti et al. (2009b), Harks (2011) and Roughgarden and Schoppmann (2015)
studied the price of anarchy in atomic splittable congestion games.

Matroid congestion games were first considered by Ackermann et al. (2008), Ack-
ermann et al. (2009). They showed that (unsplittable) weighted congestion games
possess pure Nash equilibria even for player-specific nondecreasing cost functions.
They also showed that the matroid property is the maximal property that gives rise
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to a pure Nash equilibrium, that is, for any strategy space not satisfying the matroid
property, there is an instance of a weighted congestion game not having a pure Nash
equilibrium. Integral polymatroid congestion games, a generalization of matroid con-
gestion games, were later introduced in Harks et al. (2014) (see also Harks et al.
2014). In addition, polymatroid theory was recently used in the context of nonatomic
congestion games, where it is shown that matroid set systems are immune to the Braess
paradox, see Fujishige et al. (2015).

2 Polymatroid congestion games

In polymatroid congestion games we assume that the strategy space for every player
corresponds to a polymatroid base polytope.

In order to define polymatroids we first have to introduce submodular functions. A
functionρ : 2E → R is called submodular ifρ(U )+ρ(V ) ≥ ρ(U∪V )+ρ(U∩V ) for
allU, V ⊆ E . It is called monotone if ρ(U ) ≤ ρ(V ) for allU ⊆ V , and normalized if
ρ(∅) = 0. Given a submodular, monotone and normalized function ρ, the pair (E, ρ)

is called a polymatroid. The associated polymatroid base polytope is defined as:

Pρ :=
{
�x ∈ R

E≥0 | x(U ) ≤ ρ(U ) ∀U ⊆ E, x(E) = ρ(E)
}

,

where x(U ) := ∑
e∈U xe for all U ⊆ E .

In a polymatroid congestion game,we associatewith every player i a player-specific
polymatroid (E, ρi ) and assume that the strategy space of player i is defined by the
(player-specific) polymatroid base polytope Pρi .

Pρi :=
{
�xi ∈ R

E≥0 | xi (U ) ≤ ρi (U ) ∀U ⊆ E, xi (E) = ρi (E)
}

.

From now on, when we mention a polymatroid congestion game, we mean a
weighted atomic splittable polymatroid congestion game. We give three examples
of polymatroid congestion games:

Example 2.1 (QueueingGames cf. Korilis et al. 1997) Let Q = {q1, . . . qm} be a set of
M/M/1 queues served in a first-come-first-served fashion and N = {1, . . . , n} a set of
companies who independently send packets with arrival rates d1, . . . dn . Every queue q
has a single server with exponentially distributed service time with mean 1/μq , where
μq > 0. Each packet is routed to a single server q out of a set of allowable queues,
depending on the company. Given a distribution of packets �x ∈ R

m≥0, the mean delay

of queue q can be computed as cq(xq) = 1
μq−xq

. In this case the sets Si are uniform
rank-1 matroids, which are also called singleton games.

Example 2.2 (Transversal games) Consider a finite set E of storing facilities, a finite
set A of locations and a finite set N of players. Each player has to store an amount of
di of divisible goods in each area j ∈ A. Each area j can be served from any storing
facility within a given set S j ⊆ E . The sets S j may overlap, even for the same player
i . However, due to reliability reasons, a player cannot store more than d j goods in one
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storing facility. The cost ci,e for using a specific storing facility depends on the total
amount of goods that have to be stored in storing facility e. The more goods need to
be stored, the larger the cost to use it.

This setting can be modeled as a bipartite graph G on vertex sets E and A, where
an edge between area j ∈ A and storage facility e ∈ E exists if and only if area j
can be served from storage facility e. In a feasible strategy a player divides its goods
over bases of the transversal matroid of this graph: subsets of storage facilities that are
the endpoints of a maximal matching in G. Hence, the strategy space of every player
i ∈ N corresponds to the base polytope Pdi ·rki , where rki is the rank function of a
transversal matroid.

Example 2.3 (Matroid Congestion Games) A matroid M is a pair (E, I), where E is
a finite set of resources and I is a family of subsets of E , called the independent sets.
Set I has the following three properties:

1. The empty set is an independent set: ∅ ∈ I.
2. Set I is closed under taking subsets: if I ⊆ J and J ∈ I, then I ∈ I.
3. Set I has the exchange property: if I, J ∈ I and |I | < |J |, then there exists an

e ∈ J such that I ∪ {e} ∈ I.
A basis is an independent set that becomes dependent on adding any element of E .
The base set B contains all bases of (E, I).

