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Negative values of the Casimir entropy occur quite frequently at low temperatures in arrangements of metallic
objects. The physical reason lies either in the dissipative nature of the metals as is the case for the plane-plane
geometry or in the geometric form of the objects involved. Examples for the latter are the sphere-plane and the
sphere-sphere geometry, where negative Casimir entropies can occur already for perfect metal objects. After
appropriately scaling out the size of the objects, negative Casimir entropies of geometric origin are particularly
pronounced in the limit of large distances between the objects. We analyze this limit in terms of the different
scattering channels and demonstrate how the negativity of the Casimir entropy is related to the polarization
mixing arising in the scattering process. If all involved objects have a finite zero-frequency conductivity, the
channels involving transverse electric modes are suppressed and the Casimir entropy within the large-distance

limit is found to be positive.
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I. INTRODUCTION

In 1948 Casimir showed that a force can be caused by
quantum fluctuations of the electromagnetic field [1]. He de-
rived his formula for the Casimir force between two perfectly
reflecting mirrors at zero temperature of the electromagnetic
field. His formula was generalized to finite temperatures
later [2,3]. However, already a few years after Casimir’s
paper the contribution of thermal photons to the Casimir force
between dielectric or metallic plates was calculated in two
succeeding papers by Lifshitz [4] and Dzyaloshinskii, Lifshitz,
and Pitaevski [5]. Today an active debate still goes on about
the appropriate model for the optical response of the metal
surfaces employed in experiments (see, e.g., Refs. [6—11]).
On the experimental side, measurements of the Casimir force
represent a considerable challenge, and significant effort has
been devoted to obtain reliable force data [12-15]. While
the authors of Refs. [12,15] found the dissipation-less plasma
model to yield the best description, the authors of Refs. [13,14]
conclude in favor of the dissipative Drude model.

The Casimir force at finite temperatures contains con-
tributions from quantum fluctuations as well as thermal
photons. In contrast, the Casimir entropy is a thermodynamic
quantity which allows us to focus on the contribution of
the thermal photons. It is important to note that, like the
Casimir force, the Casimir entropy accounts only for the
contribution arising from the interaction between objects.
Entropy contributions from the respective isolated objects
are ignored. As a consequence, the Casimir entropy does
not need to be positive. The possibility of negative entropies
related to the Casimir interaction between two solid bodies
has stimulated considerable interest during the last decade
[16-30].
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A negative Casimir entropy has first been theoretically
found for two plates modeled by Drude-type metals [16].
Its origin lies in the suppression of the reflectivity of the
transverse electric mode at low frequencies due to a finite
zero-frequency conductivity [17]. If the conductivity diverges
in the low-frequency limit, as is the case for perfect metals
or metals within the plasma model, the entropy in the
plane-plane configuration will remain positive for all temper-
atures [18,20]. The existence of a negative Casimir entropy in
this geometry is therefore related to the dissipation inside the
metal.

However, dissipation is not the only mechanism giving
rise to negative Casimir entropies. For the Casimir-Polder
interaction between an atom and a perfect-metal plate, negative
values of the entropy were found at low temperatures [22].
Studies of the sphere-plane configuration [26] and the sphere-
sphere configuration [30] for perfect reflectors demonstrated
that negative Casimir entropies can be of purely geometric
origin. Considering the large-distance limit, we shall see that
in these geometries the Casimir entropy can become negative
for perfect metals, but it remains positive if both objects
involved are described by the Drude model, implying a finite
zero-frequency conductivity.

Another indication of a negative Casimir entropy is given
by the nonmonotonic behavior of the thermal Casimir force.
Such behavior has been found in the electromagnetic case in
the sphere-plane geometry [28] as well as for a scalar field
satisfying Dirichlet boundary conditions in the sphere-plane
and the cylinder-plane geometries [29].

In the present paper we will study in more detail the
geometrical origin of negative Casimir entropies. Before doing
so, we emphasize that negative values of the Casimir entropy
are not in conflict with well-established thermodynamic
principles. While entropies should be positive, the Casimir
entropy actually is a difference of entropies and can therefore
well be negative [25]. However, even the Casimir entropy has
to tend towards zero in the zero-temperature limit. This is

©2015 American Physical Society


https://core.ac.uk/display/212321316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.91.033203

GERT-LUDWIG INGOLD et al.

indeed the case for the Drude model for any nonvanishing
value of the zero-frequency conductivity [19,24].

Furthermore, close inspection reveals that strictly positive
Casimir entropies over the whole temperature range are
rather the exception than the rule. In order to explore the
geometric origin of the negative Casimir entropy, a recent
study considered the retarded Casimir-Polder interaction
between a nanoobject and a plane or between two nanoob-
jects [31]. The properties of the nanoobjects were described
in terms of their electric and magnetic polarizabilities. By
allowing also for anisotropic polarizabilities, a variety of
scenarios could be generated, thus providing insight into
the conditions under which negative Casimir entropies can
occur.

