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Highly tunable hybrid metamaterials employing
split-ring resonators strongly coupled to graphene
surface plasmons
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Jérôme Faist1 & Geoffrey R. Nash2

Metamaterials and plasmonics are powerful tools for unconventional manipulation and

harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking

in natural materials, such as negative refractive index. Plasmonics offers capabilities of

confining light in subwavelength dimensions and enhancing light–matter interactions.

Recently, the technological potential of graphene-based plasmonics has been recognized as

the latter features large tunability, higher field-confinement and lower loss compared

with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene

plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a

type of highly tunable metamaterial, where the interaction between the two resonances

reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed

THz modulators, exhibiting B60% transmission modulation and operating speed in excess of

40 MHz. This device concept also provides a platform for exploring cavity-enhanced light–

matter interactions and optical processes in graphene plasmonic structures for applications

including sensing, photo-detection and nonlinear frequency generation.

DOI: 10.1038/ncomms9969 OPEN

1 Institute for Quantum Electronics, Department of Physics, ETH Zurich, Zurich CH-8093, Switzerland. 2 College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QF, UK. 3 Institute of Physics, University of Augsburg, Augsburg 86159, Germany. * These authors contributed
equally to this work. Correspondence and requests for materials should be addressed to P.Q.L. (email: qliu@ethz.ch) or to I.J.L. (email: i.j.luxmoore@exeter.ac.uk).

NATURE COMMUNICATIONS | 6:8969 | DOI: 10.1038/ncomms9969 | www.nature.com/naturecommunications 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/212318227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:qliu@ethz.ch
mailto:i.j.luxmoore@exeter.ac.uk
http://www.nature.com/naturecommunications


S
ince the turn of the century, research on metamaterials has
progressed rapidly with substantial expansion of both the
scope of novel functionalities and the operating frequency

range enabled by different types of artificial structures1–11. Many
of the demonstrated metamaterials are based on noble metals to
take advantage of their negative permittivity below the plasma
frequency. Real-time tunability of metamaterials is highly desired
for many applications such as optical switches and modulators;
however, it is a property lacking in metals. Different approaches
have been developed to achieve tunable or reconfigurable
metamaterials, among which several most effective realizations
are based on changing the substrate properties12–14. Such
approaches may find limitations where the properties of the
substrate material cannot or should not be changed significantly,
and metamaterial structures with intrinsic tunability15–17 are
keenly sought after. Graphene, a more recently discovered and
intensively studied material with various interesting properties
such as its tunable carrier density and high room temperature
carrier mobility, is a promising candidate for realizing tunable
metamaterials across a broad spectral range18. Graphene’s
capability to support tightly confined surface plasmon (SP) in
the THz to mid-infrared spectral range19,20 has been
systematically investigated using scanning near-field optical
microscopy21–25 and demonstrated in various patterned
graphene structures26–33, including arrays of closely packed
graphene ribbons (GR), that are essentially tunable
metamaterials. However, the limited interaction between
incident light and SP in monolayer graphene structures is not
sufficient for many applications.

Here, we demonstrate as proof-of-concept a type of electro-
statically tunable hybrid metamaterial employing graphene
plasmonic resonators strongly coupled to conventional metal-
based metamaterials. In addition to their strong electromagnetic
response and high tunability, such hybrid metamaterials also
provide an interesting platform for exploring cavity-enhanced
optical processes and light–matter interactions in graphene

plasmonic structures for applications including sensing34,
photo-detection35,36 and nonlinear frequency generation37.

Results
Design principle of the hybrid metamaterials. The proposed
hybrid metamaterial concept can be applied to different types of
structures, but in this work the specific realization is based on
GRs and electric-field-coupled complementary split-ring resona-
tors (C-SRRs)38–40. The schematics of a C-SRR unit cell, a GR
and a unit cell of the proposed hybrid structure are illustrated in
Fig. 1a–c. The rationale for such a hybrid structure design is the
following: the near-field electric field (E-field) distribution
associated with the LC-resonance of the C-SRR is highly
localized and enhanced within the capacitor gap as shown by
the simulation in Fig. 1d (see Methods), while the E-field
distribution of the GR localized SP resonance is also highly
confined in the vicinity of the GR (Fig. 1e). Both resonances are
excited by E-field in the x direction26,38, and upon excitation their
highly confined near-field also has the dominant E-field
component in the x direction. Therefore, embedding the GR in
the middle of the C-SRR capacitor gap is an effective way to
achieve strong near-field coupling of the two structures, and the
resulted hybrid structure forms a coupled oscillator system. When
the localized SP resonance of the GR is tuned to approach and
subsequently surpass the C-SRR LC-resonance by electrostatically
varying the carrier density (oSPpn1/4

