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Abstract: Concentrations of ambient fine particles (PM10: particles with an aerodynamic 

diameter ≤ 10 µm) are still exceeding current air quality standards in many European cities.  

In Munich (Germany), low emission zone and transit bans for heavy-duty vehicles were 

introduced in 2008 aiming at reduction of traffic emissions contribution to PM10. The effects of 

those measures on PM10 mass concentrations in Munich were investigated with a 

semiparametric regression model for modeling PM10 levels adjusted for time,  

background pollution, public holidays and wind direction. The reduction of PM10 concentration 

after the introduction of the measures was larger at a traffic monitoring site (13.0 %, 19.6 % in 

summer, and 6.8 % in winter) and smaller in urban background (4.5 %, 5.7 % in summer, and 

3.2 % in winter). The effect was most pronounced on Fridays and on the weekends in summer. 
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1. Introduction 

In recent years, epidemiological studies have shown consistent associations between exposure to air 

pollution and cardio-respiratory morbidity and mortality [1–3]. The effects were partially attributed to 

traffic-related air pollutants such as fine particles, diesel soot or ultrafine particles in ambient air as 

well as other indicators of road traffic exposures, such as living or working close to major roads or 

nitrogen oxides [4–7]. Besides other ambient particle sources including e.g. industry and domestic 

heating, traffic emissions are supposed to have a significant impact on the local air quality and to 

contribute to the observed adverse health effects on humans.  

In 1999, the European Commission established limit values for PM10 and some other air pollutants 

in the Air Quality Daughter Directive 1999/30/EC [8], which was replaced in 2008 by the new 

Directive 2008/50/EC on ambient air quality and cleaner air for Europe [9]. The existing air quality 

guidelines for PM10 are currently being exceeded at many locations throughout Europe  

and Germany [10–12].  

As traffic emissions are among the main contributors to anthropogenic pollutant emissions in the 

urban air [13], the reduction of traffic emissions offers an efficient strategy for reducing PM10 levels in 

urban air. One widely-used, non-technical measure to meet the policy targets for PM10 is the 

implementation of Low Emission Zones (LEZs). In Germany, a LEZ is a defined area (mostly located 

around the city centre) where the vehicles that enter have to meet certain emissions standards.  

For entering the LEZ all vehicles have to be identified by color coded windscreen badges which are 

directly linked to the corresponding stages of European emission standards (Euro 2: red;  

Euro 3: yellow; Euro 4: green). Petrol-driven vehicles equipped with a catalytic converter are 

principally assigned to the Euro 4 class and will be entitled to a green badge. In the first stage of 

operation all vehicles with a badge (red, yellow or green) are allowed to enter the LEZ. In stage 2,  

the LEZ can be accessed by vehicles displaying a yellow or green badge, whereas stage 3 of the LEZ 

allows access only to vehicles with a green badge.  

The first measure aiming reduction of PM10 concentrations in ambient air in Munich was the 

introduction of a law forbidding transit of vehicles heavier than 3.5 tons through the city area on  

1 February 2008. This law forces all trucks without final destination in Munich to use the motorway 

ring A99 round around the city area. As a second measure the first stage of the LEZ became operative 

at 1 October 2008. In this stage, all vehicles with Euro 1 (or worse) were no longer allowed to enter 

and drive within the area of the LEZ. From 1 October 2010 the second stage of the LEZ in Munich 

became effective; all vehicles with Euro 2 (red sticker or without any sticker) are not allowed to enter 

the LEZ. Stage 3 of the Munich LEZ has been in operation since 1 October 2012 and only vehicles 

with green batches are allowed within the LEZ. 

Currently, LEZs have been implemented in 13 European countries [14]. In Germany, 49 LEZs are 

in operation or in the planning stages [15]. Some local authorities in Germany estimated the expected 

impact of the LEZ on air quality prior to their implementation (mostly by dispersion modeling).  
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The predicted reduction of PM10 mass concentration in ambient air, which is currently regulated and 

therefore the focus of our examination, ranges from 2% to 10 % depending on the characteristics of the 

specific LEZ, its valid stage and the number of exceptional permissions for cars that fail to meet the 

required emission standards. However, the verifying of the predicted reduction of PM10 levels by 

analyzing the measured PM10 mass concentrations is difficult, due to large influence of meteorological 

conditions on the PM10 levels [16]. 