Here we start from a scattering approach for the electro-
magnetic field and emphasize the contributions of different
scattering channels. First, we observe that the negativity of the
Casimir entropy becomes most pronounced when the distance
between sphere and plane or between the two spheres is large
compared to the radius of the spheres. This observation holds
despite the fact that the entropy scales with the third power
of the radius for small radii so that its overall value will be
strongly suppressed. As a consequence, the large-distance limit
is appropriate to identify the physical mechanism responsible
for the negative Casimir entropy. In particular, this limit
permits us to restrict the reflection at the spheres to the dipole
modes, £ = 1.

The large-distance limit considerably simplifies the expres-
sion for the Casimir free energy within the scattering approach
as we shall see in Sec. III. First, the values of the quantum
number m of the z component of the angular momentum, which
is conserved for geometries of interest here, are constrained
to [m| =0 and 1. Second, it is sufficient to account for one
single scattering round trip between the two objects involved.
In total, we are left with three distinct types of channels.
Two of these channels leave the polarization type unchanged
and are distinguished only by the value of |m|. The third
channel involves a change of polarization and occurs only for
|m| = 1.

The most relevant channel for the negative Casimir entropy
is the last one. As we shall see, this scattering channel is
characterized by a Casimir free energy which increases mono-
tonically with temperature. Its contribution to the Casimir
entropy vanishes at zero temperature as well as in the
high-temperature limit, but is negative for any temperatures
in between. This result points towards the importance of
polarization mixing in the appearance of a negative Casimir
entropy.

The scenarios of different geometries and zero-frequency
conductivity sketched in the beginning of this section fit
nicely into this picture. In the plane-plane configuration, the
polarization is conserved at each reflection. Therefore, the
negative Casimir entropy appearing for Drude-type damping
in that case cannot be of geometric origin. On the other hand,
for the sphere-plane and sphere-sphere configurations, Drude-
type metals will suppress polarization mixing. Therefore, it
is to be expected that at least one of the two scatterers
should have a divergent zero-frequency conductivity in order
to allow for a negative Casimir entropy in the large-distance
limit.
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FIG. 1. (a) Plane-sphere and (b) sphere-sphere geometry with the
geometric parametrization used in this paper. The surface-to-surface
distance is always referred to as L, while £ denotes the distance
between the plane and the center of the sphere, and d denotes the
distance between the centers of the spheres.

II. NEGATIVE CASIMIR ENTROPY IN THE
SPHERE-PLANE AND THE SPHERE-SPHERE
GEOMETRIES

In our analysis of the negative Casimir entropy, we will
concentrate on the sphere-plane configuration and the sphere-
sphere configuration depicted in Figs. 1(a) and 1(b), respec-
tively, together with the corresponding geometric parameters.
The distance between the surfaces of the two objects will
always be denoted by L. For the plane-sphere geometry,
the natural length scale within our analysis will turn out
to be £L =L + R, which measures the distance between
the surface of the plane and the center of the sphere of
radius R. In the sphere-sphere geometry, the natural length
scale d = L + R; + R, refers to the distance between the
centers of the two spheres with radii R; and R;.

Whenever we refer to the two geometries at the same time,
we will denote the natural length scales as D. For example, as
a dimensionless temperature we will use

2w Dk B T

YT e
which implies v = 2w Lkp T /hic in the plane-sphere geometry
and v = 2w dkgT /hc in the sphere-sphere geometry. Here kj,
fi, and ¢ are the Boltzmann constant, the Planck constant,
and the speed of light, respectively. In this paper, we make
use of a formalism based on imaginary frequencies &. The
corresponding dimensionless imaginary frequency is defined
by

ey
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The negative Casimir entropy for the sphere-plane geome-
try with perfect metals is shown in Fig. 2 as a function of the
ratio of the distance L between the sphere’s surface and the
plane to the radius R of the sphere and of the temperature 7.
The Casimir entropy vanishes along the dashed line. Below
this line, the Casimir entropy is negative while it is positive
above. The gray area indicates parameter regions where the
Casimir entropy has not been evaluated.

According to Fig. 2, the Casimir entropy becomes min-
imal at L/R ~ 0.27 and 27 LkgT /hc ~ 0.93. At a fixed
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FIG. 2. The Casimir entropy in the sphere-plane geometry is
depicted for perfect metals as a function of the distance L between
sphere and plane and the temperature 7. The entropy vanishes along
the dashed line. Below this line, the entropy is negative and changes
in steps of 0.0005. The minimum of the entropy is marked by a dot.
Above the dashed line, the entropy is positive and changes in steps of
0.001. No data have been calculated in the gray region.

temperature, the Casimir entropy becomes positive if the radius
R is sufficiently large. In contrast, for small radii, the Casimir
entropy will always be negative for temperatures below a
threshold value to be specified in the discussion of the free
energy (4); see below.

