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Abstract. Single charge effects attract much attention with respect to possible
applications as future transistor structures or for quantum cryptography. Here,
surface acoustic wave mediated single charge transport through quantum dots
(QDs) formed in a carbon nanotube (CNT) is presented. The CNT bridges metallic
source and drain contacts on a piezoelectric host substrate, employing an acoustic
alignment technique. The metal electrodes in contact with the nanotube provide
tunnel barriers to the quasi one-dimensional electron system, hence forming a
few QD in series due to the presence of defects within the CNT. The dynamic
piezoelectric field associated with the surface wave leads to an acoustoelectric
current through the system which turns out to be quantized like in a turnstile
device.

3 Author to whom any correspondence should be addressed.

New Journal of Physics 9 (2007) 73 PII: S1367-2630(07)38775-2
1367-2630/07/010073+10$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:jens.ebbecke@physik.uni-augsburg.de
http://www.njp.org/


2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Preparation 3
3. Measurements 3

3.1. Coulomb blockade oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2. Acoustoelectric effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Quantized current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Summary 9
Acknowledgments 9
References 10

1. Introduction

Low dimensional electron systems have become increasingly important in modern physics and
technology. On one side, the semiconductor technology is rapidly advancing resulting in low
dimensional effects even for industrial applications. On the other hand, the prosecution of this
route by further miniaturization becomes increasingly difficult. Therefore alternative approaches
have been devised by scientists all over the world. One such approach relies on self organization
processes.Another possibility is to replace the lithographically defined artificial ‘wiring’on a chip
by natural systems with a high aspect ratio. If the diameter of these systems reaches the nanometre
scale, one dimensional (1D) behaviour is expected to occur. In 1991, while investigating the
properties of carbon, Iijima [1] discovered a novel manifestation of graphite, the so-called carbon
nanotubes (CNTs). It turned out that they represent a natural ideal 1D conductor. Depending on
the helicity, CNTs can exhibit metallic or semiconducting properties, making them even more
interesting for potential applications. Moreover, apart from their electronic properties, they also
show remarkable optical and mechanical properties, which triggered intensive research over the
last two decades.

Electrical transport measurements through CNTs have already been made in the early
years after their discovery. Moreover, different types of transistors employing CNTs have been
demonstrated in the recent past. If a CNT is contacted by metal contacts, potential barriers form
at the metal–CNT interface. If the distance between both metal contacts is short enough, such
that the separation between the discrete energy levels is larger than the thermal energy, a quantum
dot (QD) may form between them [2]–[5].

Here, we report on our investigations of the Coulomb blockade dominated conduction
behaviour of such CNT based QDs. Apart from conventional transport experiments we show that
surface acoustic waves (SAW) can be exploited to drive a quantized current through CNT QDs.

On a piezoelectric substrate, a SAW is accompanied by large electric fields, propagating at
the speed of sound [6]. Due to the acoustoelectric effect, momentum from the wave is transferred
to mobile charges in the CNT, driving an acoustoelectric current through the nanotube [7, 8].
Moreover, the SAW electric fields also modulate the metal–CNT potential barriers at a time scale
of the SAW frequency, especially if the size of the QD matches half of the SAW wavelength. In
this case, the ‘source’potential barrier between metal and CNT is lowered at a given point in time,
whereas at the same time the ‘drain’ barrier is raised by the SAW potential. Hence, an electron
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can tunnel into the QD from the source. Half a SAW period later, the situation reverses and the
electron tunnels out of the QD. This particular situation leads to a quantized acoustoelectric
current with exactly one electron per SAW cycle. Such turnstile devices are presently
being investigated with the aim of developing a new current standard in semiconductor and
CNT QDs [7, 9].

2. Preparation

Two samples (in the following denoted as sample A and B) were prepared on lithium-
niobate-substrate (LiNbO3 128-Y-cut-X-propagation) by standard electron-beam lithography.
The contacts on sample A were made of 5 nm titanium and 25 nm gold, on sample B of
5 nm titanium and 25 nm aluminium. On all samples two different interdigital transducers
(IDT) for SAW generation [10] were processed. The IDT1 having a wavelength of λ1 = 28 µm
(f1 = 128 MHz) was employed for tube-alignment [11], whereas the second transducer (IDT2)
served to generate a SAW of λ2 = 2 µm (f2 = 2 GHz) for the acoustoelectric experiments.
To match the commensurate condition pointed out above, the source (S) and drain (D) distance
between the contacts to the CNT was adjusted to approximately half this wavelength (see below).

