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ABSTRACT The process of collecting annotated data is expensive and time-consuming. Making use of
crowdsourcing instead of experts in a laboratory setting is a viable alternative to reduce these costs. However,
without adequate quality control the obtained labels may be less reliable. Whereas crowdsourcing reduces
only the costs per annotation, another technique, active learning, aims at reducing the overall annotation
costs by selecting the most important instances of the dataset and only asking for manual annotations for
these selected samples. Herein, we investigate the advantages of combining crowdsourcing and different
iterative active learning paradigms for audio data annotation. Further, we incorporate an annotator trustability
score to further reduce the labelling effort needed and, at the same time, to achieve better classification
results. In this context, we introduce a novel active learning algorithm, called Trustability-based dynamic
active learning, which accumulates manual annotations in each step until a trustability-weighted agreement
level of annotators is reached. Furthermore, we bring this approach into the real world and integrate it in
our gamified intelligent crowdsourcing platform iHEARu-PLAY. Key experimental results on an emotion
recognition task indicate that a considerable relative annotation cost reduction of up to 90.57% can be
achieved when compared with a non-intelligent annotation approach. Moreover, our proposed method
reaches an unweighted average recall value of 73.71%, while a conventional passive learning algorithm
peaks at 60.03%. Therefore, our novel approach not only efficiently reduces the manual annotation work
load but also improves the classification performance.

INDEX TERMS Audio processing, crowdsourcing, dynamic active leaning, machine learning,
user trustability.

I. INTRODUCTION
The success of modern intelligent processing systems and
their underlying supervised machine learning techniques is
largely owed to the availability of suitable training data.
The amount and quality of this manually labelled data is a
crucial step in building supervised classifiers. Typically, data
annotation is performed by groups of selected experts in a
controlled laboratory setting. Whilst yielding high quality
labels, this annotation procedure is costly, time-consuming,
and tedious work [1]–[5] which therefore leads to a scarcity
of labelled data, especially in the field of speech processing.
As a result, this slows down the growth and success of the
development of a wide range of such systems [6].

Compared with the small amount of available labelled
data, there is a wide range of unlabelled speech data avail-
able, ideally suited for the development of these systems.
Present technologies, such as the Internet of Things, have
made it easier than ever to collect vast, inexpensive, and
truly big amounts of data. Furthermore, online sources and
social media platforms like Youtube or Facebook put free and
massive amounts of speech data online every minute. Never-
theless, this freely available data lacks reliable labels. In this
regard, recent research projects have turned away from only
gathering labels in a controlled laboratory setting and made
use of crowdsourcing. Hereby, the annotation work is being
outsourced to an unspecific group of people in the internet.
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Crowdsourcing, provided a large enough set of annotators is
used, has been shown to be a viable alternative to conven-
tional labelling paradigms [6]–[9].
Whilst crowdsourcing has many positive aspects includ-

ing efficiency and cost reduction, the online recruitment
of anonymous annotators still requires a large amount of
effort, since at least as many labels as there are unla-
belled data instances need to be provided. Recently, several
intelligent approaches have been proposed to leverage
unlabelled data, one of the most promising being Active
Learning [5], [10]–[12]. These state-of-the art optimisation
techniques reduce the number of data instances which require
manual labelling [13]–[15] and are therefore capable of
reducing the time consuming and expensive manual labelling
work in the first place [1], [16]–[18].
In this context, we recently developed the gamified intelli-

gent crowdsourcing platform iHEARu-PLAY [19], [20]. The
platform offers audio, video and image labelling for a diverse
range of annotation tasks. Based on our initial work integrat-
ing active learning into the platform [20], we herein expanded
our active learning algorithms and verify them using several
emotion recognition experiments. The aim of these experi-
ments is to identify techniques which combine the advantages
of crowdsourcing and active learning to efficiently reduce the
number of needed annotations.

A. RELATED WORK
The main concept of an Active Learning (AL) approach is
based on the concept that the algorithm can improve the
classification accuracy with as little training data as possible
by actively choosing the data the algorithm is most certain
about [18], [21], [22]. Previous research has shown that
acquiring only labels for instances which the trained model
cannot predict a label and therefore is most uncertain about
reduces the amount of annotation costs, while achieving an
equal performance and an overall cost reduction of the anno-
tation process [6].
Due to the promising results of AL, considerable research

has been done exploring this topic and it has become
a rich literature source on machine learning paradigms
which efficiently exploit unlabelled data for model training.
AL has been applied in many diverse domains such as
machine translation [1], [23], medical imaging [24], clas-
sification tasks [25], sentiment detection [13], [26], and
text classification [22]. Its effectiveness was shown in mul-
timedia retrieval [27], typical classification tasks such as
automatic speech recognition [28], and speech emotion
recognition [14], [29].
The main drawback of conventional (static) AL algorithms

is that they still rely predominantly on annotators to pro-
vide the correct label for each instance [30]. An approach,
called Dynamic Active Learning (DAL), tries to further
reduce this fixed amount of annotators by using an adap-
tive query strategy without sacrificing performance [14];
however, a non-trivial amount of human intervention is
needed.