Several studies about the benefit of traffic regulation measures in European cities were already 

published. PM10 and CO levels decreased after the introduction of the London congestion charging 

scheme [17,18] and PM10 and NOX were reduced during a seven month test period of the congestion 

tax in Stockholm. Modest reductions in PM10 and PM2.5 were observed in four Danish cities as a 

consequence of the introduction of a LEZ [19]. Since the implementation of the London LEZ strong 

reductions of the particle number concentration were detected [20] and small changes in the PM 

concentration [21]. Boogaard et al. [22] found that local traffic policies were associated with 

reductions in PM2.5 in five Dutch cities. In spite of the challenges, there have already been a few 

papers analyzing the effects of the German LEZs on the improvement of air quality [16, 23–30]. 

However, they mostly use rather simple (and varying) statistical approaches. Because these studies 

analyze different LEZs using different statistical methods, the results are difficult to compare insofar as 

different statistical approaches were used for the analyses.  

In the first study of LEZ impact in Munich, the adjustment for the influence of meteorological 

conditions on PM10 levels was conducted with a reference monitoring station located in a regional 

background area close to the city [25]. A relative reduction of PM10 levels has been seen at almost all 

involved monitoring sites and the relative decrease ranged from 5% up to 12 %. However, this analysis 

was applied on a rather short period and used descriptive statistical analyses only. Morfeld et al. [30] 

analysed the same data set using regression analyses for matched observations of subsequent years and 

have not found significant effects of the LEZ. 

In our study, we extended the period under investigation and improved the statistical approach of 

the analysis. We restrict here our analysis only on the PM10 particle fraction. One reason for this 

restriction is that there are no data on other relevant particle characteristics (such as PM2.5,  

Black Smoke or particle number concentration) available for Munich. Secondly, LEZs were introduced 

in Germany as a primary measure for reducing PM10 and consequently the public debate about the 

effectiveness of LEZs is mainly focused on changes in this particle fraction. We compared the PM10 

concentrations before and after the LEZ implementation by applying of a semiparametric statistical 

model with first-order autoregressive errors on data in a time resolution of one hour. The estimated 

PM10 levels were adjusted for PM10 exposure at the reference station, wind direction, season,  

time throughout a week, and public holidays. Two questions were of interest: First, we investigated, 

whether a significant overall reduction of PM10 levels adjusted for possible confounders could be 

detected following the implementation of the measures in Munich and whether the effect at the street 

site differed from the urban background site. Second, we examined the seasonal and diurnal variation 

of the air quality changes, which might have originated in the variations of the number of vehicles and 

of the composition of the vehicle fleet.  
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2. Materials and Methods  

2.1. Study Area and Selection of the Monitoring Stations  

The study was conducted in Munich, Germany. In 2011, Munich had a population of approximately 

1.41 million inhabitants in an area of 310.4 km2 and there were approximately 700,000 registered cars [31]. 

The LEZ in Munich covers 44 km², which accounts for 14 % of the whole city area. However, 32 % of 

the city population lives in this area (Figure 1). 

Figure 1. Locations of the LÜB monitoring sites in Munich, Germany: 

Prinzregentenstrasse (●), Lothstrasse (■), Johanneskirchen (▲). 

 
 

For our study, we obtained PM10 data collected at two monitoring sites located within the LEZ:  

one urban background site, Lothstrasse (measurement height: 4 m over ground) and one street site, 

Prinzregentenstrasse (measurement height: 2.9 m over ground; distance to road: 3 m; 39,000 

vehicles/day in 2007–2010) [32,33]. The local traffic contributes with 22 % to the PM10 levels at the 

measurement site Prinzregentenstrasse and to 6 % at the site Lothstrasse [33]. A regional background 

site in the outskirts of the city and outside the LEZ in Johanneskirchen was selected as a reference site 

(measurement height: 4 m over ground; distance to road: 5 m). All three monitoring stations are 

operated by the Bavarian Environment Agency (Bayerisches Landesamt für Umwelt, Augsburg, 

Germany) as part of the Bavarian Monitoring System for Air Quality (LÜB: Lufthygienisches 

Landesüberwachungssystem Bayern) (Figure 1). The remaining three monitoring stations were not 

involved in the analysis and are not shown in Figure 1. Two of them (Luise-Kiesselbach-Platz, 

Landshuter Allee) are located at the border of the LEZ and one (Stachus) were excluded as 
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construction and tram track maintenance was conducted between August 2008 and April 2010 in the 

vicinity of this monitoring site. 