It would be expected that the sphere-plane configuration can
be obtained from the sphere-sphere configuration by letting the
radius of one of the two spheres go to infinity. To illustrate this
transition, we show in Fig. 3 the position of the minimum of
the Casimir entropy for perfect metals as a function of the
geometric parameters and the temperature for two spheres
with radii R. and R. for the smaller and larger sphere,
respectively. For the filled circles, the corresponding values
of the ratio R. /R_ are indicated, ranging from R. /R_ =1
for spheres of equal radius to the extreme case R./R. = 00
for which the position of the entropy minimum for the plane-
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FIG. 3. The transition from perfect-metal sphere-sphere to
sphere-plane configurations is illustrated by the position of the
minimum of the entropy as a function of the surface-to-surface
distance L and the temperature 7. The points refer to different ratios
of the radii R. and R_ of the larger and smaller sphere, respectively.
For the filled circles, the ratio of radii is indicated in the plot. The
point marked by oo corresponds to the position of the minimum of
the Casimir entropy in Fig. 2.
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FIG. 4. The Casimir entropy in the sphere-plane geometry multi-
plied by a factor (£/R)? is displayed for perfect metals as a function
of the inverse of the distance £ between the sphere’s center and the
plane and the temperature 7. The entropy vanishes along the dashed
line. Below this line, the entropy is negative and changes in steps of
0.00125. Above the dashed line, the entropy is positive and changes
in steps of 0.0025. No data have been calculated in the gray region.

sphere geometry is shown. The data clearly indicate a smooth
transition between the sphere-sphere and the plane-sphere
configuration.

As far as the physical origin of the negative Casimir
entropy is concerned, the presentation of the data in Fig. 2
is somewhat misleading because for small sphere radius, the
entropy decreases with the volume of the sphere. It is thus
appropriate to scale the entropy with (£/R)3. The result is
depicted in Fig. 4, where the dashed line again indicates a
vanishing Casimir entropy and negative values of the Casimir
entropy are found below the dashed line. Note that in this plot,
in contrast to Fig. 2, small sphere radii are on the left side. The
minimum of the scaled Casimir entropy lies at R = 0. We can
thus conclude that the large-distance limit L,L > R is well
suited for an analysis of the negative Casimir entropy.

By means of the thermodynamic relation

aF
S=-—, 3
3T 3)
the Casimir entropy S for the sphere-plane configuration with
perfect metals in the large-distance limit can easily be obtained
from the expression for the Casimir free energy F in this
limit [26]
3hc R
F = —— —7[8(v) cosh(v) + g(v) + g(v)* cosh(v)],  (4)
167 £*

where we introduced the abbreviation

g(v) = (&)

sinh(v)’
Taking the derivative with respect to temperature, one finds
negative values for the Casimir entropy for temperatures
satisfying 0 < v < 1.486 in agreement with the data shown in
Fig. 4 for small values of R. In order to obtain information
about the physical origin of the negative Casimir entropy,
in Sec. IVA we will decompose the free energy (4) and
the entropy derived from it into contributions arising from
different scattering channels.
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FIG. 5. The Casimir entropy in the sphere-sphere geometry
multiplied with (d/R)® is depicted for perfect metals as a function of
the inverse of the distance d between the centers of the spheres and
of the temperature 7' for spheres of equal radii, Ry = R, = R. The
entropy vanishes along the dashed line. Inside the region bounded
by the dashed line, the entropy is negative and changes in steps of
0.025. Outside of the dashed line, the entropy is positive and changes
in steps of 0.005. The density of the contour lines has been decreased
at higher temperatures to improve the clarity of the plot.

For the sphere-sphere geometry, the region of negative
Casimir entropy for perfect-metal spheres of equal radii is
displayed in Fig. 5, where the entropy is scaled by (d/R)°.
The dashed line separates the regions of negative and positive
Casimir entropies with negative values appearing inside the
region delimited by the dashed line. As an obvious difference
to the sphere-plane geometry shown in Fig. 4 we observe that
while in the latter case negative values of the Casimir entropy
are found down to the lowest temperatures, this is not the
case in the sphere-sphere geometry. This fact has already been
noted in Ref. [30]. Furthermore, the region of negative Casimir
entropies ends before R/d reaches its maximum value of 1/2.

Despite these differences, Fig. 5 suggests that again
interesting insights into the physics of the negative Casimir
entropy can be obtained from the large-distance limit d > R.
The free energy for perfect-metal spheres in this limit is given
by [30]

he RS

- _ = 2
F = 16m &7 {30g(v) cosh(v) + 30g(v)

+29g(v)’ cosh(v) + 9g(v)*[2 cosh(v)* + 1]
+9g(v)° cosh(v)[cosh(v)? + 21}, (6)
where g(v) was defined in (5). A decomposition of this result

and the corresponding entropy in terms of the scattering
channels will be carried out in Sec. IV B.

III. LARGE-DISTANCE APPROXIMATION

Within the scattering approach, the Casimir free energy can
be expressed as

F=2kpT Y 'Y 'Infdetl]l = M™E. (D)

n=0 m=0

The first sum runs over the Matsubara frequencies &, =
2nn/hB with 8 = 1/kpT. The prime indicates that only
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one half of the n = 0 term should be taken. The geometries
depicted in Fig. 1 are symmetric under rotations around the
Z axis, thus allowing us to decompose the scattering problem
into subspaces of fixed eigenvalues m of the z component of
the angular momentum. Since the sign of m is irrelevant for
the scattering process, we sum only over positive values of m,
leading to a prefactor 2 except for m = 0 as again indicated
by a prime.

