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Abstract. De Alfaro and Henzinger’s Interface Automata (IA) and Nyman et al.’s re-
cent combination IOMTS of IA and Larsen’s Modal Transition Systems (MTS) are es-
tablished frameworks for specifying interfaces of system components. However, neither
IA nor IOMTS consider conjunction that is needed in practice when a component shall
satisfy multiple interfaces, while Larsen’s MTS-conjunction is not closed and Beneš et al.’s
conjunction on disjunctive MTS does not treat internal transitions. In addition, IOMTS-
parallel composition exhibits a compositionality defect.

This article defines conjunction (and also disjunction) on IA and disjunctive MTS and
proves the operators to be ‘correct’, i.e., the greatest lower bounds (least upper bounds)
wrt. IA- and resp. MTS-refinement. As its main contribution, a novel interface theory
called Modal Interface Automata (MIA) is introduced: MIA is a rich subset of IOMTS
featuring explicit output-must-transitions while input-transitions are always allowed im-
plicitly, is equipped with compositional parallel, conjunction and disjunction operators,
and allows a simpler embedding of IA than Nyman’s. Thus, it fixes the shortcomings of
related work, without restricting designers to deterministic interfaces as Raclet et al.’s
modal interface theory does.

1. Introduction

Interfaces play an important role when designing complex software and hardware systems so
as to be able to check interoperability of system components already at design stage. Early
interface theories deal with types of data and operations only and have been successfully
deployed in compilers. Over the past two decades, research has focused on more advanced
interface theories for sequential and object-oriented software systems, where interfaces also
comprise behavioural types. Such types are often referred to as contracts [Mey92] and can
express pre- and post-conditions and invariants of methods and classes. Much progress has

2012 ACM CCS: [Theory of computation]: Models of computation—Concurrency; Logic—Logic and
Verification; Semantics and reasoning; [Software and its engineering]: Context specific languages—
Interface definition languages; Software system models—State systems.

Key words and phrases: interface theories, interface automata, modal transition systems, disjunctive
modal transition systems, modal interface automata, conjunction, disjunction.

∗ An extended abstract of this article appeared in 7th IFIP Intl. Conf. on Theoretical Computer Science
(TCS 2012), vol. 7604 of Lecture Notes in Computer Science, pp. 265–279, Springer, 2012.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:4)2013
c© G. Lüttgen and W. Vogler
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/212318454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses
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been made on the design of contract languages and on automated verification techniques
that can decide whether a system component meets its contract (cf. [HLL+12] for a survey).

More recently, behavioural interfaces have also been proposed and are being investi-
gated for the use in concurrent systems, with prominent application examples being em-
bedded systems (e.g., [MG05]) and web services (e.g., [BCHS07, MB03]). In this context,
behavioural interfaces are intended to capture protocol aspects of component interaction.
One prominent example of such an interface theory is de Alfaro and Henzinger’s Interface
Automata (IA) [dH01, dH05], which is based on labelled transition systems (LTS) but dis-
tinguishes a component’s input and output actions. The theory comes with an asymmetric
parallel composition operator, where a component may wait on inputs but never on outputs.
Thus, a component’s output must be consumed immediately, or an error occurs. In case no
potential system environment may restrict the system components’ behaviour so that all
errors are avoided, the components are deemed to be incompatible.

Semantically, IA employs a refinement notion based on an alternating simulation, such
that a component satisfies an interface if (a) it implements all input behaviour prescribed
by the interface and (b) the interface permits all output behaviour executed by the imple-
menting component. Accordingly and surprisingly, an output in a specification can always
be ignored in an implementation. In particular, a component that consumes all inputs
but never produces any output satisfies any interface. Since a specifier certainly wants to
be able to prescribe at least some outputs, Larsen, Nyman and Wasowski have built their
interface theory on Modal Transition Systems (MTS) [Lar90] rather than LTS, which en-
ables one to distinguish between may- and must-transitions and thus to express mandatory
outputs. The resulting IOMTS interface theory [LNW07], into which IA can be embed-
ded, is equipped with an IA-style parallel composition and an MTS-style modal refinement.
Unfortunately, IOMTS-modal refinement is not a precongruence (i.e., not compositional)
for parallel composition; a related result in [LNW07] has already been shown incorrect by
Raclet et al. in [RBB+11].

The present article starts from the observation that the above interface theories are
missing one important operator, namely conjunction on interfaces. Conjunction is needed
in practice since components are often designed to satisfy multiple interfaces simultaneously,
each of which specifies a particular aspect of component interaction. Indeed, conjunction
is a key operator when specifying and developing systems from different viewpoints as is
common in modern software engineering. We thus start off by recalling the IA-setting and
defining a conjunction operator ∧ for IA; we prove that ∧ is indeed conjunction, i.e., the
greatest lower bound wrt. alternating simulation (cf. Sec. 2). Essentially the same operator
has recently and independently been defined in [CCJK12], where it is shown that it gives the
greatest lower bound wrt. a trace-based refinement relation. As an aside, we also develop and
investigate the dual disjunction operator ∨ for IA. This is a natural operator for describing
alternatives in loose specifications, thus leaving implementation decisions to implementors.

Similarly, we define conjunction and disjunction operators for a slight extension of MTS
(a subset of Disjunctive MTS [LX90], cf. Sec. 3), which paves us the way for our main con-
tribution outlined below. Although Larsen has already studied conjunction and disjunction
for MTS, his operators do, in contrast to ours, not preserve the MTS-property of syntactic
consistency, i.e., a conjunction or disjunction almost always has some required transitions
(must-transitions) that are not allowed (missing may-transitions). An additional difficulty
when compared to the IA-setting is that two MTS-interfaces may not have a common im-
plementation; indeed, inconsistencies may arise when composing MTSs conjunctively. We
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handle inconsistencies in a two-stage definition of conjunction, adapting ideas from our prior
work on conjunction in a CSP-style process algebra [LV10] that uses, however, a very dif-
ferent parallel operator and refinement preorder. In [BCK11], a conjunction for Disjunctive
MTS (DMTS) is introduced in a two-stage style, too. Our construction and results for con-
junction significantly extend the ones of [BCK11] in that we also treat internal transitions
that, e.g., result from communication.

Note also that our setting employs event-based communication via handshake and thus
differs substantially from the one of shared-memory communication studied by Abadi and
Lamport in their paper on conjoining specifications [AL95]. The same comment applies to
Doyen et al. [DHJP08], who have studied a conjunction operator for an interface theory
involving shared-variable communication.

Our article’s main contribution is a novel interface theory, called Modal Interface Au-
tomata (MIA), which is essentially a rich subset of IOMTS that still allows one to express
output-must-transitions. In contrast to IOMTS, must-transitions can also be disjunctive,
and input-transitions are either required (i.e., must-transitions) or allowed implicitly. MIA
is equipped with an MTS-style conjunction ∧, disjunction ∨ and an IOMTS-style parallel
composition operator, as well as with a slight adaptation of IOMTS-refinement. We show
that (i) MIA-refinement is a precongruence for all three operators; (ii) ∧ (∨) is indeed con-
junction (disjunction) for this preorder; and (iii) IA can be embedded into MIA in a much
cleaner, homomorphic fashion than into IOMTS [LNW07] (cf. Sec. 4). Thereby, we remedy
the shortcomings of related work while, unlike the language-based modal interface theory
of [RBB+11], still permitting nondeterminism in specifications.

2. Conjunction and Disjunction for Interface Automata

Interface Automata (IA) were introduced by de Alfaro and Henzinger [dH01, dH05] as a
reactive type theory that abstractly describes the communication behaviour of software or
hardware components in terms of their inputs and outputs. IAs are labelled transition
systems where visible actions are partitioned into inputs and outputs. The idea is that
interfaces interact with their environment according to the following rules. An interface
cannot block an incoming input in any state but, if an input arrives unexpectedly, it is
treated as a catastrophic system failure. This means that, if a state does not enable an
input, this is a requirement on the environment not to produce this input. Vice versa, an
interface guarantees not to produce any unspecified outputs, which are in turn inputs to
the environment.

This intuition is reflected in the specific refinement relation of alternating simulation
between IA and in the parallel composition on IA, which have been defined in [dH05] and are
recalled in this section. Most importantly, however, we introduce and study a conjunction
operator on IA, which is needed in practice to reason about components that are expected
to satisfy multiple interfaces.

Definition 2.1 (Interface Automata [dH05]). An Interface Automaton (IA) is a tuple
Q = (Q, I,O,−→), where

(1) Q is a set of states,
(2) I and O are disjoint input and output alphabets, resp., not containing the special, silent

action τ ,
(3) −→⊆ Q× (I ∪O ∪ {τ})×Q is the transition relation.
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The transition relation is required to be input-deterministic, i.e., a ∈ I, q
a−→ q′ and q

a−→ q′′

implies q′ = q′′. In the remainder, we write q
a−→ if q

a−→ q′ for some q′, as well as q 6 a−→
for its negation.

In contrast to [dH05] we do not distinguish internal actions and denote them all by τ , as is
often done in process algebras. We let A stand for I ∪O, let a (α) range over A (A∪ {τ}),
and introduce the following weak transition relations: q

ε
=⇒ q′ if q(

τ−→)∗q′, and q
o

=⇒ q′

for o ∈ O if ∃q′′. q ε
=⇒ q′′

o−→ q′; note that there are no τ -transitions after the o-transition.
Moreover, we define α̂ = ε if α = τ , and α̂ = α otherwise.

Definition 2.2 (Alternating Simulation [dH05]). Let P and Q be IAs with common input
and output alphabets. Relation R ⊆ P × Q is an alternating simulation relation if for all
(p, q) ∈ R:

(i): q
a−→ q′ and a ∈ I implies ∃p′. p a−→ p′ and (p′, q′) ∈ R,

(ii): p
α−→ p′ and α ∈ O ∪ {τ} implies ∃q′. q α̂

=⇒ q′ and (p′, q′) ∈ R.

We write p vIA q and say that p IA-refines q if there exists an alternating simulation
relation R such that (p, q) ∈ R.

According to the basic idea of IA, if specification Q in state q allows some input a delivered
by the environment, then the related implementation state p of P must allow this input
immediately in order to avoid system failure. Conversely, if P in state p produces output a
to be consumed by the environment, this output must be expected by the environment even

if q
a

=⇒; this is because Q could have moved unobservedly from state q to some q′ that
enables a. Since inputs are not treated in Def. 2.2 (ii), they are always allowed for p.

It is easy to see that IA-refinement vIA is a preorder on IA and the largest alternating
simulation relation. Given input and output alphabets I and O, resp., the IA

BlackHoleI,O =df ({blackhole}, I, O, {(blackhole, a, blackhole) | a ∈ I})
IA-refines any other IA over I and O.

2.1. Conjunction on IA. Two IAs with common alphabets are always logically consistent
in the sense that they have a common implementation, e.g., the respective blackhole IA as
noted above. This makes the definition of conjunction on IA relatively straightforward.
Here and similarly later, we index a transition by the system’s name to make clear from
where it originates, in case this is not obvious from the context.