Recently, these AL approaches have gained interest in
combination with crowdsourcing [1], [16], [17], [20], [31].
This is not a surprising trend, AL reduces the number of
instances for which manual annotations are gathered while
crowdsourcing provides cheap manual labels. Lately, low-
cost annotations coming from combined AL crowdsourcing
tasks have been collected in different areas includingmachine
translation, named-entity recognition, sentiment analysis, and
humour classification [1], [17], [18]. Nevertheless, by relying
on anonymous users within crowdsourcing, the quality and
reliability of the gathered labels can eventually differ from
laboratory gathered expert ones [32], [33].
Similar effects can also be observed when making use of

supervised learning techniques or forms of Semi-Supervised
Learning (SSL) used to train the classifiers [34]. Here, only
a small set of labelled data is required to begin with and
all the other data gets labelled by the machine afterwards.
However, this can impose the disadvantage of possibly learn-
ing from wrongly labelled data through the machine and
therefore the system potentially gets less accurate at every
iteration. This effect was studied by many works in the liter-
ature dealing with classification tasks in the presence of label
noise [35], [36] or learning with noisy labels [37], [38].
For this reasons, a mechanism to guarantee the quality and

reliability of the labels is required, especially when dealing
with labels acquired through crowdsourcing. It is well-known
that noisy data is one of the biggest issues within crowdsourc-
ing [39] where unreliable annotations by spammers and most
importantly by malicious and carelessness users are a major
known confounding issue [32], [33]. Therefore, a valid qual-
ity management mechanism needs to be setup for filtering out
low quality answers to ensure a higher quality of the collected
annotations.

B. CONTRIBUTIONS OF THIS WORK
In our earlier work [20], we showed the success of combin-
ing a user trustability property with two basic active learn-
ing query strategies in order to exploit the advantages of
AL and more importantly to tackle the problem of unreli-
able annotations to avoid training the classifier on wrongly
labelled data. In this contribution, we expand on this approach
by introducing the novel Trustability-based Dynamic Active
Learning algorithm (TDAL) (cf. Section III-F), which is a
Dynamic Active Learning algorithm implementing an adap-
tive query strategy based on the calculated annotators’ trusta-
bility scores. By addressing weakness in related algorithms,
the TDAL approach ensures a high quality of the labels
gathered on a crowdsourcing platform making use of detailed
quality control systems (cf. Section IV).
While this novel TDAL algorithm can be integrated into

a range of conventional crowdsourcing platforms, we exem-
plary integrated it for demonstration purposes within this
work into the gamified crowdsourcing platform iHEARu-
PLAY [19] to combine the advantages of both crowdsourcing
and Active Learning (cf. Section V). Within the approach,
an integrated trustability score for every annotator/user is
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calculated, which represents how much the system trusts a
user. Therefore, this score can be utilised to identify spam-
mers, or malicious and careless users and more importantly
to weight single annotations according to their reliability.
The integration of the TDAL algorithm therefore aims at
improving the automatic annotation process on the platform
by not only increasing the reliability of the collected labels
but also at reducing the annotation costs. Finally, this paper
includes an in-depth analysis of the TDAL algorithm by per-
forming an exemplary set of emotion recognition experiments
(cf. Section VI and Section VII).

II. CONFIDENCE AND TRUSTABILITY CALCULATION
In this section, we introduce the employed confi-
dence measurement method and introduce Support Vector
Machines (SVMs) as the classification model used by the
proposed algorithms. Then, we describe the novel trustability
score calculation, which forms the basic concept of the
proposed TDAL algorithm.

A. CONFIDENCE MEASUREMENTS
All DAL approaches actively select the data from which they
learn or which require annotation. This is achieved by consid-
ering the prediction uncertainty of a trained classifier in terms
of so called confidence values C . Such confidence measure-
ments assess the correctness of a classification problem of
an speech processing system’s output. As in [34], we employ
SVMs, which are a supervised learning model based on the
concept of using decision hyperplanes to separate instances
of different classes. This is achieved by using the decision
function f (x), while maximising the functional margin.
An output value of SVMs is the distance of a specific

point from the separating hyperplane. Therefore, for each
data instance, a confidence value is calculated by convert-
ing these distances to probability estimates within the range
of [0,1] [34]. In this regard, we employ a frequently used para-
metric method of logistic regression [40]. For binary classi-
fication, the sigmoid function with the parameters A and B is
defined as:

P1(x) =
1

1+ exp(Af (x)+ B)
. (1)

P0(x) = 1− P1(x). (2)

The confidence value C for the predicted class is obtained
by forming the difference of the posterior probabilities P0(x);
P1(x) for the classes 0 and 1, respectively:

C(x) = |P1(x)− P0(x)|, (3)

where C(x) denotes the confidence value assigned to the
predicted label of a given instance x. In our experiments,
we consider two different query strategies, namely a least
certainty query strategy and a medium certainty query strat-
egy. Within these query strategies, the measured confidence
values assigned to each instance are ranked and stored in a
queue in descending order of high certainty Ch, medium cer-
tainty Cm and least certainty Cl . Accordingly, Cm represents

the confidence value of the instance located in the centre of
the ranking queue. Instances with least and medium confi-
dence values are then sent to manual annotation. Formally,
the query function is defined as:

xc = argmin
x

Cx − Ch/m/l . (4)

B. ANNOTATOR TRUSTABILITY CALCULATION
Within many well-known crowdsourcing platforms, such as
Amazon Mechanical Turk1 or CrowdFlower,2 user reliability
and annotation quality is usually assessed through a pretest
comprised of different questions to determine if the anno-
tator is performing the given task correctly. Inspired by this
QualityManagement System (QMS), we implemented amore
detailed QMS preceding the learning algorithm to assess this
novel quality mechanism called the trustability score.
For calculating this trustability score, we implemented

several quality measuring features including consistency
and control questions to compute the intra-annotator and
inter-annotator agreement and integrated these measure-
ments exemplary into the gamified crowdsourcing platform
iHEARu-PLAY3 [20].
The introduced trustability score Tu consists of three key

components, namely (i) consistency questions TCON , (ii)
accuracy value TACC , and (iii) control questions TCTR:

Tu = TCON + TACC + TCTR, (5)

with Tu = 100 for instance x = 0 and a range [0; 100].
(i) Consistency questions are the percentage of repeated

audio samples and function as an important factor for the
trustability score calculation. Any sample that has received
at least one answer from the current user can be repeated as a
so called consistency question. These consistency questions
are given as repeated annotation tasks to check if the user
pays attention to the given task and annotates the same data
instance consistently. If the given answer to such a consis-
tency question matches the proceeding one, the consistency
value TCON increases and therefore the trustability score Tu.
Having an answer that differs from the proceeding one, it is
subtracted from the trustability score (cf. Equation 6).