Consider an atomic splittable matroid congestion model, where for every i ∈ N
the allowable subsets are the base set Bi of a matroid Mi = (E, Ii ). The rank
function rki : 2E → R of matroid Mi is defined as: rki (S) := max{|U | | U ⊆
S and U ∈ Ii } for all S ⊆ E , and is submodular, monotone and normalized Pym and
Perfect (1970). Moreover, the characteristic vectors of the bases in Bi are exactly the
vertices of the polymatroid base polytope Prki . It follows that the polytope Pi := {�x ∈
R

|Bi |
≥0 | ∑B∈Bi

xB = di } corresponds to strategy distributions that lead to load vectors
in the following polytope:

Pdi ·rki =
{
�xi ∈ R

E≥0|xi (U ) ≤ di · rki (U ) ∀U ⊆ E, xi (E) = di · rki (E)
}

.

Hencematroid congestionmodels are a special case of polymatroid congestionmodels.
Both the singleton games in Example 2.1 and the transversal games in Example 2.2
are a special case of matroid congestion games.

3 Bidirectional flow polymatroids

We provide a sufficient condition for a class of polymatroid congestion games to
have a unique Nash equilibrium. We prove that if the strategy space of every player
is the base polytope of a bidirectional flow polymatroid, Nash equilibria are unique.
In order to define the class of bidirectional flow polymatroids we first discuss some
basic properties of polymatroids.We start with a generalization of the strong exchange
property for matroids. Let χe ∈ Z

|E | be the characteristic vector with χe(e) = 1, and
χe(e′) = 0 for all e′ �= e.
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Lemma 3.1 (Strong exchange property polymatroids Murota 2003) Let Pρ be a
polymatroid base polytope defined on (E, ρ). Let �x, �y ∈ Pρ and suppose xe > ye
for some e ∈ E. Then there exists an e′ ∈ E with xe′ < ye′ and an ε > 0 such
that:

�x + ε(χe′ − χe) ∈ Pρ and �y + ε(χe − χe′) ∈ Pρ.

This exchange property will play an important role in the definition of bidirec-
tional flow polymatroids. Given a strategy �x in the base polytope of polymatroid
(E, ρ), we are interested in the exchanges that can be made between xe and xe′
for some resources in e, e′ ∈ E . For that, we define a directed exchange graph
D(�x) = (E, V ), where the set of vertices equals the set of resources E . The edge
set is V := {

(e, e′)|∃ ε > 0 such that �x + ε(χe′ − χe) ∈ Pρ

}
. We define exchange

capacities ĉ�x (e, e′) (following notation of Fujishige 2005), which denotes the max-
imal amount of load that can be exchanged in �x between resources e and e′. More
formally:

ĉ�x (e, e′) := max{α|�x + α(χe′ − χe) ∈ Pρ}.

We use Lemma 3.1 to prove the following:

Lemma 3.2 Let Pρ be a polymatroid base polytope defined on (E, ρ). For �x, �y ∈ Pρ ,
there exists a flow in D(�x) satisfying all supplies and demands, where a resource e
with xe > ye has supply of xe − ye and e with xe < ye has a demand of ye − xe.

Proof Consider the following algorithm:

1. Let f be the zero flow, a flow where we send zero flow along all edges in D(�x).
2. If �x = �y, then stop and output flow f .
3. Choose any element e ∈ E such that xe > ye.
4. Use Lemma 3.1 to find e′ ∈ E such that xe′ < ye′ and ε > 0 with

�x + ε(χe′ − χe) ∈ Pρ and �y + ε(χe − χe′) ∈ Pρ.

Put α = min
{
ĉ�x (e, e′), ĉ�y(e′, e), xe − ye, ye′ − xe′

}
, define �y ← �y+α(χe −χe′)

and add α flow to edge (e, e′) in flow f .
5. If α < xe − ye, then go to step 4. Otherwise (α = xe − ye), go to step 2.

Note that this algorithm is a slightly changed version of (Fujishige 2005, Theo-
rem 3.27). The only difference is that we do not change y to x with exchanges that only
can be made on strategy �y (which is proven in (Fujishige 2005, Theorem 3.27)) but
with exchanges that can be executed on both �x and �y. As these exchanges always exists,
the results by (Fujishige 2005, Theorem 3.27) are still valid for our algorithm. Hence,
this algorithm transforms �y into �x with at most �|E |2/4� elementary transformations
described in Lemma 3.1, such that each component ye with ye < xe monotonically
increases and each component ye with ye > xe monotonically decreases. Therefore f
satisfies all supplies and demands as described in the lemma. Flow f also satisfies all
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capacity constraints, as every pair of resources (e, e′) is considered at most once, and
all exchanges can be done on �x . Hence f(e,e′) ≤ ĉ�x (e, e′), thus f is a flow in D(�x)
satisfying all supplies and demands. ��

The flow f mentioned in Lemma 3.2 is a flow from the perspective of strategy �x
and therefore we call this a directed flow. In the following we define a bidirectional
flow. Let Pρ again be a polymatroid base polytope on set E . For any �x, �y ∈ Pρ define
the capacitated graph D(�x, �y) on vertices E . An edge (e, e′) exist if there is an ε > 0
such that �x + ε(χ ′

e − χe) ∈ Pρ and �y + ε(χe − χ ′
e) ∈ Pρ . For edges (e, e′) we define

capacities ĉ�x,�y(e, e′) as follows:

ĉ�x,�y(e, e′) := max{α|�x + α(χe′ − χe) ∈ Pρ and �y + α(χe − χ ′
e) ∈ Pρ}

A bidirectional flow is a flow in D(�x, �y) where every resource e with xe > ye has
supply of xe − ye and every resource e with xe < ye has a demand of ye − xe. Such a
flow might not exist. In that case we say that �x and �y are conflicting strategies.

We are ready to define the class of bidirectional flow polymatroids:

Definition 3.3 (Bidirectional flow polymatroi) A polymatroid (E, ρ) is called a bidi-
rectional flow polymatroid if for every pair of vectors �x, �y in the base polytope Pρ ,
there exists a bidirectional flow in D(�x, �y).
We give a simple example of a bidirectional flow polymatroid.

Example 3.4 Weconsider polymatroid Pρ defined by the graphicmatroid on the graph
depicted in Fig. 2. In this polymatroid, a total load of 1 is divided over the bases of
the graphic matroid. Here, for any two strategies �x and �y there exists a bidirectional
flow in D(�x, �y). In particular, in Fig. 3 we show the existance for a bidirectional flow
for strategy �x and �y defined in Fig. 2.

123



820 J Comb Optim (2018) 36:812–830

4 A uniqueness result

In this section we prove that when the strategy space of every player is the base
polytope of a bidirectional flow polymatroid, equilibria are unique. We denote the
marginal cost of player i on resource e ∈ E by μi,e(�x) = ci,e(xe) + xi,ec′

i,e(xe).
An equilibrium condition for polymatroid congestion games, a result that follows

from (Harks 2011, Lemma 1) is as follows:

Lemma 4.1 Let �x be a Nash equilibrium in a polymatroid congestion game. If xi,e >

0, then for all e′ ∈ E for which there is an ε > 0 such that �xi + ε(χe′ − χe) ∈ Pρi , we
have μi,e(�x) ≤ μi,e′(�x).

In the rest of this section we will prove the following theorem:

Theorem 4.2 If for a polymatroid congestion game, the strategy space for every
player is the base polytope of a bidirectional flow polymatroid, then the equilibria of
this game are unique.

From now on we assume �x = (�xi )i∈N and �y = (�yi )i∈N are strategy profiles,
where strategies �xi and �yi are taken from the base polytope Pρi of a player-specific
bidirectional flow polymatroid. Before we prove Theorem 4.2, we first introduce some
new notation. We define E+ = {e ∈ E |xe > ye} and E− = {e ∈ E |xe < ye} as the
sets of globally overloaded and underloaded resources. Define E= = {e ∈ E |xe = ye}
as the set of resources on which the total load does not change. In the same way we
define player-specific sets of locally underloaded and overloaded resources Ei,+ =
{e ∈ E |xi,e > yi,e} and Ei,− = {e ∈ E |xi,e < yi,e}. We also introduce four player
sets:

N+
> =

⎧
⎨

⎩
i ∈ N |

∑

e∈E+
xi,e − yi,e > 0

⎫
⎬

⎭
, N−

> =
⎧
⎨

⎩
i ∈ N |

∑

e∈E−∪E=
xi,e − yi,e > 0

⎫
⎬

⎭
,

N+
< =

⎧
⎨

⎩
i ∈ N |

∑

e∈E+
xi,e − yi,e ≤ 0

⎫
⎬

⎭
, N−

< =
⎧
⎨

⎩
i ∈ N |

∑

e∈E−∪E=
xi,e − yi,e ≤ 0

⎫
⎬

⎭
.

We can distinguish between two cases. Either E = E=, thus xe = ye for all resources
e ∈ E , or E �= E=, which implies that E+ and E− are non-empty.

Lemma 4.3 If E �= E=, then N+
> �= ∅.

Proof Every player distributes the same weight over the resources in �xi and �yi , thus∑
e∈E xi,e − yi,e = 0 and N+

> = N−
< and N+

< = N−
> . As E+ �= ∅ we have:

0 <
∑

e∈E+
xe − ye =

∑

i∈N+
>

∑

e∈E+
xi,e − yi,e +

∑

i∈N+
<

∑

e∈E+
xi,e − yi,e.