Definition 2.3 (Conjunction on IA). Let P = (P, I,O,−→P ) and Q = (Q, I, O,−→Q)
be IAs with common input and output alphabets and disjoint state sets P and Q. The
conjunction P ∧ Q is defined by ({p ∧ q | p ∈ P, q ∈ Q} ∪ P ∪ Q, I,O,−→), where −→ is
the least set satisfying −→P⊆−→, −→Q⊆−→, and the following operational rules:

(I1) p ∧ q a−→ p′ if p
a−→P p

′, q 6 a−→Q and a ∈ I
(I2) p ∧ q a−→ q′ if p 6 a−→P , q

a−→Q q
′ and a ∈ I

(I3) p ∧ q a−→ p′ ∧ q′ if p
a−→P p

′, q
a−→Q q

′ and a ∈ I
(O) p ∧ q a−→ p′ ∧ q′ if p

a−→P p
′, q

a−→Q q
′ and a ∈ O

(T1) p ∧ q τ−→ p′ ∧ q if p
τ−→P p

′

(T2) p ∧ q τ−→ p ∧ q′ if q
τ−→Q q

′
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Figure 1: Example illustrating IA-conjunction.

Intuitively, conjunction is the synchronous product over actions (cf. Rules (I3), (O), (T1)
and (T2)). Since inputs are always implicitly present, this also explains Rules (I1) and (I2);
for example, in Rule (I1), q does not impose any restrictions on the behaviour after input a
and is therefore dropped from the target state. Moreover, the conjunction operator is
commutative and associative. As an aside, note that the rules with digit 2 in their names
are the symmetric cases of the respective rules with digit 1; this convention will hold true
throughout this article. Fig. 1 applies the rules above to an illustrating example; here and
in the following figures, we write a? for an input a and a! for an output a.

Essentially the same conjunction operator is defined by Chen et al. in [CCJK12], where
a non-standard variant of IA is studied that employs explicit error states and uses a trace-
based semantics and refinement preorder (going back to Dill [Dil89]). The difference between
their conjunction and Def. 2.3 is that error states are explicitly used in the clauses that
correspond to Rules (I1) and (I2) above, which renders our definition arguably more elegant.
In [CCJK12], an analogue theorem to Thm. 2.4 below is shown, but its statement is different
as it refers to a different refinement preorder. Also note that, deviating from the IA-
literature, error states are called inconsistent in [CCJK12], but this is not related to logic
inconsistency as studied by us.

Our first result states that an implementation satisfies the conjunction of interfaces
exactly if it satisfies each of them. This is a desired property in system design where each
interface describes one aspect (or view) of the overall specification.

Theorem 2.4 (∧ is And). Let P,Q,R be IAs with states p, q, r, resp. Then, r vIA p and
r vIA q if and only if r vIA p ∧ q.

Proof. “⇐=”: It is sufficient to show that R =df {(r, p) | ∃q. r vIA p ∧ q}∪ vIA is an
alternating simulation relation. Let (r, p) ∈ R due to q; the case r vIA p is obvious. We
check the conditions of Def. 2.2:

• Let p
a−→P p

′ with a ∈ I.

− q 6 a−→Q: Hence, p ∧ q a−→ p′ by Rule (I1) and, due to r vIA p ∧ q, there exists some r′

with r
a−→R r

′ and r′ vIA p
′. Since (r′, p′) ∈ R we are done.

− q
a−→Q q′: Hence, p ∧ q a−→ p′ ∧ q′ by Rule (I3) and, due to r vIA p ∧ q, there exists

some r′ with r
a−→R r

′ and r′ vIA p
′ ∧ q′. Now, (p′, q′) ∈ R.

• Let r
α−→R r

′ with α ∈ O ∪ {τ}.
− α 6= τ : Thus, by Rule (O) and possibly Rules (T1), (T2), p ∧ q α

=⇒ p′ ∧ q′ with

r′ vIA p′ ∧ q′. We can project the transition sequence underlying p ∧ q α
=⇒ p′ ∧ q′ to

the P -component and get p
α

=⇒P p
′, and we are done since (r′, p′) ∈ R.

− α = τ : Hence, p ∧ q ε
=⇒ p′ ∧ q′, possibly by Rules (T1) and (T2), with r′ vIA p′ ∧ q′.

Again, we can project to p
ε

=⇒P p
′ (where possibly p′ = p) and also have (r′, p′) ∈ R.
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“=⇒”: We show that R =df {(r, p ∧ q) | r vIA p and r vIA q}∪ vIA is an alternating
simulation relation. Let (r, p) ∈ R; the case r vIA p is obvious, so we consider the following
cases:

(1) p ∧ q a−→ with a ∈ I:

(I1): p ∧ q a−→ p′ due to p
a−→P p′ and q 6 a−→Q. Then, r

a−→R r′ for some r′ with
r′ vIA p

′ due to r vIA p, and we are done since (r′, p′) ∈ R.
(I2): Analogous to Case (I1).

(I3): p ∧ q a−→ p′ ∧ q′ due to p
a−→P p′ and q

a−→Q q′. Then, r
a−→R r′ for some r′

with r′ vIA p′ due to r vIA p. By input-determinism and r vIA q, we also have
r′ vIA q

′ and are done since (r′, p′ ∧ q′) ∈ R.

(2) r
α−→R r

′ with α ∈ O ∪ {τ}:
• α ∈ O: Due to r vIA p and r vIA q we have p′, q′ such that p

α
=⇒P p′, q

α
=⇒Q q′,

r′ vIA p′ and r′ vIA q′, i.e., (r′, p′ ∧ q′) ∈ R. We can interleave the τ -transitions of
the two transition sequences by Rules (T1) and (T2) and finally synchronize the two

α-transitions according to Rule (O), and obtain p ∧ q α
=⇒ p′ ∧ q′.

• α = τ : Analogous, but without the synchronized transition.

Technically, this result states that ∧ gives the greatest lower-bound wrt. vIA (up to equiv-
alence), and its proof uses the input-determinism property of IA. The theorem also implies
compositional reasoning; from universal algebra one easily gets:

Corollary 2.5. For IAs P,Q,R with states p, q and r: p vIA q =⇒ p ∧ r vIA q ∧ r.

Proof. Assume p vIA q. Then, (always) p ∧ r vIA p ∧ r ⇐⇒ (by Thm. 2.4) p ∧ r vIA p
and p ∧ r vIA r =⇒ (by assumption and transitivity) p ∧ r vIA q and p ∧ r vIA r ⇐⇒ (by
Thm. 2.4) p ∧ r vIA q ∧ r.

2.2. Disjunction on IA. In analogy to conjunction we develop a disjunction operator on
IA and discuss its properties; in particular, this operator should give the least upper bound.

Definition 2.6 (Disjunction on IA). Let P = (P, I,O,−→P ) and Q = (Q, I, O,−→Q)
be IAs with common input and output alphabets and disjoint state sets P and Q. The
disjunction P ∨Q is defined by ({p∨ q | p ∈ P, q ∈ Q} ∪P ∪Q, I,O,−→), where −→ is the
least set satisfying −→P⊆−→, −→Q⊆−→ and the following operational rules:

(I) p ∨ q a−→ p′ ∨ q′ if p
a−→P p

′, q
a−→Q q

′ and a ∈ I
(OT1) p ∨ q α−→ p′ if p

α−→P p
′ and α ∈ O ∪ {τ}

(OT2) p ∨ q α−→ q′ if q
α−→Q q

′ and α ∈ O ∪ {τ}

Note that this definition preserves the input-determinism required of IA. The definition is
roughly dual to the one of IA-conjunction, i.e., we take the ‘intersection’ of initial input
behaviour and the ‘union’ of initial output behaviour. Strictly speaking, this would require
the following additional rule for outputs o ∈ O:

(O3) p ∨ q o−→ p′ ∨ q′ if p
o−→P p

′ and q
o−→Q q

′

However, the addition of this rule would in general result in disjunctions p ∨ q that are
larger than the least upper bound of p and q wrt. vIA. The following theorem shows that
our ∨-operator properly characterizes the least upper bound:
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Figure 2: Example illustrating IA-disjunction’s different treatment of inputs and outputs.

Theorem 2.7 (∨ is Or). Let P,Q,R be IAs with states p, q and r, resp. Then, p∨ q vIA r
if and only if p vIA r and q vIA r.

Proof. “=⇒”: We prove that R =df {(p, r) | ∃q. p ∨ q vIA r}∪ vIA is an alternating
simulation relation. We let (p, r) ∈ R due to q – the case p vIA r is obvious – and check
the conditions of Def. 2.2:

• Let r
a−→R r′ with a ∈ I. Hence, by p ∨ q vIA r and the only applicable Rule (I),

p ∨ q a−→ p′ ∨ q′ due to p
a−→P p

′ and q
a−→Q q′ with p′ ∨ q′ vIA r′. Since (p′, r′) ∈ R we

are done.
• Let p

α−→P p
′ with α ∈ O∪{τ}. Hence, p∨q α−→ p′ by Rule (OT1) and, due to p∨q vIA r,

there exists some r′ such that r
α̂

=⇒ r′ and p′ vIA r
′.

“⇐=”: We show that R =df {(p ∨ q, r) | p vIA r and q vIA r}∪ vIA is an alternating
simulation relation. We let (p ∨ q, r) ∈ R and consider the following cases:

(1) Let r
a−→R r

′ with a ∈ I. By p vIA r and q vIA r we have p′ and q′ such that p
a−→P p

′,

q
a−→Q q

′, p′ vIA r
′ and q′ vIA r

′. Thus, we are done since p∨q a−→ p′∨q′ using Rule (I)
and since (p′ ∨ q′, r′) ∈ R.

(2) p ∨ q α−→ p′ with α ∈ O ∪ {τ}. W.l.o.g., p
α−→P p

′ due to Rule (OT1). Then, r
α̂

=⇒R r
′

for some r′ satisfying p′ vIA r
′, by p vIA r.

Compositionality of disjunction can now be derived dually to the proof of Corollary 2.5 but
using Thm. 2.7 instead of Thm. 2.4:

Corollary 2.8. For IAs P,Q,R with states p, q and r: p vIA q =⇒ p ∨ r vIA q ∨ r.

The two examples of Fig. 2 round off our investigation of IA disjunction by illustrating the
operator’s different treatment of inputs and outputs. Regarding p ∨ q on the figure’s left-
hand side, the choice of which disjunct to implement is taken with the first action o ∈ O if
both disjuncts are implemented; this meets the intuition of an inclusive-or. In the analogous
situation of r ∨ s on the figure’s right-hand side, a branching on i ∈ I is not allowed due to
input-determinism, and the resulting IA is thus intuitively unsatisfactory. The root cause
for this is that the IA-setting does not include sufficiently many automata and, therefore,
the least upper bound is ‘too large’. The shortcoming can be remedied by introducing
disjunctive transitions, as we will do below in the dMTS- and MIA-settings. Then, we will
have more automata and, indeed, will get a smaller least upper bound.