TCON =

{
Tu(new) = Tu(old) + ft if l1(x) = l2(x)
Tu(new) = Tu(old) − ft otherwise,

(6)

with a trustability factor ft and a range of TCON = [0; 33].
Many of the well-known crowdsourcing platforms com-

pute their annotators reliability according to this scheme (e.g.,
CrowdFlower using so called Test Questions2). However,
such approaches fail to take one main aspect into account: if a
user always chooses the same label for the same sample, this
may be seen as consistent within the consistency measure-
ment and the reliability of the annotator is set higher accord-
ingly. But, if the answer itself is always not correct, this leads

1https://www.mturk.com
2https://www.crowdflower.com
3https://ihearu-play.eu
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FIGURE 1. Functional diagram showing the process of the five different learning algorithms.

to false reliability results. This is a crucial gap in this mea-
surement and is being filled in the proposed approach by
our so called accuracy value to ensure the robustness of the
trustability score measurement.
(ii) Accuracy values focus on the relation of the given

answer to other users’ answers towards the same sample. The
calculation uses the difference between the current answer
and the average of all other answers to check the user’s
deviation from the average. If the current answer is in line
with the overall average answer, this annotation is consid-
ered a trustworthy one, resulting in a positive accuracy value
getting added to the trustability score. If this is not the case,
the annotation is most likely incorrect and the accuracy value
is subtracted from the trustability score (cf. Equation 7).

TACC =

{
Tu(new) = Tu(old) + ft if luser (x) = lall(x)
Tu(new) = Tu(old) − ft otherwise,

(7)

with lall being the averaged/majority label l from all users and
a range of TACC = [0; 33].
(iii) Control questions, on the other hand, contain answer

possibilities which do not make sense in combination with
the given task. If an annotator selects a control choice as
their answer, their trustability score is decreased accordingly
(cf. Equation 8).

TCTR =

{
Tu(new) = Tu(old) + ft if luser (x) = lCTR(x)
Tu(new) = Tu(old) otherwise,

(8)

with a range of TCTR = [0; 33].

Besides these three main components for calculating the
trustability score, iHEARu-PLAY integrates further QMS
features such as: gamification, as opposed to monetary
motivation [41], pre-annotation listening checks, tracking a
player’s selection for highly repetitive inputs, tracking the
voting time, and enforcing a minimum listening time before
users can submit an answer. Our integrated QMS and the
calculated trustability score represents a promising approach
to obtain annotations from non-expert annotators that are
qualitatively close to gold standard annotations created by
experts.

III. INTELLIGENT AUDIO ANALYSIS AND
ACTIVE LEARNING ALGORITHMS
In the following, we present our intelligent crowdsourcing
approaches which combine different beyond state-of-the-art
AL algorithms4 with the crowdsourcing platform iHEARu-
PLAY [19]. Figure 1 overviews the process of our various
learning algorithms, which are going to be described in the
following subsections.

A. GENERAL SETUP FOR THE LEARNING ALGORITHMS
For the learning approaches presented in this work we need
a small set of already labelled data, which we can obtain
either from experts or through crowdsourcing. This labelled
data is split into two parts: one part is used as the training

4The baseline code can be found on GitHub: https://github.com/iHEARu-
PLAY/iHEARu-PLAY
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Algorithm 1 Passive Learning (PL)

1 repeat
2 (Optional) Upsample training set T to obtain equal

class distribution TD.
3 Select subset Na of pool set P randomly.
4 Submit selected instances Na to manual annotation.
5 Remove Na from pool set P = P \Na.
6 Add Na together with obtained labels from the

annotators to training set T = T ∪Na.
7 until model training converges OR a predefined number
of iterations is met.

set for our algorithm and the other part as the test set, which
evaluates the accuracy of the classifier. The unlabelled data
will function as our pool set. To formalise this idea we define
D = ([x1, l1], . . . , [xd , ld ]), i = 1, 2, . . . d , as a set of
labelled data, where xi are the feature vectors with labels li.
We divide this labelled data into a training set T and a test
set S with D = T ∪ S and T ∩ S = {}. In addition,
let P = (x

′
1, . . . , x

′
u) be the pool set of unlabelled data

with d � l.

B. PASSIVE LEARNING
As a baseline, we use a Passive Learning (PL) approach
(cf. Algorithm 1). Within PL, the data instances which are
submitted for manual labelling are simply chosen randomly.
In every iteration of the algorithm, a subset Na of the pool
set P is selected randomly and submitted to the manual
annotation process. After having collected the label, the data
instance is removed from the pool set and added together
with the gathered label to the training set T . This pro-
cedure is repeated until all instances of the pool set are
labelled.

C. SEMI-SUPERVISED LEARNING
Semi-Supervised Learning (SSL) techniques use previously
labelled data to find corresponding labels for the still unla-
belled data in an iterative process. In our presented exper-
iments, a SSL variant based on the so-called Self-Training
algorithm is used [34].
To obtain an equal class distribution in the training set T ,

an upsampling step can be performed, wherein multiple
copies of existing instances can be added to the classes which
have a low amount of instances [42]. Afterwards, a model is
trained on the existing training data T , this is followed by
the machine labelling all data in the unlabelled pool set P
and assigning each instance a confidence score C according
to Equation (3). The algorithm then chooses the set of files
Na with the highest confidence Ch, removes them from the
pool set P , and adds them together with the predicted label
to the training set T . Finally, the algorithm starts again from
the beginning with the updated training set and repeats these
steps until it reaches a certain accuracy or amaximumnumber
of iterations (cf. Algorithm 2).

