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ZĚĘĆĒĒĊēċĆĘĘĚēČ

Zwischenmenschliche Koordination und Grounding sind zwei faszinierende Phänomene,
die allen natürlichen, sozialen Interaktionen und alltäglichen gemeinsamen Aktivitäten zwis-
chen uns Menschen zugrunde liegen. Zwischenmenschliche Koordination Ƥndet immer dann
statt, wenn sich Menschen während einer Interaktion wechselseitig und reibungslos an den
Rhythmus und das Tempo des Gegenübers anpassen oder ihre Handlungen und Verhal-
tensweisen synchronisieren und nahtlos miteinander verzahnen und verknüpfen. Ground-
ing bezeichnet alle konstanten, gemeinschaftlichen Bemühungen, die mit der Herstellung,
Aufrechterhaltung und Wiederherstellung eines gemeinsamen Wahrnehmungsbereiches und
Gesprächshintergrunds während solchen sozialen Interaktionen verbunden sind.

Zwischenmenschliche Koordination und Grounding werden durch eine Vielzahl miteinan-
der verwobener, teilweise konkurrierender, Verhaltensfunktionen beeinƪusst, welche unter-
schiedliche soziale und regulative Aufgaben haben und zahlreiche Verhaltensmodalitäten
umfassen. So spielen verschiedene Blickverhalten wichtige Rollen beim Lenken und Folgen
von Aufmerksamkeit, der multimodalen Disambiguierung von Referenzausdrücken, dem
Aushandeln der Rederechtvergabe, der Erzeugung von Rückmeldungen, der Regulierung
der Intimität, sowie der Bewertung von Persönlichkeit. Ein weiterer wichtiger Aspekt sind
Sprachüberlappungen und Unterbrechungsversuche, die einen deutlichen Einƪuss auf den
Informations- und Interaktionsƪuss haben und soziale Haltungen sowie zwischenmenschliche
Beziehungen, wie Engagement, Dominanz oder Zugehörigkeitsgefühl signalisieren.

Die enge Abstimmung dieser Verhaltensfunktionen und deren Zusammenspiel mit dem Di-
alogmanagement zu meistern, spielt eine wichtige Rolle für zwischenmenschliche Koordina-
tion und Grounding in physisch situierten, gemeinsamen Aktivitäten. Dies beinhaltet haupt-
sächlich die geschickte Synchronisation, das heißt die richtige Priorisierung und reziproke
Verzahnung der zugrunde liegenden, nebenläuƤgen Verhaltens- und Berechnungsprozesse.
Während dies bei natürlichen, menschlichen Interaktionen schon von Geburt an so rei-
bungslos und intuitiv zu funktionieren scheint, geschieht dies in sozialen Interaktionen zwis-
chen Menschen und sozialen Agenten noch keineswegs so perfekt. Kleinste Diskrepanzen
bei der Synchronisation von Verhaltensaspekte können einen sozialen Begleiter unnatürlich,
inkompetent oder ungeschickt erscheinen lassen. Aus diesem Grund ist die enge Koordina-
tion der Verhaltensfunktionen und der zugrunde liegenden Prozesse eine der größten Her-
ausforderung bei der Modellierung des Interaktionsverhaltens von sozialen Agenten.
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Um dieser Modellierungsherausforderung gerecht zu werden, muss ein Autor drei Model-
lierungsaufgaben bewältigen, die jeweils aufgabenspeziƤsche Anforderungen für einen aus-
reichend ausdrucksstarken und praktikablen Modellierungsansatz mit sich bringen. Die er-
ste Aufgabe beinhaltet die Erzeugung von vielseitigen, multimodalen Verhaltenskompositio-
nen, die Kontextwissen integrieren und automatisch variiert werden können. Die zweite Auf-
gabe umfasst die Auswertung von zeitlichen und semantischen Bedingungen sowie Quan-
tiƤkationen bei der multimodalen Fusion und Schlussfolgerung auf Wissen. Die dritte Auf-
gabe ist die inkrementelle Verzahnung von Verhaltenserkennung, Wissensargumentation
und Verhaltensgenerierung sowie die Unterbrechung und Wiederaufnahme von nebenläuƤ-
gen, verschachtelten und eng miteinander verƪochtenen Prozessen im Verhaltensmodell.

Eine Überprüfung der aktuellen, verwandten Arbeiten zeigt, dass bisher kein einheitliches
Verhaltens- und Interaktionsmodellierungskonzept für soziale Begleiter vorgestellt wurde,
welches alle diese Aufgaben und Anforderungen bewältigt. Einige verwandte Arbeiten haben
einzelne Verhaltensfunktionen oder Aspekte isoliert betrachtet und modelliert, ohne ihr
komplexes Zusammenspiel mit anderen Funktionen oder ihre Rolle für die zwischenmen-
schliche Koordination und das Grounding zu berücksichtigen. Andere Forschung konzen-
triert sich auf die Entwicklung von allzwecklichen Modellierungssprachen für einzelne der
Modellierungsaufgaben, vermisst aber völlig, zu demonstrieren, ob und wie man ihre Lösung
mit den anderen Aufgaben verknüpfen kann und inwiefern man diese für die Modellierung
von zwischenmenschlicher Koordination und Grounding verwenden kann.

Die vorliegende Arbeit stellt einen neuartigen Lösungsansatz für die Modellierung des In-
teraktionsverhaltens künstlich und sozial intelligenter Agenten vor. Dieser ist genau da-
rauf ausgelegt, die genannten Anforderungen zu erfüllen und damit die Unzulänglichkeiten
verschiedener verwandter Ansätze zu überwinden. Es ist der erste solche Ansatz, der eine
speziell entworfene, hierarchische und parallele State-Chart-Variante, einen domänenspez-
iƤschen, logischen, multimodalen Fusions- und Argumentationskalkül, und eine vorlagen-
basierte Verhaltensbeschreibungssprache zu einem einheitlichen Ansatz zur Verhaltens- und
Interaktionsmodellierung vereint. Dieser Ansatz erleichtert die verteilte und iterative En-
twicklung von klar strukturierten, leicht anpassbaren, erweiterbaren und wiederverwend-
baren Modellen für das Dialog- und Interaktionsverhalten von sozialen Agenten. Der Ansatz
ist ausreichend ausdrucksstark aber gleichzeitig bemerkenswert praktikabel, da er haupt-
sächlich auf visuellen und deklarativen Formalismen zur Modellierung beruht. Er eignet
sich somit sowohl für die schnelle Entwicklung von einfachen Prototypen als auch für die
schrittweise Erstellung recht anspruchsvoller Modelle durch Autoren mit unterschiedlichen
Erfahrungen, Expertisen und Herangehensweisen.



AćĘęėĆĈę

IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē
ƭ GėĔĚēĉĎēČ

Interpersonal coordination and grounding are fascinating phenomena that underlie all nat-
ural social interactions and everyday joint activities between humans. Interpersonal coordi-
nation takes place whenever people are smoothly adapting to each other’s interaction tempo
and rhythm, or are seamlessly synchronizing and intertwining their actions and behaviors.
Grounding denotes all collaborative eơorts that are involved in establishing, maintaining,
and repairing the common perceptual and conversational ground during a joint activity.

BĊčĆěĎĔėĆđ
FĚēĈęĎĔēĘ

Interpersonal coordination and grounding are inƪuenced by a variety of highly interwoven
behavioral functions that have diơerent social and regulative impacts and include numer-
ous information modalities. For example, various gaze behaviors are involved in attention
following, multi-modal disambiguation, turn management, feedback generation, intimacy
regulation, and personality evaluation. Another important aspect is speech overlaps and
interruption attempts that have a signiƤcant eơect on the interaction ƪow as well as inter-
personal attitudes, such as involvement, dominance, and aƥliation.

MĔĉĊđĎēČ
CčĆđđĊēČĊ

Mastering the close coordination of the above functions and their interplay with the dialog
management plays an important role for interpersonal coordination and grounding in phys-
ically situated joint activities. This mainly comprises the proper prioritization and tight syn-
chronization of the underlying incremental, reciprocal, and concurrent behavioral processes.
While this seems to work so well and intuitively in natural human interactions, already from
birth on, it obviously works by no means as perfectly in social human-agent interactions.
Smallest discrepancies in the synchronization or prioritization of individual behavioral as-
pects may already make a social companion appear unnatural, incompetent, or clumsy. For
that reason, the close coordination of the behavioral functions and the underlying behavioral
processes is the major challenge in modeling the behavior and interaction of a social agent.

MĔĉĊđĎēČ
RĊĖĚĎėĊĒĊēęĘ

In order to meet this modeling challenge, an author must cope with three modeling tasks,
each of which establishing task-speciƤc requirements for an suƥciently expressive and prac-
ticable modeling approach. The Ƥrst task involves the creation of versatile, multi-modal be-
havior compositions that integrate context knowledge and can automatically be varied. The
second task includes the evaluation of temporal and semantic integration constraints as well
as various quantiƤcation operations for multi-modal fusion and knowledge reasoning. The
last task comprises the proper incremental interleaving of behavior recognition, knowledge
reasoning and behavior generation as well as the close coordination, prioritization, inter-
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ruption, and resumption of concurrent, nested, and intertwined processes underlying the
various behavioral functions on diơerent levels of the behavior model.

RĊđĆęĊĉ
EċċĔėęĘ

A review of state-of-the-art related eơorts shows that, so far, there has not been presented
a uniform behavior and interaction modeling approach for social companions that masters
all of these tasks and requirements. Some related work has studied and modeled individual
behavioral functions or aspects in isolation without considering their complex interplay with
other functions or their role for interpersonal coordination and grounding. Other research
has focused on the design of general purpose modeling languages for only one individual
modeling tasks but misses to demonstrate how to interlink their solution with the other tasks
and how to use them for modeling interpersonal coordination and grounding behaviors.

MĔĉĊđĎēČ
AĕĕėĔĆĈč

This thesis presents a novel modeling approach for the interactive behavior of artiƤcially
and socially intelligent agents that is precisely designed to meet the above requirements and
overcome the shortcomings of related work. It is the Ƥrst approach to combine a specially
designed, hierarchical and concurrent state-chart variant, a domain-speciƤc, logic, multi-
modal fusion and reasoning calculus, and a template-based behavior description language
into a uniform behavior and interaction modeling framework. The proposed approach sig-
niƤcantly facilitates the distributed and iterative development of clearly structured, easily
adaptable, extensible, and reusable computational dialog, behavior, and interaction mod-
els of social agents. While being suƥciently expressive, it is remarkably practicable since
it primarily relies on visual and declarative modeling formalisms. It is suitable for rapid-
prototyping and the creation of sophisticated models by diơerently experienced authors.
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PĆėę I

IēęėĔĉĚĈęĎĔē Ćēĉ BĆĈĐČėĔĚēĉ

“Acting is all about timing—
Imean, who has better timing than theMCs?”

AėęĎĘ LĊĔē IěĊĞ Jė., Ć.Đ.Ć. CĔĔđĎĔ





CčĆĕęĊė 1

IēęėĔĉĚĈęĎĔē — JĔĎēę AĈęĎěĎęĎĊĘ
ĜĎęč SĔĈĎĆđ CĔĒĕĆēĎĔēĘ

TčĊ AĈęĎēČ
MĊęĆĕčĔė

You can think whatever you like about the acting skills of Coolio, but his statement about the
importance of timing for an acting performance is profoundly true. The timing of the actors’
actions and utterances and the mutual coordination with their acting partners are especially
important when they do not stick to a dictated storyline. In this case, they cannot cling to a
script which prescribes the temporal sequence and meshing of the actors’ lines and actions
as well as the exact time and duration of pauses or the perfect co-verbal alignment of non-
verbal behaviors, such as gestures, postures and facial expressions, down to the last detail.
Instead, they need to improvise and spontaneously master the timing, synchronization, and
interlocking of their behaviors during the course of the interaction by managing the recip-
rocal and dynamic process of unfolding interpersonal coordination of their behaviors. They
mutually ground their knowledge, beliefs, assumptions, intentions, and ideas of the evolving
plot with the aim to create a coherent and, in the best case, enthralling dramaturgy.

TčĊ MĚĘĎĈ
MĊęĆĕčĔė

Very similar phenomena of mutual coordination and adaptation can be observed when watch-
ing a jazz orchestra playing a piece of music. Even with the sound turned oơ, one can witness
various forms of synchrony, swing, and coordination while the band members skillfully im-
provise on their instruments. The musicians’ breathing patterns, facial expressions, gestures,
and the sways of their bodies are locked to the rhythm of the music. The rhythm of the im-
provisation is almost magically adopted by all musicians and determines the tempo and style
in which they play together. Individual notes from the diơerent instruments occur precisely
at the same instant of time and notes from the individual musicians tend to begin and end si-
multaneously. The musicians constantly monitor and listen to their partners’ play and seam-
lessly adapt their own play and timing by spontaneously re-planning their improvisation in
response. As a result, the music played by each instrument and musician complements and
intertwines with the others such that they together make the groove of the song.

TčĊ SĕĔėęĘ
MĊęĆĕčĔė

Those that are not gifted with a talent for acting or music can experience similar phenomena
in team sports. For example, when watching a well-rehearsed, perfectly harmonized tennis
doubles team, we can witness a smooth meshing of simultaneous or non-randomly patterned,
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1. IēęėĔĉĚĈęĎĔē — JĔĎēę AĈęĎěĎęĎĊĘ ĜĎęč SĔĈĎĆđ CĔĒĕĆēĎĔēĘ

well-timed, rhythmic activities and perfectly matched behaviors of the two doubles partners.
Besides spontaneously reacting to environmental changes, such as wind gusts or odd spots
on the court during a rally, they constantly monitor their opponents’ and partners’ actions
and movements and adapt their own play accordingly. They are simultaneously advancing
to the net after an aggressive and powerful serve or are rhythmically moving sideways at
well-aligned staggered intervals in order to reduce angles and close gaps. They observe each
other’s movements and nonverbal actions to adapt their tempo and rhythm by synchronizing
their split steps with their opponents’ counter-movements and partners’ ball contacts.

1.1 General Motivation

CĔĔėĉĎēĆęĎĔē
ƭ GėĔĚēĉĎēČ
MĊĈčĆēĎĘĒĘ

The reciprocal, dynamic, and incremental processes of mutual coordination and grounding,
that can be observed in acting, music, and sports, are underlying nearly all natural inter-
actions. They are especially evident in everyday social and collaborative joint activities, for
example, when people are chatting with their friends in a bar, assembling a puzzle together
with their children, or watching family or holiday photos with their grandparents. Humans
consciously and unconsciously use the appropriate behavioral patterns and mannerisms to
mutually coordinate on the content, process, and progress of such social interactions and
naturally master this task already from birth on, without being aware of it most of the time.
Even if the individual underlying behavioral mechanisms are diƥcult to identify and can
hardly be systematically delineated from each other, it should be obvious that they exist. A
closer look at the social and behavioral sciences as well as interdisciplinary Ƥelds helps to
theoretically ground and understand these interactional phenomena.

TĔĜĆėĉĘ
SĔĈĎĆđ

CĔĒĕĆēĎĔēĘ

Many scientist showed that there exists a close link between the interaction partners’ ability
to coordinate, and especially synchronize, with their partners’ behaviors and the perceived
quality of their interaction in terms of social bonding eơects, such as rapport building and af-
fection development, the smoothness of their social encounter, and the eƥciency of their col-
laboration. These Ƥndings from social science and behavioral psychology bear very promising
perspectives for the research in building social user interfaces, in particular, socially compe-
tent and artiƤcially intelligent companion technologies, such as social humanoid robots and
embodied conversational agents. However, the interpersonal mechanisms of coordination
and grounding that seem to work so well and intuitively in natural human interactions al-
ready from birth on, still work by no means as perfectly in human-agent interactions.

TčĊ GĊēĊėĆđ
MĔęĎěĆęĎĔē

Ĕċ ęčĎĘ TčĊĘĎĘ

The general motivation of this dissertation is, Ƥrst, to pin down and deeply understand these
interpersonal coordination and grounding phenomena and identify their underlying behav-
ioral mechanisms, and, second, to design and implement a practicable and expressive mod-
eling framework that allows the simulation and coordination of these functions in a social
agent’s computational behavior and interaction model. To avoid losing the focus, this the-
sis concentrates on investigating and simulating the roles of diơerent gaze behaviors, speech
overlaps and turn interruptions in physically situated and collaborative joint activities during
dyadic interactions between a human user and a social agent.
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1.1. General Motivation

1.1.1 Joint Activities

SĎęĚĆęĊĉ ƭ
SĔĈĎĆđ JĔĎēę
AĈęĎěĎęĎĊĘ

Whether musicians in jazz orchestras, players in tennis doubles, actors in improvisational
theater, or participants of social interactions in everyday life, humans frequently engage in
collaborative joint activities (Clark, 2005; Sebanz et al., 2006; Huang et al., 2015). The work in
this dissertation is centered around such dynamic and physically situated interactions (Bohus
and Horvitz, 2010b) while other interaction types, such as conversations via telephone or
email exchange, are out of its scope. These interactions exhibit various aspects of rhythm,
timing, synchronization, meshing, and coordination of interpersonal behaviors (Bernieri and
Rosenthal, 1991). They are interactive tasks in which the involved parties are working together
to coordinate attention, intention, knowledge, beliefs, assumptions, communication, and
collective actions to achieve a common goal (Clark, 1996; Sebanz et al., 2006).

IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē
ƭ GėĔĚēĉĎēČ

The initially described interactional phenomena observed in joint activities are most promi-
nently known as interpersonal coordination (Bernieri and Rosenthal, 1991; Richardson et al.,
2005; Schmidt et al., 2012) and grounding (Clark and Wilkes-Gibbs, 1986; Clark, 1996, 2005).
They can be considered as a biological heritage (Crown et al., 2002) since humans master
some aspects of interpersonal coordination and grounding already from birth and are learn-
ing others easily throughout their life. Interpersonal coordination and grounding take place
by means of linguistic and nonverbal behavioral signals, such as gaze cues, gestures, postures
and facial expressions but also by material signals which are actions in which people deploy
material objects, locations, or actions around them (Clark, 2005).

TčĊ DĎċċĊėĊēę
FĚēĈęĎĔēĘ Ĕċ
GĆğĊ BĊčĆěĎĔė

Gaze has major social and regulatory functions for interpersonal coordination and grounding.
It is involved in the production and recognition of turn-taking signals (Kendon, 1967; Duncan,
1972), footing and regulating the participant roles (Nielsen, 1962; Duncan and Fiske, 1977),
and eliciting back-channel cues (Kendon, 1967; Allwood et al., 1993; Bavelas et al., 2002).
It is used to direct and follow the partners’ attention, predict their intentions (Sebanz and
Knoblich, 2009; Baron-Cohen et al., 2001; Meltzoơ and Brooks, 2001), and is involved in the
multi-modal disambiguation of references (Meyer et al., 1998; Hanna and Brennan, 2007;
Richardson et al., 2007a). Finally, it plays a role in the reaction to cognitive and emotional
displays (Kendon, 1967; Argyle and Cook, 1976; Doherty-Sneddon and Phelps, 2005), and
interpersonal intimacy regulation (Kendon, 1967; Argyle and Dean, 1965; Abele, 1986).

TčĊ FĚēĈęĎĔēĘ
Ĕċ OěĊėđĆĕĘ ƭ
IēęĊėėĚĕęĎĔēĘ

Voice overlaps can serve as cooperative feedback to signal understanding, agreement, in-
terest, engagement, and co-participation (Yngve, 1970; Allwood et al., 1993) or enthusiastic
listenership and high involvement (Tannen, 1984), but also a lack of interest, indiơerence,
impatience, and non-support (Zimmerman and West, 1975). Interruption attempts signal
the intention to change the topic or takeover the other’s right to speak (Bennett, 1981; Sche-
gloơ, 2000; Tannen, 1994), for example, with the aim to grab the ƪoor and dominate the
conversation (Karakowsky et al., 2004; Youngquist, 2009) or to reduce the partners’ role as
communicators (Kennedy and Camden, 1983b,a; Smith-Lovin and Brody, 1989). However,
they can also show active mediation and reƤnement of thoughts (Shriberg et al., 2001) or be
a sign for activity and domain expertise in collaborative problem solving (Oviatt et al., 2015).
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1.1.2 Social Companions

TčĊ VĎĘĎĔē
Ĕċ SĔĈĎĆđ

CĔĒĕĆēĎĔēĘ

There is a growing interest and eơort in the creation of artiƤcially intelligent and social agents
that can naturally interact with humans. Visionaries from various arts and sciences are pre-
dicting a future in which they play important roles in our social environments and have great
inƪuence on the way we life our daily lives. For example, forward-thinking industrial man-
agers are expecting them to support us in manufacturing processes. Stakeholders in health-
and elderly care can hardly wait to deploy them for assisting nurses in hospitals and as care-
givers for elderly people in retirement homes. Psychologists and pedagogues are placing great
hopes on the possibilities to use them as educational peers for children and for the therapy of
autistic people. Human resources managers are ƪirting with the idea of virtual recruiters that
make their candidate selection processes more eơective and cost-saving. A similar motivation
lets coaching agencies hope to use them as trainers and mentors in safe and controlled virtual
training environments. Others are seeing them as informational agents in public places or
as personal companions in the comfort of our homes. There, they are expected to serve as
lifestyle advisors in health-, Ƥtness, or daily leisure activity management.

TčĊ RĊĈĊēę
DĊěĊđĔĕĒĊēę

ƭ PėĔČėĊĘĘ

While some of these visions and applications will eventually remain dreams of the future, the
insights from the social and communication sciences as well as the breathtaking pace of the
technological progress appears to be bringing social experiences with intelligent machines
closer within our grasp. During the last decades, scientists and engineers have made real
progress in the development of useful artiƤcially intelligent, virtual characters and embodied
conversational agents (Cassell et al., 2000b; Rist et al., 2003; Pelachaud, 2005) as well as social
and collaborative robots (Fong et al., 2003; Leite et al., 2013) that might eventually become an
integral part of our everyday life. These, for example, serve us by playing the role of playmates
(Gebhard et al., 2008; Behrooz et al., 2014), trainers and coaches (Damian et al., 2015; Traum
et al., 2008) or assistants in health- (Stiehl et al., 2006; Kenny et al., 2007; Breazeal, 2011) and
elderly care (Heerink et al., 2008, 2009; Broekens et al., 2009).

SĔĈĎĆđ SĐĎđđĘ
ƭ CĔĒĕĊęĊēĈĊ
DĊěĊđĔĕĒĊēę

All these use cases have in common that the therein used social agents must achieve a high
level of social competence and behave according to social conventions and rules in order to
fulƤll their task, interact naturally, and be accepted by the human interaction partners. This,
Ƥrst and foremost, requires that they master the entire range of verbal and nonverbal behav-
ioral aspects of interpersonal coordination and grounding that underlie and govern social
interaction, and that humans almost automatically learn from the earliest age. Therefore,
it is crucial for social companions to render account of the aforementioned roles of gaze
cues, voice overlaps, and interruptions that are involved in the manifold behavioral manner-
isms and patterns which have that important functions for interpersonal coordination and
grounding. This becomes especially important when they are performing collaborative joint
activities on shared workspaces in which they also interact via objects in the physical envi-
ronment. The following Section 1.2 introduces an exemplary scenario of such a physically
situated, collaborative joint activity between a human and a robotic social companion, based
on which it illustrates the various behavioral skills that must be mastered by a social agent.
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1.2. Introductory Scenario

1.2 Introductory Scenario

A MĊĒĔėĆćđĊ
CĔēęĊĝę ċĔė
ęčĎĘ TčĊĘĎĘ

Research in social robotics and artiƤcially intelligent agents leans on the future vision that
humanoid robots and virtual characters might eventually become social companions in our
everyday life. The relevant research issues that are investigated in this thesis are motivated
on the basis of a particular use case of such a robotic companion in a domestic setting. This
application representatively captures a great many aspects of this vision and is therefore
well suited to provide a memorable context for this thesis. It serves to illustrate the various
functions of gaze cues, voice overlaps, and interruptions for interpersonal coordination and
grounding and, in this, comprehensively clariƤes why social companions in such applications
must master these behavioral aspects in social interactions with human partners.

A B 

Charly 

C 

Marley 

Surface 
Table 

Tea 
Kettle 

D 

Figure 1.2.1: The physically situated, collaborative joint activity between Charly ( A⃝) and Marley ( B⃝).

Aē EĝĊĒĕđĆėĞ
CĔđđĆćĔėĆęĎěĊ
JĔĎēę AĈęĎěĎęĞ

Regarding the demographic growth in our society, it is quite conceivable that, in the near
future, social robots will serve us as care-givers and service assistants in elderly care. There-
fore, the illustrative scenario, shown in Figure 1.2.1, is from this domain and describes a joint
activity between the personal robotic companion Charly (Figure 1.2.1 A⃝) and Marley (Fig-
ure 1.2.1 B⃝), an older woman who is an inhabitant of an assisted living project. One day,
Marley invites Charly to drink a tea together while watching her family’s holiday photos on
a digital surface table in the living room (Figure 1.2.1 C⃝). After putting the kettle on for a
cup of tea (Figure 1.2.1 D⃝), Charly starts the photo book application and drags some photos
from the family’s photo book onto the screen. Charly and Marley are positioned opposite to
each other looking at the photos displayed on the shared workspace of the table. Marley is
wearing glasses with an integrated eye-tracking system providing Charly with her eye gaze
and Ƥeld of view information in real-time. This enables Charly to keep track of the photos
that Marley is looking at by using computer vision and object recognition algorithms.
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1. IēęėĔĉĚĈęĎĔē — JĔĎēę AĈęĎěĎęĎĊĘ ĜĎęč SĔĈĎĆđ CĔĒĕĆēĎĔēĘ

1.2.1 Interaction Extract

The following scenes represent a short extract of the interaction between Marley and Charly.

AęęĊēęĎĔē
FĔđđĔĜĎēČ ƭ

SĎČēĆđĎēČ

1⃝ Charly is following Marley's gaze wandering across the table to those photos catching her attention.

From time to time, Marley's gaze is lingering upon a specific photo for a slightly longer period of time.

IēęĊēęĎĔē
ƭ IēęĊėĊĘę
PėĊĉĎĈęĎĔē

2⃝ When Marley is particularly attracted by a photo, then he offers or provides information about it,

asking, e.g. 'Shall I tell you about that?', 'Are you interested in this?' or saying 'This was in France!'.

MĚđęĎ-MĔĉĆđ
RĊċĊėĊēĈĊ

DĎĘĆĒćĎČĚĆęĎĔē

3⃝ Suddenly, Marley is asking 'Tell me! Where is this beach?' while looking at one of the shown photos.

Then she looks at Charly who returns the gaze and says 'This was your trip through France in 1980!'.

AęęĊēęĎĔē
DĎėĊĈęĎĔē

ƭ AđĎČēĒĊēę

4⃝ Charly looks at another photo asking 'Where was that?' and observes Marley looking for this photo.

Marley answers: 'That was our favorite restaurant ...' and meanwhile Charly utters some 'uh-huh''s.

CĔČēĎęĎěĊ ƭ
EĒĔęĎĔēĆđ

SęĆęĚĘ DĎĘĕđĆĞ

5⃝ Marley pauses, slowly leans her head back and starts thoughtfully looking upwards for a moment.

Charly attentively looks at her, says 'mm' and then raises his eyebrows and silently turns his head aside.

MĎėėĔėĎēČ
ƭ IēęĎĒĆĈĞ
RĊČĚđĆęĎĔē

6⃝ Then, Marley looks directly at Charly with a big smile saying '... we often enjoyed the sunset there.'.

Charly immediately returns Marley's gaze and smiles back for a moment before looking away from her.

EēěĎėĔēĒĊēę
ƭ DĎĘęėĆĈęĎĔē
MĔēĎęĔėĎēČ

7⃝ Suddenly, the kettle starts ringing. Charly reflexively and sprightly looks at the kettle and Marley

immediately follows Charly's gaze shift while Charly starts asking 'Marley, should I get a cup ...'.

BĆėČĊ-IēĘ ƭ
TĚėē-CĔēċđĎĈę

RĊČĚđĆęĎĔē

8⃝ But Marley promptly looks back to the photo and in turn interrupts Charly with 'I miss these old times.'

Thereupon, Charly immediately stops speaking and directly follows Marley's attention to the photo again.

TĚėē-TĆĐĎēČ
SĎČēĆđ

PėĔĉĚĈęĎĔē

9⃝ After both kept staring at the photo for a moment, Marley asks 'Get what?' and then looks at Charly.

Charly returns the gaze and rephrases 'Would you like some tea?' whereupon Marley replies 'No, thanks!'.

FĊĊĉćĆĈĐ
EđĎĈĎęĎēČ ƭ

BĆĈĐ-CčĆēēĊđĘ

10⃝ Marley looks aside and starts saying 'You know —... and then looks in Charly's face who looks back,

then lifts his eyebrows and nods a few times before Marley looks away again and says 'I'll take a nap!'.
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1.2.2 Scenario Discussion

In the above scenes, Charly constantly follows Marley’s gaze to the photos in order to signal

TčĊ DĎěĊėĘĎęĞ
Ĕċ BĊčĆěĎĔėĆđ
FĚēĈęĎĔēĘ

attention, interest, and engagement ( 1⃝). By sharing her perceptual ground, he hopes to rec-
ognize her interest in speciƤc photos and to predict her intention to receive more information
about them ( 2⃝). This also helps him to consider her gaze direction for the disambiguation
of her verbal references to photos ( 3⃝) and, thus, to avoid lengthy clariƤcation dialogs. In
turn, he uses his own gaze to direct Marley’s attention to certain photos that he wishes more
information about ( 4⃝). He uses gaze cues to reveal his own thoughts and emotions, and in-
terprets her gaze behavior to assess her mental state like comprehension problems or speech
planning delays ( 5⃝). He imitates her emotional displays whenever she looks at him with
a facial expression to signal empathy and create rapport. However, he avoids staring at her
and occasionally averts gaze to balance the interpersonal intimacy ( 6⃝). He also monitors
the environment and shifts his attention to unforeseen distractions ( 7⃝). He politely ensures
a smooth conversational ƪow by leaving the ƪoor to Marley in case of a speech overlap that
might be an interruption attempt ( 8⃝). He aims for seamless and conƪict-free turn exchanges
by waiting for clear signals in form of mutual gaze and suƥciently long speech pauses until
taking the ƪoor ( 9⃝). Finally, he constantly provides back-channel signals whenever Marley
is eliciting such feedbacks by looking at him during her utterances and actions ( 10⃝).

The short episode might only take a minute or two but representatively illustrates that the
participants of physically situated, social joint activities exploit versatile voice and gaze be-
haviors that essentially contribute with their complex interplay to interpersonal coordination
and grounding. The use case can certainly be transferred to similar joint activities, such as
collaborative assembling tasks on a shared workspace or many of the social interactions intro-
duced at the very beginning of this thesis. It might also be generalizable to multi-agent and
multi-user interactions in which very similar behaviors as in the dyadic case can be found.

CĔĔėĉĎēĆęĎĔē
Ĕċ BĊčĆěĎĔėĆđ
FĚēĈęĎĔēĘ

The example also clearly illustrates that the proper coordination of the versatile social and
regulatory functions of voice and gaze for interpersonal coordination and grounding is of
prime importance. This coordination is the fundamental prerequisite for creating the im-
pression of plausible and intelligent social behavior that supports intuitive social interaction
experiences and promotes the users’ willingness and interest to further interact with the
agent. Allowing small discrepancies in the timing, synchronization, and interleaving or in
handling priorities of behavioral functions and the underlying behavioral processes might let
the agent appear unnatural, unbelievable, clumsy, simple-minded, or awkward. Disturbing
or confusing the interplay of behavioral functions can thus very rapidly destroy the impres-
sion of an intuitive and smooth interaction. Such disturbances can manifest themselves in a
variety of ways, such as excessively long periods of unintended silence or speaking overlaps, a
lack of responsiveness and missing attention, or simply the impression of total incompetence
and ignorance. Even if the user might not be able to exactly identify the speciƤc reasons for
an annoying perception, the interaction experience as a whole can be perceived as awkward
and may distract the interaction partners from their common goal of the social joint activity.
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1.3 Research Objectives

CėĊĉĎćđĊ
ƭ NĆęĚėĆđ
BĊčĆěĎĔė

As a computer scientist, I want to enable myself and others to build social robots and virtual
characters like Charly from the introductory example in Section 1.2. These social companions
must behave in a human-like manner, that means they need to show a natural and plausi-
ble behavior, and have to support an intuitive, smooth, pleasant, consistent, and engaging
interaction in order to be accepted by their human interaction partners (Loyall, 1997). This
involves expertise in many disciplines and comes along with a variety of challenges (Vinayag-
amoorthy et al., 2006). Among those are the development of technologies for expressive
speech synthesis (Schröder, 2008) and natural language understanding (Gratch et al., 2002)
as well as the animation of facial expressions, gestures, and postures (Kipp et al., 2007) and
their recognition and interpretation (Wagner et al., 2013; André et al., 2014). Furthermore, it
requires user models of emotion and personality (Gebhard, 2005; Gratch et al., 2009) as well
as suitable methods for dialog management (Traum et al., 2008; Gebhard et al., 2012; Ultes
and Minker, 2014).

BĊčĆěĎĔė ƭ
IēęĊėĆĈęĎĔē
MĔĉĊđĎēČ

These technologies must be reasonably brought together in an agent’s computational behav-
ior and interaction model which is responsible for the proper coordination of the numerous
aspects of interactive behavior (Gebhard et al., 2012; Mehlmann et al., 2016). The vision de-
scribed in the very beginning of this thesis and the illustrative scenario in Section 1.2 have
shown that among the greatest challenges for such a social agent’s behavior and interaction
model is the close coordination, that means the proper synchronization and prioritization of
the many behavioral functions, or in better words, their underlying simultaneous, reciprocal,
incremental, and highly interwoven behavioral and computational processes that contribute
to interpersonal coordination and grounding with their complex interplay.

MĔĉĊđĎēČ
CčĆđđĊēČĊ,
SĚćęĆĘĐĘ ƭ

RĊĖĚĎėĊĒĊēęĘ

The overall research goal of this thesis is the design of a modeling approach that allows build-
ing such behavior and interaction models for social agents. To this end, this thesis divides
this challenge, the modeling task, into several attainable subgoals, called modeling subtasks,
that an author must accomplish to create a well-engineered behavior and interaction model.
These are further reƤned into clearly deƤned, task-speciƤc subgoals, called modeling require-
ments, that the modeling approach for each subtask must fulƤll to enable the author to mas-
ter this task. Each of them is tackled with a number ofmodeling concepts that together form a
modeling language for a speciƤc subtask. These are Ƥnally combined to a modeling language
ensemble which constitutes the modeling framework in this thesis.

1.3.1 Coordinating Functions and Processes

The Ƥrst goal is simulating the complex interplay of the highly interwoven behavioral func-
tions contributing to interpersonal coordination and grounding in human interactions. This
requires modeling the incremental and reciprocal meshing of numerous, parallel and nested,
behavioral and computational processes on diơerent behavioral levels. The modeling ap-
proach proposed in this thesis tackles this requirement with a specially designed state-chart
variant (Harel, 1987; Harel and Politi, 1998), called Behavior Flow State-Charts (BFSCs). The
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parallel and hierarchical structuring of a model is achieved through the parallel decomposi-
tion and hierarchical reƤnement of BFSCs. The quickly changing prioritization and seam-
less transitions between behavioral functions as well as their consistent reconstruction after
suspensions require an adequate mechanism for the immediate interruption and coherent
resumption of the underlying processes. For that purpose, BFSCs implement special inter-
ruption policies and an exhaustive interaction history mechanism.

1.3.2 Integrating Input and Context Events

The second goal is the robust understanding of the interaction partners’ behaviors in human
interactions. This requires the integration of information distributed over multiple modali-
ties and context knowledge. The according input events can occur irregularly, have varying
processing delays, and carry heterogeneous data from diơerent processing stages. There-
fore, they must be represented with a uniform representation format and maintained in a
well-organized working memory to preserve their actual chronological order. Therefore, the
modeling approach proposed in this thesis uses feature structures (Kasper and Rounds, 1986;
Carpenter, 1992) that are managed in a logic PėĔđĔČ fact base (Clocksin and Mellish, 1981).
It uses an embedded, domain-speciƤc, logic calculus, called Behavior Flow Query Language
(BFQL) for the multi-modal fusion and reasoning. This comprises logic predicates to evaluate
semantic, temporal and quantitative integration constraints between multi-modal event as
well as dynamic garbage collection predicates to manage the event history.

1.3.3 Creating Behavior and Dialog Content

The last goal is to create versatile compositions of behavior that resemble the wide range of
behavioral and linguistic repertoire and natural variations of human-like behavior in social
interactions and joint activities. Therefore, the modeling approach proposed in this thesis al-
lows deƤning diơerent types of behavioral activities using the Behavior Flow Script Language
(BFSL). These can be used to specify behaviors ranging from individual actions and non-
verbal cues, such as gestures, postures, facial expressions, head, eye, and gaze movements,
over verbal contributions and multi-modal utterances, to whole interactive performances of
multiple agents. To create competent and informed behavior and dialog content, behavioral
activities support the ƪexible integration of knowledge using the inline insertion of values or
substitution of placeholder variables. Finally, the grouping and blacklisting of behavioral ac-
tivities allows the automatic variability of behavior which avoids repetitions that would have
a negative impact on the plausibility and naturalness of an agent’s behavior.

1.4 Thesis Organization

The organization of this thesis is rather straightforward, in the sense that the applied scien-
tiƤc approach and research methods automatically prescribed the structuring of the thesis.
The document is organized into four parts that are altogether consisting of eight chapters
which reƪect the individual milestones of the scientiƤc approach depicted in Figure 1.4.1.
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1. IēęėĔĉĚĈęĎĔē — JĔĎēę AĈęĎěĎęĎĊĘ ĜĎęč SĔĈĎĆđ CĔĒĕĆēĎĔēĘ

1.4.1 ScientiƤc Approach

SĈĎĊēęĎċĎĈ
AĕĕėĔĆĈč ƭ
MĎđĊĘęĔēĊĘ

Figure 1.4.1 shows an illustration of the scientiƤc approach with the individual research and
development tasks that had to be carried out on the road to meeting the research objectives.
Based on the motivating scenario (Figure 1.4.1 A⃝), I started with a literature survey in social
psychology and behavioral sciences to get a better understanding of interpersonal coordi-
nation and grounding and the underlying functions of gaze behavior, speech overlaps, and
interruptions (Figure 1.4.1 B⃝). Afterwards, I systematically identiƤed and investigated the
modeling challenges, tasks, and requirements that a modeling approach is faced with when
simulating these functions and their interplay in an agent’s behavior and interaction model
(Figure 1.4.1 C⃝). A review of related work provided an overview of state-of-the-art research
on interpersonal coordination and grounding in human-agent interaction and modeling ap-
proaches for multi-modal fusion, interaction and dialog modeling, and behavior speciƤcation
(Figure 1.4.1 D⃝). The subsequent design of the modeling approach draws on valuable ideas
from this work but goes beyond it by being the Ƥrst to combine the advantages of hierarchical
and concurrent state-charts, logic programming and template-based behavior descriptions in
a novel modeling framework (Figure 1.4.1 E⃝). This framework was afterwards applied in the
development of various behavior and interaction models to examine its suitability in terms
of practicability and expressiveness (Figure 1.4.1 F⃝). Its following realization included the
redeƤnition and extension of the modeling language ensemble as well as the refactoring of
the existing VSM3 authoring framework. The reengineered tool was validated in a number
of applications in the context of Ƥeld tests, research, and teaching projects (Figure 1.4.1 G⃝).
Finally, the conceptual and technical contributions of the thesis were reƪected and future
research directives identiƤed (Figure 1.4.1 H⃝).
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Figure 1.4.1: The overview of the scientiƤc approach and the structuring of this dissertation.

1.4.2 Thesis Structuring

CčĆĕęĊė 1 —
IēęėĔĉĚĈęĎĔē

In Chapter 1, I explain my motivation for this work, place it in the scientiƤc context, and
highlight its relevance. I introduce an illustrative human-agent interaction scenario which
serves as context throughout this thesis. Then, I describe my research objectives, identify
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the challenges faced when realizing them, and outline the solutions that I designed to tackle
them. Finally, I give an overview of the scientiƤc approach and organization of this thesis.

CčĆĕęĊė 2 —
BĆĈĐČėĔĚēĉ

In Chapter 2, I introduce the required terminology and background knowledge to provide a
profound understanding of the interactional phenomena investigated in this thesis. There-
fore, I review relevant literature from social and behavioral sciences and, in places, human-
agent interaction. This survey comprehensively explains how the functions of gaze behavior,
speech overlaps and interruptions contribute to interpersonal coordination and grounding.

CčĆĕęĊė 3 —
CčĆđđĊēČĊĘ

In Chapter 3, I present the modeling challenges, tasks, and requirements faced by the pro-
posed behavior and interaction modeling approach. They are illustrated based on the intro-
ductory scenario to highlight their importance for interpersonal coordination and grounding.
I also brieƪy mention the concepts and formalisms that the modeling approach proposed in
this thesis uses to tackle them, as far as this is needed for a comparison to related work.

CčĆĕęĊė 4 —
RĊđĆęĊĉWĔėĐ

In Chapter 4, I review relevant related work on multi-modal fusion, behavior and interaction
modeling and multi-modal behavior speciƤcation in human-agent interaction. I discuss ad-
vantages and drawbacks of some selected state-of-the-art solution approaches, investigate to
which extent they address the identiƤed modeling tasks and requirements, and explain how
the modeling framework proposed in this thesis overcomes many of their insuƥciencies.

CčĆĕęĊė 5 —
CĔēĈĊĕęĎĔē

In Chapter 5, I discuss some design issues that I particularly paid attention to during the de-
sign of the modeling approach. Then, I present the architecture of the modeling framework
which is divided into an ensemble of modeling languages, each of which tackles an individ-
ual modeling task and its task-speciƤc requirements. Afterwards, I present the deƤnition of
each individual ensemble member and explain how it tackles these requirements.

CčĆĕęĊė 6 —
IđđĚĘęėĆęĎĔē

In Chapter 6, I illustrate the modeling approach based on a particular use case which is very
similar to the scenario in Chapter 1. I systematically develop a reusable and adaptable be-
havior and interaction model for the agent in this application. The understanding of this
model gives a good idea of the best practice to use the proposed modeling approach for the
development of interactive applications with virtual characters and social robots.

CčĆĕęĊė 7 —
RĊĆđĎğĆęĎĔē

In Chapter 7, I explain how the conceptual design has been realized in a reference implemen-
tation. I explain how lexical and syntactical extensions found their way into a reengineered
speciƤcation of an existing modeling language ensemble. Then, I show how this ensemble
has been implemented by refactoring the VSM3 authoring tool. Finally, I present some ap-
plications that have been developed with VSM3 to validate the modeling approach.

CčĆĕęĊė 8 —
CĔēĈđĚĘĎĔē

In Chapter 8, I Ƥrst present a short summary of the work presented in this thesis. Afterwards,
I identify the conceptual and technical contributions of this thesis. In this, I also brieƪy re-
vise the discussion of advantages and limitations of the proposed modeling approach and its
technical realization. Finally, I give a view on potential extensions and further development
possibilities of the approach and interesting future research directions.
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CčĆĕęĊė 2

BĆĈĐČėĔĚēĉ — IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē Ćēĉ GėĔĚēĉĎēČ

The research objective of this thesis is the development of an expressive but nevertheless
practicable modeling approach for the interactive behavior of social agents, such as virtual
characters and embodied conversational agents (Cassell et al., 2000b; Pelachaud, 2005; Rist et
al., 2003) or social robots (Fong et al., 2003; Leite et al., 2013). The major challenge is therein
the design of particularly suited modeling formalisms that facilitate the proper coordination
of the manifold behavioral aspects that contribute to interpersonal coordination (Bernieri and
Rosenthal, 1991; Schmidt and Richardson, 2008; Lumsden et al., 2012) and grounding (Clark
and Brennan, 1991; Brennan, 1998; Clark, 2005). As described at the very beginning of this
thesis, these two related phenomena underlie nearly all everyday social interactions and joint
activities and are therefore also crucial for social agents to interact naturally and credibly.

The importance for social agents to master the behavioral functions contributing to interper-
sonal coordination and grounding has been illustrated and motivated by the introductory
example scenario in Section 1.2. In line with the focus of this thesis, the example focused
on the social and regulatory functions of gaze behavior (Kendon, 1967; Argyle et al., 1973;
Kleinke, 1986; Srinivasan and Murphy, 2011; Mutlu et al., 2012; Jokinen et al., 2013; Mehlmann
et al., 2014b; Ruhland et al., 2015) as well as speech overlaps and turn interruptions (Bennett,
1981; Drummond, 1989; Tannen, 1994; Olbertz-Siitonen, 2009; Tannen, 2012) and the roles
that their diơerent functions play for interpersonal coordination and grounding.

To convey a profound understanding of the two interactional phenomena, I now introduce
the fundamental terminology and required theoretical background knowledge by review-
ing the relevant basic literature from social and behavioral sciences and, in places, mention
related work from human-agent interaction. First, I present the deƤnitions and theoreti-
cal foundations of interpersonal coordination and grounding in Section 2.1. Subsequently,
I give an overview of the various functions of gaze behaviors in Section 2.2 before I discuss
the diơerent eơects of speech overlaps and interruptions in Section 2.3. Some of the roles
of these behavioral aspects for interpersonal coordination and grounding are illustrated and
discussed on the basis of the introductory example scenario described in Section 1.2.
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2.1 Interpersonal Coordination and Grounding

IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē

The participants of social interactions continuously coordinate and adapt their motor move-
ments and behaviors in a reciprocal and dynamic process of constant rebalancing. This often
subconscious mutual interplay produces a seamless meshing and smooth temporal synchro-
nization of their behaviors and gives rise to simultaneous and rhythmic joint actions and
the mutual entrainment of their interaction speeds and rhythms. These aspects of coordi-
nation serve a ƪuent and eơective regulation of the interaction ƪow and the organization of
turn-taking while additionally having social functions such as improving and signaling close-
ness, rapport, or empathy. In social and behavioral sciences this mutual accommodation,
interlocking, and synchrony of the interaction partners’ behaviors is known as interpersonal
coordination (Bernieri and Rosenthal, 1991; Richardson et al., 2005; Schmidt et al., 2012).

CĔĒĒĔē
GėĔĚēĉ

ƭ GėĔĚēĉĎēČ

In addition to this mutual coordination of interactional speed, rhythm, and synchrony as
well as the tight meshing of their behaviors, the interaction partners are, at the same time,
constantly busy collaborating on the coordination of their shared knowledge, beliefs, as-
sumptions, and intentions about the content and process of the interaction. They establish,
maintain, and repair this common understanding of their joint activity using a variety of
multi-lateral and multi-modal acknowledgment and clariƤcation mechanisms. In this, they
are always endeavored to choose these means such that they achieve their common goal with
the least collaborative eơort (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989; Clark
and Brennan, 1991). This idea of shared information and mutual understanding of what the
interaction partners are doing is referred to as common ground and the process of its constant
updating and accumulation is known as grounding (Clark, 1996; Brennan, 1998; Clark, 2005).

While it is intuitively obvious that these processes of mutual coordination and grounding
exist, it is hard to tell what they really are and how they actually work and interplay. Fur-
thermore, it seems that they are not disjoint but rather overlapping concepts and cannot
always be clearly delineated from each other. A closer look at fundamental research in so-
cial psychology and behavioral sciences helps to identify and better understand these two
phenomena. This is clearly necessary to motivate and theoretically ground the work in this
thesis and helps to gain an impression of the diƥculties that we are faced with when in-
tegrating and simulating the interplay of the individual behavioral aspects of interpersonal
coordination and grounding with a social companion’s behavior and interaction model.

2.1.1 Interpersonal Coordination

DĊċĎēĎęĎĔē Ĕċ
IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē

Interpersonal coordination is a fascinating phenomenon that is present in nearly all aspects
of our social life (Bernieri and Rosenthal, 1991; Richardson et al., 2005; Schmidt et al., 2012).
Its conceptualization is based on the observation that the participants’ behaviors in natural
social interactions are often rhythmic, non-randomly patterned, and synchronized. People
are often entrained by each other’s interactional rhythm and mainly subliminally adjust the
timing and shaping of their behaviors to one another. Consequently, their behaviors are
frequently similar or identical in form, occur at roughly or exactly the same time, and are
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seamlessly intermeshed with each other. Sometimes they even coincide almost perfectly in
both, form and time (Bernieri and Rosenthal, 1991; Lakin, 2012). Based on these observations,
Bernieri and Rosenthal (1991) rather descriptively deƤne interpersonal coordination as

“the degree to which the behaviors in an interaction are non-random,
patterned, or synchronized in both timing and form”

Interpersonal coordination means acting in synchrony and synchronized as well as similar or
identical to each other. It appears in everyday interactions in which individuals reciprocally
coordinate their motor movements with respect to the rhythmic behavior of others. Thus, it
can be considered as the complement of intrapersonal coordinationwhich is the coordination
of a person’s individual body segments among one another (Ramenzoni et al., 2011).

OĈĈĚėėĊēĈĊ Ĕċ
IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē

Interpersonal coordination is involved when reciprocally matching or meshing with one an-
other and carrying each other away physically, emotionally, or intellectually. It can be overtly
controlled through physical contact but also be unintentionally be performed during visual
interactions (Richardson et al., 2007b). Thus, it underlies all the social activities mentioned
in Chapter 1, such as dancing, music, sports, or simply smalltalk, but, of course, is particu-
larly evident during the illustrative example scenario from Section 1.2. In this, it increases in
degree and stability with the diƥculty of collaborative tasks that require two or more people
to coordinate with each other to attain a common goal (Ramenzoni et al., 2011).

EĝĕėĊĘĘĎĔē Ĕċ
IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē

Interpersonal coordination manifests itself in many multi-modal and multi-directional be-
havioral patterns and mannerisms with various social and regulatory functions. For example,
it ensures the trouble-free alternation of contributions (Sacks et al., 1974) by properly recog-
nizing and producing turn-taking actions (Nielsen, 1962; Kendon, 1967; Duncan, 1972; Clark,
1996). It includes carefully listening and observing the partner to achieve a well-timed start
of the own contributions (Shriberg et al., 2001) at possible completion points (Sacks et al.,
1974). It drives the interaction ƪow and rhythm when coordinating back-channels, minimal
responses, and other accompaniment signals with the partner’s behavioral cues in order to
signal co-participation (Schegloơ, 1968; Fishman, 1997), engagement, and encouragement
(Kendon, 1967; Yngve, 1970; Allwood et al., 1993; Bavelas et al., 2002). It also comprises cor-
rectly matching the partners’ gestures, postures, facial expressions, and behavioral manner-
isms at the proper time to create rapport and involvement (Chartrand and Lakin, 2013).

TĜĔ FĆĈĊęĘ Ĕċ
IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē

Because interpersonal coordination of behavior has the two diơerent facets of similarity and
timing, it is formally divided into behavior matching and interactional synchrony (Condon
and Ogston, 1966, 1967; Kendon, 1970) which is also referred to as interpersonal or social
synchrony (Hove and Risen, 2009; Marsh et al., 2009). Behavior matching usually refers to
mimicry or imitation phenomena where interaction partners perform the same or similar
movements, actions, or behaviors. Complementary, interactional synchrony refers to the in-
teraction partners’ synchrony or mutual entrainment in which the movements and behaviors
of the partners become properly organized and intertwined in time.
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Behavior Matching

DĊċĎēĎęĎĔē Ĕċ
BĊčĆěĎĔė
MĆęĈčĎēČ

Behavior matching describes the degree of similarity between the interaction partners’ ob-
servable behavior (Bernieri and Rosenthal, 1991). Bernieri and Rosenthal (1991) consider it as
similarity measure and deƤne that behavior matching

“occurs when two or more people show similar body conƤgurations”

The described similarity can be the expression of an unconscious emotional contagion or the
result of an, either intentional or unconscious, behavioral mimicry, imitation or mirroring
of the partner’s behavior (LaFrance, 1982; Louwerse et al., 2012; Chartrand and Lakin, 2013).
In this, the term emotional contagion usually means “catching another’s emotion” (Hess and
Fischer, 2013) and actually taking on the aơective state that matches the other’s emotional
display. In contrast, the labels mimicry, imitation, or mirroring usually exclusively refer to the
replication of the expressive component of the partners’ displayed behavior (Hess and Blairy,
2001; Hess and Fischer, 2013) without actually empathizing with the partner. In this, mimicry
and mirroring usually relates to an automatic reaction, without conscious awareness, while
imitation means an intentional acting. For example, behavioral mimicry has descriptively
been deƤned by Chartrand and Lakin (2013) as

“the automatic imitation of gestures, postures,
mannerisms, and other motor movements”

The tendency to unconsciously mimic postures, gestures, and facial expressions of interaction
partners is also referred to as chameleon eơect (Chartrand and Bargh, 1999; Lakin et al., 2003).
A very similar phenomenon which is sometimes also used interchangeably with mimicry is
mirroring (LaFrance, 1982; Chartrand and Bargh, 1999), which means that two persons take
poses that are the exact mirror images of each other.

FĚēĈęĎĔēĘ Ĕċ
BĊčĆěĎĔė
MĆęĈčĎēČ

Behavior matching phenomena and their functions pervade all behavioral modalities, such
as gestures (Chartrand and Bargh, 1999; Lakin and Chartrand, 2003), body postures (Kendon,
1970; LaFrance, 1982), and facial expressions (Bavelas et al., 1986; Meltzoơ and Moore, 1983)
as well as simple motor movements, such as foot shaking (Chartrand and Bargh, 1999) and
many more (Chartrand and Lakin, 2013; Lakin, 2012). It is believed that mimicry or mirroring,
whether performed intentionally or unconsciously, reƪect the congruence of internal mental
states and attitudes toward each other (Scheƪen, 1964). Interaction partners are considered
more coordinated to the extent that their mental states and external behaviors are more
alike and matched. This suggest that these behaviors are among the fundamental behavioral
repertoire to create social eơects like trust, rapport, liking, emotional contagion, and empathy
(van Baaren et al., 2009; Chartrand and van Baaren, 2009; Chartrand and Lakin, 2013).

Much research has shown that interaction partners continually match one another’s postures
during an interaction (Condon and Ogston, 1966, 1967; Kendon, 1970; Shockley et al., 2003)
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and are thus judged to have a higher rapport with each other (Dabbs, 1969; Trout and Rosen-
feld, 1980). Furthermore, listeners tend to mirror a speaker’s posture whom they Ƥnd engag-
ing (LaFrance, 1979, 1982). An aƥliation goal increases unconscious mimicry and, vice-versa,
rapport and aƥliation increase mimicry (Lakin and Chartrand, 2003). While real empathy
requires mind reading and perspective taking (Baron-Cohen, 1997), the ideomotor mimicry
of facial expressions is a primitive method to convey the impression of empathy (Bavelas et al.,
1986, 1987). Already neonates and infants imitate facial gestures (Meltzoơ and Moore, 1983)
and adults spontaneously mimic their interaction partners’ facial expressions (McHugo et
al., 1985). In this, facial expressions are directly linked to the experience and communication
of emotions to the interaction partner (Ekman, 1972, 1977; Ekman and Friesen, 2003). The
facial mimicry of any emotional expression signals responsiveness and liking of the mimicker
on the part of the mimickee and is a vehicle of empathy and social bonding (Kulesza et al.,
2015). In this, emotional mimicry is context-dependent in the sense that it functions as a so-
cial regulator taking into account the relationship between observer and expresser (Hess and
Fischer, 2013). People mimic emotional signals not automatically but only when they belief
these signals promote aƥliation. Thus, people less likely mimic strangers and others they
don’t like even when the emotional display signals a negative emotion such as antagonism
(Hess and Fischer, 2014). In turn, they, for example, perceive the partner as aversive and not
willing to communicate if smiles are not timely answered (Cappella, 1997; Hess and Fischer,
2014; Gironzetti et al., 2016).

Interactional Synchrony

AĘĕĊĈęĘ Ĕċ
IēęĊėĆĈęĎĔēĆđ
SĞēĈčėĔēĞ

Interactional synchrony is composed of three aspects whose interplay enables highly recipro-
cally and dynamically synchronized interactions. First, rhythm can be observed in the mutual
alignment of the interaction partners’ walking rhythms, postural sways, breathing patterns,
eye movements, and other rhythmic or cyclic behavioral aspects (Richardson et al., 2008).
Second, simultaneity can be observed in coincident posture changes and gaze movements or
immediate facial mimicry. Finally, meshing or intertwining of behavior can be observed in
the smooth exchange of turn-taking actions or in well-timed back-channels.

DĊċĎēĎęĎĔē Ĕċ
IēęĊėĆĈęĎĔē
RčĞęčĒ

The interaction rhythm determines the tempo and style of the interaction which is necessary
for all ordered interactions (Davis, 1982). Some interactions have a more rapid and jerky
nature whereas others occur in a slower and more ƪuid fashion (Bernieri and Rosenthal,
1991). It is presumed that the rhythm of an interaction between two or more interaction
partners is linked to, as Bernieri and Rosenthal (1991) say

“the degree of congruence between their behavioral cycles”

The interaction partners can be more or less “in sync” regarding an aspect of the interac-
tion that exhibits rhythmic or cyclic characteristics, such as the expression of engagement
through cyclically re-occurring periods with speciƤc multi-modal behavioral patterns (Stern,
1974) or the rhythmic occurrence of conversational activity in the course of an interaction

19



2. BĆĈĐČėĔĚēĉ — IēęĊėĕĊėĘĔēĆđ CĔĔėĉĎēĆęĎĔē Ćēĉ GėĔĚēĉĎēČ

or joint activity (Hayes and Cobb, 1982). Via constant informational coupling, for example,
by monitoring each other, over time, the movements of the interacting individuals become
mutually entrained, which leads to the emergence of stable behavioral patterns (Lumsden
et al., 2012). Even after an interruption of an interaction’s rhythm by an unplanned event,
the same stable rhythm reemerges after a short time again (Hayes and Cobb, 1982). In this,
one partner often has the function of a time giver while the others are entrained to the same
behavioral cycle as the time giver. The stability of this time giver role may be determined
by the social relationship between the interaction partners, such as dominance and status
(Baron and Boudreau, 1987). This connection between social relationship and interactional
rhythm explains why some persons more eƥciently entrain their interaction partners while
others are not able to dictate the rhythm of an interaction.

DĊċĎēĎęĎĔē Ĕċ
BĊčĆěĎĔėĆđ

SĎĒĚđęĆēĊĎęĞ

Simultaneity means the simultaneous or at least chronologically very close occurrence of
the interaction partners’ behaviors or actions. Any interpersonal behavior has identiƤable
moments at which the partners are moving or acting simultaneously or very tightly aligned
in time. Bernieri and Rosenthal (1991) understand simultaneity simply as

“the co-occurrence of two or more behaviors”

In this, behavior may be understood in the broadest sense, which means muscle movements,
nonverbal cues such as gestures, body postures, facial expressions, and gaze behaviors as
well as vocalizations, whole utterances, or even emotional and mental states (Bernieri and
Rosenthal, 1991). The criterion of co-occurrence and the granularity of the considered time
frames that deƤne the simultaneity of behaviors vary depending on the speciƤc behavior.
For example, body postures may be considered simultaneous within a time frame of several
seconds while the time frame for determining the simultaneity of facial expressions spans
only a few hundredths of a second.

DĊċĎēĎęĎĔē Ĕċ
BĊčĆěĎĔėĆđ

MĊĘčĎēČ

The last fundamental feature of interactional synchrony is behavioralmeshing, which Bernieri
and Rosenthal (1991) describe as

“the uniƤcation of two potentially random, non-patterned behavioral elements
into a meaningfully described “whole” or synchronous event”

Following this deƤnition, behavioral meshing means the ability of smooth intertwining and
close interlocking of the interaction partners’ behaviors that are thereby sometimes com-
plementing each other to form combined, multi-directional, and multi-modal behavioral
patterns. The partners may synchronize with each other, such that their behaviors mesh
smoothly or their behaviors may interfere and conƪict which has the eơect that the inter-
action feels awkward or clumsy. This enhancing inƪuence of behavioral meshing on the
eƥciency and perception of the interaction becomes obvious when observing the close in-
termeshing of the interaction partners’ behaviors for the production of turn-taking patterns
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that they use for the smooth organization of the participant’s roles (Nielsen, 1962; Kendon,
1967; Duncan, 1972, 1974; Goơman, 1979; Goodwin, 1980, 1981) and the eƥcient exchange
of their conversational contributions (Bernieri and Rosenthal, 1991). It is believed that the
coordination with the partner’s movements and speech helps to anticipate more accurately
the termination of their vocalizations and completion points of turns at transition-relevant
places (Sacks et al., 1974), which, in turn, improves the promptness with which the next
speaker starts a response without cutting oơ the current speaker’s utterance (Dittmann and
Llewellyn, 1967).

FĚēĈęĎĔēĘ Ĕċ
IēęĊėĆĈęĎĔēĆđ
SĞēĈčėĔēĞ

Research exploring the eơects of interpersonal synchrony for sociality has found a number
of beneƤts (Lumsden et al., 2012; Chartrand and Lakin, 2013; Tschacher et al., 2014). For
example, interpersonal synchrony facilitates person perception by enhancing memory for
an interaction partner’s utterances and facial appearance (Macrae et al., 2008). It is able
to blur self-other boundaries by creating the perception of self-other similarity and social
identiƤcation (Miles et al., 2010b; Paladino et al., 2010). It furthermore enhances altruistic
behavior and compassion in the sense of an an empathic concern for the well-being of oth-
ers (Valdesolo and DeSteno, 2011). It improves cooperation by strengthening group cohesion
and social attachment among group members (Wiltermuth and Heath, 2009). It increases
liking and rapport (Hove and Risen, 2009) and entails aơect between the interaction partners
(Tschacher et al., 2014). Vice-versa, humans synchronize their behaviors to a greater degree
when interacting with others that they like (Bernieri, 1988; Bernieri et al., 1994; Cappella,
1997). For example, people moving rhythmically in-phase or anti-phase, performing their
actions at equivalent or opposite points of the movement cycle, are usually rated to have a
higher degree of rapport (Miles et al., 2009). People that are trying to reduce the perceived
social distance between each other show a higher degree of synchrony (Miles et al., 2011)
while those that experienced antipathy in the past synchronize less in subsequent interac-
tions (Miles et al., 2010a). All these results suggest that the degree of liking, rapport, and
cooperation is reƪected by the quality of interactional synchrony between the interlocutors
and that it promotes sociality (Marsh et al., 2009; Schmidt et al., 2012; Tschacher et al., 2014).

A concept which is similar to interactional synchrony is coordinated interpersonal timing
(Crown, 1991; Feldstein et al., 1993; Hane et al., 2003), sometimes referred to as interpersonal
timing (Crown et al., 2002). Its has mainly been studied in the area of infant research and
less in the Ƥeld of adult social behavior (Crown, 1991). This research shows that the temporal
patterning of social interaction is a fundamental aspect of behavior and lies in our nature and
biologic heritage (Capella, 1981; Jasnow et al., 1988; Feldstein et al., 1993; Crown et al., 2002;
Hane et al., 2003). It has descriptively be deƤned by Crown et al. (2002) as

“an alteration in the temporal patterning of one speaker’s visual and vocal
behavior in response to that of the other speaker’s behavior”

Thus, coordinated interpersonal timing explicitly concerns the temporal relationship be-
tween the temporal patterns of two interacting partners and explicitly refers to visual be-
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haviors and gaze patterns and their alignment with speech. The better the temporal pattern
of each partner in a dialog is predictable from that of the other, the better is the interpersonal
synchrony or degree of coordination (Feldstein et al., 1993). The coordinated interpersonal
timing is positive when the temporal behaviors are positively correlated and negative when
they are negatively correlated. Positive coordinated interpersonal timing has a reinforcing
inƪuence on interpersonal attraction (Crown, 1991). Finding just the right degree of coor-
dinated interpersonal timing can have a positive inƪuence on aơect and involvement. An
optimum degree of rhythmic coordination in social interaction makes the interaction more
rewarding such that the interaction partners will like each other (Warner et al., 1987). In gen-
eral, coordinated timing in adult interactions is a dimension of the communication of mood,
empathy, psychological diơerentiation, and perceived interpersonal similarity (Capella, 1981;
Feldstein and Welkowiltz, 1987; Rosenfeld, 1987).

2.1.2 Grounding in Joint Activity

DĊċĎēĎęĎĔē Ĕċ
CĔĒĒĔē
GėĔĚēĉ

Besides interpersonal coordination, another important process that underlies all human in-
teraction, especially joint activities and collaborative settings, like in the illustrative scenario
from Section 1.2, is grounding (Clark, 1996; Brennan, 1998; Clark, 2005). This is a reciprocal,
collective, and accumulative process that can be considered as the incremental and multi-
directional updating of the interaction partners’ common ground (Clark and Brennan, 1991).
The common ground itself is considered as the mutual belief that the interaction partners
have understood each other well enough for the current purpose. It has rather descriptively
been deƤned by Clark and Brennan (1991) as

“the mutual knowledge, mutual beliefs, and mutual assumptions”

that the participants of an interaction belief to share with each other. Interaction partners
constantly establish, maintain, and repair their common ground. This includes monitoring
their own and the others’ behaviors and actions, and eventually producing appropriate inter-
ventions and repairing mechanisms if the common ground is, or threatens to be, disrupted.
Such disruptions arise from wrong presuppositions and misunderstandings due to missing
attention or whenever one participant presumes sensory, perceptive or cognitive abilities
that the other cannot serve with. The shared information constituting the common ground
is used to coordinate on the content of the dialog or task of the joint activity as well as the
process and progress of what they are doing (Clark and Brennan, 1991). However, it should
not be understood as a quantity that can directly or indirectly be measured (Koschmann and
LeBaron, 2003) but should rather be imagined as a cooperatively accumulated and distributed
form of mental abstraction (Clark, 1996).

Contribution Theory

A BĎđĆęĊėĆđ
MĔĉĊđ Ĕċ

IēęĊėĆĈęĎĔē

The theory of a common ground arises from a bilateral model of natural conversations and
social joint activities. These are actually more than just simple alternating sequences of iso-
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lated utterances or actions, but rather consist of closely coordinated collective acts of speak-
ers and listeners. In this, speakers and actors monitor their own behaviors and those of
their addressees, and take both into account as they proceed with their action or utterance
to ensure that they are being attended to and understood by the partners. These, in turn,
constantly keep the speaker informed about their current state of understanding, letting him
know when he has succeeded, which means that the speaker’s contribution is mutually ac-
cepted and ƪown into the common ground (Clark and Krych, 2004). Thus, contributing to
a discourse or collaborative activity is a bilateral cooperation and information exchange that
requires each partner to monitor himself and the others, and to use the thereby gained infor-
mation in further speaking and acting (Clark and Krych, 2004). This bilateral model extends
the more traditional unilateral models of language production (Bock and Levelt, 1994; Fer-
reira, 2000) and understanding (Tanenhaus and Trueswell, 1995; Frazier and Clifton, 1997)
that solely consider self-monitoring and self-repair (Schegloơ et al., 1977; Levelt, 1983).

A TčĊĔėĞ Ĕċ
CĔēęėĎćĚęĎĔē

The bilateral perspective is achieved by enlarging the frame of an interaction’s analysis from
the single message unit, like an utterance or action, to the notion of a reciprocally and collec-
tively produced contribution (Clark and Schaefer, 1987, 1989). According to this contribution
theory, these always have a presentation phase, in which the speaker produces an utterance
or action, followed by an acceptance phase, in which the addressed partner may explicitly
acknowledge, modify, clarify, or implicitly accept it by continuing with the next relevant
contribution. Contributions may be nested within other contributions as parts of clariƤca-
tion subdialogs. Because an utterance presented by one partner does not become a contri-
bution until it has been accepted by the other, both speakers and addressees are mutually
responsible for what is contributed to the common ground.

Grounding Mechanisms

GėĔĚēĉĎēČ
EěĎĉĊēĈĊ ƭ
CėĎęĊėĎĔē

According to the contribution theory, an utterance presented by a speaker or an action per-
formed by an actor is not part of the interaction’s common ground until it has been accepted
or approved by the addressee (Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1987, 1989).
This acceptance happens through the systematic exchange of acceptance evidence during
the grounding process (Clark and Schaefer, 1987, 1989). Depending on their common goals,
where necessary, the participants of an interaction adjust the grounding criterion which de-
termines the degree of evidence that is required to accept a contribution (Clark and Wilkes-
Gibbs, 1986; Clark and Schaefer, 1989; Wilkes-Gibbs and Clark, 1992).

LĊěĊđĘ Ĕċ
GėĔĚēĉĎēČ

The exchange of the evidence of a contribution’s acceptance can be provided by various meth-
ods on multiple levels of grounding (Clark, 1996; Clark and Krych, 2004). Examples for them
can be found in the following exchange that could have been occurred as an alternative course
or subdialog of the conversation between Charly and Marley starting after scene 3⃝ of the in-
troductory example scenario from Section 1.2:

3⃝ Suddenly, Marley is asking 'Tell me! Where is this beach?' while looking at one of the shown photos.

Then she looks at Charly who returns the gaze and says 'This was your trip through France in 1980!'
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4⃝ Marley knits her eyebrows asking 'Through what?' — Charly repeats 'France!' and she says 'Aha!'.

5⃝ Marley looks at Charly with wondering eyes asking 'The one in the Champagne or in Aquitaine?'.

Charly answers 'The second trip!' and Marley then acknowledges that by a nod of her head.

6⃝ After a moment she starts smiling and says 'Yes, we were eating tonnes of oysters each day'.

GėĔĚēĉĎēČ ćĞ
AęęĊēęĎěĊēĊĘĘ

First, scene 3⃝ illustrates that on the level of attentiveness, common ground is established
by paying attention to each other which is usually achieved by constantly monitoring and
carefully listening to each other. If an addressee misses to pay attention then he might have
diƥculties to acoustically understand the speaker in a conversation or to visually follow an
actor’s actions in a joint activity. In this case, he would try to re-establish the common ground
and signal that he has been inattentive by saying “What?”, “Sorry?” or “Again!” and the
speaker would ordinarily repeat his utterance or action in response.

GėĔĚēĉĎēČ ćĞ
IĉĊēęĎċĎĈĆęĎĔē

Second, on the levels of identiƤcation both interaction partners must ground their belief that
the speaker’s words, phrases, and sentences have been completely identiƤed. An example of
an identiƤcation grounding can be found in scene 4⃝ of the alternative scenario above when
Carly answers Marley’s question about a photo saying “This was your trip through France in
1980!”. Marley signals that she has correctly identiƤed and understood the sentence with the
exception that she is uncertain about the last word by asking back “Through what?”. In order
to repair the common ground, Charly then explicitly repeats the word by saying “France!”
and she acknowledges the identiƤcation of the word by responding with “Aha!”.

GėĔĚēĉĎēČ ćĞ
UēĉĊėĘęĆēĉĎēČ

Then, on the level of understanding both interaction partners must ground their belief that
the speaker’s words, phrases, and sentences have been correctly understood and interpreted.
Disruptions of the common ground on this level are usually repaired by initiating some kind
of clariƤcation subdialog An example of this kind of grounding can be found in scene 5⃝
of the alternative scenario above when Marley asks back “The one in the Champagne or in
Aquitaine?” and Charly provides the clariƤcation by saying “The second trip!”, in this, relying
on the fact that they both already share the knowledge that the second trip was the one to
Aquitaine as part of their common ground. In response, Marley Ƥnally conƤrms understand-
ing and agreement by producing a back-channel signal in form of a head nod.

GėĔĚēĉĎēČ ćĞ
CĔēĘĎĉĊėĆęĎĔē

Finally, on the level of consideration, both interaction partners must be able to reasonably
and coherently continue their conversation or joint activity based on the recently updated
common ground. For that purpose, they produce reasonable and appropriate next contribu-
tions to the interaction by answering a question or continuing with a question on their own.
An example of such a strategy can be found in scene 6⃝ of the alternative scenario when
Marley is continuing with the utterance “Yes, we were eating tonnes of oysters each day”.

MĊęčĔĉĘ Ĕċ
GėĔĚēĉĎēČ

The exemplary subdialog also illustrates that the interaction partners may generally employ
diơerent methods of accomplishing acceptance in a contribution and to ground their inter-
action at the aforementioned four levels (Clark, 1996; Clark and Krych, 2004). These meth-
ods mainly diơer in the degree of evidence for grounding that they provide and the level
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of grounding on which they may be useful and reasonable. For example, responding to an
utterance by simply repeating a part or all of what has been said by the partner is a very
strong and explicit type of grounding evidence which is provided on the levels of identiƤca-
tion and understanding. Another possibility for providing positive evidence of the common
ground, but a somewhat weaker explicit method, is the use of an acknowledgment or contin-
uer, such as for instance “yes”, “uh”, “okay”, and others. More information is already provided
by the use of assessments such as “gosh”, or “jipiiee”, or nonverbal social signals such as emo-
tional facial expressions (Ekman and Friesen, 1969; Ekman, 1977). Listeners in conversations
provide back-channel responses in order to ground their information states or to signal en-
gagement, agreement, and alignment (Yngve, 1970). For example, a listener’s head nod or
the use of “yeah” can function as continuer, alignment token, and agreement signal while a
“hmm” or a head shake usually signals a weak conversational engagement or disagreement
(Lambertz, 2011). In symmetry, speakers have similar ways of signaling their cognitive states
in conversation, such as by Ƥlling a pause before an answer with “um” or “oh” (Brennan and
Williams, 1995; Smith and Clark, 1993). Speakers use Ƥllers such as “um” and “uh” to display
the fact that they are working on producing an utterance. Hearers can use this information,
that means the presence or absence of diơerent kinds of Ƥllers, to make accurate inferences
about the speaker’s commitment to an answer based on the display that precedes the answer
(Brennan and Williams, 1995). In this, an unexpected delay licenses the inference that the
conversational partner is having diƥculty. Finally, an implicit method of providing evidence
for the common ground is by simply continuing the conversation with the next relevant ut-
terance, whereas a listener frequently requests clariƤcation of some or all of the contributor’s
presentation if an utterance or action has not been understood or accepted.