2.3. Parallel Composition on IA. We recall the parallel composition operator | on IA
of [dH05], which is defined in two stages: first a standard product ⊗ between two IAs is
introduced, where common actions are synchronized and hidden. Then, error states are
identified, and all states are pruned from which reaching an error state is unavoidable.
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Figure 3: Example illustrating IA-parallel composition, where IA TryOnce has inputs
{send, ack, nack} and outputs {trnsmt, ok, reset, retry}, while IA Client has in-
puts {ok, retry} and outputs {send}.

Definition 2.9 (Parallel Product on IA [dH05]). IAs P1 and P2 are called composable if
A1 ∩ A2 = (I1 ∩ O2) ∪ (O1 ∩ I2), i.e., each common action is input of one IA and output
of the other IA. For such IAs we define the product P1 ⊗ P2 = (P1 × P2, I, O,−→), where
I = (I1 ∪ I2) \ (O1 ∪ O2) and O = (O1 ∪ O2) \ (I1 ∪ I2) and where −→ is given by the
following operational rules:

(Par1) (p1, p2)
α−→ (p′1, p2) if p1

α−→ p′1 and α /∈ A2

(Par2) (p1, p2)
α−→ (p1, p

′
2) if p2

α−→ p′2 and α /∈ A1

(Par3) (p1, p2)
τ−→ (p′1, p

′
2) if p1

a−→ p′1 and p2
a−→ p′2 for some a.

Note that, in case of synchronization and according to Rule (Par3), one only gets internal
τ -transitions.

Definition 2.10 (Parallel Composition on IA [dH05]). A state (p1, p2) of a parallel product

P1 ⊗ P2 is an error state if there is some a ∈ A1 ∩ A2 such that (a) a ∈ O1, p1
a−→ and

p2 6
a−→, or (b) a ∈ O2, p2

a−→ and p1 6
a−→.

A state of P1 ⊗ P2 is incompatible if it may reach an error state autonomously, i.e.,
only by output or internal actions that are, intuitively, locally controlled. Formally, the
set E ⊆ P1 × P2 of incompatible states is the least set such that (p1, p2) ∈ E if (i) (p1, p2)

is an error state or (ii) (p1, p2)
α−→ (p′1, p

′
2) for some α ∈ O ∪ {τ} and (p′1, p

′
2) ∈ E.

The parallel composition P1|P2 of P1, P2 is obtained from P1 ⊗ P2 by pruning, i.e.,
removing all states in E and all transitions involving such states as source or target. If
(p1, p2) ∈ P1|P2, we write p1|p2 and call p1 and p2 compatible.

Parallel composition is well-defined since input-determinism is preserved.

Theorem 2.11 (Compositionality of IA-Parallel Composition [dH05]). Let P1, P2 and Q1

be IAs with p1 ∈ P1, p2 ∈ P2, q1 ∈ Q1 and p1 vIA q1. Assume that Q1 and P2 are
composable; then, (a) P1 and P2 are composable and (b) if q1 and p2 are compatible, then
so are p1 and p2 and p1|p2 vIA q1|p2.

This result relies on the fact that IAs are input-deterministic. While the theorem is already
stated in [dH05], its proof is only sketched therein. Here, it is a simple corollary of Thm. 4.14
in Sec. 4.3 and Thms. 4.16 and 4.17(b) in Sec. 4.4 below.
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We conclude by presenting a small example of IA-parallel composition in Fig. 3, which
is adapted from [dH05]. Client does not accept its input retry. Thus, if the environment
of Client ⊗ TryOnce would produce nack, the system would autonomously produce reset
and run into a catastrophic error. To avoid this, the environment of Client |TryOnce is
required not to produce nack. This view is called optimistic: there exists an environment
in which Client and TryOnce can cooperate without errors, and Client |TryOnce describes
the necessary requirements for such an environment. In the pessimistic view as advocated
in [BHW11], Client and TryOnce are regarded as incompatible due to the potential error.

3. Conjunction and Disjunction for Modal Transition Systems

Modal Transition Systems (MTS) were investigated by Larsen [Lar90] as a specification
framework based on labelled transition systems but with two kinds of transitions: must-
transitions specify required behaviour, may-transitions specify allowed behaviour, and ab-
sent transitions specify forbidden behaviour. Any refinement of an MTS-specification must
preserve required and forbidden behaviour and may turn allowed behaviour into required
or forbidden behaviour. Technically, this is achieved via an alternating-style simulation
relation, called modal refinement, where any must-transition of the specification must be
simulated by an implementation, while any may-transition of the implementation must be
simulated by the specification.

Our aim in this section is to extend MTS with conjunction and also disjunction.
Larsen [Lar90] first defined conjunction and disjunction on MTS (without τ), but the re-
sulting systems often violate syntactic consistency (they are not really MTSs) and are hard
to understand. This construction was subsequently generalized by Larsen and Xinxin to
Disjunctive MTS (DMTS) [LX90], again ignoring syntactic consistency. This shortcoming
was recently fixed by Beneš et al. [BCK11] by exploiting the fact that an a-must-transition
in a DMTS may have several alternative target states. However, this work does still not
consider a weak setting, i.e., systems with τ . Below, we will define conjunction and dis-
junction on a syntactically consistent subclass of DMTS, called dMTS, but more generally
in a weak setting as defined in [dH05, LNW07]; this subclass is sufficient for the purposes
of the present article, and we leave the extension of our results to DMTS for future work.
Since the treatment of τ -transitions is non-trivial and non-standard, we will motivate and
explain it in detail.

Note that this section will not consider parallel composition for (d)MTS. This is because
we are working towards the MIA-setting that will be introduced in the next section, which
like IA and unlike (d)MTS distinguishes between inputs and outputs. (d)MTS parallel
composition can simply be defined in the style similar to Def. 2.9; in particular, it does not
have error states and thus fundamentally differs from conjunction as defined below.

3.1. Disjunctive Modal Transition Systems. We extend standard MTS only as far as
needed for defining conjunction and disjunction, by introducing disjunctive must-transitions
that are disjunctive wrt. exit states only (see Fig. 5). The following extension also has no τ -
must-transitions since these are not considered in the definition of the observational modal
refinement of [LNW07].

Definition 3.1 (disjunctive Modal Transition System). A disjunctive Modal Transition
System (dMTS) is a tuple Q = (Q,A,−→, 99K), where
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(1) Q is a set of states,
(2) A is an alphabet not containing the special, silent action τ ,
(3) −→⊆ Q×A× (P(Q) \ ∅) is the must-transition relation,
(4) 99K⊆ Q× (A ∪ {τ})×Q is the may-transition relation.

We require syntactic consistency, i.e., q
a−→ Q′ implies ∀q′∈Q′. q a

99K q′.

More generally, the must-transition relation in a standard DMTS [LX90] may be a subset

of Q× (P(A×Q) \ ∅). For notational convenience, we write q
a−→ q′ whenever q

a−→ {q′};
all must-transitions in standard MTS have this form.

Our refinement relation on dMTS abstracts from internal computation steps in the same
way as [LNW07], i.e., by considering the following weak may-transitions for α ∈ A ∪ {τ}:
q

ε
99K99K q

′ if q
τ

99K
∗
q′, and q

α
99K99K q

′ if ∃q′′. q ε
99K99K q

′′ α
99K q′.

Definition 3.2 (Observational Modal Refinement, see [LNW07]). Let P,Q be dMTSs.
Relation R ⊆ P ×Q is an (observational) modal refinement relation if for all (p, q) ∈ R:

(i): q
a−→ Q′ implies ∃P ′. p a−→ P ′ and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,

(ii): p
α

99K p′ implies ∃q′. q α̂
99K99K q

′ and (p′, q′) ∈ R.

We write p vdMTS q and say that p dMTS-refines q if there exists an observational modal
refinement relation R such that (p, q) ∈ R.

Again, vdMTS is a preorder and the largest observational modal refinement relation. Ex-
cept for disjunctiveness, dMTS-refinement is exactly defined as for MTS in [LNW07]. In
the following figures, any (disjunctive) must-transition drawn also represents implicitly the
respective may-transition(s), unless explicitly stated otherwise.

3.2. Conjunction on dMTS. Technically similar to parallel composition for IA, con-
junction will be defined in two stages. State pairs can be logically inconsistent due to
unsatisfiable must-transitions; in the second stage, we remove such pairs incrementally.

Definition 3.3 (Conjunctive Product on dMTS). Let P = (P,A,−→P , 99KP ) and Q =
(Q,A,−→Q, 99KQ) be dMTSs with common alphabet. The conjunctive product P&Q =df

(P ×Q,A,−→, 99K) is defined by its operational transition rules as follows:

(Must1) (p, q)
a−→ {(p′, q′) | p′ ∈ P ′, q a

99K99KQ q
′} if p

a−→P P
′ and q

a
99K99KQ

(Must2) (p, q)
a−→ {(p′, q′) | p a

99K99KP p
′, q′ ∈ Q′} if p

a
99K99KP and q

a−→Q Q
′

(May1) (p, q)
τ

99K (p′, q) if p
τ

99K99KP p
′

(May2) (p, q)
τ

99K (p, q′) if q
τ

99K99KQ q
′

(May3) (p, q)
α

99K (p′, q′) if p
α

99K99KP p
′ and q

α
99K99KQ q

′

It might be surprising that a single transition in the product might stem from a transition
sequence in one of the components (cf. the first four items above) and that the components
can also synchronize on τ (cf. Rule (May3)). The necessity of this is discussed below; we
only repeat here that conjunction is inherently different from parallel composition where,
for instance, there is no synchronization on τ .

Definition 3.4 (Conjunction on dMTS). Given a conjunctive product P&Q, the set F ⊆
P × Q of (logically) inconsistent states is defined as the least set satisfying the following
rules:
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Figure 4: Examples motivating the rules of Def. 3.3.

(F1) p
a−→P , q 6 a99K99KQ implies (p, q) ∈ F

(F2) p 6 a99K99KP , q
a−→Q implies (p, q) ∈ F

(F3) (p, q)
a−→ R′ and R′ ⊆ F implies (p, q) ∈ F

The conjunction P∧Q of dMTSs P,Q is obtained by deleting all states (p, q) ∈ F from P&Q.
This also removes any may- or must-transition exiting a deleted state and any may-transition
entering a deleted state; in addition, deleted states are removed from targets of disjunctive
must-transitions. We write p∧ q for the state (p, q) of P ∧Q; these are the consistent states
by construction, and p ∧ q is only defined for such a state.