Note that the first term in the last expression is non-negative and the second one is
non-positive. As the whole equation should be positive, we need that this first term is
strictly positive and therefore N+

> �= ∅. ��
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si

e1

ek

ti

Ei,+ Ei,−

Cut δ(E+)

Fig. 4 Visualization of graph G(�xi , �yi ) and cut δ(E+) used in the proof of Lemma 4.4

For each player i we create a graph G(�xi , �yi ) from graph D( �xi , �yi ) by adding a
super-source si and a super-sink ti to D( �xi , �yi ). We add edges from si to e ∈ Ei,+
with capacity xi,e − yi,e and edges from e ∈ Ei,− to ti with capacity yi,e − xi,e. Graph
G(�xi , �yi )= (VG , EG) is visualized in Fig. 4.

Recall that strategies �xi and �yi are both chosen from the base polytope of a bidi-
rectional flow polymatroid. Therefore there exists a flow fi in D( �xi , �yi ) where every
resource e ∈ Ei,+ has a supply of xi,e − yi,e and e ∈ Ei,− a demand of yi,e − xi,e.
Using fi we define a flow f ′

i in G(�xi , �yi ) as follows:

f ′
i (e, e

′) =

⎧
⎪⎨

⎪⎩

xi,e − yi,e, if e = si and e′ ∈ Ei,+,

yi,e − xi,e, if e ∈ Ei,− and e′ = ti ,

fi (e, e′), otherwise.

(2)

Lemma 4.4 There exists a player i and a path (si , e1, . . . , ek, ti ) in G(�xi , �yi ) such
that e1 ∈ Ei,+ ∩ (E+ ∪ E=) and ek ∈ Ei,− ∩ (E− ∪ E=).

Proof If E �= E=, then using Lemma 4.3 we have that N+
> �= ∅, and we pick

a player i ∈ N+
> . Flow f ′

i can be decomposed into flow carrying si -ti paths, and
we will show that there exists a path in this path decomposition that goes from
si to a vertex e1 ∈ Ei,+ ∩ E+, and, after visiting possibly other vertices, finally
goes through a vertex ek ∈ Ei,− ∩ (E− ∪ E=) to ti . To see this consider the cut
δ(E+) := {(u, v) ∈ EG | u ∈ E+ and v /∈ E+, or u /∈ E+ and v ∈ E+)}, as visual-
ized in Fig. 4. Recall that i ∈ N+

> , hence,
∑

e∈E+ xi,e− yi,e > 0. Thus, in f ′
i more load

enters E+ from si , than leaves E+ to ti . This implies that in the flow decomposition
of f ′

i there must be a path that goes from si to a vertex e1 ∈ Ei,+ ∩ E+, crosses cut
δ(E+) an odd number of times to a vertex ek ∈ Ei,− ∩ (E− ∪ E=) before ending in
ti . As this is a flow-carrying path in f ′

i , it exists in G(�xi , �yi ).
If E = E=, pick any player i for which there exists a resource e with xi,e �=

yi,e and look at the path decomposition of f ′
i . Every path (si , e1, . . . , ek, ti ) in this

decomposition is a path such that e1 ∈ Ei,+ and ek ∈ Ei,−. As E = E=, it also holds
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that e1 ∈ Ei,+ ∩ E= and ek ∈ Ei,− ∩ E=. As this is a flow-carrying path in f ′
i , it

exists in G(�xi , �yi ) ��
Proof of Theorem 4.2 Assume �x and �y are both Nash equilibria. Using Lemma 4.4
we find a path (si , e1, . . . , ek, ti ) in G(�xi , �yi ) such that e1 ∈ Ei,+ ∩ (E+ ∪ E=)

and ek ∈ Ei,− ∩ (E− ∪ E=). Since every edge (e j , e j+1) exists in G(�xi , �yi ), for all
j ∈ {1, . . . , k − 1} we get for sufficiently small ε > 0:

�xi + ε(χe j+1 − χe j ) ∈ Pρi and �yi + ε(χe j − χe j+1) ∈ Pρi .

Using Lemma 4.1 we obtain for �x :

μi,e1(�x) ≤ μi,e2(�x) ≤ · · · ≤ μi,ek (�x), (3)

and similarly for �y:

μi,ek (�y) ≤ μi,ek−1(�y) ≤ · · · ≤ μi,e1(�y). (4)

Recall thatμi,e(�x) = ci,e(xe)+xi,ec′
i,e(xe).As e1 ∈ Ei,+,wehave that xi,e1 > yi,e1 .