The matrix M"™(&,) describes a roundtrip scattering
process between the two scattering objects at imaginary
frequency i &, in the subspace of the z component of the angular
momentum characterized by m. The round-trip scattering
operator

MO = R TRY T ®

contains four building blocks, namely, the translation operator
T, from the reference frame of object 1 to that of object 2,
the reflection operator R, on object 2, the reverse translation
operator 715, and the reflection operator R | on object 1. While
keeping the quantum number m unchanged, these operators
will in general modify the other parameters of the scattered
modes like their polarization and, for spherical waves, their
angular momentum quantum number £ or, for plane waves,
their wave vector k.

We argued in the previous section that the limit of large
distances between the scattering objects is appropriate to
analyze the origin of negative Casimir entropies. To be specific,
we assume that the distance D is much larger than the sphere
radius R. In the case of two spheres, R refers to the larger
of the two radii. As we shall see now, this limit allows us
to quantify the contribution of each scattering channel to the
Casimir entropy.

Since the matrix elements of the translation operators for
imaginary frequencies decay exponentially with D, the highest
relevant frequencies are of the order of ¢/D. The reflection
on a sphere will then contribute a factor (R/D)**! where ¢
denotes the order of the multipole wave scattered at the sphere.
As a consequence, we may restrict the scattering at a sphere to
£ = 1. In the large-distance limit, the Casimir entropy for the
sphere-plane geometry and the sphere-sphere geometry thus
scales with (R/£)? and (R/d)%, respectively. These factors are
at the origin of the scaling employed in the previous section.

Furthermore, in the large-distance limit the matrix elements
of the round-trip operator are very small, and we may expand
the logarithm in (7). In view of tr(A) = log[det (exp(A))] with
tr denoting the trace, we then obtain

F=—kgTy 'y [MPpEpp +2MPpED], )

n=0 PP’

where P and P’ denote the polarizations on the two scattering
objects. Even though we restrict our considerations to £ = 1
on each sphere, the translation operators 7 present in the
matrix elements /\/l(,z'f},, implicitly give rise to a sum over
other multipole moments £’ or, in the sphere-plane geometry,
to an integral over the projection k| of the wave vector onto
the plane.

The polarizations P and P’ in (9) can be either transverse
electric (TE) or transverse magnetic (TM) and correspond to
the mode polarizations on the two scatterers. Note that on a
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sphere, the TE and TM polarizations are sometimes referred
to as H and E polarizations, respectively. While, in general,
the polarization may change in the course of the scattering
process, this is not the case for m = 0. In this case, for a TE
(TM) mode on the sphere the electric (magnetic) field will have
only a component in the plane perpendicular to the z direction.
As a consequence, the expansion of this mode on the other
sphere or the plane will contain exclusively TE (TM) modes
and no polarization change ensues.

We thus have to account for three essentially different
scattering channels. The channels where the polarization is
conserved contribute for m = 0 and m = 1. A third channel
involves a change of polarization and is restricted to m = 1.
The latter channel is of particular interest for our discussion
for the following reason.

Focusing on the contribution of the translation operator,
it is clear that in the absence of a shift, the polarization of
the mode cannot change. In (9), for dimensional reasons,
the shift can appear only in the combination &,D/c. As a
consequence, the n = 0 term will vanish if the polarizations P
and P’ differ, implying in turn that the free energy contribution
of this channel will vanish at high temperatures. Since the
contribution to the Casimir free energy of the polarization-
changing channel at zero temperature is negative and turns out
to be monotonically increasing, its contribution to the Casimir
entropy in view of (3) will always be negative.

While the differences between the scattering channels
discussed so far were mainly due to the translation operators
T, the reflection properties of the sphere(s) offer an interesting
way to select channels. The reflection at a perfectly conducting
(PC) sphere of radius R to leading order in § R /c is dominated
by the Mie coefficients with £ = 1. For the TM mode, the Mie
coefficient is then given by

aE) = —%(%R)g + 0. (10)

and for the TE mode it reads
B = %(%Rf + 06 (11
We thus have alfc = —2b]1)C, leading to simple numerical rela-

tions between the contributions of the polarization-conserving
scattering channels.

In contrast, for spheres made of a metal described by the
Drude model (D), one finds

2/ER\’>
a?<5)=—§(€7) +0@EY, (12)

while bP(E )is of order (£ R /c)* and therefore negligible within
the large-distance approximation. Switching from a perfectly
conducting sphere to a Drude metal sphere allows us to
suppress the reflection of TE modes on the sphere. In particular,
the polarization-changing channel will become irrelevant as
we will explain in more detail in Sec. V.