Algorithm 2 Semi-Supervised Learning (SSL) Based on
the High Certainty Query Strategy [34]

1 repeat
2 (Optional) Upsample training set T to obtain even

class distribution TD.
3 Use T /TD to train classifier H , and then classify

pool set P .
4 Calculate corresponding classifier’s confidence

value C .
5 Select subset Na which contains the instances

predicted with the highest confidence values Ch.
6 Remove Na from pool set P = P \Na.
7 Add Na together with predicted labels to training set

T = T ∪Na.
8 until there is no data in the pool set predicted as
belonging to the target class OR model training
converges OR manual annotation is not possible.

D. ACTIVE LEARNING
Given the highly promising results presented in our earlier
work [20], we consider two basic AL algorithms with two
different certainty query strategies for the classification tasks
(cf. Algorithm 3). Starting with an optional upsampling pro-
cedure, an equal class distribution TD in the training set T can
be obtained. Both algorithms start by classifying all instances
of the unlabelled data poolP using amodel previously trained
on the labelled data L.
Following the earlier described confidence measurement

approach (cf. Section II-A), the confidence valuesC assigned
to each instance are ranked and stored in a queue Q
(in descending order). Finally, a subset Na of P , corre-
sponding to those instances predicted with least and medium
confidence values, are sent for manual annotation. Thence-
forth, these instances are added to the training set T and
removed from the unlabelled data set P . This sequential
process is repeated until a predefined number of instances are
selected or until some stopping criterion is met [20], [34].

E. DYNAMIC ACTIVE LEARNING
The above described AL algorithms are static, meaning they
wait until j manual annotations are gathered for an instance
before determining the final label, using majority voting as
the most popular technique. Alternately, a dynamic learning
process starts by training a model on the labelled training
set T and subsequently using this model to classify all
instances of the unlabelled pool set P . According to the
least or medium certainty query strategy, a subsetNa ⊂ P is
selected and submitted for manual annotation. The sequential
process is repeated until a certain number of instances are
annotated and a predefined agreement level j is reached for
every of these instances.
The main improvement of this technique compared to

the static AL method is that these Dynamic Active Learn-
ing (DAL) algorithms are based on an adaptive query
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Algorithm 3 Active Learning (AL) With Least and
Medium Certainty Query Strategy for Classification
Procedures; Adapted From [43]

1 repeat
2 (Optional) Upsample training set T to obtain even

class distribution TD.
3 Use T /TD to train a classifierH, then classify pool

set P .
4 Calculate the corresponding classifier’s confidence

value C .
5 Rank data based on the prediction confidence values

C and store them in a queue Q.
6 Choose a query strategy:
7 – Least certainty query strategy: Select subset

Na of pool set P whose elements are ‘at the bottom’
of the ranking queue Q.

8 – Medium certainty query strategy: Select subset
Na of pool set P whose elements are ‘in the middle’
of the ranking queue Q.

9 Submit selected instances Na to manual annotation.
10 repeat
11 Remove Na from the unlabelled pool set P ,

P = P −Na.
12 Add Na and their aggregated labels to the

training set T , T = T ∪Na.
13 until
14 until there is no data in the pool set predicted as
belonging to the target class OR model training
converges OR manual annotation is not possible OR a
predefined number of iterations is met.

strategy [34]. In this context, the DAL approach first requests
a small number of annotations for every instance in the sub-
set Na, and then only requests further annotations if the pre-
defined agreement level j for one class has not been reached.
Algorithm 4 presents the pseudocode description of the

DAL algorithm. If all annotators have voted for the same
label lm, the algorithm stops asking for further annotations.
If the first annotators have not agreed on one label, one
more annotation is requested and it is checked again if the
predefined agreement level has been reached. This whole
process is repeated until the predefined agreement level j is
reached.

F. TRUSTABILITY-BASED DYNAMIC ACTIVE LEARNING
As previouslymentioned, a major issue when gathering anno-
tations, especially using crowdsourcing, is that the quality
of the annotations can be low. This can result in train-
ing the model using wrongly labelled data, which in turn,
can cause reductions in the accuracy of a classifier trained
using this data. With the aim of overcoming this issue,
we now introduce a novel DAL algorithm which explic-
itly incorporates annotator trustability-based agreement
levels.

Algorithm 4 Dynamic Active Learning (DAL) With
Least and Medium Certainty Query Strategy for
Classification Procedures; Adapted From [34]

1 repeat
2 (Optional) Upsample training set T to obtain even

class distribution TD.
3 Use T /TD to train a classifierH, then classify pool

set P .
4 Calculate the corresponding classifier’s confidence

value C .
5 Rank data based on the prediction confidence values

C and store them in a queue Q.
6 Choose a query strategy:
7 – Least certainty query strategy: Select subset

Na of pool set P whose elements are ‘at the bottom’
of the ranking queue Q.

8 – Medium certainty query strategy: Select subset
Na of pool set P whose elements are ‘in the middle’
of the ranking queue Q.

9 For each instance x in Na:
10 repeat
11 Submit x to the first u annotators.
12 Let v be the number of votes of the label with the

most votes.
13 If v >= j: STOP
14 Else repeat: select one annotator for annotation.
15 until until agreement level j is achieved
16 Remove Na from pool set P = P \Na.
17 Add Na together with obtained labels from the

annotators to training set T = T ∪Na.
18 until there is no data in the pool set predicted as
belonging to the target class OR model training
converges OR manual annotation is not possible OR a
predefined number of iterations is met.