p|EF|1/2, where oSP is the
frequency of the SP resonance, n is the carrier density and EF is
the Fermi energy), the spectral response of the hybrid
metamaterial is modulated in the frequency range containing
the two resonances. Such a mechanism of transmission
modulation is fundamentally different from those exploiting
free-carrier absorption12,13,41–43, which introduces tunable
damping to the resonance. In addition to efficient transmission
modulation, the strong coupling between the two resonators also
lead to further near-field localization and enhancement in
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Figure 1 | Design of the tunable C-SRR-GR hybrid metamaterials. (a) Schematic representation of a typical C-SRR. (b) Schematic representation of a GR

on a substrate. (c) Schematic representation of a typical unit cell of the proposed C-SRR-GR hybrid metamaterials. (d) Simulated x-component of the E-field

distribution associated with the LC-resonance of the C-SRR in a. (e) Simulated x-component of the E-field distribution associated with the localized SP

resonance of the GR in b. (f) Three-dimensional schematic representation of the proposed C-SRR-GR hybrid metamaterials employing a two-piece C-SRR

design and residing on a SiO2/Si substrate.
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comparison with either resonator alone; whereas, in previously
demonstrated tunable metamaterials employing resonators on a
continuous graphene layer41–43, the near-field enhancement of
the resonators is reduced due to significant damping by the free
carriers. Owing to the confined dimension along the GR width,
the Drude-like free-carrier absorption is suppressed when the
incident radiation is polarized perpendicular to the GR, and the
localized SP resonance is the dominant process26. To achieve
large modulation, the C-SRR capacitor gap should be designed to
accommodate the GR with small margins to maximize the field
overlap and hence the coupling strength. In addition, precise
control of the hybrid metamaterial spectral response requires
accurate information on the charge neutrality point (CNP) of the
GRs. Therefore, a modified unit cell design is developed in which
a narrow gap along the horizontal symmetry axis is introduced to
separate the C-SRR into two parts (see Fig. 1f and Supplementary
Note 1, Supplementary Fig. 1) with minimal influence on its
spectral response and field distribution. This slight structural
variation allows for convenient electrical characterization of the
GR (such as the CNP and carrier mobility) and current annealing
with the two C-SRR parts functioning as separate contacts, and
may also lead to other applications, such as direct probing of the
GR photo-response35,36 as influenced by the C-SRR cavity, or
passing a current through the GR to exploit antenna (C-SRR)
enhanced thermal radiation from the GR plasmonic resonators44.

Device fabrication. Following the above design principle, we
have developed and experimentally investigated multiple different
hybrid metamaterial structures targeting two different operating
frequency ranges, that is, B10 and B4.5 THz. To achieve this,
GR widths of B400 nm and B1.8 mm, respectively, are chosen to
ensure that the SP resonance can be electrostatically tuned across
the C-SRR LC resonance31, even in the presence of moderate
screening effect from the surrounding metal (see Supplementary
Note 2, Supplementary Fig. 2). To achieve a large coupling
strength, the C-SRR capacitor gap is designed to be wider than
the enclosed GR by 200–260 nm for the B10 THz structures, and
wider by 200–600 nm for the B4.5 THz structures, respectively.
The GRs are implemented with large-area monolayer graphene
grown by chemical vapour deposition (CVD) and transferred
onto a SiO2/Si substrate, which is also utilized as the back-gate for
electrostatic control of the graphene carrier density. Electron-
beam lithography is employed for patterning the structures (see
Methods). Figure 1f shows a three-dimensional schematic
representation of the final device, and Fig. 2 shows scanning
electron microscope (SEM) images of a fabricated C-SRR-GR
array designed to operate around 10 THz.