Referential Grounding

RĊċĊėĊēĈĊ
CĔēęĊĝę

During natural conversations and social joint activities, speakers collaborate with their part-
ners by producing references to entities in the common conversational or perceptual ground.
Thus, on the one hand, they use references to the discourse context, such as ellipsis and
pronominal references to entities, previously mentioned during the conversation, as well as
references to the situated context, which means to objects, persons, or events in the phys-
ical environment (Brennan, 1998). The process of referential grounding requires that both
partners are responsible for establishing the mutual belief that they both have understood
the referring expression and associating the same object or entity with the reference. Ac-
cording to the contribution theory they collaborate to reach this mutual belief, that means,
the speaker is looking for reliable evidence of the listener’s understanding while the listener
tries to provide this understanding (Clark and Brennan, 1991). There exist various methods
that interaction partners can use to jointly coordinate their mutual understanding of refer-
ences and improve the eƥciency of referential grounding with as little eơort as possible. Of
course, in all types of conversations, including those that do not require a physical proximity
of the interaction partners, such as telephone conversations or e-mail exchanges, a clarify-
ing subdialog, in which ambiguities are resolved, can be initiated. In this thesis, I do not
speciƤcally focus on the management of clariƤcation dialogs or the grounding of references
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to the discourse context but rather on the nonverbal behaviors and the gaze mechanisms that
contribute to the multi-modal grounding of references to the situated context, that means
objects, persons, or events in the shared physical environment.

CĔđđĆćĔėĆęĎěĊ
EċċĔėę

During multi-modal social interactions and joint activities the participants distribute infor-
mation across diơerent modalities (Oviatt, 2003, 2012). In this, people divide their eơorts be-
tween vocal utterances, gestural actions, facial expressions, gaze behaviors, material signals,
and many more. In principle, they could exclusively rely on the verbal exchange of informa-
tion, but it is obvious that they do not, as soon as they are not forced to communicate only
verbally. In face-to-face interactions, such as situated dialogs and joint activities, people not
only speak but also nod, smile, point, gaze at each other and objects in the environment, and
exhibit and place things (Clark and Krych, 2004). The main reason that they communicate
this way is the principle of minimizing their collaborative eơort (Clark and Wilkes-Gibbs,
1986; Clark and Schaefer, 1989; Clark and Brennan, 1991; Clark, 1996) which has been deƤned
by Clark and Brennan (1991) as

“the work that both do from the initiation of each
contribution to its mutual acceptance”

According to this principle, people are opportunistic in the way they exchange information
and achieve a mutual common ground. They always try to select from the available methods
the ones they think take the least eơort for the two of them jointly. This is for instance
measured in terms of cost in time, resources, and error recovery costs (Clark and Brennan,
1991). They exploit a combination of speech, gestures, and other modalities they judge will
take the least joint eơort with regard to the expressive power of each communication channel
as well as the assessment of their partner’s ability and eơort to combine information from the
diơerent modalities.

SĎęĚĆęĊĉ
GėĔĚēĉĎēČ

This multi-modal way of reducing the collaborative eơort is especially prominent when pro-
ducing references to the situated context in face-to-face interactions and collaborative joint
activities, like in the illustrative scenario. In general, such a direct face-to-face interaction
does not take place in an empty space but is always linked to the current environment and
physical context of the interaction. For instance, in the illustrative scenario, the physical con-
text consists of the table and the photos displayed on it as well as Marley’s apartment with the
living room, the kitchen and all objects contained therein, such as the kettle in the kitchen
or the chairs they are sitting on.

When two interaction partners collaborate on such a physical task on a shared workspace or
are discussing objects in the environment, then they frequently transform their language to
reduce the collaborative eơort and make the communication more eƥcient. To refer to ob-
jects in the environment they distribute information across diơerent modalities, depending
on the collaborative eơort and the expressive power of each channel, and rely on their part-
ners’ ability to combine this information in order to resolve ambiguities (Gergle et al., 2004;
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Oviatt, 2012). For example, Marley and Charly both point and look at photos and are manip-
ulating them in addition to verbally referring to them. They nod and smile at each other to
nonverbally acknowledge their reference understanding because they know that their faces
and the shared workspace are visible for both.

In face-to-face interaction a very eƥcient way to coordinate the mutual understanding of
references is to share each other’s visual information about the physical context of the in-
teraction. Therefore, the partners observe each other’s gaze to notice their visual attention
(Argyle and Cook, 1976), point to objects or look at them and at the same time use deic-
tic references, such as “that one” or “there”, or they demonstrate and manipulate objects in
front of their interaction partners (Clark and Krych, 2004; Clark, 2005). An example of such
a combination of directed gaze and a verbal deictic reference can be found in scene 3⃝ of the
illustrative scenario, when Marley asks for information about a speciƤc photo:

3⃝ Suddenly, Marley is asking 'Tell me! Where is this beach?' while looking at one of the shown photos.

Then she looks at Charly who returns the gaze and says 'This was your trip through France in 1980!'

In this situation, Marley’s verbal referring expression is ambiguous and could basically refer to
any photo on the surface table. However, Charly is able to determine the photo that Marley
most likely refers to by taking her gaze direction into account. He thinks to have enough
evidence that Marley is focusing on exactly that photo so that he can continue with his next
contribution by just providing the information that Marley asked for. In this way, he tries to
reduce the collaborative eơort and at the same time accepts that the common ground will be
disrupted and a costly clariƤcation dialog will be required if his guess was wrong.

RĔđĊĘ Ĕċ GĆğĊ
ċĔė GėĔĚēĉĎēČ

Research has shown that using visual information to infer what another person knows facili-
tates eƥcient communication and reduces the ambiguity that might otherwise be associated
with speciƤc linguistic expressions. Monitoring the partner’s eye-gaze and head position pro-
vides cues that allow tracking each other’s perspectives, attentional states, and intentions,
without requiring a very memory intensive cognitive model of mutual belief and common
ground (Hanna et al., 2003). Following the directed gaze of the partner and sharing the
partner’s attention to an object in the environment helps to establish a common perceptual
ground (Sebanz et al., 2006) and to share a common point of reference (Mundy and Newell,
2007). Interaction partners with a mismatched perception of the shared environment can
beneƤt from shared gaze when repairing the common ground (Liu et al., 2013). Being aware
of the partner’s eye gaze may enable the nonverbal execution of joint actions (Brennan et
al., 2008). Various studies have shown that eye gaze is a powerful and ƪexible tool that fa-
cilitates the disambiguation of speech in referential communication (Hanna and Brennan,
2007). It has been shown that when one partner pays attention to the other partner’s gaze
during an interaction, grounding of references to objects in the environment becomes more
eƥcient (Liu et al., 2013). This is especially signiƤcant when the description of behaviors
and actions of the joint task or objects in the shared environment are linguistically complex
(Gergle et al., 2004). This is often the case when the tasks are visually complex or when par-
ticipants have no simple vocabulary for describing their environment (Gergle et al., 2004).
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Consequently, it is obvious, that being aware of the partner’s eye gaze and visual information
plays an essential role in referential grounding in human-computer interaction, for example,
when interacting with embodied conversational agents (Nakano et al., 2003) or collaborative
robots (Mehlmann et al., 2014a,b) and in computer-supported teamwork (Gergle et al., 2013).

2.1.3 Synergy and Overlap Eơects

BĊčĆěĎĔė
MĆęĈčĎēČ ěĘ.

IēęĊėĆĈęĎĔēĆđ
SĞēĈčėĔēĞ

The distinction between behavior matching and interactional synchrony is sometimes un-
clear because these two types of coordination are not completely disjoint and are frequently
observed simultaneously or in combination. Their precursors are often similar which sug-
gests that both work together synergistic to serve the goal of interpersonal coordination in
social interactions and joint activities (Schmidt and Richardson, 2008; Marsh et al., 2009).
The pro-social eơects of being in sync with a partner are similar to those of being mimicked
by him. Both, behavior matching and interactional synchrony are interdependent and mutu-
ally reinforcing each other, having many similar pro-social eơects, such as increasing liking
and rapport, perceptions of similarity, and feelings of closeness as well as cooperation and
helping behavior (Schmidt et al., 2012; Chartrand and Lakin, 2013).

MĚęĚĆđ
IēċđĚĊēĈĊ

ěĘ. AĉĆĕęĆęĎĔē

One diơerence between them is that interactional synchrony, unlike behavior matching, is
dynamic in the sense that the important element is the issue of timing, rather then the ex-
pression of similarity of behaviors. This suggests that interactional synchrony comprises not
only the constant monitoring of the interaction partners’ behaviors and a highly reactive re-
sponse to them, but it might also comprise some degree of anticipation of another person’s
behaviors, such that the own movements, actions, and behaviors can be closely coordinated
in time with those of the partners (Lakin et al., 2003; Marsh et al., 2009). So, on the one
side, behavior matching reƪects the mutual inƪuence of the interaction partners’ behaviors,
independent of the temporal development of this inƪuence. On the other side, interactional
synchrony reƪects a more dynamic and reciprocal aspect of coordination which can be con-
sidered as the mutual adaptation of the interaction partners (Richardson et al., 2005).

For instance, if we consider two people sitting opposite to each other at a shared workspace,
as in the illustrative scenario. They are both looking at the same object on the workspace and
both are having their head resting on their hand. This static situation certainly exhibits be-
havior matching in form of the mirroring mechanism or the chameleon eơect. However, the
mutual coordination and adaptation of their behaviors becomes a matter of timing and syn-
chrony when one of them starts changing the posture or starts looking at another object. In
this case, the partner can imitate this behavior and follow the other’s attention nearly simul-
taneously, or within a certain time window in order to achieve a high degree of interactional
synchrony.

IēęĊė- ěĘ.
CėĔĘĘ-MĔĉĆđ
MĊĈčĆēĎĘĒ

Another diơerence between behavior matching and interactional synchrony lies in the use of
diơerent modalities. While both mechanisms can occur in multiple modalities, in behavior
matching the adaptation occurs in the same modality for both partners, whereas the recipro-
cal behavioral patterns that create interactional synchrony can comprise individual behaviors
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in completely diơerent modalities (Delaherche et al., 2012).

For example, a listener’s back-channel signal which is used during a speaker’s verbal utterance
to signal agreement or understanding can be produced nonverbally, for example, by nodding
with the head of a short smiling expression, which results in a cross-modal behavioral pattern.
However, it can as well be produced with a short verbal statement, for example, by saying
“hmm” or “ahh”, which produces an inter-modal behavioral pattern. Another example is the
direction of the interaction partner’s visual attention in the same modality by using directed
gaze only, or in another modality by using a pointing gesture, a verbal referring expression,
or a combination any of these modalities.

IēęĊėĕĊėĘĔēĆđ
CĔĔėĉĎēĆęĎĔē
ěĘ. GėĔĚēĉĎēČ

Finally it has been argued that the rich patterns of interpersonal behavioral coordination,
especially the coordination of the participants’ postural sways and eye movements, reƪect
the coordination of the underlying cognitive states and processes (Richardson et al., 2008).
This coupling between the participants’ motor movements is an indicator of both the pro-
cess and the success of their communication. These Ƥndings suggest that there might exist
some interrelation between interpersonal coordination and grounding which has however
not explicitly been studied. At least the individual social functions of diơerent gaze behav-
iors and voice activity which are explained in Section 2.2 play a more or less important role
and contribute to both interpersonal coordination and grounding in social interactions and
joint activities. However, it can be observed, that the behavioral aspects of interpersonal co-
ordination more directly target on speciƤc social outcomes, such as interpersonal rapport,
aƥliation, connectedness (Bernieri et al., 1994; Lakin and Chartrand, 2003), liking (Hove
and Risen, 2009; Miles et al., 2009), compassion, cooperation, altruistic behavior (Wilter-
muth and Heath, 2009; Valdesolo and DeSteno, 2011), and emotional empathy (Chartrand
and Lakin, 2013), and involve more subconscious, automatic, and reƪexive behaviors. In con-
trast, the mostly conscious and deliberate behaviors that contribute to grounding target on
the exchange and coordination of knowledge, intentions, and beliefs for the maintenance of
the common ground and, thus, focus more on the eƥciency and success of the conversation
or task (Hanna et al., 2003; Sebanz et al., 2006; Hanna and Brennan, 2007; Mundy and Newell,
2007; Brennan et al., 2008; Liu et al., 2013).

For example, on the one hand, the aspects of rhythm and simultaneity when following the
interaction partner’s eye movements certainly contribute to interactional synchrony and thus
to rapport and connectedness. On the other hand, the eơect of sharing the visual attention
and thus the same perceptual ground contributes to grounding in the sense that is facilitates
the prediction of the partner’s intentions and multi-modal language understanding. Another
example is the proper use of gaze cues and monitoring the partner’s gaze to enable a seamless
exchange and smooth meshing of speaker turns. This certainly contributes to interactional
synchrony and can improve cooperation and liking, but, it certainly also helps to ensure an
eơective and successful coordination of the conversation’s process and progress by grounding
the speaker and listener roles.
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2.2 The Diơerent Functions of Gaze Behavior

Humans communicate via multiple parallel information channels and modalities to achieve
interpersonal coordination and grounding with the least collaborative eơort. They use speech
acts but their voice also reveals information via paralinguistic features, such as prosody, pitch,
volume, and intonation. Furthermore, they unconsciously exhibit information via physiolog-
ical cues such as blood circulation and breathing patterns. Finally, they make extensive use
of gestures and postures as well as facial expressions and eye gaze behaviors. Among those,
especially gaze behavior and its interplay with the other modalities plays versatile roles and
contributes to interpersonal coordination and grounding with various functions that can be
categorized according to a handful of social contexts (Srinivasan and Murphy, 2011; Jokinen
et al., 2013; Fischer et al., 2015; Ruhland et al., 2015; Mehlmann et al., 2014a,b, 2016). Besides
the general objective to establish agency and liveliness, it plays a role in the expression of so-
cial attention and intention, the support of interaction content, language understanding and
recall, the regulation of the interaction process and participant roles, the communication of
emotional and cognitive states, and the creation of social closeness and rapport as well as
the regulation of intimacy. Following this categorization, I now present relevant research
and literature on the diơerent roles of gaze behaviors for social and regulatory functions that
contribute to interpersonal coordination and grounding.

2.2.1 Concepts and DeƤnitions

Humans exploit a variety of interactional gazemechanismswith diơerent social functions and
manipulate a variety of temporal and spatial variables, and behavioral parameters of gaze to
achieve certain social outcomes. These variable features of their gaze behavior, such as fre-
quency, duration, timing, and the direction or target they look at vary with the context and
type of the activity as well as the distribution of participant roles. In the following, I present
the most important interactional gaze mechanisms and features as well as participant roles
that can be found in social joint activities. In order to avoid unclarity or misunderstandings
due to conceptual and terminological confusions, I therefore mainly rely on the categoriza-
tions by von Cranach and Ellgring (1973a,b) and Goơman (1979).

Gaze Mechanisms

VĎĘĚĆđ
OėĎĊēęĆęĎĔē

Figure 2.2.1 shows an illustration of important gaze mechanisms in social interactions. The
terms directed gaze and visual orientation refer to situations in which the sender of gaze looks
at the eye region or the upper half of the recipient’s face (Cook and Smith, 1975; Argyle and
Cook, 1976) but also when looking at an object, event, or person in the environment or point
in space (Figure 2.2.1 A⃝). A person’s gaze direction or target can be an indicator of particular
interest in a speciƤc object or interaction partner (Gibson and Pick, 1963). Directed gaze
movements that are supposed to indicate attention, suggest future actions, and deƤne the
target of facial signals, for example, when multi-modally referring to an object or person in
the environment, are often called deictic gaze (Argyle and Cook, 1976; Shepherd, 2010).
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The concepts mutual gaze or eye contact describe situations in which both partners look into

MĚęĚĆđ
OėĎĊēęĆęĎĔē

each other’s face or eye region, at the same time, and both are aware of this mutual visual
orientation (Figure 2.2.1 B⃝) (von Cranach and Ellgring, 1973a,b). Being looked at, or having
even the feeling of being monitored by another person, can cause certain physiological and
neurological reactions (Coss, 1970; Pelphrey et al., 2004), such as an involuntary pupil dilation
as indicator for increased emotional arousal. Eye contact can have various eơects on the social
framework and interpersonal relationship, such as increased attention (Langton et al., 2000)
and intimacy (Argyle and Dean, 1965).

Figure 2.2.1: An illustration of some of the most important gaze mechanisms in social interactions.

VĎĘĚĆđ
AęęĊēęĎĔē

The term gaze following means that one partner follows the other’s line of sight to a point
in space or object in the environment (Emery, 2000). Vice-versa gaze direction means the
successful attempt of one partner to direct the other’s gaze to the point in space. If both
partners then look at the same Ƥxed point in space they have established shared gaze (Fig-
ure 2.2.1 C⃝), also referred to as shared attention (Butterworth, 1991; Emery, 2000). If both
interaction partners are not only simultaneously looking at each other or the same object,
person, or event in the environment, but, also cognitively attending them intentionally at
the same time and being mutually aware of this connection, then this is referred to as joint
attention (Clark and Marshall, 1981; Baron-Cohen, 1995; Tomasello, 1995; Tomasello et al.,
2005). In human-agent interaction research, shared and joint attention are often confused
or used interchangeably. State-of-the-art behavior and interaction models cover solely indi-
vidual aspects of shared attention and cannot capture true cognitive joint attention. As in
this thesis too, they actually research the situation in which the partners are visually perceiv-
ing the same object, person, or event without requiring commutated mental states (Kaplan
and Hafner, 2006; Pfeiơer-Lessmann et al., 2012).
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VĎĘĚĆđ
AěĔĎĉĆēĈĊ

The terms averted gaze, gaze avoidance or gaze aversion describe a situation in which a person
avoids looking at or is looking away from the partner (Figure 2.2.1 D⃝), especially if already
being looked at (von Cranach and Ellgring, 1973a; Emery, 2000). The formulation mutual
gaze aversion means that both partners simultaneously avoid being looked at by the other.
In contrast to visual orientation, gaze during gaze aversion targets Ƥxation points and random
locations in the environment or points on a partner’s body but not the face. These targets can
change based on conversation structure and content, the objects of interest and the relevance
of these objects to the joint activity (Argyle and Graham, 1976).

Figure 2.2.2: An illustration of some of the most important participant roles in social interactions.

Participant Roles

TĜĔ-PĆėęĞ
IēęĊėĆĈęĎĔēĘ

Figure 2.2.2 shows an illustration of the diơerent roles of participation of a social interaction,
as described by Mutlu et al. (2009) who adapted them from Goơman (1979) and Clark (1996).
Traditionally, each participant either plays the role of the speaker (Figure 2.2.2 A⃝) or the ad-
dressee (Figure 2.2.2 B⃝) at any moment during a dyadic conversation (Goơman, 1979). This
usually depends on the partners’ speech activities and if they are presenting or accepting a
contribution (Clark, 1996). While the primitive notions of speaker and hearer are commonly
considered inadequate for other two-party interactions there is, however, no agreement on a
common scheme of the diơerent producer and receiver roles (Goơman, 1979; Levinson, 1988;
Clark and Schaefer, 1992). In this thesis, it is assumed that in a collaborative joint activity,
an actor, which is a participant that performs an action on the shared workspace, such as
manipulating an object, can be put on a level with the speaker role, if a turn or contribution
can also be achieved with such an action (Clark, 2005). How these roles shift during inter-
actions is considered important in understanding spoken discourse and joint activities, for
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example, when grammatical choice is determined by the participant constellation (Hymes,
1972; Hanks, 1996). Also interesting is how people use their voice activities, gaze behaviors,
and other nonverbal signals to shape and reciprocally exchange their participant roles.

MĚđęĎ-PĆėęĞ
IēęĊėĆĈęĎĔēĘ

Multi-party interactions can additionally include diơerent side-participant roles as well as
more or less ratiƤed or acknowledged non-participants (Goơman, 1979; Wilkes-Gibbs and
Clark, 1992; Clark, 1996). Special side-participants are listeners which are actively listening
but are not directly addressed by the speaker and can become addressees or speakers at any
time during the interaction. People having the role of bystanders (Figure 2.2.2 C⃝) are atten-
tively observing and listening to the conversation without actively participating while, nev-
ertheless, being acknowledged by the participants of the conversation (Goơman, 1979; Clark
and Carlson, 1982; Clark, 1996). Those that have not been acknowledged as participant are
overhearers (Figure 2.2.2 D⃝) when unintentionally, or eavesdroppers (Figure 2.2.2 E⃝) when
purposefully listening to the conversation (Goơman, 1979).

2.2.2 Attention and Intention

AęęĊēęĎĔē
FĔđđĔĜĎēČ

An important aspect of interpersonal coordination and prerequisite for grounding is the abil-
ity to orient one’s own and to direct another person’s attention to information in the envi-
ronment that is relevant to one’s own behavioral goals and intentions (Posner, 1980; Frischen
et al., 2007). One of the most frequently used and reliable methods to share attention and
predict the interest of the interaction partner in a speciƤc object, person, or event is gaze
following. Humans usually follow their partners’ gaze shifts and movements to share their
partners’ visual focus and point of reference (Mundy and Newell, 2007). This usually results
in recurring phases of shared visual attention to these objects or points in space (Kendon,
1967). By following their interaction partners’ gaze shifts people also signal that they are en-
gaged and interested in the joint social activity and are able to identify referred objects of
interest which Ƥnally helps in the maintenance of the common ground (Clark, 1996, 2005).

IēęĊēęĎĔē
PėĊĉĎĈęĎĔē

The whole time during a joint activity, the interaction partners attentively observe each
other’s actions and behaviors, trying to predict and anticipate each other’s intentions and
objectives, in order to adjust their own behaviors accordingly (Sebanz and Knoblich, 2009;
Huang et al., 2015). Among other cues, gaze direction has been identiƤed as crucial in un-
derstanding the intention of the interaction partner because it may not only be an indication
for cognitive attention and interest but also of the actions and steps that they could sub-
sequently perform (Baron-Cohen et al., 2001; Meltzoơ and Brooks, 2001). For example, the
partners would reasonably assume and agree that an area or object in the physical environ-
ment, being jointly gazed towards, will probably be the next space or entity to be acted upon
during the joint activity (Baron-Cohen et al., 2001; Meltzoơ and Brooks, 2001). Furthermore,
monitoring the partner’s gaze direction can help to faster detect situations in which the part-
ner needs support, thus being able to provide faster help when it seems necessary (Brennan
et al., 2008). Thus, being aware of and sharing the partner’s gaze facilitates an eơective task
coordination (Tomasello, 1995) and maintaining the common ground to ensure the success
of the joint collaborative task (Clark, 2005).
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Besides verbal references and deictic gestures, humans use directed gaze, sometimes in com-

AęęĊēęĎĔē
DĎėĊĈęĎĔē

bination with the other modalities, to intentionally or unconsciously direct their partners’
attention to objects, events, or points in space (Baron-Cohen, 1995; Emery, 2000), or to them-
selves (Clark and Wilkes-Gibbs, 1986; Bangerter, 2004; Richardson and Dale, 2005; Oviatt,
2012). They direct their gaze at a partner to signal attention to the other person or, vice-
versa, avert the gaze in order to avoid to draw attention (Goơman, 1963). Being looked
at is a social stimulus that triggers a neuro-physiological attention detection mechanism
(Baron-Cohen, 1995; Perrett and Emery, 1994) which is frequently responded to with in-
creased arousal (Nichols and Champness, 1971; Patterson, 1976; Kleinke, 1986). When simul-
taneously paying attention to each other, then people usually perform mutual gaze (Argyle
et al., 1973; Argyle and Cook, 1976) which has been found to be a clear indication of engage-
ment in the interaction and attentiveness towards the partner (Sidner et al., 2005). When a
joint activity requires complex references to, and joint manipulation of objects in the physi-
cal environment, then they, however, more frequently look at these objects of shared interest
than to each other in order to signal engagement (Argyle and Graham, 1976; Anderson, 1997;
Nakano and Ishii, 2010). Drawing the interaction partners’ attention and interest towards
an intended object helps to establish a common perceptual ground (Sebanz et al., 2006) and
thus facilitates the grounding process (Clark, 1996, 2005).

2.2.3 Understanding and Recall

MĚđęĎ-MĔĉĆđ
DĎĘĆĒćĎČĚĆęĎĔē

Once a common perceptual ground has been established, gaze also serves the understanding
of multi-modal references to focused objects. Humans usually distribute information across
modalities, often a combination of directed gaze and a verbal referring expression or deictic
gesture, to produce multi-modal references (Oviatt and Cohen, 2000; Oviatt, 2003, 2012). In
return, they rely on their partners’ ability to take their gaze behavior into account for the
reliable resolution of this reference (Oviatt and VanGent, 1996; Oviatt, 1999, 2002, 2003).
Indeed, the speaker’s gaze direction rapidly constrains the domain of interpretation for an
addressee and thus speeds up the resolution process (Hanna and Brennan, 2007). This can
eƥciently reduce the collaborative eơort (Clark and Wilkes-Gibbs, 1986) compared to using
lengthy verbal descriptions of an object’s attributes and relations to other objects (Oviatt,
1996, 1997). For that reason, the disambiguation of ambiguous references with gaze is fre-
quently used to ground the interaction content instead of engaging in lengthy clariƤcation
dialogs (Oviatt et al., 1997, 2000).

CĔ-VĊėćĆđ
AđĎČēĒĊēę

It has been found that directed gaze to an object during a multi-modal referring statement is
temporally well-aligned with corresponding referring expressions in verbal utterances (Meyer
et al., 1998; Griƥn and Bock, 2000; Griƥn, 2001). Some research shows, that referential gaze
typically precedes the corresponding referring expression in speech by roughly 800 to 1000
milliseconds (Meyer et al., 1998; Griƥn and Bock, 2000; Griƥn, 2001) and listeners typically
take 500 to 1000 milliseconds to Ƥxate an object after the linguistic reference (Allopenna
et al., 1998). Similar work shows that a gaze Ƥxation that best identiƤes a referred object,
on average, occurs about 600 milliseconds before speech onset with a range of 150 to 1200
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milliseconds for individual subjects (Kaur et al., 2003). These results show, that, depending
on the application, task, or subject, certain temporal alignment and integration rules can
be applied for multi-modal disambiguation and early repair of misunderstandings (Richard-
son et al., 2007a). For example, the listener’s gaze following about half a second after the
speaker’s verbal reference can be pulled up to determine if the listener successfully identiƤed
the meant object. In case of a misunderstanding, the speaker can immediately repair the
common ground by reƤning or rephrasing the description or by engaging in a clariƤcation
dialog in which the remaining ambiguities are resolved.

RĊĈĆđđ ƭ
LĊĆėēĎēČ

Finally, it has been shown that the frequent maintenance of mutual visual orientation be-
tween two participants has a positive eơect on language understanding and learning due to
a better recall of the conversation’s content (Exline and Eldridge, 1967). It has been shown
that consciously well-timed eye contact between a teacher and the students can improve the
students’ recall of the lecture content (Otteson and Otteson, 1980; Sherwood, 1987) and their
task performance (Fry and Smith, 1975), and increases the eƥcacy of the lecture as a whole
(Brooks, 1985; Woolfolk and Brooks, 1985). This eơect has been explained with the higher
arousal and concentration during the feeling of being looked at (Nichols and Champness,
1971; Patterson, 1976; Kleinke, 1986).

2.2.4 Turn-Taking and Feedback

TĚėē-TĆĐĎēČ
RĊČĚđĆęĎĔē

Interpersonal coordination and grounding includes a smooth interaction ƪow through the
eƥcient and coordinated regulation of the participant roles (Kendon, 1967; Duncan, 1972;
Clark, 1996). In this, gaze plays important roles in footing (Goơman, 1979; Clark, 1996) and
shifting (Nielsen, 1962; Kendon, 1967; Duncan, 1972, 1974; Sacks et al., 1974; Goodwin, 1980,
1981) these roles when handling interruptions and negotiating turn-exchanges at overlapping
talk and pauses (Schegloơ, 2000, 2001; Goodwin, 1980, 1981). It plays a monitoring as well as
a regulating role for the ƪoor management at transition-relevant places (Sacks et al., 1974),
such as mid utterance hesitations (Bavelas et al., 2002) and the end of phrases.

TĚėē-TĆĐĎēČ
SĎČēĆđĘ

A variety of multi-directional and multi-modal turn-regulation patterns require the precise
alignment of gaze with other modalities, such as speech and gestures (Kendon, 1967; Dun-
can, 1972; Clark, 1996). For example, speakers usually look away from their addressees shortly
after taking the ƪoor and when they begin talking in order to indicate that they want to keep
the ƪoor (Nielsen, 1962; Duncan and Fiske, 1977; Cummins, 2012). They avoid mutual gaze
when they do not want to be interrupted during speech, want to retain their speaker role
during speech hesitations, and while constructing their next utterance (Kendon, 1967; Ho et
al., 2015). Furthermore, speakers look at an addressee to signal the end of a contribution and
to propose that participant as the next speaker (Nielsen, 1962; Kendon, 1967). The turn ex-
change can be delayed if a contribution does not end with such a mutual gaze (Kendon, 1967;
Vertegaal et al., 2000). Not only speakers are responsible for turn-taking but also listeners,
for example, when making more gaze shifts prior to speaking as a way to request the turn
(Harrigan, 1985). It has been shown that gaze becomes all the more important in signaling
role exchanges in conversations between strangers (Beattie, 1980).
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When addressing a group of people, then speakers usually tend to rather evenly distribute

MĚđęĎ-PĆėęĞ
TĚėē-TĆĐĎēČ

their gaze among its members. Holding eye contact with an individual member for long
enough can then be a signal that the speaker is addressing or yielding the turn to this partic-
ular participant (Bales, 1970; Sacks et al., 1974; Goodwin, 1981) who is then considered as main
target of the current communication content (Bales et al., 1951). Breakdowns in the organi-
zation of multi-party conversations can thus occur if the speaker does not clearly signal who
is being addressed at the end of his turn (Schegloơ, 1968). Usually, the intended addressee
answers the speakers gaze, but, if he apparently and intentionally avoids mutual gaze, then
the speaker can feel excluded or ignored (Williams, 2001). Humans are very sensitive to
the slightest cues of gaze for inclusion or exclusion from a group. A simple eye contact is
suƥcient as acknowledgment conveying group inclusion while withholding eye contact can
signal exclusion (Wesselmann et al., 2012).

While gaze behaviors usually correlate with turn transitions and role shifts they are also ob-

BĆĈĐ-CčĆēēĊđ
EđĎĈĎęĎēČ

served in conjunction with back-channel eliciting cues (Sandgren et al., 2012). Generally, the
participants of an interaction regularly produce back-channel signals using nonverbal cues
such as head nods or short verbal statements. Listeners usually use back-channel cues to
signal, for example, understanding, agreement, or engagement (Yngve, 1970; Allwood et al.,
1993) without requesting the turn while the partner is speaking or performing an action.
They shortly acknowledge that they have understood what has been said and done to ground
their information states without the need for a costly interruption of the conversational ƪow
and a new negotiation of the participant roles (Yngve, 1970).

In return, speakers occasionally perform a short glance of mutual gaze to the addressee with-
out yielding the turn with the aim to elicit a back-channel cue at speciƤc points in time
(Kendon, 1967; Allwood et al., 1993; Bavelas et al., 2002). For example, Oertel et al. (2012) and
Hjalmarsson and Oertel (2012) showed that a frequently occurring gaze cue shortly before
a back-channel is a gaze glance to the listener initiated up to 2 seconds before the onset of
the actual occurrence of the back-channel. In line with the Ƥndings of Kendon (1967) and
Bavelas et al. (2002), they showed that gaze is a back-channel inviting cue, in the sense that
back-channels are indeed associated with an increase in mutual gaze directly preceding the
onset of the feedback expression. They explain this observation with the fact that listener
responses often are visual responses, such as eyebrow raises, head nods, or a smile, with or
without an accompanying verbal back-channel. In order to detect these visual nonverbal
cues, the speaker has to look at the listener and since these kind of responses are usually very
short they lead to a very short glance of mutual gaze. Although the gaze cues for feedback
eliciting and turn-yielding might look very similar at Ƥrst sight, it is very important not to
confuse these signals and to handle them diơerently (Duncan and Niederehe, 1974).

2.2.5 Emotions and Cognition

EĒĔęĎĔēĆđ
DĎĘĕđĆĞĘ

Interpersonal coordination and grounding involves being sensitive toward the interaction
partners’ cognitive and emotional displays while adapting one’s own behavior in response
and producing adequate verbal and nonverbal cues to reveal the own thoughts and feelings
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(Kendon, 1967; Argyle and Cook, 1976; Doherty-Sneddon and Phelps, 2005). Humans usually
convey emotional states via a variety of modalities, such as facial displays and postures that
are frequently enhanced by gaze behaviors. For example, avoidance-oriented emotions, such
as fear, are typically accompanied by averted gaze while directed and mutual gaze, is linked
to approach-oriented emotions, such as joy (Adams and Kleck, 2005). Moreover, research
suggests that gaze aversion is an indicator for nervousness that could be associated with
deception (Zuckerman and Driver, 1985; Vrij, 2002). Others found that it is associated with
an increase in anxiety and plays a role in anxiety reduction (Stanley and Martin, 1968) or that
people engage in less eye contact when they feel embarrassment (Exline et al., 1965).

EĒĔęĎĔēĆđ
GėĔĚēĉĎēČ

Understanding and sharing each other’s emotional states increase engagement and rapport
in an interaction (Chartrand and Bargh, 1999). A simple form of emotional grounding can be
realized by mimicking the emotional cues of the conversational partner whenever the partner
is trying to establish eye contact (Chartrand and Lakin, 2013). Such ideomotor behaviors
may then convey the impression of empathy even in the absence of any understanding or
reappraisal of the other’s emotional state and the underlying reasons (Hess and Fischer, 2013,
2014). Real empathy, however, requires a deeper level of mind reading (Baron-Cohen, 1997)
from the partner. This means the partner has to appraise the situation from the perspective
of the conversational partner to be able to produce a sensitive and adequate response.

CĔČēĎęĎěĊ
AĈęĎěĎęĞ

Gaze cues are also among the key signals to display cognitive states and operations. People
look away from their interaction partners because gaze aversions reduces visual stimulation
from their faces (Ro et al., 2001) and thus supports cognitive activity (Ehrlichman and Mi-
cic, 2012). It facilitates disengaging from the environment and partners and, thus, to limit
visual inputs and avoid mutual gaze that could interfere with the production of speech (Beat-
tie, 1980, 1981b). For example, speakers usually avert gaze when planning speech (Kendon,
1967), signaling cognitive eơort (Argyle and Cook, 1976), updating beliefs, desires, and inten-
tions (Doherty-Sneddon and Phelps, 2005), or when they encounter a rejection or counter-
proposal from their conversation partner and want to avoid a conƪict or threat (Argyle and
Cook, 1976). People look at objects while updating their belief about or planning an action on
these objects (Argyle and Cook, 1976). Forcing oneself to look away from the conversational
partners while recalling information from long-term memory or when planning a response
to a challenging question signiƤcantly improves performance (Glenberg et al., 1998; Doherty-
Sneddon and Phelps, 2005; Phelps et al., 2006). The listeners, in turn, are frequently showing
curiosity, engagement, understanding, and attentiveness by responding to these gaze behav-
iors by trying to establish mutual gaze (Sidner et al., 2005; Bee et al., 2010a) and producing
appropriate acoustic and visual attentive behaviors and back-channel signals (Kendon, 1967;
Yngve, 1970; Allwood et al., 1993; Bavelas et al., 2002). Another cognitive operation that pro-
duces particular gaze behaviors is the monitoring for events and the reaction to unexpected
events in the environment. For instance, people frequently respond to unexpected events,
such as a loud or unusual sound in the environment, by looking into the direction of the event
before continuing the interaction (Yantis and Jonides, 1990; Yantis, 1993; Chopra-Khullar and
Badler, 1999; Lee et al., 2007).
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2.2.6 Personality and Intimacy

PĊėĘĔēĆđĎęĞ
EěĆđĚĆęĎĔē

An interaction partner’s gaze behavior is taken into account when evaluating his or her per-
sonality (Goơman, 1963; Kleck and Nuessle, 1968; Kendon and Cook, 1969; Cook and Smith,
1975). Thus, gaze has a signiƤcant inƪuence on the reciprocal perception and social attitude
towards each other (Argyle et al., 1971). The establishment and maintenance of mutual vi-
sual orientation often leads to positive social eơects such as social attention (Langton et al.,
2000) and increased attraction (Exline and Winters, 1966). For example, up to a certain de-
gree, an interaction partner’s personality is generally rated the better the more he looks at
his or her partners and responds to the partner’s gaze (Argyle et al., 1971). It has been found
that people who look at others only about Ƥfteen percent of the time are perceived as cold,
pessimistic, cautious, nervous, defensive, immature, evasive, submissive, indiơerent, sensi-
tive, and lacking conƤdence. In contrast, those who look at others about eighty percent of
the time are rated as more friendly, self-conƤdent, sincere, and generally more natural (Kleck
and Nuessle, 1968; Cook and Smith, 1975).

Besides the pure total amount of gaze, the rhythm of gaze patterns and gaze movements
is another evaluation criterion for the perception of the interaction partners. People who
have a slower rhythm of gaze shifts, looking in long, infrequent gaze intervals are usually
preferred over those who’s gaze behavior shows a faster rhythm, looking in short and frequent
gaze intervals (Kendon and Cook, 1969). People who are showing attentional engagement
by constantly trying to establish eye contact and mutual gaze are perceived as more likable
than those who frequently break eye contact and thus showing less attention or engagement
(Mason et al., 2005).

IēęĎĒĆĈĞ
RĊČĚđĆęĎĔē

The proper gaze behavior can also support a positive experience of interpersonal intimacy
(Patterson, 1976; Duncan and Fiske, 1977), if carefully used together with other mechanisms
to keep the intimacy in balance over the course of an interaction (Abele, 1986). This means,
that an increased amount of gaze towards the partner produces positive social outcomes,
such as closeness, attention, attraction, and intimacy only to a certain degree. Too much
gaze or even staring can lead to the contrary and result in discomfort in the partners due to
an excessive and unpleasant degree of intimacy. In this, the participants of a conversation
look more at their partners when they are speaking about intimate topics (Exline et al., 1965)
and adapt to changes in the topic’s intimacy level by increasing mutual gaze while talking
about intimate topics and decrease it when talking about non-intimate topics (Abele, 1986).

So, gaze behaviors, such as mutual gaze and gaze aversion, are intentionally and subcon-
sciously used for the regulation of interpersonal intimacy over the course of a social inter-
action. In this, they interplay with a number of other interactional mechanisms for inti-
macy regulation such as physical proximity, the intimacy of the conversational content, or
the amount of smiling (Argyle and Dean, 1965). For example, smiling and the amount of
gaze are inversely correlated (Kendon, 1967) and people reduce gaze toward their partners at
closer distances (Argyle and Dean, 1965). By these means, the interaction partners usually
aim to develop an equilibrium of intimacy and try to compensate for an uncomfortable and
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inadequate increase of intimacy (Argyle and Dean, 1965). Thus, when one of the inƪuenc-
ing factors changes, for example, if there can be perceived an increase in physical proximity,
people tend to maintain the equilibrium by shifting one or more of the other components in
the reverse direction, for example, by averting gaze. In this, intimacy-regulating and ƪoor-
managing gaze aversion is more likely to be directed sideways, while cognitive gaze aversions
is frequently directed upwards (Andrist et al., 2014).

2.3 The Functions of Overlaps and Interruptions

Speech overlaps and interruptions, whether produced intentionally or subconsciously, are
omnipresent and frequently observed characteristics of conversational speech. Besides demon-
strating activeness and liveliness, their functions are the expression of social attitudes and
intentions as well as the regulation of the interaction process. Especially, interruptions are
important for interpersonal coordination and grounding due to their impact on the organiza-
tion of turn-taking and topic changes (Meltzer et al., 1971; Sacks et al., 1974; Zimmerman and
West, 1975; Bennett, 1981; Drummond, 1989; Olbertz-Siitonen, 2009; Tannen, 2012; Levinson
and Torreira, 2015). In the following, I present relevant research and literature on the diơerent
roles of speech overlaps and interruptions for social and regulatory functions that contribute
to interpersonal coordination and grounding.

2.3.1 Concepts and DeƤnitions

Even though, speech overlaps and interruptions have drawn much attention from linguists
and have been extensively investigated, there is still no agreement on their generally accepted
deƤnitions. Discrepancies can also be found between the mostly incomplete and context-
speciƤc taxonomies for the two conversational phenomena. These coding schemes distin-
guish to varying extent and point out diơerent relationships between overlaps and interrup-
tions. They can rather serve as theoretical frameworks for the annotation and retrospective
analysis of conversations but are to a lesser extent applicable to computational behavior and
interaction models for social agents in real-time interactive systems.

Overlaps and Interruptions

EĖĚĆęĎēČ
DĊċĎēĎęĎĔēĘ

Many deƤnitions do not distinguish between interruptions and overlaps. For example, Meltzer
et al. (1971) straightforwardly deƤne an interruption as a situation in which two persons are
vocalizing something at the same time. Zimmerman and West (1975) more operationally de-
Ƥne interruptions as a turn of the next speaker that starts during, but, at least two syllables
after, the beginning or before the end of the current speaker’s turn. A similarly mechanical
deƤnition is provided by Esposito (1979), who deƤnes that an interruption occurs whenever
one speaker cuts oơ more than one word of another speaker’s utterance. Leƫer et al. (1982)
operationally deƤne interruptions as situations in which one subject says at least two con-
secutive identiƤable words or three syllables of a single word while another is speaking.
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A more diơerentiated deƤnition is that of Feldstein and Welkowiltz (1987), who divide si-

DĎĘęĎēČĚĎĘčĎēČ
DĊċĎēĎęĎĔēĘ

multaneous speech descriptively into interruptive and non-interruptive. Non-interruptive is
an overlap if it starts and ends while the participant with the speaker role unswervingly con-
tinues talking. Interruptive simultaneous speech begins while the person who has the ƪoor
is talking and ends after he has stopped. There also exist more interpretative and context-
dependent deƤnitions of the two phenomena. For example, in view of gender diơerences in
discourse, West and Zimmerman (1983) describe interruption as an instrument to demon-
strate power, exercise control, and violate the speakers’ turn. Finally, Schegloơ (1987) pro-
vides the probably most appropriate deƤnition for our purpose by deƤning an interruption
as “a violation of the turn exchange system” and an overlapping as “a misƤre in it”.

Categories and Taxonomies

SĎđĊēę ěĊėĘĚĘ
ĜĎęč OěĊėđĆĕ

Most of the above deƤnitions think of interruptions as involving simultaneous speech. While
some analysts consider any speech overlap as an interruption (Wiens et al., 1965), others re-
gard interruption as a subcategory of overlap (Kennedy and Camden, 1983b; Dindia, 1987).
However, both views are problematic, because not every overlap may be interpreted as in-
terruption (Drummond, 1989) and interruptions do not necessarily involve overlaps (Mur-
ray, 1985). For example, if two speakers simultaneously start speaking, then an overlap oc-
curs but it is not possible to make any of them responsible for an interruption (Drummond,
1989). Murray (1985) claims that “simultaneous speech is neither necessary nor suƥcient for
the recognition of interruption by interlocutors”. For example, the interrupter can start speak-
ing during a short speech pause between two words or sentences in the middle of the speaker’s
turn. In this case, the speaker could give up the turn immediately before continuing to speak
(James and Clarke, 1993). As shown in Figure 2.3.1, an interruption that takes place without
any voice overlaps is also denoted as silent interruption (Ferguson, 1977; Beattie, 1981a).

Successful 
Speaker  
Switch ? 

Overlap Simple 
Interruption 

Smooth 
Switch 

Silent 
Interruption 

1st Speaker  
Utterance  

Complete ? 

1st Speaker  
Utterance  

Complete ? 

Simultaneous  
Speech ? 

Simultaneous  
Speech ? 

Butting-In 
Interruption 

Figure 2.3.1: The types of speaker switch attempts that Beattie (1981a) adopted from Ferguson (1977).

SĎĒĕđĊ, SĎđĊēę
ƭ BĚęęĎēČ-Iē

Early categorizations deƤne a successful interruption as an interruption attempt that causes
a speaker switch whereas he retains possession of the ƪoor after an unsuccessful interrup-
tion (Jaơe and Feldstein, 1979; Meltzer et al., 1971; Natale et al., 1979). Similar, Clancy (1972)
distinguishes between two types of speaker switches comprising speech overlaps, Ƥrst, those
causing broken-oơ, unƤnished sentences of the interrupted speaker and, second, those in
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which the previous speaker completes his sentence while the next speaker has already begun
his utterance. Going beyond these simplistic views, Beattie (1981a) elaborates the taxonomy
shown in Figure 2.3.1 (Ferguson, 1977), which includes three types of interruptions and a sin-
gle overlap type. It distinguishes between successful and unsuccessful attempted speaker
switches. These are then further divided based on the presence of simultaneous speech and
the Ƥrst speaker’s utterance completeness. In this, successful means that the interrupter
gains the ƪoor whereas he stops speaking before during an unsuccessful attempt.

Simultaneous 
Speech Event 

Successful 
Interruption 

Unsuccessful 
Interruption 

Interruption Back-Channel 
Utterance 

Figure 2.3.2: The types of simultaneous speech events as presented in Roger and Schumacher (1983).

SĚĈĈĊĘĘċĚđ ƭ
UēĘĚĈĈĊĘĘċĚđ

The taxonomy in Figure 2.3.1 does not consider non-interruptive overlaps caused by back-
channels or minimal responses (Tannen, 1984, 2012). Therefore, Roger and Schumacher
(1983) proposed the classiƤcation shown in Figure 2.3.2 which divides simultaneous speech
into back-channels and interruptions which are further separated into successful and un-
successful ones. In successful interruptions, the second speaker takes the ƪoor and pre-
vents the Ƥrst speaker from completing his utterance. In unsuccessful interruptions, the sec-
ond speaker fails to obtain the right to speak, comparable to butting-in interruptions in Fig-
ure 2.3.1. The scheme in Figure 2.3.2 was later reƤned into even more distinguishable events,
such as false starts, afterthoughts, listener responses, overlaps, and more (Roger et al., 1988).

Appraisal and Occurrence

IēċđĚĊēĈĊ
FĆĈęĔėĘ

If an overlap or speech activity is interpreted as an interruption attempt and how an interrup-
tion aơects a person depends on a variety of individual and interpersonal factors (Sacks et al.,
1974; Tannen, 1994), such as the personal, social, and cultural background, and conversation
style used among the interaction partners (Tannen, 1984, 1994, 2012). In addition, a speaker’s
right to complete a turn depends on the context, for example, the authority to speak on par-
ticular topics or the length and frequency of his or her preceeding speech (Tannen, 2012).
Therefore one can basically not identify any universally valid syntactical or acoustical inter-
pretation criteria that show the occurrence of an interruption attempt (Murray, 1985).

AĕĕėĆĎĘĆđ
DĎĒĊēĘĎĔēĘ

In the sense of this interpretative and context-sensitive perspective, Li (2001), for exam-
ple, diơerentiates successful interruptions into intrusive, cooperative, and other categories.
Other researchers distinguish between very similar types of aggressive and cooperative inter-
ruptions (Kennedy and Camden, 1983a; Tannen, 1994; Murata, 1994), for example, supportive
and disruptive interruptions (Ng et al., 1995), less conƪicting versus conƪicting interruptions
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(Bennett, 1981), rapport-oriented against power-oriented interruption types (Goldberg, 1990),
or with positive, neutral, and negative aơective character (Smith-Lovin and Brody, 1989).

OĈĈĚėĊēĈĊ
SĎęĚĆęĎĔēĘ

It has however been found that overlaps and interrupts are not happening at random mo-
ments during a conversation. In contrast, they can be observed in conjunction with particu-
lar events in the foreground speech. For example, Shriberg et al. (2001) observed in diơerent
corpora of natural situated and non-situated multi-party conversations, that most interrup-
tions occur at the boundary of speech pauses while a smaller part occurs during continuous
speech but tend to be associated with the end of certain word-level events in the speaker’s
turn, such as back-channels (e.g. “uh-huh” or “mm”), coordinating conjunction (e.g. “and”
or “but”), discourse markers (e.g. “well” or “now”), Ƥlled pauses (e.g. “uh” or “um”) and dis-
ƪuencies, like repetitions, repairs, and false starts.

2.3.2 Turn-Taking and Feedback

TčĊ IĉĊĆđĎĘęĎĈ
SĎęĚĆęĎĔē

The organizing of the participant role exchange during a social interaction, also referred to
as turn-taking (Duncan, 1972; Sacks et al., 1974), plays a signiƤcant role for interpersonal
coordination and grounding because it comprises the coordination of verbal and nonverbal
behaviors when timing the alternating ƪow of speech in a conversation or a collaborative joint
activity (Bernieri and Rosenthal, 1991; Clark, 1996). According to the basic SSJ model of turn-
taking (Sacks et al., 1974), also referred to as “no gap - no overlap” model, dyadic conversations
follow an idealistic protocol prescribing that only one person may be speaking at any time
and the turn is exclusively exchanged without any delay at transition-relevant places (Sacks
et al., 1974). The speaker sends nonverbal and verbal signals to the addressee when a turn
change is permitted or desirable while the listener waits for these signals to take the turn
(Duncan, 1972; Sacks et al., 1974; Orestrom, 1983; Roger et al., 1988).

TčĊ RĊĆđĎĘęĎĈ
SĎęĚĆęĎĔē

In realistic conversations and joint activities, however, people regularly violate this rule by
speaking simultaneously, whether with cooperative or competitive intention. They perform
minimal responses and verbal back-channels to signal activeness, attention, interest, enthu-
siasm, or support, or aggressively barge into the partners’ turn with the intention to grab the
ƪoor and dominate the conversation. The resultant voice overlaps represent an infringement
of the SSJ model’s idealistic turn-taking rules. Thus, especially interruption attempts, are a
serious challenge for the organization of the interaction and participant roles. They must
consequently be resolved (Roger et al., 1988; Sacks et al., 1974) using resolution devices for
negotiating these roles during overlapping talk and pauses (Schegloơ, 2000, 2001). So, the
insuƥcient SSJ model is only a baseline on which more sophisticated turn-taking strategies
including, shared turns and overlapping speech, must be developed (Edelsky, 1981; Coates,
1994; Tannen, 1994). These must also take the role of nonverbal signals into account (Power
and Martello, 1986), in particular gaze behaviors (Kendon, 1967) and gesticulation (Dun-
can, 1972), but also speciƤc manipulation actions on objects in collaborative activities (Clark,
2005) that can have a similar eơect on turn-taking as speech (Mehlmann et al., 2014b).
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TĚėē-TĆĐĎēČ
EċċĊĈęĘ Ĕċ
IēęĊėėĚĕęĎĔēĘ

A speech overlap can be the result of cooperative feedback (Yngve, 1970; Allwood et al., 1993)
or can unintentionally be produced when the listener tries to get the turn trouble-free during
a pause or another possible completion point of the speaker’s turn (Sacks et al., 1974). How-
ever, an interruption is usually intentionally used to change the topic or acquire the right to
speak while the interrupter is totally aware that the speaker might not intent to relinquish
the turn (Bennett, 1981; Schegloơ, 2000). Thus, an overlap is considered as a neutral state
while an interruption is associated with a negative connotation. Bennett (1981) emphasizes
that the term “overlap” is descriptive and simply used to describe situations of simultaneous
speech. However, the term “interruption” is an interpretative category and identiƤes the re-
sult of a violent barge into the turn with the intention to takeover the other’s right to speak.
This is also stated clearly by Tannen (1994), when she writes that “aƥxing this label accuses
a speaker of violating another speaker’s right to the ƪoor, of being a conversational bully”.

FĊĊĉćĆĈĐ
EċċĊĈęĘ Ĕċ
OěĊėđĆĕĘ

According to Edelsky (1981), a turn is always uttered with the “intention to convey a message
that is both referential and functional”, that means that an utterance clearly refers to some-
thing said earlier in the conversation. In contrast, verbal feedbacks, such as “mhm” or “yeah”,
are frequent and natural characteristic of conversations and joint activities but, by no means,
a violation of turn-taking rules (Shriberg et al., 2001; Oviatt et al., 2015). In literature they are
referred to as encouragers (Edelsky, 1981), back-channels (Yngve, 1970; Duncan, 1972; Sacks
et al., 1974; Allwood et al., 1993), listener responses (Dittmann and Llewellyn, 1967), minimal
responses (Orestrom, 1983; Zimmerman and West, 1975) or accompaniment signals (Kendon,
1967). They have been categorized into supports (e.g. “sure” or “right”), exclamations (e.g.
“oh” or “hell”), and exclamatory questions (e.g. “what?” or “really?”), or are called comple-
tions, when a listener completes a speaker’s sentence, restatement when a listener rephrases
a speaker’s statement in his own words (Orestrom, 1983), or cooperative overlaps when a lis-
tener uses them to signal enthusiastic listenership and high involvement (Tannen, 1984).

Even if these feedback behaviors are used for very diơerent reasons and the eventually re-
sulting overlaps may considerably vary in length, they do not constitute claims for the turn
(Duncan, 1972) and are commonly not considered to be interruptions (Schegloơ, 1968). They
can rather be regarded as a kind of positive reinforcement for continuing talk (Schegloơ, 1968;
Fishman, 1997), because they are often used by the listener to signal that he is not interested
to take the turn in the conversation but to show continuing understanding, agreement, in-
terest, engagement, and co-participation in topic development (Yngve, 1970; Allwood et al.,
1993) without requesting the turn. They can reƪect empathy, enthusiasm, and indignation
(Stenstrom, 1994) but can sometimes also signal negative attitudes, such as also a lack of
interest, indiơerence, impatience, and non-support (Zimmerman and West, 1975).

2.3.3 Attitudes and Relationships

AęęĎęĚĉĊĘ
ƭ GėĔĚēĉĎēČ

While intrusive interruptions demonstrate disagreement and can force turn- or topic changes,
cooperative interruptions support the conversation by expressing involvement, solidarity (Tan-
nen, 1994, 2012), aƥliation, engagement, and cooperation (Li, 2001; Li et al., 2004) and agree-
ment interruptions signal compliance, understanding, interest, and enthusiasm (Kennedy
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and Camden, 1983a). Other clariƤcation interruptions help the partners to repair the com-
mon ground for further communication (Clark and Brennan, 1991), for example, when the
listener is unclear about a piece of information and interrupts the speaker to request a clari-
Ƥcation (Kennedy and Camden, 1983a). Finally, elevated simultaneous speech can also be as-
sociated with improved performance in the sense that the participants more actively mediate
and reƤne their own thoughts (Shriberg et al., 2001). It can show a higher activity and domain
expertise during collaborative problem solving, when solutions are most actively generated,
discussed, and reƤned (Oviatt et al., 2015). In this, it has been observed, that the contents
of interruptions are highly role-dependent, for example, experts or instructors use interrup-
tions in an authoritative and meta-regulatory way whereas the non-experts’ interruptions
often function to ask questions and to apologize for making errors (Oviatt et al., 2015).

Overlaps and interruptions are also regarded as indication for domination and higher status.

DĔĒĎēĆēĈĊ
ƭ SęĆęĚĘ

For example, Octigan and Niederman (1979) state that “an interruption or overlap is taken as a
violation and a sign of conversational dominance”. West and Zimmerman (1983) say, that in-
terruption is “a device for exercising power and control in conversation” because it involves
“violations of speakers’ turns at talk”. Interruptions are considered as acts of dominance
(Karakowsky et al., 2004; Youngquist, 2009) since they are consciously or unconsciously used
to reduce another’s role as communicator (Kennedy and Camden, 1983b,a) and control the
conversational topic. People with a high social status tend to interrupt more frequently and
thus often gain more attention and access to the speaker role at the expense of their interac-
tion partners with a lower status (Smith-Lovin and Brody, 1989). However, also contradictory
observations have been made, for example, in conversations in which teachers, usually hav-
ing a higher status than pupils, were interrupted more frequently by their students (Beattie,
1980).

Finally, some research found that usually men try to interrupt their interaction partners more

SĊĝ, GĊēĉĊė
ƭ PĔĜĊė

frequent than women (Zimmerman and West, 1975; West and Zimmerman, 1983; Tannen,
1984) and identiƤed diơerent patterns of interruptions between same and mixed-gender in-
teraction partners (Zimmerman and West, 1975). While the distribution of interruptions was
rather equally divided during conversations between participants with the same gender, in
interactions with mixed genders, nearly all interruptions of women’s speech was made by
men. This asymmetry has often been attributed to an imbalance of power and status be-
tween men and women in most western societies in which men are more likely than women
to assume they are authorized to barge into others speech and grab the conversational ƪoor
(West and Zimmerman, 1983; Zimmerman and West, 1975). While these results have been
replicated, others found no diơerences (Dindia, 1987), or even that women interrupt more
frequently than men (Kennedy and Camden, 1983b). Women at least try to achieve more
overlapping speech when conversing with interaction partners that seem to be talkative, at-
tentive, cooperative, or emotionally mature, than with those the are silent, introspective,
aloof, or critical (Beattie, 1981a).
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2.4 Summary and Conclusion

In this chapter, I reviewed the literature from social and behavioral sciences to provide an
understanding of the two, rather abstract and not yet thoroughly comprehended, interac-
tional phenomena, and the underlying behavioral functions and processes, that are in the
focus of this thesis. In Section 2.1, I provided the theory and deƤnitions on interpersonal co-
ordination and grounding and discussed their possible interrelations and synergistic eơects.
Afterwards, in Sections 2.2 and 2.3, I explained how diơerent gaze behaviors, voice overlaps,
and interruption attempts, which are representative behavioral aspects that are prominent in
all situated social interactions, have an inƪuence on interpersonal coordination and ground-
ing. They have been illuminated with respect to their social outcome and their social and
regulatory role for conversational mechanisms and behavioral functions that contribute to
interpersonal coordination and grounding. Among those are, for example, attention follow-
ing, intention prediction, multi-modal disambiguation, back-channel eliciting, mental and
emotional displays, intimacy regulation, turn management, and interruption handling.

What should be remembered after this chapter is that gaze mechanisms and voice activity
overlaps play various roles in diơerent behavioral functions that contribute to interpersonal
coordination and grounding. Interpersonal coordination includes the mutual entrainment of
interactional rhythm and tempo, the tight reciprocal meshing of behaviors as well as the sim-
ilarity of behaviors in time, called interactional synchrony, and form, referred to as behavior
matching. Gaze and voice behaviors contribute to interpersonal coordination, for example,
through the production and recognition of turn-taking actions, the detection of interruption
attempts, or the facial mimicry of emotional displays during mutual gaze. Grounding refers
to the interaction partners’ constant collaborative eơort to establish, maintain, and repair of
the common conversational and perceptual ground. Behavioral functions that contribute to
grounding, and in which gaze plays essential roles, are, for example, attention following, in-
tention prediction, multi-modal disambiguation, and the eliciting of back-channel signals.
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PĆėę II

CčĆđđĊēČĊĘ Ćēĉ RĊđĆęĊĉ WĔėĐ

“People who wait for the perfect time to act
never take action.”

MĎĐĊ MĆčđĊė





CčĆĕęĊė 3

CčĆđđĊēČĊĘ — MĔĉĊđĎēČ TĆĘĐĘ,
RĊĖĚĎėĊĒĊēęĘ Ćēĉ SĔđĚęĎĔēĘ

In Chapter 1, I motivated and illustrated my research objective, which is the design of a
behavior and interaction modeling framework for social agents that enables the control and
coordination of the many behavioral functions and processes that contribute to interpersonal
coordination and grounding. In Chapter 2, I presented those behavioral aspects that are
in focus of this thesis, in particular the roles of gaze behavior and speech activity for the
aforementioned behavioral functions. However, the deƤnitions of the entailed challenges
have been somewhat descriptive, being fairly vague and intuitive descriptions of the hurdles
that an author encounters when modeling the interactive behavior of social agents. They
fail to bring us closer to the identiƤcation of the core concepts and features of the proposed
modeling approach. It is therefore necessary to move towards a more detailed description of
the diƥculties and an operational deƤnition of challenges that are tackled in this thesis.

The rather hard-to-pin-down challenge of modeling interpersonal coordination and ground-
ing capabilities for social agents can be reƤned intomodeling tasks and task-speciƤcmodeling
requirements for the used modeling framework. In this chapter, I address these tasks and re-
quirements from a language engineering perspective, presenting a task-based categorization
of requirements and a mapping between tasks, requirements, solution concepts, and pro-
posed formalisms. I brieƪy explain how the chosen modeling concepts meet the individual
modeling tasks and requirements. Most of the requirements are illustrated based on the gaze
and speech behaviors that can be observed in the introductory scenario in Section 1.2.

In the remainder of this chapter, in Section 3.1, I brieƪy introduce the tasks and require-
ments as well as the solution concepts and languages of the proposed modeling approach.
In Sections 3.2 to 3.4, I discuss the individual modeling tasks and the task-speciƤc require-
ments in more detail. These tasks and requirements are intended to serve as a basis for the
comparison with relevant related work on multi-modal behavior and interaction modeling
in Chapter 4. The concepts and languages of the proposed modeling approach, that are only
brieƪy addressed in this chapter, will be explained in more detail by the approach design in
Chapter 5 and illustrated in Chapter 6 based on a realistic exemplary application.
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3.1 Subtasks, Requirements and Solutions

MĔĉĊđĎēČ
TĆĘĐĘ Ćēĉ

RĊĖĚĎėĊĒĊēęĘ

The challenges that an author is faced with when modeling the interactive behavior of social
agents can be classiƤed into three modeling tasks. These are, Ƥrst, the close coordination of
the social agents’ behavioral aspects as well as the interaction and dialog ƪow, second, the
processing and reasonable interpretation of user input and context events, and Ƥnally, the
creation of credible and expressive behavior and dialog content. Each of these modeling tasks
is characterized by a number of task-speciƤc requirements that must be met by the behavior
and interaction modeling approach developed in this thesis. The design of appropriate mod-
eling concepts that allow eơectively and yet intuitively meeting these requirements is the
basic prerequisite for creating fully-ƪedged computational behavior and interaction models
of social agents using this approach. The modeling requirements identiƤed in this section
will serve as basis and guideline for the design of suitable and expressive modeling concepts
in this thesis. A categorization with the three modeling tasks and their task-speciƤc require-
ments as well as the mapping of these tasks and requirements to the corresponding modeling
concepts and languages can be found in Table 3.1.1.

Table 3.1.1: An overview of the modeling tasks, requirements, solution concepts and languages.

Modeling
Task

Modeling
Requirement

Modeling
Concept

Modeling
Language

Coordinating
Functions &
Processes

(Section 3.2)

Incremental &
Reciprocal Meshing

(Section 3.2.1)
State-Chart Variant

Behavior Flow
State-Charts &
Glue Language
(Section 5.4)

Parallel & Hierarchical
Structuring

(Section 3.2.2)

Parallel Decomposition

Hierarchical ReƤnement
Interruption & Coherent

Resumption
(Section 3.2.3)

Interruption Policies

Interaction History

Integrating
Input &

Context Events
(Section 3.3)

Uniform Knowledge
Representation
(Section 3.3.1)

Feature Structures
Behavior Flow

Query
Language

(Section 5.3)

Well-Organized
Working Memory
(Section 3.3.2)

Logic Fact Base & Event
History

Multi-Modal Fusion &
Reasoning

(Section 3.3.3)
Logic Calculus

Creating
Behavior &

Dialog Content
(Section 3.4)

Versatile Composition of
Behavior (Section 3.4.1) Behavioral Activities

Behavior Flow
Script

Language
(Section 5.2)

Flexible Integration of
Knowledge

(Section 3.4.2)

Placeholder Variables &
Inline Value Insertion

Automatic Variability of
Behavior (Section 3.4.3)

Scene Grouping
& Blacklisting
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The following listing brieƪy summarizes the modeling tasks, requirements and solutions de-
picted in Table 3.1.1. In Sections 3.2 to 3.4 I explain and illustrate the task-speciƤc, techni-
cal and conceptual modeling requirements in more detail. An important meta-requirement
pervading all tasks and requirements is the practicability of the chosen modeling concepts
for rapid prototyping, even by non-experts. Besides providing suƥcient expressiveness, they
should eƥciently reduce the modeling eơort and complexity while improving the maintain-
ability and reusability of the behavior and interaction models.

Coordinating Functions & Processes
Human interaction is characterized by the continuous coordination and multi-directional
interplay of the interaction partners’ behaviors and actions. Modeling this mutual in-
teraction requires the incremental and reciprocal meshing of input processing, knowl-
edge reasoning and behavior generation. Synchronizing the underlying simultaneous
and nested behavioral and computational processes and layers requires the parallel and
hierarchical structuring of a social agent’s behavior and interaction model. Finally, the
quickly changing prioritization and seamless transitions between behavioral functions
as well as the consistent reconstruction of conversations and behaviors after suspensions
require the immediate interruption and coherent resumption of these processes.

– Incremental & Reciprocal Meshing
The continuous interpretation of behaviors and generation of behavioral feedback, the
early prediction of intentions and interests, the quick detection of misunderstandings
and recovery from errors as well as the constant recognition of complex multi-modal
behavioral patterns, requires a Ƥne-grained, step-wise interleaving of behavior recog-
nition, knowledge reasoning and behavior generation based on probabilistic, seman-
tic, and temporal constraints. The proposed modeling approach in this thesis enables
this incremental processing and reciprocal meshing with a special state-chart variant
(Harel, 1987; Harel and Politi, 1998), called Behavior Flow State-Charts (BFSCs).

– Parallel & Hierarchical Structuring
The coordination of behavior and interaction requires the proper synchronization
and tight interleaving of multiple concurrent, reciprocally intertwined, behavioral and
computational processes. These processes implement various behavioral aspects, such
as modalities, functions, and operations on diơerent, nested levels that are responsible
for input processing, multi-modal integration, pattern recognition, decision-making,
behavior control and dialog ƪow management. This multi-threaded and hierarchical
structuring is tackled with the parallel decomposition and hierarchical reƤnement of a
BFSC that implements a social agent’s behavior and interaction model.

– Interruption & Coherent Resumption
Immediate behavioral responses to unforeseen events and the fast adaptation to changed
behavioral goals require the quick prioritization and interruption of behaviors. Thus,
state transitions of BFSCs have interruption policies which allow the immediate, pre-
emptive interruption of a state’s execution and the direct abortion of all nested behav-
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ioral and computational processes. BFSC’s implement an interaction history consist-
ing of an automatically maintained history memory that can be accessed to use the
collected information when modeling adequate reopening, reconstruction, and reca-
pitulation strategies for the coherent resumption of interrupted behaviors and dialogs.

Integrating Input & Context Events
The robust understanding of multi-modal behavior comprises the integration of infor-
mation distributed via various communication modalities and context knowledge. The
quite irregular occurrence and heterogeneous content of the corresponding input and
context events calls for a uniform knowledge representation format. Their modality-
speciƤc processing delays and eơect times necessitate the maintenance of awell-organized
workingmemory to store them for modality-speciƤc time periods in their original chrono-
logical order. Finally, their interpretation and combination requires a multi-modal fusion
and reasoning calculus that allows the integration of the contained information and the
involvement of context knowledge based on semantic, temporal, and quantiƤcation con-
straints.

– Uniform Knowledge Representation
The fusion of information from multiple modalities requires to cope with the hetero-
geneity and irregularity of the individual modalities’ events as well as the integration of
arbitrary new modalities and sensor devices. The common processing of these events
and context changes calls for a universal representation of symbolic and semantic data
on various abstraction levels and processing stages that is carried by the diơerent kinds
of input events and knowledge facts. The proposed modeling approach tackles this re-
quirement with feature structures (Kasper and Rounds, 1986; Carpenter, 1992) that are
encoded as list-based terms in PėĔđĔČ (Clocksin and Mellish, 1981).

– Well-Organized Working Memory
The varying processing delays and eơect times of the individual modalities’ events
requires to preserve them in their real chronological order for modality-speciƤc per-
sistence times in order to make them available when they are needed for multi-modal
fusion. In addition, domain and context knowledge might be too complex to be repre-
sented with the primitively typed variables of a BFSC. For these reasons, it is necessary
to maintain a working memory including a well-formed multi-modal event history.
The approach in this thesis therefore uses a PėĔđĔČ fact base which is managed with
dynamic predicates of the domain-speciƤc Behavior Flow Query Language (BFQL).

– Multi-Modal Fusion & Reasoning
Reasoning on the aforementioned knowledge base, and, in particular the multi-modal
fusion of events in the included event history, requires the evaluation of a variety of
semantic, temporal, and quantiƤcation constraints (Allen, 1983; Oviatt et al., 1997;
Mehlmann and André, 2012). In addition, a suƥciently fast and real-time capable
inference on this event history requires a proper size and content management. The
BFQL meets these requirements with a collection of prepublished, built-in PėĔđĔČ
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facts, rules, logic and dynamic predicates that together form the multi-modal event
logic and garbage collection mechanisms of this domain-speciƤc logic calculus.

Creating Behavior & Dialog Content
Human social behavior includes a versatile repertoire of individual behaviors, complex
behavioral patterns and multi-modal utterances. Thus, the creation of a social agent’s be-
havior and dialog calls for a very versatile composition of behavior. Furthermore, humans
use their domain and context knowledge for planning credible and well-informed dia-
log contributions and actions. To make a social agent a competent conversation partner
therefore requires the ƪexible integration of knowledge into his utterances, behaviors, and
actions. Finally, humans show a natural variation of behavior and support the grounding
process by rephrasing and reformulating statements. Equipping a social agent with this
ability requires that the modeling approach allows the automatic variability of behavior.

– Versatile Composition of Behavior
Credible and expressive interactive behavior requires the creation and coordination of
versatile behaviors and actions. Among those are verbal contributions and nonverbal
cues, such as gestures, postures, facial expressions, head-, eye-, and gaze movements
but also application-speciƤc actions. These individual behaviors and actions must be
combinable in various ways, to complex behavioral patterns, and multi-modal utter-
ances in which co-verbal behaviors are aligned with spoken words. The proposed mod-
eling approach allows the ƪexible speciƤcation of such behavior compositions called
behavioral activities written in the Behavior Flow Script Language (BFSL).

– Flexible Integration of Knowledge
Conducting a well-informed dialog requires to integrate contents that have been in-
ferred from domain and context knowledge into nonverbal behaviors and multi-modal
utterances. For example, the correct referencing of objects by means of their location
or attributes requires the integration of position coordinates for pointing gestures and
directed gaze as well as verbal feature descriptions into prepared sentence structures.
The proposed modeling approach meets this requirement with the inline insertion of
values into the speciƤcations of behavioral activities as well as the substitution of place-
holder variables when playing back parameterized scene activity templates.

– Automatic Variability of Behavior
Grounding content in natural conversations involves to rephrase or reformulate spe-
ciƤc dialog contents or whole multi-modal utterances in order to resolve misunder-
standings and recover the conversational ground after disruptions. Furthermore, the
creation of credible and competent behavior requires the natural variation of behaviors
and dialog contents as well as the avoidance of literal repetitions that would otherwise
make the speaker appear less believable. The proposed modeling approach tackles this
requirement with the possibility to automatically vary whole behavior blocks by a ag-
gregating multiple alternatives for a scene activity to a scene group and automatically
selecting individual alternatives at runtime based on a blacklisting strategy.
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3.2 Coordinating Functions and Processes

As mentioned in Section 3.1 and outlined in Table 3.1.1, the Ƥrst essential modeling task is
the close coordination of behavioral aspects, this means the proper prioritization, synchro-
nization, and interleaving of the many incremental, reciprocal, concurrent, and hierarchical,
computational and behavioral processes. The Ƥrst modeling requirement is the incremental
and reciprocal meshing of input processing, knowledge reasoning and behavior generation.
This is a prerequisite for the continuous behavioral feedback to the partners’ behaviors, pre-
diction and proactive response to their intentions and interests as well as the Ƥne-grained,
step-wise recognition of multi-modal, multi-directional behavioral patterns. The second re-
quirement is the parallel and hierarchical structuring of the behavior and interaction model.
This means its division into concurrent and nested processes and layers that implement dif-
ferent behavioral or computational functions through their interplay. These processes must
be coordinated using appropriate synchronization and inter-process communication mech-
anisms. This also allows a distributed development which eƥciently reduces the modeling
eơort and complexity while improving the maintainability, extensibility and reusability of a
model. Finally, the third requirement is the immediate interruption and coherent resumption
of behaviors and interaction phases. This is necessary for direct responses to the others’ be-
haviors, environmental distractions, or one’s own changing behavioral goals and priorities as
well as the recapitulation and consistent reopening of suspended behaviors and interaction
phases.