Because ci,e1 is strictly increasing and e1 ∈ (E+ ∪ E=) we get ci,e1(xe1) ≥ ci,e1(ye1)
and c′

i,e1
(xe1) > 0 using xe1 ≥ xi,e1 > 0. Moreover, since ci,e1 is convex, the slope of

ci,e1 is non-decreasing and, hence, c′
i,e1

(xe1) ≥ c′
i,e1

(ye1). Putting things together, we
get

μi,e1(�y) < μi,e1(�x). (5)

Similarly, as ek ∈ Ei,− ∩ (E− ∪ E=), we have:

μi,ek (�x) ≤ μi,ek (�y). (6)

Combining (3), (4), (5) and (6), we have:

μi,ek (�x) ≤ μi,ek (�y) ≤ μi,e1(�y) < μi,e1(�x) ≤ μi,ek (�x).

This is a contradiction and therefore either strategy �xi or �yi is not aNash equilibrium
for player i . ��

5 Applications

In this section we demonstrate that bidirectional flow polymatroids are general enough
to allow formeaningful applications. As described in Example 2.3, matroid congestion
games belong to polymatroid congestion games. A subclass of matroids are base
orderable matroids introduced by Brualdi (1968) and Brualdi and Scrimger (1969).

Definition 5.1 (Base orderable matroid) A matroidM = (E, I) is called base order-
able if for every pair of bases (B, B ′) there exists a bijective function gB,B′ : B → B ′
such that both B − e + gB,B′(e) ∈ B and B ′ + e − gB,B′(e) ∈ B for all e ∈ E .
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We prove that polymatroids defined by the rank function of a base orderable matroid
belong to the class of bidirectional flow polymatroids. Therefore, all matroid con-
gestion games for which the player-specific matroids are base orderable have unique
equilibria.

Theorem 5.2 Let rk be the rank function of a base orderable matroid M = (E, rk).
Then, for any d ≥ 0, the polymatroid (E, d · rk) is a bidirectional flow polymatroid.

Proof Similar as in Example 2.3, polytope P describes how weight d can be divided
over bases in B to obtain a feasible strategy �x ∈ Pd·rk . We call vector �x ′ ∈ P a
base decomposition of �x if it satisfies xe = ∑

B∈B;e∈B x ′
B for all e ∈ E . Note that

a base composition of �x ∈ Pd·rk always exists, as Pd·rk is the convex hull of all
characteristic vectors (multiplied by d) of all the bases of matroid M (see Fujishige
2005, Corollary 3.25). Given two vectors �x, �y ∈ Pd·rk , we look at the differences
between two base decompositions �x ′, �y′ ∈ P . We introduce setsB+,B− ⊂ B that will
contain respectively the overloaded and underloaded bases: B+ = {B ∈ B|x ′

B > y′
B}

and B− = {B ∈ B|x ′
B < y′

B}.
Using these sets we create the complete directed bipartite graph DB(�x, �y) on ver-

tices (B+,B−), where bases B ∈ B+ have a supply x ′
B − y′

B and bases B ∈ B−
have a demand y′

B − x ′
B . As the total supply equals the total demand, there exists a

transshipment t from strategies B ∈ B+ to strategies B ′ ∈ B−, such that, when carried
out, we obtain �y′ from �x ′. We denote by t(B,B′) the amount of load transshipped from
B ∈ B+ to B ′ ∈ B−.

In the remainder of the proof, we use transshipment t to construct a flow f in graph
D(�x, �y). As the polymatroid is definedby the rank function of a base orderablematroid,
for every pair of bases (B, B ′) there exists a bijective function gB,B′ : B → B ′ such
that both B − e + gB,B′(e) ∈ B and B ′ + e − gB,B′(e) ∈ B for all e ∈ B. Note
that when e ∈ B ∩ B ′, gB,B′(e) = e. Using the function gB,B′ , we can decompose
the value transshipped from B to B ′ into a transshipment between resources. For all
combinations of resources (e, e′) ∈ E × E we define:

B2
e,e′ := {

(B, B ′) ∈ B+ × B−|e ∈ B, e′ ∈ B ′ and gB,B(e) = e′} .

We define flow f as: f(e,e′) = ∑
(B,B′)∈B2

e,e′
tB,B′ for all (e, e′) ∈ E × E . Then f has

the following two properties:

1. It satisfies all demands and supplies in D(�x, �y) as f is created from base decom-
positions �x ′, �y′ for strategy profiles �x and �y.

2. It satisfies capacities ĉ�x,�y(e, e′) of D(�x, �y), as �x + ∑
(B,B′)∈B2

e,e′
tB,B′ · (χe′ − χe)

is a convex combination of bases, and thus an element of Pd·rk . Therefore,

f(e,e′) =
∑

(B,B′)∈B2
e,e′

tB,B′ < ĉ�x,�y(e, e′).