The proposed algorithm aims at collecting only highly
reliable labels, while at the same time preventing the acqui-
sition of unnecessary annotations which do not bring further
improvement to the models. In contrast to the earlier intro-
duced DAL method (cf. Section III-E) [14], the trustability-
based agreement level j is computed by using the trustability
score Tu of an annotator to determine how many subsequent
annotations have to be collected. In this context, the number
of annotations collected for each sample depends directly on
the number of trusted annotators previously queried.
The advantage of the agreement level in this approach over

the AL method is that it does not stop when a pre-defined
number of annotations for one data instance have been gath-
ered. Instead, the procedure is repeated until the defined
user trustability sum of the answers reaches the agreement
level. By gathering annotations until it has acquired enough
high-quality annotations and using the trustability-weighted
majority voting (cf. Section IV), the algorithm helps to ensure
a high quality of the final labels.
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Algorithm 5 Trustability-Based Dynamic Active
Learning With Least and Medium Certainty Query
Strategy for Classification Procedures

1 repeat
2 (Optional) Upsample training set T to obtain even

class distribution TD.
3 Use T /TD to train a classifierH, then classify pool

set P .
4 Rank data based on the prediction confidence values

C and store them in queue Q.
5 Choose a query strategy:
6 – Least certainty query strategy: Select subset

Na whose elements are ‘at the bottom’ of the
ranking queue Q.

7 – Medium certainty query strategy: Select subset
Na whose elements are ‘in the middle’ of the
ranking queue Q.

8 For each instance x in Na:
9 repeat
10 Submit x to all annotators.
11 Wait until trustability-based agreement level∑

au∈Axl
(Tu + at ) ≥ j is fulfilled.

12 until
13 Remove Na from pool set P = P \Na.
14 Add Na together with obtained labels from the

annotators to training set T = T ∪Na.
15 until there is no data in the pool set predicted as
belonging to the target class OR model training
converges OR manual annotation is not possible OR a
predefined number of iterations is met.

Axl are all annotations in which the instance x was labelled with the
label l; Tu being the user trustability; at being the anti-trustability weight,
determining how strongly Tu should be weighted.

Algorithm 5 gives the pseudocode description of the
novel proposed TDAL algorithm. Step five shows the main
improvement over the DAL algorithm. First of all, the files of
the chosen subset Na are submitted to all annotators, instead
of just to the first u users and can be dynamically removed
from the pool of instances open for user annotations when the
agreement level is reached. Let Axl = {au ∈ Ax : a = l} be
the set of all annotations with label l for sample x; Tu being
the trustability of user u and at the anti-trustability weight,
determining how strongly the user trustability should be
weighted. Each instance is then annotated until the following
condition is fulfilled:∑

au∈Axl

(Tu + at ) ≥ j. (9)

Having collected enough high-quality annotations for one
data instance, it is removed from the pool of instances
that are available for annotation and is added to the train-
ing set together with its final label. This is repeated
until all instances of Na achieve the desired agreement
level.

Although users with low trustability scores have a low
influence on fulfilling this condition, the files are also sub-
mitted to these users in order to give them the opportunity to
improve their trustability score by answering the subsequent
consistency or control questions in an agreement-based man-
ner (cf. Section II-B).

IV. TRUSTABILITY-BASED VOTING METHODS
All previously described AL algorithms acquire single-user
manual annotations in every iteration for all files of the
selected subset. To prevent wrongly labelled data being added
to the training set, it is necessary to determine the final label
of an instance out of all its single user annotations.
In this context, we assume n gathered manual annotations

Ax = {au : user u labelled instance x with label a ∈ L}
for instance x with L being the set of all available labels.
Axl = {au ∈ Ax : a = l} denotes all annotations in
which the instance x was labelled with the label l. Given
these annotations, it is the aim to determine the correct final
label lf for x.
Different annotation models have previously been intro-

duced in the literature to merge the labels collected from
the different annotators, a conventional method being major-
ity voting, which can be seen as the pseudo-standard
model and has been used for a wide range of annotation
tasks [16], [17], [44]. Based on this methodology, differ-
ent expanded models such as ZenCrowd [45], GLAD [46],
CUBAM [47] and CrowdSynth [48] have been introduced.
These methods take into account an annotators area of exper-
tise and/or their interpretation or assumptions that each data
instance has its own inherent difficulty to label. Nevertheless,
given these attributes, these models should not be regarded
as a neutral way of merging different labels. Within this
work, we use majority voting to keep these parameters to a
minimum to fully evaluate the advantages of our proposed
algorithm. Therefore, we integrated the trustability score into
a majority voting method for discrete sets of available labels
and a median voting method for non-discrete sets.

A. MAJORITY VOTING
Majority voting is a widely used method by crowd-
sourcing systems to determine the final label lf for an
instance [16], [17], [44]. The main idea is to select the answer
that has been chosen most often and it can be formalised as
follows:

lf = argmax
l∈L

|Axl |. (10)

B. MEDIAN VOTING
For non-discrete numeric label sets, the median of the differ-
ent labels will be applied to determine the final label. The
advantage of the median compared to the arithmetic mean
is its robustness against extreme values [49]. In a first step
all annotations are sorted according to their label value in a
zero-based (start the indexing at 0) list V . Then, two different
scenarios apply, one for n being odd, and the other one for n
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being even, which determines the final label as follows:
• n is odd: lf = V [b n2c]

• n is even: lf =
V [ n2 ]+V [

n
2−1]

2 .