3.2.1 Incremental and Reciprocal Meshing

CĔēęĎēĚĔĚĘ
BĊčĆěĎĔėĆđ
FĊĊĉćĆĈĐ

As mentioned in Chapter 2, the participants of joint activities constantly monitor their part-
ners’ actions and behaviors and continuously determine appropriate reactions and adjust-
ments of their own behavior in response (Clark and Krych, 2004; Clark, 2005; Brennan et
al., 2008). This incrementally contributes to a better understanding of their partners’ be-
haviors and a more precise picture of their potential interests and intentions (Baron-Cohen
et al., 2001; Meltzoơ and Brooks, 2001; Tomasello, 1995). Vice-versa, they continuously pro-
vide feedback themselves, for example, by producing back-channels to signal agreement or
understanding (Kendon, 1967; Yngve, 1970; Allwood et al., 1993; Bavelas et al., 2002), and,
constantly reveal their point of reference (Sebanz et al., 2006; Mundy and Newell, 2007) in
order to reduce the collaborative eơort (Clark and Brennan, 1991; Clark and Krych, 2004) for
sharing a common perceptual ground (Clark, 2005). Thus, they make the interaction ƪuid
(Hough and Schlangen, 2016) and can detect misconceptions or recover from errors at an
early stage (Brennan et al., 2008; Sebanz and Knoblich, 2009; Huang et al., 2015).

There can be found many examples for the tight incremental meshing of behavior recog-
nition, knowledge reasoning, and the continuous generation of behavioral feedback in the
introductory scenario in Section 1.2. For instance, in scene 1⃝, Marley’s gaze is permanently
wandering across the surface table while, in response, Charly is constantly following her gaze
to those photos that are particularly attracting her attention. Charly’s behavior in this scene
requires the steady, seamless interleaving of the observation of Marley’s eye and head move-

54



3.2. Coordinating Functions and Processes

ments, the proper identiƤcation of her gaze targets, and, at the same time, following of her
gaze shifts to the photos on the surface table in order to track her focus of attention and share
the same perceptual ground. Another kind of incremental processing, the intermeshing of
behavior interpretation and knowledge reasoning is, for example, necessary for the proactive
presentation of information about speciƤc photos that Marley’s might be interested in, as de-
scribed in scene 2⃝ of the introductory scenario. When a speciƤc photo is catching Marley’s
attention over a certain period of time, then Charly assumes that she is particularly inter-
ested in this photo and either asks if she wishes more information or anticipates her wish
and provides this information, even without being asked before. Therefore, it is necessary
that he constantly infers information about the content which is depicted on Marley’s cur-
rently focused photo from its domain knowledge and that he plans appropriate formulations
to present this information.

BĊčĆěĎĔė
PĆęęĊėē
RĊĈĔČēĎęĎĔē

Chapter 2 has also described that the participants of joint activities use multi-modal behav-
ioral patterns to produce particular social and regulatory signals. These behavioral patterns
are composed of verbal utterances, and well-aligned accompanying nonverbal behaviors and
co-verbal actions. They are not necessarily produced by a single participant, but are more
often bi- or multi-directional, which means they result from the step-wise, reciprocal inter-
leaving of behaviors and actions produced by several involved interaction partners. Often an
individual behavior’s contribution is not perfectly unambiguous when it is Ƥrst recognized,
but reveals its meaning after subsequent behaviors have been awaited and considered for
the combination with it to a behavioral pattern based on semantic and temporal relations
(Oviatt et al., 1997). Typical examples for such multi-modal behavioral patterns have been
described in Chapter 2, such as the various turn-taking actions (Nielsen, 1962; Duncan, 1972,
1974; Goodwin, 1980, 1981) and conƪicts caused by voice activity overlaps (Schegloơ, 2001;
Goodwin, 1981) as well as the diơerent feedback eliciting cues (Kendon, 1967; Allwood et al.,
1993; Bavelas et al., 2002) and connection events (Rich et al., 2010; Holroyd et al., 2011).

The introductory scenario in Section 1.2 is full of bi-directional behavioral patterns that need
to be recognized incrementally. One of them, which is used for coordinating the exchange
of the participant roles, can be found in the scenes 8⃝ and 9⃝. In this situation, the end of
Marley’s utterance ``I miss these old times!'' in scene 8⃝ serves as an indication for Charly that
she might start a turn-taking action, however, Marley’s behavior is still ambiguous at this
point in time because it could be the Ƥrst step of a hold, yield or assign action. Since Marley
avoids to look at Charly during her utterance and also in the subsequent moments of scene
8⃝, Charly interprets Marley’s behavior as turn-hold pattern, assumes that she wants to keep

the ƪoor further on and, for that reason, continues following her attention for the moment.
During the next situation in scene 9⃝, he awaits the point in time at which Marley has Ƥrst
Ƥnished her utterance ``Get what?'' and then both have additionally established mutual facial
gaze shortly afterwards, which represents a gaze connection event that completes the bi-
directional pattern for the assignment of the turn. This is the deƤnitive proof that Marley is
oơering the ƪoor to Charly who conƤdently accepts this oơer in the second part of scene 9⃝
by asking ``Would you like some tea?''.
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The above examples clearly demonstrate that natural social interactions and joint activities

IēĈėĊĒĊēęĆđ
ƭ RĊĈĎĕėĔĈĆđ

MĊĘčĎēČ

are characterized by the Ƥne-grained, reciprocal meshing of their participants’ behaviors and
actions. This allows them to generate and recognize multi-modal and multi-directional be-
havioral patterns and to continuously provide and recognize behavioral responses and thus
predict intentions and interests, detect misunderstandings, and recover from errors at an
early stage. In order to equip a social agent with these capabilities, the behavior and interac-
tion modeling approach must master the incremental processing and reciprocal interleaving
of input processing, knowledge reasoning and behavior generation. As later explained in
Chapter 5, the proposed modeling approach meets this requirement by relying on a speciƤ-
cally designed state-chart variant (Harel, 1987; von der Beeck, 1994; Harel and Naamad, 1996;
Harel and Politi, 1998; Harel et al., 1990; Harel and Kugler, 2004), called Behavior Flow State-
Charts (BFSCs). This state-transition-based modeling approach with BFSCs allows the Ƥne-
grained interleaving of computation steps for input processing, knowledge reasoning and
behavior generation based on conditional, timed, and probabilistic strategies.

3.2.2 Parallel and Hierarchical Structuring

SĎĒĚđęĆēĊĔĚĘ
AĘĕĊĈęĘ Ĕċ
BĊčĆěĎĔė

As described in Chapter 2, the participants’ behavior in natural social interactions includes
various parallel and hierarchical aspects of behavior which are all together managed and co-
ordinated at the same time. People simultaneously use multiple behavioral modalities, such
as speech, gestures, postures, facial expressions, and gaze cues to exchange information and
social cues (Jaimes and Sebe, 2007; Oviatt, 2012). The individual behaviors in these modali-
ties are carefully aligned with each other to create diơerent multi-modal behavioral patterns,
which, for their part, contribute to one or more speciƤc behavioral functions, such as follow-
ing the partners’ attention (Kendon, 1967; Mundy and Newell, 2007), predicting their next
actions (Sebanz and Knoblich, 2009; Huang et al., 2015), disambiguating their multi-modal
references (Oviatt, 1999; Kaiser et al., 2003; Kaur et al., 2003; Hanna and Brennan, 2007; Ovi-
att, 2012), or making decisions concerning the participant role regulation (Sacks et al., 1974;
Schegloơ, 2000) and turn-conƪict handling (Bennett, 1981; Tannen, 1994; Schegloơ, 2001).
Finally, other behavioral factors, such as cognitive processes and mental states, emotional
conditions and moods, personality traits and physical status as well as social dimensions,
such as dominance, engagement, and politeness simultaneously Ƥnd their expression in the
observable behavior of the interaction partners (Argyle, 1972; Mehrabian, 1972; Argyle, 1975;
Picard, 1997; Knapp et al., 2014).

CĔēĈĚėėĊēę
ƭ NĊĘęĊĉ
PėĔĈĊĘĘĊĘ

From an author’s perspective, the aforementioned behavioral aspects can be understood as
the result of a complex interplay of multiple concurrent and nested behavioral and com-
putational processes on diơerent behavioral levels and processing stages. This suggests to
structure a social agent’s behavior and interaction model such that it may be reƤned into hi-
erarchical layers which are then decomposed into parallel components and vice versa. These
components then have responsibilities roughly corresponding to the behavioral aspects or
more individual tasks contributing to a speciƤc aspect, such as the recognition of behav-
ioral patterns or the generation of role- and context-dependent behavior. They must then
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be closely and reasonably synchronized with each other such that they together contribute
with their complex but coordinated interplay to the observable behavior of the social agent.
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Figure 3.2.1: An illustration of the parallel and hierarchical decomposition of the behavior model.

Figure 3.2.1 outlines an exemplary hierarchical and parallel structuring of the interaction
model for the scenario in Section 1.2. The model represents objects and agents in the physi-
cal environment as individual nested and parallel processes and layers. The part containing
Charly’s behavior and interaction model is depicted in more detail (Figure 3.2.1 A⃝). Pro-
cesses on the perception layer (Figure 3.2.1 B⃝) are preprocessing Marley’s inputs and con-
text changes, such as the ringing kettle in scene 7⃝. They are responsible for populating
Charly’s knowledge with the contained information and its propagation to higher levels of
the model. An example is the process computing Marley’s gaze shifts to objects, persons, or
events based on the gaze target distributions provided by the eye-tracking glasses. Processes
on the integration layer (Figure 3.2.1 C⃝) are, amongst other things, responsible for the multi-
modal fusion of Marley’s inputs based on semantic, temporal and quantiƤcation constraints.
An example is the disambiguation of the deictic referring expression ``this'' in Marley’s ut-
terance ``Where is this beach?'' with information from her gaze shifts in scene 3⃝. Processes
on the recognition layer (Figure 3.2.1 D⃝) recognize multi-modal and bi-directional behav-
ioral patterns, such as Marley’s coordinated use of speech and gaze for the production of the
turn-taking actions observable in scene 8⃝ and 9⃝, or the feedback eliciting cues in scene
10⃝. On a superordinate decision layer (Figure 3.2.1 E⃝), information from lower and higher
layers is used to make decisions concerning the behavior and interaction management, such
as the assignment of participant roles in reaction to turn-taking actions or conƪicts. A pro-
cess on this layer might, for example, contextually decide if Marley’s attempt to take the turn
may interrupt Charly and allow Marley to occupy the speaker ƪoor, as happening in scene
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8⃝. Finally, several processes on the behavior and dialog control layer (Figure 3.2.1 F⃝) man-
age reactive aspects of Charly’s behavior, that means physiological reactions and ideomotor
nonverbal behaviors, like Charly’s gaze following behavior in scene 1⃝ or his cognitive and
emotional mimicry in scenes 5⃝ and 6⃝. Other processes on this layer control deliberative
aspects of behavior, such as the dialog ƪow management and the inference of knowledge
about the photos when producing answers to Marley’s questions, like those in scene 3⃝.

CĔĔėĉĎēĆęĎēČ
CĔēĈĚėėĊēę

PėĔĈĊĘĘĊĘ

The numerous behavioral and computational processes in a model like that depicted in Fig-
ure 3.2.1 are only in the rarest cases operating completely independent from each other. In
contrast, credible and expressive behavior of an agent can only be created through the closely
coordinated interplay between these processes. Therefore, it is necessary to provide appro-
priate mechanisms for synchronization and inter-process communication that allow an au-
thor to exchange information between and properly interleave the execution of concurrent
processes (Lamport, 1986a,b). The asynchronous exchange of events is a non-blocking mech-
anisms that can be used to pass control signals and transfer information between individual
parallel processes in diơerent parts of a model. The sending process proceeds with its task
and must not wait until the receiving process has consumed the event and has eventually ac-
knowledged the delivery with a separate event. Another method to exchange information is
the mutual exclusive access to variables and facts in a shared memory or conƤguration space
that are more likely used to represent more persistent information which may be observed
by multiple processes. The actual read and write access to the shared memory or the asser-
tion and retraction operation on a shared knowledge base are blocking since they represent
critical sections in order to ensure the consistency of the memory or knowledge.

Examples for the coordination and interleaving of concurrent processes can be found in var-
ious situations of the introductory scenario in Section 1.2. For example, the attention follow-
ing behavior, shown in scene 1⃝, can be realized by the step-wise interleaving of a process on
the perception layer that recognizes Marley’s gaze shifts, and a process on the control layer
that causes Charly to follow these gaze shifts. The communication between these two pro-
cesses can be realized via both events or variables. However, the process that is monitoring
Marley’s voice activity on the perception layer is more likely to represent her speaking state
in a shared variable such that it can be read by multiple processes on the recognition layer,
like those detecting speech overlaps and turn-taking actions, or conƪicts, coming to eơect in
scenes 8⃝ and 9⃝, or the one that is recognizing feedback eliciting cues, as observed in scene
10⃝. The resulting signals, in turn, would again be represented as events and propagated to
the processes on the decision and control layer.

PĆėĆđđĊđ ƭ
HĎĊėĆėĈčĎĈĆđ
SęėĚĈęĚėĎēČ

The above examples show that human behavior and social interactions exhibit a highly par-
allel nature. Humans closely coordinate multiple parallel and highly interwoven aspects of
behavior, such as behavioral functions, modalities, levels, and underlying processes. Equip-
ping a social agent with this capability requires a modeling approach that can control con-
current behavioral and computational processes and oơers appropriate inter-process com-
munication mechanisms for their synchronization and information exchange. As explained
in Chapter 5, the proposed modeling approach meets this requirement with the hierarchical
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reƤnement and parallel decomposition of the behavior and interaction model (Harel, 1987;
Harel and Politi, 1998). Nested BFSCs can be used for the context-dependent modeling of
input processing and behavior generation. Parallel BFSCs can be used to model individual
behavioral aspects in separate processes, and properly synchronize them using a sharedmem-
ory or asynchronously exchanging signal events. Following the divide and conquer principle,
this distributed approach signiƤcantly reduces the modeling eơort and complexity while im-
proving scalability, reusability, and extensibility of a model.

3.2.3 Interruption and Coherent Resumption

IĒĒĊĉĎĆęĊ
BĊčĆěĎĔėĆđ
RĊĘĕĔēĘĊĘ

As demonstrated in Chapter 2, spontaneous changes of the participants’ behaviors due to
changing behavioral goals and priorities or suddenly distracting events in the physical envi-
ronment are hardly foreseeable by their interaction partners. However, humans compensate
for the lack of foresight in these situations, to some extent, with their ability to quickly de-
tect and interpret such behavioral and contextual changes and to immediately suspend and
adapt their own behavior in response. This enables them to keep up with their partners’
interaction tempo and rhythm (Davis, 1982; Hayes and Cobb, 1982), improves their interac-
tional synchrony and simultaneity (Bernieri and Rosenthal, 1991), and therefore contributes
to their interpersonal coordination (Bernieri and Rosenthal, 1991; Richardson et al., 2005;
Delaherche et al., 2012). Immediate behavioral responses allow smoothly following the oth-
ers’ perceptual ground and constantly sharing a common point of reference (Brennan, 1998;
Sebanz et al., 2006; Mundy and Newell, 2007). Instant self-interruptions and reactions to a
partner’s barge-in attempt, signaling misunderstanding, non-understanding, or misconcep-
tions (Hirst et al., 1994) helps to quickly recognize the need for clariƤcations and to speed up
the reestablishment of the common conversational ground (Clark and Brennan, 1991; Clark,
1996).

An example that an immediate behavioral response is beneƤcial for a natural and credible
behavior can be found in scene 7⃝ of the introductory scenario in Section 1.2. The joint ac-
tivity of Marley and Charly is suddenly disturbed by the ringing kettle which, in this case,
represents an environmental distraction. Charly shows a prompt and very natural reaction
by reƪexively shifting his focus of attention to the kitchen in which the kettle is located.
His behavior, however, causes a sudden change of the interactional tempo and rhythm, to
which Marley, in turn, is adapting in a natural way because she is immediately entrained by
Charly’s reaction and follows his focus shift just as quickly. Charly’s behavior also inƪuences
the grounding process because it might be unclear how to proceed with the common task af-
ter this distraction. As shown in the next scenes 8⃝ and 9⃝, both are, however, able to quickly
renegotiate and reconstruct their primary conversational topic, which are the photos on the
table, and Ƥnd back to their previous interaction rhythm again.

CčĆēČĎēČ
GĔĆđĘ ƭ
PėĎĔėĎęĎĊĘ

Very similar to such a reaction and adaptation to external events, the participants of joint
activities also interrupt and adjust their behaviors of their own accord, on the basis of re-
vised behavioral goals and priorities. The current behavioral goal or function is, at least
temporary, given up in favor of another objective that is considered to be more important
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or appropriate in a particular situation because of greater beneƤt, relevance, or urgency.
For example, an intervention, due the prediction of the partner’s misunderstanding, can re-
duce the collaborative eơort to maintain the common ground and, thus, ensure the eƥciency
and success of the collaborative task (Clark and Brennan, 1991; Clark and Krych, 2004; Clark,
2005). Other behavioral adjustments are important for interpersonal coordination, for exam-
ple, when avoiding or quickly reacting to speech overlaps with the interaction partners that
could cause turn-taking conƪicts (Schegloơ, 2000, 2001; Goodwin, 1980, 1981) in order to en-
sure a seamless exchange of the participant roles (Sacks et al., 1974; Bernieri and Rosenthal,
1991).

The continuous adaptation of the behavior due to the changing priorities of the diơerent
functions can be observed all over the entire interaction in the introductory example sce-
nario in Section 1.2. An example for the interruption and resumption of gaze behavior due to
diơerent functional priorities can be found in Charly’s diơerent gaze behaviors in the scenes
1⃝ and 7⃝. In general, Charly performs an ordinary listener or bystander gaze behavior by

dividing his visual attention between Marley and points or objects in the environment, such
as for example the photos on the surface table or the objects in Marley’s apartment. How-
ever, as may be observed in scene 1⃝, it is more important for the grounding process, that
he shares the same perceptual ground with Marley and therefore follows Marley’s occasional
gaze movements and pointing gestures to the photos on the surface table while being in the
role of an attentive addressee. Nevertheless, a sudden and unexpected distraction, such as
the ringing of the kettle, occurring in 7⃝, in turn, is an urgent and natural reason to interrupt
the gaze following behavior with a short glance of gaze to the source of the distraction, after
which, however, the gaze following behavior is resumed again, as observed in scene 8⃝.

CĔčĊėĊēę
RĊĘĚĒĕęĎĔē
Ĕċ BĊčĆěĎĔė

This example already demonstrates that suspended behaviors are frequently resumed at a
later point during the interaction after they have regained priority again. In this, humans
exploit diơerent strategies for a coherent resumption of behaviors with the aim to reduce the
collaborative eơort for reestablishing the common ground. In some cases, as in the above
described resumption of gaze following after a distraction, it is suƥcient to simply pursue
the previously aborted behaviors at the point of interruption. However, other behaviors or
interaction phases require a more sophisticated reopening or recapitulation in order to co-
herently and seamlessly continue with them. For example, when interrupted by a third party
or environmental event, the interaction partners are able to quickly suspend the original in-
teraction, deal with the interruption, and afterwards coherently reconstruct and reinstate
the primary interaction again (Bangerter et al., 2010). In this, the conversation partners of-
ten recapitulate a part of what has been said and done during a short subdialog in order to
reestablish the common ground (Gandhe and Traum, 2008) after a distraction or barge-in
(Ferguson, 1977; Beattie, 1981a; Tannen, 1994; Li, 2001; Schegloơ, 2001).

Examples that such coherent resumptions of previously interrupted behaviors are necessary
for the plausibility of a social agent’s behavior can be found in scenes 7⃝ to 9⃝ of the intro-
ductory scenario in Section 1.2. In scene 7⃝, by asking ``Marley, should I get a cup ...'', Charly tries
to direct the topic of the conversation on the ringing kettle, or, in better words, to the tea
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that they planned to drink before they started the photo book application on the surface.
Barging into Charly’s utterance in scene 8⃝ by saying ``I miss these old times!'', Marley immedi-
ately interrupts Charly’s attempt to change the conversational topic and directs the dialog on
the photo in front of her instead. Afterwards, in scene 9⃝, she tries to reopen the interrupted
topic again by asking ``Get what?'' and Charly recapitulates by paraphrasing his interrupted
question, saying ``Would you like some tea?''. Finally, Marley refuses the oơer to drink a tea by
saying ``No, thanks!'' such that both agree upon the photos as the next conversational topic
and have thus reestablished the common ground as the conversation continues.

IēęĊėėĚĕęĎĔē
ƭ CĔčĊėĊēę
RĊĘĚĒĕęĎĔē

The above examples show that, even though, some behaviors might appear unforeseen, the
participants of social joint activities are able to immediately detect, interpret, quickly inter-
rupt themselves, and seamlessly respond to their partners’ behaviors or adjust their behavior
to the changing priority of their own behavioral goals and functions. In addition, they use ap-
propriate reopening strategies and recapitulation phases for the consistent reinstatement of
previously interrupted behaviors and dialogs. In order to equip a social agent with these abil-
ities, the modeling approach needs to master the immediate interruption of behavioral and
computational processes and their coherent resumption. As demonstrated in Chapter 5, the
proposed modeling approach meets these requirements by combining the hierarchical reƤne-
ment of BFSCs with special interruption policies for transitions. Priorities between competing
behavioral aspects can then be implemented by nesting behaviors with lower precedence into
deeper levels in the hierarchy and using interruptive transitions that preemptively abort all
subordinated behaviors on deeper levels. An automatically maintained history mechanism
collects runtime information and built-in history statements of the Behavior Flow Glue Lan-
guage (BFGL), the textual expression language which is used with BFSCs, allow accessing this
information to model coherent resumption strategies.

3.3 Integrating Input and Context Events

As addressed in Section 3.1 and depicted in Table 3.1.1, the second key modeling task is the
proper integration of input and context events for the correct understanding of the part-
ners’ multi-modal behaviors and environmental changes. The Ƥrst requirement is a uniform
knowledge representation format for input events, domain, and context knowledge. This fa-
cilitates handling the heterogeneity and irregularity of observed events and thus ensures the
compatibility and extensibility of the modeling approach. The second requirement is a well-
organized working memory for the consistent management of dynamic knowledge including
a well-formed, multi-modal event history to consider modality-speciƤc processing delays and
eơect times at multi-modal fusion. A scalable garbage collection mechanism must regularly
gather up outdated and irrelevant events to keep the inference suƥciently real-time capa-
ble. Finally, the third requirement is an expressive and practicable method for multi-modal
fusion and reasoning on the working memory. This is needed for knowledge management,
especially the integration of information distributed via events from the multiple modalities
based on diverse semantic, temporal, and quantiƤcation constraints.
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3.3.1 Uniform Knowledge Representation

The participants of social interactions exchange information using messages and signals in

HĊęĊėĔČĊēĊĔĚĘ
ƭ IėėĊČĚđĆė
IēċĔėĒĆęĎĔē

a multitude of modalities and communication channels, such as speech, gaze, gestures, pos-
tures, and facial expressions (Jaimes and Sebe, 2007; Oviatt, 2012). In physically situated,
collaborative joint activities, such as the introductory scenario in Section 1.2, they additional
exchange information through the joint manipulation of objects on the shared workspace
(Clark and Krych, 2004; Clark, 2005). In a human-agent interaction the agent’s modality-
, sensor-, or device-speciƤc recognition modules interpret this information and forward it
in form of multi-modal events to the agents’ multi-modal fusion engine for further process-
ing and multi-modal integration (Jaimes and Sebe, 2007; Lalanne et al., 2009; Dumas et al.,
2009b). Structure and content of these events are rather heterogeneous, that means they can
carry information on diơerent processing stages and abstraction levels ranging from largely
unprocessed and symbolic data, such as, for example, gaze coordinates, to completely in-
terpreted and highly abstract semantic contents, such as, for example, dialog acts (Bunt et
al., 2010; Bunt, 2011). The processing stage or abstraction level of the information can some-
times be, but is not necessarily, related to the frequency and regularity of the corresponding
input events. Continuous behaviors and interactions usually produce more frequent events
in rather regular intervals and with less abrupt changing contents. In contrast, discrete be-
haviors and actions result in more irregular and rare events whose contents can signiƤcantly
diơer.

Examples of input events with diơerent frequency and regularity carrying heterogeneous in-
formation are found in various scenes of the introductory scenario in Section 1.2. For exam-
ple, while Marley’s gaze is wandering over the table in scene 6⃝, Charly could continuously
follow her gaze by processing the raw eye gaze coordinates of the eye-tracker or step-wise fol-
low her gaze Ƥxations provided by an upstream preprocessing component that is averaging
and down-sampling the raw gaze data. While the gaze coordinates are symbolic information
produced each frame, the Ƥxations have a lower frequency, and carry higher level semantic
information denoting the photo that Marley was most probably looking at during the last
frames. The still regular, but rarer, Ƥxations are used by Charly when predicting Marley’s
interest in a speciƤc photo, as in scene 2⃝, or disambiguating Marley’s deictic references, as
in scene 3⃝. In parallel, Marley’s spoken utterances are recorded by a Voice Activity Detection
(VAD) and processed by an Automatic Speech Recognition (ASR) module before being inter-
preted by a Natural Language Understanding (NLU) component which produces dialog acts
that represent information on an even more abstract and interpreted semantic level. Carried
by speech events, they arrive at the fusion engine in irregular intervals and might then be
fused with the regular stream of gaze Ƥxations for multi-modal disambiguation (Meyer et al.,
1998; Griƥn and Bock, 2000; Griƥn, 2001; Kaur et al., 2003).

TĊĈčēĎĈĆđ
PėĔČėĊĘĘ ƭ

CĔĒĕĆęĎćĎđĎęĞ

The growing technical advancement in sensor technologies brings new sensor devices more
and more into our daily life and makes them available and aơordable for a large number
of users. Such devices support features, such as, for example, marker-less full body motion
sensing, mobile eye-tracking, and capturing of biological signals, for example, for aơective
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computing (Picard, 1997). Social companion technologies and the instrumented intelligent
environments, that they jointly occupy with humans, are more and more integrating such
modern devices (Fong et al., 2003; Leite et al., 2013). This development poses new conceptual
and technical challenges to the capabilities of multi-modal fusion engines. To keep pace,
they may not be restricted to a speciƤc application domain, an unchangeable sets or speciƤc
combinations of modalities and input devices, or mandatory or primary modalities that are
indispensable for their underlying formalism to work. Instead, they must allow easily in-
tegrating novel devices and modalities in order to exploit the full potential of multi-modal
fusion and thus promote the evolution towards natural interaction with social agents.

An example, how the interchangeability and ƪexible combination of modalities helps to ex-
ploit the potential of multi-modal communication can be found in scene 3⃝ of the introduc-
tory scenario in Section 1.2. In this scene, Marley refers to a speciƤc photo by saying ``Tell me!

Where is this beach?'' while directing her gaze to this photo. In this case, she relies on Charly’s
ability to disambiguate the referring deictic expression ``this'' with the information from her
gaze behavior. However, she could as well have chosen other ways of referring to the photo on
the shared workspace, for example, by using only directed gaze, a deictic pointing gestures,
or a verbal referring expressions, but also any combination of these modalities. In order to
understand all of Marley’s possible referring strategies, Charly’s fusion engine must be able
to combine all these modalities without being completely reliant on any of them.

UēĎċĔėĒ
KēĔĜđĊĉČĊ
RĊĕėĊĘĊēęĆęĎĔē

The above examples show, that social agents’ fusion engines must oơer the full power of
multi-modal fusion support across diơerent levels of abstraction and processing stages (Hall
and Llinas, 1997; Dasarathy, 1997; Sharma, 1998; Bosma and André, 2004; André et al., 2014;
André, 2014). They must use a generic and uniform knowledge representation format in order
to process streams of frequent and regular events produced by continuous behaviors, such
as eye gaze and object manipulations, as well as concurrently occurring, rare, and irregu-
lar events, for example, pointing gestures and spoken utterances, carrying higher-level sym-
bolic and semantic information. As explained in Chapter 5, the proposed modeling approach
tackles these challenges by representing input and context knowledge with feature structures
(Kasper and Rounds, 1990; Carpenter, 1992; Pereira, 1993) encoded as list-based PėĔđĔČ facts
which are managed using dynamic PėĔđĔČ predicates that are part of the domain-speciƤc
logic calculus, referred to as Behavior FlowQuery Language (BFQL). In this way, all modalities
are treated equally and no restrictions for their combination possibilities are implemented,
thus, eƥciently facilitating the compatibility and extensibility of the modeling approach.

3.3.2 Well-Organized Working Memory

DĎċċĊėĊēę
PėĔĈĊĘĘĎēČ
TĎĒĊĘ

The computational eơort from the detection of a raw input signal to its semantic interpre-
tation causes varying, modality-speciƤc processing delays. While these might hardly be no-
ticeable in human interactions, due to the humans’ superior perception skills and cognitive
capacity, they, however, represent a technical challenge for multi-modal fusion engines of so-
cial agents. Those might incorrectly interpret multi-modal inputs because they could receive
an input event stream in a temporal order that does not correspond to the real chronological
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sequence of the underlying behaviors (Bellik, 1997, 2001). The modality-speciƤc recognizers
must therefore equip all produced events with timestamps for their producing behaviors’ oc-
currences and lifespans. The fusion engine must buơer them in an event pool to reconstruct
their real order and compensate for the diơerent and changing, modality-speciƤc processing
delays. A fusion calculus can then take account of the time that it took from the detection
of a behavior, over its interpretation, until a corresponding event has been forwarded to the
fusion engine (Portillo et al., 2006; Dumas et al., 2009a; Johnston, 2009).

DĎċċĊėĊēę
PĊėĘĎĘęĊēĈĊ

TĎĒĊĘ

In addition to varying processing times, individual behaviors and modalities also have dif-
ferent persistence times, in the sense that their eơect on the understanding of multi-modal
utterances and behavioral patterns can be felt for diơerently-sizes time windows after their
occurrence. Processing delay and eơect times are not directly correlated but it can often be
observed that events carrying highly abstract and interpreted information have usually both
longer processing delays and eơect times than those with less processed and more symbolic
data because they have undergone more and costlier processing steps. For example, an utter-
ance often transports persistent information, such that the corresponding dialog act aơects
the discourse history for a substantial period of time. In contrast, gaze movements and Ƥxa-
tions represent rather transient and volatile information of the user’s visual orientation and
attention. In order to integrate these diơerent types of event persistences, it is necessary
to maintain a short-term memory of input events in which events are retained according to
their potential, modality-speciƤc persistence (Hoste et al., 2011; Mehlmann and André, 2012).
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Figure 3.3.1: An illustration of the delays caused by the processing times of speech and gaze inputs.

Some technical delays that arise due to the processing of speech and gaze are illustrated
in Figure 3.3.1 based on scene 3⃝ of the introductory scenario in Section 1.2. Marley asks
``Tell me! Where is this beach?'' while looking at a photo on the surface table. The time line
in Figure 3.3.1 depicts the duration of the processing steps of her verbal input and eye-gaze
data. While Marley is speaking from t0 to t2, Charly’s ASR module starts processing the voice
stream at t1 and has produced a transcript at t4. His NLU starts parsing the transcript at t4
and returns a dialog act interpretation at t5. In parallel, Marley’s eye-gaze is moving on the
table from the photo with number 1 to the one with number 2 while the eye-tracking module
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regularly computes the most likely Ƥxated photo. From t0 to t3 the photo with number 1 and
from t3 to t6 the one with number 2 is determined as Marley’s gaze target. Charly’s fusion
engine must disambiguate the underspeciƤed dialog act after t5, by considering her gaze
direction. Without storing events and looking at their timestamps, it would have to choose
Marley’s gaze Ƥxations after t5 which all refer to the wrong photo with number 2. However,
the correct choice would be the photo with number 1 which Marley’s looks at about 600 to
800 milliseconds before the deictic referring expression ``this'' (Meyer et al., 1998; Griƥn and
Bock, 2000; Griƥn, 2001; Kaur et al., 2003) within her utterance.

WĊđđ-
OėČĆēĎğĊĉ
WĔėĐĎēČ
MĊĒĔėĞ

The above example illustrates that incoming events must be handled based on their real
chronological sequence in order to correctly interpret their combined meaning for multi-
modal utterances and behavioral patterns. Due to diơerent and changing, modality-speciƤc
processing times for the acquisition, recognition, and interpretation of the underlying be-
haviors, they must be equipped with timestamps and managed in a short-term memory.
Outdated events must regularly be removed by a garbage collection to keep the inference
mechanism real-time capable. As explained in Chapter 5, the proposed modeling approach
tackles these requirements with a well-formed event history as part of a PėĔđĔČ fact base
(Kowalski, 1974; Emden and Kowalski, 1976; Kowalski, 1979). The therein contained events
must have all relevant timestamps and be totally ordered within the same modality (Allen,
1981, 1984; Allen and Hayes, 1990; Allen, 2013). Dynamic BFQL predicates are used to realize
an age-based and modality-speciƤc garbage collection, such that frequently received events
carrying low-level symbolic data, such as those from gaze or touch behaviors, are retained for
a shorter time than events with highly abstract semantic information, such as, for example,
dialog acts.

3.3.3 Multi-Modal Fusion and Reasoning

TĊĒĕĔėĆđ ƭ
OėĉĊėĎēČ
CĔēĘęėĆĎēęĘ

A critical challenge in social interactions is the correct understanding of the partners’ multi-
modal utterances and behavioral patterns. Their robust interpretation and reduction of un-
certainty can be achieved through the mutual disambiguation of the analysis results provided
by each communication channel or modality (Oviatt, 1999; Kaiser et al., 2003; Jaimes and
Sebe, 2007; Oviatt, 2012; Mehlmann et al., 2014a, 2016). This requires a reasonable method
for the multi-modal fusion of partial semantic information distributed via events from mul-
tiple modalities. Besides the rather application-speciƤc semantic relations, a social agent’s
fusion engine must consider temporal and ordering constraints to determine if individual
contributions from diơerent modalities are properly aligned and may be integrated based on
their occurrence and duration. Quantitative temporal constraints allow the representation
of temporal evolutions related to a given period of time or at a precise moment in time. Qual-
itative temporal relations, such as simultaneity, overlap, or inclusion are usually deƤned over
time intervals (Allen, 1983; Allen and Ferguson, 1994). Ordering relations are, for example,
used to determine the followers or ancestors of an event or perhaps the oldest or latest event
of a set of events (Mehlmann and André, 2012; Mehlmann et al., 2016).
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A user’s gesture or utterance must occasionally be disambiguated with continuous, but often

CĔēĉĎęĎĔēĆđ
QĚĆēęĎċĎĈĆęĎĔē

CĔēĘęėĆĎēęĘ

noisy and ƪawed information, such as gaze coordinates from an eye-tracker, emotion values
from a prosody analysis, or physiological data from biosensors (Bosma and André, 2004; An-
dré, 2014). Then, it is helpful to inspect the temporal development of this data over a certain
time window and select the most promising samples for disambiguation instead of just one
or all of them. Such a conditional quantiƤcation can reduce uncertainties due to data loss,
recognition errors, and outliers, and thus helps to more precisely resolve ambiguities (Prasov
and Chai, 2008; Qu and Chai, 2008; Fang et al., 2009; Prasov and Chai, 2010; Liu et al., 2013).

TĊĈčēĔđĔČĎĈĆđ
ƭ BĎĔđĔČĎĈĆđ

NĔĎĘĊ SĔĚėĈĊĘ

For example, a gaze recognizer based on eye-tracking and object recognition, as in the intro-
ductory scenario in Section 1.2, must cope with two main error sources. Technology-related
false or irregular measurements can be due to diơerent types of noise, sensor device and soft-
ware errors, data losses caused by improper light conditions or viewing angles or imperfect
parameter calibrations and transformation algorithms (Freeman et al., 2007). Biology-related
outliers or data losses are due to tremor and micro-saccades, eye jittering and blinking as
well as the natural random oơset due to fuzzy fovea dimensions between the vector of actual
attentive gaze direction and eye optical axis (Špakov, 2011). Such a recognizer usually esti-
mates the user’s gaze target by comparing the gaze coordinates to the positions of the objects
coming into question. It rates the objects in each frame depending if they are geometrically
including (Hansen et al., 2001) or closest to the gaze point (Monden et al., 2005) or among a
few nearest objects (Xu et al., 2008). Smoothing and down-sampling the results over multiple
frames partially compensates for runaway or missing mappings due to the aforementioned
noise sources. The noisy raw gaze and object recognition data can thus be transformed into
a largely coherent stream of Ƥxation probabilities (Mehlmann et al., 2014a).

CĔĒĕĊēĘĆęĎēČ
NĔĎĘĊ ĜĎęč

QĚĆēęĎċĎĈĆęĎĔē

Even though the aforementioned noise sources can be suppressed to some degree, they can
not be completely ruled out but must appropriately be handled by the agent’s fusion en-
gine. For example, when resolving a verbal reference with the user’s gaze, the fusion engine
can compensate for inaccuracies and irregularities by applying a quantiƤcation constraint
over a time window which is temporarily aligned to the spoken referring expression. Such
a quantiƤcation can, for example, be used to Ƥnd the object that matches the user’s verbal
description and has been mapped to the majority of the user’s gaze points around this time.
This object is then selected as the most probable referent, even if other objects have also been
looked at or have erroneously been reported as gaze targets during this period of time.

An example for such a situation can be found in scene 3⃝ of the introductory scenario in
Section 1.2 and is illustrated in Figure 3.3.2. In this scene, Marley refers to a speciƤc photo
on the workspace by saying ``Tell me! Where is this beach?'' and looking at the photo. Charly
disambiguates this reference by considering those photos of which he knows that they show
a beach and that Marley looked at within a certain time window. The time-line in Figure 3.3.2
depicts Marley’s spoken utterance (Figure 3.3.2 A⃝), the computed gaze Ƥxations (Figure 3.3.2
B⃝), and the real gaze positions on the table (Figure 3.3.2 C⃝). Between t0 and t7 Marley

mainly looks at positions that are closest to photo 2, however, her gaze also shortly switches
intentionally or subconsciously to the photos 1 and 3. Furthermore, between t5 and t6 the
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recognition module is losing the tracking of photo 2 and therefore falsely reports photo 3
as the most probable gaze target during that time interval. Between time point t0 and t7
Marley is asking the question ``Tell me! where is this beach?''. In this, the deictic expression ``this''

occurs roughly at tthis and Charly takes the time window between t1 and t4, an interval of
about two seconds around t2, which is about 800 milliseconds before tthis (Meyer et al., 1998;
Griƥn and Bock, 2000; Griƥn, 2001; Kaur et al., 2003), as basis for the disambiguation of the
verbal reference. During this time interval, the photos 1 and 2 are both reported three times
while photo 3 is only reported two times as gaze target. However, since only the photo 2 and
3 are showing beaches and photo 2 is more often looked at than photo 3, the conditional
quantiƤcation returns photo 2 as the photo that Marley might most likely have referred to.
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Figure 3.3.2: An illustration of a quantiƤcation of gaze events related to a verbal reference expression.

MĚđęĎ-MĔĉĆđ
FĚĘĎĔē ƭ
RĊĆĘĔēĎēČ

A social agent’s multi-modal fusion engine needs to reason on application-speciƤc semantic
knowledge about the domain, task, user, and the physical environment. Moreover, the exam-
ple illustrates that it must evaluate quantitative and qualitative temporal and ordering con-
straints between single input events as well as quantiƤcation constraints over sets of events.
As later explained in Chapter 5, the proposed modeling approach meets these requirements
with the BFQL that is implemented as declarative, embedded, domain-speciƤc language (van
Deursen et al., 2000; Kosar and Mernik, 2006) in PėĔđĔČ (Kowalski, 1974; Emden and Kowal-
ski, 1976; Kowalski, 1979; Clocksin and Mellish, 1981; Wielemaker et al., 2012). The BFQL
comprises a multi-modal event fusion calculus with logic predicates evaluating quantitative
and qualitative temporal as well as ordering constraints between events. It comprises meta-
or higher-order-predicates that implement generalized quantiƤers (Colmerauer, 1978) and
solution collection mechanisms (Naish, 1996). It includes a procedural part with dynamic
predicates for the insertion and retraction of events and can be extended with application-
speciƤc facts and rules.

3.4 Creating Behavior and Dialog Content

As mentioned in Section 3.1 and shown in Table 3.1.1, the third important modeling task is the
creation of expressive and natural multi-modal behavior as well as credible and competent
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dialog content. The Ƥrst requirement is the versatile composition of behavior into behavioral
activities consisting of individual, well-aligned behavioral units. This includes actions and
nonverbal cues in a single modality, verbal statements, multi-modal utterances, and entire
scenes, interleaving the multi-modal contributions of multiple agents. The second require-
ment is the ƪexible integration of knowledge into the agents’ behaviors and dialog lines. This
involves an easily manageable mechanism for the parameterization or substitution of par-
ticular parts of a behavioral activity. It allows the hybrid creation of behavior and dialog
contributions by combining manually scripted with automatically generated contents, con-
cluded from an agent’s knowledge. Finally, the third requirement is the automatic variability
of behavior using reasonable selection and alternation mechanisms for multi-modal utter-
ances and scene activities. This avoids repetitive behavior and dialog content which would
certainly make the agents’ behavior appear less natural, believable, and competent.

3.4.1 Versatile Composition of Behavior

DĎěĊėĘĊ
BĊčĆěĎĔėĆđ
CĆĕĆćĎđĎęĎĊĘ

Humans exchange messages and signals via multiple modalities, such as speech, gaze, ges-
tures, postures, and facial expressions. In physically situated, joint activities, they addition-
ally communicate by manipulating and performing actions on objects in the environment.
Rather than using single such actions or behaviors one by one, they usually use multiple of
them in diơerent modalities and communication channels at the same time (Jaimes and Sebe,
2007; Oviatt, 2012). They use their whole behavioral repertoire to produce well-aligned com-
positions of multi-modal behaviors, thus, improving interpersonal coordination (Bernieri
and Rosenthal, 1991) and maintaining the conversational and perceptual ground (Clark and
Brennan, 1991). For example, they use single gaze movements when following each other’s
attention (Argyle and Cook, 1976) or head movements and facial expressions when produc-
ing back-channel cues (Kendon, 1967; Yngve, 1970), but also composed multi-modal behav-
ioral patterns and utterances, when eliciting feedback behaviors (Kendon, 1967; Bavelas et
al., 2002), or producing multi-modal references through the coordinated use of speech, gaze
and pointing gestures (Brennan, 1998; Hanna and Brennan, 2007; Kennington et al., 2015).

TĊĈčēĎĈĆđ
PėĔČėĊĘĘ Ćēĉ

DĎěĊėĘĎęĞ

In symmetry to the challenges for multi-modal fusion engines due to the growing Ƥeld of sen-
sor technology, the recent technical advancement in virtual environments and social robotics
places new demands on the behavioral skills of social agents. The technical capabilities of ad-
vanced next-generation agent platforms must be very diverse and highly specialized, ranging
from very simplistic designs that master only a small set of platform-speciƤc commands to
humanoid robots whose behavioral capabilities come, at least partly, close to the human skill
repertoire (Fong et al., 2003; Vinayagamoorthy et al., 2006; Leite et al., 2013). Social agents
capable of reproducing the human behavioral repertoire must therefore master a broad band-
width of the above mentioned individual behaviors and versatile behavior compositions.

Examples of more or less complex compositions of behaviors can be found in various scenes
of the introductory scenario in Section 1.2. Simple gaze movements can be found in scene 1⃝
in which Charly is following Marley’s gaze shifts to the photos on the surface table that have
caught her attention. A multi-modal behavioral pattern can be found in scene 5⃝, in which
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Charly is looking attentively to Marley by simultaneously raising his eyebrows and putting
his head aside. Another one can be observed in scene 6⃝, in which Charly performs a short
smiling expression to mimic Marley’s emotional display and then immediately averts his eyes
and head to balance their interpersonal intimacy. A similar pattern is used in scene 10⃝ when
Charly closely aligns his head nod with a movement of his eyebrows to create a back-channel
cue signaling interest and encouraging Marley to continue. Finally, a multi-modal utterance
can be found in scene 4⃝, in which Charly refers to a photo closely aligning a verbal reference
in form of a deictic expression in the question ``Where was that?'' with his directed gaze to a
photo in order to direct Marley’s attention to this speciƤc photo.

VĊėĘĆęĎđĊ
CĔĒĕĔĘĎęĎĔē
Ĕċ BĊčĆěĎĔė

The above examples and other situations of the introductory scenario in Section 1.2, clearly
demonstrate that a social agent has to master many diverse, properly aligned, multi-modal
compositions of behavior to come close to the human behavioral repertoire. This includes in-
dividual platform-speciƤc commands, nonverbal cues, verbal statements, multi-modal pat-
terns and utterances. As explained in Chapter 5, the proposed modeling approach meets
these requirements with a specially designed speciƤcation method, called behavioral activ-
ities, which can be speciƤed with minimal eơort and expert knowledge using the Behavior
Flow Script Language (BFSL). They resemble parts of a screenplay or movie script consisting
of multi-modal stage directions for the alignment of verbal statements with co-verbal behav-
iors, actions, and commands. Special scene activities, pooled in scene scripts, are used to
specify the interleaving of multiple agents’ multi-modal behaviors and dialog contributions.

3.4.2 Flexible Integration of Knowledge

CėĊĉĎćđĊ ƭ
CĔĒĕĊęĊēę
BĊčĆěĎĔė

The aforementioned messages and signals that are exchanged between the participants of
social joint activities can carry information that has been inferred from, or refers to their in-
teraction context and domain knowledge which has or shall be incorporated into the common
conversational ground (Clark and Brennan, 1991; Clark, 2005). In the course of a social inter-
action, the interaction partners remember each other’s past dialog contributions and knowl-
edge about their partners as well as the objects and events in the environment and uptake
individual information from the available knowledge sources, such as the dialog domain, the
common task, their interaction partners, and the discourse history (Flycht-Eriksson, 1999;
Flycht-Eriksson and Jönsson, 2000; Wahlster, 2006) later during the interaction. This is the
fundamental prerequisite for the human participants to have a coherent conversation, main-
tain the common ground and, thus, to make an informed, competent, and credible impres-
sion on the interaction partners (Clark and Marshall, 1981; Clark and Brennan, 1991).

RĊċĊėĊēĈĊĘ
ƭ MĚęĚĆđ
KēĔĜđĊĉČĊ

The maintenance of the common ground during collaborative tasks, like in the introductory
scenario in Section 1.2, depends crucially on the successful exchange of knowledge about the
objects that take center stage in the interaction (Clark and Marshall, 1981; Clark and Brennan,
1991; Brennan, 1998). For example, in a joint object sorting or manipulation task on a shared
workspace, human speakers try their best to optimally diơerentiate the next object to be
sorted, or worked on together, from possible alternatives, using a preferably unambiguous
description of its characteristics. Vice versa, listeners fall back on the same mutual knowledge
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to resolve such references (Ros et al., 2010; Mutlu et al., 2013; Kennington et al., 2015). They
slip these descriptions in their utterances when referring to this object in order to minimize
the collaborative eơort to agree upon the next steps of the common task.

An example for the integration of context and domain knowledge into the dialog content can
be found in scene 3⃝ of the introductory scenario in Section 1.2. In this scene, Marley asks for
information about the scenery which has been captured on a particular photo on the table
by asking ``Where is this beach?'' and looking on this speciƤc photo. In response, Charly uses
his knowledge about the photo to report the time, place, and circumstances under which it
has been taken by answering ``This was your trip through France in 1980?''. His utterance is not
entirely scripted by hand, but, is produced in a hybrid way, by enriching manually scripted
kind of gap-text with photo-speciƤc semantic information, for example, the year in which
it has been taken. On the other hand, as shown in scene 4⃝, Charly also tries to learn more
about photos of which he has not yet enough information with the aim to ground the mutual
knowledge about these photos. Thus, he is able to link the gathered information with the
individual photos and to reproduce it the next time he is asked for it.

FđĊĝĎćđĊ
IēęĊČėĆęĎĔē

Ĕċ KēĔĜđĊĉČĊ

The above example makes evident, that a social agent must have the ability to embed inferred
context and domain knowledge into its behaviors and dialog contributions, either through
its partial integration into manually scripted content, or the delegation of the entire content
creation to an external module. As explained in Chapter 5, the proposed modeling approach
meets these requirements because the template-based scene format allows the substitution
of placeholder variables with arguments, holding automatically generated or inferred con-
tent, using appropriate BFGL playback commands in a BFSC. Furthermore, it allows the in-
line insertion of BFSC variables into behavioral activity speciƤcations. This allows the hybrid
creation of multi-modal behavior and dialog content, combining manually scripted, rapidly
prototyped content with knowledge that has automatically and more sophisticatedly be gen-
erated by extern reasoning, recommender, or planning systems. This approach helps to cre-
ate informed dialog content and make the agent appear more competent and credible while
minimizing the needed initialization data, expert knowledge, conƤguration, and authoring
eơort.

3.4.3 Automatic Variability of Behavior

AēĘĜĊėĎēČ
CđĆėĎċĎĈĆęĎĔē

RĊĖĚĊĘęĘ

Miscommunication and the consequential disruptions of the common ground in conversa-
tions and joint activities mainly arise from misunderstandings, misconceptions, and non-
understanding (Hirst et al., 1994). These, in turn, are usually caused by ambiguous utter-
ances, missing attention, or whenever one of the participants presumes sensory, perceptive,
or cognitive abilities that the other cannot serve with (Gabsdil, 2003). A common error-
handling strategy to face these types of miscommunication are clariƤcation subdialogs in
which listeners use conƤrmation requests to make sure that they correctly understood their
partner or repetition requests to signal their misunderstanding or inattention (Allwood et
al., 1993; Traum, 1994; Clark, 1996; Purver et al., 2003). In response, speakers usually repeat
their utterance to repair the conversational ground when they notice that they have not been
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understood correctly. If they recognize that a simple reproduction of content is not suƥ-
cient to improve their partners’ understanding, then they go a further step by rephrasing or
reformulating their statements. Such an intentional linguistic variation in a clariƤcation di-
alog can eƥciently contribute to the reestablishment of the common ground with minimal
collaborative eơort after a disruption (Clark, 1996, 2005; Clark and Wilkes-Gibbs, 1986).

An example of such a short clariƤcation subdialog consisting of a repetition request and the
reformulation of a misunderstood question can be found in scene 9⃝ of the introductory
scenario in Section 1.2. In this scene, Charly notices that Marley did not fully understand
his question if she would like to have a cup of tea because she asks for a clariƤcation with
a repetition request ``Get what?''. The reason for Marley’s misunderstanding is that she is
deƪected by a photo on the workspace and therefore interrupts Charly by saying ``I miss these

old times!'' in scene 8⃝ after Charly has already interrupted her before by asking ``Marley, should I

get a cup ...'' in scene 7⃝. As reaction, Charly repeats his question, however, he uses a variation
by slightly rephrasing it instead of simply literally reproducing what he said before. This next
time, he asks ``Would you like some tea?'' and Marley understands this second formulation and
declines the oơer by answering ``No, thanks!''. After she has rejected Charly’s proposal, both
agree on the same conversational topic again and the common ground has been repaired.

AěĔĎĉĎēČ
RĊĕĊęĎęĎěĊ
BĊčĆěĎĔė

In addition to minimizing the communicative eơort and therefore facilitating the ground-
ing process (Clark and Brennan, 1991), people naturally use linguistic variations, that means
variants of socio-linguistically signiƤcant morphological, lexical, and syntactical features
(Biber, 1988; Chambers et al., 2004), in order to express a variety of social meanings, such
as intentions, beliefs, emotions, politeness, attitudes, and personality (Mairesse and Walker,
2011). Consequently, the creation of expressive, credible, and competent behavior, in gen-
eral, requires the possibility for the natural variation of behaviors and dialog contents. The
most simple thinkable method for linguistic variation is to allow, at least, the randomized
avoidance of literal repetitions in semantically identical sentences (van Deemter et al., 2005).
Monotonous replications of the same utterances would otherwise make the agent appear less
believable or clumsy and make the interaction boring (Cassell et al., 2000b).

An example for the natural linguistic variation of dialog content in order to appear credible
and competent can be found in scene 2⃝ of the introductory scenario in Section 1.2. In this
scene, Charly uses diơerent formulations of basically the same question, such as ``Shall I tell

you about that?'' or ``Are you interested in this?'', whenever he asks Marley if she wishes more
information about those photos that catch her attention for a longer period of time. He even
combines the automatic linguistic variation with a semantical variation by integrating his
knowledge about the content of the photos when proactively providing information about
them, for example, by saying ``This was in France!''. Thus, he prevents repetitive behavior or
making the same statement again and again, and avoids to appear clumsy or simple-minded.

AĚęĔĒĆęĎĈ
VĆėĎĆćĎđĎęĞ
Ĕċ BĊčĆěĎĔė

The above examples demonstrate that a reasonable, purposive, and natural variation of be-
havior and dialog content in natural social interactions contributes to the grounding process
and makes the interaction partner appear vivid, credible, and competent. Equipping a social
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agent with this ability requires the variability of behavior, that means the autonomous, or
at least automatic, rephrasing or reformulation of speciƤc dialog contents or whole multi-
modal utterances. As later explained in Chapter 5, the proposed modeling approach tackles
this problem with the possibility to aggregate multiple alternatives for the same scene ac-
tivity to a scene group and select individual alternatives at runtime based on a randomized
or linearized blacklisting strategy. The diơerent alternatives allow expressing the same con-
tribution or dialog act semantics in diơerent ways using slight variations of the wording,
synonymous terms, or diơerent gestures with the same meaning, thus eƥciently minimizing
the authoring eơort for realizing variations.

3.5 Summary and Conclusion

In this chapter, I identiƤed and discussed the modeling tasks that an author is faced with
when modeling the interactive behavior of artiƤcially and socially intelligent agents, espe-
cially when focusing on interpersonal coordination and grounding behaviors. These tasks
are, Ƥrst, the close coordination of an agent’s behavioral functions and processes, second,
the proper integration of user input and context events, and, third, the creation of credible
and natural behavior and dialog content. Based on several exemplary scenes from the intro-
ductory scenario in Chapter 1, I illustrate that social interactions and joint activities share
some common characteristics that directly lead to the identiƤcation of a number of task-
speciƤc modeling requirements. The modeling language for each of these tasks must satisfy
these requirements in order to allow an author to successfully master this task.

The Ƥrst task includes the incremental and reciprocal meshing, the parallel and hierarchi-
cal structuring, and the interruption and coherent resumption of functions and processes.
The second one requires the maintenance of knowledge and multi-modal events in a well-
organized working memory using a uniform knowledge representation format as well as a
multi-modal fusion and reasoning calculus for their integration based on semantic, tempo-
ral and quantiƤcation constraints. The third task comprises the versatile composition of
behavior including the ƪexible integration of knowledge and automatic variability of behav-
ior and dialog content. In Chapter 4, these task-speciƤc modeling requirements will serve
as comparison criteria in the review of related work on multi-modal fusion, behavior and
interaction modeling as well as behavior description. The concepts and languages of the
modeling approach proposed in this thesis, that are only brieƪy addressed in this chapter,
will be explained in more detail in Chapter 5 and illustrated in Chapter 6 based on a realistic
use case.
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CčĆĕęĊė 4

RĊđĆęĊĉ WĔėĐ — BĊčĆěĎĔėĆđ
AĘĕĊĈęĘ Ćēĉ MĔĉĊđĎēČ AĕĕėĔĆĈčĊĘ

In Chapter 2, I introduced the interactional phenomena, referred to as interpersonal coordi-
nation and grounding. I also presented the individual behavioral functions that contribute
to them, such as joint attention, language understanding, turn-taking, back-channel elicit-
ing, intimacy regulation, to name but a few. In this, I have concentrated on explaining the
roles of diơerent gaze behaviors and voice activity overlaps for these functions. In Chapter 3,
I discussed several characteristics of human behavior in social interactions and identiƤed a
set of modeling tasks and requirements for a computational behavior and interaction mod-
eling approach. These must be met in order to be able to integrate and coordinate all the
behavioral functions that contribute to interpersonal coordination and grounding. Finally,
I gave a brief overview of the modeling concepts that are combined in the novel modeling
approach presented in this thesis to tackle these requirements.

The modeling concepts of the proposed modeling framework in this thesis are essentially in-
spired or inƪuenced by related work from diơerent research Ƥelds. Relevant related research
includes, in the broadest sense, approaches for modeling, Ƥrst, dialog, behavior, and inter-
action for conversational embodied agents and social robots, second, multi-modal fusion in
human-agent interaction or multi-modal user interfaces, in general, and, last, multi-modal
behavior speciƤcation and description. The design decisions mentioned in Chapter 3 have
been made to compensate for particular shortcomings of individual of these approaches and
thus take a step beyond the state-of-the-art behavior and interaction modeling frameworks.

In the remainder of this chapter, in Section 4.1, I discuss related work in human-agent-
interaction in regard of its research goals and contents. Representatives of this group study
interactional phenomena similar to interpersonal coordination and grounding or focus on
individual behavioral functions or sub-concepts of those regarded in this thesis. Afterwards,
in Section 4.2, I present a variety of related modeling approaches that rely on more or less
similar or closely related formalisms as the approach proposed in this thesis. I discuss, from
a technical perspective, in how far these approaches oơer the expressive power and practica-
bility to meet the tasks and requirements identiƤed in Chapter 3.
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4.1 Modeling Behavioral Functions

Despite substantial research eơort during the last decades, related work has not yet managed
to develop modeling languages and authoring tools that allow integrating and coordinating
the behavioral aspects of interpersonal coordination and grounding in an agent’s behavior
and interaction model. Most research investigates the one or the other role of gaze behav-
ior or voice activity for these conversational phenomena in isolation. They focus on individ-
ual sub-aspects of interpersonal coordination and grounding or speciƤc behavioral functions
only. Among those, some even study these behavioral aspects exclusively in face-to-face con-
versations an do not consider physically situated joint activities in which the environment
and the therein existing objects, persons, and events are an essential part of the interaction.
Even worse, other colleagues developed only completely non-interactive, one-sided and thus
inadequate models of gaze behavior that do not react to the user’s behavior. Finally, some
evaluate or ground their models based on observations made in over-controlled an simpli-
Ƥed, experimental setups that have absolutely nothing to do with real social interactions.

4.1.1 Modeling Functions of Gaze Behavior

Earlier research on gaze behavior in the interaction of a human with an artiƤcially intelligent
agent works with virtual characters (Nakano et al., 2003; Peters et al., 2010; Bailly et al., 2010;
Pfeiơer-Lessmann et al., 2012; Ruhland et al., 2015). A well-known problem in the research on
gaze behavior of virtual, animated, embodied conversational characters, that are rendered on
two-dimensional displays, is similar to the phenomenon which is typically referred as Mona
Lisa eơect (Rogers et al., 2003; Moubayed et al., 2013). Because the agent and user do not
share the same physical space, it is hardly possible to see for the user where the agent is
exactly looking to. That means, the agent cannot unambiguously establish mutual gaze with
one of the participants in a multi-party interaction. Furthermore, it is diƥcult to identify the
object that the agent is looking at in a physically situated interaction. This is not the case in
immersive virtual environments and human-robot interaction in which human and agent are
physically co-present in the environment, like in the introductory scenario in Section 1.2. So,
this issue is not found in more recent related research which focuses on physically situated
and collaborative joint activities with social robots (Imai et al., 2003; Breazeal et al., 2004;
Doniec et al., 2006; Huang and Thomaz, 2010, 2011; Huang and Mutlu, 2012; Huang et al.,
2015; Mutlu et al., 2009, 2012, 2013; Staudte and Crocker, 2009, 2011).

Relevant related work can be found in the research on understanding, modeling, and eval-
uating the functions of social gaze behaviors in human-agent interaction (Srinivasan and
Murphy, 2011; Srinivasan et al., 2014; Ruhland et al., 2015). The methodical means and out-
come of these eơorts are heavily depending on the research goals in mind, which can be
human-, technology- or design-focused (Admoni and Scassellati, 2017). Here, I mostly con-
sider heuristic, that means, literature-driven, design-focused approaches that aim at devel-
oping gaze models for speciƤc tasks of the interaction, such as conversation or collaboration.
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Joint Attention and Grounding

Much research studies the roles of gaze behavior for joint attention or, in better words, shared
attention in physically situated interaction and social joint activities. Joint attention is here
understood as the partners’ ability to follow and direct each other’s gaze to objects, to events,
and to themselves with the aim to share a common point of reference (Mundy and Newell,
2007), not true cognitive joint attention (Kaplan and Hafner, 2006). The importance of joint
attention has been shown by various experiments, in particular for collaborative joint actions
between humans and robots on shared workspaces (Mutlu et al., 2013). There, it was shown
that, if participants pay more attention, and are aware of being looked at, they can recall
more information (Mutlu et al., 2006; Huang and Mutlu, 2012) which has a positive eơect on
task performance and completion.

As one of the Ƥrst, Nakano et al. (2003) proposed a simple, incremental model of nonverbal
grounding for an embodied conversational agent that describes a route on a map to a user.
The model explains how head nods as back-channels, and gaze behaviors for joint attention,
can be judged as grounding evidence. The agent checks the user’s nonverbal signals during an
utterance and afterwards continues monitoring the user’s nonverbal cues until it gets enough
evidence of understanding or non-understanding. Finally, the agent tries to judge the quality
of the common ground based on the received evidence. For example, a verbal conƤrmation,
head nod, or expected attentive gaze at the map can be interpreted as an acknowledgment
of understanding. In a study they especially showed, that if the user keeps looking at the
agent instead of following its gaze is an evidence of non-understanding and an attempt to
evoke additional explanation from the agent. In other words, attention following to referred
objects on the map suggests the user’s understanding and cooperation.

Pfeiơer-Lessmann et al. (2012) developed a model of joint attention for an immersive virtual
reality environment. As attempt to cover cognitive joint attention, their model deƤnes four
phases, characterized by the partners’ mental states. These are, Ƥrst, the initiate phase, sec-
ond, the respond phase, third, the feedback phase, and, fourth, the focus-state in which both
focus the object of attention and are mutually aware of the joint attention. Using this model,
they investigated the ideal timing of an initiator’s referential gaze to best introduce the target
of the joint attention during the initiation phase. They also investigate which response times
of the addressee for a referential act are perceived as acceptable and successful. As a result,
they found that humans highly accept the virtual partner when it is using a natural timing of
gaze to direct their attention, as found in human interactions.

A similar model for joint attention was developed by Huang and Thomaz (2011). It covers
three parts, Ƥrst, initiating, second, responding to, and, third, ensuring joint attention. To
initiate joint attention, an agent uses addressing strategies including eye gaze, pointing ges-
tures, and utterances. Afterwards, it periodically ensures joint attention by checking whether
or not joint attention is reached and selects another addressing strategy if not. Therefore, it
is constantly monitoring the partner’s focus by looking back and forth. Using this model, the
authors found that the behavior of a robot that is responding to joint attention is perceived as

75



4. RĊđĆęĊĉ WĔėĐ — BĊčĆěĎĔėĆđ AĘĕĊĈęĘ Ćēĉ MĔĉĊđĎēČ AĕĕėĔĆĈčĊĘ

more transparent, competent, and socially interactive. Moreover, a robot that is continually
ensuring joint attention appears more natural and improves the task performance (Huang
and Thomaz, 2010, 2011).

Engagement and Connectivity

Another interactional phenomenon that can be regarded as sub-aspect of interpersonal co-
ordination and grounding is engagement (Glas and Pelachaud, 2015). It can be imagined as a
dynamic, reciprocal process by which the interaction partners establish, maintain, and end
their perceived connection during a social interaction (Sidner et al., 2005). Besides bidirec-
tional social cues, such as back-channels and adjacency pairs, also shared and mutual gaze
are very important for engagement (Rich et al., 2010; Holroyd et al., 2011). It has been shown
that a robot that moves its head towards and away from the speaker during a conversation
can signal engagement (Sidner et al., 2005). Based on these Ƥndings, Holroyd et al. (2011)
developed a behavior model that supports the engagement between a human and a social
robot through the establishment of shared and mutual facial gaze (Rich et al., 2010).

Very similar, Kuno et al. (2007b) observed that a robotic museum guide that moves its head
towards the visitor during its explanation increases the visitors engagement. They developed
a behavior model that additionally coordinates a robot’s head turning and gaze at transition-
relevant points (Sacks et al., 1974). They showed that a robot that also switches its gaze be-
tween the listener and an object of interest at these transition-relevant points results in even
greater nonverbal engagement of the visitors (Kuno et al., 2007a; Yamazaki et al., 2008). The
user’s nonverbal engagement manifested itself in head turns and gaze movements towards
the robot that revealed very precise timings and durations (Jeơerson, 1973).

Hall et al. (2014) studied the perception of a robot’s engagement by a user that reads a series of
instructions to the robot. This robot’s behavior model uses eye blinking, nodding responses,
and, in particular, recurring gaze aversion and reengaging gaze to express engagement. While
the user reads an instruction, the robot frequently averts its gaze for about one second in
a random direction but tries to establish mutual gaze and performs a head nod in a speech
pause. A study showed that nodding has a strong positive eơect on engagement whereas gaze
aversion could be interpreted as engaged thinking but also as boredom or inattention. Thus,
depending on timing and accompanying behaviors, it could have a disengaging, detrimental
impact (Doherty-Sneddon and Phelps, 2005) and must be precisely timed and directed to
purposefully contribute to the perception of engagement (Yamazaki et al., 2008).

Multi-Modal Disambiguation

Humans can with a fairly high precision determine where a robot is looking at in an interac-
tion at a shared workspace (Moubayed et al., 2013). However, it is one thing to determine the
target of the gaze as an isolated task, but another to use it for facilitating comprehension of
ambiguous language. Several researchers studied this role of gaze behavior for multi-modal
disambiguation and reference resolution (Prasov and Chai, 2008; Ros et al., 2010; Staudte and
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Crocker, 2011; Boucher et al., 2012; Okumura et al., 2013; Prasov and Chai, 2010). For exam-
ple, in their research on referential grounding in human robot interaction, Ros et al. (2010)
found that visual perspective taking, which requires attention and gaze following, is neces-
sary for the generation of appropriate referring expressions and their correct disambiguation.
A robot must be able to reason on the user’s focus of attention and the placement of object
with respect to the user’s vision in order to be able to compute whether an object is in the
user’s focus of attention, Ƥeld of view, or out of the user’s Ƥeld of view (Ros et al., 2010).

Vice-versa, Staudte and Crocker (2011) conducted experiments in which subjects watched
videos of a robot that was describing objects on a table while gazing at them. They showed
that the subjects were able to utilize the robot’s gaze direction for successfully resolving re-
ferring expressions. Thus, exploiting the agent’s focus of visual attention via gaze-following
has a positive inƪuence on utterance comprehension to anticipate, ground, and disambiguate
spoken references (Staudte and Crocker, 2009; Staudte, 2010). In very similar experiments,
also Boucher et al. (2012) showed that users can identify objects faster when the agent is gaz-
ing at these objects while referring to them. The other way round, errors in an agent’s gaze
hinder speech understanding, because people expect the agent’s gaze to indicate what it in-
tends to verbally reference. In cognitively more demanding tasks, incongruence in an agent’s
eye gaze and speech leads to bad task performance (Staudte and Crocker, 2009, 2011).

Turn-Taking and Role-Footing

Other aspects of interpersonal coordination and grounding, that have been studied mainly
in isolation, are the regulation of the dialog structure and the footing of participant roles in
human-agent interaction. Many models for these aspects incorporate Ƥndings from social
psychology (Kendon, 1967; Duncan, 1972, 1974) to simulate the role of gaze in turn-taking.
These approaches usually generated special gaze behaviors with the beginnings and ends of
turns and utterances (Cassell et al., 1999; Lee et al., 2007) to produce turn-taking and ƪoor
management actions (Traum and Rickel, 2002; Bohus and Horvitz, 2010c). In these models,
the agent looks away from the hearers at the beginning of a long turn and looks toward an
addressee at the end of the turn to yield or assign the turn. During very short turns, it often
looks toward an addressee throughout the whole turn, whereas, in between utterances of the
same turn, it looks away from the partners to hold the turn (Lee et al., 2007).

Mutlu et al. (2012) investigated the roles of gaze for conversation management, especially,
how a robot can establish the participant roles, namely addressee, bystander, and overhearer,
of its conversational partners using certain gaze cues (Mutlu et al., 2009). They developed
a footing model (Goơman, 1979) in which the agent signals the partners their assigned par-
ticipant roles in diơerent dialog phases, such as greeting, conversation, and turn-exchange.
During greetings, the agent Ƥrst welcomed all partners and at the transition to the conversa-
tion it diverted the gaze towards the intended addressee and away from the bystander. Dur-
ing the conversation it used diơerent gaze distributions in which it looked most of the time
to the addressee, seldom to the environment and only sporadically to the bystander, mostly
in very short, acknowledging glances. It produced turn-yielding signals only for addressees
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when exchanging the turn by using directed gaze at the end of utterances.

Andrist et al. (2014) developed a behavior model that is able to use gaze aversion to eơectively
regulate turn-taking. The model uses a timing statistics based on which it determines the
frequency, length, start, and end times of an agent’s gaze aversion, relative to its utterances.
It is informed about the current conversational state, the start time, and length of upcom-
ing planned utterances, and continuously plans and generates appropriate gaze behaviors in
real-time. The found, that by averting gaze at the appropriate time, an agent more eơec-
tively held the conversational ƪoor than when using gaze aversion at inappropriate times or
not at all. Their results show that virtual agents that need to pause in their speech, for ex-
ample, to process information or plan the next utterance, can use gaze aversion to hold the
conversational ƪoor and indicate that the next utterance is forthcoming.

Social Attitude and Personality

Bee et al. (2009) studied the roles of gaze behavior for the initiation of contact and regula-
tion of intimacy between a human and an agent. They investigated which gaze signals an
agent should convey in order to increase the user’s interest and willingness to engage in an
interaction with the agent. Their work is inspired by Givens (1978) who divide the progress
of interpersonal encounters into discrete phases, such as attention, recognition, interaction,
and others. They implemented a behavior model which allows varying the probability that
the agent initiates gaze interaction using parameters, such as the maximal and minimal mu-
tual gaze duration, the maximal gaze aversion duration, and the time the user must respond
mutual for the agent to engage in a conversation. The agent using this model was perceived
as more natural and engaged compared to a non-interactive agent.

Bee et al. (2010b) also studied the role of an agent’s gaze behaviors for the perception of its
personality. Their work is based on a gaze model by Fukayama et al. (2002) which allows
controlling the frequency and duration of gaze movements to the user and gaze aversion
to points in the environment. It can be parameterized by means of the amount of gaze to
the user, the mean duration of a gaze, and gaze points during averted gaze. Fukayama et
al. (2002) already found that a medium amount of gaze and a mean duration between 500
to 1000 milliseconds conveys a friendly gaze behavior. Bee et al. (2010b) evaluated diơerent
parameterizations of the model to study gaze-based dominance of an embodied conversa-
tional character. They showed that the parameterization can inƪuences the perception of
the agent’s personality traits, such as dominance, extroversion, and agreeableness.

Since the model used by Bee et al. (2010b) does not respond to the user’s gaze, they extended
it to an interactive model (Bee et al., 2010c). They introduced further parameters for the
maximal and minimal duration of mutual gaze in reaction to the user’s current gaze and the
time how long the agent waits until the user must respond with mutual gaze. The interactive
model is more realistic since user and agent recognize and coordinate each other’s gaze. It
was used to investigate the agent’s interactive gaze behavior’s inƪuence on the user’s expe-
rience in terms of, for example, rapport, engagement, attraction, and social presence. Even
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though being interactive, the model is still restricted because it does not include the inter-
play of gaze with other modalities. It furthermore ignores its role in turn-taking, attention
following, back-channel eliciting, and other behavioral functions. Nevertheless, it can serve
as orientation how to model gaze distributions that can inƪuence aspects like intimacy or
dominance in diơerent dialog phases or participant roles.

4.1.2 Modeling Functions of Voice Overlaps

An example of research that focuses on the roles of voice overlaps and interruption attempts
in interactions with social agents is that of Cafaro et al. (2016). This work investigated the ef-
fects of diơerent interruption types and strategies in a conversation between a speaker agent
and an interrupting agent on a human observer. They varied the amount of overlap between
speakers and compared a disruptive with a cooperative interruption strategy. They found
that agents that choose to attempt a cooperative interrupt are perceived as more engaged.
The amount of overlap inƪuenced the perception of both agents’ social attitude and person-
ality, such as friendliness and dominance. These are useful results that can be utilized in a
turn-taking or interruption handling model implemented using our approach. However, the
agents in these experiments were not interactive but instead rendered as opposing silhouettes
in a picture giving a visual hint that two entities are talking to each other. The models and
applications developed with the approach proposed this thesis overcome this shortcoming
by moving beyond videos and involving the user as an interlocutor in the interaction.

A social agent whose behavior and interaction model allows a context-sensitive handling of a
user’s interruptions has been presented by Crook et al. (2010). It enables the agent to quickly
detect and intelligently respond to diơerent kinds of user interruptions. In this, it takes ac-
count of the meaning of the user’s utterance and the users’ emotional state. The model dis-
tinguishes interruptions from other acoustic phenomena such as extraneous noises or verbal
back-channels based on the duration of the voice overlap and the intensity of the user’s voice.
If the user is speaking long or high enough, then the agent immediately stops speaking and
shows a surprising nonverbal behavior, such as facial expression and a back-channel, for a
timely reaction. In parallel, it processes the user’s utterance and considers semantic and
prosodic information speech act to perform a reasonable and empathic linguistic response.
The recovery from an interruption can then be achieved by resuming to the argument that
the agent was making immediately before the interruption, or, by addressing the content
of the interruption. The information from the aơective analysis ƪows into the agents reac-
tion, for example, by mirroring the user’s emotional state with s facial expression and tone
of voice. This sophisticated model was a good inspiration for the design of interruption han-
dling strategies using our approach.