Hence, f is a feasible flow in D(�x, �y), satisfying all supplies and demands. As �x, �y ∈
Pd·rk were chosen arbitrarily, Pd·rk is a bidirectional flow polymatroid. ��
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Fig. 5 Left the K4 with two
strategies �x (thick), �y (dashed).
Right D(�x, �y)

1

2
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3

4

5
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23

4 5
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An application of these results can be found in the spanning tree games.

Example 5.3 (Spanning Tree Games) Consider a finite set of players N = {1, . . . n}
and an undirected graph G = (V, E) with non-negative, increasing, differentiable,
convex and player specific edge costs functions ci,e for all e ∈ E and i ∈ N . In a
spanning tree game, every player i is associated with a weight di and a subgraph Gi

of G. A strategy for player i is to divide it’s weight along the spanning trees of Gi ,
to minimize his total costs. If G is a generalized series parallel graph, then Pdi ·rki is a
bidirectional flow polymatroid, where rki be the rank function for the graphic matroid
on subgraph Gi , (cf. Fig. 1). Theorem 5.2 implies that equilibria will be unique.

For graphic matroids, the generalized series-parallel graph is the maximal graph
structure that allows for a bidirectional flow between every pair of strategies.

Theorem 5.4 ( Korneyenko 1994; Nishizeki and Chiba 1988) A graph is generalized
series-parallel if and only if it does not contain the K4 as a minor.

Let rk be the rank function for the graphic matroid on the K4, we show that there
exist two conflicting strategies �x, �y ∈ Prk , thus there does not exist a flow f in D(�x, �y).
Example 5.5 Polymatroid (E, rk) based on the rank function of the graphic matroid
on the K4 is not a bidirectional flow polymatroid. Let the resources be numbered as
in Fig. 5 and look at the strategies �x = (1, 1, 0, 0, 0, 1) and �y = (0, 0, 1, 1, 1, 0).
Graph D(�x, �y) is depicted in Fig. 5. Then there is no flow f in D(�x, �y) that satisfies
all supplies and demands. Resource 1 and 6 have both a supply of 1 and can only
exchange load with resource 4 , which only has demand 1. Thus such a flow f does
not exist, and (E, rk) is not a bidirectional flow polymatroid.

6 Non-differentiable convex functions

So far we assumed cost functions to be differentiable. When this is not the case, the
proof we gave in the previous sectionwon’t hold.When a function is not differentiable,
one speaks about the left derivative c−(x) and the right derivative c+(x). In the same
way we define μ−

i,e(�x) = c(xe) + xi,ec−(xe) and μ+
i,e(�x) = c(xe) + xi,ec+(xe). For

non-differentiable functions, equilibrium condition 4.1 generalizes as follows:

Lemma 6.1 (Theorem 8.1, Fujishige 2005) Let �x be a Nash equilibrium in a poly-
matroid congestion game. If xi,e > 0, then for all e′ ∈ E for which there is an ε > 0
such that �xi + ε(χe′ − χe) ∈ Pρi , we have μ−

i,e(�x) ≤ μ+
i,e′(�x).
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The uniqueness proof in the previous section will not hold as Eqs. (5) and (6) might
fail to hold using this new equilibrium condition. An example with multiple equilibria
is as follows.

Example 6.2 We look at a two player asymmetric game on three resources. Both
players have equal weight 1, and the first player can only use resource 1 or 2, the
second player can only use resource 2 or 3. Note that this game is a 1-uniform matroid
congestion, and therefore a bidirectional polymatroid.Weuse the following non-player
specific cost functions:

c1(x1) = 4x1 c2(x2) =
{
x2 if x2 < 1

10x2 − 9 otherwise
c3(x3) = 4x3.

Let (x1,1, x1,2, x2,2, x2,3) denote a game. Then both ( 13 ,
2
3 ,

1
3 ,

2
3 ) and ( 23 ,

1
3 ,

2
3 ,

1
3 ) cor-

respond to Nash equilibria. Note that these are two Nash equilibria where the total
load on the resources differ.

The same example can be modified for one with symmetric strategy spaces, but
player specific costs, by incurring a high cost on the unavailable resources. The ques-
tion remains unresolved for symmetric player specific cost functions.

7 Non-matroid set systems

We now derive necessary conditions on a given set system (Si )i∈N so that any atomic
splittable congestion game based on (Si )i∈N admits unique equilibria. We show that
the matroid property is a necessary condition on the players’ strategy spaces that
guarantees uniqueness of equilibriawithout taking into account how the strategy spaces
of different players interweave.2 To state this property mathematically precisely, we
introduce the notion of embeddings of Si in E . An embedding is a map τ := (τi )i∈N ,
where every τi : Ei → E is an injectivemap from Ei := ∪S∈Si S to E . For X ⊆ Ei , we
denote τi (X) := {τi (e), e ∈ X}. Mapping τi induces an isomorphism φτi : Si → S ′

i
with S �→ τi (S) and S ′

i := {τi (S)|S ∈ Si }. Isomorphism φτ = (φτi )i∈N induces the
isomorphic strategy space φτ (S) = (φτi (Si ))i∈N .
Definition 7.1 A family of set systems Si ⊆ 2Ei , for i ∈ N is said to have the
strong uniqueness property if for all embeddings τ , the induced game with isomorphic
strategy space φτ (S) has unique Nash equilibria.