Regarding well-definedness, first observe that P&Q is a dMTS, where syntactic consistency
follows from Rule (May3). Now, P ∧ Q is a dMTS, too: if R′ becomes empty for some

(p, q)
a−→ R′, then also (p, q) is deleted when constructing P ∧ Q from P&Q according

to (F3). Finally, our conjunction operator is also commutative and associative.
Before we formally state that operator ∧ is indeed conjunction on dMTS, we present

several examples depicted in Fig. 4, which motivate the rules of Def. 3.3. In each case, r is
a common implementation of p and q (but not r′ in Ex. I), whence these must be logically

consistent. Thus, Ex. I explains Rule (Must1). If we only had
τ

99K in the precondition
of Rule (May1), p ∧ q of Ex. II would just consist of a c-must- and an a-may-transition;
the only τ -transition would lead to a state in F due to b. This would not allow the τ -

transition of r, explaining Rule (May1). In Ex. III and with only
α

99K in the preconditions
of Rule (May3), p ∧ q would just have three τ -transitions to inconsistent states (due to
b, c, resp.). This explains the weak transitions for α 6= τ in Rule (May3). According to
Rules (May1) and (May2), p ∧ q in Ex. IV has four τ -transitions to states in F (due to d).

With preconditions based on at least one
τ

99K instead of
τ

99K99K in the τ -case of Rule (May3),
there would be three more τ -transitions to states in F (due to b or c). Thus, it is essential
that Rule (May3) also allows the synchronization of two weak τ -transitions, which in this

case gives p ∧ q τ
99K p′ ∧ q′.

Fig. 5 shows a small example illustrating the treatment of disjunctive must-transitions in
the presence of inconsistency. In P&Q, the a-must-transition of Q combines with the three
a-transitions of P to a truly disjunctive must-transition with a three-element target set.
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Figure 5: Example illustrating dMTS-conjunction.

The inconsistency of state (4, 6) due to b propagates back to state (3, 5). The inconsistent
states are then removed in P ∧Q.

Theorem 3.5 (∧ is And). Let P,Q,R be dMTSs. Then, (i) (∃r ∈ R. r vdMTS p and
r vdMTS q) if and only if p∧q is defined. In addition, in case p∧q is defined: (ii) r vdMTS p
and r vdMTS q if and only if r vdMTS p ∧ q.

This key theorem states in Item (ii) that conjunction behaves as it should, i.e., ∧ on dMTSs
is the greatest lower bound wrt. vdMTS. Item (i) concerns the intuition that two specifi-
cations p and q are logically inconsistent if they do not have a common implementation;
formally, p ∧ q is undefined in this case. Alternatively, we could have added an explicit
inconsistent element ff to our setting, so that p∧ q = ff. This element ff would be defined to
be a refinement of every p′ and equivalent to any (p′, q′) ∈ F of some P&Q. Additionally,
ff ∧ p′ and p′ ∧ ff would be defined as ff, for any p′.

The proof of the above theorem requires us to first introduce the following concept for
formally reasoning about inconsistent states:

Definition 3.6 (dMTS-Witness). A dMTS-witness W of P&Q is a subset of P ×Q such
that the following conditions hold for all (p, q) ∈W :

(W1) p
a−→P implies q

a
99K99KQ

(W2) q
a−→Q implies p

a
99K99KP

(W3) (p, q)
a−→ R′ implies R′ ∩W 6= ∅

Conditions (W1)–(W3) correspond to the negations of the premises of Conditions (F1)–
(F3) in Def. 3.4. This implies Part (i) of the following lemma, while Part (ii) is essential
for proving Thm. 3.5(i):

Lemma 3.7 (Concrete dMTS-Witness). Let P&Q be a conjunctive product of dMTSs and
R be a dMTS.

(i): For any dMTS-witness W of P&Q, we have F ∩W = ∅.
(ii): The set {(p, q) ∈ P × Q | ∃r ∈ R. r vdMTS p and r vdMTS q} is a dMTS-witness of

P&Q.

Proof. While the first statement of the lemma is quite obvious, we prove here that W =df

{(p, q) ∈ P ×Q | ∃r ∈ R. r vdMTS p and r vdMTS q} is a dMTS-witness of P&Q according
to Def. 3.6:

(W1): p
a−→P P ′ implies r

a−→R R
′ by r vdMTS p. Choose some r′ ∈ R′. Then, r

a
99KR r′

by syntactic consistency and q
a

99K99KQ by r vdMTS q.

(W2): Analogous to (W1).
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(W3): Consider (p, q) ∈ W due to r, with (p, q)
a−→ S′ due to p

a−→P P ′ and S′ =

{(p′, q′) | p′ ∈ P ′, q a
99K99KQ q

′} according to Rule (Must1). By r vdMTS p we get some R′ ⊆
R such that r

a−→R R′ and ∀r′∈R′ ∃p′∈P ′. r′ vdMTS p
′. Choose r′ ∈ R′; now, r

a
99KR r′

due to syntactic consistency, and q
a

99K99KQ q
′ with r′ vdMTS q

′ by r vdMTS q. Thus, we

have p′ ∈ P ′ and q′ such that (p′, q′) ∈W ∩ S′ due to r′.

We are now able to prove Thm. 3.5:

Proof. (i)”=⇒”: This follows from Lemma 3.7.

(i), (ii)”⇐=”: It suffices to show that R =df {(r, p) | ∃q. r vdMTS p ∧ q} is an observational
modal refinement relation. Then, in particular, (i)”⇐=” follows by choosing r = p ∧ q. We
check the two conditions of Def. 3.2:

• Let p
a−→P P ′; then, q

a
99K99KQ since, otherwise, p ∧ q would not be defined due to (F1).

Hence, by Rule (Must1), p ∧ q a−→ {p′ ∧ q′ | p′ ∈ P ′, q
a

99K99KQ q
′, p′ ∧ q′ defined}. By

r vdMTS p ∧ q, we get r
a−→R R′ such that ∀r′∈R′ ∃p′ ∧ q′. p′ ∈ P ′, q

a
99K99KQ q

′ and

r′ vdMTS p
′ ∧ q′. Hence, ∀r′∈R′ ∃p′∈P ′. (r′, p′) ∈ R.

• r α
99KR r′ implies ∃p′ ∧ q′. p ∧ q α̂

99K99K p
′ ∧ q′ and r′ vdMTS p

′ ∧ q′. The contribution of p in

this weak transition sequence gives p
α̂

99K99KP p
′, and we have (r′, p′) ∈ R due to q′.

(ii)”=⇒”: Here, we show that R =df {(r, p ∧ q) | r vdMTS p and r vdMTS q} is an observa-
tional modal refinement relation. By Part (i), p ∧ q is defined and (r, p ∧ q) ∈ R whenever
r vdMTS p and r vdMTS q. We now verify the conditions of Def. 3.2:

• Let p ∧ q a−→ S′, w.l.o.g. due to p
a−→P P ′ and S′ = {p′ ∧ q′ | p′ ∈ P ′, q

a
99K99KQ q

′,

p′ ∧ q′ defined}. Because of r vdMTS p, we have r
a−→R R′ so that ∀r′∈R′ ∃p′∈P ′.

r′ vdMTS p
′. Consider some arbitrary r′ ∈ R′ and the respective p′ ∈ P ′. Then, r

a
99KR r′

by syntactic consistency and, due to r vdMTS q, there exists some q′ with q
a

99K99KQ q
′ and

r′ vdMTS q
′. Thus, p′ ∧ q′ ∈ S′ and (r′, p′ ∧ q′) ∈ R.

• Let r
α

99KR r′ and consider p
α̂

99K99KP p
′ and q

α̂
99K99KQ q

′ satisfying r′ vdMTS p
′ and r′ vdMTS q

′.

Thus, (r′, p′ ∧ q′) ∈ R. Further, if α 6= τ , we have p ∧ q α
99K p′ ∧ q′ by Rule (May3).

Otherwise, either p
τ

99K99KP p
′ and q

τ
99K99KQ q

′ and we are done by Rule (May3) again, or

w.l.o.g. p
τ

99K99KP p
′ and q = q′ and we are done by Rule (May1), or p = p′ and q = q′.

The following corollary of Thm. 3.5 now easily follows:

Corollary 3.8. dMTS-refinement is compositional wrt. conjunction, i.e., if p vdMTS q and
p ∧ r is defined, then q ∧ r is defined and p ∧ r vdMTS q ∧ r.

Proof. Assume p vdMTS q and p ∧ r is defined. Then, (always) p ∧ r vdMTS p ∧ r ⇐⇒
(by Thm. 3.5) p ∧ r vdMTS p and p ∧ r vdMTS r =⇒ (by assumption and transitivity)
p∧ r vdMTS q and p∧ r vdMTS r =⇒ (by Thm. 3.5(i)) q∧ r is defined and (by Thm. 3.5(ii))
p ∧ r vdMTS q ∧ r.
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Figure 6: Example illustrating Larsen’s MTS-conjunction;
a

99K drawn separately.

Figure 7: Example showing that conjunction cannot be defined on MTS. (A similar example
is given in [BCK11] without proof.)

Thus, we have succeeded in our ambition to define a syntactically consistent conjunction
for MTS, for a weak MTS-variant with disjunctive must-transitions.

Larsen [Lar90] also defines a conjunction operator on MTS, but almost always the
result violates syntactic consistency. A simple example is shown in Fig. 6 where q refines p
in Larsen’s setting as well as in our dMTS-setting; in this figure, may-transitions are drawn
explicitly, i.e, a must- is not necessarily also a may-transition. Since Larsen’s p ∧ q is not
syntactically consistent, this p∧ q and q are, contrary to the first impression, equivalent. In
our dMTS-setting, P ∧Q is isomorphic to Q which will also hold for our MIA-setting below
(with action b read as output and where a could be either an input or an output).

Indeed, conjunction cannot be defined on MTS in general, e.g., for the P and Q in
Fig. 7(a). The states p and q have r as well as s as common implementations; thus, r
and s must be implementations of p ∧ q. An MTS P ∧ Q would need in state p ∧ q (i) an
immediate a-must-transition (due to q) followed by (ii) a must-b and no c or a must-c and
no b (due to p). In the first (second) case, s (r) is not an implementation of p ∧ q, which is
a contradiction. Using dMTS, the conjunction P ∧Q is as shown in Fig. 7(b).

The above shortcoming of MTS has been avoided by Larsen et al. in [LSW95] by limit-
ing conjunction to so-called independent specifications that make inconsistencies obsolete;
this restriction also excludes the above example. Recently, Bauer et al. [BJL+12] have de-
fined conjunction for a version of MTS extended by partially ordered labels; when refining
an MTS, also the labels can be refined, and this has various applications. However, the
conjunction operator is only defined under some restriction, which corresponds to requir-
ing determinism in the standard MTS-setting. Another MTS-inspired theory including a
conjunction operator has been introduced by Raclet et al. [RBB+11]. While their approach
yields the desired p ∧ q as in our dMTS-setting, it is language-based and thus deals with
deterministic systems only.

3.3. Disjunction on dMTS. We will see in Sec. 3.4 that input-transitions (output-trans-
itions) in IA correspond to must-transitions (may-transitions) in dMTS. In this light, the
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following definition of disjunction corresponds closely to the one for IA. In particular, initial
must-transitions are also combined, but this time the choice between disjuncts is not delayed.