Chao and Thomaz (2011) developed a model for the control and analysis of timing aspects in
a social agent’s turn-taking behavior. They conducted a study of the eơects of interruptions
on turn-taking dynamics in a scenario in which the user and a robot are cooperating to solve
the Towers of Hanoi problem. The robot interrupts its actions and looks immediately to
the user whenever the user’s hand starts moving to the shared workspace. In addition, the

79



4. RĊđĆęĊĉ WĔėĐ — BĊčĆěĎĔėĆđ AĘĕĊĈęĘ Ćēĉ MĔĉĊđĎēČ AĕĕėĔĆĈčĊĘ

robot immediately interrupts its speech if the human performs an action before the robot has
Ƥnished an action request. Later they extended their turn-taking model such that it allows
parameterizing the participants’ interruptibility as well as various timing parameters (Chao,
2012; Chao et al., 2014). They used the model to research to which extent the dynamic change
of diơerent parameter settings results in diơerent social dynamics (Thomaz and Chao, 2011;
Chao and Thomaz, 2013; Smith et al., 2015). They showed that interruptions lead to increased
task eƥciency due to increased user initiative. This improved the overall feeling of interaction
balance and produced a higher sense of ƪuency. They also recognized that not only speech
overlaps but also actions and resource conƪicts on shared workspaces can lead to turn-taking
conƪicts. Both Ƥndings inƪuenced the development of the modeling approach and the turn-
taking policy in the illustrative model in Chapter 6 of this thesis.

Another sophisticated, fully-ƪedged turn-taking model of a social agent was developed by
(Thórisson, 2002; Thórisson et al., 2010). The model joins two major approaches to turn man-
agement, Ƥrst, the signal-based approach (Duncan, 1972), and, second, the opportunities-
based approach (Sacks et al., 1974). Similar to the interruption handling model of Crook et
al. (2010), it uses a layered architecture with several parallel update loops operating at dif-
ferent speeds. A reactive layer is responsible for ideomotor actions, like looking away when
taking or holding the turn (Goodwin, 1981) while a control layer coordinates mental activi-
ties, such as utterance starts, stops, and interrupts. The layers consist of concurrent modules
that are responsible for perception, multi-modal integration and decision-making. The turn-
taking decisions are encoded using rules that implement theories from behavioral sciences.
The model includes dynamically adjustable parameters for impatience, willingness to give
turn and eagerness to speak. The layered architecture design of this model inƪuenced the
development of the modeling approach and the illustrative model in Chapter 6 of this thesis.

4.2 Modeling Tasks and Requirements

From a technical perspective, relevant related work aims at the development of generally
usable modeling languages for interaction and behavior management, multi-modal fusion,
and behavior speciƤcation. Thus, this work primarily pursues a universal approach to in-
dividual modeling tasks without focusing on particular interactional phenomena, such as
interpersonal coordination and grounding, or particular behavioral functions, such as atten-
tion, engagement, or turn-taking. Many of these modeling frameworks require a substantial
degree of expert knowledge and programming skills, thus being unsuitable for non-experts.

4.2.1 Coordinating Functions and Processes

CĔĒĕĆėĎĘĔē
CėĎęĊėĎĔē
CĆęĆđĔČ

A social agent’s behavior and interaction model is responsible for managing the interplay
of the behavioral functions that contribute to interpersonal coordination and grounding.
This includes the proper prioritization, synchronization, and interleaving of concurrent and
nested computational and behavioral processes. As described in Chapters 1 and 3, the ap-
plied modeling approach must hence meet a number of criteria. First, it must manage the
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incremental and reciprocal meshing of input processing, knowledge reasoning, and behavior
generation. Second, it has to allow the parallel and hierarchical structuring of the model into
processes and layers, and their coordination with synchronization and inter-process com-
munication mechanisms. Third, it must enable the immediate interruption and coherent
resumption of behavioral functions and processes to consistently respond to changing behav-
ioral goals and interruptions. Related modeling frameworks that deal, in one way or another,
with these requirements are used for interaction and dialog management in multi-modal user
interfaces (Trung, 2006; Dumas et al., 2009b, 2010), embodied conversational agents, and so-
cial robots (Cassell et al., 2000b; Jung et al., 2011) as well as interactive digital storytelling
(Cavazza et al., 2001, 2008). Aside from naive scripting approaches, they can be divided into
the rather distantly related frame-, rule-, and plan-based approaches and the more closely
related, versatile kinds of state-based and hybrid modeling approaches.

Rule-Based Approaches

FĊĆęĚėĊĘ Ĕċ
RĚđĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

The early scripting approaches, such as, for example, in the animated pedagogical agents
CĔĘĒĔ or HĊėĒĆēTčĊBĚČ (Lester et al., 1997; Lester and Stone, 1997), simply compose se-
quences of text blocks, audio clips, and animations for specifying the behavior and dialog
content of a social agent. However, a behavior and interaction model must prescribe the
agent’s behavioral reactions to possible situations and user inputs and provide suƥcient vari-
ations in order to avoid predictive and repetitive behaviors. In rule-based approaches the
agent’s behavior and interaction model is encoded as a set of rule operators. An inference
engine cyclically examines the precondition of each rule and selects a subset of those whose
conditions are satisƤed with regard to the current working memory. The action of one of
those rules is then executed which may modify the working memory again and thus trig-
ger the execution of other rules in the next cycles. The preconditions are used to specify
user input constraints or context information states and actions execute system commands
to generate agent behaviors and utterances. These approaches use rule-based programming
systems, such as CđĎĕĘ (Riley, 1997) an JĊĘĘ (Friedman-Hill, 2003), based on the RETE algo-
rithm (Forgy, 1990), or logic inference systems, like PėĔđĔČ (Clocksin and Mellish, 1981) and
its derivatives, like SWI-PėĔđĔČ (Wielemaker et al., 2012) or JĎēēĎ (Tarau, 1998).

EĝĆĒĕđĊĘ Ĕċ
RĚđĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

An example for a rule-based extension of a scripting approach for behavior and interaction
modeling is IĒĕėĔě (Perlin and Goldberg, 1996). IĒĕėĔě was designed to allow creative ex-
perts who are not primarily programmers, such as artists and screenwriters, to create inter-
active performances with virtual actors. Therefore, an author speciƤes the agents’ observable
behavior with manually written scripts and writes rules governing their higher-level behav-
ioral choices. These rules basically compute the probabilities for individual author-provided
choices based on a weighted list of author-speciƤed inƪuence factors. They are used to de-
termine when and with whom actors engage in conversations and their reactions to possible
situations and user inputs in diơerent contexts.

Similar, SĈėĊĆĒ (Prendinger and Ishizuka, 2002; Prendinger et al., 2002, 2004) uses a user-
extensible set of rules and facts for the emotion-based, high-level scripting of a character’s
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mind. The author uses designated features and dynamically updated facts to deƤne an agent’s
proƤle in terms of initial goals, beliefs, and attitudes. A rule set makes up the reasoning com-
ponent which represents the agent’s mental processes and states that determine its behav-
ioral responses to received communicative acts. The system can easily be extended by adding
or modifying rules that encode the agent’s cognitive processes, for example with aơective ap-
praisal rules.

Many other systems pursue a rule-based approach to model diơerent aspects of an agent’s
behavior and interaction model. The authoring framework CėĊĆĈęĔė (Iurgel et al., 2009; da
Silva et al., 2009) uses a rule-based method to deƤne an agent’s interactive performance. The
conversational agent RĊĆ (Cassell et al., 2000a) uses a rule-based high-level behavior control
module which performs inferencing tasks that determine its deliberative communicative ac-
tions. The RĔćĔCĚĕ commentator systems BĞėēĊ and MĎĐĊ employ a rule-based approach
for generating an agent’s emotional state and reason about events (André et al., 2000). The
sport commentary agent EėĎĈ (Strauss and Kipp, 2008) uses a rule-based approach for rea-
soning, aơective appraisal and, template-based natural language generation.

DĎĘĈĚĘĘĎĔē Ĕċ
RĚđĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

The examples demonstrate that rule-based systems have versatile application possibilities.
With their working memory and powerful inference mechanism, rule-based systems are well
suited in scenarios where knowledge reasoning is involved. This strength is, for example,
utilized by tools like MĚĉėĆ (Hoste et al., 2011), MĎĉĆĘ (Scholliers et al., 2011) or HĊĕčĆĎĘTK
(Dumas et al., 2009b,a, 2010, 2014) which use rules to build higher-level facts from low-level
information for multi-modal integration and complex event processing. Rules can be cho-
sen such that a Ƥne-grained interleaving of processing, reasoning, and generation steps is,
in principle, possible. It is, in theory, also possible to control parallel processes and their
incremental and reciprocal meshing. However, with growing rule bases the procedural as-
pects of a rule-based system become very hard to maintain because the rule system becomes
unwieldy and cumbersome and the possible states of the behavior and interaction space be-
come hardly comprehensible. Even worse, conƪicts that occur when more than one rule
may be executed must often heuristically be resolved by particular meta-rules that express
preferences regarding the priority of candidates on the rule agenda (Hayes-Roth, 1985).

Plan-Based Approaches

FĊĆęĚėĊĘ Ĕċ
PđĆē-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

In plan-based systems for dialog and interaction management, an automated planner receives
the current world or information state, a set of plan operators with preconditions and eơects
that change this state, and a goal state. The planner then searches for an action sequence that
would, if successfully executed, bring the system from the current to the goal state. A classical
example is SęėĎĕĘ (Fikes and Nilsson, 1971) which represents a world model as a collection
of Ƥrst-order logic formulas and employs a resolution theorem prover that uses a means-end
analysis strategy in the goal-based search for the desired goal-satisfying action sequence.

RĊĆĈęĎěĊ
PđĆēēĎēČ

Planning the course of a social agent’s dialog and interaction is helpful to ensure a coherent
interaction and accomplish the goals of a joint activity. However, while humans maintain and
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tend to follow plans once they have one, they can also change them on the ƪy when needed
by dropping an intention or changing a part of the plan. This phenomenon is referred to as
practical reasoning (Bratman, 1987) and is characteristic for interpersonal coordinating and
grounding. Similar, it is impossible to plan an agent’s whole interaction in advance when
the partners can interrupt each other, respond freely at every turn, and are exposed to en-
vironmental events that constantly change their information states. Thus, many automated
planners provide a more appropriate and practical reasoning strategy that is referred to as
reactive planning (Georgeơ and Ingrand, 1989).

HĎĊėĆėĈčĎĈĆđ
TĆĘĐ NĊęĜĔėĐ

Most reactive planners for dialog and interaction management make use of the hierarchical
task network (HTN) style of plan operators (Erol et al., 1994; Nothdurft et al., 2015). The
goal of the HTN planner is to produce a sequence of actions for a task, which is is either
primitive, that means a plan operator, or compound, consisting of subtasks and a method
that prescribes its decomposition into subtasks. The planner uses the method to decompose
compound tasks into smaller and smaller pieces until it reaches primitive, executable tasks.
Typical examples for HTN planners are O-PđĆē (Currie and Tate, 1991) or SčĔĕ (Nau et al.,
1999) and SčĔĕ2 (Nau et al., 2003). Using HTN structures can ensure that the plan follows a
stipulated courses of action and reduce the search space (Freedman, 2000). They can, for ex-
ample, resemble the hierarchical structure of task-oriented dialogs (Grosz and Sidner, 1986)
such that the context given by the hierarchy information can be used for resolving referring
expressions. HTN plans can, on the one hand, be continuously planned and generated at
run-time and, on the other hand, explicitly be provided as pre-authored hierarchical and-or
trees.

DĎĆđĔČ
PđĆēēĎēČ
EĝĆĒĕđĊĘ

An early hierarchical planning component is used in IMP (André and Rist, 2000, 2001) for
generating the behaviors of presentation teams of several agents. It decomposes a presenta-
tion goal into elementary goals, thus producing a dialog script consisting of the dialog acts
(Bunt et al., 2010; Bunt, 2011) to be executed by the single agents and their temporal order.
One of the Ƥrst reactive, hierarchical planner is APE, an integrated planning and execution
system at the heart of the AęđĆĘ dialog management system (Freedman, 2000). It controls a
mixed-initiative dialog between a human user and an agent and can handle arbitrarily nested
discourse constructs, making it more powerful than dialog managers based on ƪat Ƥnite-state
machines.

Other hierarchical approaches were taken in the applications of the SĒĆėęKĔĒ project (Her-
zog et al., 2004; Herzog and Reithinger, 2006) and in the dialog manager of the VĎėęĚĆđHĚ-
ĒĆē system (Löckelt et al., 2007). Here, each individual agent is autonomously controlled
by a conversational dialog engine whose action planner works with a hierarchical interac-
tion structure. In this hierarchy, dialog acts are the atomic communication units, their rule-
governed exchanges create short dialog games (Carlson, 1985; Levin and Moore., 1977), such
as question-answer pairs, which are then combined to activities to implement an agent’s
goal-directed behavior.

The dialog management system D4G (Rich and Sidner, 2012) combines HTNs with dialog
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trees (Despain, 2008). It uses a HTN to model the high-level hierarchical task or goal struc-
ture of a dialog. Relatively small subdialog trees are then attached at the fringe of the HTN.
D4G builds onDĎĘĈĔ andCĔđđĆČĊē (Rich and Sidner, 1998; Rich et al., 2001; Rich and Sidner,
2012) and their collaborative discourse theory (Grosz and Sidner, 1986). Another extension
of DĎĘĈĔ is the DTĆĘĐ system (Bickmore et al., 2009, 2011) which uses HTN with adjacency
pairs (Schegloơ, 1968; Schegloơ and Sacks, 1973), which are pairs of a single agent utterance
with a user response menu, at the fringe of the network, instead of complete dialog trees,
as in D4G. Yet another variant applies rules at the live nodes of a HTN to generate dialog
candidates (Rich et al., 2002).

Other plan-based dialog managers that use HTNs are RĆěĊēCđĆĜ (Bohus and Rudnicky,
2003, 2009), its predecessor AČĊēĉĆ (Xu and Rudnicky, 2000), and its extension OđĞĒĕĚĘ
(Raux and Eskenazi, 2007). They model domain-speciƤc aspects of the dialog control logic
via a HTN which is manually constructed by an author. A network’s inner nodes control
the execution of their subordinate nodes and thus represent the temporal and logical dialog
structure. The leaf nodes represent atomic dialog actions or dialog moves, such as output
production, information requests, or system actions. Such a dialog model’s execution is then
performed by a domain-independent dialog engine and inƪuenced by the HTN’s dialog logic
and the inputs of the users.

NĆėėĆęĎĔē
PđĆēēĎēČ
EĝĆĒĕđĊĘ

A variety of reactive HTN planning approaches have been applied for the dynamic creation
of narrations for interactive digital storytelling. For example, Cavazza et al. (2002) combine
a HTN planner with reactive agent behaviors to cope with unexpected events and situations.
Each individual character’s behavior in the story is initially deƤned by an author as HTN.
Interactions of the user with the agent or the environment can produce situations that lead
to action failures and cause the re-planning of the agents’ goals in the network. Similar ap-
proaches are used in the MĎĒĊĘĎĘ (Riedl et al., 2003) and FĆĈĆĉĊ (Mateas and Stern, 2003a)
systems to account for user interactions that might require a re-organization of the narrative
an interactive drama. In IĉTĊēĘĎĔē (Szilas, 2003) and FĊĆėNĔę! (Aylett et al., 2006), plans
are generated at run-time rather than being explicitly represented as pre-built goal trees.

DĎĘĈĚĘĘĎĔē Ĕċ
PđĆē-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

The examples show, the major strength of HTN is their hierarchical structure which may
be generated or pre-authored. Making the hierarchical task structure of the dialog explicit
facilitates the development and maintenance of large dialogs. It allows automatically gener-
ating great parts of the dialog model or reusing authored structures and improves the control
over the dialog’s evolution. However, the actual contribution exchange at the fringe of the
network is still modeled highly idiosyncratic. Reactivity, by means of re-planning of delibera-
tive dialog contributions is possible with reactive planning approaches. Reactive, hierarchical
planners, eventually enriched with statistical techniques (Ultes et al., 2017; Budzianowski et
al., 2017), are certainly a good choice for planning large and nested dialog structures that
involve reasoning tasks. However, they are not well suited for a Ƥne-grained interleaving of
processes and modeling ideomotor or highly reactive behaviors. Similar to rule-based ap-
proaches, it is laborious to control and synchronize parallel processes with them.
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State-Based Approaches

FĊĆęĚėĊĘ Ĕċ
SęĆęĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

Most similar to the modeling approach proposed in this thesis are various kinds of state-
based approaches to model the procedural aspects of an agent’s behavior, interaction, and
dialog. They rely on diơerent Ƥnite-state-based formalisms in which an agent’s mind, dialog,
and interaction logic, or individual behavioral aspects are represented by means of states
and transitions. Some of them allow hierarchically reƤning and decomposing the model
into parallel components. Others provide very unique and specialized modeling constructs,
such as particular nodes, edges, commands, guards, policies, histories, and others. Part of
this state-based family of modeling approaches are diơerent types of augmented or extended
state transition networks, state-chart dialects, and Petri-net variants.

HĎĊėĆėĈčĎĈĆđ
TėĆēĘĎęĎĔē
NĊęĜĔėĐĘ

An early authoring system with a Ƥnite-state-based approach to dialog and interaction man-
agement is the CSLU toolkit (Sutton and Cole, 1997; McTear, 1998, 1999). It comes with a
graphical modeling environment which facilitates the development of spoken dialog systems
by non-experts. This allows visually assembling Ƥnite-state-based dialog models by linking
together diơerent graphical dialog objects. These objects can be used for generating prompts,
recording and recognizing speech input, or performing system actions. The dialog models
may include branching decisions, loops, jumps, and subdialogs that permit a hierarchical,
modular model design and the reuse of already modeled parts.

Similar tools are DĎĆđĔČOS (Bobbert and Wolska, 2007) and DĎĆMĆēę (Fliedner and Bob-
bert, 2003) which have been used for the development of spoken or text-based dialogs with
robots (Koller and Kruiơ, 2004). They use extended state transition diagrams consisting of
diơerent nodes represented as icons on a graphical workspace. Those include nodes for input
processing, output production, script execution, and sub-graph. These are called and param-
eterized like functions and have local memories and return values. However, they have no
history mechanism and restricted real-time capabilities because they cannot be interrupted.

Another extended state transition network is used by the SĈĊēĊMĆĐĊė authoring suite (Geb-
hard et al., 2003a) to control the dialog behavior of interactive agents in the CėĔĘĘTĆđĐ (Rist
et al., 2002; Baldes et al., 2002) and CĔčĎćĎę (Ndiaye et al., 2005) systems. Nodes may have
pre-scripted scenes attached that specify the agents’ dialog lines and co-verbal behaviors.
Special super nodes may contain nested networks to create a hierarchical structure. They pro-
vide conditional, probabilistic, scheduled and, in particular, interrupting transitions. How-
ever, they do not use an interaction history to consistently resume interrupted super nodes.

PĆėĆđđĊđ
TėĆēĘĎęĎĔē
NĊęĜĔėĐĘ

Many other approaches use hierarchical state transition networks to model social agents’ in-
teraction and dialog behavior (Person et al., 2000; Graesser et al., 2004, 2005; D’Mello and
Graesser, 2013) or narratives in interactive digital storytelling (Spierling et al., 2006). How-
ever, they do not allow the parallel decomposition of the model. This challemge is, for ex-
ample, tackled with the successor version of SĈĊēĊMĆĐĊė (Mehlmann, 2009; Gebhard et al.,
2012), called VSM, using new authoring concepts, such as parallel networks, variable scoping,
interruption policies, and a history mechanism. Sticking with the visual modeling paradigm
states can only be activated using transitions, such that authors do not need programming
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experience but must eventually cope with less clearly arranged graphs.

Another type of parallel transition network focusing on the representation of parallelism and
synchronization are the PĆT-NĊęs (Cassell et al., 1994; Badler et al., 1995) that have been used
in the virtual presenter character JĆĈĐ (Noma and Badler, 1997; Noma et al., 2000). PĆT-NĊęs
are concurrently executed, parallel Ƥnite-state automata which are created using coordina-
tion rules. They can call actions in the simulation, make conditional and probabilistic tran-
sitions or can sleep until a desired time or a speciƤc condition is met. They can synchronize
with each other by waiting on shared semaphores and can even invoke or kill each other.
They are used for the combined control of high-level behavior and low-level animations, for
example, to model the interaction between several agents and the synchronization of gaze
and hand movements to the dialog for each individual agent.

EĝĆĒĕđĊĘ Ĕċ
SęĆęĊ-CčĆėę

DĎĆđĊĈęĘ

Other approaches to dialog and interaction management adopt or extend classical state-
chart variants (Harel, 1987; Harel et al., 1990; Harel and Naamad, 1996; Harel and Politi, 1998;
von der Beeck, 1994; Drusinsky, 2004; Harel and Kugler, 2004; Drusinsky, 2006; Crane and
Dingel, 2007). An example is TQS (Traum et al., 2008; Gandhe and Traum, 2008; Gandhe et
al., 2008) that partly relies on state-charts for rapidly authoring dialog capabilities of virtual
humans (Gandhe et al., 2009). Similar to an earlier approach (Kronlid and Lager, 2007), its
dialog manager follows the information-state model (Traum and Larsson, 2003) using update
rules that are implemented as state-charts using SCXML, a W3C1 working draft for describ-
ing state-charts (Barnett et al., 2007). Attempting to render Harel State-Charts (Harel, 1987;
Harel and Politi, 1998) SCXML provides modeling concepts for hierarchy, concurrency, his-
tory and broadcast communication.

SCXML is also used in DĊĆđ (Brusk et al., 2007; Hjalmarsson et al., 2007; Wik et al., 2007)
to describe a game’s interaction structure and model the behavior and dialog of non-player
characters (NPCs). DĊĆđ models each NPC as a separate state-chart, running in parallel with
each other and the game world. Parallel state-charts are also used to separately model dif-
ferent behavioral aspects of the NPCs, such as their states-of-mind, verbal behaviors, as well
as accompanying conversational gestures and emotional expressions.

State-chart variants have also been used to model turn-taking, joint attention, and other in-
teractional phenomena, apart from dialog ƪow management. They have, for example, been
used to model the original SSJ model (Sacks et al., 1974) for turn-taking in dyadic interactions
(Kronlid, 2006, 2008). The IėĎĘTK toolkit (Skantze and Moubayed, 2012; Skantze and Johans-
son, 2015) uses its own state-chart variant, based on Harel State-Charts (Harel, 1987; Harel
and Politi, 1998) for the rapid authoring of an interactive robot’s dialog behavior in diơerent
applications (Moubayed et al., 2012, 2013). It is, for example, used to manipulate several pa-
rameters in turn-taking management, such as syntactic completeness and Ƥlled pauses in a
robot’s speech, as well as facial gestures, breathing patterns, and gaze behaviors to deal with
processing delays in the system (Skantze et al., 2014, 2015).

1http://www.w3.org/TR/scxml/
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Other state-based approaches for dialog and interaction management are special Petri-net

EĝĆĒĕđĊĘ Ĕċ
PĊęėĎ NĊę
VĆėĎĆēęĘ

variants (Murata, 1989; Genrich, 1991). Many are designed to incorporates facilities for tim-
ing, hierarchy, parallelism, and synchronization. For example, the DĎĘĈĔ and CĔđđĆČĊē
dialog manager series (Rich and Sidner, 1998; Rich et al., 2001; Rich and Sidner, 2012) has
been extended to the DĎĘĈĔ-RT framework (Nooraei et al., 2014) using a Petri-net-based ap-
proach for the synchronization of parallel, multi-modal behaviors and arbitration between
conƪicting behaviors (Holroyd et al., 2011).

The CĆĉĊēĈĊ modeling framework (Chao et al., 2014; Chao and Thomaz, 2016) uses a Petri-
net variant, called ęPNs (Chao and Thomaz, 2011; Chao, 2012), for controlling the autonomous,
multi-modal turn-taking behavior of a social robot in a dyadic, collaborative interaction
(Chao, 2015; Chao and Thomaz, 2016). ęPNs are designed to explicitly represent temporal
constraints, concurrent processes, synchronization, and interruptible behavior execution.
They were used to developed a parameterized turn-taking model (Chao and Thomaz, 2013;
Smith et al., 2015) to research how the dynamic change of diơerent parameter settings results
in diơerent social dynamics (Thomaz and Chao, 2011). CĆĉĊēĈĊ has similar objectives and
solution concepts as the approach proposed in this thesis, and should be usable to tackle
very similar problems. However, it has, so far, been used to model turn-taking and inter-
ruption handling, only, but not for other behavioral functions contributing to interpersonal
coordination and grounding.

Hybrid and Agent-Systems

FĊĆęĚėĊĘ Ĕċ
HĞćėĎĉ
AĕĕėĔĆĈčĊĘ

Hybrid modeling approaches combine the aforementioned techniques to manage each be-
havioral aspects with the most appropriate technology. This helps to balance the diơering
needs for modeling the aspects of reactive and deliberative behaviors and their interplay with
dialog and interaction management. For example, procedural and ideomotor aspects of be-
havior are often modeled with state-based approaches while plan-based techniques are used
for knowledge reasoning tasks involved in dialog management. A combination of rule-based
and state-based systems is often used to reduce the visual complexity of state transition di-
agrams with complementary rules. Furthermore, such hybrid approaches are also used to
unite input processing and interaction management in a uniform formalism.

EĝĆĒĕđĊĘ Ĕċ
HĞćėĎĉ
AĕĕėĔĆĈčĊĘ

Such an hybrid modeling approach can be found in the virtual training environment MRE
(Swartout et al., 2001, 2006). In MRE, each agent’s behavior is modeled using a control
method that best Ƥts its character type. Agents with limited behavioral range are scripted in
beforehand and their behavior scripts are triggered based on environmental events. Charac-
ters that interact with the trainee are controlled with reactive plan-based modules (Marsella
et al., 2000; Johnson et al., 2000; Rickel and Johnson, 2000) to master a broader bandwidth
of socially competent behavior and deal with unanticipated situations. The plot of a training
session is modeled with a Ƥnite-state-based formalism that allows author-deƤned deviations
from the main storyline while keeping control of the overall ƪow.

Another example is the authoring tool CĞėĆēĚĘ (Iurgel, 2004, 2006) which has been used in
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Aėę-E-FĆĈę (Iurgel, 2004), VĎėęĚĆđ HĚĒĆē (Goebel et al., 2007), and IēĘĈĆĕĊ (Balet, 2007;
Dade-Robertson, 2007). It relies on hierarchical transition networks comprising reference
states deƤned outside the network. Each reference state integrates a rule-based engine to
activate it without a transition when the network would otherwise become to dense or the
transition conditions too complex. This allows a possibly more clearly arranged transition
network but is a renunciation from the visual modeling paradigm and requires a certain
amount of programming expertise. A similar approaches is pursued in ITĊĆĈč which runs a
Ƥnite-state machine and a rule-based system in parallel and synchronizes them using shared
variables (Miksatko and Kipp, 2009; Miksatko et al., 2010).

Instead of combining state machines with forward-chaining rule systems, the MĚDĎS (Giu-
liani et al., 2008) interaction and dialog manager integrates Ƥnite-state machines (Mealy,
1995) and a PėĔđĔČ (Clocksin and Mellish, 1981) inference engine. PėĔđĔČ is used for knowl-
edge reasoning in the dialog steps that are modeled as reusable, application-independent
dialog states with the underlying Ƥnite-state machine. Similar to the approach proposed in
this thesis, the states call commands to the agent’s text-to-speech and behavior generation
components and transitions are guarded with logic queries.

An agent-based approach is ASAP (Kopp et al., 2014), a middle ware for ECAs, that is tai-
lored to the incremental interleaving of input processing and behavior generation for a ƪuid
and smooth interaction ƪow. Its distributed architecture comprises concurrent components
that asynchronously and incremental communicate using multi-directional message proto-
cols based on BML, FML and PML (Kopp et al., 2006; Vilhjálmsson et al., 2007; Scherer et al.,
2012). The applications developed with ASAP mainly focus on the verbal and gestural aspects
of ƪuid conversation management, such as dialog planning, adapting to verbal and gestural
feedback, turn-taking and interruption handling. They do not consider gaze behaviors or
other behavioral functions that are important in physically situated joint activities.

4.2.2 Integrating Input and Context Events

CĔĒĕĆėĎĘĔē
CėĎęĊėĎĔē
CĆęĆđĔČ

Interpersonal coordination and grounding presupposes the robust understanding of the part-
ners’ behaviors. This includes the integration of information from input events distributed
over multiple modalities and context knowledge in a social agent’s multi-modal fusion en-
gine. As discussed in Chapters 1 and 3, the fusion and reasoning formalism must meet several
criteria to achieve this goal. First, it must represent the possibly irregular and heterogeneous
events with a uniform representation format to avoid compatibility and idiosyncrasy issues.
Second, application knowledge and input must be maintained in a well-organized working
memory that preserves the event’s actual chronological order across turns. Third, it must
provide an expressive and uniform formalism for multi-modal fusion and reasoning that al-
lows integrating application knowledge and partial input information based on temporal,
semantic, and quantiƤcation constraints. Finally, with regard to the liaison with the behav-
ior and interaction management, it must support the Ƥne-grained, step-wise fusion of inputs
for handling continuous interactions and incremental processing. Relevant related eơort on
multi-modal fusion engines that tackles these requirements is found in interaction modeling
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frameworks and interactive social agents (Benoit et al., 2000; Oviatt et al., 2000; Lalanne et
al., 2009; Turk, 2014; Caschera et al., 2015; Oviatt et al., 2017).

Early Fusion Approaches

NĆĎěĊ EĆėđĞ
AĕĕėĔĆĈčĊĘ

The very Ƥrst approaches to multi-modal fusion are attempts to combine natural language
input and pointing actions for spatial tasks in map-based, intelligent user interfaces. In these
very early systems, multi-modal integration is primarily realized through the procedural ex-
tension of an existing speech or text understanding engine. They don’t allow the simultane-
ous input of gestures and text but required the user to consecutively alternate between the
keyboard and the pointing device. Gesturally enriched, natural language input is based on
a sequential, one-to-one mapping of deictic expressions or markers in the spoken or typed
text to textual descriptions of entities pointed to on the screen. The referent is simply re-
placed with the object description provided by the gesture recognition without semantically
analyzing the pointing gesture and its consistency with the natural language input.

An example of such a system is SĈčĔđĆė (Carbonell, 1970), a geography tutoring system
which enables the use of pointing gestures to select regions on maps displayed on a screen.
The NLG system (Brown et al., 1979) allowed sequentially mixing natural language descrip-
tions with pointing on a touch screen to draw simple geometric objects. The SDMS system
(Bolt, 1980) allowed creating and manipulating geometric objects by natural language and
coordinated pointing gestures. In the NLMĊēĚ system (Thompson, 1986), the user used a
mouse to rubber band areas on a map while giving verbal commands. Similar, the SčĔĕTĆđĐ
system (Cohen et al., 1989; Cohen, 1991) allowed inserting syntactic representations of refer-
ents, selected using pointing gestures, into natural-language queries and commands.

AĉěĆēĈĊĉ
EĆėđĞ
AĕĕėĔĆĈčĊĘ

Among the early approaches are also sightly more sophisticated systems that overcome some
restrictions of the very Ƥrst, naive systems. First, they cope with the simultaneous use of nat-
ural language and gestural input within the scope of a single turn. Second, they support a
greater range of gestural input, that means graphic gestures in addition to just deictic point-
ing gestures. Finally, they check the semantic consistency of speech input with accompa-
nying gestural input. An example for such a system is XTRA (Kobsa et al., 1986; Allgayer
et al., 1989), a multi-modal interface to expert systems, which combines natural language,
graphics, and pointing for input. It enables the user to multi-modally refer to objects on the
screen even with underspeciƤed descriptions or imprecise pointing gestures. Similar, the
CĚćėĎĈĔē system (Neal et al., 1989) can resolve inconsistencies between pointing gestures
and accompanying verbal expressions by applying semantic constraints (Neal et al., 1988).

DĎĘĈĚĘĘĎĔē
Ĕċ EĆėđĞ
AĕĕėĔĆĈčĊĘ

To sum up, none of the early prototypes uses a uniform representation format or maintains a
turn-overarching working memory. Consequently, most can not integrate continuous, truly
parallel, verbal and nonverbal input using temporal or quantiƤcation constraints. In con-
trast, the user’s hands have to move back-and-forth from the keyboard to the pointing device
in order to switch between typed and gestural input. Typed words and gestures must occur in
the exact order before the multi-modally created sentence can be parsed as a whole. Multi-
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modal fusion is restricted to a single turn and it is not possible to incrementally interleave
input processing and output generation. Speech is always treated as an indispensable modal-
ity while gestures are treated as a secondary dependent mode. Multi-modal integration can
only be triggered by the appearance of a deictic reference expression in the speech stream.
Its resolution with the information from a pointing gestures is only in a few systems guarded
by a semantic consistency checks between the gestural and spoken input interpretation.

Frame-Based Approaches

FĊĆęĚėĊĘ Ĕċ
FėĆĒĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

Multi-modal semantic fusion requires methods and algorithms that allow combining mean-
ing representations from individual modalities, such as speech, gesture, gaze, and others,
into an overall interpretation. In the above discussed early fusion engines, each modal-
ity had its own such meaning representation framework and an idiosyncratic method was
used for multi-modal integration. However, a more ƪexible and extensible semantic fusion
mechanism requires a uniform meaning representation format for all modalities and a well-
deƤned, universal combination operation for partial meanings. In frame-based fusion en-
gines, unimodal parsers translate input from individual modalities in isolation to a common
intermediate representation format, called semantic frames (Minski, 1975; Fikes and Kehler,
1985). Multi-modal integration is then achieved by merging these modality-speciƤc frames
to obtain a combined interpretation. Frames are a uniform semantic representation frame-
work and basis of various domain-speciƤc formats, such as EMMA (Johnston, 2009), M3L
(Herzog et al., 2004), MMIL (Kumar and Romary, 2003) an others (Nigay and Coutaz, 1993,
1995; Wasinger et al., 2005; Wasinger, 2006). The actual appearance of semantic frames, the
merging algorithms, and fusion architectures, however, still remain rather idiosyncratic and
application-speciƤc, such that they are hardly comparable to each other.

EĝĆĒĕđĊĘ Ĕċ
FėĆĒĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

Koons et al. (1993) developed one of the Ƥrst frame-based systems in which the user may use
various types of gestures, directed gaze, and speech commands to modify the contents of a
two-dimensional map. In this system, the user’s multi-modal inputs are parsed to a common
frame-based structure which are assigned timestamps and modality-speciƤc, semantic con-
tents. The timing information is used to realign them to their real chronological sequence
before merging them. The merging algorithm is based on very application-speciƤc evaluation
methods that, among other tasks, are responsible for reference resolution.

The MĆęĎĘ system is a multi-modal interface to an air traƥc information database which
allows combining natural language input, graphical input, and direct manipulations with a
mouse. It uses a very speciƤc fusion architecture with two-dimensionally structured frames
representing the semantic and temporal information of a user’s input (Nigay and Coutaz,
1995). They can be fused based on criteria such as their semantic complementarity, tempo-
ral relations, and context information. All modalities are equivalent according to the CARE
properties (Coutaz et al., 1995) such that the user may use any modality for triggering a com-
mand (Bouchet et al., 2004).

The MSA system is a mobile shopping assistant in an instrumented environment that inte-
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grates speech- and gesture-based interactions on a mobile device and with real world shop-
ping products (Wasinger et al., 2005; Wasinger, 2006). Its semantic frame representation
organizes user’s input by means of the discourse segment type, input modality, action type,
a conƤdence value, begin and end timestamps, and other pieces of information. The modality
fusion process is inƪuenced by re-weighting and scoring of conƤdence values, consideration
of time frames, and semantic consistency.

The only approach that uses a domain-independent merging algorithm is presented in the
JĊĆēĎĊ system, a multi-modal appointment scheduling calendar that integrates speech and
pen input (Vo and Wood, 1996; Vo and Waibel, 1997). Modality-speciƤc input is parsed to
partially Ƥlled frames which are then merged to a combined interpretation by creating the
union of each slot’s value set and adding the respective conƤdence values. Nested frames are
merged recursively thus creating aggregate frames, encoding alternative interpretation hy-
potheses. This uniform merging technique can handle high-level information from arbitrary
modalities in a generic manner and is thus modular and extensible.

DĎĘĈĚĘĘĎĔē Ĕċ
FėĆĒĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

Summarizing, frame-based approaches are, similar to rule-based ones, a very heterogeneous
group of fusion frameworks. What binds them is that each of them has a uniform mean-
ing representation format which, however, can signiƤcantly diơer from that of others. Even
worse, their fusion architectures and merging algorithms are often idiosyncratic. Never-
theless, they all can realign the user’s multi-modal behaviors, occurring simultaneously in
a single turn, to their chronological sequence using a short-term memory. Then consider
modality-speciƤc conƤdence values, timestamps, and semantic constituency constraints for
temporal and semantic consistency checks. In turn, they do not work closely intermeshed
with the behavior and interaction management, such that incremental fusion and interleav-
ing with reasoning and generation processes is basically not possible.

UniƤcation-Based Fusion

FĊĆęĚėĊĘ Ĕċ
UēĎċĎĈĆęĎĔē-
BĆĘĊĉ FĚĘĎĔē

The inconsistencies concerning the fusion architectures and algorithms of frame-based ap-
proaches led to the attempt to unitize both using uniƤcation-based fusion engines. These
frameworks achieve multi-modal integration through the uniƤcation of feature structures
(Kasper and Rounds, 1986, 1990) or typed feature structures (Kay, 1979; Carpenter, 1992) that
serve as uniform meaning representation. Feature structure uniƤcation combines two fea-
ture structures to a single new one which then contains all the information of the original
two but nothing more. It is a well-deƤned operational framework that has turned out to be
especially suited to the task of multi-modal fusion because it does not only allow combin-
ing complementary or redundant input, but also ruling out or overlaying contradictory input
based on structural and content-related constraints (Johnston et al., 1997; Alexandersson and
Becker, 2003; Ehlen and Johnston, 2013).

EĝĆĒĕđĊĘ Ĕċ
UēĎċĎĈĆęĎĔē-
BĆĘĊĉ FĚĘĎĔē

UniƤcation-based fusion has, for example, been applied for the integration of spoken com-
mands with gestural input in the pen- and voice-controlled QĚĎĈĐSĊę systems (Cohen et al.,
1997a,b; Johnston et al., 1997; Wu et al., 1999). These are interactive military training simu-
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lations on mobile devices and desktop computers in which the users may use a pen to draw
lines, areas, or symbols on the map and simultaneously speak commands to lay down certain
units or objects. In these systems, multi-modality caused a signiƤcant speed increase (Cohen
et al., 1998, 2000) and enabled the mutual compensation of recognition errors in the indi-
vidual modalities (Oviatt, 1999). Later, the uniƤcation-based fusion engine of QĚĎĈĐSĊę was
extended with a statistical approach for selecting among multiple possible combinations of
speech and gesture based on determining the optimal weights for combining their posterior
probabilities (Wu et al., 1999). This hybrid, symbolic-statistical architecture achieved an even
more robust functioning, compared with the original approach alone (Wu et al., 1999, 2002;
Kaiser and Cohen, 2002; Kaiser et al., 2003) by complementing the temporal and semantic
constraints with a statistical evaluation.

PėĔČėĊĘĘ ęĔ
UēĎċĎĈĆęĎĔē-
BĆĘĊĉ PĆėĘĎēČ

UniƤcation-based approaches are, on the one hand, based on a well-understood formalism
and suited for elementary tasks, but, on the other hand, rather inƪexible since they solely rely
on the uniƤcation operation of single feature structures (Johnston, 1998b). This operation
is, however, only able to combine two partial meanings, such as a single spoken element and
a single gesture, to a multi-modal combination. In order to account for a broader range of
multi-modal expressions, and to be applicable for more complex problems, such as the in-
cremental recognition and fusion of variable event constellations, more general uniƤcation-
based parsing approaches have been pursued (Johnston, 1998a,b; Johnston and Bangalore,
2000; Giuliani and Knoll, 2007; Bangalore and Johnston, 2009). Therefore, the systems based
on the basic uniƤcation operation have been augmented with constraint-based reasoning
to operate declaratively in a multi-modal integrator often using a uniƤcation-based multi-
modal chart-parser (Earley, 1970) that has been fed with a multi-modal grammar (Johnston,
1998a,b). There exists a wide variety of constraint- and uniƤcation-based multi-modal pars-
ing approaches with rather speciƤc parsing methodologies (Johnston, 1998b; Holzapfel et al.,
2004; Stiefelhagen et al., 2004; Sun et al., 2007, 2009; Lukas et al., 2010).

DĎĘĈĚĘĘĎĔē Ĕċ
UēĎċĎĈĆęĎĔē-
BĆĘĊĉ FĚĘĎĔē

Multi-modal fusion engines that rely on the uniƤcation and overlay of feature structures or
uniƤcation- and constraint-based parsing methods have a successful history in multi-modal
interfaces and interactive systems with social agents. Their generic nature enables them to
integrate the parallel use of arbitrary multi-modal inputs based on semantic and temporal
constraints. Thus, they can handle versatile multi-modal request and command styles, how-
ever, they do not scale well. On the one hand, the simple variant can only combine two
inputs. On the other hand, the parsing approaches usually suơer from great computational
complexity. Finally, the speciƤcation of uniƤcation-based multi-modal grammars is a cum-
bersome and laborious process. Consequently, while multi-modal parsers are theoretically
able to return partial parsing results, the incremental interleaving of input processing and
output generation remains hardly achievable with these approaches.

Rule-Based Approaches

FĊĆęĚėĊĘ Ĕċ
RĚđĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

Several of the aforementioned frame- and uniƤcation-based parsing approaches can be con-
sidered as special cases of rule-based systems. They use the same meaning representation
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frameworks and production rules of a multi-modal grammar or combination rules within a
frame-merging algorithm. However, most of them solely rely on a single kind of constraint-
based uniƤcation or merging operation for the production of combined or interim results.
Other rule-based approaches try to achieve more ƪexibility by permitting an author to de-
Ƥne his own, more speciƤc, but again considerably idiosyncratic, integration rules relying on
a rule-based programming system, such as CđĎĕĘ (Riley, 1997) or JĊĘĘ (Friedman-Hill, 2003),
or logic inference engines, like PėĔđĔČ and its derivatives (Clocksin and Mellish, 1981; Wiele-
maker et al., 2012). Thus, they oơer more possibilities of semantic and temporal reasoning
as well as the integration of application knowledge into the fusion process.

EĝĆĒĕđĊĘ Ĕċ
RĚđĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

An early fusion approach which employs a common, symbolic data representation scheme
and production rule-based integration mechanism, based on the CđĎĕĘ system (Riley, 1997),
was introduced by Sowa et al. (1999). A drawback of their approach is the growth of the com-
putational complexity with the number of symbols that are available during rule matching.
To cope with this problem, they use a time window approach in order to keep the symbol
memory small and eƥcient. The relevance of a symbol decreases with time such that the fu-
sion engine may retract it after some retention period. The time span of preserving symbols
depends on their semantic content, such that more complex objects, that tend to be sparse
compared with low-level symbols, will last over a longer time span. This concept of temporal
persistence of an input or behavior can be found in the garbage collection mechanism of the
approach proposed in this thesis.

Holzapfel et al. (2004) present a rule-based multi-modal fusion approach similar to the above
mentioned multi-chart parsers (Johnston, 1998b, 2000). Input events are asynchronously
parsed into a semantic representation based on typed feature structures and added to an
input set. A constraint-based parsing is performed on the input set in order to merge the
diơerent input streams. The parsing algorithm uses a special kind of multi-modal fusion rules
to determine which inputs can be merged, added or removed, and instructions to construct
the merge result. The parser supports a set of predeƤned constraint types, such as content-
wise, time, and modality constraints. Additional constraints can be deƤned by a rule-writing
author. The approach has, for example, been used to resolve ambiguities of the user’s speech
using gestures and head poses in human-robot interaction (Stiefelhagen et al., 2004).

The MĚĉėĆ system (Hoste et al., 2011) uses a rule-based approach to combine low-level data
processing and high-level semantic inference. Multi-modal input is represented as semantic
frames and stored in a common fact base. A rule-based system is used to extract and com-
bine features from these frames at diơerent abstraction levels. The language supports var-
ious constraints concerning the attributes, probabilities, and temporal properties of inputs
from multiple users. A similar approach is pursued by the HĊĕčĆĎĘTK framework (Dumas et
al., 2009b, 2014, 2009a) which can be considered as uniƤed frame-based approach to multi-
modal fusion and interaction management. It uses SMUIML (Dumas et al., 2010) to deƤne
XML-encoded rules that determine the temporal and semantic conditions for multi-modal
fusion as well as the creation of output actions and dialog-context transitions. Both tools’
capability to integrate input from diơerent abstraction levels and processing stages has been
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adopted by the approach proposed in this thesis.

Another rule-based multi-modal fusion approach is pursued in the PATE system which is
used in the CĔĒĎĈ application (Pƪeger, 2004). It uses a production rule system to be able to
perform a context-based multi-modal integration by incorporating the current dialog state
into the multi-modal fusion process. This, for example, allows comparing recognition results
to the expectations anticipated by the current dialog state instead of solely relying on conƤ-
dence values. Incoming data is stored as typed feature structures in a working memory and is
assigned some weight which fades out with time. The fusion relies on uniƤcation and overlay
operations on feature structures (Alexandersson and Becker, 2003) that determine the con-
sistency of two data items and combine them if they are consistent. A uniform formalism
and working memory for multi-modal input and application knowledge is likewise found in
the approach proposed in this thesis. It allows the context-based, incremental fusion and
Ƥne-grained interleaving with the interaction and dialog management.

State-Based Approaches

SĎĒĕđĊ
SęĆęĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

The early state-based approaches have been developed because, one the one hand, they allow
a light-weight implementation with low computational needs, on the other hand, they are
easier understood and allow a rapid prototyping of multi-modal integration models. They
use Ƥnite-state machines that are traversed as the user produces multi-modal input. States
represent partially parsed results and transitions are taken when a certain symbolic input
from a speciƤc modality is received. Some approaches produce the semantics of the parsed
input step-wise, while taking transitions, others produce them as a whole when reaching a
Ƥnal state. The declaration of a state-based model can be performed in a purely graphical way
by drawing the labeled state transition diagram or declaratively in a multi-modal grammar
from which it is then generated. Furthermore, they have the advantage that they can be
generated from textual descriptions and be learned from observations.

A well-known Ƥnite-state-based approach for multi-modal recognition was presented by John-
ston and Bangalore (2000) and used in theMatch applications (Johnston et al., 2002; Johnston
and Bangalore, 2004) which are mobile, multi-modal city information systems that allow the
combined use of handwritten pen input and freehand gestures. It relies on the compila-
tion of a multi-modal, context-free grammar into a single, multi-tape, Ƥnite-state automaton
(Mohri et al., 2002) which simultaneously parses input latices from multiple modalities and
combines their content into a semantic representation, on the ƪy (Johnston and Bangalore,
2001, 2005). At that time, the automaton was compiled into a cascade of Ƥnite-state trans-
ducers which can compose directly with lattices from speech and gesture recognition and are
usable with available Ƥnite-state processing tools (Bangalore and Johnston, 2000, 2009).

Also Bourguet (2002) proposed Ƥnite-state machines as a simple method for modeling multi-
modal fusion and provides the appropriate rapid prototyping solution with the graphical ed-
itor IMBĚĎđĉĊė and the interpreter MEēČĎēĊ (Bourguet, 2003a,b, 2004). She was among the
Ƥrst to discuss the possibility to automatically learn Ƥnite-state fusion models from observa-
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tions of users (Bourguet, 2006). These should freely produce input sequences with the aim
to activate speciƤc functions of the application which are then used to learn Ƥnite-state ma-
chines accepting these inputs. Furthermore, she studies the option of generating Ƥnite-state
fusion models from textual use case descriptions of possible interaction sequences (Chang
and Bourguet, 2008; Bourguet and Chang, 2008).

DĎĘĈĚĘĘĎĔē Ĕċ
SęĆęĊ-BĆĘĊĉ
MĊęčĔĉĘ

In contrast to the laborious and computationally complex uniƤcation-based, multi-modal
parsing approaches, the simple state-based approaches are easier to understand and have
lower computational needs. While earlier approaches separate unimodal parsing and multi-
modal integration into consecutive processing stages, they can step-wise integrate and un-
derstand parallel multi-modal inputs within a single user turn as one stage. However, in-
stead of a uniform representation format, they use rather idiosyncratic symbolic data and
workarounds to handle multi-dimensional data or a growing number of possible user inputs.
Without working memory, they do not take account of modality-speciƤc processing delays.
Instead, they handle input events in the order they arrive in a speciƤc modality during a sin-
gle turn. They use simplistic timeout mechanisms to determine which gestures and speech
inputs should be considered part of the same turn. They do not enable us to specify temporal
or quantiƤcation constraints or to integrate application knowledge into the fusion process.
Even though being state-based, they are not able to incrementally interleave behavior under-
standing, knowledge reasoning, and response generation.

AĉěĆēĈĊĉ
SęĆęĊ-BĆĘĊĉ
AĕĕėĔĆĈčĊĘ

More advanced state-based modeling approaches were developed to meet the particular needs
of interactive applications in virtual environments and physically situated joint activities with
social agents. They consist of states and transitions that be accompanied with the generation
of actions or events and can be augmented with guarding temporal and semantic constraints
to control if a transition may be taken or not. States include local memory and a hierarchical
structure can be created using nested state-machines in states or transitions. Thus, in addi-
tion to model the integration patterns of multi-modal input, they particularly allow modeling
the interaction ƪow and the application context. They can be used for the parallel processing
of incoming percepts on varying level of granularity, the partial and incremental parse execu-
tion and the latching into real-time applications. They support the multi-modal integration
based on the inputs’ semantic content, information from the application context level as well
as parameterizable temporal and semantic relations. They allow the combination of discrete
interactions which will be executed in one atomic operation as well as continuous interac-
tions, such as gesture streams produced by kine-mimic gestures that takes over and control
the interaction.

Such advanced state-based modeling approaches use, for example, special variants of Petri
nets (Murata, 1989; Genrich, 1991) or specially designed state transition network (Wasser-
man, 1985; Hudson and Newell, 1992) for multi-modal fusion. For example, Navarre et al.
(2005) and Ladry et al. (2009) describe a Petri-net-based approach, called ICOs, to model
multi-modal fusion operations using high level Petri-nets (Murata, 1989; Genrich, 1991). A
similar approach uses a Temporal Augmented Transition Network (ęATN) (Latoschik, 2001,
2002, 2005). These advanced state-based approaches based with ęATNs or ICOs cope with
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issues such as, hierarchy, parallelism, synchronization, and incremental fusion of behaviors
and action. They are consequently able to cope with discrete and continuous interaction and
allow incremental parsings and interleaving of individual recognition and generation steps.
They are suited to express temporal and semantic relations while being able to incrementally
recognize behavioral patterns. However, so far, none of the presented advanced state-based
fusion engines is able to evaluate quantiƤcation constraints as our proposed approach with
the BFQL. Furthermore, they again use rather idiosyncratic, non-declarative expression lan-
guages to label states and transitions while the approach in this thesis relies on well-deƤned,
declarative Ƥrst- and higher order logic.

4.2.3 Creating Behavior and Dialog Content

CĔĒĕĆėĎĘĔē
CėĎęĊėĎĔē
CĆęĆđĔČ

As described in Chapters 1 and 3, a description language for the speciƤcation of plausible and
competent, multi-modal behavior and dialog content of a social agent must satisfy several cri-
teria. First, it must allow specifying versatile compositions of behavior, ranging from individ-
ual system actions and unimodal cues over complex behavioral patterns to whole well-aligned
multi-modal utterances. Second, it has to enable the ƪexible integration of knowledge into
the agent’s behaviors and dialog lines. Finally, it must support the automatic variability of
behavior and linguistic variations. Related work has proposed diơerent behavior description
and speciƤcation languages as reusable representations of social agents’ multi-modal behav-
ior and dialog content on diơerent abstraction levels. They range from high-level meaning
representations to low-level, lexical descriptions of behaviors, their synchronization points,
and expressivity parameters, such as spatial and temporal extent, repetitivity, power, or ƪu-
idity (Pelachaud, 2005). Some have also the role of communication protocols to separate and
interface software modules that implement diơerent functions in behavior creation, such as
planning and realization engines (Kopp et al., 2006). Most relevant related work, however,
focuses on multi-modal behavior descriptions as they are provided by a behavior generation
and handed over to a behavior realization module (Kipp et al., 2010).

BĊčĆěĎĔė
GĊēĊėĆęĎĔē
ĜĎęč BEAT

An early approach to the generation of social agents’ behavior is the Behavior Expression
Animation Toolkit (BEAT) (Cassell et al., 2004). It aims at the separation of verbal behavior
speciƤcation and the automated generation of co-verbal behavior. InBEAT, a human operator
provides the typed text input that the agent is to speak. The resulting multi-modal utterance
is represented in a XML-based format that can be processed by diơerent animation engines.
The co-verbal behaviors are aligned to the spoken utterance relying on rules derived from
communication and behavior research. The system’s output is a synthesized speech stream
together with a number of synchronized nonverbal behaviors. The rule set may be extended
with author-deƤned policies to adapt the approach to application-speciƤc needs and achieve
behavioral variations. The integration of application knowledge into the dialog content must
have been done before the co-verbal behavior generation.

SĊĒĆēęĎĈ
MĔĉĊđĎēČ

ĜĎęč APML

The Aơective Presentation Markup Language (APML) (Carolis et al., 2004; Pelachaud, 2005)
is an example of a language that speciƤes an agent’s behavior at the meaning level. It uses a
taxonomy of communicative functions, deƤned as meaning-signal pairs, (Poggi et al., 2000),
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such as information about the agent’s belief, goal, aơective or mental state. A meaning may be
communicated with diơerent signals and a signal may be used to convey diơerent meanings,
depending on the agent’s personality, culture, or other factors. For example, an emphasis
meaning may be expressed with a raise eyebrow, a head nod, or a combination of both signals.
Vice versa, a raised eyebrow may be a sign of surprise, emphasis, or suggestion and a smile
can express joy or be back-channel cue. The meaning-signal pairs of APML allow a lot of
behavioral variation but APML is not laid out to integrate knowledge.

DĊĘĈėĎęĎěĊ
AĕĕėĔĆĈč
ĜĎęč MURML

The Multimodal Utterance Representation Markup Language (MURML) is a constraint-based
description language for an agent’s nonverbal behaviors and their co-verbal alignment (Kopp
et al., 2003; Kopp and Wachsmuth, 2004). Each MURML speciƤcation contains a textual
speciƤcation of the verbal part of an agent’s the utterance including internal chunk borders
markings. These are associated with additional speciƤcations of para-verbal or nonverbal be-
haviors such as prosodic features, gestures, or facial animations. The cross-modal, temporal
alignment of speech with co-verbal behaviors, is deƤned in terms of absolute times, rela-
tive to the start of a chunk, or in co-occurrence with linguistic elements. Gestures and their
sub-movements, skeletal and morph target animations, and their synchronization points can
narrowly be controlled by deƤning spatial and temporal constraints. In contrast to the gen-
erative, meaning-based approaches of BEAT and APML, the rather descriptive MURML pro-
vides authors with explicit, Ƥne-grained control over the alignment and shaping of co-verbal
behaviors. It furthermore allows the parameterization of speciƤcations which can be used
for knowledge integration and variation.

HĞćėĎĉ
MĔĉĊđĎēČ
ĜĎęč SAIBA

A hybrid approach is deƤned in the SAIBA framework where the behavior generation hap-
pens in several processing stages, which are intent planning, behavior planning and behavior
realization (Kopp et al., 2006). In this, the FunctionalMarkup Language (FML) (Heylen et al.,
2008) is used to encode the communicative intent without referring to physical realization,
similar to BEAT or APML. Then the Behavior Markup Language (BML) speciƤes the verbal
utterance and nonverbal behaviors like gesture, posture and facial expression (Kopp et al.,
2006; Vilhjálmsson et al., 2007), similar to MURML. By deƤning an additional application
independent dictionary of behavior descriptions, called gesticon (Krenn and Pirker, 2004),
the language distinguishes between abstract behavior deƤnitions and concrete realizations.

Since languages like BML and MURML employ concepts like relative timing and lexical be-
havior descriptions, Heloir and Kipp (2010) argue that a number of low-level concepts should
be further moved from these languages to what they call the declarative animation layer on
an even lower level of abstraction. They justify the need for such an additional layer, as a
thin wrapper around the platform-speciƤc animation engine and below the higher-level be-
havior control layers, with abstracting away from implementation details while giving access
to the functionality of the engine (Kipp et al., 2010). An example for such an intermediate
representation which can directly be executed by the animation engine are the scripts used
in the EMBR Embodied Agents Realizer (EMBR) animation engine (Heloir and Kipp, 2009,
2010). They allow specifying gesturing, facial expressions, pose shifts, blushing, gaze control,
and autonomous behaviors like breathing and blinking of virtual characters. They also over-
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come the restriction of most BML realizers following a Ƥxed-timing, pre-scheduling approach
which is not ideally suited for event-driven, incremental behavior generation (Holroyd and
Rich, 2012). This shortcoming has, however, been overcome with extensions to BML, such
as BMLA, that allow the ƪuent, on-the-ƪy changes to ongoing behaviors in the respective
realizers (van Welbergen et al., 2012).

DĎĘĈĚĘĘĎĔē ƭ
CĔēĈđĚĘĎĔē

The rather descriptive approaches ofMURML and BML are closer to BFSL than the generative
method of BEAT or the meaning-based approach of APML. Since BML is designed to be au-
tomatically created, it doesn’t allow the template-based insertion of application knowledge
as BFSL and MURML. Like BFSL, many template-based approaches have variability as one
of their central design speciƤcations. So, template-based approaches are not less variable,
maintainable, and linguistically well-founded than generative approaches (van Deemter et
al., 2005) in general. Since templates in MURML and BFSL can be speciƤed by hand, they
might have advantages in some cases, for example, if no good linguistic rules are yet avail-
able in BEAT or sentences have no assignable meaning in APML. So, the manual description
of behaviors by a schooled and experienced expert with an approach like BFSL can improve
the quality of behavior and dialog content compared to a largely automated approach such as
BEAT or APML. It better supports peoples, such as designers, artists, screenwriters, or psy-
chologist, to exploit their professional expertise, experience and knowledge in their Ƥeld of
activity to create aesthetically attractive and highly goal-oriented behaviors and interactive
presentations (Stone and Lester, 1996).

The behavior synchronization mechanisms of BML and MURML allow a more Ƥne-grained
and precise intra-personal behavior alignment than those of BFSL. For example, the diơer-
ent phases of gestures can be precisely aligned with the agents gaze behaviors and individual
words in its spoken utterance using precisely timed synchronization points. In BFSL the start
and stop of a gaze behavior or animation can, however, only be linked to the points in time
at which the agent’s speech synthesis has just Ƥnished producing a word. However, the co-
verbal, intra-personal alignment method used by BFSL is certainly easier to understand and
quicker to apply by non-computer experts. Furthermore, while all of the aforementioned ap-
proached use a more or less cumbersome XML-based syntax, BFSL allows specifying behav-
ior with a much more intuitive style that comes very close to natural language descriptions.
The experiences with this kind of speciƤcation format have been positive throughout and it
has become evident that non-expert authors very easily understand and learn this behavior
speciƤcation format. Thus, BFSL certainly Ƥnds a good balance between expressiveness and
practicability.

If however necessary, the modeling framework in this thesis can easily be integrated with lan-
guages for the speciƤcation of behavior, emotion simulation and emotional speech synthesis
such as FML, BML and EĒĔęĎĔēML (Kopp et al., 2006; Vilhjálmsson et al., 2007; Heylen et
al., 2008; Kipp et al., 2010; Schröder et al., 2011). This can be achieved by implementing the
respective user-deƤned playback commands and integrating them in the modeling frame-
work proposed in this thesis. Furthermore, the same mechanism makes it possible to use
speciƤc commands that fall back on rules that can map abstract dialog acts from domain-
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and application-speciƤc dialog act taxonomies to utterances (Core and Allen, 1997; Bunt et
al., 2010; Bunt, 2011).

4.3 Summary and Conclusion

The literature survey in this chapter has shown that related work has not yet managed to de-
velop modeling frameworks that allow integrating and coordinating the behavioral aspects of
interpersonal coordination and grounding in a social agent’s behavior and interaction model.
The content-related comparison in Section 4.1 revealed that most related research focuses
on individual behavioral functions, such as engagement (Rich et al., 2010; Holroyd et al.,
2011; Hall et al., 2014), joint attention (Huang and Thomaz, 2011; Pfeiơer-Lessmann et al.,
2012; Mutlu et al., 2013), turn-taking (Lee et al., 2007; Mutlu et al., 2012; Andrist et al., 2014),
multi-modal disambiguation (Ros et al., 2010; Staudte and Crocker, 2011; Boucher et al., 2012),
interruption handling (Chao and Thomaz, 2011; Crook et al., 2012; Smith et al., 2015), or inti-
macy regulation (Bee et al., 2009, 2010b,c), in isolation, without regarding the interplay with
the other aspects and the dialog management. However, these functions represent only in-
dividual sub-aspects of interpersonal coordination and grounding. In fact, they are highly
interwoven such that they can not be treated in isolation but much rather call for a uniform
modeling approach. It is neither suƥcient to study behavioral functions in vitro, nor to sim-
ply develop isolated controllers for the individual behavioral aspects.

A more technical comparison in Section 4.2 showed that other work focuses on the devel-
opment of modeling frameworks that are generally suited for mastering one speciƤc model-
ing tasks. Among those are approaches to dialog and interaction modeling (Swartout et al.,
2006; Giuliani et al., 2008; Gandhe et al., 2009; Bohus and Rudnicky, 2009; Rich and Sidner,
2012; Kopp et al., 2014; Chao and Thomaz, 2016), multi-modal fusion (Johnston et al., 1997;
Johnston, 1998b; Pƪeger, 2004; Latoschik, 2005; Dumas et al., 2009a; Hoste et al., 2011), and
behavior speciƤcation (Cassell et al., 2004; Pelachaud, 2005; Kopp and Wachsmuth, 2004;
Kopp et al., 2006; Heloir and Kipp, 2010; van Welbergen et al., 2012). However, they do not
see the whole picture because the design and function of their modeling frameworks are not
oriented towards and have not been examined for their suitability to model any of the inter-
actional phenomena. Finally, the great majority of related work still investigates models for
social interactive behavior under over-controlled or over-simpliƤed laboratory conditions or
do not even study interactive behavior at all, but evaluate only non-interactive models that
do not react to the user’s behaviors. These experiments and the behavioral models they uti-
lize have often nothing to do with real social interactions and therefore have a very limited
reliability and signiƤcance.
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PĆėę III

CĔēĈĊĕęĎĔē Ćēĉ IđđĚĘęėĆęĎĔē

“Life is a lot like jazz—
it's best when you improvise.”

GĊĔėČĊ GĊėĘčĜĎē





CčĆĕęĊė 5

CĔēĈĊĕęĎĔē — DĊĘĎČēĎēČ ęčĊ
BĊčĆěĎĔė FđĔĜ MĔĉĊđĎēČ LĆēČĚĆČĊ

In Chapters 2 and 3, I demonstrated that the key challenge for a behavior and interaction
modeling approach is the control and coordination of the manifold behavioral functions and
processes that contribute to interpersonal coordination and grounding. In Chapter 3, I iden-
tiƤed the modeling tasks involved in facing this challenge, discussed the task-speciƤc re-
quirements, and brieƪy outlined my solution ideas from a language engineering perspective.
The literature review in Chapter 4 showed that related work does not present suƥciently ex-
pressive and practicable modeling approaches to face the aforementioned challenge because
they are either limited to speciƤc behavioral aspects or focused on individual modeling tasks.

In this chapter, I present the theoretical foundations and conceptual design of a novel model-
ing approach, going beyond the aforementioned related eơorts. It is the Ƥrst modeling frame-
work to combine the beneƤts of hierarchical and concurrent state-charts, logic programming
and a template-based behavior speciƤcation format for modeling the interactive behavior of
artiƤcially intelligent social agents. With respect to expressiveness, it goes beyond the state-
of-the-art because it masters the complex coordination and interplay of the many behavioral
aspects that contribute to interpersonal coordination and grounding. In this, it has a re-
markable practicability since it uses mostly declarative and visual modeling formalisms and
uniform representation formats. Exploiting the modeling principles of modularity and com-
positionality, it allows the iterative and distributed development which reduces the modeling
eơort and complexity while improving maintainability and reusability.

In the remainder of this chapter, in Section 5.1, I shortly discuss some considerations with
respect to the design guidelines and conditions for the modeling approach and present the
modeling approach architecture that has been chosen to tackle these design issues. In this,
I brieƪy justify the design decisions for the architecture and speciƤc modeling concepts, and
explain how they tackle particular challenges and requirements identiƤed in Chapter 3. Af-
terwards, in Sections 5.2 to 5.4, I present the individual components of the modeling ap-
proach in more detail by presenting the basic terminology, important deƤnitions, and the
key modeling concepts underlying the individual parts of the modeling framework.
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5.1 Guidelines, Conditions and Approach

I particularly payed attention to some important design issues during the development of
the modeling framework. These are design guidelines and design conditions that can be con-
sidered as meta-requirements with regard to expressiveness and practicability. They must
be considered since the framework is supposed to be used by authors from distinct user
groups, in various application areas, with very diơerent demands on the social agents’ behav-
ioral capabilities and diơerent requirements for the authors’ experience levels and modeling
strategies. Taking these design aspects into account, I developed the modeling framework’s
architecture and modeling concepts that best tackle the challenges described in Chapter 3.
I relied on a modular and compositional approach which falls back on specially designed,
domain-speciƤc, mainly visual and declarative, modeling languages and descriptive speciƤ-
cation languages that are suƥciently expressive but nevertheless highly practicable.

Design Guidelines

EĝĕėĊĘĘĎěĊ ƭ
PėĆĈęĎĈĆćđĊ

In general, the design decisions during the development of any domain-speciƤc modeling
framework are primarily determined by the intended use, which is essentially deƤned by the
application areas, the user groups, and the methodologies of this framework (van Deursen et
al., 2000). Each design usually tries to maximize the usability of the modeling approach with
regard to these determining factors in order to beneƤt from the resulting positive eơects on,
for example, productivity, quality, and acceptance (Hermans et al., 2009; Bariic et al., 2012).
The design of a usable modeling approach is often, but at least in this case, characterized
and driven by the ubiquitous, alleged opposition between its expressiveness and practica-
bility. That means, on the one hand, it needs to have quite suƥcient expressive power to
face the challenges and requirements in the respective application domain. On the other
hand, it still needs to be practicable enough, in the sense that it is easily comprehensible
and intuitively usable for the intended user groups and allows a quick feasibility from an
author’s initial, fairly rough idea to a sophisticated, executable, computational model. The
gap between expressiveness and practicability is becoming the larger the more complex the
application domain or modeling task and the less skilled and experienced the user group.

MĔĉĊđĎēČ
SęĊĕĘ ƭ SęĆČĊĘ

The development of a behavior and interaction model usually goes through several modeling
stages during which it is repeatedly drawn up, played through, reconsidered, eventually dis-
cussed with others, in parts discarded, and reassembled again, on diơerent abstraction levels.
This process reƪects the constant ascertainment and completion of the authors’ ideas and
imaginations, and is characterized by the constant reƤnement of the computational model
into a Ƥnal executable speciƤcation. This process initially starts with an often incomplete,
rough, and informal sketch of the model, or parts of it, which are frequently drawn or written
on paper or a white board. Then, the authors go over to the reƤnement of the model using
more and more formal or semi-formal, but, in any case, more detailed conceptual notations
to expresses the semantics of the model’s way of working in more detail until they have Ƥnally
realized the model in the syntax of an executable speciƤcation.
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Figure 5.1.1: A white board used to sketch a model with states, transitions, variables and events.

Figure 5.1.1 shows an example of such a white board drawing which was used to draft up
and discuss a social agent’s behavior in the very early development phase of an interactive
application with a physically situated joint activity, similar to the introductory scenario in
Section 1.2. Based on these drawings, the draft later developed into the Ƥnal behavior and
interaction model that was realized with the modeling approach developed in this thesis and
is illustrated in Chapter 6. Just like in this drawing, people often tend to sketch and discuss
their ideas of an interaction or dialog using some kind of state transition diagram consisting
of nested and parallel nodes (Figure 5.1.1 B⃝) and edges (Figure 5.1.1 F⃝). These are then labeled
with statements, constraints (Figure 5.1.1 E⃝), and behavior descriptions, formulated with
keywords or sentences in natural language, or some semi-formal speciƤcation format which
is usually close to natural language. They use named variables (Figure 5.1.1 A⃝) to represent
instances and entities in the model and recursive container structures (Figure 5.1.1 C⃝) as
representation format for more complex data. Finally, they use diơerent kinds of lines and
arrows connecting parts of the model that exchange events or signals (Figure 5.1.1 D⃝).

SĞēęĆĈęĎĈ
CđĔĘĊēĊĘĘ
ƭ NĆęĚėĆđ
LĆēČĚĆČĊ

Allowing for a quick and intuitive realization of a model from an initial sketch to the Ƥ-
nal executable speciƤcation improves the usability of a modeling approach. Therefore, it
is beneƤcial if the used modeling language and intermediate conceptual representations in
the aforementioned development stages can easily be transformed to each other. This can
be achieved by ensuring the syntactic closeness to each other and, in particular, the initial
sketch. Furthermore, many descriptions in the early development phase of a behavior and
interaction model are intuitively made in natural language. For example, people often for-
mulate integration and fusion constraints or the actions and behaviors that the agent has to
perform in natural language, similar to stage directions in a movie script. Therefore, as a spe-
cial case of syntactic closeness, choosing speciƤcation and modeling languages that closely
resemble the use of natural language further improves the intuitiveness of the approach.
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Design Conditions

It is now clear that the main design guideline for the modeling approach in this thesis is to
achieve practicability by having modeling and speciƤcation languages syntactically close to
natural language and keeping the intermediate representations from the sketch to the Ƥnal
executable model syntactically close to each other. Besides this general guideline for the
design of the modeling approach, some additional design conditions, with regard to the users’
experience levels and modeling strategies, have been considered in order to further improve
practicability by increasing productivity, eơectiveness, and acceptance of the approach.

FĆĈĎđĎęĆęĊ
IęĊėĆęĎěĊ

DĊěĊđĔĕĒĊēę

In order to achieve high quality and productivity, an author must be allowed to pursue diơer-
ent modeling strategies during the development of a model. One the one hand, he must be
able to quickly implement a basic behavior and interaction model in order to test his ideas as
well as to try and discard parts of the model. On the other hand, the model must be iteratively
reƤned and qualitatively improved to a more complex and sophisticated behavior and inter-
action model. In order to develop rather simple models in the initial rapid prototyping phase,
an author must be able to rely on predeƤned building-blocks for the description of speciƤc
behaviors, such as prefabricated animations or prescripted behavior scripts, as well as input
processing functionalities, such as predeƤned fusion or event signaling and consumption
operators. On the other hand, the author must be able to deƤne user-deƤned constraints,
application-speciƤc data structures, and behavior blocks in order to create the more evolved
and enhanced models in a later sophistication phase of a model’s implementation.

CĔěĊė LĊěĊđĘ
Ĕċ EĝĕĊėĎĊēĈĊ

The modeling approach must be accessible and usable by experienced and non-expert users.
Many related frame-, rule-, or plan-based modeling approaches for behavior and interaction
modeling require a substantial degree of expert knowledge and programming skills in order
to develop reasonably decent behavior and interaction models. For that reason, they are ac-
tually unserviceable for non-computer experts with little programming experience, such as
artists and screenwriters, or behavioral psychologists and sociologists, that want to craft in-
teractive applications with virtual characters or social robots. In order to exploit the expert
knowledge of these inexperienced authors in the area of games, Ƥlm, theater, and psychology,
the modeling technology must be easily accessible and learnable. While these inexperienced
user groups might therefore prefer to have a restricted and less complicated set of modeling
concepts, the more experienced authors might prefer to use much more complex modeling
features that could also provide more expressive power as well as more possibilities to con-
Ƥgure the sensor and plug-in setup of the system for the target application.

SĚĕĕĔėę
DĎĘęėĎćĚęĊĉ

DĊěĊđĔĕĒĊēę

Some behavior and interaction models might become quite complex and diƥcult to handle
for a single author, but, instead, call for the division of the modeling eơorts among several
shoulders. So, the modeling framework should provide the possibility to model individual
parts of the model or approach individual tasks mainly in isolation by distributing them
among multiple authors. In this, the individual modeling tasks or aspects can be undertaken
by people having the respective expert knowledge, such as psychologists, artists, or com-
puter experts. Exploiting the respective expert knowledge of several authors and dividing
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the modeling eơort across several shoulders then helps to increase productivity, eƥciency,
and quality. So, from an author’s perspective the modeling framework must allow both, a
centralized, that means single-author-oriented modeling approach as well as a distributed,
multi-author-oriented modeling method. From the agents’ perspective, the authoring tool
must support an author-centric approach used for establishing a centralized control for all
agents, as well as an agent-centric approach, aiming at modeling agents with autonomy.