Since for bases of matroids any embedding τi with isomorphism φτi has the prop-
erty that φτi (Si ) is again a collection of bases of a matroid, we obtain the following
immediate consequence of Theorem 4.2.

Corollary 7.2 If (Si )i∈N consists of bases of a base-orderable matroid Mi = (E, Ii ),
i ∈ N, then (Si )i∈N possess the strong uniqueness property.

2 The term “interweaving” has been introduced by Ackermann et al. (2008), Ackermann et al. (2009).
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Table 1 Cost functions used for constructing a game with multiple equilibria

e f g

Player 1 c1,e(x) = x3 c1, f (x) = x + 1 c1,g(x) = x + 1

Player 2 c2,e(x) = x + 1 c2, f (x) = x3 c2,g(x) = x + 1

Player 3 c3,e(x) = x + 1 c3, f (x) = x + 1 c3,g(x) = x3

For obtaining necessary conditions we need a certain property of non-matroids
stated in the following lemma.

Lemma 7.3 (Ackermann et al. 2009, Lemma 16) If Si ⊆ 2Ei with Si �= ∅ is a non-
matroid, then there exist X,Y ∈ Si and {a, b, c} ⊆ X
Y := (X \ Y ) ∪ (Y \ X) such
that for each set Z ∈ Si with Z ⊆ X ∪ Y , either a ∈ Z or {b, c} ⊆ Z.

Theorem 7.4 Let |N | ≥ 3 and assume that for all i ∈ N, Si is a non-matroid set
system. Then, (Si )i∈N does not have the strong uniqueness property.

Proof We will show that there are embeddings τi : Ei → E , i ∈ N , such that the
isomorphic game φτ (S) = (φτ1(S1), . . . , φτn (Sn)) admits multiple equilibria.

We can assume w.l.o.g. that each set system Si forms an anti-chain (in the sense
that X ∈ Si , X ⊂ Y implies Y /∈ Si ) since cost functions are non-negative and strictly
increasing. Let us call a non-empty set system Si ⊆ 2Ei a non-matroid if Si is an
anti-chain and (Ei , {X ⊆ S : S ∈ Si }) is not a matroid.

Let Ẽ = ⋃
i∈N τi (Ei ) denote the set of all resources under the embeddings τi , i ∈

N . The costs on all resources in Ẽ \ (τ1(E1) ∪ τ2(E2) ∪ τ3(E3)) are set to zero. Also,
the demands of all players di with i ∈ N \ {1, 2, 3} are set to zero. This way, the game
is basically determined by the players 1, 2, 3. We set the demands d1 = d2 = d3 = 1.

Let us choose two sets X,Y in S1 and {a, b, c} ⊆ X∪Y as described in Lemma 7.3.
Let e := τ1(a), f := τ1(b) and g := τ1(c).We set the costs of all resources in τ1(E1)\
(τ1(X) ∪ τ1(Y )) to some very large cost M (large enough so that player 1 would never
use any of these resources). The cost on all resources in (τ1(X) ∪ τ1(Y )) \ {e, f, g}
is set to zero. This way, player 1 always chooses a strategy τ1(Z) ⊆ τ1(X) ∪ τ1(Y )

which, by Lemma 7.3, either contains e, or it contains both f and g. We apply the
same construction for player 2 and 3, only changing the role of e to act as f and g,
respectively.

Note that the so-constructed game is essentially isomorphic to the routing game
illustrated in Fig. 6 if we interpret resource e as arc (s1, t1), resource f as arc (s2, t2),
and resource g as arc (s3, t3). On every edge there is a player specific cost function,
given in Table 1.

Every player has two possible paths: the direct path that uses only one edge, or the
indirect path that uses two edges. We show that the game where everyone puts all their
weight on the direct path is a Nash equilibrium, as is the game where everybody puts
their weight on the indirect path.
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Fig. 6 Counterexample

s1, t3

s2, t1

s3, t2

e

f

g

If all players put their weight on the direct route, then player 1 cannot deviate to
decrease it’s costs, as:

c1,e(1) + c′
1,e(1) · 1 = 1 + 3 ≤ 2 + 2 = c1, f (1) + c1,g(1).