These general considerations and their consequences for
the Casimir entropy will be worked out more explicitly in the
following section dealing with the specific geometries shown
in Fig. 1.
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IV. CASIMIR FREE ENERGY AND ENTROPY FOR
PERFECT CONDUCTORS

A. Sphere-plane geometry

Within the large-distance approximation, we only need the
matrix elements of the round-trip operator for m = 0 and 1 to
obtain the free energy by means of (9). We then can make use
of (3) to obtain the entropy. For the sphere-plane geometry,
the matrix element of the round-trip operator can easily be
obtained from the expressions given in Ref. [26]. For m = 0,
we obtain

1(RY’ . .
Mt v = Z(Z) (1+25)exp(-25)  (13)

and
M(TOE),TE = %M%[,TM (14)

with the dimensionless frequency & introduced in (2).
For m = 1, the matrix elements for the round trips where
polarization is conserved are

1/RY - -
My i = §<Z) (1428 +28)exp(-2) (1)

and
(1) (1)
MTE,TE = %MTM,TM- (16)

For round trips involving a change of polarization, one finds

M= (2 Sézex (—28) (17)
™TE = 2\ 7 p
and
M(TIIZ:,TM = %MSFIK/ITE (18)

Here the first subscript of the round-trip operator M refers to
the polarization on the sphere while the second subscript indi-
cates the polarization on the plane. The matrix elements (17)
and (18) for scattering processes involving a change of
polarization vanish in the limit of vanishing frequency & as
discussed in the previous section.

Making use of (9), we can decompose the Casimir free
energy for perfect metal sphere and plane into contributions
from the different scattering channels according to

he [ R\’
F = _m<z> [ T(g/)I.TM"‘fT((Iz:),TE

M M M M
+ fTM.TM + fTE,TE + fTM,TE + fTE,TM]' (19)

Evaluating the corresponding Matsubara sums, we find for
m = 0 from (13)

”l(“il)l,TM = 3[g(v) cosh(v) + g(v)*]. (20)

Here we have made use of the dimensionless temperature (1)
and the function g defined in (5). For m = 1, we obtain
from (15) and (17)

= s[g(v)cosh(v) + g(1)? + g(v)* cosh(v)]  (21)
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and

e = 38(v)° cosh(v), (22)

respectively. The remaining three contributions in (19) are
related to the expressions just given by a factor of 1/2
according to the relations (14), (16), and (18). Summing up
all terms, we recover the free energy (4) for sphere and plane
made of perfect conductors obtained earlier in Ref. [26]. The
decomposition in terms of the different scattering channels
is found to be in agreement with the expressions obtained
in Ref. [31]. In order to make the connection, one sets the
electric and magnetic polarizability equal to R® and —R?/2,
respectively. For vanishing polarizability in the transverse
direction, one finds the contribution for m = 0, while an
isotropic polarizability yields the sum of the contributions from
m = 0and 1.

It is now straightforward to obtain the contributions of the
various scattering channels to the Casimir entropy. Expressing
the Casimir entropy in terms of a rescaled Casimir entropy s
according to

R\3
S =kg (Z) s, (23)

the definition of the entropy (3) turns into

_u
s = " (24)
We then obtain from (20), (21), and (22)

o _ 1 2 3
STM.TM = 8—U[g(v) cosh(v) + g(v)” — 2g(v)” cosh(v)], (25)

1
St = 8_v{g(v) cosh(v) + g(v)* + g(v)* cosh(v)

— gW)*[2cosh®(v) + 11}, (26)

M~ L3000 coshr) — g(v)*[2 cosh? 1. 7
stw e = 5o (380 cosh(v) — g(v)*[2cosh’(w) + 11). 27)

The remaining three contributions to the Casimir entropy can
be obtained by simple multiplication with a factor 1/2 as before
for the free energy and the matrix elements of the round-trip
operator.

In Fig. 6 the temperature dependence of the contribu-
tions (25), (26), and (27) from the channels with TM polariza-
tion on the sphere to the Casimir entropy are shown. Among
the polarization-conserving channels, the m = 0 contribution
is positive for all temperatures. The m = 1 contribution, while
being slightly negative at sufficiently small temperatures, in
combination with the m = 0 contribution will still always
lead to positive values of the entropy. In order to arrive at
anegative entropy, one needs the polarization-changing mode.
In fact, S’(Fll\)/[,TE is negative for all temperatures as was already
conjectured in Sec. III.

The negative contribution of the polarization-changing
channel is indeed sufficiently large to render the sum of all
contributions negative. This can clearly be seen from the
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FIG. 6. (Color online) The contributions (25), (26), and (27) to
the Casimir entropy in the plane-sphere geometry arising from the
scattering channels with TM polarization on the sphere are shown
as a function of the dimensionless temperature. While S%[IM is

always positive and S;'II\>/I,TM becomes only slightly negative for small
temperatures, S’i"ll\jl.TE is negative for all temperatures.

low-temperature expansions of the entropies (25)—(27)

st = 2% — 52s0° + 00), (28)
St = — oV + v’ + 00, (29)
stute = —50v° + v’ + 00, (30)

Taking all six channels between perfect conductor plane
and sphere into account, we obtain for the low-temperature
expansion of the Casimir entropy

s=—30" + 20 + 00). (31)

In the large-distance limit, we thus obtain negative values for
the Casimir entropy at sufficiently low temperatures. In the
limit of vanishing temperature, the Casimir entropy goes to
zero in agreement with the third law of thermodynamics.