Following the CNT alignment procedure in Strobl et al [11], a single drop of CNTs
(V ≈ 0.4 µL) suspended in deionized water and sodium-dodecylsulfate (SDS) was applied to a
capillary gap between the LiNbO3 substrate and a cover slide. For about 20 min, a radio frequency
signal of P = 16 dBm power and the respective IDT resonant frequency f1 was applied to the
low frequency IDT1 in order to launch a SAW with large amplitude. This large amplitude SAW
is used to successfully align the CNT with respect to the contact pattern. Finally, the samples
were rinsed in deionized water for 2 min and were dried with nitrogen gas.

After alignment the samples were inspected by a scanning electron microscope (SEM),
employing a temporary thin SiOx/Al coating. Aluminium was chemically removed after
inspection. The result of this SEM investigation is shown in figure 1.

The dominating alignment angle between CNT and metal contact turned out to be close to
90◦, as expected for a metallic environment and in contrast to the alignment on a free surface
[11]. For the case of a metalized surface the piezoelectric SAW fields are efficiently screened
leaving a large field gradient directly at the edges of the metal electrodes. In this sense, the
SAW driven alignment procedure is similar to the dielectrophoresis process for CNT alignment
presented in [12].

3. Measurements

3.1. Coulomb blockade oscillations

The lithographically defined contact pattern of sample A is shown in figure 2. S and D denote
the source and drain contacts, three additional gate electrodes are numbered 1, 2 and 3. The SD
distance of dSD = 0.9 µm is bridged by a single CNT, having a length of about lCNT = 6 µm.4

4 It cannot be excluded that the CNT consists of a small bundle. However, the transport characteristics are dominated
by a single metallic CNT.
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Figure 1. SEM images of electrodes and CNTs after alignment. The electric field
of the SAW is shortened at the conducting leads and the resulting electric field
gradient rotates the CNTs perpendicular to the metallic borders.

SAW

Figure 2. Typical structure used for transport measurements. Source (S) and drain
(D) electrodes are contacted by a CNT. The gate electrodes are labelled with 1, 2
and 3 and only gate 3 is used in order to control the electronic states in the CNT.
The sketched IDT on the left is not to scale but to clarify its position relative to
the CNT device.

In general, the existence of a coulomb blockade can be proved by two preconditions.
Firstly, the resistance of the system must hold the relation R � (h/e2) ≈ 25.9 k�. Secondly, the
charging energy U of the dot has to be larger than the thermal energy Eth = kBT (≈ 0.36 meV
at liquid helium temperature).

Transport measurements at room temperature exhibit non-ohmic and non-symmetric
I–V-characteristics for positive and negative bias values (blue curve in figure 3). The slope of
the I–V curve corresponds to the CNT conductance, its reciprocal to the resistance, respectively.
At positive source–drain bias (VSD > 0) we obtain R+

SD = 1.3 M� and for negative VSD < 0 the
resistance is R−

SD = 2 M�. Nevertheless, because there is no indication of a gate bias dependence
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Figure 3. Typical IV-measurement of a CNT contact at room temperature (blue)
and at T = 4.2 K (black) showing significant differences. Whereas the room
temperature curve also shows conductivity near zero bias, the low temperature
measurement exhibits a blockade region without conductivity caused by a contact
barrier. The first derivative (red) of the linear parts of this curve delivers the
resistance of the contact and an estimation of the barrier height at T = 0.

on the I–V curve, we thus assume the CNT to be in a metallic state [13]. Asymmetries in the
I–V-measurements can be caused by the differing quality of source and drain contacts. While
cooling the sample down to T = 4.2 K the contact barriers gain influence, which due to the lack
of thermal energy cannot be overcome by the electrons. By application of a finite source–drain
voltage VSD, however, the barriers can be passed leading to a finite source–drain current (ISD)
above a certain bias threshold. This behaviour is reflected in the typical I–V curve as shown in
figure 3 (black curve). Only for |VSD| > 0.3 V , a measurable current is observed. For larger VSD,
the I–V curve becomes linear again and reveals resistances R+

SD = 3.8 M� and R−
SD = 3.6 M�,

respectively. From the blocked conductivity region in figure 3, we estimate the finite contact
barrier height � to approx. 1 eV at T = 0 K. Hence, the first prerequisite for the existence of a
Coulomb blockade is met.