Definition 3.9 (Disjunction on dMTS). Let P = (P,A,−→P , 99KP ) and Q = (Q,A,−→Q,
99KQ) be dMTSs with common alphabet. The disjunction P ∨ Q is defined as the tuple
({p∨ q | p ∈ P, q ∈ Q}∪P ∪Q,A,−→, 99K), where −→ and 99K are the least sets satisfying
−→P⊆−→, 99KP⊆99K, −→Q⊆−→, 99KQ⊆99K and the following operational rules:

(Must) p ∨ q a−→ P ′ ∪Q′ if p
a−→P P

′, q
a−→Q Q

′

(May1) p ∨ q α
99K p′ if p

α
99KP p′

(May2) p ∨ q α
99K q′ if q

α
99KQ q′

This definition clearly yields well-defined dMTSs respecting syntactic consistency. It also
gives us the desired least-upper-bound property:

Theorem 3.10 (∨ is Or). Let P , Q, and R be dMTSs with states p, q and r, resp. Then,
p ∨ q vdMTS r if and only if p vdMTS r and q vdMTS r.

Proof. “=⇒”: We establish that R =df {(p, r) | ∃q. p ∨ q vdMTS r}∪ vdMTS is a modal
refinement relation. To do so, we let (p, r) ∈ R due to q and check the conditions of Def. 3.2:

(i): Let r
a−→R R

′. By p∨q vdMTS r and the only applicable Rule (Must), p∨q a−→ P ′∪Q′
due to p

a−→P P ′ and q
a−→Q Q′ such that ∀p′∈P ′ ∪Q′ ∃r′∈R′. p′ vdMTS r

′. Hence,
∀p′∈P ′ ∃r′∈R′. p′ vdMTS r

′ and, thus, (p′, r′) ∈ R.

(ii): Let p
α

99KP p′. Hence, p ∨ q α
99K p′ by Rule (May1) and, due to p ∨ q vdMTS r, there

exists some r′ such that r
α̂

99K99K r
′ and p′ vdMTS r

′.

“⇐=”: We prove that R =df {(p ∨ q, r) | p vdMTS r and q vdMTS r}∪ vdMTS is a modal
refinement relation. Let (p ∨ q, r) ∈ R and consider the following cases:

(i): Let r
a−→R R′. By p vdMTS r and q vdMTS r we have P ′, Q′ satisfying p

a−→P P ′,

q
a−→Q Q′ such that ∀p′∈P ′ ∃r′∈R′. p′ vdMTS r

′ and ∀q′∈Q′ ∃r′∈R′. q′ vdMTS r
′.

Thus, p ∨ q a−→ P ′ ∪Q′ using Rule (Must) and we are done.

(ii): p ∨ q α
99K p′. W.l.o.g., this is due to Rule (May1) and p

α
99KP p′. Then, r

α̂
99K99KRr

′ for
some r′ satisfying p′ vdMTS r

′, by p vdMTS r.

Analogously to the IA-setting we may obtain the following corollary to the above theorem:

Corollary 3.11. dMTS-refinement is compositional wrt. disjunction.

3.4. Embedding of IA into dMTS. We can now adopt the embedding of IA into MTS
from [LNW07] to our setting:

Definition 3.12 (IA-Embedding). Let P be an IA with A = I ∪ O. Then, the embed-
ding [P ]dMTS of P into (d)MTS is defined as the (d)MTS (P ∪ {uP }, A,−→, 99K), where
uP /∈ P and:

p
α

99K p′ if p
α−→P p

′ and α ∈ A ∪ {τ};
p

a−→ p′ if p
a−→P p

′ and a ∈ I;

p
a

99K uP if p 6 a−→P and a ∈ I;

uP
a

99K uP if a ∈ A.
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Figure 8: Example refuting the reverse refinement in Prop. 3.13(a). All non-labelled tran-
sitions depict i-may-transitions.

Figure 9: Example refuting the reverse refinement in Prop. 3.13(b) (a ∈ A = {i, j, k}).

For the remainder of this section we simply write [p] for p ∈ [P ]dMTS. Observe that [P ]dMTS

does not have truly disjunctive transitions; hence, it is an MTS. In [LNW07], it is shown
that this embedding respects refinement, i.e., p vIA q if and only if [p] vdMTS [q]. Since
conjunction (disjunction) on IA and dMTS is the greatest lower bound (least upper bound)
wrt. vIA and vdMTS (up to equivalence), resp., we have by general order theory:

Proposition 3.13 (Conjunction/Disjunction and IA-Embedding). For all IAs P and Q
with p ∈ P and q ∈ Q:

(a): [p ∧ q] vdMTS [p] ∧ [q];
(b): [p ∨ q] wdMTS [p] ∨ [q].

The reverse refinements do not hold due to the additional dMTSs that are not embeddings
of IA. To see this for conjunction, consider the example in Fig. 8, where P and Q are
IAs. State r in dMTS R is a common implementation of state [p] and state [q], i.e., their
conjunction is sufficiently large to cover r. However, r does not refine [p ∧ q] since the initial
i-must-transition of the latter cannot be matched by the former. Hence, [p ∧ q] and [p]∧ [q]
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Figure 10: Example demonstrating the compositionality flaw of IOMTS.

cannot be equivalent. To see this for disjunction, consider r and s in Fig. 2 on the right.
Fig. 9 shows all relevant dMTSs, and [r ∨ s] does not refine [r] ∨ [s] since it does not have
a must-transition after i.

4. Modal Interface Automata

An essential point of Larsen, Nyman and Wasowski’s paper [LNW07] is to enrich IA with
modalities to get a flexible specification framework where inputs and outputs can be pre-
scribed, allowed or prohibited. To do so, they consider IOMTS, i.e., MTS where visible
actions are partitioned into inputs and outputs, and define parallel composition in IA-style.

Our example of Fig. 10 shows that their approach has a serious flaw, namely observa-
tional modal refinement is not a precongruence for the parallel composition of [LNW07]. In
this example, the IOMTS P has input alphabet {a} and empty output alphabet, while Q
and Q′ have input alphabet {i} and output alphabet {a}. Obviously, q′ vdMTS q. When
composing P and Q in parallel, p|q would reach an error state after an i-must-transition
in [LNW07] since the potential output a of Q is not expected by P . In contrast, p|q′ has an
i-must- and i-may-transition not allowed by P |Q, so that p|q′ 6vdMTS p|q. This counterex-
ample also holds for (strong) modal refinement as defined in [LNW07] and is particularly
severe since all systems are deterministic and all must-transitions concern inputs only. The
problem is that p|q forbids input i.

In [LNW07], precongruence of parallel composition is not mentioned. Instead, a theo-
rem relates the parallel composition of two IOMTSs to a different composition on two re-
fining implementations, where an implementation in [LNW07] is an IOMTS in which may-
and must-transitions coincide. This theorem is incorrect as is pointed out in [RBB+11] and
repaired in the deterministic setting of that paper; the repair is again not a precongruence
result, but still compares the results of two different composition operators. However, a nat-
ural solution to the precongruence problem can be adopted from the IA-framework [dH05]
where inputs are always allowed implicitly. Consequently, if an input transition is specified,
it will always be a must.

In the remainder, we thus define and study a new specification framework, called Modal
Interface Automata (MIA), that takes the dMTS-setting for an alphabet consisting of in-
put and output actions, requires input-determinism, and demands that every input-may-
transition is also an input-must-transition. The advantage over IA is that outputs can be
prescribed via output-must-transitions, which precludes trivial implementations like Black-
Hole discussed in Sec. 2.

Definition 4.1 (Modal Interface Automaton). A Modal Interface Automaton (MIA) is a
tuple Q = (Q, I,O,−→, 99K), where (Q, I∪O,−→, 99K) is a dMTS with disjoint alphabets I

for inputs and O for outputs and where for all i ∈ I: (a) q
i−→ Q′ and q

i−→ Q′′ implies

Q′ = Q′′; (b) q
i

99K q′ implies ∃Q′. q i−→ Q′ and q′ ∈ Q′.
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In the conference version of this article, we have considered truly disjunctive must-transitions
only for outputs, so as to satisfy input determinism; this suffices for developing MIA-
conjunction. However, for disjunction we have seen that such transitions are also needed
for inputs. The above definition of MIA therefore permits one disjunctive must-transition
for each input. This allows some choice on performing an input but, surprisingly, it is input-
deterministic enough to support compositionality for parallel composition (cf. Thm. 4.14).

Definition 4.2 (MIA-Refinement). Let P,Q be MIAs with common input and output
alphabets. Relation R ⊆ P × Q is an (observational) MIA-refinement relation if for all
(p, q) ∈ R:

(i): q
a−→ Q′ implies ∃P ′. p a−→ P ′ and ∀p′∈P ′ ∃q′∈Q′. (p′, q′) ∈ R,

(ii): p
α

99K p′ with α ∈ O ∪ {τ} implies ∃q′. q α̂
99K99K q

′ and (p′, q′) ∈ R.

We write p vMIA q and say that p MIA-refines q if there exists an observational MIA-
refinement relation R such that (p, q) ∈ R. Moreover, we also write p =MIA q in case
p vMIA q and q vMIA p (which is an equivalence weaker than ‘bisimulation’).

One can easily check that vMIA is a preorder and the largest observational MIA-refinement
relation. Its definition coincides with dMTS-refinement except that Cond. (ii) is restricted
to outputs and the silent action τ . Thus, inputs are always allowed implicitly and, in effect,
treated just like in IA-refinement. Due to the output-must-transitions in the MIA-setting,
MIA-refinement can model, e.g., STG-bisimilarity [VW02] for systems without internal
actions; this is a kind of alternating simulation refinement used for digital circuits.

4.1. Conjunction on MIA. Similar to conjunction on dMTS, we define conjunction on
MIA by first constructing a conjunctive product and then eliminating all inconsistent states.

Definition 4.3 (Conjunctive Product on MIA). Let P = (P, I,O,−→P , 99KP ) and Q =
(Q, I,O,−→Q, 99KQ) be MIAs with common input and output alphabets and disjoint state
sets P and Q. The conjunctive product P&Q =df ((P ×Q)∪P ∪Q, I,O,−→, 99K) inherits
the transitions of P and Q and has additional transitions as follows, where i ∈ I, o ∈ O
and α ∈ O ∪ {τ}:

(OMust1) (p, q)
o−→ {(p′, q′) | p′ ∈ P ′, q o

99K99KQ q
′} if p

o−→P P
′ and q

o
99K99KQ

(OMust2) (p, q)
o−→ {(p′, q′) | p o

99K99KP p
′, q′ ∈ Q′} if p

o
99K99KP and q

o−→Q Q
′

(IMust1) (p, q)
i−→ P ′ if p

i−→P P
′ and q 6 i−→Q

(IMust2) (p, q)
i−→ Q′ if p 6 i−→P and q

i−→Q Q
′

(IMust3) (p, q)
i−→ P ′ ×Q′ if p

i−→P P
′ and q

i−→Q Q
′

(May1) (p, q)
τ

99K (p′, q) if p
τ

99K99KP p
′

(May2) (p, q)
τ

99K (p, q′) if q
τ

99K99KQ q
′

(May3) (p, q)
α

99K (p′, q′) if p
α

99K99KP p
′ and q

α
99K99KQ q

′

(IMay1) (p, q)
i

99K p′ if p
i

99KP p′ and q 6 i99KQ
(IMay2) (p, q)

i
99K q′ if p 6 i99KP and q

i
99KQ q′

(IMay3) (p, q)
i

99K (p′, q′) if p
i

99KP p′ and q
i

99KQ q′

This product is defined analogously to IA-conjunction for inputs (plus the corresponding
‘may’ rules) and to the dMTS-product for outputs and τ . Thus, it combines the effects
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shown in Fig. 1 (where all outputs are treated as may) and Fig. 5 (where all actions are
outputs).