2.2. Study Period and Data 

In our analysis, we compared the PM10 concentrations measured prior to the implementation of any air 

quality measures (period 1) with the PM10 levels measured after the measures became effective (period 2).  

Data on PM10 mass concentrations in an hourly time resolution were used for the analysis.  

The analysis period 1 was selected from 1 February 2006 until 31 January 2008. In the period between 

1 February 2008 and 30 September 2008, only a truck transit ban was effective. This period was 

excluded from the analysis because it was too short to draw general conclusions. The examination 

period 2 (both transit ban for heavy-duty vehicles and LEZ in stage 1 were effective) covered the rest 

of the data between 1 October 2008 and 30 September 2010. PM10 records at the Prinzregentenstrasse 

were only available until 31 June 2010, because the station was closed. The PM10 values on 1 January 

were excluded from the analysis for each year due to the traditional New Year’s Eve fireworks. 

Hourly measurements of the wind direction in 36 angle categories representative for the city of 

Munich (measured ca. 4 km northwest of the inner city of Munich) were obtained from the German 

National Meteorological Service.  

2.3. Statistical Analysis 

The urban PM10 levels were assumed to be mainly driven by the following factors:  

The measurements at the reference station represented the regional background pollution level,  

which was mostly not affected by the measures. Therefore, the PM10 levels of the reference station 

reflected the changes of the PM10 levels of the station of interest owing to meteorological conditions, 

the background PM10 levels and long term temporal trends in PM10. Despite large scale effects of the 

wind direction, which were represented through the reference station, local effects of the wind 

direction occur due to the position of the measurement stations in the local vicinity, e.g. regarding to 

nearby factories or park areas. 

Since our data comprise only four years of measurements, long term temporal trends at the stations 

within the LEZ beyond the trends at the reference station could not be considered in the model and are 

of minor relevance. However, seasonal variation in PM10 concentration occurred (see Supplemental 

Material, Figure S1), which possibly may change the effect of the measures. Hourly PM10 levels are 

subject to daily cyclic variation due to heating and also due to traffic; therefore, the measures may also 

affect the temporal pattern of PM10 levels. Public holidays during weekdays may yield deviations from 

the usual concentration levels. 

A semiparametric model with first-order autoregressive errors (refer to Clifford et al. [34] for a 

Bayesian implementation of a similar model for ultrafine particle number concentrations) was used to 

estimate the association between air pollution and the introduction of measures: 
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The effects of the corresponding covariates were denoted with β .The outcome variable was the 

logarithmically transformed PM10 mass concentration at an urban station, which is denoted by  

log(PM10x). IS, IW, ISM, IWM denote the indicator function for “summer without measures”,  

“winter without measures”, “summer with measures” and ”winter with measures”, respectively.  

The winter season was defined from October to March, the summer season from April to September. 
The following variables were considered as confounding factors: logarithmically transformed PM10 

levels at the reference station (log(PM10ref)), a smooth, cyclic effect based on P-splines with maximum 

four degrees of freedom of the wind direction, ),(wd directionwindf  and an indicator for public 

holidays (public holiday). Adjusting for the PM10 measurements at the reference station prevents from 

“regression to the mean” [35], improves the power of the model in comparison to the analysis of 

differences [36] and allows flexible and simple adjustments for other confounders. We selected the 

confounder variables by a priori considerations. Since we include an adjustment by the reference 

station with similar temperature and precipitation, we did not use these variables in the confounder 

model. Since wind direction has a local effect, which differs from the effect at the reference station,  

we included the variable wind direction in our model. 

In addition, the model was adjusted for deterministic seasonal components, similar to [37].  