An estimation of the charging energy of CNT QDs has been reported by Nygard [13]. The
approximated charging energy U is mainly dependent on the length L of the CNT between source
and drain contact and the dielectric function εr of the surrounding material:

U = e2

ε0εrL
. (1)

For the contacts presented here the CNTs are surrounded by LiNbO3 (bottom) and SiOx (top)
due to the fabrication process as described above. The resulting average dielectric function is
therefore:

εr = 65(LiNbO3) + 4(SiO2)

2
= 34.5. (2)
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Figure 4. Coulomb oscillations for an applied source–drain voltage of
Vsd = 0.3 V with a periodicity of about �Vg = 1.8 V. The gate voltage was
applied at gate electrode 3.

For the contacted CNTs with a length of L = 0.9 µm this approximation results in a charging
energy of U = 0.6 meV. This is about double the thermal energy of the electrons at liquid helium
temperature and therefore also the second precondition for Coulomb blockade should be fulfilled.

The measured source–drain current ISD as a function of gate voltage VG at low temperature
and a finite source–drain voltage of Vsd = 0.3 V is presented in figure 4. This measurement was
accomplished using only gate 3. The other gate electrodes remained unbiased. In agreement with
the predictions made above Coulomb oscillations with an averaged periodicity of �Vg = 1.8 V
have been detected. But in contrast to the results of [2]–[5] the oscillations are not strictly periodic
and also the current does not drop down to zero in between the peaks. Therefore there are some
deviations from a well defined CNT single QD system. We assume that our fabrication process
has created defects within the CNT leading to a few QDs in series. A charge transport through
QDs in series within a single CNT results in an aperiodic oscillation pattern and a non-closing
gap in the Coulomb blockade ‘diamonds’ [14]–[16] as detected experimentally (see figure 4).
Therefore we have a system with Coulomb blockade in CNTs but a system consisting of a few
QDs in series. This splitting of our contacted CNT into several dots leads to a decrease of each
QD length and therefore (taking equation (1) into account) causes an increase of each charging
energy. This finally leads to this non-closing gap.

The splitting of the CNT could also explain the discrepancy between the estimated charging
energy U = 0.6 meV using equation (1) and the detected current blockade for Vsd < 0.3 eV.
Equation (1) is just an order of magnitude estimate for U and leads, due to the splitting into
shorter QDs, to an underestimation of the charging energy of the system.

3.2. Acoustoelectric effects

We now turn to the SAW induced acoustoelectric currents through the CNT based QD system
as described and characterized above. A SAW from IDT2 is launched towards and along the
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Figure 5. The red graph depicts SAW-induced current at frequencies between
1920 and 2000 MHz with a SAW amplitude of 13 dBm. The current maximum is
reached at 1967 MHz which is the resonant frequency of the relevant IDT as the
insertion loss measurement (blue) shows.

CNT attached to the source and drain contacts (see figure 2). The piezoelectric fields of the
SAW transfer momentum to the charge carriers [17], resulting in a finite current through the
CNT. As a first proof of such a SAW induced acoustoelectric current, we present a frequency
dependent measurement of the SD current as a function of the frequency f2 at the transducer
IDT2. The IDT has a resonance frequency of about fres,2 = 1967 MHz, corresponding to a SAW
wavelength of λSAW,2 = 2 µm. The result is shown in figure 5. Here we depict the IDT frequency
response (insertion loss, measured using a vector impedance analyser) together with the current
as measured across source and drain at zero DC bias. Clearly, the current exhibits a resonance
at exactly the same frequency as the IDT response, indicating an acoustoelectric origin.

3.3. Quantized current

SAW driven quantized acoustoelectric current has been observed in GaAs/AlGaAs based QDs
[9]. Here, we wish to report on our observation that such quantized acoustoelectric current can
also be achieved in CNT based QDs. Due to their small diameter single walled CNTs offer
the opportunity to realize QDs with extraordinarily large charging energies [18]. In figure 7,
we present measurements of the acoustoelectric current as a function of radio frequency (RF)
power for a device (sample B) similar to the one shown in figure 2. Even for zero source–drain
bias we measure a source–drain current under SAW application. This current reaches a plateau
(Ip = 322 pA) at a RF power of P = 11 dBm for the resonant SAW frequency of this IDT2 of
fres,2 = 2008 MHz of this device. At larger RF power levels than P = 13 dBm there is a further
increase in acoustoelectric current caused by a larger SAW amplitude. Due to problems with the
measurement set-up this CNT device was destroyed before detailed gate voltage dependencies
or source–drain voltage dependencies on the acoustoelectric current could be made. But before
the sample was damaged a frequency variation was made and the result is presented as an inset
of figure 6. Frequencies inside the passband of IDT2 from 2006 to 2010 MHz have been used