C. TRUSTABILITY-WEIGHTED MAJORITY VOTING
We propose a novel method making use of a conventional
majority voting approach which incorporates the trustability
of each user in order to achieve a more accurate final label.
A score for each label will be calculated over the votes of
the user in combination with their trustability Tu and an anti-
trustability weight at . A higher weight leads to a less influ-
ence of the trustability on reaching the agreement level and
computing the label. The final label lf is therefore calculated
as follows:

lf = argmax
l∈L

∑
au∈Axl

(Tu + at ). (11)

D. TRUSTABILITY-WEIGHTED MEDIAN VOTING
To reduce the influence of unreliable labels from users with
low trustability, we propose a novel trustability-weighted
median voting method. This method sorts the annotations
according to the obtained value in a list V . Then, for every
index m in the list, the sum of the trustabilities of the annota-
tions V [i], 0 ≤ i < m and the sum of the trustabilities of the
annotations V [j],m+1 ≤ j < n−1 are computed. After that,
the index z is chosen in such a way that the difference of the
two sums is as small as possible. The element at this smallest
index is the final label for this instance. This proposed idea
can be formalised as follows:

lf = V [z], z = argmin
0≤m<n−1

m−1∑
i=0

(TV [i] + at )

)

−

 n−1∑
j=m+1

(TV [j] + at )

. (12)

V. INTELLIGENT CROWDSOURCING PLATFORM
For the planned evaluation, we integrate the proposed
algorithms (cf. Figure 1) into our crowdsourcing platform
iHEARu-PLAYwhich is unique, in that it provides volunteers
a game-like environment in which to perform annotation
tasks [19]. This gamification provides users with an intrinsic
motivation which can improve the quality of the annotations
and can increase the amount of user activity [50]. More
importantly, the platform also has different mechanisms to
ensure the reliability of the labelled data by the players via a
quality control system and methods of identifying the within-
user-agreement (cf. Section II-B) [20]. These scores can be
used in a variety of methods in order to improve the overall
annotation quality.
For the integration of the proposed (T)DAL algo-

rithms into iHEARu-PLAY, we applied a Support-Vector-
Machine (SVM) to train the model and its confidence C
is used to determine the certainty for labelling the data
files (cf. Section II-A). Furthermore, the earlier described
agreement level j for a label l has to be predefined. Whenever

a file reaches the agreement level, it is immediately removed
from the pool set P and the label is computed from the
individual annotations incorporating the user trustability Tu.
In addition, the number of files chosen in each AL iteration
has to be set before starting the process, taking into account
that an extremely low value can result in the algorithm miss-
ing high certainty samples and a high value might cause the
machine to label files with a medium or low certainty. If SSL
is used, the instances with the highest certainty of predicting
the label correctly are determined, removed from the pool
set P , and added together with the predicted label to the
training set T .
After providing all the required initial data, the system

starts with executing the AL algorithm and automatically
offers the chosen files for manual annotation on the plat-
form. Calculating the trustability score of a user after every
annotation, it is feasible to remove the trustability-weighted
agreement level reached file from the offered data for anno-
tators dynamically. The use of this feature minimises the
collection of unneeded annotations, saving time of the user
and researcher.

VI. EXPERIMENTS
The following section will overview the experimental setup
and will provide all key settings required for the evaluation
of the proposed machine learning algorithms.

A. TASKS
We evaluated the proposed TDAL algorithm by conducting
three experiments comparing the novel TDAL with agree-
ment level j ∈ {1, 1.5}, the DAL with j ∈ {2, 3} and the
baseline PL approach. First, we set our baseline and run the
basic version of DAL and TDAL. Then, the experiment is
repeated exploiting DAL and TDAL with an random upsam-
pling step, adding multiple copies of the existing instances to
the classes with a low amount of instances. Finally, we carry
out a further experiment combining SSL with the upsampled
DAL and TDAL approaches.

B. DATASET
For all presented experiments we used the FAU Aibo Emo-
tion Corpus [51], which was part of the INTERSPEECH
2009 Emotion Challenge [52] and contains more than 18k
instances and a total of roughly 8 hours of speech data of
children playing with Sony’s pet robot Aibo. The language
of the recorded children is rich in emotions, because they had
been instructed to control the robot with their voice, whereas
in reality it was controlled in a wizard-of-oz scenario by a
human operator, who was sometimes deliberately disobeyed
the instructions of the children. The data was recorded at
two different schools; the data of one school is used for the
training and pool set and the data of the other school for the
test set to ensure speaker independence and different room
acoustics.

C. ACOUSTIC FEATURES
Using the in iHEARu-PLAY integrated openSMILE
toolkit [53], we automatically extracted the features
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TABLE 1. IS09 acoustic feature set: 16 provided low-level
descriptors(LLD) and 12 Functionals.

according to the INTERSPEECH 2009 Emotion Challenge
feature set [52], which was explicitly designed to have a high
level of robustness for human emotion recognition and has
been used successfully in a range of different kind of emotion
tasks [54]–[56]. This results in a 384-dimensional feature
space based on 16 frame-wise low-level-descriptors and
twelve functionals applied on a per-chunk level (cf. Table 1).

D. EXPERIMENTAL SETUP
Having a mature theoretical foundation [57] and having
been used to set suitable baseline results in earlier similar
work [20], we used the open-source SVM implementations
of LibSVM [58] for the WEKA toolkit [59]. We imple-
mented linear kernel SVMs with a complexity of 0.1 and
with Sequential Minimal Optimization (SMO) to improve the
robustness for high dimensional feature spaces.

Initially, we trained our model with 200 randomly selected
instances, resulting in a training set T with 1.1% of all
data. 53.3% of the data formed the unlabelled pool set P
and 45,6% of the data formed the test set S . In each iteration
of the different algorithms a subset Na is selected according
to the applied strategy with |Na| = 200. This subset is then
submitted to manual annotation within iHEARu-PLAY.
We stopped our learning algorithms (PL, DAL and TDAL)

as soon as they have reached their maximum UAR result.
In addition, we repeat this process in 20 independent runs
in order to reduce the statistical outliers impacting on the
results.