The effect of the measures (M) was analyzed separately for summer (S) and winter (W) to allow for 

seasonal variability. Daily and daytime-specific deviations were modeled with an hourly-resolved 

weekly season-specific trend, .)(,)(,)(,)( WM.WMWWSMSMSS  hourfhourfhourfhourf   

Cyclic penalized splines were used as basis functions for a smooth nonparametric estimation. 

Permitting a maximum number of 49 degrees of freedom, the model reached enough flexibility to 

describe the daytime dependent variability of the traffic. 

Percentage changes of PM10 levels were modeled through logarithmic concentration levels [37].  

In particular, it was suggested that the measures, the public holidays and the seasons yielded to 

percentage effects on the PM10 concentration. 

Note, that the usage of the semiparametric model lessens the problem of scale. Furthermore, the highly 

skewed distribution of the PM10 mass concentration was another reason for using the  

logarithmic transformation. 

Since the measurements are not independent, an autoregressive process of order 1 is simultaneously 

modeled for the error term .  

The overall effect of the measures was examined for each of the two seasons with a test on the 

hypotheses whether the effect coefficients for winter and summer differ between the periods with and 

without measures: 

0β,ββ: SMWMW0 H  (2) 

Day-specific effects were investigated using an appropriate linear combination of the effect 

coefficients, representing the area between the smooth effect with and without measures. The inference 
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for the day-specific effects was based on the asymptotic normality of linear combinations  

(for more details see Supplemental Material, “Modelling of day specific effects”). 

Statistical calculations were conducted using R [38], version 2.15.3; semiparametric models were 

estimated with the package “mgcv” [39], version 1.7-22. 

3. Results 

3.1. Data Description  

Figure 2 shows the weekly means of PM10 concentrations at the two monitoring sites within the LEZ 

(Prinzregentenstrasse and Lothstrasse) and at the reference site in Johanneskirchen. Weekly means were 

chosen to display the trend of PM10 levels for reasons of clarity and reducing the point-to-point variation. 

Figure 2. Time series of weekly averages of PM10 concentrations at three monitoring sites 

in Munich, Germany (Prinzregentenstrasse, Lothstrasse, and Johanneskirchen).  

The three boxplots (on the right-hand side) describe the respective distributions the PM10 

concentrations at the three sites ignoring the temporal structure. 

 
The PM10 concentrations were higher in the winter season and lower in the summer season.  

In particular, elevated PM10 levels were observed between January and March. The means of  

the unadjusted PM10 mass concentrations before and after the implementation of measures are  

given in Table 1. 

At both urban stations, a decrease of PM10 in period 2 (compared to period 1) was observed.  

The decrease at Prinzregentenstrasse (−14.0% in summer, −1.9% in winter) was larger in summer and 

similar in winter as at Lothstrasse (−2.3% in summer, −2.5% in winter). At the reference station in 

Johanneskirchen, also differences between the two periods were detected (−2.1% in summer,  

−0.8% in winter). The PM10 concentration was on average 27.6% at Prinzregentenstrasse and 12.5%  

at Lothstrasse higher (median percentage difference) than at the reference station. While considering 

mere mean concentrations the impact of confounding factors like meteorological conditions were 

disregarded; the regression analysis in section 3.2 allowed for these confounders. The Spearman 
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correlation coefficients between the hourly means of PM10 concentration measured at the three 

monitoring sites were high and ranged from 0.69 to 0.88, the correlations between the daily averages 

were even slightly stronger (ranged from 0.83 to 0.96). The hourly PM10 concentrations at the three 

monitoring sites were highly autocorrelated with autocorrelation coefficients between 0.87 and 0.92. 

The temporal trend of the annual means observed at the urban background site Lothstrasse and the 

regional background site (as the reference site) in Johanneskirchen was very similar. It indicates that 

both sites were not influenced by any local sources of PM. Even more, the PM10 values obtained at the 

measurement site in Johanneskirchen were very similar and strong correlated with the PM10 values 

observed at a regional background site located at the campus of the Bavarian Agency for 

Environmental Protection in Augsburg, Germany (about 90 km linear distance from Johanneskirchen).  

Table 1. PM10 means in Munich for the periods with (October 2008–September 2010) and 

without (February 2006–January 2008) measures and the corresponding differences in % 

separated by season (Summer: April–September; Winter: October–March).  