Design Approach

MĔĉĊđĎēČ
LĆēČĚĆČĊ
EēĘĊĒćđĊ

Design and conception of the modeling framework in this thesis follow the above described
guidelines and conditions. To perform the modeling tasks and meet their task-speciƤc re-
quirements, identiƤed in Chapter 3, I developed theBehavior FlowModeling Language (BFML).
This is an ensemble of domain-speciƤc modeling, scripting, speciƤcation and programming
languages, each of which fulƤlls a speciƤc function in the overall behavior and interaction
model of a social agent. Through their eơective interaction, each of these languages is mak-
ing a signiƤcant contribution to the naturalness and credibility of a social agent’s interactive
behavior. The individual ensemble members primarily rely on visual and declarative model-
ing formalisms and textual scripting methods to meet the design guidelines and conditions
discussed above. The considerations and decisions leading to their development, the rela-
tions among them, and their underlying programming paradigms and modeling concepts are
described in more detail in Sections 5.2 to 5.4.
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Figure 5.1.2: The architecture of the BFML modeling language ensemble developed in this thesis.

Figure 5.1.2 depicts the basic architecture of the BFML ensemble with respect to the interre-
lations and dependencies between the individual languages of the ensemble. The diagram
shows that the BFML divides the modeling challenge among three rather independent and
isolated languages each of which is responsible for one of the individual modeling subtasks
identiƤed in Chapter 3. The resulting parts of the model, created with these languages, are
combined to create the Ƥnal computational behavior and interaction model by using a fourth
glue language. This modular and compositional nature of the modeling approach has been
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chosen because it eơectively facilitates the iterative prototyping and the distributed develop-
ment and, thus, the creation of clearly structured, easily maintainable, and better reusable
computational behavior and interaction models:

Behavior Flow Script Language
The Behavior Flow Script Language (BFSL) is a declarative, template-based, textual be-
havior description and speciƤcation language used for creating social agents’ expressive
and credible multi-modal behavior and dialog content (Figure 5.1.2 C⃝). It can be used for
the hybrid creation of knowledge-informed and manually scripted speciƤcations of be-
havioral activities, such as gaze, gestures, facial expressions, multi-modal utterances, and
whole scene performances that resemble parts of a screenplay or movie. With its easy,
descriptive syntax, close to natural language, the BFSL is very intuitive to use and follows
the aforementioned design guidelines and conditions (Gebhard et al., 2003a, 2012).

Behavior FlowQuery Language
The Behavior Flow Query Language (BFQL) is a largely declarative, and in parts proce-
dural, logic calculus used for processing user input and reasoning on context knowledge
(Figure 5.1.2 D⃝). It is realized as an embedded, domain-speciƤc language, consisting of
facts and rules in PėĔđĔČ (Kowalski, 1974, 1979). It is mainly used for multi-modal fusion
and integration, context and domain knowledge reasoning, and inter-process commu-
nication. It fulƤlls the design guidelines because it allows formulating constraints and
operations in Ƥrst- and higher-order logic (Naish, 1996), which has a long, successful his-
tory in the description of syntax and semantics of natural language (Barwise and Cooper,
1981; Pereira, 1983b; Pereira and Shieber, 1987; Montague, 1988).

Behavior Flow State-Charts
The dialog ƪow as well as behavior and interaction logic are visually modeled with a
specially designed, hierarchical and concurrent state-chart variant, called Behavior Flow
State-Charts (BFSCs) (Figure 5.1.2 A⃝). Much of the literature agrees that states, transi-
tions, and events are a priori an intuitive and natural method for describing the dynamic
behavior of complex reactive and interactive systems (Harel, 1987), such as the behavior
and interaction models of social agents. In addition, state transition diagrams are nat-
urally used to sketch ideas and communicate with each other using drawings, as shown
in Figure 5.1.1, while they also underlie many executable speciƤcation formats.

Behavior Flow Glue Language
The individual parts of the models, that have been created with the aforementioned lan-
guages, are Ƥnally connected to a single combined computational behavior and inter-
action model using an easily comprehensible, imperative, glue language called Behavior
Flow Glue Language (BFGL) (Figure 5.1.2 B⃝). Typically, states and transitions of BFSCs
contain BFGL statements or transition guards that evaluate BFQL queries and play back
BFSL speciƤcations. The BFGL is the only language of the ensemble which is not declar-
ative or visual, but, rather resembles a subset of a typical general purpose programming
or scripting language (Ousterhout, 1998) and has, as such, been kept simple and focused.
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5.2 Creating Behavior and Dialog Content

BĊčĆěĎĔė
FđĔĜ SĈėĎĕę
LĆēČĚĆČĊ

As identiƤed in Section 3.4, a key modeling task is the creation of expressive and natural
multi-modal behavior as well as credible and competent dialog content. The BFML meets
this task with the domain-speciƤc, declarative and template-based Behavior Flow Script Lan-
guage (BFSL), a signiƤcantly simpler behavior speciƤcation method than the well-known,
practically standard approaches (Kopp et al., 2006; Vilhjálmsson et al., 2007; Heylen et al.,
2008; Kipp et al., 2010; Schröder et al., 2011) which are comparatively rather unhandy and
complicated to learn and use for non-experts, such as psychologist, artists, or students. It is
a further development of an earlier textual speciƤcation format for the multi-modal behav-
ior and dialog content of embodied conversational agents (Gebhard et al., 2003a) that has
constantly be extended and adjusted during the course of this thesis. The BFSL oơers a ver-
satile and intuitive method for the textual speciƤcation of variable, expressive, and credible
multi-modal behavior and dialog content in an easily understandable rapid prototyping way.

5.2.1 Behavioral Activity SpeciƤcation

BĊčĆěĎĔėĆđ
AĈęĎěĎęĞ
SĕĊĈĎċĎĈĆęĎĔē

The BFSL uses behavioral activities for the ƪexible, intuitive, and variable textual speciƤcation
of social agents’ multi-modal expressive behavior and dialog content. Its easily readable and
comprehensible syntax allows the use of various types and ƪavors of behavioral activities that
diơer in terms of the complexity of the behavior they describe, the context in which they are
used, and the way how they are scheduled and executed. Behavioral activities in BFSL must
in no case be confused with behavior speciƤcation approaches that solely rely on strictly
manually scripted and fully planed ahead content. Instead, they have to be understood as
templates that sketch out the structure and operational framework for the description and
variation of the agents’ behavior. They allow a hybrid speciƤcation of multi-modal behavior
and dialog content because they can contain both predeƤned contents and variable parts that
can be inferred from application-knowledge and modiƤed at runtime.

Activity DeƤnition

AĈęĎĔē
AĈęĎěĎęĞ
DĊċĎēĎęĎĔē

The most basic type of behavioral activity is referred to as action activity and is mainly used
to specify individual nonverbal behaviors performed by an actor in a single modality, such
as simple motor movements, gestures or animations, body postures or movements, single
gaze cues or head movements, or facial expressions. In addition, an action activity can be
used to deƤne the execution of an application- or device-speciƤc command, for example, an
event in an additional graphical user interface or interaction device, such as a surface table,
tablet, or smartphone. Finally, it can be used for the execution of commands in the respective
agent platform that do not result in a directly observable expressive behavior of the agent,
such as, for example, camera movements in the virtual environment of a graphics engine or
conƤguration commands for the text-to-speech synthesizer of a robot platform.

Figure 5.2.1 shows the EBNF (Backus et al., 1963; Wirth, 1977) syntax diagram of an action
activity. An action activity’s syntax is easily readable and comprehensible and its meaning is
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action_actor 

action_name feature_name feature_value 

: 

= 

Figure 5.2.1: The syntax of an action activity specifying an actor and action as well as a feature list.

usually rather self explanatory. An action activity consists of an actor identiƤer which refers
to the unique name of the agent, entity, or device that is supposed to perform the behavior or
action. The actor name is always followed by a colon character and a mandatory action iden-
tiƤer which describes the name of the behavior or modality in which the behavior or action
has to be performed. Finally, the actor and action identiƤers are followed by an optional list
of action features which are key-value pairs consisting of a feature name and a feature value,
that are used to parameterize and conƤgure the execution of an action, such as, for example,
the number of repetitions or the duration of a behavior, or other action-speciƤc properties.
The names of actors and actions as well as the possible feature names and attribute values
that are supported by an individual behavioral activity, generally depend on the command
interface of the respective virtual character animation engine or motor control unit of the
robot platform. Similar to related behavior speciƤcation approaches, discussed in Chapter 4,
BFSL can use a gesticon (Pelachaud, 2005) to map action and feature names to the platform-
speciƤc commands. The Interpreter Runtime Environment (IRE) must then look up to the
gesticon and replace these identiƤers when executing an activity.

A⃝ Charly : look target=Marley
B⃝ Charly : smile intensity=0.5 duration=2.0
C⃝ Charly : tilt direction=right angle=20.0

Figure 5.2.2: Some examples of action activities that specify nonverbal behaviors of the agent Charly.

Figure 5.2.2 shows some exemplary action activities that specify nonverbal behaviors of the
agent Charly. The Ƥrst activity deƤnes a gaze behavior which causes that Charly looks at a
speciƤc target named Marley (Figure 5.2.2 A⃝). The second one deƤnes a facial expression
and determines that Charly has to smile with a moderate intensity for a time period of two
seconds (Figure 5.2.2 B⃝). The third activity deƤnes a head movement which causes that
Charly tilts his head to the right side for an angle of twenty degrees (Figure 5.2.2 C⃝).

A⃝ Camera : move x=-10.0 y=15.0 z=25.0
B⃝ Surface : show id=2 x=120 y=340 w=50 h=100

Figure 5.2.3: Examples of action activities that execute application- and device-speciƤc commands.
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Figure 5.2.3 shows some examples of action activities that specify application- and platform
speciƤc actions. The Ƥrst activity represents a command that speciƤes that the camera has to
move to a particular position that is given in tree-dimensional world coordinates of a virtual
world (Figure 5.2.3 A⃝). The second activity deƤnes a command which causes that an object,
for example a photo, with a speciƤc identiƤer, in this case the number 2, has to be displayed
at a particular position and in a certain size on the screen of a surface table (Figure 5.2.3 B⃝).

SęĆēĉĆđĔēĊ
ƭ NĊĘęĊĉ
AĈęĎěĎęĎĊĘ

An action activity may be used in two diơerent contexts that impose slightly diơerent syn-
tactical requirements. First, it can be used as a standalone action activity if it is used alone,
as shown in Figures 5.2.2 and 5.2.3. Second, it can be used as a nested action activity when
it represents only a part of an enclosing behavioral activity, such as a multi-modal utterance
or scene activity. Nested action activities are speciƤed just as their standalone counterparts
with the exception that they are additionally enclosed in square brackets ([, ]) in order to de-
limit their speciƤcation from the enclosing activity. While a standalone action activity always
requires an actor, in a nested action activity, the actor name is only an optional argument. If
no actor name is speciƤed, then the actor of the enclosing activity, for example, the speaker
of an utterance activity or a turn of a scene activity, is implicitly taken by the IRE as the actor
of the nested action activity. The actor of a nested action activity must not be the same as the
one of the enclosing activity. This allows co-verbally aligning one actor’s nonverbal behaviors
with another agent’s spoken words and actions in a multi-modal utterance.

spoken_utterance_word : action_actor punctuation 

action_activity [ ] 

prosodic_activity < > 

Figure 5.2.4: The syntax of an utterance activity with an actor, the content, and a punctuation mark.

UęęĊėĆēĈĊ
AĈęĎěĎęĞ
DĊċĎēĎęĎĔē

More complex behaviors than a simple unimodal behavior or an individual action can be
speciƤed with an utterance activity. Utterance activities can be used to specify unimodal
verbal statements as well as behavioral patterns and multi-modal utterances. As shown in
Figure 5.2.4, just like an action activity, an utterance activity consists of a mandatory ac-
tor identiƤer followed by a colon character and the multi-modal dialog line of the actor as a
sequence of spoken words, nested actions, and prosodic activities, which is terminated with
a punctuation mark. In a multi-modal utterance the interleaving of the individual spoken
words with nested action and prosodic activities deƤnes the temporal alignment of the pos-
sible actors’ verbal statements with their accompanying co-verbal behaviors and actions.

Figure 5.2.5 shows some examples of multi-modal utterance activities of the agent Charly
containing nested action activities. The Ƥrst activity speciƤes that Charly has to say the sen-
tence “Shall I tell you about that?” while, at the same time, he Ƥrst looks at a photo on the
surface table and then, shortly after, raises his eyebrows a bit (Figure 5.2.5 A⃝). The second
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A⃝ Charly : Shall I tell you about [look target=2] that [raisebrows intensity=0.3]?
B⃝ Charly : [look target=Marley] Would you like [tilt direction=right angle=20.0] tea?

Figure 5.2.5: Some examples of multi-modal utterance activities containing nested action activities.

activity deƤnes that Charly asks the question “Would you like tea?” while he simultaneously
Ƥrst looks at Marley and then tilts his head to the right (Figure 5.2.5 B⃝).

NĊĘęĊĉ
PėĔĘĔĉĎĈ
AĈęĎěĎęĎĊĘ

Besides nested action activities, a multi-modal utterance may additionally contain nested
prosodic activities. An example for such a nested prosodic activity is the pause activity which
is simply a pause in between two multi-modal utterances that has a certain duration provided
in milliseconds. Other prosodic activities can be used to modify the features and tone of
speaker’s voice, such as loudness, pitch, timbre, speech rate, and all other prosodic, and in
parts paralinguistic, features that can be customized on the text-to-speech synthesizer of
the respective agent or robot platform. A nested prosodic activity does not specify an actor
because it refers to the enclosing activity, but, consists of a mandatory action name followed
by an optional list of feature-value pairs and is always enclosed with angle brackets (<, >).

A⃝ Charly : Marley <pause duration=2000> should I get a cup of tea?
B⃝ Charly : <volume intensity=1.2> Would you like to have some tea?

Figure 5.2.6: Some examples of multi-modal utterance activities containing nested prosodic activities.

Figure 5.2.6 shows some examples of multi-modal utterance activities of the agent Charly
containing nested prosodic activities. The Ƥrst utterance activity speciƤes that the agent has
to say “Marley ...” followed by a pause of two seconds before continuing with “... should I get
a cup of tea?” (Figure 5.2.6 A⃝). The second utterance activity deƤnes that the agent says the
sentence “Would you like to have some tea?” with a louder voice than usual (Figure 5.2.6 B⃝).

utterance_word : action_actor punctuation 

action_activity [ ] 

verbal_activity < > 

scene_language scene scene_name \n 

\n \n 

A 

B 

Figure 5.2.7: The syntax of a scene activity with the scene header ( A⃝) and the scene body B⃝).

SĈĊēĊ
AĈęĎěĎęĞ

DĊċĎēĎęĎĔē

The most complex type of behavioral activity is a scene activity which can be used for the
speciƤcation of whole interactive performances consisting of sequences of multi-modal turns
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and utterances of multiple agents. A scene thus speciƤes the interleaving of the individual
agents’ verbal statements and stage directions for the co-verbal alignment of their nonverbal
behaviors and platform-speciƤc commands, such as gestures, postures, gaze behaviors, and
facial expressions. Scenes are speciƤed in an external textual scene script which resembles a
part of a screenplay or movie script. As shown in Figure 5.2.7, a scene speciƤcation is com-
posed of a scene header that must be terminated with a newline and a scene body that has
to be separated with a blank line from the following scene deƤnitions in the scene script. A
scene header always starts with the initial keyword scene which marks the deƤnition of a new
scene and is followed by the speciƤcation of the scene’s language with a valid language identi-
Ƥer, for example, en for English or de for German. The language speciƤcation is followed by a
single identiƤer that deƤnes the name of the scene followed by the terminating newline. The
body of the scene then contains a sequence of the individual agents’ turns each of which is
itself composed of a sequence of the respective agent’s multi-modal utterances. These multi-
modal utterances are deƤned just as utterance activities, that means, they contain the spoken
text of the respective agent interleaved with nested verbal and action activities.

A⃝ scene en welcome

B⃝
Charly : Hello [Reeti : look target=Marley] Marley!
Reeti : Yes, hi Marley <pause 2000> tell us, how are you today?

Figure 5.2.8: An example for the speciƤcation of a scene activity with the two agents Charly and Reeti.

Figure 5.2.8 shows an exemplary speciƤcation of a scene that deƤnes the behavior of the
agents Charly and Reeti during an interaction with the user Marley. The header of the scene
speciƤes that the language of the scene is English by using the language identiƤer en and
that the name of the scene is welcome (Figure 5.2.8 A⃝). The body of the scene speciƤes the
behavior of the two agents Charly and Reeti in a dialog during which they welcome the user
Marley (Figure 5.2.8 B⃝). In the Ƥrst turn, Charly says the sentence “Hello Marley!” while
Reeti starts looking at Marley. The second turn actually consists of four separate utterances
of Reeti, Ƥrst “Yes, ...”, then “... hi Marley”, followed by a pause of two seconds, then “... tell
us, ...” and, Ƥnally, “... how are you today?”.

Execution Policies

AĈęĎěĎęĞ
EĝĊĈĚęĎĔē
PĔđĎĈĎĊĘ

Behavioral activities are played back in separate activity worker threads of the IRE when call-
ing built-in BFGL commands from the BFSC. In this, a behavioral activity can be executed
by the IRE’s calling state-chart process with two diơerent activity execution policies. The
blocking policy causes that the calling process blocks in the BFGL statement until the activ-
ity worker thread has been terminated either by regularly Ƥnishing or being interrupted and
preemptively aborted. In order to realize the blocking policy, the animation engine or mo-
tor control of the agent or robot platform has to acknowledge the execution of animations,
motor movements, and speech synthesizing procedures via appropriate notiƤcation events
of a suitable communication protocol. On the other hand, an activity may be executed with
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a non-blocking policy such that the calling IRE process continues with the execution of the
next statements or outgoing transitions of the node while the behavioral activity is concur-
rently executed in the activity worker thread. This “Ƥre-and-forget” method does not require
any monitoring or notiƤcation protocol between the IRE and the agent or robot platform.

AĈęĎěĎęĞ
PđĆĞćĆĈĐ

CĔĒĒĆēĉĘ

The BFGL provides diơerent built-in playback commands for behavioral activities that syn-
tactically vary for the blocking and non-blocking execution policy. The syntax of the playback
commands includes an exclamation mark (!) to reƪect the imperative character of the state-
ment that is used to instruct one or more virtual characters or robots to perform a behavior
or action. An activity playback command always starts with an opening !− for the blocking,
or != for the non-blocking policy, and ends in both cases with a closing point (.).

A⃝ != Charly : nod repetitions=2 extent=1.0 .
B⃝ !− Charly : point target=2 duration=2.0 .

C⃝ !−
Charly : Shall I tell you about

[look target=2] that [raisebrows intensity=0.3]?
.

Figure 5.2.9: Some examples of blocking and non-blocking playback calls for diơerent activities.

Figure 5.2.9 shows some examples of blocking and non-blocking playback command calls for
diơerent standalone action and utterance activities of the agent Charly. The Ƥrst command
calls a non-blocking action activity which causes that Charly nods with his head two times
(Figure 5.2.9 A⃝). The second command calls a blocking action activity that lets Charly point
to a speciƤc photo for two seconds (Figure 5.2.9 B⃝). The last command calls a blocking
utterance activity that causes that Charly asks the question “Shall I tell you about that?” while
looking at an object and raising his eyebrows (Figure 5.2.9 C⃝).

SĈĊēĊ
AĈęĎěĎęĞ

EĝĊĈĚęĎĔē

In contrast to the playback of action and utterance activities, which are speciƤed inline, that
means, directly in the playback command statement of the BFGL within the BFSC, a scene
activity is called by referring to the name of a scene from an external scene script. The scene
script is structured like a screen or movie script and contains a sequence of scenes some of
which may even have the same identiƤer. Figure 5.2.10 shows an example of a scene activ-
ity playback call to the scene shown in Figure 5.2.8. The scene activity playback statement
contains the name of the scene enclosed by an opening !− and a closing point (.).

!− welcome .

Figure 5.2.10: An example of an activity playback command that executes the scene from Figure 5.2.8.

NĊĘęĊĉ
AĈęĎěĎęĞ

EĝĊĈĚęĎĔē

The verbal part of a multi-modal utterance, whether within an utterance activity or a turn of a
scene activity, must always be performed by the agent as a single, ƪuent, and coherent verbal
statement without any pauses. For that reason, all nested action activities within such a
multi-modal utterance are automatically executed with a non-blocking policy. Consequently,

114



5.2. Creating Behavior and Dialog Content

the thereby generated co-verbal behaviors and actions are always performed in parallel to the
spoken utterance without interrupting the text-to-speech synthesis process. However, this
might lead to situations in which the resulting animations and commands are temporary
overlapping or even conƪicting because they require the same resources, such as motors of
a robot’s limbs or animation targets of a virtual character. It is up to the animation engine
of the virtual character or the motor control of the robot platform to handle those overlaps
and resolve possible conƪicts, for example, by aborting a behavior in favor of another or by
blending and mixing behaviors with each other. Nested prosodic activities, in contrast, are
always executed with a blocking policy because they need to have an immediate eơect on the
speech synthesis. In particular, pauses split the enclosing verbal statement into two separate
parts that have to be individually synthesized by the text-to-speech system of the agent or
robot platform, one after the other. While the nested activities are non-blocking in the scope
of the enclosing utterance activity, they nevertheless belong to it such that the execution of
a multi-modal utterance as a whole is only Ƥnished as soon as all therein contained nested
activities have been terminated and the whole spoken part has been fully synthesized.

AĈęĎěĎęĞ
EĝĊĈĚęĎĔē
AćĔėęĎĔē

The BFGL Ƥnally provides a behavior abortion command to realize the preemptive abortion of
an agent’s behaviors and actions. In order to achieve this abortion, the agent platform must
be able to stop all motor movements, animations, and text-to-speech synthesis procedures
ahead of schedule. The resulting forced notiƤcations of the agent platform then release all
blocking playback calls in the BFSC that execute activities which exclusively contain behavior
speciƤcations of this agent. As shown in Figure 5.2.11, the abortion statement always starts
with an opening !∼ followed by the agent’s name and closes with a point (.).

!∼ Charly .

Figure 5.2.11: The command that is called to achieve the abortion of an agent’s current behavior.

5.2.2 Parameterization and Variation

With the BFSL, the challenge of the ƪexible integration of knowledge into the behavior and
dialog content of a social agent is faced with two diơerent mechanisms. On the one hand, an
author may use an inline value insertion method by referring to variables of the BFSC directly
within the speciƤcation of action and utterance activities. On the other hand, a scene activity
playback command may be extended with a list of substitution arguments for speciƤc place-
holder variables in a scene speciƤcation. Both methods represent an easily comprehensible
way to integrate context and application-speciƤc knowledge into the contents of an agent’s
actions, behaviors, and dialog lines. This method of manual insertion of variable content
is more ƪexible but also less generative and automated than approaches pursued by some
related behavior speciƤcation methods (Cassell et al., 2004; Carolis et al., 2004).
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Placeholder Variables

A scene speciƤcation may contain special placeholder variables which can be replaced with

PđĆĈĊčĔđĉĊė
VĆėĎĆćđĊ

SĚćĘęĎęĚęĎĔē

values that are handed over as arguments of a scene activity playback command, called from
the BFSC. Such placeholder variables are usually used to parameterize parts of an agent’s
verbal statements, for example, individual words of the spoken utterance, or feature values,
for example, the position of a gaze target, but can also be used to vary the name of the actor,
action, or a feature. The values that are used for their substitution may be literals of primitive
types, such as integral or ƪoating point numbers or string values, but are more often values
of state-chart variables that hold context knowledge retrieved in beforehand, for example,
using a BFQL query to the PėĔđĔČ fact base or calling a function on a plug-in module.

HĞćėĎĉ
CĔēęĊēę

DĊċĎēĎęĎĔē

The possibility to parameterize parts of a scene activity allows creating behavior speciƤca-
tions in a hybrid way between Ƥxed, authored content and variable, generated content. The
behavior speciƤed by the scene activity may, of course, still be manually scripted at large for
the purpose of rapid prototyping, however, it can additionally be enriched, in parts, with au-
tomatically generated content that has been generated by external reasoning modules from
context and domain knowledge and stored in the variables of the BFSC. This mechanism can
signiƤcantly contribute to the variation and competence of behavior and dialog content and,
thus, to a more vivid, variable, credible, and less repetitive behavior of the social agents.

A⃝
scene en welcome
Charly : Hello [Reeti : look target=$user] $user!
Reeti : Yes, hi $user <pause $time> tell us, how are you today?

B⃝ !− welcome user=UserName↓ time=2000 .

Figure 5.2.12: A scene deƤnition with placeholders ( A⃝) and a call to this scene with arguments ( B⃝).

Figure 5.2.12 shows an example of a scene that contains diơerent placeholder variables (Fig-
ure 5.2.12 A⃝) which are used to enrich the manually scripted content of the scene with vari-
able content handed over from the calling IRE process as arguments of the playback com-
mand (Figure 5.2.12 B⃝). The scene has basically the same function as the scene shown in
Figure 5.2.8 with the exception that the name of the user and the duration of the pause can
be variable. Therefore, the scene uses the placeholder variable $user as gaze target in the
nested action as well as name of the user in the sentences of the two agents. In addition, the
scene uses the variable $time as duration of the speech pause of the agent Reeti. The substi-
tutions for the placeholder variables are handed over as arguments of the playback command
in form of feature value list following the identiƤer of the scene. In the above example, the
placeholder variable $user is replaced with the value of the state-chart variable UserName
and the variable $time is replaced with the literal integer value 2000 (Figure 5.2.12 B⃝).
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Inline Value Insertion

Besides the use of the aforementioned placeholder variables in scene speciƤcations, another
method for the integration of domain and context knowledge into the agents’ behavior and
dialog content is the inline value insertion. This method directly uses the names of state-chart
variables in the BFGL playback statements for an action or utterance activity. The IRE then
replaces the variable names with their current values whenever executing such a playback
command in a node of the BFSC.

A⃝ !− Charly : point target=Target↓ duration=2.0 .
B⃝ !− Charly : This was your trip through Destination↓ in TravelDate↓! .

Figure 5.2.13: Some examples of inline value insertion when calling action and utterance activities.

Figure 5.2.13 shows some examples of the inline insertion of values when calling action and
utterance activities. The Ƥrst command calls an action activity that causes the agent named
Charly to point to a certain object on the surface table, whose name is represented by the
value of the state-chart variable Target, for a duration of two seconds (Figure 5.2.13 A⃝). The
second command calls an utterance activity that causes that the agent says a sentence in
which he refers to a travel destination and date given by the values of the state-chart variables
Destination and TravelDate, respectively (Figure 5.2.13 B⃝). For example, if the destination
would be France and the date would be 1980, then the agent would say the sentence “This
was your trip through France in 1980!” like in scene 3⃝ of the introductory example from
Section 1.2.

Grouping and Blacklisting

The challenge of the automatic variation of behavior and dialog content can already be tack-
led to some degree with the template-based speciƤcation approach with behavioral activities.
As mentioned before, both placeholder variables and inline value insertion can be used to
enrich the behavior and dialog content of the social agents with variable content that can be
inferred from domain and context knowledge. Another very eƥcient and intuitive method
for the variation of content at runtime can be taken advantage of by deƤning scene groups
within a scene script. Scene groups are created by providing a number of variations for each
individual scene when writing a scene script. Multiple scenes that share the same name and
language identiƤers are then grouped together and organized to a scene group which has the
same name as the contained scenes. The creation of scene groups then enables the automatic
variation of content at runtime by using a particular blacklisting strategy for their execution.
Each time when calling a scene activity from such a scene group, then, for example, a random-
ized or linear blacklisting mechanism can be applied by the IRE to determine one particular
alternative from the existing variants of the scene for execution. After the scene has been
executed, it is pushed to the blacklist, such that it is not executed again until all other scenes
of the same group, that have not yet been blacklisted, are executed before. This method can
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eơectively be used to avoid repetitive behavior in successive calls to the same scene activ-
ity which makes the agent’s behavior appear much more variable and natural. The default
blacklisting strategy has to be conƤgured as part of the project conƤguration in the Behavior
Flow ConƤguration Language (BFCL) and may additionally be set using corresponding meth-
ods of the BFGL. Figure 5.2.14 shows an example of a scene group consisting of two diơerent
variations (Figure 5.2.14 A⃝, B⃝) of a scene with the same name.

A⃝
scene en welcome
Charly : Hello [Reeti : look target=$user] $user!
Reeti : Yes, hi $user, how are you today?

B⃝
scene en welcome
Reeti : Welcome [look target=$user] $user, good to have you here!
Charly : Oh, see who is here! Hello $user, how are you today?

Figure 5.2.14: A scene group with two diơerent variations ( A⃝, B⃝) of a scene with the same name.

5.3 Integrating Input and Context Events

BĊčĆěĎĔė
FđĔĜ QĚĊėĞ
LĆēČĚĆČĊ

As explained in Section 3.3, an important modeling task is the proper processing and un-
derstanding of multi-modal inputs and context events including the reasoning on context
knowledge. The BFML meets this task with the Behavior Flow Query Language (BFQL), a
mainly declarative, domain-speciƤc, logic calculus that is implemented and embedded in
PėĔđĔČ. It has been developed in this thesis as completely novel extension of an earlier,
exclusively state-chart-based, behavior and interaction modeling approach (Gebhard et al.,
2003a) that was lacking the possibility to manage complex knowledge and event structures for
multi-modal fusion and knowledge reasoning. PredeƤned Ƥrst- and higher-order logic pred-
icates are used for temporal reasoning and quantiƤcation at multi-modal fusion and may be
complemented with application-speciƤc predicates for knowledge reasoning and semantic
constraints (Mehlmann and André, 2012; Mehlmann et al., 2016). Its design is inspired by
rule-based (Hoste et al., 2011; Dumas et al., 2014), plan-based (Rich and Sidner, 1998; Bohus
and Rudnicky, 2003) and complex event processing (Luckham, 2001; Anicic et al., 2010, 2011;
Bruns and Dunkel, 2015) methods. It is inƪuenced by multi-modal fusion methods based on
feature structure uniƤcation (Cohen et al., 1997a; Johnston et al., 1997), multi-modal gram-
mars (Johnston, 1998b, 2000), Ƥnite-state automata (Johnston and Bangalore, 2001, 2005;
Bangalore and Johnston, 2009) and state transition networks (Latoschik, 2002, 2005).

5.3.1 Feature Structure Representation

TčĊ FĊĆęĚėĊ
SęėĚĈęĚėĊ

FĔėĒĆę

The knowledge about the application domain and context information as well as the users’
input events in the various information modalities is represented with a data structure known
as feature structure (Carpenter, 1992; Pereira, 1993). Generally, all kinds of feature structures
are hierarchical data structures that are used for representing partial information about an
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object or an event that is expressed in terms of features or attributes and their correspond-
ing values. Being a well-formed uniform representation format they are ideally suited to carry
arbitrary information from diơerent levels of abstraction and processing stages and may con-
tain data ranging from purely lexical or symbolic information, such as gaze coordinates, to
high-level semantic interpretations, such as dialog acts or referenced objects of a pointing
gesture. This makes them a helpful method for handling the heterogeneity and irregularity
of the information carried by the multi-modal input and context events and contained in the
domain knowledge. They are easily adaptable to application- and device-speciƤc properties
which helps to overcome compatibility and extensibility issues. In this, they do not suơer
from syntactic overhead and are less restrictive or application-speciƤc than more specialized
formats (Wasinger et al., 2005; Wasinger, 2006; Johnston, 2009).

FĊĆęĚėĊ
SęėĚĈęĚėĊ
OėĎČĎēĘ

Feature structures have a long history in a broad range of research areas that investigate prob-
lems which are related to the issues approached in this thesis. For example, they have been
used in uniƤcation-based formalisms for natural language parsing and understanding in the
area of computational linguistics (Shieber, 2003). Those include basic phrase structure (Kay,
1979, 1984; Shieber et al., 1983; Shieber, 1984, 1985) as well as equation-based (Kaplan and
Bresnan, 1982) and constraint-based formalisms (Pollard and Sag, 1987, 1994). Related frame-
based description formats are used in various knowledge representation and automated rea-
soning formalisms (Minski, 1975; Fikes and Kehler, 1985; Brachman et al., 1983; Brachman
and Levesque, 2004). Related record-based representation formats are employed in logic
programming languages for constraint logic programming and constraint-based uniƤcation
grammar formalisms (Carpenter et al., 1991; Smolka, 1992; Aït-Kaci et al., 1994; Smolka and
Treinen, 1994; Backofen and Smolka, 1995). As shown in Chapter 4, feature structures and
similar formats have been found to be useful in the domain of uniƤcation-based multi-modal
fusion and parsing (Cohen et al., 1997b; Johnston et al., 1997; Johnston, 1998b; Wu et al., 1999;
Oviatt et al., 2000; Alexandersson and Becker, 2003; Pƪeger, 2004; Portillo et al., 2006; Sun
et al., 2007; Oviatt, 2012; Ehlen and Johnston, 2013; Kaiser et al., 2003; Holzapfel et al., 2004;
Stiefelhagen et al., 2004; André et al., 2014; Mehlmann and André, 2012; Mehlmann et al.,
2014a, 2016).

FĊĆęėĚėĊ
SęėĚĈęĚėĊ
DĊċĎēĎęĎĔē

The term feature structure is not an unambiguously deƤned concept but rather refers to a
whole family of similar representation formats in the area of feature description languages.
These ƪavors of feature structures are in parts syntactically similar looking and semantically
close to each other, or even equivalent, but, diơer in their use and the research area from
which they originate. The formal, underlying deƤnition of feature structures used in this
thesis is a slightly adapted version of previous deƤnitions that consider feature structures as
a kind of labeled Ƥnite-state-automaton (Kasper and Rounds, 1986, 1990; Carpenter, 1993) that
can be represented as directed acyclic graphs. Our, in this sense, graph-theoretic deƤnition
of feature structures is however slightly simpliƤed due to the reason that it does not require
feature structures to have the ability of structure sharing (Pollard and Sag, 1994).

FĊĆęĚėĊ
SęėĚĈęĚėĊ
NĔęĆęĎĔēĘ

Feature structures can be depicted using two diơerent notation formats. A feature structure
can graphically be represented as acyclic directed graph whose edges are labeled with fea-
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ture names, inner nodes represent nested feature structures and leaf nodes are labeled with
feature values. This graphical notation is oriented towards their formal, graph-theoretic def-
inition and well-suited for designing and illustrating formal deƤnitions of operations on fea-
ture structures by exploiting algorithms from graph theory. However, the graphical notation
as labeled state transition diagram can become cumbersome to read and unwieldy for large
feature structures and requires rather complex data structures for the implementation. For
this reason, a feature structure can also be represented using a textual speciƤcation format as
nested attribute-value matrix. In this notation, each bracketed grouping corresponds to an
inner node while each attribute-value pair corresponds to a leaf node in the graphical repre-
sentation. The empty feature structure has the notation [] in the matrix notation and ⊤ in
graph notation. The matrix notation is better suited to encode feature structures as closed
terms, for example, for the serialization in general purpose programming languages, such
as PėĔđĔČ. Whether in graph or matrix notation, for the remainder of this thesis, in both
notations, feature names are displayed in small capitals, such as ęĞĕĊ or ĉĆęĆ, and feature
values are displayed in italic face, such as X, square or ’Hello World!’, while variables always
begin with an upper-case letter, such as X or Name.
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Figure 5.3.1: The representation of a feature structure in graph-notation A⃝ and matrix-notation B⃝.

Figure 5.3.1 shows an example of a simple feature structure that is depicted in its notation
as directed acyclic graph (Figure 5.3.1 A⃝) as well as in the attribute-value matrix notation
(Figure 5.3.1 B⃝). The feature structure has, for example, a feature with name ęĞĕĊ and value
entity, highlighted bluish in the graph, and contains a feature with name ĉĆęĆ that points
to a nested feature structure, highlighted reddish in the graph. This nested feature structure
has again has a second nested feature structure at the feature with name ĕĔĘ, highlighted
greenish in the graph, and, for example, a feature with name ĈĔđĔė and value yellow and a
feature with name ĘčĆĕĊ and value square, both highlighted orange in the graph.

FĊĆęĚėĊ
SęėĚĈęĚėĊ
EēĈĔĉĎēČ

A variety of research has shown that feature structures can be encoded as diơerent kinds of
PėĔđĔČ terms (Mellish and Gazdar, 1989; Schöter and Place, 1993; Gerdemann, 1995; Cov-
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ington, 1994). Consequently, in the BFQL, feature structures are represented, based on the
attribute-value matrix notation, in form of closed, recursive list terms that contain nested
PėĔđĔČ terms for the representation of the individual feature-value pairs. The BFQL encod-
ing of feature structures as simple PėĔđĔČ lists is inspired by similar approaches that have
been using open-ended list terms in which each element corresponds to a feature-value pair
(Pollard and Sag, 1987; Mellish and Gazdar, 1989). The feature structure encoding used by the
BFQL currently relies on closed lists because, even though falling back on PėĔđĔČ uniƤcation
too, the current implementations of the BFQL’s basic feature structure operations rely on a
non-destructive approach and realize diơerent functions than simply a destructive uniƤca-
tion as done by the approaches using open lists. A feature-value pair in BFQL is represented
as a binary functor term with the colon symbol as functor name (:), the feature name as Ƥrst
and the feature value as second argument and is usually used in its inƤx operator form (f :
v). Feature-value pairs are separated with comma symbols (,) within a list which is framed
with an opening square bracket ([) and a closing square bracket (]). For example, Listing 5.3.1
shows the PėĔđĔČ encoding of the feature structure shown in Figure 5.3.1.

[ type : entity,
sort : piece,
name : 3,
data : [ type : piece,

size : Size,
color : yellow,
shape : square,
pos : [ x : 356, y : 678 ],
state : present ],

desc : 'the large yellow square' ]

Listing 5.3.1: The BFQL encoding of the feature structure from Figure 5.3.1 as list-based PėĔđĔČ term.

5.3.2 Logic Fact Base and Event History

The BFQL is used to manage a well-organized working memory containing logic facts (Kowal-
ski, 1974; Emden and Kowalski, 1976; Kowalski, 1979) representing domain and context knowl-
edge (Brachman and Levesque, 2004) as well as input events in form of feature structures
which are encoded as closed-list terms in PėĔđĔČ (Pollard and Sag, 1987; Mellish and Gazdar,
1989). It deƤnes dynamic predicates for the wrapping, assertion, retraction, and modiƤcation
of feature structures in the fact base. The back-bone of the BFQL is made-up by a few logic
and procedural predicates that are used for basic inference, matching, and manipulation op-
erations on feature structures, such as the retrieval or comparison of feature values, paths
and, substructures as well as the construction and modiƤcation of feature structures.

Feature Structure Operations

MĆęĈčĎēČ ƭ
RĊęėĎĊěĆđ

Based on the formal, graph-theoretic deƤnition of feature structures and their underlying
concepts, a variety of basic operations for the retrieval, matching, and modiƤcation of a fea-
ture structure’s contents were deƤned. These operations have then been implemented in
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SWI-PėĔđĔČ (Wielemaker et al., 2012) and represent an essential part and backbone of the
BFQL. Due to lack of space, presenting the deƤnition and implementation of each of these
operations goes beyond the scope of this thesis. Listing 5.3.2 exemplarily shows the reference
implementation of the, probably most important feature structure operation val/3. The im-
plementation of the other predicates can be found in the BFQL source code that comes with
the open-source version of the VSM3 authoring software1 developed in this thesis.

val(Feature, Value, [Feature:Value|_]) :−
fkeyterm(Feature). /* Value for a simple feature name */

val(Feature:Path, Value, [Feature:Record|_]) :−
\+allvarls([Feature, Path, Record]),
val(Path, Value, Record). /* Recursion into nested record */

val(Feature, Value, [_|Record]) :−
nonvar(Record),
val(Feature, Value, Record). /* Iteration over this record */

Listing 5.3.2: The SWI-PėĔđĔČ implementation of the basic featue structure predicate val/3.
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Figure 5.3.2: An example for the use of the logic matching operation predicate val/3 in a query.

Figure 5.3.2 shows an exemplary application of the predicate val/3 in a query to the PėĔđĔČ
fact base. In this case, it is used to retrieve the value at path ĉĆęĆ:ċĚē (Figure 5.3.2 A⃝) of the
given feature structure (Figure 5.3.2 D⃝) and unify the found value with the variable Value
(Figure 5.3.2 B⃝) in the case of the successful evaluation of the query (Figure 5.3.2 C⃝).

AęęėĎćĚęĊ
MĆēĎĕĚđĆęĎĔē

The BFQL includes various additional basic operation predicates on feature structures. For
example, the insertion predicate add/4 inserts a certain value or substructure at a speciƤc
path of an input feature structure and produces an output feature structure containing the
new feature-value pair. The removal operation del/3 removes a value or substructure at a spe-
ciƤc path of a given input feature structure and returns the modiƤed output feature structure.

1http://scenemaker.dƨi.de
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The modiƤcation predicate set/4 modiƤes an input feature structure by setting a new value
or substructure at a certain path of the structure. It can also be used to check if two fea-
ture structures diơer or can be transfered into one another via the modiƤcation of a single
feature-value pair.
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Figure 5.3.3: An example for the use of the logic modiƤcation operation predicate set/4.

Figure 5.3.3 shows an exemplary usage of the modiƤcation predicate set/4 in a query to the
PėĔđĔČ fact base. At successful execution (Figure 5.3.3 E⃝), it can replace an already existing
value or structure at the feature path ĉĆęĆ:ēĆĒĊ (Figure 5.3.3 A⃝) in the given input structure
(Figure 5.3.3 B⃝) with the new value 5. If no such such value exists, but a sub-structure at path
ĉĆęĆ, then it creates a new feature at path ĉĆęĆ:ēĆĒĊ and initializes it with the value 5 (Fig-
ure 5.3.3 D⃝). Finally, it uniƤes the variable Output (Figure 5.3.3 C⃝) with the feature structure
that results from this replacement or insertion (Figure 5.3.3 E⃝) on the input structure.

Event History Management

IēĕĚę EěĊēę
PėĔĕĊėęĎĊĘ

Besides facts, representing knowledge about the task, users, agents, and objects in the envi-
ronment, feature structures are used to represent input events carrying information about the
users’ behaviors in the various modalities. This includes input devices such as microphones,
eye-trackers, and cameras, but also interaction devices such as tablet computers and surface
tables. Their raw data is preprocessed by modality-speciƤc interpretation modules, which
are usually synchronized, for example, using the SSI framework (Wagner et al., 2013), and
the thereby produced multi-modal events are afterwards asserted to the PėĔđĔČ fact base.
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Passing through this preprocessing and synchronization pipeline, an event is equipped with
general features, such as the name of the user, the inducing modality or device, recognizer-
speciƤc conƤdence values as well as timestamps of the underlying behaviors’ occurrence and
duration and the event’s assertion time. In addition, they carry modality-speciƤc semantic
information provided by the respective interpretation module, such as gaze targets, recog-
nized gestures, or facial expressions as well as dialog acts parsed from speech transcripts.
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Figure 5.3.4: Exemplary feature structures that are representing input events produced by the user.

Figure 5.3.4 shows some exemplary feature structures representing diơerent input events.
The structure shown in Figure 5.3.4 A⃝ represents the meaning of the user’s choice question
“do you mean the large yellow square or the green thing?” in form of an abstract dialog act.
Its semantic content comprises the communicative function and a semantic category as well
as application-speciƤc knowledge, such as the colors, sizes, and shapes of the referenced
objects. The structure shown in Figure 5.3.4 B⃝ represents a gaze event containing a distri-
bution of probabilities with which the user looks at certain objects in the environment. The
structure shown in Figure 5.3.4 C⃝ represents a touch event comprising the type of the touch
interaction, in this case a dragging action, the name of the object which has been manipu-
lated or moved and the location of the touch event as two-dimensional coordinates on the
touch screen.

WĊđđ-FĔėĒĊĉ
IēĕĚę EěĊēęĘ

Just as those shown in Figure 5.3.4, all features structures representing multi-modal input
events need to meet speciƤc content-wise and structural requirements in order to guarantee
the consistency of the event history and the proper functioning of the BFQL predicates. The
diơerent time stamps, such as the time since an event’s occurrence, its total lifetime dura-
tion and its arrival time, are essential for reasoning about the temporal relations between
events using the corresponding BFQL predicates. In order to reasonably combine the par-
tial semantic information of diơerent events they not only need to carry a semantic content
with diơerent hypotheses but also the conƤdence values expressing the probability of each of
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these hypotheses. Therefore, without limiting the generality, in the remainder of this thesis
we demand that a multi-modal input event must possess this basic set of such indispens-
able features. Events satisfying this restriction are well-formed events and each Ƥnite set of
well-formed events asserted to the fact base is a well-formed event history. Of course, the
level of detail in the representation of an input event provided by this restriction can easily
be adapted to existing standards (Johnston, 2009) or to application speciƤc requirements.

EěĊēę HĎĘęĔėĞ
MĆēĎĕĚđĆęĎĔē

The event history is realized as part of the PėĔđĔČ fact base and contains well-formed events
asserted as special facts using the dynamic BFQL predicate fsr/1. The BFQL provides a num-
ber of additional event history management predicates that can be used to assert and re-
tract individual feature structures or a speciƤc set of feature structures that have particular
properties. For example, Listing 5.3.3 shows the SWI-PėĔđĔČ implementation of the BFQL
predicates del/1, add/1 and rll/2 for the assertion and retraction of event feature structures

del(Record) :− retract(fsr(Record)).
add(Record) :− assertz(fsr(Record)).

rll(Path, Value) :−
forall((fsr(Record), val(Path, Value, Record)), del(Record)).

Listing 5.3.3: The SWI-PėĔđĔČ implementation of the basic BFQL predicates del/1, add/1 and rll/2.

GĆėćĆČĊ
CĔđđĊĈęĎĔē

Events that are probably not required for multi-modal fusion or reasoning any more need
to be retracted from the event history. This helps to keep the fact base reasonably small
and thus the logic inference and backtracking mechanism suƥciently real-time capable. For
that purpose, the BFQL provides predicates that can be used to realize a scalable, age-based,
modality-speciƤc garbage collection mechanism. They can regularly be called in dedicated
processes of a BFSC to retract events of a certain modality from the event history whenever
they have reached a certain age. Since these events cannot be considered by the inference
mechanism anymore, the decision how long to preserve them must carefully be based on the
diơerent modalities’ mean processing delays as well as empirical data on timing and align-
ment constrains in multi-modal human interaction. Listing 5.3.4 shows the SWI-PėĔđĔČ
implementation of the exemplary BFQL garbage collection predicates clean/2 which is used
to retract all events of a certain modality that have reached a particular age.

clean(Mode, Age) :−
now(Now), Lim is Now − Age,
forall((fsr(Record),

val(mode, Mode, Record), val(time, Time, Record),
val(dist, Dist, Record), val(life, Life, Record),
End is Time − Dist + Life, Lim > End),

retract(fsr(Record))).

Listing 5.3.4: The SWI-PėĔđĔČ implementation of the BFQL garbage collection predicate clean/2.
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5.3.3 Multi-Modal Fusion and Reasoning

Falling back on the aforementioned fact base management and feature structure operations,
the BFQL deƤnes predicates that allow answering diverse queries concerning the condition
and composition of the event history, such as the existence of events with speciƤc attributes
or the comparison of two events’ properties. Other predicates are used for the computation
of delays and timeouts or the production and consumption of signals for inter-process com-
munication and data exchange via the PėĔđĔČ fact base. Finally, it provides Ƥrst-order logic
predicates to evaluate quantitative and qualitative temporal and ordering relations between
events as well as higher-order meta-predicates that implement generalized quantiƤers, which
are required for multi-modal event fusion. This section presents the SWI-PėĔđĔČ implemen-
tations of a very restricted selection of predeƤned BFQL predicates.

Basic PredeƤned Predicates

RĊęėĎĊěĆđ ƭ
CĔĒĕĆėĎĘĔē

Based on the deƤnitions of well-formed events and the basic feature structure operations,
the BFQL deƤnes a variety of predicates for inspecting, retrieving, and comparing individual
attributes of feature structures. Listing 5.3.5 shows the SWI-PėĔđĔČ implementation of the
exemplary retrieval predicate mode/2 and the comparison predicate equal_mode/2.

mode(Event, Mode) :−
fsr(Event), val(mode, Mode, Event).

equal_mode(Event1, Event2) :−
mode(Event1, Mode1), mode(Event2, Mode2), Mode1 == Mode2.

Listing 5.3.5: The SWI-PėĔđĔČ implementation of the basic predicates mode/2 and eqmode/2.

DĊđĆĞĘ ƭ
TĎĒĊĔĚęĘ

To explicitly represent time and realize timeout mechanisms, the BFQL provides various
predicates to install and evaluate timers. For example, Listing 5.3.6 shows the SWI-PėĔđĔČ
implementation of the predicate timeout/2 that can be used to create timers using the dy-
namic predicate timer/2 and to evaluate the time that has elapsed since their installation.
The predicate fails and asserts a timer to the fact base at its Ƥrst evaluation, in consecutive
calls it checks if a certain time has expired since a timer’s installation until it Ƥnally succeeds
and retracts the timer again as soon as the timeout has expired.

timeout(Name, _) :−
timer(Name, Time), !,
now(Now), Now > Time,
retractall(timer(Name, Time)).

timeout(Name, Delay) :−
now(Now), Time is Now + Delay,
assertz(timer(Name, Time)), fail.

Listing 5.3.6: The SWI-PėĔđĔČ implementation of the commonly used timeout predicate timeout/2.
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To realize inter-process communication and information exchange between concurrent pro-

SĎČēĆđ
EĝĈčĆēČĊ

cesses via the PėĔđĔČ fact base, the BFQL deƤnes a variety of predicates that are used to
produce and consume signal events. For example, Listing 5.3.7 shows the SWI-PėĔđĔČ im-
plementation of the signal exchange predicates signal/2 and detect/2.

signal(Mode, Name) :−
forall((fsr(Record),

val(type, signal, Record),
val(mode, Mode, Record),
val(name, Name, Record)),

del(Record)), now(Time),
add([type : signal, mode : Mode, name : Name, time : Time]).

detect(Mode, Name) :−
fsr(Record),
val(type, signal, Record),
val(mode, Mode, Record),
val(name, Name, Record),
del(Record).

Listing 5.3.7: The SWI-PėĔđĔČ implementation of the signal predicates signal/2 and detect/2.

Temporal Event Relations

QĚĆđĎęĆęĎěĊ
TĊĒĕĔėĆđ
RĊđĆęĎĔēĘ

Quantitative and qualitative temporal relations between events are key concepts to be rep-
resented in order to combine several events from multiple modalities. Qualitative time ad-
dresses temporal relations between events and the ordering of event such as precedence,
succession, and simultaneity. The BFQL deƤnes predicates that are based on interval tem-
poral logic (Allen, 1981, 1983, 1984; Allen and Hayes, 1990; Allen and Ferguson, 1994; Allen,
2013) which is well suited to argue about the qualitative temporal relations between events
and actions in time. Figure 5.3.5 shows an illustration of the possible qualitative temporal
relations between events. As example, Listing 5.3.8 shows the SWI-PėĔđĔČ implementation
of the predicate during/2 which checks if an event takes place during another one.

during(Event1, Event2) :−
val(time, Time1, Event1), val(time, Time2, Event2),
val(dist, Dist1, Event1), val(dist, Dist2, Event2),
val(life, Life1, Event1), val(life, Life2, Event2),
Start1 = Time1 − Dist1, Start2 = Time2 − Dist2,
End1 = Start1 + Life1, End2 = Start2 + Life2,
Start1 > Start2, End1 < End2.

Listing 5.3.8: The SWI-PėĔđĔČ implementation of the temporal relation predicate during/2.

QĚĆēęĎęĆęĎěĊ
TĊĒĕĔėĆđ
RĊđĆęĎĔēĘ

Qualitative relations are only able to express the ordering of events, such as temporal succes-
sion, overlapping, or simultaneity. However, they are not able to express exact quantitative
temporal relations between events, such as the temporal distance of two events or the relation
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Figure 5.3.5: Some pictorial illustrations of diơerent qualitative temporal relations between events.

of the start or end times of an event to absolute points in time. Therefore, the BFQL deƤnes
a number of predicates to evaluate quantitative temporal relations between events. For ex-
ample, Figure 5.3.6 shows an exemplary use of the predicate rel_dist/3 to infer the relative
temporal distance of the two events, in this case the time an object was moved.

NĊĎČčćĔėčĔĔĉ
ƭ OėĉĊėĎēČ

Events of the same modality, user, and device or multiple events that satisfy a certain con-
straint can be linearly ordered. In this case, one might be interested in the oldest, latest, or

128



5.3. Integrating Input and Context Events

.

.-?  

 2850Distance

 Distance

1.0
50
50

1
7

139
stop

11400
touch
user
event

1.0
50
50

1
7

368
start

8500
touch
user
event

rel_dist  

=



























































































































































































 ,

   :
     :
      :

  :
45  :

  :     :

    :

   :

     :
   :
   :

    :

 , 

   :
     :
      :

  :
11  :

  :     :

    :

   :

     :
   :
   :

    :

  

CONF
DIST
LIFE

NAME

Y
X

POS

TYPE

DATA

TIME
MODE

NAME
TYPE

CONF
DIST
LIFE

NAME

Y
X

POS

TYPE

DATA

TIME

MODE

NAME
TYPE

  

Figure 5.3.6: The exemplary use of the quantitative temporal relation predicate rel_dist/3 in a query.

just a random event from such a set of events. Additionally, we want to make statements
about the ordering of these events, such as determining followers and ancestors or to ex-
press neighborly relations between them. The BFQL deƤnes various predicates to evaluate
such ordering and neighborhood relations. For example, Listing 5.3.9 shows the SWI-PėĔđĔČ
implementation of the predicate oldest/3 which infers the oldest event from a set of events
that fulƤll a particular requirement.

oldest_of_list(R, [R]):− !.
oldest_of_list(R, [H|T]) :−

oldest_of_list(L, T),
( before(L, H), !, R = L ; before(H, L), !, R = H ).

oldest(Template, Generator, Element) :−
bagof(Template, Generator, List),
oldest_of_list(Element, List).

Listing 5.3.9: The SWI-PėĔđĔČ implementation of the ordering relation predicate oldest/3.

Generalized QuantiƤcation

QĚĆēęĎċĎĈĆęĎĔē
EĝĕėĊĘĘĎĔēĘ

The BFQL provides a number of higher-order predicates that implement generalized quan-
tiƤers (Mostowski, 1957; Lindström, 1966). Generalized quantiƤer theory is a formal, set-
theoretic framework which is particularly suitable for the semantic representation and anal-
ysis of quantiƤcation expressions and set relations as they occur rather frequently in natural
language. People, for example, naturally and frequently use such quantiƤer expressions for
talking about the quantity of things and to describe numerical or proportion relations be-
tween sets of individuals or events, such as “a dozen of”, “less than Ƥve of”, “at least half of”, “a
third of”, “the majority of” or “the largest portion of”. To cope with these kinds of quantiƤca-
tion expressions, philosophers, logicians, and linguists developed the theory of generalized
quantiƤers, thus, extending the expressive power beyond the standard Ƥrst-order logic quan-
tiƤers “for all” and “for some”. Generalized quantiƤers, by this, universalize the notion of a
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quantiƤer in a precise, formal, mathematically well-deƤned way (Barwise and Cooper, 1981;
Montague, 1988; Keenan and Westerståhl, 2011). Their major advantage is the close corre-
spondence between the syntax of logic quantiƤcation formulas and queries and natural lan-
guage quantiƤcation (D’Alfonso, 2011). The generalized quantiƤer predicates of the BFQL ex-
ploit this syntactic closeness to oơer an expressive, declarative, intuitive, and elegant method
for the evaluation of quantiƤcation constraints between sets of individuals in the fact base
and events in the event history, an otherwise often procedurally solved problem.

GĊēĊėĆđĎğĊĉ
QĚĆēęĎċĎĊė
PėĊĉĎĈĆęĊĘ

The set-theoretically deƤned generalized quantiƤers mostly evaluate a binary relation be-
tween two sets of solutions. The Ƥrst solution set is referred to as restrictor because it is
generated by a goal constraining the domain of quantiƤcation. The second set is called nu-
clear scope because it expresses the set with which the restrictor is confronted in order to
determine if the relation is satisƤed (D’Alfonso, 2011). Their implementations often have a
tripartite structure using a common notation used in logic programming which is referred
to as three-branch quantiƤer (Colmerauer, 1978; Warren and Pereira, 1982). In this notation,
the functor is called the quantiƤcation, the Ƥrst argument is called the template, usually a
term with unbound variables, the second argument is referred to as range and the last as
scope. Listing 5.3.10 shows the exemplary SWI-PėĔđĔČ implementations of the generalized
quantiƤers formost/3 and forfraction/4 based on the solution collection predicate collect/3
which falls back on the standard SWI-PėĔđĔČ meta-predicate bagof/3. The implementation
of forfraction/4 additionally speciƤes a fourth argument for the fraction. There exist many
more, actually inƤnitely many, imaginable quantiƤers (Peters and Westerståhl, 2006).

collect(Template, Generator, Collection) :−
bagof(Template, Generator, List)

*−> Collection = List ; Collection = [].

formost(Template, Generator, Condition) :−
collect(Template, (Generator, Condition), Range),
collect(Template, (Generator, \+(Condition)), Scope),
length(Range, R), length(Scope, S), R > S.

forfraction(Fraction, Template, Generator, Condition) :−
collect(Template, Generator, Range),
collect(Template,(Generator, Condition), Scope),
length(Range, R), length(Scope, S), R \== 0, Fraction is S/R.

Listing 5.3.10: The SWI-PėĔđĔČ implementation of the BFQL quantiƤers formost/3 and forfraction/4.

GĊēĊėĆđĎğĊĉ
QĚĆēęĎċĎĊė

TėĆēĘđĆęĎĔē

Natural language quantiƤcations can straightforwardly be translated into logic quantiƤca-
tion formulas, or PėĔđĔČ terms, respectively, that are based on the three-branch quantiƤer
notation (Warren and Pereira, 1982; Pereira, 1983a; Cooper et al., 1993). This is especially
useful to translate natural language quantiƤcation constraints that an author might consider
as reasonable for multi-modal ambiguity resolution. For example, assuming that a speech
event representing the user’s utterance has already been extracted from the event history
and uniƤed with the variable υ. Then the author could informally formulate the natural lan-
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guage constraint “Let ϑ be the name of a beach photo to which the user looked most of the time
during υ”. This can be reformulated to a more formal natural language quantiƤcation query
using the formulation “Find solutions for ϑ such that the largest portion of the user’s gaze
Ƥxations to photos of a beach during the event υ are exactly to the photo with name ϑ”. Fig-
ure 5.3.7 illustrates how this natural language quantiƤcation query can Ƥnally be translated
to a syntactically rather similar looking logic quantiƤcation query using the quantiƤer pred-
icate forlargest/3 and some of the already mentioned predeƤned BFQL predicates. The color
coding in the spoken sentence (Figure 5.3.7 A⃝) and the logic query expression (Figure 5.3.7
B⃝) shows which natural language parts are translated to the respective goals and clauses.
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Figure 5.3.7: An example how a natural language quantiƤcation can be translated into a logic query.

GĊēĊėĆđĎğĊĉ
QĚĆēęĎċĎĊė
AĕĕđĎĈĆęĎĔē

The example in Figure 5.3.7 illustrates that, besides the intuitiveness of generalized quan-
tiƤers due to their syntactic closeness to natural language, the true strength of the BFQL’s
quantiƤer predicates is that the uniƤcation and backtracking mechanism of the PėĔđĔČ in-
ference engine can be exploited to collect solutions for uninstantiated variables in the corre-
sponding goals of the logic quantiƤcation query. Based on the aforementioned example, this
mechanism is illustrated in more detail by Figure 5.3.8 which shows two of the many ways
how a logic quantiƤcation query with free variables can be used for the collection of solu-
tions that can be used for the multi-modal disambiguation of the user’s input. We assume
that the surface table in front of the user is populated by three photos, two of which show a
scene with a beach and one shows a scene with a forest (Figure 5.3.8 A⃝). The user is then
speaking the ambiguous utterance “Tell me, where is this beach” while looking at the photos
on the surface table (Figure 5.3.8 B⃝). Generalized quantiƤcation is used to disambiguate this
referring expression by collecting the gaze Ƥxation events during the utterance that match
the feature description in the utterance, that means their target is a photo showing a beach.
For that purpose, the quantiƤer Ƥrst collects all gaze events during the user’s utterance (Fig-
ure 5.3.8 C⃝). Then it considers only those of these gaze events whose targets are photos
showing scenes with beaches (Figure 5.3.8 D⃝). In the Ƥrst case (Figure 5.3.8 G⃝), the query
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Figure 5.3.8: An exemplary usage of the generalized quantiƤers forfraction/4 and forlargest/3.

with the forfraction/4 quantiƤer is then used to Ƥnd all possible fractions of these gaze events
that share the same name and instantiates the variable Fraction with the relative size of these
sets and the variable Name with the name of the corresponding photos. Because there ex-
ist two diơerent photos showing beaches that have been looked at during the utterance, the
PėĔđĔČ engine returns two solutions for this query. First, the photo with name 1 has been
the target of 37.5% of the gaze events (Figure 5.3.8 F⃝) and, second, the photo with name 3
has been target of 62.5% of the gaze events (Figure 5.3.8 E⃝). In the second case (Figure 5.3.8
H⃝), the forlargest/3 predicate is used to Ƥnd out the name of the photo to which the largest
portion of matching gaze events during the user’s utterance refers to. As the name suggests,
this predicate is returning at most a single solution and the query in this case comes up with
the photo with name 3 as solution (Figure 5.3.8 E⃝). The example illustrates how elegant,
versatile, and expressive logic generalized quantiƤcation queries can be used for ambiguity
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resolution.

5.4 Coordinating Functions and Processes

BĊčĆěĎĔė
FđĔĜ
SęĆęĊ-CčĆėęĘ

As identiƤed in Section 3.2, a key modeling task is the close coordination, which means in-
terleaving, synchronization, and prioritization, of the various concurrent, hierarchical, incre-
mental, and reciprocal aspects of behavior as well as the proper dialog and interaction ƪow
management. The BFML meets this task with Behavior Flow State-Charts (BFSCs), a specially
designed, hierarchical and concurrent state-chart variant that extends the simpler, ƪat, and
non-parallel predecessor (Gebhard et al., 2003a) with methods for the hierarchical reƤne-
ment and parallel decomposition of a model and an automatically maintained interaction
history. Diverse transition types allow representing the temporal, conditional, probabilis-
tic, and concurrent aspects of behavior, interaction, and dialog. States and transitions con-
tain BFGL commands that execute BFSL activities and BFQL queries. They are inƪuenced by
modeling approaches based on Ƥnite-state automata (McTear, 1998; Johnston and Bangalore,
2005; Iurgel, 2006; Bourguet and Chang, 2008; Raux and Eskénazi, 2009), state transition net-
works (Wasserman, 1985; Latoschik, 2002, 2005), petri-nets (Navarre et al., 2005; Chao and
Thomaz, 2011, 2016), and other state-chart dialects (Skantze and Moubayed, 2012; Brusk et
al., 2007; Kronlid and Lager, 2007). BFSCs are an expressive and practicable visual modeling
method facilitating extensibility, reusability, and clear structuring of a model.

5.4.1 States, Transitions and Variables

EđĊĒĊēęĘ ƭ
EĝĊĈĚęĎĔē

A BFSC consists of diơerent types of states and transitions which are graphically represented
by diơerently shaped nodes and edges in the corresponding state transition diagram. Nodes
and edges are labeled with BFGL statements and expressions as well as graphical elements,
such as start nodemarkers, endnodemarkers, or evaluation policymarkers that determine and
reƪect the execution semantics of the corresponding states and transitions. A node may have
an arbitrary number of incoming edges, however, the allowed number and valid combinations
of outgoing edge have to obey to certain syntactic and semantic constraints.

The BFGL statements of a node together make up a small executable program segment, very
similar to a procedure of a general purpose procedural programming language. The program
segments of all nodes within a BFSC and the connections that are established by the diơer-
ent edges between these nodes together constitute a larger static program speciƤcation. The
actual sequence of BFGL statements during a speciƤc execution run of a BFSC is then deter-
mined at runtime by the evaluation of the conditions guarding the transitions. BFSCs are
static executable speciƤcations and do not contain any language constructs for the dynamic
creation of states and transitions or memory allocation during their execution.

DeƤnition of Nodes

TčĊ SĞēęĆĝ Ĕċ
BĆĘĎĈ NĔĉĊĘ

The simplest type of node in a BFSC is a basic node that, for historical reasons, is also called
scene node (Gebhard et al., 2003a, 2008, 2012) because it allows playing back a scene activity
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from a scene script written in BFSL. An ordinary basic node is graphically represented by a
single-lined circle (○) that is labeled with, Ƥrst, a not necessarily unique node name, used
to describe its function or task, and, second, a unique node identiƤer which enables the un-
ambiguous identiƤcation and referencing of the node. If the node is also a start node, then
it is labeled with a triangle (▷) and if it represents an end node, then it is depicted with a
double-lined circle (⊚). A basic node represents a simple state in the BFSC and can specify a
program consisting of BFGL statements, such as, among others, type and variable deƤnitions
or assignments, commands to play back behavioral activities speciƤed in BFSL or execute
queries to the PėĔđĔČ fact base using BFQL predicates as well as calls to author- or prede-
Ƥned functions, like history and conƤguration operators or methods of plug-in modules in
the underlying implementation language.

User  ← Marley Marple 
B 

Ask  
For Tea 

[N1] 

!- Charly : [look target=User↓] Would you like  
             [tilt direction=right angle=20.0] some tea? . C 

A 

Figure 5.4.1: A basic node ( A⃝) labeled with a variable deƤnition ( B⃝) and a playback command ( C⃝).

Figure 5.4.1 shows an exemplary deƤnition of a basic node in the conceptual notation of
BFSCs. The node has the unique node identiƤer N1, the node name AskForTea and is marked
as both, start node (▷) and end node (⊚) (Figure 5.4.1 A⃝). It is labeled with a local variable
deƤnition (Figure 5.4.1 B⃝) and a playback command for a behavioral activity (Figure 5.4.1
C⃝). When executed by a state-chart process of the IRE, then this process Ƥrst initializes

the local variable User with the string value “Marley Marple” and afterwards lets the agent
Charly execute the multi-modal utterance activity “[look target=User↓] Would you like [tilt
direction=right angle=20.0] some tea?” in which he is looking at Marley with a questioning
head pose while asking her if she would like to drink some tea.

TčĊ SĞēęĆĝ Ĕċ
SĚĕĊė NĔĉĊĘ

An ordinary super node is graphically represented by a single-lined square (□) that can be
labeled with the graphical and textual language constructs that may also be used with basic
nodes. If the super node is a start node, then it is, just like a basic node, labeled with a triangle
(▷) and if it represents an end node, then it is drawn as double-lined square (⧈). In addition,
it extends the functionality of a basic node with the extra possibility to create a hierarchical
structure on the BFSC. To achieve this, a super node may, in contrast to a basic node, contain
an arbitrary number of nested subnodes, which can be basic nodes or super nodes themselves
and that together constitute one or more nested BFSCs. Any subset of the nested subnodes
of a super node may be declared as the start node set of that speciƤc super node by marking
them with start node markers (▷). They serve as starting points for the execution of the
nested BFSCs and have to be executed in concurrent processes by the IRE. The hierarchy of
super nodes creates a variable scoping such that variable deƤnitions of a super node are visible
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and accessible by all nested nodes but not its parent super nodes and their additional nested
child nodes. The super node hierarchy and variable scoping mechanism creates a hierarchy
of local execution contexts that can be used for the context-sensitive reaction to user input
events and context changes, similar to modeling approaches using hierarchical task networks.
In addition, the hierarchical reƤnement of the model helps to clearly structure a BFSC and
thus facilitates maintainability and reusability.

Question 
Welcome 

Phase 
[S1] 

User  ← undefined 
Time  ← 5000 

Ask User  
For Name 

[N1] 

Welcome  
User  
[N2] 

!-  Charly : [look target=User↓]  
                    How are you User↓?. 

?- speech(User↑) . 

A 

C 

B 

D 

?- timeout(reask, Time↓). 

E 

!- Charly : Hi, what is your name?. 

F 

Figure 5.4.2: A super node ( A⃝) deƤning local variables ( B⃝) and containing a short dialog phase with
a single question-answer pair between the agent and the user in a nested subnode of the BFSC ( C⃝- F⃝).

Figure 5.4.2 shows an example of a super node in the conceptual notation of BFSCs. The super
node with identiƤer S1 and name QuestionWelcomePhase (Figure 5.4.2 A⃝) encapsulates a
nested BFSC that implements a very simple question and welcome phase between the agent
and the user. The super node deƤnes two local variables (Figure 5.4.2 B⃝), Ƥrst the initially
undeƤned variableUser to represent the user’s name and, second, a variableTime to represent
a speciƤc timeout value of 5000 milliseconds. The short dialog starts with the question for
the user’s name (Figure 5.4.2 C⃝) by playing the respective utterance activity in the start node
with identiƤer N1 and name AskUserForName. The execution of this node is repeated every
5000 milliseconds triggered by a timeout guarded transition (Figure 5.4.2 E⃝) until the user
answers with an utterance that provides his or her name. The verbal user input is detected
via a query to the PėĔđĔČ fact base using the BFQL predicate speech/1 (Figure 5.4.2 D⃝). Then
the agent uses the information about the user’s name to greet the user by his or her name in
the end node N2 (Figure 5.4.2 F⃝) before the execution continues with the edges at S1.

DeƤnition of Edges

TčĊ SĞēęĆĝ ƭ
TĞĕĊĘ Ĕċ EĉČĊĘ

An edge connects two nodes in a BFSC and speciƤes the conditions under which the transi-
tion between the corresponding states may be taken. This transition is then concatenating
their individual executable BFGL speciƤcations to a single program. Besides some diơer-
ences, there exist a number of common syntactical and semantical characteristics of all types
of edges. An edge is always a directed and optionally labeled arrow ( □⟶) that is connecting
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exactly two nodes in a BFSC which are called the source node and the target node of this edge.
An edge that connects a node with itself is called self-loop edge. An edge may be labeled with
a transition guard that determines the preconditions that must be fulƤlled for taking the
transition. A guard may be, for example, a temporal, conditional, or probabilistic constraint
that needs to be satisƤed to enable the corresponding transition. In addition, an edge can be
labeled with an transition marker that speciƤes the evaluation policy of the transition guard.
It determines when and how the guard comes into eơect, that means how often and by which
process of the IRE the guard will be evaluated during the execution of a BFSC. The seman-
tics of diơerent types of transition guards and evaluation markers can Ƥnally be combined in
order to realize a variety of branching strategies and interruption policies within the BFSC.

TčĊ TĞĕĊĘ Ĕċ
TėĆēĘĎęĎĔēĘ ƭ
ęčĊĎė GĚĆėĉĘ

Figures 5.4.3 to 5.4.7 show examples of edges with diơerent types of guards that determine
when the respective transitions may be taken, for example, immediately and uncondition-
ally, with a certain probability, after a speciƤc timeout period has elapsed, or if a particular
conditional expression is fulƤlled.

Source  
Node 
[N1] 

 Target  
Node 
[N2] 

Figure 5.4.3: Two nodes connected with an epsilon edge that deƤnes an unconditional transition.

Figure 5.4.3 shows an unlabeled edge between two nodes which is referred to as epsilon edge.
Such an edge represents an immediate and unconditional transition from its source node
to its target node. It can directly be taken once the process executing the source node is
scheduled the Ƥrst time after Ƥnishing the BFGL program of the source node. If a source
node has multiple outgoing epsilon edges or any additional enabled edges of another type,
then one of these transitions is chosen nondeterministically. Epsilon edges can be used by
an author to create a sequential structure of the behavior and interaction ƪow and to specify
the order in which computation steps, behavioral activities, and logic queries are executed.
They are useful to make the model clearly arranged and to facilitate the manageability and
readability of the model.

Figure 5.4.4 shows an edge that is guarded by a timeout guard and which is referred to as
timeout edge. It is labeled with a timeout value and ameasuring unit, such as, for example, ms
for milliseconds (Figure 5.4.4 A⃝) or s for seconds (Figure 5.4.4 B⃝). It represents a scheduled
transition that is taken with the desired delay when the executing process is scheduled after
the corresponding time interval has expired since the guard has been evaluated for the Ƥrst
time after the BFGL program of the source node has been Ƥnished. If several timeout edges or
additional epsilon or condition edges can be taken at the same time, then the IRE must select
one of these transitions nondeterministically. Timeout edges, explicitly representing time in
the model, are used to control and regulate the timing and temporal ƪow of a behavior and
interaction model’s execution, in particular, to schedule the playback of behavioral activities,
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Source  
Node 
[N3] 

60 s 
 Target  
Node 
[N4] 

Source  
Node 
[N1] 

3250 ms 
 Target  
Node 
[N2] A 

B 

Figure 5.4.4: Two nodes connected with a timeout edge that deƤnes a scheduled transition.

the execution of logic queries, and other computation steps.

 3rd Target  
Node 
[N4] 

Source  
Node 
[N1] 

1st Target  
Node 
[N2]  2nd Target  

Node 
[N3] 

30% 20% 
50% 

Figure 5.4.5: Nodes connected with a set of probability edges that deƤne probabilistic transitions.