B. Sphere-sphere geometry

We now turn to the discussion of the Casimir free energy
and entropy of the sphere-sphere configuration depicted in
Fig. 1(b). In order to determine the Casimir free energy in the
limit of large distance, d > R;,R,, from the expression (9),
we first need to determine the matrix elements /\/l(,',")P, of the
round-trip operator with m = 0 and 1. ’

As discussed in Sec. III, the large-distance approximation
implies that on the spheres, we can restrict the field modes
to dipole spherical waves, £ = 1. For the spheres, the matrix
elements of the reflection operators are thus simply given by
the Mie coefficients (10) and (11), and we have

2/ R\’
R(m) N 3 32
TM,TM 3<d> § (32)
and
R = 1 (2 353 (33)
TE,TE — 3 d )
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where R is the sphere radius and £ is the dimensionless
imaginary frequency (2). In contrast to the reflection on a plane
in the preceding subsection, the polarization of a spherical
wave remains unchanged by the reflection at a sphere.

However, the translation operator for spherical waves with
wave vector k from the center of one sphere to the center
of the other sphere leads to a mixing of polarizations. The
general expressions for the matrix elements of the translation
operator [32] can be simplified if the translation is performed
along the z axis [33,34] as is the case in the setup displayed
in Fig. 1(b). Within the large-distance approximation, we find
for the channels conserving the polarization

m m3 P 1¢p! /
T = (=1 Z S i@+ D1l + 1)
¢'=0,2

11 /1 1 2\,
x(O 0 O)(m o 0>h€,(kd). (34)

For a change of polarization, P # P’, the matrix element
vanishes for m = 0 in agreement with the argument given
in Sec. 111, while for m = 1 we have

3 .
M 2. g
Tpp = :I:zlkdeéozl 2 +1)

I 1 ¢\/[(1 1 2\, 0
X<0 0 0)(1 _q O)h” (kd). (35)

The first two factors in the second lines of (34) and (35) denote
Wigner 3 symbols, while h?) is a spherical Bessel function
of the third kind. The overall sign in (35) is positive or negative
depending on whether the translation is performed in positive
or negative z direction, respectively.

Employing the relation

A PGix) = —%r‘ke(x) (36)

between the spherical Bessel function of the third kind and the
modified spherical Bessel function k¢, it is straightforward
to express the matrix elements of the translation operator
in imaginary frequency & needed in order to evaluate the
Matsubara sum (9). With the explicit expressions for the
modified spherical Bessel functions

7 exp(—x)

ko(x) = 2 P

’

37
(1 3 3
ka(x) = E()_c + 2 + ?> exp(—x),

the matrix elements needed in the following are then found to
read

1 -

+ = ) exp(—§) (38)

1
7% =35 + 3

&
and

3/1 1 1 £
wh=s(Eraty)owcd  ®
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for P = TE,TM, while for differing polarizations P and P’
one finds

3/1 1 -
T = iz(g + E) exp(—£). (40)
In the last equation, the sign depends on the direction of
translation with respect to the z axis as discussed in the context
of (35).

We note that even though these matrix elements diverge
for vanishing frequency &, their products with the matrix
elements (32) and (33) of the reflection operator remain finite.
While the combination of the two matrix elements yields a
nonzero value if the polarization is conserved, the product of
the matrix element (40) for changing polarization with one of
the reflection matrix elements (32) and (33) goes to zero for
vanishing frequency &.

As a consequence, the contribution of the polarization-
changing channels to the Casimir free energy and entropy
vanishes at high temperatures where the Matsubara sum (9) is
dominated by the n = 0 term. Already at this point, we can
therefore expect the same qualitative temperature dependence
of the contributions of the polarization-changing channels as in
the plane-sphere geometry. These channels will thus play the
same crucial role for an overall negative Casimir entropy also
for the sphere-sphere geometry. The difference between the
polarization-conserving and polarization-changing channels
can be traced back to an extra factor kd appearing in the
front of the right-hand side of (35) compared to (34). This
factor ensures that for vanishing translation, d = 0, no change
of polarization occurs as was argued in Sec. III.

With the matrix elements listed above, it is straightforward
to evaluate the contributions of the various channels to the
Casimir free energy by means of (8) and (9). We decompose
the Casimir free energy into the contributions from the various
scattering channels

hC R1R2 3 (0) (0)
F = _ﬁ<7> [fTM,TM + fTE,TE

€] (1 (1 (1
+ fTM,TM + fTE,TE + fTM,TE + fTE,TM]' 4D

The contributions to (41) arising from polarization-conserving
channels are given by

Fismm = 28(v) cosh(v) + 2g(v)* + g(v)* cosh(v)  (42)
and
1w = 3{28() cosh(v) + 2g(1)? + 3g(v)* cosh(v)
+ g()*[2 cosh®(v) + 1]
+ g(v)* cosh(v)[cosh?(v) + 2]} (43)
together with

m) __ 1 p(m)
TE,TE — 4JTM,TM"* (44)

The contributions of the polarization-changing channels are
I 1 3 4 2
TM.TE = 718(v)” cosh(v) + g(v)*[2 cosh”(v) + 1]
+ g(v)® cosh(v)[cosh?*(v) + 2]} (45)
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and
(1) (1)
TE,TM — JTM,TE" (46)