Measurement Station Season 

Without Measures With Measures 
Percentage 

Difference n PM10  mean (SD) n 
PM10 mean 

(SD) 

Prinzregentenstr. Summer 8,200 27.2 (14.3) 6,535 23.4 (14.5) −14.0 

 Winter 8,562 30.8 (21.6) 8,676 30.2 (23.6) −1.9 

Lothstr. Summer 8,769 21.3 (12.9) 8,730 20.8 (15.3) −2.3 

 Winter 8,520 28.3 (23.6) 8,687 27.6 (22.0) −2.5 

Johanneskirchen Summer 8,765 19.3 (12.2) 8,768 18.9 (12.3) −2.1 

 Winter 8,451 24.3 (21.6) 8,686 24.5 (20.8)   0.8 

3.2. Statistical Modeling  

According to equation (1), the PM10 concentrations at a specific monitoring site were calculated for 

“summer without measures” and “winter without measures” as well as “summer with measures” and 

“winter with measures”, respectively. In Table 2, the relative differences between the periods with and 

without measures are shown for Prinzregentenstrasse (street site) and Lothstrasse (urban background site), 

and indicated separately for the summer and winter season. 

Table 2. Change of PM10 concentration a in period 2 when compared to period 1 at 

Prinzregentenstrasse and Lothstrasse. 

Measurement Station 
Summer Winter 

effect confidence interval p-value effect confidence interval p-value 

Prinzregentenstr. −19.63% (−22.75%, −16.52%) <0.001 −6.80% (−10.14 %, −3.47 %)  <0.001 

Lothstr. −5.73% (−7.71%, −3.74%)  <0.001 −3.18% (−5.24 %, −1.11 %)   0.003 

Note: adjusted for exposure at the reference station, wind direction, day of the week, time of the 

day and public holidays. 
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The effects of the air quality measures differ at the two measurement stations as well as between the 

seasons. A stronger reduction in PM10 mass concentrations was observed at the street site; on average 

19.6% (5.4 µg/m3, p-value: <0.001) in summer and 6.8% (2.1 µg/m3, p-value: <0.001) in winter, 

respectively. At the urban background site Lothstrasse smaller decreases were estimated:  

5.73% (1.1 µg/m3, p-value: <0.001) in summer and 3.18% (0.7 µg/m3, p-value: <0.003) in winter.  

If we had not have determined separate effects for the two seasons, the reduction of the PM10 

concentration by the measures at Prinzregentenstrasse would have been estimated with 13.0%  

(p-value: <0.001) and with 4.5%; (p-value: <0.001) at Lothstrasse. 

Figure 3 shows the temporal patterns of the modeled PM10 concentrations at Prinzregentenstrasse 

and Lothstrasse for the periods with and without measures (adjusted for PM10 concentration at the 

reference station, wind direction and public holidays). Temporal variability of PM10 levels occurred 

between the seasons, the weekdays and times of day. The concentrations were higher in the winter 

months. The morning and afternoon rush hour peaks during the working days were clearly visible 

especially at Prinzregentenstrasse. The morning peak in the summer months was more clearly 

separated from the afternoon peak as in the winter season. The efficiency of the measures depended on 

the time of the day (see also Supplemental Material, Figure S2) and followed a diurnal pattern.  

Due to the implemented measures the PM10 burden was stronger reduced during hours with higher 

relative and absolute PM10 mass concentration, i.e. between the morning and afternoon rush hour peaks. 

The rush hour peaks themselves were reduced and there seemed to be lesser spillover from the 

morning to the afternoon. Furthermore, the improving of air quality during the nights on workdays was 

faster at the street site. The effect of the measures vanishes during night-time of the first days of  

the working week. 

The mean daily effects of both measures (stratified by season and week day) are shown in Figure 4 

for each day of the week separately. In the summer season, the effect of the measures for each day of 

the week was at the street site stronger than in winter, whereas this tendency is not observed at the 

background site. However, at both sites the strongest effects were observed on Fridays (−25.0% in 

summer and −16.4% in winter at street site, −8.2% in summer and −6.1% in winter at the background 

site) and Saturdays (−25.9% in summer at street site, −11.4% in summer and −5.3% in winter at the 

background site). On Sunday a strong seasonal dependency of the effect was observed: the measures 

were only effective in summer. 