Definition 4.4 (Conjunction on MIA). Given a conjunctive product P&Q, the set F ⊆
P × Q of (logically) inconsistent states is defined as the least set satisfying the following
rules:

(F1) p
o−→P , q 6 o99K99KQ , o ∈ O implies (p, q) ∈ F

(F2) p 6 o99K99KP , q
o−→Q, o ∈ O implies (p, q) ∈ F

(F3) (p, q)
a−→ R′ and R′ ⊆ F implies (p, q) ∈ F

The conjunction P ∧Q of MIAs P,Q with common input and output alphabets is obtained
by deleting all states (p, q) ∈ F from P&Q as for dMTS in Def. 3.4. We write p ∧ q for
state (p, q) of P ∧Q; all such states are defined – and consistent – by construction.

The conjunction P ∧Q is a MIA and is thus well-defined. This can be seen by a similar argu-
ment as we have used above in the context of dMTS-conjunction, while input-determinism
can be established by an argument similar to that in the IA-setting. Note that, in contrast
to the dMTS-situation, Rules (F1) and (F2) only apply to outputs. Fig. 5 is also an example
for conjunction in the MIA-setting if all actions are read as outputs.

To reason about inconsistency we use a notion of witness again. This may be defined
analogously to the witness notion for dMTS but replacing a ∈ A in Def. 3.6(W1) and (W2)
by a ∈ O. We then obtain the analogous lemma to Lemma 3.7, which is needed in the proof
of the analogue theorem to Thm. 3.5:

Definition 4.5 (MIA-Witness). A MIA-witness W of P&Q is a subset of (P ×Q)∪P ∪Q
such that the following conditions hold for all (p, q) ∈W :

(W1) p
o−→P with o ∈ O implies q

o
99K99KQ

(W2) q
o−→Q with o ∈ O implies p

o
99K99KP

(W3) (p, q)
a−→ R′ implies R′ ∩W 6= ∅

Lemma 4.6. Let P&Q be a conjunctive product of MIAs. Then, for any MIA-witness W
of P&Q, we have (i) F ∩W = ∅. Moreover, (ii) the set W =df {(p, q) ∈ P ×Q | ∃MIAR
and r ∈ R. r vMIA p and r vMIA q} ∪ P ∪Q is a MIA-witness of P&Q.

Proof. Since Part (i) is again obvious, we directly proceed to proving Part (ii), for which it
suffices to consider the elements of {(p, q) ∈ P ×Q | ∃r ∈ R. r vMIA p and r vMIA q}; thus,
let (p, q) ∈W due to MIA R and r ∈ R:

(W1): p
o−→P P ′ implies r

o−→R R′ by r vMIA p. Choose some r′ ∈ R′. Then, r
o

99KR r′

by syntactic consistency, and q
o

99K99KQ by r vMIA q.

(W2): Analogous to (W1).

(W3): Assume (p, q)
a−→. According to the operational rules for conjunction, we distinguish

the following cases:

(OMust1): Then, (p, q)
a−→ S′ for a ∈ O, i.e., p

a−→P P ′ and S′ = {(p′, q′) | p′ ∈
P ′, q

a
99K99KQ q

′}. By r vMIA p we obtain some R′ ⊆ R such that r
a−→R R

′ and ∀r′∈R′

∃p′∈P ′. r′ vMIA p′. Choose r′ ∈ R′ and the respective p′ ∈ P ′; now, r
a

99KR r′ due to

syntactic consistency, and q
a

99K99KQ q
′ with r′ vMIA q

′ for some q′ by r vMIA q. Thus, we

have p′ ∈ P ′ and q′ such that (p′, q′) ∈W ∩S′ due to r′. Case (OMust2) is analogous.
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(IMust1): Then, (p, q)
a−→ P ′ for a ∈ I, and we are done. Case (IMust2) is analogous.

(IMust3): Then, (p, q)
a−→ P ′ × Q′ for a ∈ I due to p

a−→P P ′ and q
a−→Q Q′. By

r vMIA p, r vMIA q and input-determinism, we have some R′ and r′ ∈ R′ such that

r
a−→R R

′, ∃ p′∈P ′. r′ vMIA p
′ and ∃ q′∈Q′. r′ vMIA q

′. Thus, (p′, q′) ∈W due to r′.

We can now state and prove the desired largest-lower-bound theorem, from which compo-
sitionality of vMIA wrt. ∧ follows in analogy to the IA- and dMTS-settings:

Theorem 4.7 (∧ is And). Let P,Q be MIAs. We have (i) (∃MIAR and r ∈ R. r vMIA p
and r vMIA q) if and only if p ∧ q is defined. Further, in case p ∧ q is defined and for any
MIA R and r ∈ R: (ii) r vMIA p and r vMIA q if and only if r vMIA p ∧ q.

Proof. (i)”=⇒”: This follows directly from Lemma 4.6 above.

(ii)”⇐=”: For a MIA R we show that R =df {(r, p) ∈ R×P | ∃q ∈ Q. r vMIA p∧q}∪ vMIA

is a MIA-refinement relation, by checking the two conditions of Def. 4.2 for some (r, p) ∈ R
due to q:

• Let p
a−→P P

′ and consider the following cases depending on whether action a is an input
or an output:

− a ∈ O: Then, q
a

99K99KQ since, otherwise, p∧q would not be defined due to (F1). Thus, by

Rule (OMust1), p∧ q a−→ {p′∧ q′ | p′ ∈ P ′, q a
99K99KQ q

′, p′ ∧ q′ defined}. By r vMIA p∧ q,
we get some R′ ⊆ R such that r

a−→R R′ and ∀r′∈R′ ∃p′ ∧ q′. p′ ∈ P ′, q a
99K99KQ q

′ and

r′ vMIA p
′ ∧ q′. Hence, ∀r′∈R′ ∃p′∈P ′. (r′, p′) ∈ R.

− a ∈ I: This can lead to a transition of p ∧ q in two ways:

(IMust1): q 6 a−→Q, whence p∧ q a−→ P ′. By r vMIA p∧ q, there is some R′ such that

r
a−→R R

′ and ∀r′∈R′ ∃p′∈P ′. r′ vMIA p
′.

(IMust3): q
a−→Q Q′, whence p ∧ q a−→ (P ′ × Q′) \ F . By r vMIA p ∧ q, there is

some R′ such that r
a−→R R′ and ∀r′∈R′ ∃p′ ∧ q′ ∈ P ′ × Q′. r′ vMIA p′ ∧ q′ and,

thus, (r′, p′) ∈ R due to q′.

• r α
99KR r′ with α ∈ O ∪ {τ} implies ∃p′ ∧ q′. p ∧ q α̂

99K99K p
′ ∧ q′ and r′ vMIA p′ ∧ q′. The

contribution of p in this weak transition sequence gives p
α̂

99K99KP p
′, and we have (r′, p′) ∈ R

due to q′.

(i)”⇐=”: This follows from (ii)”⇐=” by choosing R = P ∧Q and r = p ∧ q.
(ii)”=⇒”: Let R be a MIA R. We show that the relation R =df {(r, p ∧ q) | r ∈ R,
r vMIA p and r vMIA q}∪ vMIA is a MIA-refinement relation. Due to Part (i), p ∧ q is
defined whenever r vMIA p and r vMIA q. We now verify the conditions of Def. 4.2 for
(r, p ∧ q) ∈ R:

• Let p ∧ q a−→ and distinguish the following cases by our operational rules:

− p∧ q a−→ S′ with a ∈ O: By Rule (OMust1) this is w.l.o.g. due to p
a−→P P

′ and S′ =

{p′ ∧ q′ | p′ ∈ P ′, q a
99K99KQ q

′, p′ ∧ q′ defined}. By r vMIA p, we have some R′ ⊆ R such

that r
a−→R R

′ and ∀r′∈R′ ∃p′∈P ′. r′ vMIA p′. Consider some arbitrary r′ ∈ R′ and

the respective p′ ∈ P ′. Then, we have r
a

99KR r′ by syntactic consistency and, due to

r vMIA q, some q′ with q
a

99K99KQ q
′ and r′ vMIA q

′. Thus, p′∧q′ ∈ S′ and (r′, p′ ∧ q′) ∈ R.
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Figure 11: MIA-disjunction is more intuitive than IA-disjunction.

− p∧ q a−→ P ′ with a ∈ I: This is w.l.o.g. due to Rule (IMust1): p
a−→P P

′ and q 6 a−→Q.

By r vMIA p, we have some R′ such that r
a−→R R′ and ∀r′∈R′ ∃p′∈P ′. r′ vMIA p′,

whence (r′, p′) ∈ R.

− p ∧ q a−→ (P ′ × Q′) \ F with a ∈ I: This is due to Rule (IMust3), i.e., p
a−→P

P ′ and q
a−→Q Q′. By r vMIA p and r vMIA q, we get a unique r

a−→R R′ (by
input-determinism) such that ∀r′∈R′ ∃p′∈P ′, q′∈Q′. r′ vMIA p′ and r′ vMIA q′; thus,
(r′, p′ ∧ q′) ∈ R.

• Let r
α

99KR r′ with α ∈ O ∪ {τ} and consider p
α̂

99K99KP p
′ and q

α̂
99K99KQ q

′ satisfying r′ vMIA p
′

and r′ vMIA q′. Thus, (r′, p′ ∧ q′) ∈ R. Further, if α 6= τ , we have p ∧ q α
99K p′ ∧ q′ by

Rule (May3). Otherwise, either p
τ

99K99KP p
′ and q

τ
99K99KQ q

′ and we are done by Rule (May3),

or w.l.o.g. p
τ

99K99KP p
′ and q = q′ and we are done by Rule (May1), or p = p′ and q = q′.

In analogy to Corollary 3.8 we obtain:

Corollary 4.8. MIA-refinement is compositional wrt. conjunction.