E. EVALUATION
1) ANNOTATIONS
For the performed experiments, we labelled the FAU Aibo
Emotion Corpus with the help of the proposed algorithms
taking into account the trustability of the user. We had twelve
annotators (three female and nine male) between 20 and
27 years old, excluding six users who did not reveal their
age. The resulting mean is 23 years with a standard deviation
of 2.6 years.
The 12 annotators labelled the emotional audio files

into the emotions motherese, touchy, surprised, neutral,
joyful, emphatic, angry, helpless, bored and other as was
originally performed in the INTERSPEECH 2009 Emotion
Challenge [52]. To be able to test different agreement levels
of the annotators, we adapted the proposed binary emotion
classes in [52]; NEG(ative) which includes all negative emo-
tions (angry, touchy, and emphatic), and IDL(e), containing

TABLE 2. Distribution of instances per class. IDL: positive and neutral
emotions, NEG: negative emotions, Dur.: duration of audio files in hours.

all other emotions. Table 2 shows the frequencies of the two
classes NEG and IDL for the pool and test set.

2) BASELINE
The PL algorithm, presented in section III-B, is chosen to
investigate the effectiveness of the AL algorithms. It selects
the instances for manual annotations randomly and there-
fore can be considered as a ‘non-intelligent’ crowdsourcing
approach.

3) MEASUREMENT
To evaluate the performance of the algorithms, the trained
algorithms classify the emotion of the instances in the test
set, and these labels are then compared to the labels which
have been already obtained on iHEARu-PLAY. Following the
recommendations in [52] and [60], we use the Unweighted
Average Recall (UAR) to determine the classification perfor-
mance. The main advantage of the UAR over other metrics
such as the weighted average recall is that in an unbalanced
class scenario the latter is very biased towards performance
in the the biggest class, whereas the UAR tackle this problem
by the inclusion of a weighting factor 1/N , with N being the
number of classes [60].

VII. RESULTS
In the following, we evaluate our proposed TDAL, compar-
ing the performance to the baseline PL algorithm and the
DAL approach (cf. Figure 1). We first perform pure AL
experiments for all algorithms, followed by adding a random
upsampling step into the AL procedure and concluding it with
a third experiment taking a SSL step into account.

A. ACTIVE LEARNING
Firstly, in order to study the effectiveness of the TDAL
method, we compare the pure DAL approach and the pure
TDAL algorithm to a PL approach. Assigning our DAL an
agreement level j = 2, the algorithm stops gathering annota-
tions for every file after it has obtained two labels for one class
and adds it together with this obtained label to the training
set. The TDAL approach, on the other hand, waits until it
has reached a trustability sum of j = 1, which resulted in
this experiment in an average of 1.26 manual annotations per
instance.
The results, as presented in Figure 2(a), demonstrate that

both approaches outperform our achieved PL baseline UAR
of 60.03%; the DAL approach achieved a maximum UAR
of 61.41% while the TDAL algorithm gained a maximum
UAR of 62.66%.
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FIGURE 2. Comparison of the different (Trustability-based) Dynamic
Active Learning algorithms with different agreement levels j = 1, j = 1.5,
and j = 2 and the Passive Learning algorithm as the baseline. Average
UAR and number of manual annotations are measured across
20 independent runs of each algorithm on the FAU AEC database. Results
of pure AL algorithms are shown in (a), of upsampled AL in (b), and of
upsampled AL with SSL in (c).

The maximum UAR, the number of annotations needed to
reach this maximum and the relative annotation cost reduc-
tion of reaching the maximum UAR compared to PL are

given in Table 3. As can be seen, the baseline PL algorithm
collects more than 48 k annotations to achieve this maxi-
mum UAR, while the TDAL stops after only 4 549 manual
labelled instances, resulting in the highest overall relative
annotation cost reduction of 90.57%. This corresponds to
3.58 hours of the total 8 hours of audio data which, when
using TDAL, does not need to be annotated. Inspecting DAL
with j = 3 and TDAL with j = 1.5, it can be seen that the
DAL and TDAL show a similar performance (DAL 61.50%
UAR, TDAL 61.48% UAR), but the TDAL clearly outper-
forms the DAL stopping after 7012 annotations compared
to 11 108 manual labels.

B. UPSAMPLED ACTIVE LEARNING
Next, we performed experiments making use of upsampling
the under represented class before training the model. In gen-
eral, PL as well as DAL and TDAL achieved better per-
formances than without upsampling and both AL methods
clearly outperform PL approach (see Figure 2(b)).
In this testing scenario, the PL approach reached a max-

imum UAR of 72.08%; however, more than 48k annota-
tions had to be collected to obtain this score. As presented
in Table 3, DAL and TDAL considerably reduce the anno-
tation load and therefore outperform the baseline. While the
best DAL (j = 2) algorithm needs 19 014 manual annota-
tions to reach its maximum UAR of 73.2%, the best TDAL
approach (j = 1) gathers only 10 584manual annotations and
reaches even a slightly higher UAR of 73.71%. The process
results in a maximum relative cost reduction compared to PL
of up to 59.77% for the DAL algorithm (j = 2). The TDAL
method (j = 1) outperforms all by achieving the maximum
UAR 73.71%, while saving up to 78.07% of the annotation
effort.

C. UPSAMPLED SEMI-SUPERVISED ACTIVE LEARNING
It has been shown that further improvements in the system
accuracy can be obtained by applying a SSL step after each
AL step [6]. As shown in Figure 2(c), the DAL as well as
the TDAL algorithms clearly outperform the PL method.
All approaches have a steep learning curve in the first iter-
ations and reach their maximum UARs of 72.29% for DAL
(j = 2) and 72.80% for TDAL (j = 1) when every instance
of the pool set has been labelled either by humans or by the
machine. As shown in Table 3, all algorithms in combination
with SSL further reduce the costs of the annotation process.
The DAL algorithm achieves a maximum cost reduction
of 77.48%, while TDAL leads up to even 87.46% total cost
reduction, only needing 6 051 annotations.