The effects of the linearly modeled confounding covariates are displayed in Supplemental Material, 

Table S1. The logarithmic values of the reference station had a significant, additive effect of  

log(1.381) = 0.323 at Prinzregentenstrasse and log(1.972) = 0.679 at Lothstrasse. Public holidays led to a 

reduction of PM10 levels in the ambient air by approximately 13%. Since the estimated autocorrelation 

coefficient was relatively high (Prinzregentenstrasse: ρ = 0.70, Lothstrasse: ρ = 0.54), the bigger part of 

the autocorrelation of the PM10 measurements could not be explained through the inclusion of the 

smooth components in the predictor. The model for the measurements at Prinzregentenstrasse explained 

74.5% of the variability in the data and the model for the Lothstrasse 83.0%. 

The shape of the smooth effect of wind direction indicates decreased PM10 levels, if the wind blew 

from the South or West at Lothstrasse and if the wind blew from North or East at Prinzregentenstrasse 

(data not shown). We focused our analysis on PM10, because the reason for the establishment of the 

LEZ exceeded PM10 limit values. 
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Figure 3. Modeled hourly concentrations of PM10 at Prinzregentenstrasse (first and second 

chart) and Lothstrasse (third, fourth chart) adjusted for PM10 at the reference station, wind 

direction and public holidays. 
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Figure 4. Mean daily effects of the measures stratified by season and day of the week with 

95% confidence intervals for Prinzregentenstrasse (above) and Lothstrasse (below). 
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4. Discussion 

4.1. Impact of the Measures on PM10 Mass Concentration  

We investigated whether changes in PM10 levels after the introduction of a truck transit ban through 

the city area and the implementation of the first stage of the LEZ in Munich could be detected by 

analysis of emission data on PM10 mass concentration collected at an urban background and a street 

monitoring site. The comparison of the PM10 mass concentrations (adjusted for exposure at the 

reference station, wind direction, day of the week, time of the day and public holidays and calculated 

separately for summer and winter seasons in a semiparametric model with first-order autoregressive 

errors) showed a large relative decrease of PM10 levels at the street site (13.0%, p-value: <0.001), 

whereas the relative decrease observed at the urban background monitoring site was smaller  

(4.5%, p-value: <0.001). The decrease of PM10 mass concentration predicted in Munich by dispersion 

modeling ranges between 2% and 10 % depending on the monitoring sites and the active stage of the 

LEZ [40]. The maximal reduction (up to 10 %) was predicted only for the third stage of the LEZ.  

The changes of PM10 concentrations detected at the street site in our study are larger than the 

reductions predicted a priori and are also larger than those observed in the most other  

German cities [16,23,24,26–29].  

In general, the implementation of LEZ could influence the composition of the car fleet as well as 

the traffic intensity. The percentage of registered vehicles without any badge (Euro 1 or less) decreased 

during the time period 2007–2010 from 9.2% to 2.5% for passenger cars and from 31.5% to 24.1% for 

trucks, respectively. In the same time the percentage of vehicles with green badge increased from 78.4% 

to 89.6% for passenger cars and from 19.0% to 36.1% for trucks, respectively. Those changes are 

especially pronounced between the years 2007 and 2008, it means immediately before the 

implementation of the LEZ in Munich [41]. Such an extraordinary modernization of vehicle fleet in the 

city towards low-emission cars was reported also for Berlin [28]. Note that there is only information 

about the in Munich registered vehicles; no such information is available about the car fleet 

composition in flowing traffic in the city. Regarding the flowing traffic it can be assumed that the older 

vehicles are less often in use compared to the newer vehicles.  

For the dispersion modelling, it was assumed that the traffic intensity remained constant over the 

time period 2007–2010. However, the analyses presented here are not only considering the impact of 

the LEZ alone, but also the additional impact of the transit ban for all trucks. The transit ban for trucks 

could affect the PM10 levels even to a larger extent than the LEZ, which operated in the analyzed 

period in the first stage only. It leads not solely to a reduction of particles emitted by vehicle exhaust, 

but also to a reduction of particles originated from tyre and brake wear or dust re-suspension.  