4.2. Disjunction on MIA. The disjunction of two MIAs P and Q can be defined in the
same way as for dMTS, except for the special treatment of inputs in the may-rules which
guarantees that P ∨Q is a MIA and, especially, that Def. 4.1(b) is satisfied:

Definition 4.9 (Disjunction on MIA). Let P = (P, I,O,−→P , 99KP ), Q = (Q, I,O,−→Q,
99KQ) be MIAs with common input and output alphabets and disjoint state sets P and Q.
The disjunction P ∨Q is defined by ({p ∨ q | p ∈ P, q ∈ Q} ∪ P ∪Q, I,O,−→, 99K), where
−→ and 99K are the least sets satisfying −→P⊆−→, 99KP⊆99K, −→Q⊆−→, 99KQ⊆99K and
the following operational rules:

(Must) p ∨ q a−→ P ′ ∪Q′ if p
a−→P P

′ and q
a−→Q Q

′

(May1) p ∨ q α
99K p′ if p

α
99KP p′ and, in case α ∈ I, also q

α
99KQ

(May2) p ∨ q α
99K q′ if q

α
99KQ q′ and, in case α ∈ I, also p

α
99KP

It is easy to see that this definition is well-defined, i.e., the resulting disjunctions are indeed
MIAs, and we additionally have:

Theorem 4.10 (∨ is Or). Let P , Q and R be MIAs with states p, q and r, resp. Then,
p ∨ q vMIA r if and only if p vMIA r and q vMIA r.

The theorem’s proof is as for dMTS (cf. Thm. 3.10) but, in the (ii)-cases, only α ∈ O ∪ {τ}
has to be considered. Analogously to dMTS we obtain the following corollary to Thm. 4.10:

Corollary 4.11. MIA-refinement is compositional wrt. disjunction.
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Figure 12: MIA-disjunction is an inclusive-or.

To conclude this section we argue that MIA-disjunction is more intuitive than IA-
disjunction. The example in Fig. 11 shows MIAs P , Q, P ∨ Q as well as a MIA R, where
state r corresponds to the IA-disjunction of states p and q when we understand P and Q as
IAs. As expected (cf. p. 7), p∨q is a refinement of r, but not vice versa. MIA-disjunction can
now be considered to be more intuitive since the first transition in the disjunction decides
which disjunct has to be satisfied afterward, in contrast to IA-disjunction.

Moreover, Fig. 12 shows that MIA-disjunction is an inclusive-or: an implementation
of p ∨ q can have an o1-transition followed by i and another o1-transition followed by j;
interestingly, r vMIA p ∨ q satisfies ‘half’ of p and ‘half’ of q. In general, for each ac-
tion a ∈ A separately, a refinement of some disjunction has to satisfy at least all initial
a-must-transitions of one of its disjuncts.

4.3. Parallel Composition on MIA. In analogy to the IA-setting [dH05] we provide a
parallel operator on MIA. Here, error states are identified, and all states are removed from
which reaching an error state is unavoidable in some implementation, as is done for IOMTS
in [LNW07].

Definition 4.12 (Parallel Product on MIA). MIAs P1 and P2 are composable if A1 ∩A2 =
(I1∩O2)∪(O1∩I2), as in IA. For such MIAs we define the product P1 ⊗ P2 = (P1 × P2, I, O,
−→, 99K), where I = (I1 ∪ I2) \ (O1 ∪ O2) and O = (O1 ∪ O2) \ (I1 ∪ I2) and where −→
and 99K are defined as follows:

(Must1) (p1, p2)
a−→ P ′1 × {p2} if p1

a−→ P ′1 and a /∈ A2

(Must2) (p1, p2)
a−→ {p1} × P ′2 if p2

a−→ P ′2 and a /∈ A1

(May1) (p1, p2)
α

99K (p′1, p2) if p1
α

99K p′1 and α /∈ A2

(May2) (p1, p2)
α

99K (p1, p
′
2) if p2

α
99K p′2 and α /∈ A1

(May3) (p1, p2)
τ

99K (p′1, p
′
2) if p1

a
99K p′1 and p2

a
99K p′2 for some a.

Recall that there are no τ -must-transitions since they are irrelevant for refinement.

Definition 4.13 (Parallel Composition on MIA). Given a parallel product P1⊗P2, a state

(p1, p2) is an error state if there is some a ∈ A1 ∩ A2 such that (a) a ∈ O1, p1
a

99K and

p2 6
a−→, or (b) a ∈ O2, p2

a
99K and p1 6

a−→.
Again we define the set E ⊆ P1 × P2 of incompatible states as the least set such that

(p1, p2) ∈ E if (i) (p1, p2) is an error state or (ii) (p1, p2)
α

99K (p′1, p
′
2) for some α ∈ O ∪ {τ}

and (p′1, p
′
2) ∈ E.
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The parallel composition P1|P2 of P1 and P2 is now obtained from P1 ⊗P2 by pruning,
namely removing all states in E and every transition that involves such states as its source,
its target or one of its targets; all may-transitions underlying a removed must-transition are
deleted, too. If (p1, p2) ∈ P1|P2, we write p1|p2 and call p1 and p2 compatible.

Parallel products and parallel compositions are well-defined MIAs. Syntactic consistency
is preserved, as is input-determinism since input-transitions are directly inherited from one
of the composable systems. In particular, Cond. (b) in Def. 4.1 holds due to the additional
clause regarding the deletion of may-transitions. In addition, targets of disjunctive must-
transitions are never empty since all must-transitions that remain after pruning are taken
from the product without modification.

As an example why pruning is needed, consider Fig. 3 again and read the τ -transitions
as may-transitions and all other transitions as must-transitions. Further observe that prun-
ing is different from removing inconsistent states in conjunction. For truly disjunctive

transitions (p1, p2)
a−→ P ′ of the product P1 ⊗ P2, the state (p1, p2) is removed already

if P ′ ∩ E 6= ∅, i.e., there exists some (p′1, p
′
2) ∈ P ′ ∩ E, and not only if P ′ ⊆ E. This is

clear for a ∈ O since (p1, p2)
a

99K (p′1, p
′
2) by syntactic consistency and, therefore, (p1, p2) is

deleted itself by Cond. (ii) above. Note that Cond. (ii) corresponds directly to the IA-case
since output-transitions there correspond to may-transitions here (see Sec. 3.4). For a ∈ I,
reaching the error state can only be prevented if the environment does not provide a; in-
tuitively, this is because P ′ has w.l.o.g. the form P ′1 × {p2} in the product of P1 and P2

(i.e., p′2 = p2). The implementor of P1 might choose to implement p1
a−→ p′1 such that

– when P1’s implementation is composed with P2’s – the error state is reached. To express

the requirement on the environment not to exhibit a, must-transition (p1, p2)
a−→ P ′ and

all underlying may-transitions have to be deleted.

Theorem 4.14 (Compositionality of MIA-Parallel Composition). Let P1, P2 and Q1 be
MIAs with p1 ∈ P1, p2 ∈ P2, q1 ∈ Q1 and p1 vMIA q1. Assume that Q1 and P2 are
composable; then:

(a): P1 and P2 are composable.
(b): If q1 and p2 are compatible, then so are p1, p2 and p1|p2 vMIA q1|p2.

Proof. Part (a) follows immediately since MIA Q1 has the same input and output alphabets
as MIA P1, due to p1 vMIA q1. Regarding Part (b), the first claim is implied by the following
auxiliary result:

Let EP be the E-set of P1 ⊗ P2 and EQ be the one of Q1 ⊗ P2. Then,
(p1, p2) ∈ EP and p1 vMIA q1 together imply (q1, p2) ∈ EQ.

The proof of this result is by induction on the length of a path from (p1, p2) to an error
state of P1 ⊗ P2:

(Base): Let (p1, p2) be an error state.

• Let p1
a

99KP1 with a ∈ O1∩I2 and p2 6
a−→P2 . Then, for some q′1, we have q1

ε
99K99KQ1q

′
1

a
99KQ1

by p1 vMIA q1; therefore, (q1, p2)
ε

99K99K (q′1, p2) ∈ EQ and (q1, p2) ∈ EQ, too.

• Let p2
a

99KP2 with a ∈ O2 ∩ I1 and p1 6
a−→P1 . If q1

a−→Q1 , we have a contradiction
to p1 vMIA q1; otherwise, (q1, p2) is an error state.

(Step): For a shortest path from (p1, p2) to an error state, consider the first transition

(p1, p2)
α

99K (p′1, p
′
2) ∈ EP with α ∈ O ∪ {τ}. The transition is due to Rule (May1),
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(May2) or (May3). In all cases we show p′1 vMIA q′1, which implies (q′1, p
′
2) ∈ EQ by

induction hypothesis.

(May1): p1
α

99KP1 p
′
1, p2 = p′2, α /∈ A2, and α ∈ O1 ∪ {τ} by α ∈ O ∪ {τ}. Hence,

there is some q′1 such that q1
α̂

99K99KQ1q
′
1 and p′1 vMIA q′1, due to p1 vMIA q1, and

(q1, p2)
α̂

99K99K (q′1, p2) by applications of Rule (May1). By induction hypothesis, (q′1, p2) ∈
EQ and, thus, (q1, p2) ∈ EQ.

(May2): p1 = p′1, p2
α

99KP2 p′2 and α /∈ A1. Now, since P1 and Q1 have the same

alphabets by p1 vMIA q1, we can apply Rule (May2) again and obtain (q1, p2)
α

99K
(q1, p

′
2), so that (q1, p

′
2) ∈ EQ by induction hypothesis. Hence, (q1, p2) ∈ EQ, too.

(May3): α = τ .

• p1
a

99KP1 p
′
1 with a ∈ O1, and p2

a
99KP2 p

′
2 with a ∈ I2. By p1 vMIA q1, we have

q1
ε

99K99KQ1q
′′
1

a
99KQ1 q

′
1 for some q′1, q

′′
1 with p′1 vMIA q

′
1. Hence, (q1, p2)

ε
99K99K (q′′1 , p2)

τ
99K

(q′1, p
′
2) via Rules (May1) and (May3). By induction hypothesis, (q′1, p

′
2) ∈ EQ and,

thus, (q1, p2) ∈ EQ, too.

• p1
a

99KP1 p
′
1 with a ∈ I1, and p2

a
99KP2 p

′
2 with a ∈ O2. If q1 6

a
99KQ1 , then q1 6

a−→Q1

by syntactic consistency and (q1, p2) is thus an error state. If q1
a

99KQ1 , then there

exist unique p1
a−→P1 P

′ and q1
a−→Q1 Q

′. We have p′1 ∈ P ′ by Def. 4.1(b) and

∃q′1∈Q′. p′1 vMIA q′1 since p1 vMIA q1. Hence, q1
a

99KQ1 q
′
1 by syntactic consistency

and (q1, p2)
τ

99K (q′1, p
′
2) due to Rule (May3). By induction hypothesis, (q′1, p

′
2) ∈ EQ

and, therefore, (q1, p2) ∈ EQ.

This completes the proof of the auxiliary result. We can now prove that

R =df {(p1|p2, q1|p2) | p1 vMIA q1, p1, p2 as well as q1, p2 compatible}
is a MIA-refinement relation, for which we let (p1|p2, q1|p2) ∈ R and check the conditions
of Def. 4.2:

(i): Let q1|p2
a−→ Q′ with Q′ ∩ EQ = ∅ due to either Rule (Must1) or (Must2).