In these results, we make use of the dimensionless tempera-
ture (1) and the function g defined in (5). The total Casimir
free energy obtained from these expressions agrees with the
result (6) and was already given in Ref. [30]. As in the
sphere-plane geometry, the contributions from the different
scattering channels are in agreement with the results presented
in Ref. [31] if the identifications explained above are made.
In the high-temperature limit, v — oo, the polarization-
conserving channels yield a contribution to the Casimir free
energy linear in temperature while the contributions of the
polarization-changing channels vanish. On the other hand, all
channels give rise to a negative Casimir free energy at zero
temperature. As a consequence, the contribution to the Casimir
entropy arising from the polarization-changing channels is
negative for all temperatures as already expected above on
the basis of the matrix elements of the translation operator.
From the expressions listed for the contributions to the
Casimir free energy, the corresponding contributions to the
Casimir entropy can be obtained from its definition (3).
Introducing a rescaled Casimir entropy s by means of

RiR\}
S =kg s, 47)

42
one finds together with the abbreviation (5)

0 =0 h(v) + 2g(v)* — g(v)* cosh
STM.TM = 1){ g(v) cosh(v) + 2g(v) g(v)? cosh(v)

— g()*[2cosh?(v) + 11}
= 4S<T<;;TE, (48)

1
Sturm = 55 (28() cosh(v) +28(v)° + 5g(v)’ cosh(v)

+ g(v)4[2 cosh’(v) + 1]
+ g(v)° cosh(v)[cosh?(v) + 2]
— g(W)°[2cosh*(v) + 11 cosh?(v) + 2]}
= 45%;}57 (49)

s = i{3 ()’ cosh(v) + 3g(v)*[2 cosh®(v) + 1]
T™MTE = 7198 8

+ g(v)5 cosh(v)[coshz(v) + 2]
— g(W)°[2cosh*(v) + 11 cosh?(v) + 2]}

= S\E - (50)

The temperature dependence of the contributions (48)—(50)
to the Casimir entropy is shown in Fig. 7. At first sight, the
curves resemble those presented in Fig. 6. In both cases, the
contribution for m = 0 is positive for all temperatures, while
the polarization-conserving contribution for m =1 starts
out negative and becomes positive at higher temperatures.
The polarization-changing channels always yield a negative
contribution to the Casimir entropy. A closer look reveals that,
in contrast to the plane-sphere configuration, the negative con-
tribution of the polarization-conserving channel with m =1

PHYSICAL REVIEW E 91, 033203 (2015)
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FIG. 7. (Color online) The contributions (48), (49), and (50) to
the Casimir entropy of a sphere-sphere configuration are depicted as
a function of the dimensionless temperature. While S%%.TM is positive
for all temperatures and S(lex)a‘m can be positive or negative depending
on temperature, S%\),[_TE always yields a negative contribution to
the Casimir entropy. The dashed line represents the sum of the
contributions of the two polarization-conserving transverse magnetic
channels.

at low temperatures is much bigger than the contribution of
the polarization-changing channel. However, as the dashed
curve in Fig. 7 shows, the sum of the Casimir entropies of
the polarization-conserving channels remains positive at all
temperatures.

In order to analyze in more detail the negative contributions
to the Casimir entropy, we consider the low-temperature
expansions of the expressions (48)—(50) which are given by

0
Stura = 35V a0’ — 90T+ 007, (5D
1 4.3, 2.5 68 .7 9
S = —35v + 5V = G5y + 0070, (52)
M 15 274 900 53
SttE =~V — sy + O (53)

The dominant low-temperature contributions of order 7 arise
in the polarization-conserving channels. However, they cancel
each other. In view of the fact that according to (31), the
Casimir entropy in the plane-sphere configuration contains a
leading term of order T3, this may come as a surprise. Indeed,
a leading cubic term in the temperature can be obtained for
anisotropic objects [31]. For the isotropic case considered
here, it can be shown that terms of order £ in the Mie
coefficients (10) and (11) lead to such a T3 term in the
sphere-sphere configuration. However, this term is suppressed
by a factor of (R/d)? relative to the terms discussed here and
therefore negligible in the large-distance limit.

With the order 73 not contributing to the entropy, the
appearance of a negative Casimir entropy is a nonperturbative
effect [31]. In the next order, 77, the negative contribution of
the polarization-changing channel is not sufficiently strong as
compared to the positive contributions of that order. Therefore,
at very low temperatures, the Casimir entropy of two perfectly
conducting spheres will be positive. On the other hand, it
turns out that the terms of order 7”7, which in (51)—(53) are
all negative, lead indeed to a negative Casimir entropy in an
intermediate temperature range. This was already shown in
Ref. [30] and is also visible in Fig. 5.
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It is now interesting to study how the different channels can
contribute in various ways to obtain either a positive Casimir
entropy for all temperatures or a negative Casimir entropy in
a certain temperature regime. To this end, in the next section
we will also allow for spheres made of Drude-type metals.

V. PERFECTLY CONDUCTING VERSUS DRUDE-TYPE
METAL SPHERES

So far, we have studied the behavior of the various scattering
channels and pointed out the relevance of the polarization-
changing channels for the appearance of a negative Casimir
entropy. The weight with which the scattering channels
contribute can be modified by the physical properties of the
objects involved. In Ref. [31] this was done by choosing objects
with anisotropic polarizabilities and by varying their electric
and magnetic properties. Here we will do the latter by allowing
the objects to be either made of perfectly conducting metals
or Drude-type metals, which have a finite zero-frequency
conductivity. The results will further underline the relevance
of the polarization-changing channels.