Due to the ban on driving for trucks on Sunday, the effect for Sunday can be directly ascribed to the 

implementation of the LEZ. A similar pattern was found for Saturday, but only at Prinzregentenstrasse. 

This lead us to the assumption that in winter, the vehicle fleet on weekends in the city and on Sundays 

in the urban background was the same before and after the introduction of the LEZ, whereas this was 

not the case during the summer season. 

In the previous study estimating the LEZ impact in Munich, a slightly weaker effect of 12.3% 

relative reduction of PM10 mass concentration at Prinzregentenstrasse was found [25]. The analysis 
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was based on the comparison of relative PM10 concentration changes by a reference station.  

However, such analysis of the quotient between the specific monitoring station and the reference 

station neglects the uncertainty of the measurements at the reference station. Further regression 

analyses on the ratio as used in the previous study revealed a comparably poor model fit (data not 

shown). This is also denoted by the strong deviation of the estimation of the intercept from 1 in our 

analysis. For comparison, we also analyzed the same period as described in Cyrys et al. [25] by use of 

the model applied in our study. We only found negligible (statistically insignificant) changes of the PM10 

mass concentration (Prinzregenstrasse −1.05%, p-value: 0.855; Lothstrasse: 2.42%, p-value: 0.499),  

as it was similarly found by Morfeld et al. [30]. For further comparisons of the approach used in our 

study with other modelling approaches we refer to the “comparison of different modeling approaches” 

section in the Supplemental Material. 

The results of our study are not directly comparable to the results obtained for other measures of 

traffic reduction, which were already introduced in some European cities. We analyzed here the 

common effect of the implementation of LEZ and transit ban for trucks in Munich and we are aware 

that such combination is not that common. Even if we might be able to evaluate the effects of the LEZ 

and transit ban for trucks separately, the comparison with other cites might remain difficult,  

as the regulations and areas of LEZ’s differ from city to city. The following discussion should compare 

rather roughly the range of the effects observed for different measures across Europe. Several studies 

analyzed the impact of congestion charging in London [17,18,42]. Atkinson et al. [17] observed 

reductions in PM10 only at the background monitor. The study conducted by Beevers and Carslaw [18] 

indicated that NOx and PM10 emissions have been reduced by about 12% in the charging zone,  

whereas the study of Tonne et al. [42] showed that the congestion charge schema led to only modest 

reductions in air pollutant concentrations across Greater London, but greater reductions in the charging 

zone. Ellison et al. [21] found that the LEZ in London had a significant effect on the composition of 

the vehicle fleet in London and reduced the PM10 concentrations. 

Johansson and colleagues [43] assessed the effect of traffic congestion in Stockholm and concluded 

that the annual average NOx and PM10 concentrations along the most densely trafficked streets would 

be lower by up to 12% and 7%, respectively. Note that the effects in the studies of Beevers and 

Carslaw [18], Tonne et al. [42] and Johansson et al. [43] were analyzed by dispersion modelling 

combined with regression calculation and were not verified by air quality measurements.  

PM2.5 concentrations in Copenhagen were reduced by 5% after the introduction of the LEZ [19]. 

Unadjusted mean pollutants concentrations were lower after the implementation of the LEZ in five 

Dutch cities; the reduction in PM2.5 levels was larger at urban streets (31%) than in the suburban 

background (20%) [22]. 

The public debate is often focused solely on PM10 concentrations (as this parameter is currently 

regulated) without taking into account that only the toxic fraction of PM10 causes adverse human 

health effects [2,3,16]. Due to combustion processes particles originating from traffic exhibit a higher 

toxicity than particles from other sources; especially diesel-engine vehicles, which produce about 12% 

of the mean PM10 exposure of the German population [44], emit these more toxic particles. 