On the other hand, when all players put their weight on the indirect direct route, player
1 can also not deviate, as:

c1, f (2) + c′
1, f (2) · 1 + c1,g(2) + c′

1,g(2) · 1 = 3 + 1 + 3 + 1 ≤ 8 = c1,e(2).

The same inequalities hold for player 2 and 3. And therefore everyone playing the
direct route, or everyone playing the indirect route both results in a Nash equilibrium.

��

8 A characterization for undirected graphs

In Sect. 7 we proved that non-matroid set systems in general do not have the strong
uniqueness property when there are at least three players, by constructing embeddings
τi that lead to the counterexample in Fig. 6. This example also gives new insights
in uniqueness of equilibria in network congestion games. In the following, we give
a characterization of graphs that guarantee uniqueness of Nash equilibria even when
player-specific cost functions are allowed.

Definition 8.1 An undirected graph G is said to have the uniqueness property if for
any atomic splittable network congestion game on G = (V, E), equilibria are unique.

Note that in the above definition, we do not specify how source- and sink vertices
are distributed in V . We obtain the following result which is related to Theorem 3 of
Meunier and Pradeau (2012), where a similar result is given for non-atomic congestion
games with player-specific cost functions.

Theorem 8.2 An undirected graph has the uniqueness property if and only if G has
no cycle of length 3 or more.

Proof Let G = (V, E) be the network in an atomic splittable network congestion
game. Assume there exists a cycle C in G of length k, with k ≥ 3. Already for three
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Table 2 Cost functions for a game with multiple equilibria, M is sufficiently large

ci,e(x) (v1, v2) (v2, v3) C \ {(v1, v2), (v2, v3)} e /∈ C

Player 1 x3 x + 1 1
k−2 (x + 1) x + M

Player 2 x + 1 x3 1
k−2 (x + 1) x + M

Player 3 x + 1 x + 1 1
k−2 x3 x + M

players, we can create a game with multiple equilibria by generalizing the previous
example visualized in Fig. 6. Pick three clockwise adjacent vertices v1, v2, v3 in cycle
C and create three players which have equal weight 1. Player 1 has source v1 and sink
v2, player 2 has source v2 and sink v3 and player 3 has source v3 and sink v1. Let
ci,e(x) be the cost function for player i at resource e. Define ci,e(x) as in Table 2.

For the same reason as in Example 6 this game has two Nash equilibria: one where
all players send their flow clockwise, another where all players send all flow counter-
clockwise.

On the other hand, assume no cycle of length 3 or more in G exists, then G is a tree
with parallel edges. Thus, for every source s and sink t , there is a unique path from
s to t in G modulo parallel edges. Therefore, players only have to decide on how to
divide their weight over every set of parallel edges they encounter. As the total cost
for a player is just the sum of the costs for all resources separately, players compete
only in sets of parallel edges. Atomic splittable congestion games on parallel edges
with player-specific cost functions are proven to have a unique Nash equilibrium by
Orda et al. (1993). Thus when G does not contain cycles of length 3 or more, Nash
equilibria are unique. ��
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Appendix A: Subclasses of base orderable matroids

We give proofs of the inclusions given in Fig. 1:

⊂1: A uniform matroid is a partition matroid where the partition contains only one
set.

⊂2: A partition matroid is a laminar matroid if all sets in the laminar family are
disjoint.

⊂3: Apartitionmatroid is a transversalmatroidwhere the sets that need to be traversed
are either equal or disjoint.

⊂4: For the laminar matroid, let F be the underlying laminar family on ground set
S with S ∈ F . Copy each set X in F exactly kX times to create multi set F ′,
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where kX is the number of elements we are allowed to take from set X . Now
create a directed graph G = (V, A), where V = F ′ ∪ S, and A = {(X,Y ) ∈
F ′ × F ′|X ⊆ Y } ∪ {(s, X) ∈ S × F ′|s ∈ X}. Let U be the maximal multi set
containing only S. Then clearly G with starting points S and endpoints U form
a gammoid that corresponds to the laminar matroid.

⊂5: A transversal matroid is a gammoid according to Corollary 39.5a in Schrijver
(2003).

⊂6: Every binary matroid is a gammoid if and only if it is a graphic matroid on
a generalized series-parallel graph Welsh (2010). As every graphic matroid is
binary Harary and Welsh (1969), the graphic matroid on a generalized series-
parallel graph is a binary gammoid, and thus a gammoid.

⊂7: A gammoid is strongly base orderable according to Theorem 42.12 in Schrijver
(2003).

⊂8: A matroid M = (R, I) is called strongly base orderable (SBO) if for every
pair of bases (B, B ′) there exists a bijective function g : B → B ′ such that
B − X + g(X) ∈ B. Take X = e and X = B \ {e} to obtain the conditions for
base orderable matroids.
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