Figure 5.4.5 shows a set of edges that are guarded by probability guards and which are referred
to as probability edges. They are labeled with values between zero and one hundred followed
by a percentage sign (%) and represent transitions that are taken with the respective proba-
bility. A node must either have solely outgoing probability edges or none and the sum of the
probabilities of all probability edges of a node have to sum up to 100%. Once the execution of
the source node’s BFGL program has Ƥnished, one of the outgoing transitions is chosen and
taken according to their speciƤed probabilities. Probabilistic edges are used to create some
degree of randomness and desired nondeterminism during the execution. This facilitates
to produce some unpredictability and variability in the behavior or dialog of a social agent
which helps to make the agent appear more vivid, natural, and credible.

Figure 5.4.6 and Figure 5.4.7 show diơerent edges that are referred to as condition edges. They
represent conditional transitions that can, for example, be guarded by logical and arithmetic
(Figure 5.4.6 A⃝) or comparison expressions (Figure 5.4.6 B⃝), function calls to built-in or
user-deƤned methods in the underlying implementation language (Figure 5.4.6 C⃝), or logic
queries to the PėĔđĔČ fact base using BFQL predicates (Figure 5.4.7 A⃝, Figure 5.4.7 B⃝).
Condition edges are used to deƤne the branching structure in the BFSC which describes the
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Source  
Node 
[N1] 

 Target  
Node 
[N6] 

Source  
Node 
[N5] 

 ! AgentSpeaking  
∧  UserSpeaking 

isFoo(Bar) 

A 

C 

 Target  
Node 
[N2] 

Source  
Node 
[N3] 

UserGazeTarget ==   
  AgentGazeTarget 

B 

 Target  
Node 
[N4] 

Figure 5.4.6: Nodes connected with diơerent condition edges that deƤne conditional transitions.

diơerent possible ways the behavior and interaction ƪow can take in reaction to changes
of environmental conditions, external and internal events, or user interactions as well as
conclusions reasoned from context knowledge or data retrieved from external modules.

 Target  
Node 
[N4] 

Source  
Node 
[N3] 

?- timeout(wait, Time↓) . 

?- detect(user, turn, Type↑) . 

A 

B 

 Target  
Node 
[N2] 

Source  
Node 
[N1] 

Figure 5.4.7: Nodes connected with diơerent condition edges that are labeled with logic queries.

TčĊ TĞĕĊĘ Ĕċ
MĆėĐĊėĘ ƭ

TčĊĎė UĘĆČĊ

The evaluation of a transition guard determines if the respective transition may be taken or
not at the moment of this evaluation. An evaluation policy of a transition is used to control
when, how often and by which process the transition guard may be evaluated at all. This ef-
fectively determines when the respective transition can really be taken and if other processes
can be interrupted and terminated preemptively in order to realize this transition. The eval-
uation policy of a transition is speciƤed with a transition marker which can be either a Ƥlled
circle (●) or a Ƥlled star (⭑) at the source node of the corresponding edge. Figure 5.4.8 shows
a simple exemplary BFSC that illustrates the use of the diơerent transition markers to deƤne
the corresponding evaluation policies.

Edges that are neither marked with a star nor a circle are referred to as transient transitions.
The conditions of these their guards are checked only once and only by the process that
actually executes the source node when this process is scheduled and only after the BFGL
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... 
[S2] 

 

Process 
Signal 

[S1] 

Await 
Signal 

[N1] 

Check 
Name 
[N2] 

C 

B A 

Interruption 

Name == stop 

Name == start 

?- detect(signal, Name↑) . 

D 

Handle 
Start 
[N3] 

Handle 
Stop 
[N4] 

Interruption  ← false 

Figure 5.4.8: An exemplary BFSC with transitions that have diơerent evaluation policies.

program of the source node has been fully executed. If a transient transition is not satisƤed
after the execution of the source node, then the executing process terminates immediately
in this step. Therefore, a node that exclusively has guarded transient transitions must be
marked as end node using the double lined circle or square syntax (⊚,⧈). The BFSC depicted
in Figure 5.4.8 shows examples of such transient transitions from node N2 to the nodes N3

and N4 (Figure 5.4.8 A⃝).

Edges that are marked with a Ƥlled circle (●) denote persistent transitions. These transitions
are repetitively but lazily checked after the program of the source mode has been Ƥnished.
They are exclusively checked by the process that executes the source node whenever this
process is scheduled and are then taken in the same step if they are satisƤed. Since it is
not deterministic when the process that executes the source node is scheduled by the IRE it
cannot be guaranteed that the transition is taken whenever it is satisƤed because it could be
missed due to late scheduling. The BFSC depicted in Figure 5.4.8 shows an example of such
a persistent transition from node N1 to node N2 (Figure 5.4.8 B⃝).

Edges that are marked with a Ƥlled star (⭑) denote interruptive transitions. These transitions
may be eagerly evaluated by any process of the IRE whenever such a process executes a step.
Such a step may be any computation or operation that can modify the IRE’s information and
conƤguration state, such as executed states, variable values, or the history content. It rep-
resents a critical section that has to be accessed mutually exclusive through the interleaving
of the IRE’s processes in order to guarantee the consistency of the execution state. Accord-
ing to this step interleaving semantics of BFSCs, an interruptive transition is evaluated by
each process that has just entered a state, recently executed a BFGL statement, or evaluated a
transition guard, and even when it is scheduled after it has already Ƥnished its current node’s
BFGL program. If an interruptive transition is satisƤed, then the transition is immediately
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taken in the same step while all eơects of this transition are then soonest observed in the
next step to avoid inƤnite chain-reactions with this execution semantics. In contrast to per-
sistent transitions, however, the change of the guard of an interruptive transition can never
be missed because it is evaluated in each step, such that the edge is always taken if it is sat-
isƤed. The BFSC depicted in Figure 5.4.8 show an example of such an interruptive transition
from super node S1 to node S2 (Figure 5.4.8 C⃝). The execution of the nested BFSC of S1 is
immediately terminated and the execution proceeds with the target node S2 in the next step
when the guarding variable expression Interruption has become true (Figure 5.4.8 D⃝).

Usage of Variables

UĘĆČĊĘ Ĕċ Ć
VĆėĎĆćđĊ NĆĒĊ

The BFGL allows the deƤnition of state-chart variables that are mainly used for represent-
ing values and referring to these values when using the name of the variable in statements
and expressions. However, an additional key role of variables in our modeling framework is
the exchange of values between the logic PėĔđĔČ fact base, the environment of the BFSC’s
IRE, and BFSL placeholders in behavioral activity templates. To meet this requirement, BFSC
variables can be used with two diơerent meanings, depending whether they occur in an or-
dinary BFGL expression or statement, or are used as part of a logic predicate in a BFQL query
or the speciƤcation of a behavioral activity in the BFSL. On the one hand, the variable can be
used by value, that means, with the result that each occurrence of the variable name within a
BFQL query or BFSL speciƤcation is replaced by the IRE with the current value of the variable
during the execution of the respective BFGL statement or expression. This is the case if an
author wants to hand over the value of the variable as an argument to a behavioral activity
or logic query. On the other hand, a variable can also be used by reference, that means as a
reference to the name of the variable, for example, when the author has the aim to infer a
substitution for the variable such that a speciƤc BFQL query is satisƤable.

NĔęĆęĎĔēĘ Ĕċ
VĆėĎĆćđĊĘ

The aforementioned possibilities or meanings of a variable usage manifest themselves in dif-
ferent notations for variables in the conceptual syntax of BFSCs. When referring to the value
of a variable X in a BFQL query or a BFSL speciƤcation, which is basically between any oc-
currence of an opening ?−, !−, != or !∼ and a closing ., then the variable name X is annotated
with a downward directed arrow index (X↓). In contrast, if an author explicitly wants to re-
fer to the name of the variable in a BFQL query, with the intention that the PėĔđĔČ engine
instantiates the variable with a substitution, then this is indicated with an upward directed
arrow index (X↑). In this case, the variable X is considered by the PėĔđĔČ engine as an ordi-
nary unbound PėĔđĔČ variable which can be instantiated once for each solution of the BFQL
query. If the PėĔđĔČ engine can infer one or more substitutions for the variable X, such that
the BFQL query is satisƤed, then one of these substitutions is nondeterministically chosen by
the IRE and used to replace the current value of the BFSC variable X with the new inferred
value. The inference of a substitution for the PėĔđĔČ variable X thus either results in a re-
instantiation of the BFSC variable X or is simply ignored if no such BFSC variable is deƤned.
If the variable X is used in any other BFGL expression or statement, such as, for example, a
variable deƤnition or assignment, in a logical or arithmetic expression, or as argument of a
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function call, then the variable can simply be denoted with its identiƤer without any arrow
index (X). In these cases, the variable is used as in other procedural or imperative program-
ming languages, that means that it is replaced by its value during evaluation if it is used as a
variable expression and its value is updated if used on the left hand side of an assignment.

5.4.2 Decomposition and Synchronization

MĔĉĚđĆė ƭ
CĔĒĕĔĘĎęĎĔēĆđ
SęėĚĈęĚėĎēČ

BFSCs apply the modeling principles of modularity and compositionality in the sense that
they provide syntactical constructs that allow their hierarchical reƤnement and parallel de-
composition. The concept of modularity is typically deƤned as a continuum describing the
degree to which a system’s components, in our case individual parts of a social agent’s behav-
ior and interaction model, may be separated and recombined. It refers to both, the tightness
of coupling between components, and the degree to which the system architecture enables
or prohibits the mixing and matching of components. In the context of this thesis, the term
modularity mainly refers to the modularity of mind which means the composition of the hu-
man mind, in particular its interaction behavior, into diơerent modules and processes which
have distinct established, evolutionarily developed, and socially grounded functions (Fodor,
1983). The principle of compositionality is the principle that the behavior of a complex sys-
tem, in our case the social agent’s interactive behavior, is determined by the behaviors of its
constituent parts, such as behavioral aspects, and the rules used to combine the behavior of
the individual parts to the overall system, that means the agent’s behavior (Pelletier, 2001).

CĔēĈĚėėĊēę ƭ
SĞēĈčėĔēĎğĊĉ
PėĔĈĊĘĘĊĘ

In the context of modeling the interactive behavior of social agents, modular and composi-
tional structuring of the model means that an author may separate the task of modeling the
overall behavior of an agent into separate tasks of modeling individual behavioral aspects
of behavior, such as, for example, diơerent behavioral modalities, functions, processes, and
levels. This is achieved by implementing the diơerent behavioral aspects in individual par-
allel BFSCs that are then executed in concurrent processes by the IRE. As already mentioned
in Section 3.2.2, examples for such parallel BFSCs are control processes for input event de-
tection and preprocessing, multi-modal fusion and behavior pattern recognition, decision
making regarding the interaction management and participant role assignment, or processes
that manage the diơerent aspects of the agent’s expressive behavior, such as reactive role-
dependent behaviors or the deliberate dialog management. These concurrent processes can
be coordinated using suitable BFGL constructs and BFQL mechanisms for inter-process com-
munication and synchronization. The proper interleaving and interplay of their computation
steps then compositionally produces a plausible overall behavior of a social agent.

MĆĎēęĆĎēĆćĎđĎęĞ
ƭ RĊĚĘĆćĎđĎęĞ
Ĕċ ęčĊ MĔĉĊđĘ

As a consequence of the hierarchical and parallel decomposition of the model, individual be-
havioral aspects can be modeled and modiƤed mainly in isolation without knowing each and
every details about the implementation of the other aspects, but, just knowing the synchro-
nization rules and signals that are exchanged between the respective processes. In addition,
particular behavioral aspects or patterns that have already been modeled in the past can easily
be reused and adapted. They can be adopted and integrated into new models or at diơer-
ent locations of the same model, thus, extending already existing models with new aspects.
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For example, already modeled BFSCs that are controlling the communication with external
software modules, input devices, or output interfaces can be added to an existing BFSC, just
like plug-in modules that are managed in a parallel process. This modular and compositional
modeling approach eơectively reduces the complexity of the behavior model and, thus, over-
comes the respective modeling restrictions and insuƥciencies of related modeling languages
described in Chapter 4 that rely on only a single thread of execution in a sequential model.

Parallel Decomposition

LĆėČĊ SęĊĕ
IēęĊėđĊĆěĎēČ

SĊĒĆēęĎĈĘ

BFSCs oơer two diơerent syntactical instruments for the purpose of parallel decomposition.
Parallel processes are created at a node that is marked with a start node marker (▷) or a fork-
ing construct that is speciƤed with a forkingmarker (■) and are regularly terminated at an end
node that is marked with an end node marker (⊚, ⧈). Both instruments can be used to split
the thread of execution into several separate processes that are concurrently and interleaved
executed by the IRE according to the already mentioned step interleaving semantics. This
semantics prescribes that individual parallel BFSCs are executed by concurrent processes of
which only one is selected and may execute a step at any time. A step executes a critical
section, that means, any computation or operation that can modify the BFSC’s information
and conƤguration state. The interleaving semantics guarantee the mutual exclusive access
to these sections and, thus, the consistency of the execution state. It also prescribes that all
processes, that are executing parent super nodes, must wait and may not execute any step
until all their child processes have regularly terminated before they proceed.

DĊċĎēĎēČ
MĚđęĎĕđĊ

SęĆėę NĔĉĊĘ

The Ƥrst method is the speciƤcation of multiple start nodes which is very similar to the def-
inition of orthogonal components of more classical state-charts (Harel and Politi, 1998). By
selecting multiple start nodes for a super node, an author implicitly deƤnes several parallel
BFSCs, each of which represents a connected component consisting of exactly those nodes
that are reachable from the respective start node, eventually sharing parts with other com-
ponents. During the execution of the BFSC, each individual start node marker (▷) creates a
new process that executes the corresponding start node and the subsequent nested BFSC.

Figure 5.4.9 shows an example of a super node with node identiƤer S1 (Figure 5.4.9 A⃝) that
has three start nodes with the node identiƤers N1, N2 and N3 (Figure 5.4.9 B⃝, C⃝, D⃝). The
process which is responsible for the execution of the super node S1 Ƥrst executes all program
statements of S1 before it creates a new child process for each start node of S1 during a single
step. These child processes then concurrently execute the three nestedBFSCs that are deƤned
by the reachable nodes of the respective start nodes N1, N2 and N3. In the meanwhile, the
parent process executing S1 waits until all its child processes have terminated and afterwards
continues by evaluating outgoing transitions of S1 and proceeding with their target nodes.

TčĊ UĘĆČĊ Ĕċ
FĔėĐĎēČ EĉČĊ
CĔēĘęėĚĈęĘ

The second method to create multiple concurrent processes in a BFSC is the use of forking
edges, which are very similar to the fork constructs of classical state-charts (Harel and Politi,
1998). They allow modelling parallel BFSCs on the same level of the node hierarchy without
the need of changing the level of the node hierarchy which is necessary when using super
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[N3] 

A 

B C D 

Figure 5.4.9: A super node containing several parallel nested BFSCs with their start nodes.

nodes with multiple start nodes for parallel decomposition. A forking edge construct consists
of a single, unlabeled, outgoing edge that originates the source node and that is split, using
a forking marker (■), into multiple edges that are ending in distinct target nodes.

 3rd Target  
Node 
[N4] 

Source  
Node 
[N1] 

 1st Target  
Node 
[N2] 

 2nd Target  
Node 
[N3] 

Figure 5.4.10: Several nodes connected with a forking construct that is splitting the execution.

Figure 5.4.10 shows an example of a forking edge construct that connects a source node with
node identiƤer N1 to three target nodes with the node identiƤers N2, N3 and N4. After the
process that executes the source node N1 has Ƥnished all program statements of N1 it is termi-
nated by the IRE and, in the same step, replaced with three new concurrent processes each
of which continues with the execution of one of the target nodes N2, N3 and N4.

Process Synchronization

SĞēĈčėĔēĎğĎēČ
CĔēĈĚėėĊēę
PėĔĈĊĘĘĊĘ

The parallel decomposition of the model allows modeling individual behavioral aspects, func-
tions and modalities in mainly insulated parallel BFSCs. The overall behavior of the model is
consequently no longer determined by a single process only executing a single ƪat and serial
BFSC, but, on the contrary, by the interleaving of multiple processes executed in parallel.
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However, the individual behavioral aspects that contribute to the behavior of a social agent
are rarely completely independent, but have to be coordinated and synchronized with each
other. Therefore, when modeling individual behavioral functions and modalities in sepa-
rate parallel BFSCs, the processes that concurrently execute these BFSCs have to be explicitly
synchronized by the author in order to coordinate the respective behavioral aspects. The im-
plemented synchronization rules determine the possible interleaving of the IRE’s individual
processes’ computation steps. BFSCs comprise a number of language constructs that enable
an author to model diơerent blocking or non-blocking mechanisms for the synchronization
these concurrent processes (Lamport, 1986a).

TčĊ SčĆėĊĉ
MĊĒĔėĞ

MĊĈčĆēĎĘĒ

BFSCs allow the synchronization via a sharedmemorymechanism using the jointly accessible
variables that are deƤned in the scope of some common super node. The step interleaving se-
mantics of BFSCs prescribes a mutually exclusive access to those variables (Lamport, 1986b)
in order to avoid inconsistencies. That means, any access to the variables of a super node
represents a critical section, such that a variable can only be read or written by a single pro-
cess of the BFSC at any point in time. The synchronization of several concurrent processes
can then be achieved if one of these processes writes the value of a variable while the other
processes are waiting, that means blocking, for read access. A reading process might then
constantly check the value of the variable and continue with their work depending on this
value.

Parent  
Node 
[S1] 

1st Start  
Node 
[N1] 

2nd Start  
Node 
[N3] C 

sync 
2nd Target 

Node 
[N4] 

sync  ← false 

1st Target  
Node 
[N2] 

sync  ← true 

B 

A 

60 s 

Figure 5.4.11: The usage of a shared variable named sync for the synchronization of BFSCs.

Figure 5.4.11 shows an example of the synchronization using the shared memory mechanism.
The two start nodesN1 andN3 are simultaneously started in two parallel child processes of the
process executing the super node S1 that deƤnes a shared variable named sync (Figure 5.4.11
A⃝). After 60 seconds, the Ƥrst process takes the transition to the node N2 where it executes

a BFGL statement which assigns the value true to the variable sync (Figure 5.4.11 B⃝). At the
same time, the second process waits in node N3 until it can take the interruptive transition
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to node N4, which is guarded by exactly this variable as conditional expression (Figure 5.4.11
C⃝). The second process then takes this interruptive transition in the next step, as soon as it

is scheduled again, after the variable has been set to true by the Ƥrst process and immediately
continues with the execution of node N4.

In addition to the variable-based synchronization via the shared memory, the BFGL also com-

TčĊ UĘĆČĊ Ĕċ
SęĆęĊ QĚĊėĞ
CĔēĉĎęĎĔēĘ

prises a built-in state query condition which represents a rather intuitive, state-based mech-
anism for the synchronization of two process. The condition allows Ƥnding out whether a
certain node is currently executed, at any point in time, by directly inspecting the internal
conƤguration state of the IRE. The query to the IRE’s conƤguration succeeds if the node iden-
tiƤer, that is handed over as argument, or any of its child nodes is currently executed by some
process and fails otherwise. The synchronization of two concurrent processes can then be
achieved if one of the processes enters a new state and the other process reacts to this con-
Ƥguration state change by taking a transition guarded by the corresponding state condition.

1st Start  
Node 
[N1] 

2nd Start  
Node 
[N2] B 

1st Target  
Node 
[S1] 

in(S1 ) 

A 

2nd Target 
Node 
[N3] 

30 s 

Figure 5.4.12: The usage of the built-in state condition in/1 for the synchronization of BFSCs.

Figure 5.4.12 shows an example of the synchronization using the state query condition in/1.
The two start nodes N1 and N2 are started simultaneously in two parallel processes. After 30
seconds, the Ƥrst process takes the transition to the super node S1 in which it remains until
all child processes of S1 have terminated (Figure 5.4.12 A⃝). At the same time, the second
process waits in node N2 until the state query condition in(S1) becomes true (Figure 5.4.12
B⃝), which happens in the same step in which the Ƥrst process enters the super node S1. The

second process then takes the interruptive transition guarded by the state query condition
and continues with the execution of node N3 in the next step.

TčĊ UĘĆČĊ Ĕċ
ęčĊ FĆĈę BĆĘĊ
MĊĈčĆēĎĘĒ

Finally, BFSCs allow the asynchronous communication and the exchange of data between
two processes (Lamport, 1978) using the fact base. Therefore, the BFQL provides a set of
predeƤned predicates that are used for signaling, sensing, and consuming special signal fea-
ture structures via the logic fact base between two particular processes or sets of processes.
Figure 5.4.13 illustrates the inter-process communication using the logic fact base. The two
start nodes N1 and N3 are started simultaneously in two parallel processes. After 3500 mil-
liseconds, the Ƥrst process takes the transition to the node N2 where it executes the query
with the BFQL predicate signal/2 (Figure 5.4.13 A⃝) which asserts an event feature structure
named sync to the fact base (Figure 5.4.13 B⃝). At the same time, the second process waits in
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node N3 until it can consume exactly this signal using the query with the BFQL predicate de-
tect/2 (Figure 5.4.13 C⃝). The second process then takes the transition guarded by this query
while extracting the feature structure from the fact base as soon as it detects the event and
afterwards continues with the execution of node N4.
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Figure 5.4.13: A signal exchange via the logic fact base using the predicates signal/2 and detect/2.

5.4.3 Interruption and History Mechanism

As explained in Section 3.2.3, unforeseen and distracting context events and sudden user in-
teractions or changing behavioral priorities or goals of the agent can rise at any time during
an interaction. Some of them must be processed and reacted to as fast as possible in order to
meet the real-time requirements for an immediate behavioral response. This might be nec-
essary to give the user the impression of presence and impact, for example, when promptly
stopping an utterance at an interruption attempt or following a gaze behavior at an attention
shift. However, there can also be events that may be processed at some later point in time,
allowing currently executed dialog phases or activities to be regularly terminated before re-
acting to the event, for example, when the agent is not willing to release the ƪoor. BFSCs
provide two adequate language constructs that can be used to realize, Ƥrst, the immediate
interruption and termination of behaviors or dialogs and, second, the coherent resumption
of behaviors, as described in Section 3.2.3. The interrupt mechanism of BFSCs is realized with
a reasonable combination of the hierarchical reƤnement and the aforementioned interruptive
transitions. The history mechanism Ƥnds its syntactic realization in a special history node
and a variety of built-in history operators that provide access to the history memory which is
part of the IRE’s conƤguration state.

Interruption Policy

IēęĊėėĚĕęĎěĊ
TėĆēĘĎęĎĔē

PĔđĎĈĞ

As mentioned before in Section 5.4.1, a transition can have a non-interruptive, that means,
either transient or persistent evaluation policy, or an interruptive evaluation policy. This
evaluation policy, which can also be regarded as interruption policy, then determines if the
source node’s program has to be fully executed before the transition can be taken or if it may
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be aborted in between the individual statements of the program. Consequently, interruptive
transitions can be used to realize fast suspensions of a node’s execution in reaction to user
inputs or context events as they are necessary for immediate behavioral responses and the
realization of changes of behavioral priorities and goals, as motivated in Section 3.2.3. When-
ever an interruptive transition of a node can be taken, then the IRE may not execute any more
steps, which means command statement of this node but has to take the transition as soon
as possible in order to achieve an immediate reaction. If possible, even currently executed
activities, such as the playback of behavioral activities or the execution of methods of the
underlying programming language, should be aborted and returned from as quickly as pos-
sible. As soon as the currently executed activity has Ƥnished, the execution of the respective
process directly continues with the target node of the interruptive transition.

RĊĈĚėĘĎěĊ
PėĔĕĆČĆęĎĔē
ƭ PėĎĔėĎęĎĊĘ

A process that is executing a super node usually has to wait until all its child processes which
are executing nested subnodes of this super node have fully terminated. Consequently, if the
source node of an interruptive edge is a super node, then an immediate transition can only
be realized if also all child processes of the process executing this super node are recursively
terminated as fast as possible, which means, before any of these child processes can execute
a statement or take a transition. To achieve this recursive termination of all child processes,
a termination signal is propagated such that the IRE’s processes may not take any edges or
execute any more command statement of the corresponding nested nodes. This recursive
termination policy implicitly introduces a priority on interruptive edges at diơerent levels in
a super node hierarchy. Interruptive edges at super nodes that are closer to the root in the
node hierarchy of the BFSC have priority over any edges farther from the root. In contrast, a
non-interruptive edge on a super node, has no inƪuence on the execution of the descendant
subnodes and can never cause the abortion of a child process. Consequently, such an edge
can never be taken until the execution of all descendant nodes of this super node has properly
terminated and all other conditions to take the edge are satisƤed. This non-interruptive eval-
uation policy is, thus, automatically giving higher priority to any non-interruptive transition
at nodes that are farther from the root.

History Mechanism

AĚęĔĒĆęĎĈĆđđĞ
CĔđđĊĈęĊĉ
IēċĔėĒĆęĎĔē

BFSCs comprise an exhaustive, automatically maintained, and easily operated historymecha-
nism comparable to the history concept of classical state-charts (Harel, 1987; Harel and Politi,
1998). During the execution of a BFSC, the IRE automatically maintains a history memory in
which it records runtime information about individual execution steps of the model, such as
the runtime of recently executed nodes, the last values of local variables, and a list of already
executed commands. It additionally records the recently executed nested subnodes of all su-
per nodes at the time point of the super node’s regular termination or preemptive abortion
due to an interruption. When modeling resumption strategies or recapitulation phases for
interrupted dialog and interaction phases, then the author can fall back on this automati-
cally gathered runtime information about the past states of the BFSC’s execution instead of
requiring the user to collect and maintain this information in a manually managed history
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memory realized, for example, with variables or as part of the logic fact base.

PėĊĉĊċĎēĊĉ
HĎĘęĔėĞ

OĕĊėĆęĔėĘ

The history of BFSCs collects more runtime information than classical variants, thus giving
an author more opportunities to utilize the history memory. The BFGL provides a variety of
history operators that support an author using the interaction history. For the easy access
to the history memory, it provides a of built-in history expressions and history conditions
that can be used to infer, modify, or delete speciƤc information deposited in the history. It
also provides history commands that are used to conƤgure speciƤc features of the history
mechanism at runtime, such as, for example, its depth or the information that has to be
recorded. A detailed listing of all history expressions, conditions, and commands that are,
for example, provided in a reference implementation of the predecessors of BFSCs can be
found in Mehlmann (2009) and are also presented later in this thesis in Chapter 7. The
interaction history is graphically represented within a BFSC in form of special history nodes
which are automatically created special start nodes of each super node. They are depicted
with a grayish circle and marked with a gray history node marker (▷). When re-executing a
super node, the super node must start at the history node instead of its default start nodes if
there exist any outgoing transitions from the history node. Thus, the history node serves as
a starting point for the author to model reopening strategies or recapitulation phases for the
dialog topic or interaction logic in this speciƤc super node.
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Figure 5.4.14: The exemplary use of the history node and a history condition in a super node.

The simple BFSC in Figure 5.4.14 schematically illustrates the use of a super node’s history
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node and a history condition. The super node S1 models a simple dialog that consists of a
series of diơerent phases that are modeled by the nested super nodes S2, S3, S4, and so on.
This simple sequential structuring is a common way to hierarchically divide a dialog or task
into individual subdialogs or subtasks. If the execution of the super node S1 is interrupted at
some point in time (Figure 5.4.14 A⃝) and resumed afterwards (Figure 5.4.14 B⃝), for example,
due to a topic switch or a distracting event, then it’s history node H1 serves as starting point
of a repeated execution of S1 at a later point in time (Figure 5.4.14 C⃝). The built-in history
condition HistoryContains/2 is evaluated in order to Ƥnd out if the super node S1 has been
interrupted during the execution of child node S2, S3 or S4 (Figure 5.4.14 D⃝). Because already
Ƥnished dialog phases must not be repeated again, the implemented reopening strategy Ƥrst
infers the subdialog in which S1 was interrupted and then introduces a short recapitulation
dialog in R2, R3 or R4 before restarting the previously interrupted subdialog again. If, for ex-
ample, the interruption took place while executing S3, then S1 is resumed by, Ƥrst, reopening
the dialog in R3 (Figure 5.4.14 E⃝) and then restarting the subdialog in S3 (Figure 5.4.14 F⃝).

IēęĊėėĚĕęĎĔē
ƭ CĔčĊėĊēę
RĊĘĚĒĕęĎĔē

The example in Figure 5.4.14 shows, that the main advantage of the history mechanism is, on
the one hand, that the automatic maintenance of the history memory releases the author of
the manual collection of relevant runtime data which eƥciently helps to reduce the modeling
eơort and time while increasing the clarity and reusability of the model. On the other hand,
the interaction history provides the author with rich information about previous interactions
and states of execution which signiƤcantly facilitates modeling the resumption of behavioral
processes, especially the realization of reopening strategies for behaviors and recapitulation
phases of dialogs. These reopening strategies are then not only chosen at random but fall
back on the information in the interaction history. This makes the overall interactive per-
formance more lively and erratic and therefore more appealing and compelling for the user.
After all, the prioritization and resumption of behaviors, as described in Section 3.2.3, can be
realized via, Ƥrst, the immediate abortion of a behavior modeled in a super node using an
interruptive transition, and, second, the use of the history mechanisms to coherently resume
the behavior in this super node when it is re-executed at a later point during the interaction.

5.5 Summary and Conclusion

In this chapter, I proposed a novel modeling framework, called BFML, to modeling the in-
teractive behavior of artiƤcially and socially intelligent agents. Initially, in Section 5.1, I iden-
tiƤed a number of important guidelines and conditions for the design of BFML. The frame-
work architecture was, for example, chosen to allow an iterative and distributed development
while the ensemble’s modeling languages should be intuitive to use and syntactically close to
natural language. Afterwards, in Sections 5.2 to 5.4, I described the theoretical foundations
and deƤnitions of the individual modeling languages. First, in Section 5.2, I showed how
the template-based, textual, description language BFSL can be used to specify expressive and
versatile multi-modal behaviors as well as credible and informed dialog content. Then, in
Section 5.3, I explained how the declarative, domain-speciƤc, PėĔđĔČ calculus, called BFQL,
is used for multi-modal fusion and knowledge reasoning tasks or inter-process communi-
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cation. Finally, in Section 5.4, I pointed out how BFSCs and BFGL are used for the close
coordination, which means interleaving, synchronization, and prioritization, of concurrent,
hierarchical, incremental, and reciprocal behavioral functions and processes.

BFML is the Ƥrst such modeling approach to combine the beneƤts of a specially designed hier-
archical and concurrent state-chart variant, a domain-speciƤc logic calculus and a template-
based behavior description language for this purpose. With respect to expressiveness, it goes
beyond the state-of-the-art eơorts because it successfully masters the complex coordination
and interplay of the many functions and aspects that underlie interpersonal coordination
and grounding. In this, it has a remarkable practicability since it uses mostly declarative
and visual modeling and description languages as well as uniform representation formats. It
usable for computer experts as well as people without programming skills. Thus, it may, for
example, be used as an educational tool by pupils, students, and teachers or by artists, screen-
writers, and social psychologists in order to exploit their expert knowledge in the respective
areas. It is suited for the rapid prototyping of simple as well as the creation of sophisticated
but still manageable models. Exploiting the modeling principles of modularity and compo-
sitionality, it allows the iterative and distributed development which reduces the modeling
eơort and complexity while improving maintainability and reusability.
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CčĆĕęĊė 6

IđđĚĘęėĆęĎĔē — MĔĉĊđĎēČ SĔĈĎĆđ
Ćēĉ CĔđđĆćĔėĆęĎěĊ JĔĎēę AĈęĎěĎęĎĊĘ

In Chapter 5, I presented the conceptual design of theBFML ensemble members. This mainly
aimed at introducing the formal foundations of the underlying modeling formalisms and giv-
ing an impression of the expressiveness and practicability of the modeling approach in view
of the challenges described in Chapter 3. However, the chosen examples and illustrations
remained rather basic and could be insuƥcient for fully understanding how the modeling
concepts and languages are combined to a sophisticated behavior and interaction model that
coordinates an agent’s behavioral aspects of interpersonal coordination and grounding.

For fully understanding the modeling approach, we now put hands on and explain how it is
used in the development of a behavior and interaction model for an application with a joint
activity between the user and a social agent. The therefore created model is designed to be
pretty generic, that means it can be reused as whole model or in selected parts and adapted
to speciƤc concerns in similar applications. It served as tool chest for various demonstrator
applications (Damian et al., 2013; Baur et al., 2013a; Mehlmann et al., 2014b,a; Damian et al.,
2015; Mehlmann et al., 2016; Wanner et al., 2016) which were used to research the functions
of gaze as well as the eơect of turn-taking and interruption strategies on interpersonal coor-
dination and grounding (Mehlmann et al., 2014a,b; Gebhard et al., 2014; Wanner et al., 2016;
Gebhard et al., 2017) in social interactions with artiƤcially intelligent agents.

In the remainder of this chapter, in Section 6.1, I Ƥrst present the sensor setup, system, and
software architecture as well as the scenario of the illustrative application and the underlying
demonstrators. In Section 6.2, I explain how the user’s input events are modality-speciƤcally
preprocessed and how application-speciƤc domain knowledge is represented. Finally, in Sec-
tion 6.3, I provide a detailed description of the behavior ƪows that make up the central part of
the agent’s behavior and interaction model. For readability and consistency with the previous
chapters, these are depicted in their conceptual notation. The full model in its executable
syntax, together with the SWI-PėĔđĔČ source code of all therein used BFQL predicates, is
provided with the downloadable open-source version of the VSM3 authoring software1.

1http://scenemaker.dƨi.de
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6.1 Setup, Architecture and Scenarios

The behavior and interaction model, used for the illustration of the modeling approach in
this chapter, is fairly powerful since it coordinates a lot of behavioral processes in a single
computational model. It has emerged from multiple individual computational models each
of which has been developed for a speciƤc demonstrator application. The sensor and appli-
cation setup, system and software architecture as well as the interaction scenarios of these
demonstrators share a lot of characteristics that are also presupposed for the illustrative ap-
plication in this chapter. The user interacts with a social robot companion or embodied con-
versational virtual character in a dyadic interaction, for example, by jointly playing a dialog-
based serious game or cooperating in the completion of a collaborative joint activity.

6.1.1 System Setup And Architecture

AĕĕđĎĈĆęĎĔē ƭ
SĊēĘĔė SĊęĚĕ

Figure 6.1.1 shows the general application and sensor setup which is common to all demon-
strator applications developed in the course of this thesis and underlying the illustrative
application. The user and the agent are communicating via natural language and a vari-
ety of additional social signals and applications-speciƤc actions in diơerent modalities (Fig-
ure 6.1.1 A⃝). Among the therefore used sensors and interaction devices are, for example,
a Tascam2 audio interface with a noise canceling microphone, SMI3 eye-tracking glasses, a
Microsoft®Kinect4 sensor or a Microsoft®Surface5 table.

Figure 6.1.1: The general system setup of the applications that have been developed in this thesis.

The largest part of the user’s multi-modal input is captured, synchronized, preprocessed, and
interpreted using the SSI framework (Wagner et al., 2013) (Figure 6.1.1 B⃝). SSI allows con-
Ƥguring pipelines which execute sequences of preprocessing computations and data-driven
or rule-based classiƤcation algorithms to interpret the user’s input. Frequently used meth-

2http://www.tascam.eu/
3http://www.smivision.com/
4http://www.kinectforwindows.org/
5http://www.pixelsense.com/
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ods are, for example, SRGS6 speciƤcations, the W3C standard for speech recognition and
parsing grammars, Ƥnite-state-based methods for gesture and posture recognition (Kistler,
2016), or hybrid probabilistic models with Dynamic Bayesian Networks (Murphy, 2002) for
the recognition of higher level social attitudes and regulation strategies (Baur et al., 2015).

The recognized events are forwarded to the VSM3 framework (Figure 6.1.1 C⃝) where they
are inserted to the event history of the PėĔđĔČ fact base and then further processed by the
behavior and interaction model using the BFQL. The agents’ interactive behavior is controlled
with scene ƪows, the reference implementation of behavior ƪows in theVSM3 authoring suite
(Gebhard et al., 2012; Mehlmann et al., 2016). Among others, the agents have been embodied
conversational Charamel CharActor7 characters within a virtual TriCat Spaces8 environment
or virtual characters in the Horde 3D Game Engine9. In other applications we used humanoid
NAO10 or Robokind11 robots as well as Reeti12 or Baxter13 robots (Figure 6.1.1 D⃝).
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Figure 6.1.2: A schematic illustration of the data ƪow within our application’s software architecture.

SĞĘęĊĒ ƭ
SĔċęĜĆėĊ
AėĈčĎęĊĈęĚėĊ

Figure 6.1.2 shows an illustration of the data and control ƪow between some important com-
ponents of our illustrative application’s software architecture. It depicts important SSI plug-
ins and the data ƪow between them in the SSI framework (Figure 6.1.2 A⃝). Among those are,
the gaze recognition pipeline with the SMI eye-tracking glasses, the ARTK+14 marker detec-

6https://www.w3.org/TR/speech-grammar/
7http://www.charamel.de/
8http://www.tricat.net/
9https://www.hcm-lab.de/

10http://www.aldebaran-robotics.com/
11http://robokind.com/
12http://www.robopec.com/
13http://www.rethinkrobotics.com/
14http://www.artoolkit.org/
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tion and the object Ƥxation recognition. Furthermore, it shows the voice activity and speech
recognition pipelines based on the audio device sensor and the Microsoft® speech platform
15 plug-in. It also contains the Microsoft®Kinect-based gesture, posture, and body property
detection based on the FUBI (Kistler, 2016) and NĔěA (Baur et al., 2015) plug-ins.

The architecture also shows the role of the surface table and the thereon executed applica-
tion (Figure 6.1.2 B⃝). Other central components are the modules and knowledge bases of
the VSM3 runtime environment (Figure 6.1.2 C⃝), including the PėĔđĔČ fact base with the
BFQL server as well as the BFSC models and BFSL scripts. The diagram also shows how the
agent platforms are integrated using platform-speciƤc executor plug-ins that operate on the
platforms’ programming interfaces (Figure 6.1.2 D⃝). Finally, the architecture also comprises
the NĔěA activity logger (Figure 6.1.2 E⃝) which is used to automatically record the agent’s
and user’s behavior for a later analysis and cooperative annotation (Baur et al., 2013b).

6.1.2 Interaction Scenario Description

RĔćĔęPĚğğđĊ
AĕĕđĎĈĆęĎĔē

The Ƥrst application serving as role model for our illustrative application is the RĔćĔęPĚğğđĊ
application (Mehlmann et al., 2014b,a, 2016), a collaborative joint activity between the user
and a social robot on a shared workspace. The robot companion is assisting the user during
the completion of a sorting task on a surface table. In this, it is giving sorting instructions
that can contain ambiguous verbal references to pieces and slots on the table. The user can
consider the robot’s directed gaze and pointing gestures or engage into a clariƤcation dialog
to resolve these ambiguities. When asking for clariƤcation, the user may himself use am-
biguous referring expressions, such that the robot can, the other way round, take the user’
gaze into account for the multi-modal disambiguation of these references. The RĔćĔęPĚğ-
ğđĊwas used to investigate the diơerent functions of gaze behavior, especially joint attention,
turn-taking and multi-modal disambiguation, for interpersonal coordination and grounding
during such collaborative joint activities. The aim was to explore to which extent the robot’s
capability to master and coordinate the diơerent social and functional aspects of gaze con-
tributes to the eơectiveness of the sorting task and his social perception.

The SSI pipeline in the RĔćĔęPĚğğđĊ is used to interpret the user’s gaze Ƥxations to objects
and areas on the table and to parse his dialog acts from clariƤcation questions. The used
robot is able to use natural language instructions that can be accompanied with pointing
gestures and directed gaze to the objects and areas. The VSM3 authoring suite is used to
model the dialog and interaction behavior of the robot instructor and, in particular, to realize
the multi-modal disambiguation using the logic quantiƤcation of the BFQL and manage the
robot’s domain knowledge within the logic PėĔđĔČ fact base.

Figure 6.1.3 shows the demonstrator setup and sensor setting of the RĔćĔęPĚğğđĊ. The user
(Figure 6.1.3 A⃝) is sitting vis-à-vis a NAO robot (Figure 6.1.3 B⃝) on a Microsoft®Surface table
(Figure 6.1.3 C⃝). The user wears SMI eye-tracking glasses and a noise canceling microphone
for speech recognition (Figure 6.1.3 D⃝). A Microsoft®Kinect sensor is positioned behind the

15http://msdn.microsoft.com/library/hh361572.aspx
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G 

Figure 6.1.3: The scenario and setup of the RĔćĔęPĚğğđĊ application on the left and a capture of the
eye-tracking video that has been processed in the SSI framework (Wagner et al., 2013) on the right.

robot for the recognition of the user’s head movements and gestures (Figure 6.1.3 E⃝). The
puzzle pieces on the surface table have distinguishable features such as a size, color, shape
and position. They are marked with Byte Tags on their bottom side in order to track their
position and with ARTK+ markers on their top side to recognize the pieces the user is looking
at via marker tracking on the video of the eye-tracking glasses (Figure 6.1.3 F⃝). The pieces
have to be sorted into diơerent puzzle slots that are realized with overlay areas which are
displayed on the surface table and are labeled with unique numbers (Figure 6.1.3 G⃝).

SĔĈĎĆđCĔĆĈč
AĕĕđĎĈĆęĎĔē

The interaction scenario of the illustrative application corresponds to the largest part to that
of the RĔćĔęPĚğğđĊ but shares additional characteristics with the SĔĈĎĆđCĔĆĈč application
(Damian et al., 2013; Baur et al., 2013a; Damian et al., 2015). This application realizes a kind
of serious game between the user and various virtual social coach characters in form of a
social job application training. The training comprises a simulated job interview in which
the user is confronted with interview partners with varying personalities using diơerent in-
terview strategies. A consecutive debrieƤng phase is used to recap, discuss and assess the
user’s behavior in speciƤc interview situations. The SĔĈĎĆđCĔĆĈč was developed with the
goal to investigate diơerent emotion regulation and coping strategies of users as well as the
function of interruptions and the perception of the agent’s interruption handling strategies
during this kind of social interaction. With regard to user interruptions, we wanted to ex-
plore to which extent diơerent interruption handling strategies of the agent inƪuence the
assessment and perception of the agent’s dominance, involvement and friendliness as well as
the comfortableness of the user.

The SSI processing pipeline in the SĔĈĎĆđCĔĆĈč is able to recognize the user’s social cues and
behavioral patterns for coping strategies and emotion regulation using a hybrid, that means
theory-based and data-driven approach (Baur et al., 2015) as well as the user’s voice activity
and spoken keywords with a simple threshold-based method. The character animation and
virtual environment engine provides diơerent sceneries and virtual embodied conversational
characters. The VSM3 authoring suite is used to model the dialog and interaction behavior
of the diơerent interview partners and debrieƤng assistants.
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Figure 6.1.4: The setup of the SĔĈĎĆđCĔĆĈč application with the user, the sensor setup, the virtual
embodied characters as well as the SSI pipeline visualization and event monitor (Wagner et al., 2013).

Figure 6.1.4 shows a demonstrator setup and sensor setting of the SĔĈĎĆđCĔĆĈč. The sce-
nario shows the human user (Figure 6.1.4 A⃝) in front of a screen displaying an embodied
conversational Charamel CharActor character within the virtual TriCat Spaces environment
(Figure 6.1.4 B⃝). The user wears a noise canceling microphone for voice activity and speech
recognition (Figure 6.1.4 C⃝). A Microsoft®Kinect sensor is positioned behind the screen for
the recognition of the user’s head movements, gestures and body properties (Figure 6.1.4 D⃝).
The SSI framework (Wagner et al., 2013) captures and synchronizes the user’s skeleton data
and camera image (Figure 6.1.4 E⃝) and reports voice activity and keyword events (Figure 6.1.4
F⃝) based on the user’s preprocessed audio input (Figure 6.1.4 G⃝).

SĈĊēĆėĎĔ Ĕċ
IđđĚĘęėĆęĎěĊ
AĕĕđĎĈĆęĎĔē

The interaction scenario of the illustrative application combines those of the RĔćĔęPĚğğđĊ
and the SĔĈĎĆđCĔĆĈč application. In addition, the Microsoft®Kinect is used to detect facial
expressions using an SSI module based on the SčĔėĊ16 or OĕĊēFĆĈĊ17 libraries. Thus, the
agent’s behavior comes very close to that of the social robot Charly in the example from Sec-
tion 1.2. Resembling human interaction, both partners exploit various multi-modal behaviors
for interpersonal coordination and grounding. Gaze cues are aligned with verbal contribu-
tions and touch actions to regulate the speaker and listener roles and ensure a ƪuent inter-
action ƪow. Touch and speech behaviors are used for interruption attempts that are handled
based on parameterizable detection and handling policies. Gaze is used to continually give
and elicit feedback signals and follow or direct the other’s attention to objects, events or per-
sons. The combination of gaze, gestures and speech is used to multi-modally refer to objects
on the workspace. Disruptions of the common ground due to ambiguous referring expres-
sions are disambiguated by considering the partner’s gaze. Unresolved ambiguous references
can be disambiguated by engaging in a clariƤcation dialog. The illustrations in the following
sections illustrate the coordination of these behavioral functions and their integration with
the ƪoor and dialog management in a single behavior and interaction model.

16https://www.iis.fraunhofer.de/
17https://cmusatyalab.github.io/openface/
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6.2. Preprocessing Input and Context

6.2 Preprocessing Input and Context

The user’s voice, speech, gaze, and all other input events, except touch events, in the illustra-
tive application are captured, synchronized, preprocessed, and interpreted by the respective
modality-speciƤc interpretation plug-ins of the SSI framework. Touch events, such as the
movement, placement, and dragging of puzzle pieces on the surface table are directly for-
warded from by the surface application to VSM3. The corresponding event feature structures
are asserted to the event history of the logic fact base. They carry modality-independent fea-
tures, such as timestamps and conƤdence values, and modality-speciƤc semantic informa-
tion, such as gaze target distributions and abstract dialog acts. The application knowledge is
initialized by the surface application, then transmitted to the VSM3 and as well represented
as feature structures in another part of the logic fact base. It comprises information about
the individual puzzle slots and pieces as well as the robot’ instructions for a sorting task.

6.2.1 Representing Domain Knowledge

RĊĕėĊĘĊēęĎēČ
FĎĊđĉĘ ƭ PĎĊĈĊĘ

Figure 6.2.1 shows feature structures representing the knowledge about an exemplary puzzle
piece (Figure 6.2.1 A⃝) and a particular puzzle Ƥeld (Figure 6.2.1 B⃝). Among other attributes,
they contain unique name and unambiguous description which are used to unambiguously
refer to them in instructions or clariƤcations. A piece additionally contains distinguishable
features, such as a size, color, and shape as well as a position and a state that encode whether
and where it is lying on the table. A Ƥeld contains a unique number which is displayed on
its overlay on the surface as well as a position and bounding area which are used to check if
a puzzle piece has been placed on it.
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Figure 6.2.1: The exemplary representation of a puzzle piece A⃝ and a Ƥeld B⃝ as feature structures.

RĊĕėĊĘĊēęĎēČ
IēĘęėĚĈęĎĔēĘ

Figure 6.2.2 shows two feature structures representing exemplary sorting task instructions.
They contain the information needed by the agent to give the respective instruction and
check if the user properly executed it. This include a unique name and possibly ambiguous
textual description that is used for the instruction. For example, the instruction “move the
green puzzle piece to the Ƥeld with number six” (Figure 6.2.2 A⃝) could be ambiguous if there
would lie two or more green puzzle pieces on the surface table. The instruction “move the
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small red star to the Ƥeld with number seven” (Figure 6.2.2 B⃝) is, in turn, accurately speciƤed
because it speciƤes all three distinguishable features and can not be ambiguous because there
can only exist one single puzzle piece with exactly the same feature set. An instruction also
contains the identiƤers of the puzzle piece and Ƥeld used in this instructions. These can be
used to check if the user properly understood the instruction and moved the correct puzzle
piece to the intended puzzle Ƥeld. They can also be used to construct unambiguous descrip-
tions of the instruction for a clariƤcation statement by falling back on the aforementioned
unambiguous denominations of the corresponding entities.
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Figure 6.2.2: The exemplary representation of an ambiguous A⃝ and an unambiguous instruction B⃝.

6.2.2 Preprocessing User Input Events

SęĆęĊ, VĔĎĈĊ
ƭ SĎĒĎđĆėđĞ

SĎĒĕđĊ EěĊēęĘ

Figure 6.2.3 shows some examples of feature structures for rather simple event types that
carry only lexical content. The Ƥrst two represent state events (Figure 6.2.3 A⃝) which in-
form the model if user and agent are taking part in the interaction. They must be produced
by an SSI module which signals whenever a participant is entering or leaving the interac-
tion, for example, based on a suitable visual sensor device. The next two feature structures
represent voice events (Figure 6.2.3 B⃝) which notify the model whenever the user or the
agent start or stop speaking. The user’s voice events are produced by the voice activity recog-
nition module listening on a microphone. The agent’s voice events must be produced by
the agent’s executor instance when receiving speech synthesis notiƤcations from the agent’s
text-to-speech engine. The last structure represents a facial expression event (Figure 6.2.3 C⃝)
which is produced by an appropriate facial expression recognition module of SSI whenever
the user displays an emotion or a cognitive state.
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Figure 6.2.3: Examples of simple input events, like state A⃝, voice B⃝ and facial expression events C⃝.
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Figure 6.2.4 shows diơerent touch events that are produced by the surface application when
the user starts (Figure 6.2.4 A⃝), continues (Figure 6.2.4 B⃝) or stops dragging a puzzle piece.
They are similar to object movement events, which are generated by the surface table when-

SĚėċĆĈĊ TĆćđĊ
OćďĊĈę TĔĚĈč
ƭ MĔěĊ EěĊēęĘ

ever the user lays down a puzzle piece or has just Ƥnished moving it to a Ƥeld or position on
the surface. A touch event therefore has a type which speciƤes if the user just starts, stops,
or continues dragging as well as the name and current position of the moved object.
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Figure 6.2.4: The exemplary representation of a start touch A⃝ and a drag continue touch event B⃝.

EĞĊ-TėĆĈĐĎēČ
NĔĎĘĊ ƭ
JĎęęĊėĎēČ

Even the most accurate eye-tracking system has to cope with noise during the measure-
ment of gaze Ƥxations and eye movements. A certain degree of noise is introduced by the
technology-related inaccuracy due to the imperfectness of the calibration-based transforma-
tion algorithms as well as sensor device errors and loss of data. The larger proportion is the
result of biology-related factors due to eye movements, such as tremor and micro-saccades,
eye jittering, eye blinking and also a natural random oơset due to fuzzy fovea dimensions
between the vector of actual attentive gaze direction and eye optical axis (Špakov, 2011).

When using a mobile eye-tracker and physical objects, as in the illustrative application, the
Ƥxated objects on a surface are determined by mapping gaze points to recognized objects on a
constantly changing video image. This association of gaze points with objects is substantially
inƪuenced by the quality of the computer vision methods for object or marker recognition
on the video image (Freeman et al., 2007). Errors in detecting the visual parameters, such as
thermal noise, pixelization, or calibration, and algorithmic errors, changing light conditions
and diơerent viewing angles, can cause object recognition errors that sum up with the noise
of the eye-tracking device to false measurements.

GĆğĊ DĆęĆ
PėĊĕėĔĈĊĘĘĎēČ
AđČĔėĎęčĒ

To cope with such noise, the recognition module must average the user’s gaze target mapping
over several frames. Therefore, it Ƥrst selects the object which is geometrically including the
gaze point (Hansen et al., 2001), is the closest of all objects to it (Monden et al., 2005), or is
among a few nearest objects to it (Xu et al., 2008). Then is compensates for object tracking
errors or gaze point losses by applying a smoothing algorithm over several frames. This helps
to transform the noisy raw gaze and object recognition data into a smooth and coherent
object gaze mapping or probability distribution (Mehlmann et al., 2014a).
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Algorithm 6.2.1 The algorithm that computes regular gaze events from the raw video image
and coordinate streams provided by the eye-tracking glasses and the list of ARTK+ markers.

1: procedure TėĆēĘċĔėĒ(Video v, Point g, List l)
2: Δmax ←

√
v2
w + v2

h
3: if gx ≥ 0 ∧ gx ≤ vw ∧ gy ≥ 0 ∧ gy ≤ vh then
4: for all m ∈ l do
5: if visible(m) then
6: Δm ←

√(gx −mx)2 + (gy −my)2

7: else
8: Δm ← min(δ ⋅ Δm,Δmax)
9: end if

10: Φ∗
m ← (1 − (Δm/Δmax))φ

11: Φm ← σ ⋅ Φm + (1 − σ)Φ∗
m

12: end for
13: end if
14: end procedure

For recognizing the user’s gaze targets, the SSI framework was extended with a plug-in that
can work with raw noisy eye-tracking and marker-tracking data. It implements the simple
algorithm shown in Algorithm 6.2.1 to reduce the inƪuence of recognition errors, data losses
or outliers that occur, for example, whenever the user blinks, rolls his eyes, or is shortly dis-
tracted. The algorithm also reduces the sample rate such that the gaze events arrive at VSM3

with a lower customizable frequency. In each frame, the algorithm computes the distances of
all recognized puzzle pieces and the robot’s chest to the user’s gaze position (Algorithm 6.2.1
6⃝). Then it computes a Ƥxation conƤdence for each marker based on this distance and the

respective conƤdences in the past few frames (Algorithm 6.2.1 11⃝).
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Figure 6.2.5: The exemplary representation of a gaze distribution A⃝ and a gaze target event B⃝.

FĎĝĆęĎĔē ƭ
DĎĘęėĎćĚęĎĔē
GĆğĊ EěĊēęĘ

Based on Algorithm 6.2.1, the gaze recognition can either produce a gaze event carrying a
Ƥxation conƤdence distribution or it simply generates an event that carries only the best hy-
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pothesis every couple of frames. As shown in Figure 6.2.5, a gaze distribution event contains
a list with an entries for each individual puzzle piece containing the probability that the user
looks at this speciƤc puzzle piece (Figure 6.2.5 A⃝). As simpliƤcation, but without restriction
of generality, the illustrative model uses simple gaze target events containing only the puzzle
piece with the highest probability, so to say the best hypothesis (Figure 6.2.5 B⃝).

[ ]

































































































































0.95
4897
4564

green
square
yellow
large
stionchoice_que

nginfo_seeki
dialog_act

52305
speech
user
event

    :CONF
      :DIST

       :LIFE

COLOR

SHAPE
COLOR

SIZE

  :DATA

     :CAT

     :FUN

   :TYPE

     :DATA

    :TIME
   :MODE

:NAME
      :TYPE

  

   :
    :
   :

        :

 

   

[ ]

































































0.85
3897
3670

yellow
onset_questi
nginfo_seeki

dialog_act
39021
speech
user
event

    :CONF

      :DIST

       :LIFE

   :COLOR  :DATA

     :CAT

     :FUN

   :TYPE

     :DATA

     :TIME
   :MODE

:NAME
      :TYPE

  

   
A B 

Figure 6.2.6: The exemplary representation of a set A⃝ and a choice question B⃝ speech act.

SĕĊĊĈč EěĊēęĘ
ƭ DĎĆđĔČ AĈęĘ

Figures 6.2.6 and 6.2.7 show examples of the diơerent types of speech events that are pro-
duced by the natural language understanding pipeline of the SSI framework. In this, the
user’s utterances are transcribed and parsed into abstract dialog acts using a semantic parser
which is based on the Microsoft® speech platform. According to the DiAML18 classiƤcation
scheme (Bunt et al., 2010; Bunt, 2011; Bunt et al., 2012), the communicative function of the
user’s clariƤcation questions is information seeking. Based on the type of question the result-
ing dialog act can have three diơerent semantic categories. A set question asks for a decision
between an unspeciƤed number of entities that Ƥt to a description that the robot used in the
preceding instruction. They are usually used to ask for the reƤnement of a description in or-
der to narrow down the list of possible alternatives. Figure 6.2.6 A⃝ shows a feature structure
representing the set question “which yellow one do you mean?” which could be asked in re-
action to the agent’s ambiguous instruction to move a yellow puzzle piece. A choice question
asks for the decision for a speciƤc puzzle piece from a list of possible candidates. Figure 6.2.6
B⃝ shows a feature structure representing the choice question “do you mean the green one or
the large yellow square?”. A check question is a type of propositional question that is used by
the user to check the understanding of an entity’s description. They are usually used to get
a conƤrmation that the agent actually proposed or referred to a particular puzzle piece. Fig-
ure 6.2.7 A⃝ shows a feature structure representing the check question “do youmean the large
yellow square?” used as reaction to the agent’s instruction to move a square piece. In the
RĔćĔęPĚğğđĊ application, a speciƤc application-speciƤc part of the logic is used to resolve
unimodal referring expressions such as “the yellow square” by implementing an algorithm

18http://semantic-annotation.uvt.nl
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similar to that described by Ros et al. (2010). It determines a set of puzzle pieces that match
the list of features from the user’s description and computes the optimal set of discriminating
features to correct the user with an unambiguous answer.
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Figure 6.2.7: The exemplary representation of a check question without A⃝ and with spatial deixis B⃝.

6.2.3 Disambiguating Speech with Gaze

All types of questions that the user might ask can contain verbal referring, in better words,
spatial deictic expressions (Levinson, 2008), such as “there” or “here”. For example, Fig-
ure 6.2.7 B⃝ shows the representation of the check question “do you mean the yellow one
over there?” which contains the spatial deictic referring expression ”over there”. The user
would usually use such a formulation when referring to a speciƤc puzzle piece while point-
ing or looking at it. Consequently, if the user’s utterance contains a location referent then
the agent should consider his referential gaze or directed pointing gestures to resolve the
multi-modal reference. The BFQL provides several predicates to disambiguate the user’s ver-
bal references with his gaze Ƥxations during a surrounding time window. These rely on the
predeƤned BFQL predicates evaluating temporal constraints and generalized quantiƤers as
well as application-speciƤc matching predicates examining the semantic accordance of the
user’s verbal feature descriptions with the features of all available puzzle pieces.

Listing 6.2.1 shows the Prolog implementation of a predicate that tries to disambiguate the
location referent carried by the dialog act of the user’s check questions with the user’s gaze.
It Ƥrst checks if the dialog act of the speech event Speech represents a check question and
contains a location referent at all. In this case, it uses the generalized quantiƤer forlargest/3
to Ƥnd the name of the puzzle piece that has been looked at the largest amount of time during
the speech event and whose attributes match the features description that the user provided
with its check question. If this can be found, then it constructs a new event Fused from
the original speech event Speech that additionally contains a new feature ĉĆęĆ:ĉĆęĆ:ēĆĒĊ
holding the name of the found puzzle piece.
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disambiguate(Speech, Fused) :−
val(data:fun, info_seeking, Speech),
val(data:cat, check_question, Speech),
val(data:data:locref, _, Speech),
forlargest(Gaze, (fsr(Gaze), /* Quantification */

val(mode, gaze, Gaze), /* Type constraint */
during(Gaze, Speech), /* Temporal constraint */
matches(Gaze, Speech)), /* Semantic constraint */

val(data:name, Name, Gaze)), !,
set(data:data:name, Name, Speech, Fused).

disambiguate(Speech, Fused) :−
val(data:fun, info_seeking, Speech),
val(data:cat, check_question, Speech),
findall(Name, (fsr(Piece), /* Alternative collection */

val(sort, piece, Piece), /* Type constraint */
matches(Piece, Speech), /* Semantic constraint */

val(name, Name, Piece)), List),
set(data:data:name, List, Speech, Fused).

Listing 6.2.1: The SWI-PėĔđĔČ implementation of the disambiguation predicate disambiguate/2.

Otherwise, if the evaluation of the generalized quantiƤer and, thus, the search for the puzzle
piece fails, then the predicate collects all puzzle pieces that match the description in the
question into a list of possible candidates. Afterwards, it constructs the new fused event
Fused like above, with the exception that the feature ĉĆęĆ:ĉĆęĆ:ēĆĒĊ holds this candidate
list. Thus, the reference remains unresolved if the list contains more than one alternative.
This situation must then be handled by the dialog manager by engaging in a clariƤcation
dialog, a topic out of the scope of this thesis. A variation of the disambiguation predicate
could use another generalized quantiƤer or an adapted generator condition. It could, for
example, only choose gaze events with a certain minimum conƤdence value or consider gaze
events in another time window than exactly during the speech event.

Figure 6.2.8 shows an illustration how the forlargest/3 quantiƤer supports the disambiguation
in the just mentioned case. In this example, the user asks the ambiguous check question “The
green one over there?” (Figure 6.2.8 B⃝) while looking at three diơerent puzzle pieces on the
surface table, two of which are green and one is red (Figure 6.2.8 A⃝). The application of the
generalized quantiƤer Ƥrst Ƥnds all gaze events during the user’s utterance (Figure 6.2.8 C⃝).
Then it chooses those whose gaze target’s attributes match with the feature description in the
check question, basically all green puzzle pieces during the utterance (Figure 6.2.8 D⃝). The
forlargest/3 quantiƤer then chooses the set of gaze events whose gaze targets additionally
share the same name (Figure 6.2.8 E⃝), that means refer to the same puzzle piece, and selects
the one that is being looked at for the largest amount of time (Figure 6.2.8 F⃝). As a result,
the disambiguated multi-modal event carries the new unique name feature ĉĆęĆ:ĉĆęĆ:ēĆĒĊ
with the value p3 (Figure 6.2.8 G⃝) and can then be propagated to the dialog management.
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Figure 6.2.8: An illustration of how the forlargest/3 quantiƤer supports the disambiguation.
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6.3 Modeling Behavior and Interaction

Figure 6.3.1 shows the overall architecture of the behavior ƪow which models the agent’s be-
havior and interaction in the illustrative application. It makes extensive use of parallel and hi-
erarchical decomposition comprising multiple concurrent and nested layers. The individual
layers are building and heavily relying upon each other to implement various behavioral levels
and functions. These are, among others, input detection and preprocessing, multi-modal in-
tegration and disambiguation, behavioral pattern recognition, participant role management,
dialog and behavior control, and particular subtasks. They are coordinated through shared
global variables and the exchange of events via the logic fact base. This hierarchical and
parallel structure can easily be reused and adapted and, thus, be considered as best practice
method to structure similar behavior and interaction models using behavior ƪows.
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Figure 6.3.1: The overall architecture of the behavior ƪow model used in the illustrative application.

On the highest level, the behavior ƪow deƤnes the global variables that are shared by all
nested behavior ƪows (Figure 6.3.1 A⃝). It starts with the call to the predicates clean/0 and

165



6. IđđĚĘęėĆęĎĔē — MĔĉĊđĎēČ SĔĈĎĆđ Ćēĉ CĔđđĆćĔėĆęĎěĊ JĔĎēę AĈęĎěĎęĎĊĘ

reset/0 (Figure 6.3.1 B⃝) to clear the fact base from events, signals, and timers and reset the
application-speciƤc domain knowledge about entities and instructions of the sorting task.
Afterwards, several nested behavior ƪows representing the agent’s behavioral levels and pro-
cesses are concurrently executed. Among those are a system statusmonitoring layer for mon-
itoring the system statistics and managing the garbage collection (Figure 6.3.1 C⃝), an input
event handling layer for preprocessing the user’s and agent’s input events (Figure 6.3.1 D⃝), a
behavioral pattern recognition layer for the incremental and concurrent recognition of multi-
modal and bidirectional behavioral patterns (Figure 6.3.1 E⃝), a participant role management
layer for the assignment and shifting of participant roles (Figure 6.3.1 F⃝) as well as a dialog
and behavior control layer for dialog ƪow management and role-speciƤc aspects of the agent’s
nonverbal behavior (Figure 6.3.1 G⃝). The following sections describe the most important lay-
ers and contained behavior ƪows in detail and explain how they are coordinated.

6.3.1 Basic Input Event Handling

The behavior ƪows on the input event handling layer (Figure 6.3.1 D⃝) are preprocessing events
from modality-speciƤc recognition modules and application-speciƤc devices. They constantly
observe the logic fact base and extract required information from incoming event features
structures using the operations deƤned in Section 5.3.3. On the one hand, they update par-
ticular global variables with this information (Figure 6.3.1 A⃝), such as the participants’ voice
activities and gaze targets. On the other hand, the information may be combined and prop-
agated with signals directed to individual or distributed to whole sets of behavior ƪows on
higher layers (Figure 6.3.1 E⃝, F⃝, G⃝). Due to space and redundancy reasons, we only explain
some selected behavior ƪows of this layer which could easily be extended with additional
parallel behavior ƪows for handling further input modalities and devices.

Handling Voice Events

The behavior ƪow in Figure 6.3.2 is handling the participants’ voice events. The user’s voice
events are produced by the voice activity recognition (Figure 6.1.2 A⃝) whenever he starts or
stops speaking into a microphone. The agent’s voice events must be produced by the agent’s
executor instance (Figure 6.1.2 C⃝) whenever it receives speech synthesis notiƤcations from
the agent’s text-to-speech engine (Figure 6.1.2 D⃝). The behavior ƪow starts by waiting for
the next voice event to occur in the fact base (Figure 6.3.2 A⃝). It uses the predicate voice/2
(Figure 6.3.2 B⃝) to retract a new voice event from the fact base and store the event’s name
and data features in the local variablesName andData (Figure 6.3.2 C⃝). Then, it checks if the
event has been caused by the user or the agent (Figure 6.3.2 D⃝) and if the respective partici-
pant has just started or stopped speaking (Figure 6.3.2 E⃝). Afterwards, it updates the global
variableUserSpeaking orAgentSpeaking (Figure 6.3.2 F⃝) to inform processes on higher layers
about the voice activity change (Figure 6.3.2 G⃝). Among those are the behavior ƪow recog-
nizing turn-taking actions in Figure 6.3.6, the one detecting voice activity overlaps in Fig-
ure 6.3.8, and those detecting nonverbal back-channels and adjacency pairs in Figures 6.3.15
and 6.3.16. The behavior ƪow then restarts to handle more voice events (Figure 6.3.2 H⃝).

166



6.3. Modeling Behavior and Interaction

Voice 
Event 

Handling 
Process 

Await  
Voice 
Event 

Check 
Event 
Data 

Check 
Event 
Name 

User 
Stops 

Speaking 

User 
Starts 

Speaking 

Check 
Event 
Data 

Agent 
Stops 

Speaking 

Agent 
Starts 

Speaking 

?- voice(Name↑, Data↑). 

?- Name↓== user. 
UserSpeaking ← false 

AgentSpeaking ← false AgentSpeaking ← true 

UserSpeaking ← true 

Name ← undef 
Data   ← undef 

?- Name↓== agent. 

?- Data↓== start. ?- Data↓== stop. 

?- Data↓== start. ?- Data↓== stop. 

UserSpeaking   ← false 
AgentSpeaking ← false 

E1 

A D 

E2 

B 

G1 

G3 

G2 

G4 

H 

C 

F 

Figure 6.3.2: The behavior ƪow handling the user’s and the agent’s incoming voice activity events.

Handling Gaze Events

The behavior ƪow in Figure 6.3.3 is preprocessing the participants’ gaze events. The user’s
gaze events are continuously provided by the gaze recognition module (Figure 6.1.2 A⃝) based
on the eye- and object-tracking data using Algorithm 6.2.1. The agent’s gaze target is trans-
mitted by the agent platform (Figure 6.1.2 D⃝) in regular time intervals of a few milliseconds.
The last processed gaze event is always stored in the local variable Last (Figure 6.3.3 A⃝). The
behavior ƪow starts by waiting for the next gaze event to arrive at the fact base (Figure 6.3.3
B⃝). It uses the predicate gaze/4 (Figure 6.3.3 C⃝) to check if a younger gaze event exists and

extract the event and its name and data features to the local variables Last, Name and Data
(Figure 6.3.3 A⃝). Gaze events are not retracted but kept in the event history since they are
needed for the multi-modal disambiguation of verbal references in Figure 6.3.5, as explained
in Section 6.2.3, and are later retracted by the garbage collection. Afterwards, the behavior
ƪow Ƥrst checks if the event belongs to the user or the agent (Figure 6.3.3 D⃝) and if the partic-
ipant’s gaze target has changed since his last gaze event (Figure 6.3.3 E⃝). In case of the agent,
it produces a gaze shift signal (Figure 6.3.3 F⃝) that is directed to behavior ƪow in Figure 6.3.12
which recognizes gaze connection events. If the user’s gaze target has changed, then it pro-
duces a number of gaze signals directed to diơerent behavior ƪows (Figure 6.3.3 G⃝). The
behavior ƪow in Figure 6.3.12, which recognizes gaze connection events, expects a gaze shift
signal when the user’s visual focus has changed. The process in Figure 6.3.26 depends on
a gaze focus signal to let the agent follow the user’s visual attention in the addressee role.
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The behavior ƪow that recognizes back-channel eliciting cues in Figure 6.3.18 expects a gaze
glance signal to work. Afterwards, the behavior ƪow updates the global variables UserGaze
or AgentGaze (Figure 6.3.3 H⃝) to inform other processes about the changing gaze targets
(Figure 6.3.3 I⃝) before it starts over again to handle the next gaze events (Figure 6.3.3 J⃝).
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Figure 6.3.3: The behavior ƪow used for preprocessing the two participants’ new gaze events.

Handling Touch Events

The behavior ƪow in Figure 6.3.4 is handling the user’s touch events that are produced by
the surface application (Figure 6.1.2 B⃝) when the user starts, continues, or stops dragging a
puzzle piece. It starts by waiting for the next touch event to arrive at the fact base (Figure 6.3.4
A⃝). It uses the predicate touch/4 (Figure 6.3.4 B⃝) to retract a new touch event from the fact

base and extract its type and name features as well as the position of the moved object to the
local variablesType,Name,X andY (Figure 6.3.4 C⃝). Then, it updates the position knowledge
in the logic fact base using the predicate update/3 and inspects the type of the touch event
(Figure 6.3.4 D⃝). In case of a drag action, it produces a drag action signal (Figure 6.3.4 E⃝)
directed to the behavior ƪow in Figure 6.3.26 which coordinates the agent’s gaze behavior in
the addressee role. In case of a start action (Figure 6.3.4 F⃝) or a stop action (Figure 6.3.4 G⃝),
it updates the global variable UserDragging (Figure 6.3.4 H⃝) to notify the higher layers about
the object movement. For example, the behavior ƪow recognizing turn-taking actions in
Figure 6.3.6 is using this information to decide if the user wants to take, hold, yield, or assign
the turn. Finally, the behavior ƪow restarts to handle the next touch events (Figure 6.3.4 I⃝).
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Figure 6.3.4: The behavior ƪow used for handling touch events received from the surface table.
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Figure 6.3.5: The behavior ƪow used for detecting and disambiguating the user’s speech events.

Handling Speech Events

Figure 6.3.5 shows a simpliƤed version of the behavior ƪow which is processing the user’s
speech events that are produced by the natural language understanding pipeline (Figure 6.1.2
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B⃝) by transcribing and semantically parsing the user’s utterances into abstract dialog acts.
The behavior ƪow starts by waiting for the user’s next speech event to be asserted to the logic
fact base (Figure 6.3.5 A⃝). It uses the predicate speech/3 (Figure 6.3.5 B⃝) to extract a new
speech event and store the event itself as well as the function and category of the contained
dialog act in the local variables Event, Fun and Cat (Figure 6.3.5 C⃝). Then, it checks if the
dialog act is an information seeking request (Figure 6.3.5 D⃝) and, if this is the case, examines
whether the semantic category is a check question (Figure 6.3.5 E⃝). In this case, as explained
in Section 6.2.3, it tries to resolve potentially ambiguous verbal reference expressions with
the user’s gaze using the predicate disambiguate/2 (Figure 6.3.5 F⃝) and stores the eventually
disambiguated speech event in the local variable Fused (Figure 6.3.5 C⃝). A speech action
signal is produced (Figure 6.3.5 G⃝) to notify the behavior ƪow in Figure 6.3.24 that the multi-
modal event has to be processed by the dialog management and propagated to the dialog
planner as the user’s next dialog contribution. Finally, the behavior ƪow restarts again to
process the next incoming speech events of the user (Figure 6.3.5 H⃝).

6.3.2 Behavioral Pattern Recognition

The behavioral pattern recognition layer (Figure 6.3.1 E⃝) comprises behavior ƪows that con-
tinuously, concurrently, and incrementally recognize multi-modal and multi-directional be-
havioral patterns. Their decisions are based on changes of the global variables’ values (Fig-
ure 6.3.1 A⃝) and informed by the signals from the input event handling layer (Figure 6.3.1 D⃝).
Recognized patterns are signaled to the participant management (Figure 6.3.1 F⃝) and the di-
alog and behavior control layers (Figure 6.3.1 G⃝), thus, directly inƪuencing the agent’s ƪoor
and dialog ƪow management as well as the generation of role-speciƤc ideomotor behaviors.
The layer, for example, recognizes the coordinated use of touch actions, voice activities, and
gaze shifts for the production of turn-taking actions, verbal and nonverbal back-channels, and
adjacency pairs. Furthermore, voice activity overlaps, when the user barges into the agent’s
utterances or turn can be interpreted as turn-taking conƪicts. Feedback inviting behaviors,
such as back-channel eliciting and facial mimicry eliciting cues can also be detected. Finally,
the participants’ gaze movements are put into relation to monitor gaze direction relations
and detect gaze connection events. In this, the layer exploits a major advantage of our mod-
eling approach by recognizing each behavioral pattern in an individual parallel behavior ƪow.
Integrating further patterns therefore solely requires to extend it with additional parallel be-
havior ƪows. Due to space and redundancy reasons, we only explain a selection of the most
important and interesting behavior ƪows that can be realized on this layer.