Hence, the effectiveness of LEZ could be analyzed more precisely if Black Smoke (as marker for 

diesel soot) or the organic fraction of particles would be measured in ambient air instead of  

total PM10 concentration [16]. Unfortunately, in Germany no routine measurements of Black Smoke 
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concentrations in ambient air are conducted. Quadir and colleagues [45] reported recently significant 

lower concentrations for elemental carbon and some of particulate organic compounds after the 

introduction of the LEZ in Munich (the data were collected during special monitoring campaigns and 

not routinely by the monitoring network). Source apportionment analysis showed a reduction of traffic 

factor contribution by 60% after the implementation of the LEZ [45]. Also in Berlin the concentration 

of soot particles decreased 2010 by 52% compared with 2007 [29]. As climatic conditions in the years 

2008–2010 were adverse when compared to 2007, the authors attribute these results to the reduced 

traffic soot emissions. Currently, a debate about the pollution through PM2.5 emerges, but the data 

material is insufficient because the monitoring of PM2.5 is only at its early stages. 

In addition to dispersion modelling, estimating the expected changes of PM10 mass concentration in 

the ambient air, our analysis evaluates the effects of the measures by analysis of the measured PM10 

values. However, the limitation of this strategy is, that also long-term changes of PM10, which could 

not be explained by the included predictors, especially by the PM10 levels of the reference station  

(for example changes in heating habits), are completely attributed to the LEZ effect. 

4.2. Seasonal and Diurnal Variation of the Changes in PM10 Levels  

The second objective of this study was the examination of the seasonal and diurnal variation of the 

detected air quality improvements. The extent of the PM10 reduction at the background sites was 

largely similar in both seasons. In the urban background, exhaust particles represent a smaller fraction 

of fine particles compared to street site and the composition of particles varies less between winter and 

summer. On the contrary the difference between the two seasons was more pronounced at the street 

site, where the overall reduction of PM10 mass concentrations was considerable larger as at the 

background site. At this site, the reduction of PM10 levels due to the measures was larger during the 

summer season and smaller during the winter season. In winter, additional particle sources (such as 

domestic heating, wood combustion or combustion of other fossil fuels) contribute significantly to the 

PM10 mass concentrations in the ambient air. Also the contribution of re-suspended dust to fine 

particles concentration in the ambient air increases in winter due to the application of road salt for 

deicing. In addition, the generation of secondary aerosols such as nitrate or sulfate is more intensive in 

winter. Consequently, exhaust particles represent a smaller fraction of the fine particles in winter than 

in summer. Therefore, the measures regulating only the exhaust particles became less effective in the 

winter period. In addition, adverse meteorological conditions leading to increased PM10 levels from 

local mobile as well as stationary sources are occurring more frequently in the winter season.  

Our analysis suggests that in such episodes the influence of the implemented measures regulating the car 

exhaust is limited and that air quality is dominated by other unaffected mobile and stationary sources. 

The reduced rush hour peaks may indicate that a larger proportion of old cars no longer accessed the 

city during midday. Alternatively, the contribution of aged particles from the morning rush hours during 

day and night time might be shifted due to the reduction in diesel particles. Further, the temporal varying 

effect of the measures could be caused by the same reason as the differences between winter and 

summer season. One has to keep in mind that the morning and afternoon rush hour peaks seem to be 

more separated in summer not due to differences in traffic flow between summer and winter, but as a 

result of the combination of increased traffic intensity and increased solar radiation in summer. 
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5. Conclusions  

In our study we evaluated the effectiveness of two measures (a truck transit ban through the city 

area and implementation of LEZ) on the reduction of PM10 mass concentrations in the ambient air in 

Munich, Germany. The analysis of the routinely collected PM10 mass concentrations data by a 

semiparametric regression model showed statistically significant reduction of PM10 levels at a 

monitoring site located in the direct vicinity of a highly frequented road and to a lesser extent at an 

monitoring site located in the urban background. The statistical regression modeling was essential to 

identify the size of the effect. The magnitude of the effect at the street site was larger in summer 

season; smaller seasonal variation was observed at the urban background site. In general,  

the magnitude of the effect depends on day of the week, time of the day and location of the  

monitoring site. 

Our analysis indicates that the assessment of the impact of measures aiming improvement of air 

quality in urban air could be conducted by use of routinely collected PM10 data. However, as the 

expected reduction of PM10 concentration after implementation of LEZ is in order of about 10%,  

the evaluation of this measure by PM10 data remains difficult; other particulate variables,  

such as PM2.5, Black Smoke, or particulate organic compounds are recommended for such evaluation. 
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