Strong coupling-induced transmission modulation. To
investigate the carrier density-dependent spectral response

of the fabricated C-SRR-GR hybrid metamaterial devices, their
transmission spectra are characterized employing Fourier trans-
form infrared spectroscopy (FTIR) with the normally incident
radiation polarized perpendicular to the GRs (see Methods).
Figure 3 summarizes the key results from a hybrid metamaterial
device (HM1) designed to operate around 10 THz. Figure 3a
shows the transmission spectra of HM1 at three different carrier
densities in comparison with that of a reference bare C-SRR array
(the transmission of the SiO2/Si substrate is B45% in this fre-
quency range, and its reflection is estimated to be B30%). The
bare C-SRR array exhibits two resonances in the measured fre-
quency range due to the presence of an optical phonon mode of
the underlying SiO2 layer45. Figure 3a also shows the
transmission spectrum of an array of 400-nm-wide GRs with a
carrier density of 2.3� 1013 cm� 2, in which two resonances
originating from the hybridization of the intrinsic graphene SP
resonance and the SiO2 optical phonon mode are present31 (see
Supplementary Note 3, Supplementary Fig. 3). The quality factors
(Q) of all these resonances are larger than 3, in part because of
coupling to the SiO2 optical phonon. Both graphene SP
resonances interact with the corresponding C-SRR resonances
with similar frequency; however, the interaction between the
lower frequency ones (B10 THz) are more effective, thanks to the
relatively stronger resonances and better frequency matching at
high graphene carrier density. Focusing on the spectral range near
the lower frequency LC-resonance, it is evident that at the CNP,
the transmission spectrum of the device is close to that of the
corresponding reference C-SRR array, whereas large transmission
modulation in both amplitude and line shape is realized by
varying the carrier density, with more than 40% relative
modulation of the peak transmission achieved with HM1. This
is in sharp contrast to previous investigations where a continuous
layer of graphene is brought into contact with SRRs41,42 and the
LC-resonance of the SRRs is considerably diminished even at the
nominal CNP condition42, as both the inductive and the
capacitive components in the equivalent LC-circuit of a SRR
are shunted by the free carriers in the continuous graphene layer.

Moreover, the transmission spectra at high carrier densities
display a double-peak feature. This is a characteristic feature of
the strong coupling46,47 between the C-SRR LC-resonance and
the GR localized SP resonance due to efficient near-field
interaction, which leads to two hybridized modes. The
evolution of the transmission of HM1 with increasing carrier
density is more clearly revealed in Fig. 3b, in which the higher
frequency peak is observed to gradually blue-shift with decreasing
strength, while the lower frequency peak emerges and becomes
more pronounced at higher carrier densities. The frequencies of
the individual peaks in the transmission spectra are extracted by
fitting the data with two Lorentzian functions (since the
resonances are relatively broad, the expected slight asymmetry
in the line shape does not significantly affect the quality of the
fitting; other fitting functions such as Gaussians produce very
similar results on the fit peak positions), and the results are
plotted in Fig. 3c. The dispersions of the upper and the lower
branches of the hybridized modes are well fitted with a formula
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describing the anti-crossing behaviour of two strongly coupled
resonances48, where b is a parameter determining the coupling
strength, and may also be interpreted with an equivalent
circuit model as the relative strength of a capacitive coupling
between two LC-resonators (see Supplementary Note 4,
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Figure 2 | SEM images of a fabricated C-SRR-GR hybrid metamaterial

device (HM1). (a) SEM image of an array of C-SRR-GR unit cells. Scale bar,

5mm. (b) Close-up SEM image of a single C-SRR-GR unit cell. Scale bar, 1mm.
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Supplementary Fig. 4 and 5). The splitting between the two
branches (oþ– o� ) when oSP¼oC� SRR is approximately
boC� SRR, and the coupling strength (half of this splitting) is
found to be B1.2 THz in both devices, more than 10% of the
individual resonance frequency and is therefore also within the
ultrastrong coupling regime49. The response of such a system
consisting of strongly coupled subwavelength resonators may also
be described under the framework of Fano resonance50.