(Must1): q1
a−→Q1 Q

′
1 and Q′ = Q′1 × {p2}. Then, by p1 vMIA q1, there is some

P ′1 ⊆ P1 such that p1
a−→P1 P

′
1 and ∀p′1∈P ′1 ∃q′1∈Q′1. p′1 vMIA q

′
1. Now, (p1, p2)

a−→
P ′1 × {p2} by Rule (Must1) and since a /∈ A2. For p′1 ∈ P ′1 we have a suitable
q′1 ∈ Q′1, and (p′1, p2) /∈ EP since (q′1, p2) /∈ EQ and due to the auxiliary result
above. Thus, for the arbitrary p′1|p2, we also have (p′1|p2, q′1|p2) ∈ R.

(Must2): p2
a−→P2 P

′
2 and Q′ = {q1} × P ′2. Then, (p1, p2)

a−→ P ′ = {p1} × P ′2
by Rule (Must2) and as P1, Q1 have the same alphabets by p1 vMIA q1. For
(p1, p

′
2) ∈ P ′, we get (p1, p

′
2) /∈ EP since (q1, p

′
2) /∈ EQ and due to the auxiliary

result above. Thus, p1|p2
a−→ P ′ and, for p1|p′2 ∈ P ′, we have q1|p′2 ∈ Q′ with

(p1|p′2, q1|p′2) ∈ R.

(ii): Let p1|p2
α

99K p′1|p′2 /∈ EP with α ∈ O ∪ {τ}. The transition arises from one of the
Rules (May1), (May2) or (May3):

(May1): p′2 = p2 and p1
α

99KP1 p′1. By p1 vMIA q1, we have q1
α̂

99K99KQ1q
′
1 for

some q′1 such that p′1 vMIA q′1. Hence, (q1, p2)
α̂

99K99K (q′1, p2) by repeated applica-
tion of Rule (May1) and since ω /∈ A2. If any state on this transition sequence
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Figure 13: Example illustrating the need of input-determinism for MIA.

were in EQ, then also (q1, p2) ∈ EQ which contradicts (p1|p2, q1|p2) ∈ R. Thus,

q1|p2
α̂

99K99K q
′
1|p2 with (p′1|p2, q′1|p2) ∈ R.

(May2): p′1 = p1 and p2
α

99KP2 p′2. Then, (q1, p2)
α

99K (q1, p
′
2) by Rule (May2)

and since P1 and Q1 have the same alphabets due to p1 vMIA q1. If the latter
state (q1, p

′
2) were in EQ, then also the former state (q1, p2). Therefore, we have

q1|p2
α

99K q1|p′2 and, moreover, (p1|p′2, q1|p′2) ∈ R.

(May3): α = τ , p1
a

99KP1 p
′
1 and p2

a
99KP2 p

′
2 for some a.

• a ∈ O1 ∩ I2: Then, q1
ε

99K99KQ1q
′′
1

a
99KQ1 q′1 for q′1, q

′′
1 with p′1 vMIA q′1, due to

p1 vMIA q1. Now, (q1, p2)
ε

99K99K (q′′1 , p2)
τ

99K (q′1, p
′
2) by Rules (May1), (May3). As

in Case (May1) above, q1|p2
ε

99K99K q
′
1|p′2 and (p′1|p′2, q′1|p′2) ∈ R.

• a ∈ I1 ∩ O2: If q1 6
a

99KQ1 , then (q1, p2) would be an error state, which is a

contradiction. Therefore, q1
a

99KQ1 and, by Def. 4.1(b), there exist unique

p1
a−→P1 P ′ and q1

a−→Q1 Q′ by input-determinism. We have p′1 ∈ P ′ and

∃q′1∈Q′. p′1 vMIA q
′
1 since p1 vMIA q1. Thus, (q1, p2)

τ
99K (q′1, p

′
2) by Rule (May3)

and syntactic consistency, and (q′1, p
′
2) /∈ EQ by the same reasoning as above.

Hence, q1|p2
τ

99K q′1|p′2 with (p′1|p′2, q′1|p′2) ∈ R.

This precongruence property of MIA-refinement would not hold if we would do away with
input-determinism in MIA. To see this, consider the example of Fig. 13 for which p vMIA q;
however, p|r vMIA q|r does not hold since q and r are compatible while p and r are not.
An analogue reasoning applies to IA, although we do not know of a reference in the IA
literature where this has been observed.

4.4. Embedding of IA into MIA. To conclude, we provide an embedding of IA into
MIA in the line of [LNW07]:

Definition 4.15 (IA-Embedding). Let P be an IA. The embedding [P ]MIA of P into MIA

is defined as the MIA (P, I,O,−→, 99K), where (i) p
i−→ p′ if p

i−→P p′ and i ∈ I, and

(ii) p
α

99K p′ if p
α−→P p

′ and α ∈ I ∪O ∪ {τ}.

In the remainder of this section we simply write [p] for p ∈ [P ]MIA. This embedding is much
simpler than the one of [LNW07] since MIA more closely resembles IA than IOMTS does.
In particular, the following theorem is obvious:

Theorem 4.16 (IA-Embedding Respects Refinement). For IAs P,Q with p ∈ P , q ∈ Q:
p vIA q if and only if [p] vMIA [q].

Our embedding respects operators ∧ and |, unlike the one in [LNW07]:

Theorem 4.17 (IA-Embedding is a Homomorphism). For IAs P,Q with p ∈ P , q ∈ Q:

(a): [p] ∧ [q] =MIA [p ∧ q];
(b): [p] | [q] =MIA [p|q].
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Proof. Part (b) follows directly from the definitions of parallel composition on IA and MIA,
whereas Part (a)”wMIA” is an immediate consequence of Thms. 4.7 and 4.16 by general
order theory. We are thus left with proving Part (a)”vMIA”.

Both sides only differ in additional transitions
α

99K with α ∈ O∪{τ} in [P ]MIA∧ [Q]MIA,

where on the other side
ε

99K99K
α

99K. Formally, we define the relationR =df {([p] ∧ [q], [p ∧ q]) |
p ∈ P, q ∈ Q} ∪ idP ∪ idQ and argue that R is a MIA-refinement relation:

• Firstly, [P ]MIA ∧ [Q]MIA and [P ∧Q]MIA are isomorphic on input-transitions since the
Rules (IMust1)–(IMust3) (and Rules (IMay1–(IMay3)) exactly correspond to Rules (I1)–
(I3), as well as on P and Q.

• Secondly, consider a transition [p] ∧ [q]
τ

99K [p′] ∧ [q] according to Rule (May1) and

[p]
τ

99K99KP [p′]. Then, p∧ q τ
=⇒ p′∧ q in IA by repeated application of Rule (T1) and, there-

fore, [p ∧ q] τ
99K99K [p′ ∧ q] in the IA-embedding. Rule (May2) is analogous, and Rule (May3)

for α = τ is similar (with interleaving of τ -steps). In addition, Rule (May3) for α ∈ O is
similar, too, except that the τ -steps are followed by an α-transition according to Rule (O).

We observe that the IA-embedding into MIA is ‘better’ wrt. conjunction than that into
dMTS since refinement holds in both directions. The reason is that MIA-refinement is
coarser (i.e., larger) than dMTS-refinement applied to MIAs (which are dMTSs after all):
input may-transitions do not have to be matched in the former. Thus, there can be more
lower bounds wrt. MIA-refinement and the greatest lower bound can be larger.

Proposition 4.18 (Disjunction and IA-Embedding). For IAs P,Q with p ∈ P , q ∈ Q, we
have: [p] ∨ [q] vMIA [p ∨ q].

This result holds by general order theory due to Thm. 4.16. The reverse refinement for
disjunction is not valid as we have already seen in Fig. 11, and this difference repairs a
shortcoming of IA-disjunction as discussed on p. 7.

5. Conclusions and Future Work

We introduced Modal Interface Automata (MIA), an interface theory that is more expres-
sive than Interface Automata (IA) [dH05]: it allows one to mandate that a specification’s
refinement must implement some output, thus excluding trivial implementations, e.g., one
that accepts all inputs but never emits any output. This was also the motivation behind
IOMTS [LNW07] that extends Modal Transition Systems (MTS) [Lar90] by inputs and out-
puts; however, the IOMTS-parallel operator in the style of IA is not compositional. Apart
from having disjunctive must-transitions, MIA is a subset of IOMTS, but it has a different
refinement relation that is a precongruence for parallel composition.

Most importantly and in contrast to IA and IOMTS, the MIA theory is equipped with a
conjunction operator for reasoning about components that satisfy multiple interfaces simul-
taneously. Along the way, we also introduced conjunction on IA and a disjunctive extension
of MTS – as well as disjunction on IA, MTS and MIA – and proved these operators to be
the desired greatest lower bounds (resp., least upper bounds) and thus compositional. Com-
pared to the language-based modal interface theory of [RBB+11], our formalism supports
nondeterministic specifications and allows limited nondeterminism (in the sense of deter-
ministic disjunctive transitions) even for inputs. Hence, MIA establishes a theoretically
clean and practical interface theory that fixes the shortcomings of related work.
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Figure 14: In Logic LTS [LV10], disjunction is internal choice.

From a technical perspective, our MIA-theory borrows from our earlier work on Logic
LTS [LV10]. There, we started from a very different conjunction operator appropriate for
a deadlock-sensitive CSP-like process theory, and then derived a ‘best’ suitable refinement
relation. In [LV10], disjunction is simply internal choice u, as sketched in Fig. 14. For MIA,
p u q is not suited at all since both p and q require that input i is performed immediately.

Future work shall follow both theoretical and practical directions. On the theoret-
ical side, we firstly wish to study MIA’s expressiveness in comparison to other theories
via thoroughness [FFELS09]. More substantially, however, we intend to enrich MIA with
temporal-logic operators, in the spirit of truly mixing operational and temporal-logic styles
of specification in the line of our Logic LTS in [LV11]. Important guidance for this will
be the work of Feuillade and Pinchinat [FP07], who have introduced a temporal logic for
modal interfaces that is equally expressive to MTS. In contrast to [LV11], their setting is
not mixed, does not consider nondeterminism, and does not include a refinement relation.
Indeed, a unique feature of Logic LTS is that its refinement relation subsumes the standard
temporal-logic satisfaction relation.

On the practical side, we plan to study the algorithmic complexity implied by MIA-
refinement, on the basis of existing literature for MTS. For example, Antonik et al. [AHL+10]
discuss related decision problems such as the existence of a common implementation; Fisch-
bein and Uchitel [FU08] generalize the conjunction of [LSW95] and study its algorithmic
aspects; Beneš et al. [BCK11] show that refinement problems for DMTS are not harder
than in the case of MTS and also consider conjunction; Raclet et al. [RBB+11] advocate
deterministic automata for modal interface theories in order to reduce complexity. In ad-
dition, we wish to adapt existing tool support for interface theories to MIA, e.g., the MIO
Workbench [BMSH10].
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