Turn-Taking and Floor Management

Eƥcient collaboration requires the trouble-free regulation of the speaker right and the smooth
exchange of the participant roles. This, in turn, requires the production and recognition of
behavioral patterns commonly known as turn-taking or ƪoor management actions (Traum
and Rickel, 2002; Thórisson, 2002; Bohus and Horvitz, 2009, 2010c,a, 2011; Thórisson et al.,
2010). Our model orients along the turn-taking actions deƤned by Traum and Rickel (2002)

170



6.3. Modeling Behavior and Interaction

and the very similar ƪoormanagement actionsdescribed by Bohus and Horvitz (2010c). These
are well suited and largely acknowledged to describe multi-modal turn management in multi-
party conversations. However, they do unfortunately not consider collaborative joint activi-
ties on shared workspaces. Those go beyond regular multi-modal dialogs since their partici-
pants can also produce turn-taking actions using application-speciƤc contributions, such as
moving an object on a table or pressing a button of a graphical user interface. In our case,
the user may perform a turn, as usual, verbally, for example, by asking a question like those
mentioned in Section 6.2.2, but may also produce very similar turn-taking actions by moving
a puzzle piece to a position or puzzle Ƥeld on the surface table. To cope with this notion of
a turn, our model recognizes turn-taking actions when the user is only speaking or moving
a puzzle piece on the surface table and even when he intermixes voice activities with object
movements. A turn take action is then an attempt of the user to conquer the speaker or actor
role by starting an utterance, moving an object or a combination of both. A turn yield action
is produced when the user stops speaking or moving an object and is an attempt to oơer the
turn to one of the listeners but not necessarily the current addressee (Duncan, 1974; Argyle
and Cook, 1976). A turn assign action is usually signaled by the speaker’s directed gaze to a
speciƤc interaction partner at the end of the utterance or object movement and is used to ex-
plicitly select the next speaker or actor (Argyle and Cook, 1976). A turn hold action occurs at
the boundaries of phrases or in short movement pauses and is an attempt to keep the turn at
a point where one of the listeners or spectators might otherwise try to take the turn (Duncan,
1974; Argyle and Cook, 1976). We recognize a turn hold signal if the user continues speaking
after a short speech pause in between two words or sentences and if he continues moving a
puzzle piece after shortly holding the piece at a Ƥx position for a moment.

TĚėē
TĆĐĎēČ
AĈęĎĔēĘ

Figure 6.3.6 shows the behavior ƪow that recognizes the user’s turn-taking actions through-
out a turn. It observes the user’s voice and drag activity to decide if the user is claiming the
turn at any point in time and produces turn action signals that are consumed by the higher
layers of the model when the user takes, holds, yields, or assigns the turn. It is initially waiting
for the user to start speaking or dragging an object (Figure 6.3.6 A⃝) which is recognized when
the global variables UserSpeaking and UserDragging (Figure 6.3.6 B⃝) are set by the voice and
touch event handling processes. If the user has started speaking or dragging an object, then
it awaits some take timeout (Figure 6.3.6 C⃝), deƤned by the local variable Take (Figure 6.3.6
D⃝), before deciding that the user takes the turn. The short timeout avoids that accidental
movements, verbal back-channels, ambient noise, or physiological reactions, like coughing
or sneezing, are mistakenly interpreted as attempt to take the turn. If the user stops all voice
and drag activity before the timeout has expired, then the behavior ƪow starts over again
(Figure 6.3.6 A⃝). Otherwise, a turn take signal is produced (Figure 6.3.6 E⃝) and the global
variableUserClaiming is updated (Figure 6.3.6 F⃝) to notify the higher layers that the user has
just taken and is now claiming the turn. Afterwards, the behavior ƪow waits until the user
stops all voice and drag activity again (Figure 6.3.6 G⃝) and thereupon waits for a certain hold
timeout (Figure 6.3.6 H⃝), deƤned by the local variable Hold (Figure 6.3.6 D⃝). If this timeout
expires, then the user might want to give up the turn and therefore a last yield timeout (Fig-
ure 6.3.6 J⃝), deƤned by the local variable Yield (Figure 6.3.6 D⃝), is awaited to decide if the
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Figure 6.3.6: The behavior ƪow used for recognizing the user’s diơerent turn-taking actions.

user wants to directly assign the turn to the agent, just yield the turn or even hold the turn.
If the user is looking at the agent, then this is interpreted as turn assign action and a turn
assign signal is produced (Figure 6.3.6 K⃝). The user’s gaze target is retrieved via the global
variableUserGaze that is set by the gaze event handling in Figure 6.3.3. Otherwise, if the yield
timeout expires without the user looking at the agent, then a turn yield signal is produced
(Figure 6.3.6 L⃝). In both cases, the higher layers are informed that the user doesn’t claim
the turn anymore by resetting the global variable UserClaiming (Figure 6.3.6 M⃝). During
the hold or yield timeouts, the user might restart speaking or dragging an object to reclaim
the turn before the timeouts have expired. In these cases, the behavior ƪow produces a turn
hold signal (Figure 6.3.6 I⃝) and starts waiting again (Figure 6.3.6 G⃝). This gives the user
the opportunity to correct himself in a second question or to overrule his questions in the
turn by moving a puzzle piece. After passed through the turn, the behavior ƪow reenters
the recognition process again (Figure 6.3.6 A⃝). For choosing the timeout values we oriented
along Rich et al. (2010) but also examined our own delays (Mehlmann et al., 2014a,b).

Overlaps and Turn-Taking Conƪicts

The recognition of the turn-taking actions described in Figure 6.3.6 is useful when modeling
the basic sequential turn-taking model without overlaps and gaps (Sacks et al., 1974). In such
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a simpliƤed serial model, the user’s voice or action does never overlap with the agent’s turn,
such that there can never be recognized any interruption attempts when the user is barging
into the agent’s turn or vice versa. The agent is consequently not be able to interrupt itself
when the user wants to conquer the speaker ƪoor. However, highly interactive and natu-
ral interactions frequently reveal voice overlaps that could be interpreted as turn conƪicts
and cause interruptions. Thus, handling interruptions is a crucial aspect in the endeavor to
give social agents human-like conversation skills (Ward et al., 2015). The perception of inter-
rupting and interrupted partner with respect to interpersonal attitudes, such as dominance,
friendliness, closeness, politeness, and involvement can be inƪuenced by changing the inter-
ruptibility as well as the strategy and timing of interrupt handling (Beattie, 1981a; Robinson
and Reis, 1989; Murata, 1994; Tannen, 1994; Crown and Cummins, 1998; ter Maat et al., 2010,
2011; Oviatt et al., 2015; Cafaro et al., 2016). For that reason, in addition to regular turn-taking
actions, this layer also contains behavior ƪows detecting bidirectional voice activity overlaps
and turn-taking conƪicts. Figure 6.3.7 shows the hierarchical and parallel structure of the
superordinate behavior ƪow which is divided into concurrently and closely synchronized,
nested behavior ƪows. The Ƥrst behavior ƪow is used for the retrospective classiƤcation of
voice overlap categories (Figure 6.3.7 A⃝) while the second one detects diơerent voice activity
overlaps and the third recognizes the resultant voice overlap conƪicts in real-time (Figure 6.3.7
C⃝). By analogy, the fourth behavior ƪow detects voice-turn overlaps (Figure 6.3.7 D⃝) while

the last one recognizes consequential turn overlap conƪicts (Figure 6.3.7 E⃝).
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Figure 6.3.7: The behavior ƪow used for recognizing overlapping states and turn-taking conƪicts.

VĔĎĈĊ
AĈęĎěĎęĞ
OěĊėđĆĕĘ

Figure 6.3.8 shows the behavior ƪow that detects the onset of a voice activity overlap and
thus a possible interruption attempt as fast as possible which is necessary to ensure an im-
mediate reaction of the behavior and interaction model in real-time. This model is the basis
to recognize successful interruptions (Roger et al., 1988) and distinguish simple interruptions
(Ferguson, 1977) from overlaps. All these events come along with an overlap time, in which
both dialog partners speak simultaneously for a certain period of time (Drummond, 1989).
Therefore, the behavior ƪow constantly monitors the user’s and the agent’s voice activities,
detects as soon as their voices are overlapping and immediately notiƤes the higher layers
of the model by updating corresponding global variables. The behavior ƪow starts by wait-
ing until either the agent or the user starts speaking Ƥrst (Figure 6.3.8 A⃝) by observing the
variables UserSpeaking and AgentSpeaking (Figure 6.3.8 B⃝) that are set by the voice event
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Figure 6.3.8: The behavior ƪow used for recognizing diơerent directions of voice activity overlaps.

handling process. If the user starts Ƥrst (Figure 6.3.8 C⃝), then it waits until either the user
stops again (Figure 6.3.8 H⃝) and starts over (Figure 6.3.8 A⃝), or until the agent starts speak-
ing too (Figure 6.3.8 D⃝), such that the agent’s voice overlaps the user’s speech (Figure 6.3.8
G⃝). While, the overlap detection the other way round works analogously (Figure 6.3.8 E⃝, F⃝),

in both cases, the global variables UserOverAgent or AgentOverUser (Figure 6.3.8 B⃝) are up-
dated to inform the higher layers of the model which direction of voice activity overlap has
just be detected. The overlap state is left when the agent (Figure 6.3.8 C⃝) or the user (Fig-
ure 6.3.8 E⃝) stops speaking. If both stop at the same time (Figure 6.3.8 H⃝), then it restarts
to detect further voice overlaps (Figure 6.3.8 A⃝).

VĔĎĈĊ
OěĊėđĆĕ

CĔēċđĎĈęĘ

The voice activity overlap model in Figure 6.3.8 is tightly synchronized with the behavior ƪow
shown in Figure 6.3.9 which incrementally recognizes voice overlap conƪicts, one of the pos-
sible turn-taking conƪicts. It detects a turn-taking conƪict as soon as a voice activity overlap
lasts longer than a certain period of time. Such a conƪict is then reported to the higher layers
by producing appropriate turn conƪict signals and updating corresponding global variables.
The behavior ƪow starts by waiting until one of the two possible voice activity overlap states
is entered (Figure 6.3.9 A⃝) which is recognized by a change of the variables UserOverAgent
or AgentOverUser (Figure 6.3.9 B⃝). While the user overlaps the agent, it waits for a barge-in
timeout (Figure 6.3.9 D⃝), deƤned by the local variable BargeIn (Figure 6.3.9 C⃝) and starts
over again (Figure 6.3.9 A⃝) if the overlap stops before the timeout has expired. Otherwise, it
produces a turn barge-in signal (Figure 6.3.9 E⃝), updates the global variable UserBargingIn
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Figure 6.3.9: The behavior ƪow used for recognizing the diơerent types of voice overlap conƪicts.

(Figure 6.3.9 F⃝) and remains in the barge-in state (Figure 6.3.9 G⃝) until the voice overlap
stops again which is then notiƤed to the higher layers by resetting the global variable User-
BargingIn (Figure 6.3.9 H⃝) before starting over again (Figure 6.3.9 A⃝). Ƥnally, the overlap
conƪict detection the other way round works analogously (Figure 6.3.9 I⃝- M⃝).

TĚėē
OěĊėđĆĕ
CĔēċđĎĈęĘ

It can often be observed that users barge in the agent’s turn during the short speech pauses
between two individual words or utterances of the agent’s turn because they might believe
that this is a possible completion point of the partner’s turn (Sacks et al., 1974). According
to Li (2001) these situations would be categorized as interruptions without overlapping voice
activity and are therefore also referred to as silent interruptions (Ferguson, 1977). The mod-
els in Figures 6.3.8 and 6.3.9 are not able to handle these situations as required since they
are based exclusively on voice activity and not on whole turns. The model in Figure 6.3.8
would possibly not recognize any overlap while the model shown in Figure 6.3.9 might only
recognize a bear-up conƪict with an unwanted delay. However, fortunately they can easily
be adapted to handle these cases by only changing a single variable and the name of the re-
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sulting conƪict signals. Conƪicts that cause silent interruptions because the user barges into
the agents turn within a speech pause can easily be recognized by using a turn state variable
AgentClaiming instead of the speaking state variable AgentSpeaking. This variable is true as
long as the agent is claiming the turn, that means, also in short pause between two coher-
ent words or utterances of the same turn. It is set by the agent’s executor instance based on
the notiƤcations from the agent’s text-to-speech engine. The corresponding behavior ƪows
(Figure 6.3.7 D⃝, E⃝) do not need to distinguish barge-ins and bear-ups but simply create one
and the same conƪict signal in all cases.

Gaze Relations and Connections

Figure 6.3.10 shows the hierarchical and parallel structure of the behavior ƪow which is re-
sponsible for the detection of gaze relations and connections. A Ƥrst nested behavior ƪow is
recognizing the three gaze direction relations between the user’s and the agent’s gaze, namely
separated gaze, shared gaze, and mutual gaze (Figure 6.3.10 A⃝). A second one is incremen-
tally recognizing the two bidirectional gaze connection events deƤned by Rich et al. (2010)
and Holroyd et al. (2011), namely directed gaze and mutual facial gaze (Figure 6.3.10 B⃝). To
avoid confusions, it is important ot mention that what Rich et al. (2010) refer to as directed
gaze is correctly said shared gaze according to the standard terminology.

Gaze  
Relation & 
Connection 
Detection 

Gaze  
Direction 
Relation 
Detection 

Gaze  
Connection 

Event 
Detection A B 

Figure 6.3.10: The behavior ƪow used for recognizing diơerent gaze relations and connection events.

TčĊ GĆğĊ
DĎėĊĈęĎĔē
RĊđĆęĎĔēĘ

Figure 6.3.11 shows the behavior ƪow that monitors the gaze direction relations between the
two interaction partners. It constantly observes the user’s and agent’s gaze targets to deter-
mine if the user and the agent have established shared gaze, mutual gaze or neither of the
two in order to keep the higher layers of the model updated about the current gaze direction
relation. The behavior ƪow starts observing the global variables UserGaze and AgentGaze
(Figure 6.3.11 A⃝) while user and agent do not share the same gaze target. A nested behavior
ƪow is constantly checking if the two participants are establishing mutual gaze (Figure 6.3.11
B⃝). It remains in the initial state while both are neither looking at each other nor sharing the

same gaze target (Figure 6.3.11 C⃝). When they look at each other, then it enters the mutual
gaze state (Figure 6.3.11 D⃝) and updates the global variable MutualGaze (Figure 6.3.11 E⃝).
It is immediately interrupted when the user and the agent share the same gaze target such
that the superordinate behavior ƪow updates the variables SharedGaze and MutualGaze (Fig-
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Figure 6.3.11: The behavior ƪow used for monitoring gaze relations between the user and the agent.

ure 6.3.11 E⃝) and remains in the shared gaze state (Figure 6.3.11 F⃝) until they look at diơerent
gaze targets again (Figure 6.3.11 B⃝).

TčĊ GĆğĊ
CĔēēĊĈęĎĔē
EěĊēęĘ

Figure 6.3.12 shows the behavior ƪow which is used to recognize the gaze connection events
as deƤned by Rich et al. (2010) and Holroyd et al. (2011) (Figure 6.3.10 B⃝). The behavior
ƪow recognizes whenever the participants directly follow each other’s gaze shifts with the
intention to establish shared gaze, immediately answer each other’s attempts to establish
mutual facial gaze, or whether they focus their visual attention to diơerent targets. When
one of the participants focuses his attention on an object or the partner, then the other has the
possibility to react within a speciƤc time window to successfully produce a gaze connection
event. If the other partner chooses a diơerent gaze target or doesn’t even respond before the
timeout has expired, then the partners fail to create this gaze connection event.

The behavior ƪow starts by waiting for the next gaze shift of one of the two participants
which is signaled by a gaze shift signal (Figure 6.3.12 A⃝) produced by the gaze event handling
process. When one of the participants shifts his gaze (Figure 6.3.12 B⃝), then the partner’s next
gaze shift is awaited (Figure 6.3.12 B⃝) during a connect timeout, deƤned by the local variable
Connect (Figure 6.3.12 C⃝). If no gaze shift happens before the timeout expires (Figure 6.3.12
E⃝), then the connection event detection restarts again (Figure 6.3.12 F⃝). Otherwise, the two

partners’ last gaze targets are compared (Figure 6.3.12 D⃝). If they look at each other then a
mutual facial gaze signal is produced (Figure 6.3.12 G⃝), if both focus on the same gaze target,
then a directed gaze signal is produced (Figure 6.3.12 H⃝). In any case, even if no connection
event is detected, the behavior ƪow starts over again (Figure 6.3.12 F⃝).
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Figure 6.3.12: The behavior ƪow used for recognizing mutual facial gaze and directed gaze events.

Feedback and Response Behaviors

Figure 6.3.13 shows the hierarchical and parallel structure of the behavior ƪow which is re-
sponsible for the recognition of diơerent feedback behaviors which are characterized by the
close temporal alignment and meshing of both participant’s verbal and nonverbal behaviors.
A Ƥrst nested behavior ƪow is used for the detection of verbal back-channels (Figure 6.3.13
A⃝), a second is responsible for the recognition of nonverbal back-channels (Figure 6.3.13 B⃝)

and a third is used for the detection of adjacency pairs or direct responses (Figure 6.3.13 C⃝).
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Figure 6.3.13: The behavior ƪow used for recognizing back-channels, adjacency pairs and responses.
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Figure 6.3.14: The behavior ƪow used for recognizing the user’s verbal back-channel statements.

Figure 6.3.14 shows the behavior ƪow that recognizes verbal back-channels (Yngve, 1970; Lam-

DĊęĊĈęĎēČ
VĊėćĆđ
BĆĈĐ-CčĆēēĊđĘ

bertz, 2011), which are a listener’s short verbal statements like “hmm” or “ahh” while listening
to the speaker but without claiming the turn. A verbal back-channel cue is recognized, inde-
pendent of the participant role division, when the user’s and the agent’s voices are overlap-
ping for shorter than a predetermined period of time, usually without raising a turn-taking
conƪict. The behavior ƪow starts by waiting for the user to overlap with the agent’s speech
(Figure 6.3.14 A⃝) by observing the global variable UserOverAgent (Figure 6.3.14 B⃝) which
is set by the overlap detection process. During the overlapping state (Figure 6.3.14 C⃝), it
waits for a speciƤc back-channel timeout, deƤned by the local variable Backchannel (Fig-
ure 6.3.14 D⃝), until it assumes that the overlap is too long to be considered as back-channel
(Figure 6.3.14 E⃝) and thereupon waits until the overlap has ended again (Figure 6.3.14 A⃝).
If the overlap stops before the timeout has expired, then it is interpreted as a verbal back-
channel statement and a verbal back-channel signal is produced (Figure 6.3.14 F⃝) in order
to be processed on the higher layers of the model. Afterwards, the behavior ƪow starts over
again to detect consecutive back-channels (Figure 6.3.14 G⃝).

DĊęĊĈęĎēČ
NĔēěĊėćĆđ
BĆĈĐ-CčĆēēĊđĘ

Figure 6.3.15 shows the behavior ƪow which is responsible for recognizing nonverbal back-
channel behaviors (Kendon, 1967; Yngve, 1970; Allwood et al., 1993; Bavelas et al., 2002).
A nonverbal back-channel cue is recognized, independent of the participant role division,
whenever the user’s is performing a head nod or shake while the agent is speaking. The
model can be further reƤned to cover additional nonverbal behaviors, such as facial expres-
sions, like raising the eyebrows, or body gestures, such as shrugging of the shoulders. It can
also be adapted such that it requires the user to look at the agent or to be in the addressee role
when performing a back-channel cue. The behavior ƪow starts by waiting for the agent to
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Figure 6.3.15: The behavior ƪow used for recognizing the user’s nonverbal back-channel behaviors.

start speaking (Figure 6.3.15 A⃝) by observing the global variable AgentSpeaking (Figure 6.3.15
B⃝) which is set by the voice event handling process. After the agent has started speaking

(Figure 6.3.15 C⃝), it waits for a head movement signal produced by the input event handling
layer. A head nod signal is interpreted as conƤrmation, acceptance or positive back-channel
cue, in general, and the behavior ƪow consequently produces a positive back-channel signal
(Figure 6.3.15 D⃝). A head shake signal is considered as expression of dislike or rejection and
causes the creation of a negative back-channel signal (Figure 6.3.15 E⃝). These back-channel
signals can then be further processed by the behavior ƪows on the higher layer of the model.
Finally, the behavior ƪow restarts to detect the next back-channel cues (Figure 6.3.15 F⃝).

DĊęĊĈęĎēČ
AĉďĆĈĊēĈĞ
PĆĎė EěĊēęĘ

Figure 6.3.16 shows the behavior ƪow which is used for the detection of adjacency pair events
as described by Rich et al. (2010) and Holroyd et al. (2011) which are basically the same as
the direct response events deƤned by Bohus and Horvitz (2011). These bidirectional patterns
consist of a pair of utterances where the Ƥrst one provokes the second, responding utterance
within a particular period of time. Just like back-channel cues, the frequency of recognized
adjacency pairs is considered as a measure for the engagement between the two interaction
partners (Rich et al., 2010; Holroyd et al., 2011). The behavior ƪow starts by waiting that either
the user or the agent starts speaking (Figure 6.3.16 A⃝) by observing the global variables User-
Speaking and AgentSpeaking (Figure 6.3.16 B⃝). If the user starts speaking Ƥrst (Figure 6.3.16
C⃝), then the behavior ƪow waits until the user stops speaking again while the agent remains

silent (Figure 6.3.16 D⃝). In this case, the behavior ƪow waits for a response of the agent un-
til a speciƤc response timeout, deƤned by the local variable Response (Figure 6.3.16 E⃝), has
expired. Vice versa, if the agent starts speaking Ƥrst (Figure 6.3.16 F⃝) and then stops again
while the user keeps silent (Figure 6.3.16 G⃝), then the user’s response is awaited during the

180



6.3. Modeling Behavior and Interaction

Adjacency 
Pair &  

Response 
Detection 

User 
Started 

Speaking 

Agent 
Started 

Speaking 

Both 
Are 

Silent 

K 

A 

Await 
Agent 

Response 

Await 
User 

Response 

No 
Timely 

Response 

Agent 
Response 

Signal 

User 
Response 

Signal 

  AgentSpeaking 
∧ ! UserSpeaking  

 ! AgentSpeaking 
∧  UserSpeaking  

  AgentSpeaking 
∧ ! UserSpeaking  

F 

C ?- signal(user, response) ,  
                  stop(response). 

Response ← 3500 E 

?- timeout(response,  
                   Response↓). 

?- timeout(response,  
                   Response↓). 

  AgentSpeaking 
∧ ! UserSpeaking  

 ! AgentSpeaking 
∧  UserSpeaking  

 ! AgentSpeaking 
∧  UserSpeaking  

 ! AgentSpeaking 
∧  ! UserSpeaking  

 ! AgentSpeaking 
∧  ! UserSpeaking  

?- signal(agent, response) ,  
                    stop(response). 

UserSpeaking     ← false 
AgentSpeaking ← false 

B 

D 

G 

I 

J 

H 

Figure 6.3.16: The behavior ƪow used for recognizing adjacency pair events or direct response events.

timeout. If the participants’ responses happen before the timeout has elapsed, then a user
response signal (Figure 6.3.16 I⃝) or agent response signal (Figure 6.3.16 J⃝), respectively, is
produced and is further processed by the higher layers of the model. Otherwise, if the silence
gap takes longer (Figure 6.3.16 H⃝), then the behavior ƪow restarts (Figure 6.3.16 K⃝).

Back-Channel and Mimicry Eliciting

Figure 6.3.17 shows the hierarchical and parallel structure of the behavior ƪow that is re-
sponsible for the recognition of diơerent feedback eliciting cues. A Ƥrst nested behavior ƪow
is used for the detection of back-channel eliciting cues (Figure 6.3.17 A⃝) while a second is
responsible for the recognition of facial mimicry eliciting behaviors (Figure 6.3.17 B⃝).

BĆĈĐ-CčĆēēĊđ
EđĎĈĎęĎēČ
BĊčĆěĎĔėĘ

Figure 6.3.18 shows the behavior ƪow which is recognizing back-channel eliciting cues as ob-
served by Kendon (1967) and Bavelas et al. (2002) and studied by Oertel et al. (2012) and
Hjalmarsson and Oertel (2012). In line with their Ƥndings, in our model, a back-channel
inviting cue is recognized if the user is performing a glance of facial gaze to the agent while
he is speaking or moving a puzzle piece on the surface. The behavior ƪow starts with waiting
for the user to claim the turn (Figure 6.3.18 A⃝) by observing the global variable UserClaiming
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Figure 6.3.17: The behavior ƪow used for recognizing the diơerent types of feedback eliciting cues.
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Figure 6.3.18: The behavior ƪow interpreting the user’s gaze glances as back-channel eliciting cues.

(Figure 6.3.18 B⃝) which is set by the turn-taking action recognition process. In this, it ignores
all attempts of the user to establish mutual facial gaze (Figure 6.3.18 C⃝). When the user is
claiming the turn, then it waits for a gaze glance signal (Figure 6.3.18 D⃝) from the gaze event
handling process which is then interpreted as back-channel inviting cue and causes a back-
channel eliciting signal (Figure 6.3.18 E⃝) that is directed to the behavior ƪow which controls
the agent’s ideomotor nonverbal behavior. Afterwards, the behavior ƪow starts over again to
detect eventually following eliciting cues (Figure 6.3.18 F⃝).

FĆĈĎĆđ
MĎĒĎĈėĞ
EđĎĈĎęĎēČ

Figure 6.3.19 shows the behavior ƪow which can detect facial mimicry eliciting behaviors.
They can cause catching the other’s emotion when being looked at with an emotional expres-
sion (Hess and Fischer, 2013; Chartrand and Lakin, 2013) no matter if this mirroring behavior
represents an unconscious emotional contagion or an intentional mimicry or imitation of
the partner’s behavior (Louwerse et al., 2012; Chartrand and Lakin, 2013). In our model, the
agent decides how long and intense to mimic the user’s facial expressions whenever the user
tries to establish mutual facial gaze while claiming the turn and showing an emotional dis-
play. The behavior ƪow starts with waiting for the user to claim the turn (Figure 6.3.19 A⃝)
by monitoring the global variable UserClaiming (Figure 6.3.19 B⃝) which is changed by the
turn-taking action recognition process. In this, it ignores the user’s emotion displays (Fig-
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Figure 6.3.19: The behavior ƪow which is used for recognizing the user’s facial mimicry eliciting cues.

ure 6.3.19 C⃝) until the user is claiming the turn (Figure 6.3.19 D⃝). Then, it still ignores the
user’s emotions (Figure 6.3.19 E⃝) while the user is not yet looking at the agent (Figure 6.3.19
F⃝). When the user looks at the agent (Figure 6.3.19 G⃝), then it reacts to an already detected

or the next recognized facial expression (Figure 6.3.19 H⃝) by producing a facial mimicry elicit-
ing signal (Figure 6.3.19 I⃝) which is then consumed by the behavior ƪow in that controls the
agent’s nonverbal behavior on a higher layer of the behavior and interaction model. Finally,
the behavior ƪow starts over again to detect the next eliciting cues (Figure 6.3.18 J⃝).

6.3.3 Participant Role Management

The behavior ƪows on the participant role management layer (Figure 6.3.1 F⃝) are responsi-
ble for the assignment of the diơerent participant roles (Goơman, 1979; Clark and Carlson,
1982; Wilkes-Gibbs and Clark, 1992; Clark, 1996) to the interaction partners and for coming
to the decisions when to shift these roles between them. These decisions depend, on the one
hand, on the recently recognized turn-taking actions of the user and possible turn-taking
conƪicts, and, on the other hand, on the existence, urgency and importance of the current
contribution that the agent is eventually willing to perform Therefore, it exchanges informa-
tion with the dialog and behavior control layer (Figure 6.3.1 G⃝) using dialog ƪow signals and
is informed by the behavioral pattern recognition layer (Figure 6.3.1 F⃝) via the various types
of turn regulation signals. The interruption policy implemented on the participant role man-
agement layer directly inƪuences the dialog ƪow and the generation of the agent’s automatic,
role-dependent, nonverbal behavior on the dialog and behavior control layer (Figure 6.3.1 G⃝).

The model uses roles that adapt the overhearer, bystander, addressee, and speaker roles used
by Lee and Marsella (2011) and Bohus and Horvitz (2010a). An overhearer is not participating
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in an interaction while the speaker and addressee are the core participants of the conversa-
tion. According to Bohus and Horvitz (2010a), bystanders are openly present in the environ-
ment but do not participate in the conversation. We adapted this role in our model, such
that the agent is bystander whenever the speaker ƪoor is not yet demanded or negotiated.
This is the case at the very beginning of the interaction or when the ƪoor has been oơered
by a partner but has not been accepted by the other within a certain period of time. We also
extended the speaker role to a general actor role, such that the user is also in the speaker
role when he has successfully taken the turn with an object dragging action. In addition, we
introduce two transition states between these roles, Ƥrst the oơering phase which is entered
after the agent has assigned the turn to the user and the oơered phase which is entered after
the user assigns the turn to the agent. Both transition phases end after some timeout if the
addressee does not accept the oơer by taking the turn. In this case both partners enter the
bystander role until one of them wants to contribute to the interaction again. For the timing
in shifting roles via these transition states we use a time window similar to those proposed
by ter Maat et al. (2011) and Smith et al. (2015). These extensions allow more ƪexibility and
reƤnement in designing role dependent automatic behavior than with only two strict core
roles. For example, while the agent could actively follow the user’s attention to puzzle pieces
in the addressee role, it could try to establish mutual gaze in the oơering phase and only show
some random behavior in the bystander role. They also oơer more ƪexibility to model the in-
terruption policy for the collaborative shared workspace scenario. For example, as dragging
an object is not directly addressed to the agent, we could decide to ignore the user’s turn take
action, which could possibly result from such a dragging action, and only interrupt the agent
if there can be observed an actual voice overlap conƪict.

Realizing Participant Role Shifts

Figure 6.3.20 shows an extract of the behavior ƪow that manages the participant role assign-
ment and shifting. It is hierarchically reƤned into two nested behavior ƪows that are executed
depending on the value of the global variables UserPresent and AgentPresent (Figure 6.3.20
A⃝) which are set on the input handling layer (Figure 6.3.1 D⃝). The execution remains in the

Ƥrst behavior ƪow (Figure 6.3.20 B⃝) as long as one of the interaction partners has not yet
joined the interaction. In this case, the overhearer role is assigned to the agent by setting the
global variable AgentRole (Figure 6.3.20 C⃝). When both, user and agent are taking part in
the interaction, then the second behavior ƪow is controlling the shifting of the other partic-
ipant roles (Figure 6.3.20 D⃝). These role shifts are induced by ƪoor taking signals produced
by the nested behavior ƪows (Figure 6.3.20 E⃝- I⃝) which, for their part, produce these signals
in reaction to turn regulation signals of the behavioral pattern recognition layer and dialog
ƪow signals from in the dialog and behavior control layer. When assigning roles, then the
behavior ƪow updates the global variables AgentRole and RoleAction (Figure 6.3.20 C⃝) rep-
resenting the agent’s role and action, respectively. The nested behavior ƪow (Figure 6.3.20
D⃝) starts in the state in which both participants are in the bystander role (Figure 6.3.20 E⃝)
until either the agent or the user occupies the speaker role caused by a ƪoor occupy signal.
The agent occupies the speaker ƪoor when successfully requesting a new dialog contribution
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whereas the user occupies the ƪoor when he takes the turn. Depending which of them oc-
cupies the ƪoor Ƥrst, the behavior ƪow either assigns the speaker role to the user and the
addressee role to the agent (Figure 6.3.20 F⃝) or vice versa (Figure 6.3.20 G⃝).

While the agent is the addressee (Figure 6.3.20 F⃝), the corresponding nested behavior ƪow
produces a ƪoor conquer signal if the agent requests a dialog contribution while the user is
interruptible, such that the agent immediately takes on the speaker role (Figure 6.3.20 G⃝).
If the user holds the turn, then a ƪoor claim signal causes that participant roles remain un-
changed (Figure 6.3.20 F⃝) and if the user yields the turn, then a ƪoor release signal causes that
both participants return to the bystander role (Figure 6.3.20 E⃝). If the user assigns the turn
and thus oơers the speaker ƪoor to the agent, then a ƪoor oơer signal causes that the behav-
ior ƪow enters the corresponding transition state (Figure 6.3.20 H⃝). Similar to the strategy
described by ter Maat and Heylen (2009); ter Maat et al. (2010) and ter Maat et al. (2011), the
agent then has some time window to make sure that the user really Ƥnished his contribution
and to accept the oơered role exchange by starting a contribution. During this transition
timeout, deƤned by the local variable Transition (Figure 6.3.20 J⃝), the user can take the turn
again to produce a ƪoor reclaim signal and thus withdraw his oơer (Figure 6.3.20 F⃝). On the
other hand, the agent can achieve the creation of a ƪoor accept signal by requesting a dialog
contribution before, such that the speaker role is assigned to him (Figure 6.3.20 G⃝).

While the agent is the speaker (Figure 6.3.20 G⃝), the user’s turn take or hold actions as well
as turn conƪicts while the agent is interruptible can be transformed to a dialog interrupted
signal and a ƪoor conquer signal to make sure that the agent immediately interrupts itself
and the user takes the speaker role (Figure 6.3.20 F⃝). Otherwise, if the agent’s contribution
is regularly Ƥnished, then a ƪoor oơer signal is created to oơer the speaker ƪoor to the user
(Figure 6.3.20 I⃝). The user can then take the turn before the transition timeout has expired
in order to produce a ƪoor accept signal and thus accept the agent’s oơer (Figure 6.3.20 L⃝).
However, the agent can also request an additional contribution before and thus eơect the
production of a ƪoor reclaim signal to withdraw his oơer (Figure 6.3.20 G⃝). If the user doesn’t
accept the oơer in time and the agent does not reclaim the speaker role, then the bystander
role is assigned to both and the behavior ƪow starts over again (Figure 6.3.20 E⃝).

As shown in Figure 6.3.22, if the user takes the turn and thus produces a ƪoor occupy signal
while the agent is in the speaker role and the agent subsequently oơers the speaker role to the
user before a turn conƪict occurs, then neither a dialog interrupted signal nor a ƪoor conquer
signal are produced. However, the aforementioned ƪoor occupy signal causes that the agent
immediately switches to the addressee role after Ƥnishing its contribution and oơering the
ƪoor to the user (Figure 6.3.20 L⃝). In turn, if the user Ƥrst occupies and then immediately
yields or assigns the ƪoor to the agent while the agent still has the speaker role, then a ƪoor
release signal overwrites and thus cancels the ƪoor occupy signal so that the user can again
choose to accept the oơer or not (Figure 6.3.20 K⃝). As shown in Figure 6.3.22, these situations
usually occur when the agent’s current contribution is not interruptible such that the agent
Ƥrst Ƥnishes his contribution before oơering the speaker role to the user.
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Figure 6.3.20: The behavior ƪow managing the participant role assignment and shifting based on turn regulation signals from other layers of the model.

186



6.3. Modeling Behavior and Interaction

Implementing Interruption Policies

The nested behavior ƪows are role-dependently transforming turn-taking actions, turn-taking
conƪicts, and dialog contribution requests into possible role shifts. In particular, they im-
plement interruption policies, that are used to decide when such an event results in an inter-
ruption attempt. While the agent is the addressee (Figure 6.3.20 F⃝), he might nevertheless
want to contribute to the dialog because the dialog planner has produced a new contribu-
tion in the meanwhile. In this case, the user interruption policy has to decide whether the
agent’s contribution request may be accepted such that he may try to interrupt the user or
not. Otherwise, while the agent is the speaker (Figure 6.3.20 G⃝), the user could start to
speak or drag an object and thus produce a turn take action or even a turn-taking conƪict.
In these cases, the agent interruption policy has to come to the decision if the agent has to
interrupt itself and leave the speaker right to the user or not. While the model in the current
form deƤnes these interruption policies rather statically, they could just as well be based on
politeness considerations (Brown and Levinson, 1987), interpersonal relationships and per-
sonality (Zimmerman and West, 1975; Ferguson, 1977; Natale et al., 1979; Goldberg, 1990), the
urgency and importance of individual the agent’s contributions, and many other factors that
determine under what circumstances one participant may interrupt the other.
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Figure 6.3.21: The behavior ƪow used for handling turn-taking and dialog signals as addressee.

TčĊ UĘĊė
IēęĊėėĚĕęĎĔē
PĔđĎĈĞ

Figure 6.3.21 shows the behavior ƪow which is used to decide if a role shift has to be per-
formed while the agent is in the addressee role (Figure 6.3.20 F⃝). A Ƥrst nested behavior
ƪow is reacting to the user’s turn-taking actions (Figure 6.3.21 A⃝) while the second behavior
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ƪow (Figure 6.3.21 B⃝) is implementing the interruption policy based on dialog ƪow signals.
It waits until it detects such a signal in the fact base (Figure 6.3.21 C⃝), extracts its name to the
local variable Name (Figure 6.3.21 D⃝) and afterwards checks which action may have caused
the signal (Figure 6.3.21 E⃝). In the case of a ƪoor request signal, it checks if the user is in-
terruptible (Figure 6.3.21 F⃝) by checking the corresponding global variable UserInterruptible
(Figure 6.3.21 G⃝). If the user is not interruptible, then the behavior ƪow produces a dialog
reject signal (Figure 6.3.21 H⃝) to ensure that the contribution is refused. Otherwise, it Ƥrst
produces an dialog accept signal and afterwards a ƪoor conquer signal (Figure 6.3.21 I⃝) to
cause that the agent executes the contribution and gets the speaker role (Figure 6.3.20 G⃝).
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Figure 6.3.22: The behavior ƪow used for used for handling turn-taking and dialog signals as speaker.

TčĊ AČĊēę
IēęĊėėĚĕęĎĔē

PĔđĎĈĞ

Figure 6.3.22 shows the behavior ƪow that decides if a role shift has to be performed while
the agent is in the speaker role (Figure 6.3.20 G⃝). A Ƥrst nested behavior ƪow is handling
the dialog ƪow signals (Figure 6.3.22 A⃝) while the second behavior ƪow is processing the
turn regulation signals (Figure 6.3.22 B⃝). It waits until it detects a turn action signal or turn
conƪict signal in the fact base (Figure 6.3.22 C⃝), extracts its name to the local variable Name
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(Figure 6.3.22 D⃝) and afterwards checks which action or conƪict may have caused the signal
(Figure 6.3.22 E⃝). In case of a take or hold action, it checks if the agent is interruptible by
this type of action (Figure 6.3.22 L⃝) and produces a ƪoor occupy signal (Figure 6.3.22 I⃝) if
the agent is not interruptible which causes that the user immediately acquires the speaker
role when it is oơered by the agent. In case of a yield or assign action, it produces a ƪoor
release signal (Figure 6.3.22 F⃝) which overrides a preceding ƪoor occupy signal. In case of a
barge-in or bear-up, the behavior ƪow also checks if the agent is interruptible by this conƪict
(Figure 6.3.22 H⃝). If the agent is interruptible, then it produces a dialog interrupted signal to
cause that the agent interrupts itself (Figure 6.3.22 I⃝) and afterwards a ƪoor conquer signal
to cause an instant shift of the speaker role to the user (Figure 6.3.22 J⃝).

6.3.4 Dialog and Behavior Control

The dialog and behavior control layer (Figure 6.3.1 G⃝) comprises behavior ƪows that manage
the dialog ƪow as well as the role-speciƤc and role-independent aspects of the agent’s non-
verbal behavior. They Ƥnally control and produce the agent’s observable deliberative and
automatic behaviors and actions. They are closely synchronized with the participant role
management layer (Figure 6.3.1 F⃝) and exchange information about the agent’s and user’s
contributions with the dialog planning component. Furthermore, they are informed by sig-
nals produced by the input event handling layer (Figure 6.3.1 D⃝) and the behavioral pattern
recognition layer (Figure 6.3.1 E⃝). This shows that most behaviors contributing to inter-
personal coordination and grounding ultimately arise from the complex interplay and close
coordination of the multiple processes in these layers of the model.
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Figure 6.3.23: The behavior ƪow used for controlling the dialog ƪow and other behavioral aspects.

Figure 6.3.23 shows the hierarchical and parallel structure of the layer’s main behavior ƪow. A
Ƥrst nested behavior ƪow is primarily controlling the dialog ƪow by coordinating the dialog
planner with the participant role management (Figure 6.3.23 A⃝). Another one is produc-
ing the agent’s role-speciƤc nonverbal behavior based on the participant role assignments
(Figure 6.3.23 B⃝). The third performs universal, that means role-independent, behavioral
functions (Figure 6.3.23 C⃝), such as automatic idle head and body movements and postures,
breathing and blinking behaviors, or physiological reactions. For reasons of redundancy, the
remainder of this section only explains the Ƥrst two nested behavior ƪows in more detail.
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Dialog Planning and Flow Control

Figure 6.3.24 shows an extract of the behavior ƪow that models the dialog ƪow control. This
task comprises the coordination with the planning component, the proper execution of the
agent’s contributions as well as the handling of the user’s interruptions. It exchanges infor-
mation with the dialog planner using dialog planning signals and is coordinated with the
participant role management layer (Figure 6.3.1 F⃝) via dialog ƪow signals. The dialog and
behavior control model, as described here, doesn’t make any speciƤc assumptions about the
dialog planner. It only requires that the dialog planner is continuously and asynchronously
planning the agent’s deliberative dialog contributions, that means instructions and clariƤ-
cation statements, in reaction to the user’s, contributions, which are questions and object
movements. It is requesting the execution of the agent’s dialog contributions while the di-
alog and behavior model forwards the user’s speech acts and move actions in the opposite
direction. The decisions made on the participant role management layer determine whether
the agent’s planned dialog contributions may be executed, must be interrupted or have to be
rejected and postponed already before. The dialog planner may be any suitable external soft-
ware module, such as a rule-, plan-based, or statistical discourse planning engine (Rich and
Sidner, 1998; Bohus and Rudnicky, 2003; Nooraei et al., 2014; Ultes and Minker, 2014) but may
also be replaced by a Wizard-of-Oz interface operated by a human expert. Finally, it can also
be realized with a speciƤcally modeled parallel behavior ƪow whose structure implements
the dialog’s branching logic, as already done in several other applications (Mehlmann et al.,
2011b; Gebhard et al., 2012; Mehlmann et al., 2014a).

IēęĊėėĚĕę ƭ
CĔēęėĎćĚęĎĔē

HĆēĉđĎēČ

The Ƥrst nested behavior ƪow in Figure 6.3.24 is managing the exchange and execution of
contributions (Figure 6.3.24 A⃝). It starts by waiting for the planning component to produce
the agent’s next contribution while constantly processing the user’s contributions in a nested
behavior ƪow (Figure 6.3.24 B⃝). These are the user’s speech action signals produced when
the user asks a question and the move action signals created when the user moves a puzzle
piece on the surface table. We assume that they are simply propagated to the dialog plan-
ning component to update the dialog engine’s information state and discourse history and
consider them for the next planning iterations.

When the dialog planner signals a new contribution, then the behavior ƪow extracts the rel-
evant information (Figure 6.3.24 C⃝) to the local variable AgentContribution (Figure 6.3.24
D⃝). Afterwards, the participant role management layer is requested for the speaker ƪoor by
producing a dialog request signal (Figure 6.3.24 E⃝) before waiting for the response signal
(Figure 6.3.24 F⃝). If the execution request is rejected, then the dialog planner is notiƤed
about the unsuccessful contribution attempt by propagating the respective dialog rejected
signal (Figure 6.3.24 G⃝) before restarting the behavior ƪow again (Figure 6.3.24 B⃝). Oth-
erwise, if the speaker role has be obtained, then the dialog planner is notiƤed about the
successful request by forwarding the corresponding dialog accepted signal (Figure 6.3.24 H⃝)
before the agent’s contribution is executed by the nested behavior ƪow (Figure 6.3.24 I⃝),
shown in Figure 6.3.25, and afterwards started over again (Figure 6.3.24 B⃝).
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Figure 6.3.24: The behavior ƪow used for coordinating the dialog ƪow with the dialog planning.

In parallel to the dialog contribution logic, a second nested behavior ƪow is handling the
user’s interruptions and the abortion of the agent’s behavior (Figure 6.3.24 J⃝). It constantly
waits for dialog interrupted signals from the participant role management layer (Figure 6.3.24
K⃝). If such a signal is detected, then it awaits a short abortion timeout (Figure 6.3.24 L⃝),
deƤned by the local variableAbortion (Figure 6.3.24 M⃝), before stopping the agent’s utterance
and all co-verbal behaviors (Figure 6.3.24 N⃝). Afterwards, it instructs the parallel behavior
ƪow (Figure 6.3.24 I⃝) which is currently executing the agent’s contribution to abort this
execution with immediate eơect (Figure 6.3.24 O⃝). This synchronization is realized via the
corresponding shared local variable AgentInterrupted (Figure 6.3.24 D⃝).

EĝĊĈĚęĎĔē
SĊĖĚĊēĈĊ
ƭ AćĔėęĎĔē

Figure 6.3.25 shows the aforementioned behavior ƪow that controls the execution states and
abortion of the agent’s dialog contributions (Figure 6.3.24 I⃝). Most interpersonal coordina-
tion and grounding behaviors in the speaker role, such as, for example, gaze aversion while
planning speech, mutual gaze to the addressee when taking the turn, gaze behaviors reveal-
ing the cognitive or emotional state, mutual gaze to demand attention and directed gaze or
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gestures to draw attention, and many more, are realized using appropriate activity speciƤca-
tions for the agent’s verbal and co-verbal behavior in the scenes that are provided with the
contribution and played back in consecutive states. In this speciƤc case, a contribution con-
sists of three scenes whose names are stored in the variables DialogScene, AbortScene and
AssignScene (Figure 6.3.25 A⃝). The dialog scene contains the agent’s multi-modal utterance,
the abort scene is executed if the dialog scene has been interrupted, and, Ƥnally, the assign
scene is used to generate the appropriate nonverbal behaviors when assigning the turn to the
user after the dialog scene has been played back.
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Figure 6.3.25: The behavior ƪow used for executing the agent’s new contributions to the dialog.

The behavior ƪow Ƥrst extracts the scenes from the contribution and then sets the global
variable AgentInterruptible (Figure 6.3.25 B⃝) to determine that the agent’s next dialog scene
must be interruptible (Figure 6.3.25 C⃝). The decision to make the scene interruptible or
not could, however, also be provided as part of the contribution in order to represent its
urgency or importance. Then the dialog scene is played back (Figure 6.3.25 E⃝) and the agent
is set non-interruptible again after the scene has Ƥnished regularly (Figure 6.3.25 F⃝). In this
case, Ƥrst, the assign scene is played back (Figure 6.3.25 G⃝), then a dialog Ƥnished signal
is produced to notify the dialog planner about the successful playback (Figure 6.3.25 H⃝),
and a dialog release signal is created to cause the participant role management to oơer the
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speaker role (Figure 6.3.25 I⃝). Otherwise, if the dialog scene is interrupted, then the variables
AgentInterrupted and AgentInterruptible are reset (Figure 6.3.25 J⃝), the abortion scene is
executed (Figure 6.3.25 K⃝), and, Ƥnally, the dialog planner is notiƤed that the contribution
was aborted by producing an dialog aborted signal (Figure 6.3.25 L⃝).

Role-SpeciƤc Behavior Control

Figure 6.3.26 shows the behavior ƪow that is used for the generation of the agent’s role-
speciƤc, ideomotor, nonverbal behaviors. These behaviors fulƤll essential functions for in-
terpersonal coordination and grounding, such as, for example, attention following, back-
channel production and intimacy regulation or the reaction to connection events and feed-
back eliciting cues. These functions can signiƤcantly diơer between the individual partici-
pant roles, that means, the user’s behaviors that are particularly responded in the one role can
be handled completely diơerently or are even totally ignored in another role. Therefore, it is
hierarchically structured such that each individual participant role is realized with a separate
nested behavior ƪow producing exactly those behaviors that are typical for this speciƤc role.
Its execution is switching between the nested behavior ƪows based on the decisions made
by the participant role management. In its current form, the addressee and speaker roles are
not further reƤned, however, the model can be further reƤned such that also the transition
phases that are entered whenever a participant is oơering the speaker role (Figure 6.3.20 D⃝,
E⃝) can as well be represented as separate nested behavior ƪows.

The behavior ƪow starts by executing the typical overhearer behavior while neither the user
nor the agent are actively taking part in the interaction (Figure 6.3.26 A⃝). When both par-
ticipants are involved in the interaction (Figure 6.3.26 B⃝), then the nested behavior ƪows
are controlling the agent’s automatic behavior in the speaker (Figure 6.3.26 C⃝), bystander
(Figure 6.3.26 D⃝) or addressee role (Figure 6.3.26 E⃝). They produce the aforementioned
role-dependent coordination and grounding behaviors that can easily be adapted to realize
speciƤc strategies or variations for a particular application. Transitions between the role-
speciƤc behavior ƪows are induced by the changes of the global variable AgentRole which is
updated by the participant role management whenever a role decision has been made.

As representative example, Figure 6.3.26 shows the nested behavior ƪow which is used to
model the agent’s behavior in the addressee role in more detail (Figure 6.3.26 E⃝). It starts in
a state in which the agent shows typical role-speciƤc ideomotor listening behavior including,
for example, irregular back-channels and probabilistic gaze distributions (Nielsen, 1962; Ar-
gyle and Ingham, 1972; Argyle et al., 1973; Argyle and Cook, 1976; Argyle and Graham, 1976;
Bee et al., 2010b) (Figure 6.3.26 F⃝). For example, as suggested by Srinivasan et al. (2014),
the agent could look at the user and sporadically look to randomly chosen positions in the
environment for time periods between about 750 and 1000 milliseconds. Another possibility
would be to implement the gaze distributions reported by Fukayama et al. (2002), Bee et al.
(2010b), or Mutlu et al. (2012) to convey a particular impression or social attitude.
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Figure 6.3.26: The behavior ƪow controlling the agent’s role-speciƤc nonverbal behavior based on the signals from the lower layers of the model.
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6.4. Summary and Conclusion

Whenever the behavior ƪow is notiƤed about a recognized behavioral pattern or user action
by the lower layers of the model, then it reacts appropriately and afterwards returns to this
listening behavior (Figure 6.3.26 G⃝- K⃝). The semantic information that is carried by the
corresponding signals is stored in the local variable Data (Figure 6.3.26 M⃝) in order to be
further processed by the nested behavior ƪows. For example, when the user changes his
focus of visual attention, then the agent can adequately react in the corresponding nested
behavior ƪow (Figure 6.3.26 G⃝). The agent could, for example, follow the user’s gaze to the
respective puzzle piece or answer the user’s attempt to establish mutual gaze. The agent is
also notiƤed whenever he successfully established shared attention (Figure 6.3.26 H⃝) or has
reached mutual facial gaze with the user (Figure 6.3.26 I⃝) and can then adequately react to
these gaze connection events in the respective nested behavior ƪows. He could, for example,
smile at the user when mutual facial gaze has been established or show interest by performing
attentive facial expressions when they share the same perceptual ground during shared gaze.
The agent is as well notiƤed when the user is trying to elicit a facial mimicry (Figure 6.3.26
J⃝), such that he can, for example, respond to this eliciting cue with an emotional display in

order to create the impression of emotional contagion or avert the gaze in order to balance the
interpersonal intimacy. Furthermore, the agent is also notiƤed when the agent tries to elicit a
back-channel cue with a short glance of gaze while he is claiming the turn (Figure 6.3.26 K⃝).
The decision whether or which type of back-channel should be produced could then be based
on semantic information, for example, if the currently dragged object is the one that has been
referred to in the agent’s previous instruction. Finally, the agent is also constantly notiƤed
while the user moves a puzzle piece on the surface table, such that the agent is, for example,
able to follow these object movements with his gaze in order to share the perceptual ground
with the user (Figure 6.3.26 L⃝). It can clearly be seen, that this behavior control ƪow, that
is informed by the behavior recognition and participant management layers of the model,
oơers a myriad of possibilities now to customize the coordination and grounding behaviors
of the agent based on many inƪuencing factors, such as models of politeness (Brown and
Levinson, 1987), interpersonal relationships, or personality traits (Zimmerman and West,
1975; Ferguson, 1977; Natale et al., 1979; Goldberg, 1990).

6.4 Summary and Conclusion

In this chapter, I illustrated the modeling approach proposed in this thesis using an exem-
plary behavior and interaction model of a social agent in an exemplary application. First,
in Section 6.1, I presented the general application and sensor setup which is common to the
demonstrator applications developed in this thesis and is also assumed for the exemplary ap-
plication. Afterwards, in Section 6.2, I showed how the application-speciƤc domain knowl-
edge and the user’s input events are represented in the application using feature structures in
a PėĔđĔČ fact base. I especially explained how ambiguous referring expressions in the user’s
clariƤcation requests can be disambiguated with gaze events during the respective speech
event by using a logic quantiƤcation predicate. Afterwards, I present a large part of the BFSC
modeling the interactive behavior of the social agent in the application. It is divided into
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synchronized levels and processes for input handling and preprocessing, behavioral pattern
recognition, participant role and turn management, and dialog and behavior control. The be-
havior and interaction model is assumed to work asynchronously together with an arbitrary
dialog management module.

The presented model’s architecture is highly modular using a multitude of parallel and nested
behavioral levels and functions. It is rather generic and adaptable to application-speciƤc
needs. Thus it can serve as best practice example and toolbox resource of individual reusable
and adaptable parts. The model includes most of the behavioral aspects that contribute to
interpersonal coordination and grounding, such as attention following, multi-modal disam-
biguation, turn-taking, interruption handling. Thus, with regard to expressiveness, it cer-
tainly implements a superset of the capabilities of all other models for these behavioral func-
tions that have been presented in Chapter 4. In fact, the model can easily be parameterized
to resemble the behavior of those models, but, goes way beyond by combining their func-
tionalities and their interplay in a single model.
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PĆėę IV

RĊĆđĎğĆęĎĔē Ćēĉ CĔēĈđĚĘĎĔē

“You should better walk your dog so that it
doesn't pee on the leash.”

Dė. UđėĎĈč MĊčđĒĆēē





CčĆĕęĊė 7

RĊĆđĎğĆęĎĔē — RĊ-ĊēČĎēĊĊėĎēČ Ćēĉ
VĆđĎĉĆęĎēČ ęčĊ VSM3 FėĆĒĊĜĔėĐ

In Chapters 5 and 6 I presented and illustrated the theoretical foundations and conceptual
framework of the BFML ensemble. Therefore, I explained how typed feature structures and
a Ƥrst- and higher-order logic calculus form the basis of an embedded domain-speciƤc lan-
guage in PėĔđĔČ. I introduced a specially designed state-chart dialect that supports the hier-
archical reƤnement and parallel decomposition of the model as well as interruption policies
and an exhaustive history mechanism. I Ƥnally deƤned a descriptive, template-based lan-
guage to specify social agents’ behavior and dialog similar to natural language scene scripts.
I decided to depict the illustrative models in Chapters 5 and 6 in this conceptual notation
in order to comprehensively illustrate these modeling concepts while waiving any “syntactic
sugar”. However, I did not discuss their execution semantics such that the question how the
conceptual syntax can be turned into an executable speciƤcation remained unanswered.

For that reason, this chapter now takes a closer look at the speciƤcation of the fully ƪedged,
visual programming language that has been developed in this thesis for the most recent ver-
sion of VSM3. It moves from the conceptual notation, given by the BFML ensemble, to an
executable syntax deƤned in form of a revised and extended Scene Flow Modeling Language
(SFML). I explain how the extension and adaptation of the former scene ƪows, used in the
predecessor versions of VSM3 (Rist et al., 2002; Baldes et al., 2002; Rist et al., 2003; Klesen et
al., 2003; Gebhard et al., 2003b; Gebhard and Klesen, 2005; Ndiaye et al., 2005; Gebhard et
al., 2008; Schröder et al., 2008; Mehlmann, 2009), led to the design of extended scene ƪows
as reference implementation of the behavior ƪows presented in Chapters 5 and 6.

In the remainder of this chapter, in Section 7.1, I explain the redeƤnition of selected parts of
the SFML speciƤcation, necessary to implement the conceptual framework from Chapter 5 in
the latest version of VSM3. Afterwards, in Section 7.2, I present important refactoring steps
that have been unavoidable to adapt the software architecture and components of VSM3 to
the speciƤcation’s adjustment. Finally, in Section 7.3, I present a few demonstrator applica-
tions that have been developed in this thesis to validate the re-engineered version of VSM3.
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7.1 RedeƤning Language SpeciƤcations

Re-engineering VSM3 included the extension and redeƤnition of the SFML language ensem-
ble’s speciƤcation whose new architecture is shown in Figure 7.1.1. Just like the BFML, it is
not a single language but follows a modular and compositional approach to handle the task-
speciƤc requirements identiƤed in Chapter 3. It relies on a combination of three rather inde-
pendent and isolated, visual and declarative modeling and scripting languages, each of which
is responsible for a speciƤc modeling subtask, and a fourth glue language which connects the
individual parts of a model. First, extended Scene Flow State-Charts (SFSCs) (Figure 7.1.1 A⃝)
are the executable counterpart of BFSCs and, as such, a hierarchical and concurrent state-
chart dialect used for coordinating behavior, interaction, and dialog ƪow. Second, the revised
Scene Flow Script Language (SFSL) (Figure 7.1.1 C⃝) is the implementation of BFSL, a template-
based speciƤcation language for multi-modal behavior and dialog content. Third, the newly
added Scene Flow Query Language (SFQL) (Figure 7.1.1 D⃝) is the embedded SWI-PėĔđĔČ
implementation of the BFQL and, thus, a domain-speciƤc PėĔđĔČ calculus that is used for
multi-modal fusion and reasoning. Finally, the reviewed Scene Flow Glue Language (SFGL)
(Figure 7.1.1 B⃝) is the executable version of the BFGL resembling a small JĆěĆ™ subset that
is used to equip the nodes and edges of SFSCs with SFGL statements, such as SFSL playback
commands, SFQL query expressions, or calls to underlying JĆěĆ™ plug-in functions.

Scene 
Flow State 

Charts 

 
Scene 

Flow Glue 
Language 

Scene 
Flow 

Query 
Language 

Scene 
Flow 

Script 
Language 

C 

A B 

D 

Figure 7.1.1: The architecture of the scene ƪow modeling language ensemble developed in this thesis.

The original speciƤcation of the SFML ensemble members, except the SFQL, including their
structurally deƤned operational execution semantics can be found in Mehlmann (2009).
Their further development and adjustments as well as the integration of SFQL is, inter alia,
presented in various publications that have been submitted during this thesis (Mehlmann
et al., 2011a,b; Mehlmann and André, 2012; Mehlmann et al., 2014a,b, 2016). The syntax of
SFQL only marginally diơers from the already comprehensively described syntax of BFQL,
such that, in the following, I conƤne myself to present the extensions of SFSCs as well as the
enhanced versions of SFGL and SFSL. Extended scene ƪows can be used to implement the
behavior ƪows presented in Chapters 5 and 6 using the most recent version of VSM3.
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7.1. RedeƤning Language SpeciƤcations

7.1.1 The SpeciƤcation of SFSCs

Re-engineering VSM3 included the re-design of SFSCs in order to integrate the modeling
concepts of BFSCs described in Section 5.4. Like BFSCs, the major strength of the revised
SFSCs is modeling the incremental and reciprocal interplay of processes for behavioral pat-
tern recognition, knowledge reasoning, and behavior generation. They use parallel and hier-
archical decomposition to make the model less complex, better readable, maintainable, and
reusable. They rely on synchronization and information exchange means of the redesigned
SFGL and SFQL to coordinate parallel behavioral processes, levels, functions, and modalities
that contribute to interpersonal coordination and grounding behaviors of social agents.

The canonical abstract syntax of SFSCs can be mapped to diơerent textual syntaxes that are
suitable for serialization and modeling if no graphical editor is available. However, being Ƥrst
and foremost a visual programming language, the visual syntax of SFSCs is the most legible
way to depict them and is, in the following, presented by means of the graphical notation
of nodes, edges, and other visual characteristics of SFSCs. The meaning of these syntactical
constructs is only insofar explained as it is necessary to get a rough idea how an operational
execution semantics could structurally be deƤned (Harel and Naamad, 1996; von der Beeck,
1994; Drusinsky, 2004; Harel and Kugler, 2004; Drusinsky, 2006; Mehlmann, 2009).

Scene Flow Nodes

A node represents a small executable program segment consisting of SFGL statements. Thus,
nodes are similar to functions in well-known procedural programming languages. Together
with the guarding expressions of the edges connecting the nodes, the entire SFSC constitutes
a static deƤnition of a larger program whose semantics is the set of potential traces, which
are the sequences of statements and transitions during the possible execution runs.

Basic Nodes The simplest type of node is a basic node which is historically also called
scene node (Gebhard et al., 2003a, 2008, 2012). It is graphically depicted with a circle which
must be labeled with a name that is optionally followed by a unique identiƤer. Besides these
two mandatory attributes, it can have additional visual features and be annotated with SFGL
statements. Figure 7.1.2 shows the visual syntax of a basic node with the name WelcomeScene

and the identiƤer N1. A reddish triangle (▶) marks it as regular start node of its parent node,
thus serving as a starting point for the parent node’s execution. Furthermore, the thin inner
black circle (◦) inside the thicker grayish boundary of the node (○) marks it as end nodewhich
is a possible termination point of its executing process. Besides these visual attributes, the
node is labeled with SFGL statements which are partitioned in diơerent framed boxes above
and below the node. The Ƥrst box contains deƤnitions of record-like data types, the second
box contains variable deƤnitions, and the third contains commands to be executed.

Super Nodes As shown in Figure 7.1.3, a super node is graphically represented by a square
and can, just like a basic node, be labeled with the aforementioned visual features and SFGL
statements. It additionally extends the functionality of a basic node because it can con-
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person : struct (Name : string, Age : int) 
names : list ( string ) 

names Players = [“Gregor“, “Kathrin“, “Robot“]  
person Gregor = { Name = “Gregor“, Age = 35 } 
string SomeEvent = “[type:event, mode:face, 
                               name:‘Gregor‘, data:smile]“ 
string SomeValue = “undefined“ 

 != “Welcome“, name = trim(Gregor.Name) . 
 ?- “val(data, SomeValue, “+ SomeEvent +“).“ . 

Welcome 
Scene 
[ N1 ] 

Start  
Node 

Marker 

  Node Name 

 Variable  
 Definitions 

 Command    
 Statements 

 Datatype 
 Definitions 

  Node Identifier 

Figure 7.1.2: The visual syntax of a basic node with a few local deƤnitions and command statements.

tain an arbitrary number of nested and concurrent SFSCs, thus creating a hierarchical and
parallel structure. It may deƤne any set of subnodes as regular start nodes, using reddish
triangles (▶), to determine the parallel starting points of its execution. Each super node has
a mandatory history node which is a special start node marked with a grayish triangle (▶).
All deƤnitions of types, variables, class paths, and functions of the super node are inherited
by its nested subnodes. An incoming edge may specify alternative start nodes which then
replace the other start and history nodes as execution starting points whenever the super
node is entered via this edge. This is a way of parameterizing the execution of a super node
depending on the preceeding control ƪow. Diơerent incoming edges may deƤne diơering
alternative start node sets whose nodes are then marked with bluish triangles (▶).

Alternative Start 
Node Specification 

Super 
Node 

[ S1 ] 

Some 
Node 
[ N1 ] 

N3 , N4  Node Name 

 Node Identifier 

History  
Node 

[ H1 ] 

Start  
Node 2 

[ N3] 
... ... 

Start  
Node 1 

[ N2] 

Alternative 
Start Node 

[ N4] 

Start  
Nodes 

History 
Node 

Alternative  
Start Node 

Figure 7.1.3: The visual syntax of a super node with a history node, regular and alternative start nodes.
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Scene Flow Edges

SFSCs have diơerent edge types that share a few common syntactical and semantical charac-
teristics. They are directed, colored and optionally labeled arrows that are connecting two
nodes, referred to as source node and target node. Edges can be labeled with diơerent guard-
ing constraints, that need to be satisƤed to enable the transition. Like in BFSCs, these diơer
in when and by which process they are evaluated and how they come into eơect.

Epsilon Edges An epsilon edge denotes an unconditional transition which is immediately
taken when the execution of its source node is Ƥnished. As shown in Figure 7.1.4, epsilon
edges are colored grayish and are unlabeled except they specify alternative start nodes. Their
source nodes are also colored grayish if the epsilon edge is the only outgoing edge. They are
used to create sequential structures and to determine the order of computation steps, such
as the playback of behavioral activities or the execution of logic queries. They can make the
model more clearly arranged and facilitate its manageability and readability.

Source  
Node 

Target  
Node 

[ N2 ] [ N1 ] 

Figure 7.1.4: An exemplary epsilon edge which is connecting the source node N1 with target node N2.

Timeout Edges A timeout edge represents a timed transition that is taken with some delay
when the timeout has expired after the execution of the source node. As shown in Figure 7.1.5,
timeout edges are colored brownish and are labeled with a timeout value in milliseconds.
Their source nodes are as well colored brownish if they have only outgoing timeout edges.
They are used to control the timing and scheduling of consecutive computation steps.

3000ms 
Source  
Node 

[ N1 ] 

Target  
Node 

[ N2 ] 

Figure 7.1.5: An exemplary timeout edge which is connecting the source node N1 with target node N2.

Probability Edges A probability edge denotes a transition that is taken with the speciƤed
probability after the execution of the source node has Ƥnished. As shown in Figure 7.1.6,
probability edges are colored greenish and labeled with a percentage value between zero and
one hundred. Their source nodes are also colored greenish and may have exclusively outgoing
probability edges whose probabilities must sum up to 100% to cover the entire probability
space. They are used to create a certain degree of randomness in the model’s branching
structure and thus a desired non-deterministic behavior.
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Target  
Node 2 

Target  
Node 1 

60% 

40% 

Source  
Node 

[ N1 ] 

[ N2 ] 

[ N3 ] 

Figure 7.1.6: Two exemplary probability edges from the source node N1 to the target nodes N2 and N3.

Condition Edges A condition edge represents a conditional transition that is enabled when
the guarding constraint is satisƤed after the execution of the source node has Ƥnished. As
shown in Figure 7.1.7, condition edges are colored orange and labeled with a guarding con-
ditional or query expression. Their source nodes are also colored orange if they have solely
additional outgoing epsilon or timeout edges. They are used to create a conditional branch-
ing structure and to determine the reaction to user inputs and context changes.

Source  
Node X == 3 
[ N1 ] 

Target  
Node 

[ N2 ] 

Figure 7.1.7: An exemplary condition edge that is connecting the source node N1 with target node N2.

Interruptive Edges An interruptive edge represents a conditional transition that, in con-
trast to a regular condition edge, taken “immediately” when its guarding constraint is satisƤed
even if the execution of the source node has not yet Ƥnished. In this case, the source node’s
execution is interrupted and the nested nodes’ execution is terminated in the same step.
Therefore, the currently executed activities such as the playback of behavioral activities or
the execution of functions have to be aborted and returned from. Consequently, interruptive
edges at nodes closer to the root have priority over those farther from the root.

X == 3 
Target  
Node 

[ N2 ] 

Source  
Node 

[ N1 ] 

Figure 7.1.8: An exemplary interruptive edge connecting the source node N1 with the target node N2.

As shown in Figure 7.1.8, interruptive edges are labeled with a guarding conditional or query
expression and are, just like their source nodes, colored reddish. They are used to realize
interruptions and priorities in response to user inputs or external events that require an im-
mediate handling and behavioral reaction without undue delay.
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ForkingEdges A forking edge denotes an unconditional transition that starts a new parallel
process when it is taken. As shown in Figure 7.1.9, forking edges are unlabeled and colored
bluish like their source nodes that must not have outgoing edges of another type. With the
help of forking edges the execution may be split into multiple concurrent processes on the
same hierarchy level without the need to use super nodes with multiple start nodes.

Target  
Node 2 

Target  
Node 1 

Source  
Node 

[ N1 ] 

[ N2 ] 

[ N3 ] 

Figure 7.1.9: Exemplary forking edges connecting the source node N1 with target nodes N2 and N3.

7.1.2 The SpeciƤcation of SFGL

A glue language is a programming language that is designed to write and manage code, which
supports interconnecting diơerent software components, programming languages, and plat-
forms. As such, the responsibility of SFGL is to glue together SFSCs with the underlying
implementation language JĆěĆ™ and the other ensemble members of SFML. It is used to
label the nodes of SFSCs with deƤnitions, assignments, invocations, and expressions, such
as the playback of SFSL speciƤcations, the evaluation of SFQL queries, and the execution of
JĆěĆ™ functions. Furthermore, it is used to label the edges of SFSCs with transition guards,
such as arithmetical and logical conditions, or SFQL query expressions. JĆěĆ™ with its reƪec-
tionmechanism (Forman and Forman, 2004) is used to integrate native libraries and software
components for sophisticated tasks whose realization would be too laborious with SFML.

Similar to the textual expression languages of other state-chart dialects (Harel, 1987; Harel
et al., 1990; Harel and Naamad, 1996; Harel and Politi, 1998; von der Beeck, 1994; Drusinsky,
2004; Harel and Kugler, 2004; Drusinsky, 2006; Crane and Dingel, 2007), SFGL is a simple
procedural and imperative scripting language, lexically and syntactically very close to other
well-known glue languages, such as JĆěĆScript 1, Python 2, or Perl 3. Its resembles a subset
of its implementation language JĆěĆ™ with a notably simpliƤed type system and consider-
ably reduced expressiveness. The data interchange between the SFML ensemble members is
realized via primitively or record-like typed variables while values are implicitly converted.

Re-engineering VSM3 required the revision of the SFGL to apply the BFGL modeling concepts
described in Sections 5.2 to 5.4. Besides some less extensive lexical and syntactical simpliƤ-
cations, this included the extension with new commands for the playback of SFSL scenes and

1https://www.javascript.com/
2https://www.python.org/
3https://www.perl.org/
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actions as well as the evaluation of SFQL queries to the newly integrated SWI-PėĔđĔČ fact
base. In the following, I illustrate these adjustments via selected parts of SFGL’s syntax using
context-free grammar production rules in Extended Backus-Naur Form (EBNF) and regular
expressions deƤning the lexemes of SFGL.

Command Types As shown in Listing 7.1.1, a command statement of SFGL can be a deƤni-
tion statement, a variable assignment, a method invocation, or an expression statement.

command⟶
deƤnition

| assignment
| invocation
| expression

Listing 7.1.1: The redeƤned production rules for command types in the EBNF grammar of the SFGL.

DeƤnition Types As shown in Listing 7.1.2, a deƤnition statement of the SFGL can repre-
sent the deƤnition of a new data type, variable, function, or class path.

deƤnition ⟶
datatype_deƤnition

| variable_deƤnition
| function_deƤnition
| classpath_deƤnition

Listing 7.1.2: The redeƤned production rules for deƤnition types in the EBNF grammar of the SFGL.

Type DeƤnitions As shown in Listing 7.1.3, a data type deƤnition introduces a new type
name for a record-like list or struct type.

datatype_deƤnition ⟶
list_type_deƤnition

| struct_type_deƤnition

list_type_deƤnition ⟶
datatype_name : list ( primitive_type )

struct_type_deƤnition ⟶
datatype_name : struct ( opt_member_deƤnition_list )

opt_member_deƤnition_list ⟶

| member_deƤnition_list

member_deƤnition_list ⟶
member_deƤnition
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| member_deƤnition_list , member_deƤnition

member_deƤnition⟶
identiƤer : primitive_type

primitive_type ⟶
int | short | long | float | double | bool | char | string

datatype_name⟶
([ a−zA−Z]|_)([a−zA−Z]|[0−9]|_)∗

Listing 7.1.3: The redeƤned production rules for type deƤnitions in the EBNF grammar of the SFGL.

VariableDeƤnitions As shown in Listing 7.1.4, a variable deƤnition initializes a new typed
variable with an expression.

variable_deƤnition ⟶
type_identiƤer identiƤer = expression

type_identiƤer ⟶
primitive_type | datatype_name

identiƤer ⟶

([ a−zA−Z]|_)([a−zA−Z]|[0−9]|_)∗

Listing 7.1.4: The new production rules for variable deƤnitions in the EBNF grammar of the SFGL.

Function DeƤnitions As shown in Listing 7.1.4, a function deƤnition introduces a new
function name that refers to a JĆěĆ™ function which is speciƤed by the name of a member
function with its parameter list and the class path of the enclosing JĆěĆ™ class.

function_deƤnition ⟶
identiƤer : fun ( class_qualiƤer , identiƤer )

| identiƤer : fun ( class_qualiƤer , identiƤer , parameter_deƤnition_list )

parameter_deƤnition_list ⟶
parameter_deƤnition

| parameter_deƤnition_list , parameter_deƤnition

parameter_deƤnition ⟶
identiƤer : class_qualiƤer

class_qualiƤer ⟶
identiƤer

| class_qualiƤer . identiƤer

Listing 7.1.5: The new production rules for function deƤnitions in the EBNF grammar of the SFGL.
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Class Path DeƤnitions As shown in Listing 7.1.6, a class path deƤnition consists of a class
name alias and the qualiƤed path to the referenced JĆěĆ™ class.

classpath_deƤnition ⟶
identiƤer : class ( class_qualiƤer )

Listing 7.1.6: The new production rules for class path deƤnitions in the EBNF grammar of the SFGL.

Variable Assignments As shown in Listing 7.1.7, a variable assignments assigns an expres-
sion to a variable expression.

assignment⟶
variable_expression = expression

opt_assignment_list ⟶

| assignment_list

assignment_list ⟶
assignment

| assignment_list , assignment

Listing 7.1.7: The new production rules for variable assignments in the EBNF grammar of the SFGL.