For simplicity, we will restrict ourselves in the following
to setups consisting of two spheres as depicted in Fig. 1(b).
Then, as pointed out in Sec. IV B, the matrix elements of the
reflection operator are given by the Mie coefficients for £ = 1.
While for perfectly conducting spheres, the Mie coefficients
are the same up to a factor —2, for Drude metal spheres with
a dc conductivity oy, the reflection of the TE mode can be
neglected in the large-distance limit, where in addition to the
conditions stated earlier, d >> oy R> /30c should hold.

These properties of the Mie coefficients allow us to
construct three different scenarios by choosing two spheres
both made of perfect conductors, both made of Drude metals,
or one made of a perfect conductor and the other of a
Drude metal. In the first case, polarization-conserving as well
as polarization-changing channels contribute as discussed in
Sec. IV B. In contrast, in the second case, only modes with TM
polarization can complete round trips between the two spheres.
Therefore, in this case, the polarization-changing channel is
completely suppressed. In the third case, only one of the two
polarization-changing channels and its weight relative to the
polarization-conserving channels is modified with respect to
two perfectly conducting spheres.

Indicating in the superscript on the left-hand side the
material of which the two spheres are made, we obtain for the
three situations just described the rescaled entropy introduced
in (47) with

PC/PC __ 5(.(0) [€)) (D
sPEPC = 2 (stpp v + St ) + 25T TE! (54
PC/D __ _(0) (1) (1)
sPP = Stv,t™ T STV, T™M T STM, TES (55
D/D 0 1
sPIP = s'(l‘]\)/[,TM + S(Tl\)/l,TMv (56)

where the components are given in (48)—(50). These results
are consistent with those obtained in Ref. [31].

The temperature dependence of the Casimir entropies (54)—
(56) is displayed in Fig. 8. At high temperatures, only the
polarization-conserving channels contribute. The difference
between the case of perfectly conducting spheres and the
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FIG. 8. (Color online) Temperature dependence of the Casimir
entropies (54)—(56) for a sphere-sphere setup where the spheres are
either made of perfect conductors (PC) or Drude metals (D). The
inset shows the low-temperature behavior where a positive Casimir
entropy is found for all three cases. The curve for D/D corresponds
to the dashed curve in Fig. 7.

other two cases shows the suppression of the polarization-
conserving TE channel due to a Drude metal sphere.

The inset puts a special emphasis on the low-temperature
behavior and shows clearly that in all three cases, the Casimir
entropy takes on positive values for very low temperatures.
However, only when all spheres are made of a Drude metal
does the Casimir entropy remain positive for all temperatures.
This is the case where no polarization-changing channels
contribute.

It is sufficient to allow for one polarization-changing
channel by making one of the spheres perfectly conducting in
order to obtain a temperature window in which the Casimir
entropy becomes negative. The effect becomes even more
pronounced if both spheres are perfectly conducting as the
weight of the polarization-changing channels is doubled while
the contribution of the polarization-conserving channels is
only increased by a quarter.

VI. CONCLUSIONS

The origin of the negative Casimir entropy in the plane-
sphere and sphere-sphere configuration has been analyzed in
the limit where the distance between the objects is much larger
than the radius of the sphere(s). In this limit, the Casimir free
energy and the Casimir entropy can easily be decomposed
into the contributions from various channels describing a
round trip between the objects. Three kinds of channels
have been identified, differing significantly in the temperature
dependence of their contribution to the Casimir entropy.

The first kind of channels always makes a positive contribu-
tion to the Casimir entropy. This was found to be the case for
polarization-conserving channels describing spherical waves
withm = 0.

The second kind of channels also conserves polarization but
involves spherical waves with m = 1. While these channels
yield a positive contribution to the Casimir entropy at high
temperatures, their contribution at sufficiently low tempera-
tures is negative. However, this negative part is compensated
by the polarization-conserving channels with m = 0.
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The third kind of channels is the most interesting one,
because its contribution to the Casimir entropy is negative for
all temperatures. This behavior is associated with polarization-
changing channels which exist for m = 1 but not for m = 0.
These channels are special, because their Casimir free energy
vanishes in the high-temperature limit. This fact and the
ensuing negative contribution to the Casimir entropy has
been traced back to the polarization-changing nature of the
channels. It can thus be concluded that polarization mixing in
a scattering process is a crucial ingredient for the appearance
of a negative Casimir entropy, at least in the plane-sphere and
sphere-sphere configuration.

Which of the various channels contribute to the Casimir
entropy can be influenced by appropriately choosing the
material out of which the scattering objects are made. One
can use the fact that in the long-distance limit the reflection

PHYSICAL REVIEW E 91, 033203 (2015)

of transverse electric modes at spheres made of a Drude metal
becomes negligible. We have shown that for two Drude metal
spheres, the Casimir entropy is positive for all temperatures.
In this situation, only round-trip scattering processes involving
transverse magnetic modes are relevant. As soon as at least one
of the spheres is perfectly conducting, polarization-changing
processes occur and the Casimir entropy is found to become
negative in a certain temperature window.
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