New Journal of Physics 9 (2007) 73 (http://www.njp.org/)

http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 6. At T = 4.2 K and zero source–drain bias the SAW driven current
through the CNT QD is measured varying the SAW amplitude. The respective
resonance frequency is fres,2 = 2008 MHz. The current shows a plateau exactly
at the theoretical calculated value of 3.22 · 10−10 A. Inset: acoustoelectric current
versus RF power for different SAW frequencies inside the IDT’s passband. The
curves have been shifted by 100 pA for clarity.

and a strong dependency of the quantization accuracy on the applied RF frequency is exhibited.
This is in accordance with measurements obtained with GaAs/AlGaAs based devices [19]. The
presented explanation is a change of the position of the SAW amplitude’s minima and maxima
for frequency variation due to an superimposed standing wave pattern caused by a part reflection
of the SAW at other IDTs on the sample. For this particular sample no detailed measurements of
the charging energy of the CNT QD could be made (also due to the mentioned problems with the
measurement set-up), but we estimate it to be of the same order as the one for sample A based
on the same lithographically defined dimensions and the same CNT source.

The mechanism of SAW mediated single electron transport in CNT QDs is schematically
shown in the cartoon presented in figure 7. A CNT is contacted by the metallic source and drain
leads and the developing tunnlling barriers define a CNT QD in between. A SAW is a mechanical
surface wave which in the case of piezoelectric substrates is also accompanied by an electric field
of the same wavelength. This piezoelectric field is the driving force of this CNT turnstile device,
if the SAW wavelength has been set to approximately twice the length of the contacted CNT. At
t = t0, the dynamic SAW potential minimum lowers the entrance tunnelling barrier and a single
electron can enter the CNT QD. Coulomb interaction leads to a repulsion of further electrons
and therefore determines the width of the current plateau. For the same moment in time, the
piezoelectric local maximum is at the position of the drain tunnel barrier. The potential height of
this barrier is therefore raised, preventing co-tunnelling of the electron. Half a wavecycle later
(in this case t1 = t0 + 1 ns), the piezoelectric SAW potential minimum has reached the exit tunnel
barrier and the single electron can leave the CNT QD. The entrance tunnel barrier is raised and
no further electron can enter the CNT QD. Hence, for each SAW cycle one single electron is
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Figure 7. Snapshots from a cartoon of the SAW driven single electron transport
through a QD. The complete animation is available online.

transported through the device leading to a quantized current

I = ef = 2.008 × 109 Hz × 1.6 × 10−19 C = 3.217 × 10−10 A. (3)

The measured current plateau at Ip = 322 pA agrees very well with the one theoretically expected
from this relation. This precise quantization is on the one hand surprising due to the fact that
there are several QDs in series in the present system that should affect the turnstile mechanism.
But on the other hand the main transport limiting tunnel barriers are the metal electrode/CNT
contacts and therefore the SAW induced modulation of these dominating tunnel barriers in an
alternating way leads to the current quantization.

4. Summary

In conclusion we have presented measurements on CNTs that were confined to QDs by the
contacting mechanism. Due to the length of the contacted CNT being less than a micrometre and
a high two-terminal resistance, the assumption of dimensionality reduction to QDs is justified.
This has been verified by the presented Coulomb blockade measurements. Additionally these
investigations exhibit the existence of a few unintentional QDs within the contacted CNT,
probably created during the sample fabrication process. Applying a SAW with finite amplitude
to such a CNT QD system results in an acoustoelectric current transport. Adjusting the SAW
wavelength to be approximately twice the length of the contacted CNT leads to a quantization
of the current which can be explained by a turnstile-like transport mechanism. The device
performance and therefore the quantization accuracy can be enhanced by improving the metal
electrode/CNT contacts that would lead to a better defined CNT QD and would therefore also
allow detailed gate voltage and source–drain voltage dependency measurements.
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