D. DISCUSSION OF RESULTS
The previous section overviewed our achieved UAR mea-
sures and annotation cost reductions of the different proposed
learning algorithms. For all approaches, the sequential addi-
tion of manual-labelled instances to an initial training set
(200 per iteration) led to a continuous improvement in classi-
fication performance. Further, for all algorithms theUARfirst
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TABLE 3. Numeric results of twenty independent runs each on the FAU Aibo dataset. j is the agreement level of the algorithms. UARmax denotes the
maximum achieved UAR of the algorithms and their standard deviations Std .Dev . [%]. NAmax. UAR is the number of annotations needed to achieve this
UARmax. CR is the relative cost reduction when achieving the maximum compared to Passive Learning and TR is the duration of the audio files for which
the annotation costs can be saved.

increases steeply with the number of manual annotations and
reaches a plateau at some point.
Most importantly, the observed TDAL curves are shorter

than the DAL ones indicating that the TDALmethod requires
markedly less manual annotations to achieve the same perfor-
mance as DAL. In order to demonstrate this cost reduction,
we compared the costs in terms of the numbers of manual
annotations at the highest UAR achieved by each method
(cf. Table 3). Our findings indicate that the proposed TDAL
clearly achieved the best performances with 73.69% UAR,
consistently and robustly outperforming the other methods.
Comparing our obtained results to those obtained in the
INTERSPEECH 2009 Emotion Challenge [52], the TDAL
approach outperformed the challenge baseline (67.6%UAR),
as well as the winner of the challenge, who obtained the best
result (70.29% UAR) [61]. Moreover, our novel approach,
as well as outperforming these more conventional methods,
also reducesmanual annotation efforts resulting in the highest
annotation cost reduction.
In order to further analyse the obtained results of the

proposed algorithms, we calculated, for each algorithm,
the average of the maximal UARs over the 20 runs (as given
in Table 3), and compared them via a set of a Tukey’s post hoc
tests5 to statistically compare the performances (cf. Table 4).
The statistically analysis confirms our previous observa-

tions and clearly indicates that our proposed TDAL approach
matches with, or significantly outperforms, the other algo-
rithms. Therefore, we can conclude that our proposed
algorithm achieves performances tantamount to the other
algorithms, with the added advantage of considerably lower
annotation costs, thereby saving the associated time andmon-
etary costs.

5In this paper, we report basics for conventional Null Hypothesis
Testing (NHT), but refrain from a full-fledged NHT analysis due to its
inherent problems [62]; instead, we employ effect sizes [63].

TABLE 4. Significance levels for the Tukey’s post hoc test obtained for
Passive Learning (PL), Dynamic Active Learning (DAL) with agreement
level j = 2 and j = 3, and the trustability-based Dynamic Active
Learning (TDAL) with j = 1 and j = 1.5. Brightest grey indicates effect
size d > 2, bright grey d < 2, dark grey d < 1, and black d < 0.

VIII. CONCLUSION AND OUTLOOK
Motivated by a scarcity of annotated data, active learning
strategies have been investigated to reduce the cost of gath-
ering labels for databases. In this regard, we introduced
the novel Trustability-based Dynamic Active Learning algo-
rithm (TDAL), which incorporates an annotator trustability
into a Dynamic Active Learning (DAL) approach. Further-
more, leveraging the advantages of crowdsourcing to collect
annotations in a fast and cost-effective manner, we inte-
grated the proposed algorithm into the crowdsourcing plat-
form iHEARu-PLAY [19].
To evaluate our algorithm, we performed emotion recog-

nition studies on the FAU Aibo database [51]. Using
a Support-Vector-Machine as the classifier, a passive
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learning (PL) approach, acting as a baseline, required more
than 48k annotations to achieve a maximumUAR of 60.03%.
In comparison, the DAL approach achieved a relative anno-
tation cost reduction of up to 84.56% while achieving a
UAR of 61.41%. Moreover, our proposed TDAL saved up
to 90.57% labelling efforts, stopping the annotation process
after only 4.5 k collected annotations. Further, the TDAL
also outperformed the baseline, achieving a maximum UAR
of 62.66%.

Further experiments were performed making use of
upsampling in each AL step in order to obtain an equal
class distribution. As a result, the DAL method achieved
a lower relative annotation cost reduction of 59.77%. The
TDAL algorithm, however, achieved a greater cost reduction
of 78.07%, while producing a higher maximum classification
performance with 73.71% UAR.
Finally, a Semi-Supervised-Learning step was introduced

after each Active Learning step. This approach achieved
better classifier performances, but at a smaller cost reduc-
tion. Via a combination of upsampling and Semi-Supervised
Learning, the DAL algorithm achieved a relative cost reduc-
tion of 77.48%. The TDAL approach was able to reduce the
costs to 87.46%. Again, the TDAL approach outperformed
the other algorithms achieving a maximum UAR of 72.80%,
while the DAL and PL achieved 72.29% UAR and 72.08%
respectively.
The performed experiments indicate that the proposed

TDAL algorithm offers clear advantages over the PL method
and the conventional DAL approach. While achieving better
performances, the main aspect is the effective way of con-
siderably reducing the number of needed annotations and
therefore the need for manual labellers, as well as the asso-
ciate monetary costs. The caveat has to be made that this
is a pilot study, conducted on a limited number of datasets
and it is applied to the one task of emotion recognition.
Therefore, future work will focus on evaluating the TDAL
on more databases, as well on evaluating the TDAL approach
with even more diverse user trustability scores to demonstrate
its robustness and performance improvements. Furthermore,
an additional experiment on a task with a continuous label
value range can be conducted to investigate the usability of
the trustability-weighted median voting method compared to
the conventional median.
Summarising the herein presented work, the obtained

results lend further weight to the assumption that the TDAL
algorithm is an effective approach combining Active Learn-
ing and the annotator trustability and can therefore be used
in crowdsourcing platforms in order to reduce the annotation
costs for emotion recognition tasks while at the same time
improving the classification results.
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