Method Invocations As shown in Listing 7.1.8, a method invocations can, among others,
be an action and scene playback commands or a built-in history function.

invocation ⟶
!∼ expression .

| !∼ expression , assignment_list .
| !- expression .
| !- expression , assignment_list .
| != expression .
| != expression , assignment_list .
| PlayScene ( expression )
| PlayScene ( expression , assignment_list )
| PlayAction ( expression )
| PlayAction ( expression , assignment_list )
| SetDefaultStrategy ( expression )
| SetDefaultLanuage ( expression )
| UnblockSceneScript ( boolean )
| UnblockSceneGroup ( expression )
| HistorySetDepth ( identiƤer , integer )
| HistoryFlatClear ( identiƤer )
| HistoryDeepClear ( identiƤer )

Listing 7.1.8: The new production rules for method invocations in the EBNF grammar of the SFGL.
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Expressions Types As shown in Listing 7.1.9, an expression may be a unary, binary, ternary,
invocation, reƪection, variable, record, or literal expressions. The operator precedences and
associativities in SFGL are the same as in JĆěĆ™ and other programming languages.

expression ⟶
unary_expression

| binary_expression
| ternary_expression
| reƪection_expression
| invocation_expression
| variable_expression
| record_expression
| literal_expression
| ( expression )

unary_expression⟶
unary_operator expression

binary_expression ⟶
expression binary_operator expression

unary_operator⟶
! | - | ∼ | ++ | --

binary_operator ⟶
& | | | ^ | && | || | < | > | <= | >= | == | != | + | - | * | / | %

ternary_expression ⟶
( expression ? expression : expression )

reƪection_expression ⟶
identiƤer ( opt_expression_list )

opt_expression_list ⟶

| expression_list

expression_list ⟶
expression

| expression_list , expression

Listing 7.1.9: The redeƤned production rules for expressions in the EBNF grammar of the SFGL.

Variable Expressions As shown in Listing 7.1.10, a variable expressions can denote a local
or global variable, a value at a speciƤc index of a list, or the member of a struct.

variable_expression ⟶
identiƤer
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| identiƤer [ expression ]
| identiƤer . identiƤer

Listing 7.1.10: The new production rules for variable expressions in the EBNF grammar of the SFGL.

InvocationExpressions As shown in Listing 7.1.11, an invocation expressions can be a logic
query as well as built-in history, timeout, random, and conƤguration expressions.

invocation_expression ⟶
?- expression .

| ?= expression .
| Timeout ( expression )
| Random ( expression )
| InState ( identiƤer )
| Contains ( expression, expression)
| HistoryContains ( identiƤer , identiƤer )
| HistoryContains ( identiƤer , identiƤer , integer )
| HistoryValueOf ( identiƤer , identiƤer )
| HistoryValueOf ( identiƤer , identiƤer , integer )
| HistoryRunTimeOf ( identiƤer )
| HistoryRunTimeOf ( identiƤer , integer )

Listing 7.1.11: The new production rules for invocation expressions in the EBNF grammar of the SFGL.

Records and Literals As shown in Listing 7.1.12 a record can be a list or struct and a literal
can be a boolean, integer, ƪoat, or string.

record_expression ⟶
[ opt_expression_list ]

| { opt_assignment_list }

literal_expression ⟶
boolean
integer
ƪoat
string

boolean⟶ true | false

integer ⟶ 0|-?[1−9][0−9]∗

ƪoat ⟶ (0|-?[1−9][0−9]∗).[0−9]+

string ⟶ "([a−zA−Z]|[0−9]|[ \f\t]|[!?$&#/=~_:;,.\+*-%|()<>{}[]''@])∗"

Listing 7.1.12: The new production rules for records and literals in the EBNF grammar of the SFGL.
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7.1.3 The SpeciƤcation of SFSL

Re-engineering VSM3 included the redeƤnition of SFSL in order to integrate the modeling
concepts of the BFSL described in Section 5.2. This basically comprised the extension with
the new types of behavioral activities and the new syntax of nested and standalone actions
as well as scene activities and scene scripts. Like BFSL, the revised SFSLs can now rely on the
full power of both scene and action activities for the creation of multi-modal behavior and
dialog content which may be enriched with context information using parameters.

For redundancy reasons, I solely present the lexical and syntactical modiƤcations of scene
script deƤnitions and abstain from showing the analogous adaptations for action activities.
The syntax deƤnitions for action and utterance activities are nearly identical to certain parts
of the following scene syntax deƤnitions. Therefore, I present only some selected parts of
the SFSL’s syntax deƤnitions, using production rules of a context-free grammar in Extended
Backus-Naur Form (EBNF) and regular expressions that deƤne the lexemes of SFSL. Fig-
ure 7.1.10 shows an exemplary scene deƤnition in the redesigned syntax and labeling with
the names of the most important language constructs explained in the following.

1     /* Reeti is spotting the user and shares his observation with Naoli */ 
 
 
 
2     scene en SpottingUser 
3     Reeti: Look Naoli, [look target=$user] isn‘t that $user over there? 
4     Naoli: Indeed Reeti, [Reeti: nod repetitions=2] that‘s really $user! 

Punctuation  
Mark 

Action 
Actor 

Action 
Name 

Feature 
Name 

Turn 
Actor 

Scene  
Name 

Scene 
Prefix 

Utterance 
Action 

Utterance 
Word 

Feature 
Value 

Action 
Variable 

Utterance 
Variable 

Scene  
Language 

Script Comment 

Figure 7.1.10: An exemplary scene script containing a comment and a single scene deƤnition in SFSL.

Script DeƤnitions As shown in Listing 7.1.13, a scene script is deƤned as an empty docu-
ment or a non-empty list of script entity deƤnitions, each of which can be a comment or a
scene deƤnition. A comment is a sequence of alphanumeric, whitespace, or newline charac-
ters that are delimited by an opening (/*) and closing comment marker (*/).

scene_script_deƤnition ⟶
opt_script_entity_list

opt_script_entity_list ⟶

| script_entity_list

script_entity_list ⟶
script_entity
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| script_entity_list script_entity

script_entity ⟶
scene_deƤnition

| script_comment

script_comment⟶ /* .∗ */

Listing 7.1.13: The new production rules for scene scripts in the EBNF grammar of the SFSL.

Scene DeƤnitions As shown in Listing 7.1.14, a scene deƤnition consists of a header and a
content. The newline-ended header includes a scene keyword, a language and an identiƤer
while the content consists of a list of turn deƤnitions.

scene_deƤnition ⟶
scene_header scene_content

scene_header⟶
scene_keyword scene_language scene_identiƤer newline

scene_keyword⟶ scene | Scene

scene_language⟶ [a−z]2 | [A−Z]2

scene_identiƤer ⟶ [a−zA−Z]([a−zA−Z]|[0−9]|_ )∗

scene_content⟶
turn_deƤnition_list newline

turn_deƤnition_list ⟶
turn_deƤnition

| turn_deƤnition_list turn_deƤnition

newline ⟶ \r|\n|\r\n

Listing 7.1.14: The new production rules for scene deƤnitions in the EBNF grammar of the SFSL.

TurnDeƤnitions As shown in Listing 7.1.15, a turn deƤnition is a newline-ended sequence
consisting of a turn actor name, a colon mark, and a non-empty sequence of individual turn
element deƤnitions, which can, for example be utterance or pause deƤnitions.

turn_deƤnition ⟶
turn_actor_name : turn_element_deƤnition_list newline

turn_actor_name⟶ [a−zA−Z]+

turn_element_deƤnition_list ⟶
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turn_element_deƤnition
| turn_element_deƤnition_list turn_element_deƤnition

turn_element_deƤnition ⟶
utterance_deƤnition

| pause_deƤnition

Listing 7.1.15: The new production rules for turn deƤnitions in the EBNF grammar of the SFSL.

Utterance DeƤnitions As shown in Listing 7.1.16, an utterance deƤnition is a sequence of
utterance elements that are separated by whitespaces but no newline characters and ended
by a punctuation mark.

utterance_deƤnition ⟶
utterance_element_list punctuation_mark

utterance_element_list ⟶
utterance_element

| utterance_element_list utterance_element

punctuation_mark⟶ . | ? | ! | , | ; | -

Listing 7.1.16: The new production rules for utterance deƤnitions in the EBNF grammar of the SFSL.

Utterance Elements As shown in Listing 7.1.17, an utterance element can be an simple
word, a nested action, or a placeholder variable.

utterance_element⟶
utterance_word

| utterance_action
| utterance_variable

utterance_word⟶

[a−zA−Z]+ | [ 1−9][0−9]∗ | [a−zA−Z]+'[a−zA−Z]

utterance_variable ⟶

$[a−zA−Z]([a−zA−Z]|[0−9]|_)∗

Listing 7.1.17: The new production rules for utterance elements in the EBNF grammar of the SFSL.

Utterance Actions As shown in Listing 7.1.18, an utterance action is deƤned by an optional
actor and a mandatory name, followed by an optional feature list.

utterance_action ⟶
[ action_name opt_action_feature_list ]
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| [ action_actor : action_name opt_action_feature_list ]

action_actor ⟶ [a−zA−Z]+

action_name⟶ [a−zA−Z]([a−zA−Z] | [0−9] | _ )∗

opt_action_feature_list ⟶

| action_feature_list

action_feature_list ⟶
action_feature

| action_feature_list action_feature

Listing 7.1.18: The new production rules for utterance actions in the EBNF grammar of the SFSL.

ActionFeatures As shown in Listing 7.1.19, an action feature is a key value pair that consists
of a feature name and a feature value which can be a primitive value, such as an identiƤer,
boolean, integer, ƪoat, or single-quoted string as well as a parameter variable.

action_feature ⟶
feature_name = feature_value

feature_name⟶ [a−zA−Z]([a−zA−Z] | [0−9] | _ )∗

feature_value ⟶
parameter

| identiƤer
| boolean
| integer
| ƪoat
| string

parameter⟶ $[a−zA−Z]([a−zA−Z]|[0−9]|_)∗

identiƤer ⟶ [a−zA−Z]([a−zA−Z]|[0−9]|_ )∗

boolean⟶ true | false

integer ⟶ 0|-?[1−9][0−9]∗

ƪoat ⟶ (0|-?[1−9][0−9]∗).[0−9]+

string ⟶ '([a−zA−Z]|[0−9]|[ \f\t]|[!?$&#/=~_:;,.\+*-%|()<>{}[]''@])∗'

Listing 7.1.19: The new production rules for action features in the EBNF grammar of the SFSL.
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7.1.4 The Integration of SFQL

Of course, re-engineering VSM3 also included the integration of the SFQL in order to realize
the modeling concepts of BFQL described in Section 5.3. Like BFQL it is used for maintain-
ing an event history with garbage collection as well as context and domain knowledge that is
too complex to be represented as variables in the simple type system of SFGL. SWI-PėĔđĔČ
queries are handed over using the aforementioned query expressions of SFGL and are used
for multi-modal fusion and reasoning on the fact base or retrieving information and extract-
ing it to SFGL variables for further processing in the SFSC. As mentioned before, SFQL is
the SWI-PėĔđĔČ implementation of the standard PėĔđĔČ-based BFQL and thus diơers only
marginally from BFQL. Consequently, the semantics of the queries called via SFGL are pre-
cisely those of SWI-PėĔđĔČ. It consists of a hierarchy of SWI-PėĔđĔČ modules each of which
deƤnes speciƤc rules and facts using the standard SWI-PėĔđĔČ syntax. Figure 7.1.11 shows a
diagram illustrating the SWI-PėĔđĔČ module structure and relationships of the SFQL. The
complete SWI-PėĔđĔČ source code of SFQL can be be found in the freely downloadable open-
source version of VSM3 4. The core components of SFGL may easily and straightforwardly be
extended in a well-deƤned and semantically unambiguous way by including new application-
speciƤc SWI-PėĔđĔČ modules.

facts.pl 

print.pl 

terms.pl 

quant.pl tempr.pl timer.pl 

clean.pl 

generalized quantifier 
and solution collection  
predicates  

term printing 
predicates 

system time and  
timeout predicates 

temporal and  
ordering 
constraint 
predicates 

term inspection 
and transformation 

helper predicates 

fact base and  
feature structure 

manipulation  
predicates 

garbage collection  
and cleanup helper 
predicates 

event.pl 
event signalling  
and  detection  

helper  predicates 

Figure 7.1.11: A diagram showing the SWI-PėĔđĔČ module structure and relationships of the SFQL.

7.2 Refactoring Software Components

The re-design and redeƤnition of SFML necessitated the substantial refactoring of VSM3’s
software architecture and components. In this, the re-engineered VSM3 framework was di-
vided into separated software and data layers which are depicted in Figure 7.2.1. Themodeling
layer (Figure 7.2.1 A⃝) consists of an Integrated Development Environment (IDE) that may be
complemented by an extern SWI-PėĔđĔČ editor 5. The IDE comes with a graphical user in-
terface comprising several editor and conƤguration components. Among those, are an editor

4http://scenemaker.dƨi.de
5http://www.swi-prolog.org/IDE.html
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to visually model SFSCs and label them with SFGL statements and a textual SFSL editor with
syntax checking and highlighting. The IDE, manages the models within VSM3 project direc-
tories containing Ƥles with the respective XML representations and conƤgurations. These
data sources together make up the data sources layer (Figure 7.2.1 B⃝) and may be parsed and
written into Abstract Syntax Trees (ASTs) that are made up of classes of the Data Model Def-
inition (DMD) on the data model layer (Figure 7.2.1 C⃝). The ASTs of SFSCs are interpreted
on the runtime layer (Figure 7.2.1 D⃝) by components of the Interpreter Runtime Environment
(IRE), including an evaluator for SFGL expressions, a player for SFSL speciƤcations, and a
server for SFQL expressions. The runtime layer also deƤnes the plug-in and executor inter-
faces that must be implemented by external components for integrating new agent platforms,
output devices, and input sources on the plug-in layer (Figure 7.2.1 E⃝).
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Figure 7.2.1: A diagram showing an overview of important software layers and components of VSM3.

In the following, I address a few important refactoring steps that have been applied to the
aforementioned software layers and components. I Ƥrstly discuss some design considerations
before I present selected parts of the Data Model DeƤnition (DMD), the Interpreter Runtime
Environment (IRE), and the Integrated Development Environment (IDE) of VSM3.

7.2.1 Design Considerations

Diơerent aspects have to be considered when deciding for an implementation approach to
a real-time capable interpreter component for SFML models. In this context, the term real-
time means that the interpreter software has to be able to react to environmental events, user
inputs as well as model modiƤcations by an author in suƥcient time. Scheduled actions have
to be executed without much latency, according to the deƤnition of a soft real-time system
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(Rechenberg and Pomberger, 1997). In terms of timeliness and reliability, the interpreter
software has to allow executing an extended scene ƪow so that the user has the impression
of a natural human-like form of communication with timing conditions that are similar to
those that occur in social human interactions. This section contains a comparison of an in-
terpretation approach with a compilation approach to the implementation of an execution
software for extended scene ƪows and motivates the decision to pursue the interpretation
approach. Furthermore, there are discussed diơerent techniques for the representation and
scheduling of multiple processes in the implementation. Advantages and disadvantages of
these techniques are compared in order to motivate the multi-threaded implementation of
an interpreter software. Finally, there is justiƤed the decision to choose JĆěĆ™ as the imple-
mentation language for the execution software in this work.
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Figure 7.2.2: The sequence of steps performed by an author in order to Ƥnally execute a SFML model.

Interpreter vs. Compiler

As shown in the upper part of Figure 7.2.2, with the earliest versions of the authoring suite, an
author had to carry out a multitude of consecutive steps in order to Ƥnally execute a model.
After the modeling phase (Figure 7.2.2 A⃝), the model’s XML representation (Figure 7.2.2
B⃝) had to be translated into JĆěĆ™ source code (Figure 7.2.2 D⃝) using a source-to-source

compiler (Figure 7.2.2 C⃝). Then, the generated JĆěĆ™ classes had to be compiled to JĆěĆ™
byte-code (Figure 7.2.2 F⃝) using a standard JĆěĆ™ compiler (Figure 7.2.2 E⃝). Finally, the
model was executed by interpreting (Figure 7.2.2 G⃝) this machine-code representation with
the JĆěĆ™ Virtual Machine. Using this compilation approach has the disadvantage that an
author’s modiƤcation of the model requires to repeat all these steps (Figure 7.2.2 A⃝- G⃝) in
order to make the resultant eơects observable during the execution. Since this proceeding is
obviously not very comfortable and rather time consuming, VSM3, in its current form, pur-
sues the direct interpretation approach for the execution of a SFML model, as shown on the
bottom of Figure 7.2.2 (Figure 7.2.2 A⃝, B⃝, G⃝). This interpreter approach has the advantage
that modiƤcations of the model are applied at runtime and the resultant eơects can imme-
diately be observed during the execution without the need to pause the execution, generate
source code from the modiƤed model and compile that source code again. It allows modi-
fying scene deƤnitions in the scene script, adjust nodes and edges in the scene ƪow or even
exchange plug-in modules at runtime. This method gives an author a direct feedback of the
undertaken modiƤcations, supporting a rapid and comfortable prototyping process.
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Single- vs. Multi-Threaded

EĝĊĈĚęĎĔē
ěĎĆ PėĔĉĚĈę
AĚęĔĒĆęĔē

Since each parallel scene ƪow can be considered as an individual process, it is important
how to represent and execute such a process in the aforementioned interpreter. In this light,
each parallel scene ƪow may be regarded as program graph, treating each statement, or more
generally, each step of the interleaving semantics, described in Section 5.4.1, as a transition
statement in this program graph. The interleaving semantics then implicitly creates a product
automaton of these program graphs which describes the overall behavior of the entire model.
Using a transformation function, which compiles a parallel extended scene ƪow model into a
semantically equivalent sequential counterpart, using program graphs and product automa-
ton as intermediate representations, would allow using the single-threaded execution soft-
ware of the early versions. However, this would require to fall back on the compiler approach
for the execution of the model. In addition, on further reƪection, it turns out that it is not a
straightforward task to Ƥnd an appropriate equivalence transformation. Consequently, this
option was refused for the re-engineering of VSM3 and parallel scene ƪows are instead re-
garded as individual concurrent processes.

SĎēČđĊ-
TčėĊĆĉĊĉ
EĝĊĈĚęĎĔē

Parallel processes can, on the one hand, be implemented bymultiple threads that are provided
by the underlying implementation language and operating system. On the other hand, the
execution and scheduling of multiple parallel processes may be simulated within a single
thread only (Jacobs and Verbraeck, 2004). The simulation approach enhances the control
over the scheduling mechanism and avoids synchronization measures for mutual exclusion
to critical sections which are necessary when using operating system threads. It enables an
easy interruption and termination of processes by removing them from the set of scheduled
processes and facilitates debugging since processes can be stopped or paused after each step
to carry out a detailed analysis of the execution state. Being independent of the underlying
operating system’s thread and scheduler implementation, execution traces are reproducible
and execution states are serializable such that they can be recoded, streamed over a network
and stored to Ƥles. Finally, the number of processes is not restricted by the operating system
and their execution might consume less time and space resources than system threads.

MĚđęĎ-
TčėĊĆĉĊĉ
EĝĊĈĚęĎĔē

Scheduling the interleaving of simulated processes by hand can, however, also be considered
as disadvantage. The scheduling policy must be fair in the sense that each processes has to be
dealt to the same amount of computation resources or time and that there may never occur
cases of starvation. Since all simulated processes are executed within a single thread of the
operating system, it is basically impossible to achieve a fair scheduling between the simu-
lated processes and external threads whose scheduling can not be brought under the control
of the execution environment. Such threads could, for example, be used for the playback of
behavioral activities, the execution of logic queries or the outsourcing of speciƤc computa-
tions to function calls in the underlying implementation language. However, when falling
back on the scheduler of the underlying operating system, there may be counted on that the
scheduling policy is fair. Consequently, although the implementation is more error prone
due to the use of synchronization mechanisms, in the re-engineered version of the VSM3, I
pursue the multi-threaded interpreter approach.
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7.2.2 Data Model DeƤnition

Refactoring VSM3 required the extension and adaptation of its DataModel DeƤnition (DMD)
which was indispensable due to the syntactical and lexical adjustments of SFML described
in Section 7.1. The DMD mainly consists of AST classes representing the entities of SFSCs,
SFGL, and SFSL. Their in-depth redeƤnition was needed as preparation of re-engineering the
IRE and IDE of VSM3. This also entailed modiƤcations of their XML representations used
to persistently store the models which were captured by the redesign of the corresponding
XML schema deƤnition as XSD.
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AST 

Classes 
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java.io.Serializable 

Miscellaneous 
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Classes 

Figure 7.2.3: A diagram showing an extract of the data model deƤnition on the data model layer.

As shown in Figure 7.2.3, the classes of the DMD constitute a hierarchy with a model object
interface as root (Figure 7.2.3 A⃝). It extends interfaces declaring functions for deep copying
via serialization (Figure 7.2.3 B⃝), XML streamwriting (Figure 7.2.3 C⃝), andXML parsing (Fig-
ure 7.2.3 D⃝) that are implemented by all model classes. Besides some project, conƤguration
and graphics classes, the most important parts of the data model are theAST classes of SFSCs
(Figure 7.2.3 E⃝), SFGL (Figure 7.2.3 F⃝), and SFSL (Figure 7.2.3 G⃝). The individual AST class
hierarchies and their implementation straightforwardly ensues the respective syntactical and
lexical speciƤcations described in Section 7.1. Figure 7.2.4 shows the hierarchy of that data
model’s node (Figure 7.2.4 A⃝) and edge classes (Figure 7.2.4 B⃝) which are part of the AST for
SFSCs. Figure 7.2.5 shows an extract of the class hierarchy of the SFSL’s AST and Figure 7.2.6
shows important command and expressions classes of SFGL’s AST and their relationships.
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Figure 7.2.4: A diagram partly showing the hierarchy of classes representing the SFSC constructs.
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Figure 7.2.5: A diagram partly showing the hierarchy of classes representing the SFSL elements.
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Figure 7.2.6: A diagram partly showing the hierarchy of classes representing the SFSC constructs.
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7.2.3 Runtime Environment

The IRE on the runtime layer of VSM3 was re-factored based on the DMD redeƤnition. The
components of the IRE are with their interplay responsible for the execution of SFSCs, the
evaluation of SFGL statements and expressions, the scheduling of behavioral activities speci-
Ƥed in SFSL, the evaluation of logic queries formulated in SFQL, and the real-time transmis-
sion of system status information events to the IDE.
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Figure 7.2.7: A diagram showing some important classes of the interpreter runtime environment.

Figure 7.2.7 shows the core classes of the IRE with their aggregation and composition rela-
tionships. A runtime project is encapsulating all model parts and conƤgurations and provides
the functions to manage them in a project directory. It comprises a runtime player which
is responsible for the execution of action and scene playback commands and the proper
scheduling of the respective activities. A runtime interpreter is executing extended scene
ƪow state-charts using a hierarchy of parallel runtime processes. It encapsulate the execu-
tion state information of a model, such as, a runtime conƤguration and a runtime history.
A runtime evaluator is used for processing deƤnitions, executing commands, and evaluating
expressions. It applies appropriate synchronization mechanisms when a runtime process re-
quires exclusive access to a critical section or shared memory. It is supported by a runtime
monitor for monitoring and evaluating timeout conditions and a runtime interrupter for ex-
amining interruptive transitions and eventually initiate their interruption or termination by
sending appropriate runtime signals to the executing runtime processes and their children in
each execution step. A runtime process is a special thread which one after another executes
nodes and edges of an extended scene ƪow within a symbol environment. Such an environ-
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ment contains a list of symbol tables, one for the currently executed node and others for its
parent super nodes. A symbol table is simply a list of symbol entries each of which is mapping
a variable name to a runtime value, which can be a primitive, struct, or list value.

Activity Playback
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Figure 7.2.8: A diagram showing the relationships between the classes used for activity playback.

Figure 7.2.8 shows the relationships and associations between the runtime player and its
correlative components that are together responsible for executing playback commands for
scene, action and utterance activities. It is initialized with a project-speciƤc player conƤg-
uration which contains application- and platform-speciƤc information about the individual
agents and their characteristics as well as the class paths to the activity executor instance
plug-ins that must be loaded for the communication with the respective agent-platforms.
When playing a scene or action, then the player constructs the corresponding action activity
and utterance activity objects and delegates their scheduling to the activity scheduler which
relies on activity worker threads for the execution of activities on speciƤc executors.

Listing 7.2.1: The execution of a scene using the playScene function of the class RuntimePlayer.
1 public final class RuntimePlayer {
2 // ...
3 public final void playScene(final String name, final String lang, final

LinkedList args) {
4 // ...
5 final SceneObject scene =
6 mProject.getSceneScript().getSceneGroup(name, lang).select();
7 // Create playback task
8 final PlayerWorker worker = new PlayerWorker(task) {
9 @Override
10 public void run() {
11 for (SceneTurn turn : scene.getTurnList()) {
12 // Get the executor for this turn
13 final ActivityExecutor turnExecutor =
14 mProject.getAgentDevice(turn.getSpeaker());
15 // Serially play the utterances
16 for (SceneUttr uttr : turn.getUttrList()) {
17 final LinkedList<String> textBuilder = new LinkedList();
18 final LinkedList<ActivityWorker> workerList = new LinkedList();
19 for (final UttrElement element : uttr.getWordList()) {
20 if (element instanceof ActionObject) {
21 final ActionObject action = (ActionObject) element;
22 // Get the executor for this action
23 final ActivityExecutor actionExecutor =
24 (action.getActor() != null ?
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25 mProject.getAgentDevice(actor) : turnExecutor);
26 // Create a new marker for the action
27 final String marker = turnExecutor.marker(newId());
28 // Append the marker to the activity
29 textBuilder.add(marker);
30 // Register the activity with marker
31 workerList.add(
32 mScheduler.register(marker, // Execute at marker
33 new ActionActivity(
34 (action.getActor() == null) ?
35 turn.getSpeaker() : action.getActor(),
36 action.getName(),
37 action.getText(substitutions),
38 action.getFeatureList(),
39 substitutions),
40 actionExecutor));
41 }
42 else {
43 // Append the text to the activity
44 textBuilder.add(element.getText(substitutions));
45 }
46 }
47 final String punctuation = uttr.getPunctuationMark();
48 // Schedule the utterance activity
49 mScheduler.schedule(
50 0, // Schedule without delay
51 workerList,
52 new SpeechActivity(
53 turn.getSpeaker(),
54 textBuilder,
55 punctuation),
56 turnExecutor);
57 // Check for interruption
58 if (isDone()) {
59 return;
60 }
61 }
62 }
63 }
64 };
65 // Start the playback task
66 worker.start();
67 // Wait for playback task
68 boolean finished = false;
69 while (!finished) {
70 try {
71 // Join the playback task
72 worker.join();
73 // And terminate playback
74 finished = true;
75 } catch (final InterruptedException exc) {
76 // Terminate playback task
77 worker.abort();
78 }
79 }
80 }
81 }

Listing 7.2.1 shows an extract of the player’s member function which is responsible for the
composition and scheduling of activities when playing back a scene. An internal player
worker thread is executing the scene and waits until the scene is regularly Ƥnished or the
calling runtime process, which is waiting for the player worker, is interrupted by the runtime
interpreter. After a scene has been selected, the player worker iteratively executes the turns
and utterances of this scene one after the other. For each utterance, it creates a new utterance
activity and schedules it with zero delay and in blocking mode. For each nested action, it cre-
ates an action activity and registers it with a marker at the activity scheduler before it adds
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an activity worker for this activity to the list of workers of the utterance activity. The worker
executing the utterance activity must wait for the workers executing its nested activities.

Query Execution

Figure 7.2.9 shows the integration of SWI-PėĔđĔČ using the JPL 7 6 API that can be used to
call JĆěĆ™ from SWI-PėĔđĔČ and vice-versa. TheAPI is wrapped by a JPL engine that includes
a JPL loader to consult the SWI-PėĔđĔČ modules provided with the runtime project. A JPL
result class represents the result of a query to SWI-PėĔđĔČ and extends a list of JPL terms,
like, for example, atoms, numbers, variables, and compounds terms.

<< singelton class>> 
JPL 

Engine 

<<final class>> 
JPL 

Loader 

<<final class>> 
JPL 

Result 

<<final class>> 
org.jpl7.Query 

1 

1 0 .. 1 

<<super class>> 
java.util. 

LinkedList 

<<final class>> 
JPL 

Utility 

<<abstract class>> 
org.jpl7.Term 

0 .. 1 

1 

<<super class>> 
java.lang. 

Thread 
0 ..* 

0 .. 1 

list of variable term  
substitutions is result  
of a successfull  query 

some term syntax  
conversion helpers 

loads and consults 
Prolog source code 
files and modules 

the interface to 
SWI-Prolog (can 
execute queries) 

a query to the 
fact base  (has 
Prolog, viz.  
BFQL syntax) 

Figure 7.2.9: A diagram showing the relationships between the classes used for query execution.

Listing 7.2.2: The execution of a query using the query member function of the class JPLEngine.
1 import java.util.Map;
2 import org.jpl7.JPL;
3 import org.jpl7.Query;
4 import org.jpl7.Term;
5
6 public final class JPLEngine {
7 // ...
8
9 public final synchronized JPLResult query(String querystr) {
10 // Eventually initialize JPL
11 init();
12 // Create a query for this call
13 final Query query = new Query(querystr);
14 // Create a result for this call
15 final JPLResult result = new JPLResult(query);
16 try {
17 // Get all solutions of the query
18 final Map<String, Term>[] solutions
19 = query.allSolutions();
20 // Add the solutions to the result
21 for (int i = 0; i < solutions.length; i++) {
22 result.add(solutions[i]);
23 }
24 } catch (final Exception exc) {
25 sLogger.failure(exc.toString());
26 } finally {
27 query.close();
28 }
29 // Return the result of the query
30 return result;
31 }
32 }

6http://jpl7.org/
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Listings 7.2.2 and 7.2.3 show how a SFGL query expression is executed in the evaluator and
the engine. The query expression takes a string argument representing the SWI-PėĔđĔČ
query. The SWI-PėĔđĔČ inference engine then Ƥnds substitutions for the uninstantiated
variables in this query and returns the respective JPL result. The evaluator makes a lookup in
the environment of the executing IRE process and assigns the string representations of the
terms that have been uniƤed with the free variables to the corresponding BFSC variables.

Listing 7.2.3: The execution of a query using the query member function of the class Evaluator.
1 import java.util.Map;
2
3 public final class Evaluator {
4 // ...
5 public final boolean query(final String querystr, final Environment env) {
6 // Delegate query execution to JPL
7 final JPLResult result = mEngine.query(querystr)
8 // Check the result of the query
9 if (result.size() == 1) {
10 // Get the first and single solution
11 final Map<String, Term> subst = result.getFirst();
12 // Update variables in the environment
13 for (final Entry<String, Term> entry : subst.entrySet()) {
14 try {
15 final String variable = entry.getKey();
16 final String binding = JPLUtility.convert(
17 entry.getValue().toString());
18 // Throw exeption if no such variable
19 env.write(variable, new StringValue(binding));
20 } catch (Exception exc) {
21 mLogger.failure(exc.toString());
22 }
23 }
24 return true;
25 } else {
26 return false;
27 }
28 }
29 }

7.2.4 Modeling Environment

The third substantial part of VSM3, that has been re-factored in this thesis, is the modeling
layer which comprises the components of the framework’s IDE. The IDE enables authors to
create, maintain, conƤgure, debug, and execute a VSM3 project with the help of a graphical
user interface. The IDE and IRE ofVSM3 can be used independently of each other, that means,
a project may be executed by the IRE in terminal modus without instantiating the graphical
user interface. This can, for example, be used to save processing power if there is no need
for modiƤcations and visualizations at runtime. When used together, both communicate via
the central event dispatching mechanism of VSM3. Since they are simultaneously operating
on the project’s data model, the interpreter approach allows the modiƤcation of model in the
VSM3 and the immediate observation of the ensuing eơects at runtime.

Graphical User Interface

Figure 7.2.11 shows a screenshot of the IDE’s graphical user interface including the authoring
suite’s most important editor and conƤguration components. Figure 7.2.10 shows a diagram
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depicting the relationships between the most important classes implementing these compo-
nents. It can be seen that the IDE has been reorganized to a hierarchical architecture in order
to implement the update and visualization mechanism using a recursive visitor pattern.
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Figure 7.2.10: A diagram showing important classes of the integrated development environment.

The root of this hierarchy is the project editor which hold an editor project and implements
the event listener interface to register for system events. A central component is the scene ƪow
editor (Figure 7.2.11 A⃝) which is divided into a tool bar (Figure 7.2.11 B⃝) and three additional
subcomponents. Among those is the drawing area (Figure 7.2.11 C⃝) in the middle of the
IDE. It contains the visual representation of the extended scene ƪow and is used to highlight
nodes and edges when they are executed at runtime. To draw a model, an author can drag
building blocks from the element display (Figure 7.2.11 D⃝) on the left and drop them on the
drawing area. These blocks can be nodes, edges, and comment badges as well as scenes and
predeƤned JĆěĆ™ functions. The individual nodes and edges can be edited using the element
editor (Figure 7.2.11 E⃝) on the right side. It allows editing the nodes’ names, start nodes, type-
and variable deƤnitions, and command statements as well as the properties of the diơerent
types of edges when they are selected in the drawing area. Another important part of the IDE
is the scene script editor (Figure 7.2.11 F⃝) which is divided into two subcomponents. First,
the editor pane (Figure 7.2.11 G⃝) is used to edit the textual speciƤcation of the project’s scene
script. It supports syntax highlight scene script elements and is also used to highlight scenes
when they are executed during runtime. Second, a scene script element display (Figure 7.2.11
H⃝) contains the available building blocks for scenes scripts, such as gestures, animations,
and system actions from an optional gesticon or acticon. The third part of the workspace,
which is not shown in the screenshot, is the function editor (Figure 7.2.11 I⃝) which allows
deƤning aliases that refer to JĆěĆ™ functions in the class path that are called via reƪection.

227



7.
RĊĆđĎğĆęĎĔ

ē
—

RĊ-ĊēČĎēĊĊėĎēČ
Ćēĉ

VĆđĎĉĆęĎēČ
ęč

Ċ
V

SM
3FėĆĒ

ĊĜ
Ĕ

ėĐ

VSM³ menu bar 
shows the current path in  
the super node hierarchy start, pause an stop the  

execution of a model 
runtime monitor  
component 

project configuration 
editor component 

scene flow elements 
(nodes, edges, comment) 

global variable badge 

local variable  
badge 

execution highlighing 

path highlighting 

scene flow elements 
(scenes , functions) 

scene script editor tab 

function editor tab 

scene  script elements 
(gestures, actions, ...) scene script editor pane 

current node name  
and start node display 

type definitions editor 

variable definition editor 

command call editor 

scene  flow editor workspace 

D 

C 

E 

G H 

I F 

A 

B 

Figure 7.2.11: A screenshot of the IDE of VSM3 showing the authoring suite’s most important editor components.
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Runtime Visualization

As mentioned before, some components of the IDE implement a runtime visualization mech-
anism that is supposed to facilitate testing, debugging of a model, and verifying its correct-
ness during the modeling phase and, thus, help to assess and control the modeling progress.
The mechanism provides a trace mode which persistently highlights paths that have been
taken within the extended scene ƪow with a grayish background in order to retrace them af-
ter the execution. In addition, it provides a real-timemode that highlights currently executed
nodes and command statements, edges that are taken and scenes that are played back at run-
time with a reddish background. The visualization is implemented with the help of VSM3’s
central event dispatcher component managing the framework’s global event pool. As shown
in Figure 7.2.10, the project editor is registered as event listener and propagates visualization
events produced by the IRE down the component hierarchy of the IDE such that an event
recursively visits each component of the graphical user interface. Depending on the type of
event, each component may decide to either react to the event or ignore it before or after
forwarding it to its child components. For example, when a node has been entered, then the
executing runtime process generates an event which is only consumed by the node objects
currently displayed in the drawing area. The one which refers to the executed node in the
data model is then highlighted for some moments using a highlighting timer thread. Anal-
ogously, when an edge is taken then the corresponding event is examined by the displayed
edge objects only, and the one that is actually executed is then highlighted for a short time.
While a scene is played back by the runtime player, corresponding events are consumed by
the scene editor pane which highlights the area enclosing the deƤnition of this scene in the
text area until the scene is Ƥnished. Finally, when the value of a variable is changed then
the symbol table produces an event which is then consumed by the local and global variable
badges of the currently displayed super node. If the variable is in the scope of this super
node or any parental node, then the corresponding variable badge is updated to display the
actual value of the variable. The described real-time updating and visualization features on
the graphical user interface signiƤcantly facilitate testing and debugging for an author.

7.3 Developing Demo Applications

For validation purposes, VSM3 was used to model the interactive behavior of social robots
and virtual characters with diơerent tasks and capabilities in a wide range of demonstra-
tor applications in the context of teaching and research projects, workshops, and Ƥeld tests.
Many of them were used to conduct user studies in which VSM3 signiƤcantly facilitated the
development of diơerent conditions for creating varying user experiences as well as logging
runtime information for the statistical evaluation of these experiments.

7.3.1 Agents in a Virtual School Yard

The use of learning companions in teaching and training environments (Johnson et al., 2000;
Gulz, 2004; D’Mello and Graesser, 2013) can, besides possible negative eơects (Rickenberg
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and Reeves, 2000), increase the learners’ commitment to the learning experience, promote
their motivation and self-conƤdence, help to prevent or overcome negative aơective states,
and minimize undesirable associations with the learning task, such as frustration, boredom,
or fear of failure (van Mulken et al., 1998). Teams of pedagogical agents can help the learners
to classify the conveyed knowledge and allow the continuous reinforcement of beliefs (André
et al., 2000).

Figure 7.3.1: Some hamster characters playing diơerent pedagogical roles in the DĞēĆLĊĆėē project.

In the DĞēĆLĊĆėē 7 project (Bredeweg et al., 2013), we used VSM3 to developed an interactive
learning environment that was used by teachers and learners to transmit, express, examine,
and improve their conceptual knowledge about cause-eơect relations in ecosystems through
the use and joint creation of qualitative reasoning models (Bredeweg et al., 2009). There-
fore, we designed, created, and evaluated a cast of cartoonish virtual hamster characters with
unique pedagogical roles and personalities, shown in Figure 7.3.1, that together form some
kind of virtual school yard and enable learners to interact with the software in an easy, in-
tuitive, unobtrusive as well as motivating and engaging way (André et al., 2000). It was our
goal to enable teachers to easily adapt lecture and dialog content as well as the interaction
and behavior management for their pedagogical agents using VSM3 in order to meet their
respective educational demands (Mehlmann et al., 2010).

A river ecosystem has 
the quantities nutrients, 

carrying capacity and 
biomass.  

It is correct that 
nutrients has a 

positive effect on 
carrying capacity ... 

... but which relation is 
between carrying capacity 
and biomass – influence or 

proportionality? 

C A B 

Figure 7.3.2: A use case with the teacher character explaining relations in a conceptual model.

VSM3 has been used to develop a number of use cases that employ diơerent teaching meth-
ods, exploit diơerent learning strategies, and use diơerent ways of knowledge conveyance and
veriƤcation while the learners interacts with hamster characters embodying various pedagog-

7https://ivi.fnwi.uva.nl/tcs/QRgroup/DynaLearn/
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ical or educational roles (Wißner et al., 2011, 2012). For example, Figure 7.3.2 shows a lecture
and diagnosis phase with an experienced teacher who oơers supporting help (Figure 7.3.2 A⃝),
feedback (Figure 7.3.2 B⃝), and recommendations (Figure 7.3.2 C⃝) while jointly developing
conceptual models with the human learner. Figure 7.3.3 shows the quiz master (Figure 7.3.3
A⃝) in a quiz game with the teachable agent (Figure 7.3.3 B⃝) which has been trained and fed

with the user’s knowledge before sent to the quiz.

Tell me! What happens 
to biomass if nutrients 

increases? 

... well, nutrients have some 
positive effect on carrying 
capacity which then has a 

positive effect on biomass ... 

... so if nutrients 
increases then 
also biomass 

increases! Hm ... 
Good boy, that 

is correct! 
That‘s 

fantastic! 

A 
B 

Figure 7.3.3: A use case with the quiz master character playing a quiz with the teachable agent.

Realizing diơerent personalities and roles required, besides the graphical character designs,
motion styles, and gesture types, to carefully design the behavior and interaction models to
reƪect the role-speciƤc behavioral rules and patterns as well as teaching methods and the-
ories from educational science such as learning by teaching (Biswas et al., 2009), scaơolding
(Lipscomb et al., 2001; Larkin, 22), highlighting (Cade et al., 2008), and educational quizzes
(Randel et al., 1992). Therefore, VSM3 was helpful because it allowed the injection of inferred
knowledge from the conceptual models into the dialog content for the generation of ques-
tions, answers, feedback, and summaries. Furthermore, it enabled the variation of dialog
content and nonverbal behavior to avoid wooden and repetitive behavior of the virtual char-
acters. Finally, modeling of the characters in nested parallel processes helped to keep the
model clearly arranged and expendable. After a study which aimed solely on the evaluation
whether the graphical design communicated the intended roles and personalities (Bühling et
al., 2010), a second study evaluated the eơect of the characters’ functional and dialog behav-
ior, modeled with VSM3. It turned out that the intended suggestion of functionality, roles,
and graphical design matched the perception of the studies’ participants very well.

7.3.2 Actors in a Virtual Soap Opera

The use of interactive digital storytelling (IDS) systems in education and training (Marsella et
al., 2000, 2003; Si et al., 2005; Swartout et al., 2006) as well as entertainment and art (Mateas
and Stern, 2003b; Riedl et al., 2003; Cavazza et al., 2001) is envisioned to facilitate positive,
enjoyable, and moving user experiences (Cavazza et al., 2008; Klimmt et al., 2012). While
some of them are putting the user into the role of an observer that can change the world as
the story progresses, the majority pursues a dialog-based interaction paradigm. They aim at
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creating a dramatic experience by oơering a selection of conversational situations in which
the user can directly inƪuence the progress and outcome of the story.

D C 

A 

B 

E 

Figure 7.3.4: The virtual beer-garden environment of the social game SĔĆĕ in the AAA engine.

In the IRIS 8 project (Cavazza et al., 2008), we usedVSM3 to develop the interactive narrative-
based social game SĔĆĕ to research diơerent conditions of dialog-based interaction. Fig-
ure 7.3.4 shows a screenshot of SĔĆĕ depicting a virtual beer-garden containing the user’s
avatar (Figure 7.1.1 A⃝) and several groups of virtual characters (Figure 7.1.1 B⃝, C⃝, D⃝). In the
soap-like story of SĔĆĕ, the user can approach the focus groups, participate in their conver-
sations by typing utterances into a text Ƥeld (Figure 7.1.1 E⃝), advice the characters and, thus,
inƪuencing the progress and outcome of the plot, in the sense of a romantic conƪict.

SĔĆĕ uses a spell checker and the semantic parser SĕĎē (Engel, 2005) for translating the user’s
typed-text input into dialog-acts (Core and Allen, 1997). Virtual environment and characters,
with their automatic low-level behaviors, such as positioning, orientation and proximity are
managed with the AAA engine (Damian et al., 2011). A Bayesian Network for each agent
deƤnes how factors such as personality, emotional state, or culture (Rehm et al., 2007) deter-
mine gestural expressiveness parameters, such as speed, extent, or repetition (McNeill, 1992;
Pelachaud, 2005) to customize animations in a lexicon. Plot as well as high-level dialog be-
havior and interaction management are modeled with VSM3, such that each focus group, the
user avatar, and their behavioral aspects as well as other game objects and input processing
processes were modeled in separate, nested and parallel scene ƪows. Using interruptive tran-
sitions and the interaction history, each dialog situation was promptly interruptible when the
user leaved a focus group and was consistently reopened and resumed after reentering it in
order to create a coherent storytelling experience.

We oơered two modes of managing user-character dialogs that come with speciƤc advantages

8http://iris.interactive-storytelling.de/
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and caveats both from a designer’s and user’s perspective. First, the dialog can be round-based
(McCoy et al., 2010) forcing the user to become active on predetermined occasions during
conversations. Second, it can be continuous allowing the users to contribute at any time
during the interaction even if this means to interrupt a character. While round-based dialog
limits the users’ freedom and autonomy to the role of a witness of ongoing conversations, the
resulting overall story may be more coherent and the system perceived more comprehensi-
ble and usable. In contrast, continuous dialogs can provide an experience that resembles
an improvisational theater (Mateas and Stern, 2002) but maintaining a coherent story is a
greater challenges, since the system needs to continuously adjust to user input that might be
inappropriate or incomprehensible. A comparison of the users’ responses to the continuous
versus round based mode in SĔĆĕ showed that users tend to prefer continuous interaction,
even though the recognition rate of user utterances was slightly worse than in the round-
based version (Endrass et al., 2011). The technologically more ambitious continuous mode
was perceived to be closer to Ƥlm and improvisation theater and seemed to contribute to a
more unique, novel kind of user experience while the less demanding round-based mode was
judged to be more similar to well-known experiences with classical menu-based adventure
games. Finally, this study also showed that VSM3 facilitates the conduction and evaluation
of experiments of digital storytelling applications in order to help system creators to make
better choices when several design options are available (Vermeulen et al., 2010).

7.3.3 Coaches in Interview Trainings

Compared to classical coaching approaches, technology-enhanced training environments
can be a viable and advantageous alternatives (Sapouna et al., 2010). Their often playful
character can increase the learners’ enjoyment and motivation while they also create the
necessary distance for critical self-reƪection. Social skill training in terms of role-playing
games with virtual agents, like simulated job interviews, oơers great promise to adapt to
such socially challenging situations because it provides learners with a realistic, but safe en-
vironment that enables them to train particular verbal and nonverbal behaviors that play
signiƤcant roles during interpersonal interaction (Hollandsworth et al., 1979; Carl, 1980). For
example, young unemployed or uneducated adults with low socio-emotional skills (MacDon-
ald, 2008), such as a lack of self-conƤdence or sense of their own strengths, can practice their
stress coping and emotion regulation management to improve their persuasiveness in job
interviews.

In the TĆėĉĎĘ (Anderson et al., 2013) and EĒĕĆT (Langer et al., 2016) projects, we used VSM3

to develop SĔĈĎĆđCĔĆĈč, a scenario-based serious game simulation platform that supports
social application training and coaching by providing diơerent forms of simulated job inter-
views. Figure 7.3.5 shows some applications of SĔĈĎĆđCĔĆĈč (Damian et al., 2013; Baur et
al., 2013a; Damian et al., 2015) with virtual CčĆėĆĒĊđ 9 characters in a TėĎCĆę 10 environ-
ment. SSI is used to recognize the user’s voice activity, spoken keywords, and social cues for

9http://www.charamel.com/
10https://www.tricat.net/
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emotion regulation and VSM3 is used to model the agents’ dialog and interaction behavior.

A 

B 

Figure 7.3.5: The interaction scenario of the SĔĈĎĆđCĔĆĈč application in diơerent settings.

During the recruiting process the user is confronted to diơerent interview partners with vary-
ing personalities and interview strategies, such as, for example, a more understanding (Fig-
ure 7.3.6 A⃝) and a rather demanding (Figure 7.3.6 B⃝) recruiter. In a consecutive debrieƤng
phase, assisting characters are used to recap, discuss and assess the user’s behavior in spe-
ciƤc interview situations and to advise them on how to improve their performance. We also
developed more playful variants in which the user must perform particular behavioral pat-
terns, such as smiling or leaning forward to the interviewer (Figure 7.3.5 A⃝, Figure 7.3.6 C⃝),
or must interrupt the agent at speciƤc points during an utterance (Figure 7.3.5 B⃝).

A C B 

Figure 7.3.6: Some of the virtual characters that the user meets during the job application training.

We used the aforementioned applications to investigate diơerent emotion regulation and
coping strategies of users as well as the function of interruptions and the perception of the
agent’s interruption handling strategies during this kind of social interaction. A Ƥrst user
study with pupils demonstrated clear beneƤts of the experience-based learning approach
with our application over traditional learning methods and showed that the virtual character
helped the pupils to better control negative emotional states, such as nervousness (Damian
et al., 2015). In a second study, the analysis of the participants’ social cues, such as audio
features and body language, as well as their subjective judgments conƤrmed that they felt a
higher amount of stress when interacting with a demanding character (Gebhard et al., 2014).
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With regard to user interruptions, we wanted to explore to which extent diơerent interrup-
tion handling strategies of the agent inƪuence the assessment and perception of the agent’s
dominance, involvement, and friendliness as well as the comfortableness of the user. A study
(Gebhard et al., 2017) revealed that users assess the agent as less dominant, more friendly,
and closer when the agent’s interruption handling time is short. Moreover, we found that
users feel more comfortable to interrupt an agent that stops speaking immediately after the
user started talking.

7.3.4 Helpers in Shared Workspaces

Participants of a human interaction constantly establish, maintain, and repair the common
ground (Clark, 1996) to avoid or repair disruptions due to misunderstandings, missing atten-
tion, or misjudged sensory, perceptive, or cognitive abilities. Gaze is involved in a variety of
processes for the generation and recognition of multi-modal and multi-directional behavioral
patterns used to reciprocally ensure grounding. Gaze cues are aligned with other modalities
to ground the speaker and listener roles (Nielsen, 1962; Duncan, 1972; Kendon, 1967; Sacks
et al., 1974), to continually produce, elicit and detect feedback signals (Yngve, 1970; Bavelas
et al., 2002), to follow and direct the partners’ focus of visual attention to objects or them-
selves (Argyle et al., 1973; Argyle and Cook, 1976), and to disambiguate verbal references
with the speaker’s gaze direction (Oviatt, 2003; Oviatt et al., 2015; Staudte and Crocker, 2011).
Embedding and coordinating these manifold roles of gaze with each other and the dialog
management in a computational behavior and interaction is a complex task.

Figure 7.3.7: The interaction scenario of the RĔćĔęPĚğğđĊ application on the shared workspace.

In the RĔćĔęPĚğğđĊ application (Mehlmann et al., 2014b,a, 2016), shown in Figure 7.3.7, we
used VSM3 to developed such a model for a social NAO 11 robot that collaborates with the
user in a sorting task on a shared Microsoft® 12 surface table workspace. The user wears SMI13

eye-tracking glasses and a microphone for speech recognition whose data are fed to an SSI
pipeline to interpret the user’s gaze movements and Ƥxations to objects and areas on the table
as well as the user’s dialog acts parsed from clariƤcation questions. The robot is supposed

11http://www.aldebaran-robotics.com/
12http://www.microsoft.com/
13http://www.smivision.com/
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to facilitate a sorting task by instructing the user to move puzzle pieces into certain puzzle
slots. The pieces have distinguishable features such as a shape, size, color and position and
are marked on both sides, to track their position and to recognize the pieces the user is
looking at.

Figure 7.3.8: Robot and user in the RĔćĔęPĚğğđĊ are constantly following each other’s attention.

Both interaction partners may use any combination of gaze, pointing gestures and speech
to multi-modally refer to the objects, to regulate the speaker and listener roles and to draw
the other participant’s attention to the objects or themselves. In this, they may produce
ambiguous references that can then be resolved by multi-modal disambiguation, combining
gaze and speech, or by a clariƤcation dialog. For example, Figure 7.3.8 shows a scene in which
the agent is constantly following the user’s gaze in order to share his perceptual ground while
Figure 7.3.9 shows an example in which the robot takes the user’s gaze direction into account
to resolve an ambiguous deictic reference in the user’s question.

Do you mean the 
yellow one there? 

Figure 7.3.9: Robot and user in the RĔćĔęPĚğğđĊ are disambiguating verbal reference with gaze.

VSM3 was helpful because the hierarchical and parallel decomposition allowed modeling the
behavioral functions using parallel behavioral and computational processes on diơerent ab-
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straction levels and its event logic calculus with temporal constraints and generalized quan-
tiƤcation eased the multi-modal disambiguation. In experiments with the applications we
investigated the role of the aforementioned gaze functions for the interpersonal coordination
and grounding, the eơectiveness of the common task, and the social perception of the robot
partner (Mehlmann et al., 2014b,a, 2016). Our studies showed that the implemented gaze
mechanisms for visual attention sharing and speech disambiguation enable ƪuent, eƥcient
and pleasant interactions, thus demonstrating the potential of the behavior model in view of
interpersonal coordination and grounding.

7.3.5 Further Applications with VSM3

During the course of this thesis, many other interesting applications were developed and
evaluated with VSM3 in order to validate the authoring framework and the underlying mod-
eling approach within the scope of research and teaching projects, workshops, and Ƥeld tests.
Due to the limited space, these are only covered superƤcially and not explained in detail here.

A B 

Figure 7.3.10: Applications in which the Robopec robot Reeti was used as game-playing companion.

Figure 7.3.10 shows our RĔćĔęGĆĒĊĘ application with a social, game-playing robot similar to
the relational agent described in (Behrooz et al., 2014). ARobopec 14 Reeti robot plays diơerent
card or board games with the user, for example, to train the mental Ƥtness of elderly people
living on their own (Figure 7.3.10 A⃝). Our focus here was on the conversational engagement
mechanisms and the display of the robot’s cognitive and emotional states. These mecha-
nisms include, for example, mutual gaze with the user, comments about unusual delays, and
thinking behavior, such as examining the game screen for options or looking up while re-
membering the location of a matching card. Furthermore, the robot responds emotionally
to various events in the game, both by facial expressions and appropriate comments (Fig-
ure 7.3.10 B⃝). Ongoing student projects will replace the manually authored emotions with
a more sophisticated aơect model (Gebhard, 2005; Bee et al., 2010a) to enable autonomous
reactions based on the robot’s given personality. We are thus expecting to make the robot’s
behavior more credible and to sustain the user’s interest over a long period of time. Others
will extend the game playing capabilities of the robot with joke and storytelling functionali-

14http://www.reeti.fr/
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ties that can be adapted to individual user personalities using reinforcement learning on the
user’s continuously provided social signals (Ritschel and André, 2017).

A B 

Figure 7.3.11: Applications which use the RoboKind robots Zeno and Alice empathic partners.

Figure 7.3.11 shows photos taken from applications with RoboKind 15 robots that we used as
test bed for empathy modeling and in which the user’s mood is inferred from various cues
such as their tone of voice and facial expression using SSI (Figure 7.3.11 A⃝). While the robots’
dialog and interaction ƪow is mainly modeled with VSM3 they concurrently exhibit two dis-
tinct empathy mechanisms (Bee et al., 2010a) based on the inferred user emotion (Figure 7.3.11
B⃝). First, they constantly adapt their facial expressions to match the user’s emotion, signal-

ing a basic awareness of their situation. Second, they verbally expresses happiness or pity
for the user depending on his emotional display. Unlike the direct and seemingly instinctive
mirroring, this reƪects an active interest in the user’s well-being, a key requirement for a so-
cial companion. We are planning to evaluate this technology and it’s use in various future
interactive applications, such as personalized recommender systems (Hammer et al., 2016),
to allow higher reasoning and constructive advice. For example, the robot might suggest a
meeting with friends when the user complains about loneliness or oơer to call a doctor when
the user is feeling sick. We expect the empathy display to provide additional comfort and
encourage the user to take their companion’s advice.

 

Figure 7.3.12: An application in which the KRISTINA agent interacts with elderly and migrants.

15http://www.robokindrobots.com/
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Figure 7.3.12 shows an application from the KRISTINA project 16 in which an intelligent em-
bodied conversational agent with linguistic, cultural, social, and emotional competence in-
teracts with elderly and migrants in diơerent basic care and health-care scenarios (Wanner
et al., 2016). VSM3 is used as central coordinating instance managing the data and control
ƪow in a complex distributed software architecture including, among others, the reasoning-
driven dialog manager OWLSĕĊĆĐ (Ultes and Minker, 2014) and SSI (Wagner et al., 2013) for
user input interpretation. Besides this role as central data switchboard, VSM3 is in control of
the agent’s turn-taking behavior arranging the agent’s participant role changes based on the
observed user input and the agent’s own contributions planned by the dialog management.
Turn-taking decisions are made on the basis of a policy which determines whether the agent
is allowed to interrupt the user’s utterance and how it reacts to the user’s attempts to barge
in its own turn. Finally, it controls a variety of appropriate and vivid nonverbal idle behavior
patterns, for example, mimicking the user’s facial expressions, gestures, or body postures to
make an impression of engagement and attentiveness during the diơerent roles and when
these are not negotiated.

Figure 7.3.13: Some photos taken during Ƥeld tests in the context of nationwide promotion programs.

Figure 7.3.13 shows some photos taken during several Ƥeld tests that were conducted in the
context of diơerent nationwide promotion programs and similar events (Endrass et al., 2010)
in which middle school students used VSM3 to create interactive performances and social
games with several of the aforementioned virtual characters and robots, such as Reeti (Fig-
ure 7.3.13 A⃝), theHamsterLab (Figure 7.3.13 B⃝) as well as Zeno andAlice (Figure 7.3.13 C⃝). Af-
ter a short introduction to the tool, the input devices and agent platforms, they were grouped
in teams of a few students, they were given about one hour for brainstorming, sketching the
interaction and dialog ƪow, writing scripts, and formulating input constraints. Afterwards,
they modeled the scenarios with minimal assistance in about another hour and the frequently
very remarkable results were viewed by the whole group. Finally, the students were asked to
Ƥll out an evaluation sheet in which they generally gave very positive feedback about the
authoring experience with VSM3. In addition to the many Ƥeld tests, we also conducted a
usability study in which the tool reached excellent usability scores (Gebhard et al., 2012).
We found that the users generally felt very conƤdent with the tool and that the visual pro-

16http://kristina-project.eu/
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gramming approach and the provided modeling concepts are easily comprehensible and let
non-experts easily create social agent applications in a rapid prototype fashion.

7.4 Summary and Conclusion

This chapter presented the realization of the modeling approach proposed in Chapter 5 in
the authoring software VSM3. The modeling language ensemble deƤned in the conceptual
part of this thesis has been implemented by the adaptation and extension of the existing set
of modeling languages in this authoring framework. VSM3 uses a multi-threaded interpreter
runtime environment for the execution of behavior and interaction models. This allows the
extension and modiƤcation of a model and the direct observation of the eơects without the
need for an intermediate code generation step. VSM3 comes with an integrated development
environment which allows visually modeling behavior and interaction models using a graphi-
cal editor. The graphical modeling environment allows the runtime visualization of a model’s
execution. All these features signiƤcantly facilitate testing and debugging a social agent’s be-
havior and interaction model. Thus, the authoring suite encourages and supports authors
with diơerent background, experience, and expertise to exploit their knowledge in creating
behavior and interaction models for social agents. For validation purposes, VSM3 has been
used for the development of various applications with embodied conversational characters
and social robot companions. In this, the tool has been used by various user groups, ranging
from completely unexperienced teenage girls, over screenwriters and social psychologists, to
highly experienced experts.
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CčĆĕęĊė 8

CĔēĈđĚĘĎĔē — SĚĒĒĆėĞ,
CĔēęėĎćĚęĎĔēĘ Ćēĉ FĚęĚėĊ WĔėĐ

In Chapter 1, I explained my motivation for this thesis and highlighted its scientiƤc signiƤ-
cance. I introduced an exemplary human-agent interaction scenario based on which I iden-
tiƤed and illustrated my research objectives. In Chapter 2, I provided a profound review of
literature from social and behavioral sciences to introduce the theoretical background on in-
terpersonal coordination and grounding as well as the functions of gaze behaviors and voice
overlaps that contribute to them. In Chapter 3, I discussed the key modeling tasks and re-
quirements that an author is faced with when modeling a social agents interactive behavior
with a focus on interpersonal coordination and grounding. In Chapter 4, I showed that,
despite substantial research eơort, related work has not yet managed to develop modeling
frameworks that allow integrating and coordinating the behavioral aspects of interpersonal
coordination and grounding in a social agent’s behavior and interaction model. Instead, re-
lated research either focused on individual behavioral functions in isolation only, or, devel-
oped solutions for speciƤc modeling tasks without considering the entire picture. In Chap-
ter 5, I presented the conceptual framework of the modeling approach proposed in this the-
sis. It allows an author to successfully master the coordination of the behavioral functions
and aspects that underlie interpersonal coordination and grounding. It has a remarkable
practicability while being suƥciently expressive to go beyond related state-of-the-art eơorts.
In Chapter 6, I illustrated the approach based on a sophisticated behavior and interaction
model which integrates the functions of gaze and voice for interpersonal coordination and
grounding. This model can serve as best practice for other authors that want to craft their
own behavior and interaction models with the proposed approach. Finally, in Chapter 7, I ex-
plained how the approach was implemented in the VSM3 authoring software and presented
applications that have been developed to validate the tool and underlying the approach.

In the reminder of this chapter, in Section 8.1, I brieƪy summarize the main methodical, con-
ceptual, and technical contributions of this dissertation with regard to the research objectives
introduced in Section 1.3. Finally, in Section 8.2, I outline future development opportunities
and research directives that I consider as interesting and promising after the scientiƤc ex-
change and experiences made in the course of this dissertation.
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8.1 Contributions

The overall goal of this dissertation was the design of a modeling framework that allows mod-
eling the integration and coordination of the behavioral functions and processes that underlie
interpersonal coordination and grounding in social interactions. Throughout this thesis, it
has become clear that this is a fundamental human capability that is, for this reason, also
crucial for artiƤcially and socially intelligent agents in order to show credible, engaging, and
natural social behavior. Any discrepancies in the synchronization or prioritization of behav-
ioral functions or processes entail the danger these agents appear unnatural, incompetent,
or clumsy to their human interaction partners. This thesis has made several methodical,
conceptual, and technical contributions on the way to tackling this research objective.

8.1.1 ScientiƤc Approach and Footing

This thesis is the very Ƥrst scientiƤc attempt to focus on interpersonal coordination and
grounding and their synergistic connection for a holistic modeling approach to the interac-
tive behavior of social agents. A methodical contribution of this thesis is therefore the system-
atic elaboration of the possible interlinking of these two interactional phenomena with the
functions of diơerent gaze behaviors and speech overlaps in social joint activities. Therefore,
Chapter 2 contains an exhaustive literature survey that explains the various behavioral func-
tions of gaze and voice behaviors, such as attention following, multi-modal disambiguation,
turn management, intimacy regulation, feedback eliciting, multi-modal disambiguation, and
interrupt handling. Chapter 3 then uses the illustrative example scenario from Chapter 1 to
discuss the characteristics of social interactions and physically situated, joint activities and
comprehensively carves out how these individual behavioral functions and their underlying
behavioral processes contribute to interpersonal coordination and grounding. This theo-
retical and illustrative groundwork is then taken as a basis to categorize and formulate the
modeling tasks and requirements as well as the solution concepts for the modeling approach
proposed in this thesis.

8.1.2 The BFMLModeling Framework

MĔĉĊđĎēČ
AĕĕėĔĆĈč

DĊĘĎČē

The, for certain, most important conceptual contribution of this thesis is the design of the
modeling approach with BFML that allows coordinating the behavioral functions and pro-
cesses that contribute to interpersonal coordination and grounding. In the conceptual design
of this approach, I argue for dividing the creation of a social agent’s behavior and interaction
model into three modeling subtasks. Then, I identify three task-speciƤc requirements that a
modeling approach must meet in order to enable an author to master these subtasks. Finally,
I present the design of an ensemble of domain-speciƤc modeling languages each of which is
successfully tackling one of these subtasks. In this, it shows that the modeling framework
proposed in this thesis is the Ƥrst to combine the beneƤts of a specially designed, hierarchical
and concurrent state-chart variant, a domain-speciƤc, logic calculus, and a template-based
behavior speciƤcation language for modeling interactive behavior of artiƤcially and socially

242



8.1. Contributions

intelligent agents. This remarkably practicable and expressive modeling framework success-
fully masters the research goals of this thesis.

Coordinating Functions & Processes
The domain-speciƤc state-chart variant BFSC is used to control the interplay of behav-
ioral functions and processes contributing to interpersonal coordination and grounding.
It allows the incremental and reciprocal meshing of input processing, knowledge reason-
ing and behavior generation. It enables the parallel and hierarchical structuring of a
model through its parallel decomposition and hierarchical reƤnement into parallel and
nested, behavioral and computational processes on diơerent behavioral levels. It allows
the immediate interruption and coherent resumption of behavioral functions and pro-
cesses in reaction to quickly changing behavioral goals and priorities.

Integrating Input & Context Events
The PėĔđĔČ-embedded, domain-speciƤc, logic calculus BFQL is used for multi-modal
fusion and knowledge reasoning. It uses a uniform representation format for input events
that are maintained in a well-organized working memory to preserve their chronological
order. Logic predicates are used formulti-modal fusion and reasoning based on semantic,
temporal, and quantitative integration constraints and dynamic predicates are used to
manage a garbage collection mechanism on the event history.

Creating Behavior & Dialog Content
The template-based description format BFSL is used for the speciƤcation of expressive
and natural behavioral activities. It allows versatile compositions of behavior resembling
the wide range of human behavioral and linguistic repertoire. It allows the ƪexible inte-
gration of knowledge to create competent and informed behavior and dialog content. It
supports the automatic variability of behavior to avoid repetitions that have a negative
impact on an agent’s plausibility.

The examination of advantages and limitations of previous modeling approaches and a com-
parison to our own solution in Chapter 4 shows several points. First, with respect to ex-
pressiveness, the proposed novel modeling framework goes way beyond the state-of-the-art
related approaches because it successfully masters the complex coordination and interplay of
the many behavioral functions that underlie interpersonal coordination and grounding. The
approach is by this suƥciently usable since it uses mostly declarative and visual modeling
paradigms as well as uniform representation formats.

MĔĉĊđĎēČ
AĕĕėĔĆĈč
IđđĚĘęėĆęĎĔē

An important part of the conceptual contribution in this thesis is the development of a so-
phisticated, exemplary behavior and interaction model in Chapter 6, using the proposed
modeling approach. Therefore, Chapter 6 follows to a very great extent a top-down, that
means theory-driven approach, oriented along literature from behavioral psychology and re-
lated work on human-agent interaction. In some cases, the models are adapted according to
observations made in an analysis of human-agent interaction corpora by related work. The
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step-wise developed, highly modular model is designed to be generic, adaptable, reusable,
and comprises a large part of the roles of gaze behaviors and voice overlaps that contribute
to interpersonal coordination and grounding. The model can serve as best practice exam-
ple and toolbox resource of individual reusable and adaptable parts for authors that want to
craft their own behavior and interaction models. In this, the modeling approach architec-
tures as well as the behavior and interaction models of related work, presented and discussed
in Chapter 4, can be recreated and combined and their results can be reproduced using the
modeling framework in this thesis.

8.1.3 The VSM3 Authoring Software

The main technical contribution of this thesis is the reference implementation of the novel
modeling framework in the authoring software VĎĘĚĆđSĈĊēĊMĆĐĊė3 (VSM3). This tool has
been developed in order to encourage, guide, and support authors in the distributed and
iterative development of interactive applications with social companions. Part of the techni-
cal contribution is the validation of the VSM3 authoring suite, and the underlying modeling
approach, in a number of representative, fully ƪedged applications. In this, VSM3 has suc-
cessfully been utilized for the development of interactive embodied conversational agents
and social robots in a variety of teaching projects for the use as an educational tool, in a
wide range of research projects with diơerent requirements and objectives, and Ƥeld tests. In
this, the tool has successfully been used by diơerent user groups, such as computer experts,
artists, screenwriters, social psychologists, and even teenagers. This is certainly a clear sign
for the outstanding expressive power but also the adaptability and reusability of the model-
ing framework for authors with diơerent background knowledge, expertise, experience, and
modeling strategies. With the help of VSM3, it is now a realistically attainable objective that
these authors can exploit their expert knowledge in the respective areas for the development
of computational behavior and interaction models of social companions.

8.2 Future Work

During the work on this thesis, the VSM3 software has been used by various user groups in
diơerent application areas. This manifold use has led to a great deal of constructive feedback
how to extend the modeling formalisms and authoring framework in order to improve the
created behavior and interaction models. Of course, when working with people that have
diơerent interests and expertises, it becomes inevitable and sometimes diƥcult to accom-
modate their diơering aims for the future development. However, a number of achievable
extensions to the work in this thesis have become most apparent. This includes diơerent
future research directives, concerning methodical improvements and conceptual extensions,
as well as the associated further development prospects.
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8.2.1 Corpus-Based Model ReƤnement

The illustrative behavior ƪows in Chapter 6 have been modeled following, for the most part,
a top-down, that means theory-driven approach. The choice of most parameters has been
oriented along literature from social and behavioral sciences. Theories from social and behav-
ioral sciences, that are based on the analysis of human interactions, are a good guideline and
starting point for the creation of theoretically well-grounded computational models. How-
ever, they are often rather vague when it comes to the details and parameterization of a
model, such as, for example, the exact values of timeouts or distributions of probabilities.
For that reason, whenever available, but unfortunately only in few cases, speciƤc parameter
values have been obtained from observations made in corpus-driven analyses of related work
on human-agent interaction. However, even the values reported in this literature are not
infrequently heavily wide apart or even contradictory.

OćĘĊėěĆęĎĔē-
BĆĘĊĉ MĔĉĊđ
RĊċĎēĊĒĊēę

To avoid these issues, it would be useful to record, annotate, and analyze multi-modal cor-
pora recordings of the interactions in the applications that have been developed with the
approach proposed in this thesis. This would help to obtain more precise and informative
statistical data and to iteratively adapt the parameters of a model until a satisfactory result
has been achieved. It would also be interesting to investigate in how far it is possible to even
automatically learn and generate, and thus avoid hand-crafting, structural details of behavior
ƪows based on the observation of real user interaction data. This could establish an itera-
tive development cycle in which the results from the evaluation studies and annotations are
used as input to reƤne the behavior and interaction models. A Ƥrst step has already be taken
with the development of a plug-in for the annotation tool ANVIL1 (Kipp, 2001, 2014). This
plug-in allows the simulation of the input for the model by taking the annotations, trans-
forming them into events and feeding the model as if these events would be produced by the
participants or the environment in real-time. This approach signiƤcantly improves the exam-
ination of the model for parts that are worthy of improving, for example, timing constraints
of timeout edges or the priorities of behavioral aspects.

8.2.2 Data-Driven Behavior Adaptation

An interesting further development and research directive is the enrichment of behavior
ƪows with data-driven prediction models that have been created using machine learning
methods. Just like the models in Chapter 6, behavior ƪows usually expose diơerent neuralgic
points at which decisions are made, timeouts are awaited, or behavioral responses are deter-
mined. Instead of exclusively relying on the current rule-based approach, it might help to
produce more intelligent behaviors when falling back on assessments by a more specialized
and sophisticated mechanism that is based on a data-driven prediction model.

IēęĊČėĆęĎēČ
PėĊĉĎĈęĎĔē
MĔĉĊđĘ

For example, the model in Chapter 6 is, in its current form, only able to detect interrup-
tion attempts after it has already detected a voice or turn overlap of a speciƤed Ƥxed length.
However, humans reveal particular nonverbal and para-verbal behaviors, such as breathing

1http://www.anvil-software.org
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patterns, gaze cues, facial expressions, and gestures that signal an imminent attempt to grab
the ƪoor or change the topic. The meaning of these signals for the turn-taking decisions
depends on additional parameters, such as the interpersonal relationship and the partner’s
personality traits. A data-driven prediction model could be trained with such features and
then be able to anticipate an interruption attempt even before the user starts speaking. The
behavior ƪow could continuously request this information in order to make sure that the
agent proactively and appropriately responds to these predictions. Vice-versa, another pre-
diction model can assesses if a situation is opportune for the agent to attempt to grab the
ƪoor itself. Based on context information and social cues, the model would predict the prob-
ability for the occurrence of transition-relevant points in the conversation and the likelihood
that an attempt to take the turn will be accepted by the user.

LĊĆėēĎēČ
AĉĆĕęĎěĊ
MĔĉĊđĘ

Another possibility to improve the models created with the modeling approach in this the-
sis would be to make them automatically adaptive to user-speciƤc needs, their personalities,
or interpersonal attitudes and relationships to the agent. Such inƪuencing factors could be
initially captured by a dedicated user model (Gebhard, 2005). Based on such a model’s assess-
ments, the agent could, for example, decide if, how intense and how long to mimic an user’s
facial expression in order to signal empathy or not. Furthermore, it could also infer the best
time when to avert the gaze again in order to balance their interpersonal intimacy. Then,
it would be interesting to reƤne such models using reinforcement learning approaches that
allow steadily learning speciƤc model parameters from the interaction with the users. For ex-
ample, (Ritschel and André, 2017) already managed to learn some kind of user humor model
that describes the user’s joke and storytelling preferences. Similar, the agent could learn, for
example, to use the user’s continuously provided social signals, such as gaze aversion or emo-
tional displays, to learn the degree of interpersonal intimacy that the user perceives as most
adequate and comfortable. Therefore, it could, for example, systematically vary and adapt
the length and intensity of its attempts to mirror the user’s emotional displays to balance the
intimacy regulation whenever the user searches for mutual gaze.

TčĊ Eēĉ I am convinced that, in the near future, an ensemble of reasonably combined and closely
coordinated, both theory-grounded and data-driven models, is the most promising method
to make progress with the behavior and interaction models of artiƤcially intelligent social
agents. With the modeling approach and authoring framework presented in this thesis, that
is particularly suitable for exactly these integrative and coordinative responsibilities, I am
conƤdent to have contributed my small part towards achieving this aim.
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