Comparison with numerical simulations. These experimental
observations are well reproduced by full-wave simulations.
Figure 4a shows the simulated transmission spectra of HM1 at
various carrier densities in comparison with that of a bare C-SRR
array. Both the large transmission modulation and the double-
peak profile at high carrier densities are consistent with the
experimental observations. The two hybridized modes exhibit a
typical anti-crossing behaviour (Fig. 4b) as well as exchange of
their oscillator strengths, as the localized SP resonance approa-
ches and subsequently surpasses the LC-resonance with increas-
ing carrier density. The coupling strength is extracted to be
B1.0 THz (see Supplementary Note 3, Supplementary Table 1),
in good agreement with the experimental result (B1.2 THz). The
simulated E-field profiles associated with the two transmission
peaks at |EF|¼ 0.3 eV (Fig. 4c–d) evidently reveal that the lower
frequency peak stems from a bonding mode, and the higher
frequency peak an anti-bonding mode51. As an additional benefit
of the strong coupling, the field localization and enhancement
near the GR in the hybrid structure is considerably increased
compared with either the bare C-SRR or the bare GR (for
example, the field enhancement near the GR edges in the hybrid
structure is approximately one order of magnitude higher than
that in the bare GR array at its SP resonance, as shown in
Supplementary Note 5, Supplementary Fig. 6), which leads to
enhanced absorption of incident radiation in the GR, and may
also find broad applications in chemical and biological sensing.

Furthermore, with graphene of higher material quality and thus
higher carrier mobility, the carrier density-dependent modulation
of the transmission is expected to be further improved. As shown
in the simulated spectra in Fig. 4e assuming a carrier mobility that
is realistic for the state-of-the-art CVD grown graphene52,53, the
transmission of such a hybrid metamaterial can be switched
almost completely off across a wide frequency range by
controlling the graphene carrier density. Such a superior
modulation performance is another direct consequence of the
strong coupling between the two resonances.

High-speed modulation of THz radiation. The demonstrated
C-SRR-GR hybrid metamaterials can be utilized as efficient
modulators and switches. Since fast modulation is highly desired
for many applications such as real-time compressive imaging11,54

and wireless communication, the modulation speed of several
devices operating around 4.5 THz are investigated using a THz
quantum cascade laser (4.7 THz) as the source. Figure 5a–b show
the transmission spectra of two hybrid metamaterial structures
(HM2 and HM3) operating at B4.0 and B4.8 THz, respectively,
at various back-gate voltages in comparison with the transmission
spectrum of the corresponding reference bare C-SRR array. The
transmission exhibits similar (even higher) carrier density-
dependent modulation as observed in the 10 THz devices, with
B60% relative modulation of the peak transmission. The plateau-
shaped transmission spectra in both figures correspond to the
situation where the two hybridized modes have similar strengths,
and they also suggest that the two resonances are in the critical
coupling regime, that is, the coupling strength is close to half of
the broadening, and thus the individual transmission peaks
associated with each hybridized mode are not as clearly resolved
as in the 10 THz devices, consistent with the simulation (see
Supplementary Note 6, Supplementary Fig. 7). This is a result of
the relatively lower quality factor of both the GR SP resonance
and the C-SRR LC-resonance in this frequency range (QB2). The
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C-SRR-GR structure allows for straightforward parallel electrical
connection of all the unit cells, as illustrated in Fig. 5c, to
minimize the total resistance of the device. Hence, as the total
capacitance (C) increases proportional to the device area, the total
resistance (R) associated with the entire C-SRR-GR array scales
inversely proportional to the device area, facilitating high-speed
operation of large-area devices. Figure 5d shows the modulation
speed measurement (see Methods) of HM2 (1 mm� 1 mm area)
and HM3 (0.5 mm� 0.5 mm area), respectively. The measured
3 dB cut-off frequency is B19 MHz for the larger device and
B41 MHz for the smaller device. To the best of our knowledge,
such performance is superior to the state-of-the-art for fast
tunable metamaterials in the literature, which was achieved with
much smaller device area55, and is several times higher than
that reported for devices with similar area54. Electrical
characterizations show that the resistance of the C-SRR-GR
array is indeed not the limiting factor for the RC constant of these
devices, whereas the dominant resistance contribution is from the
low-doped Si substrate (because of the in-plane current flow) and
the input resistance (50O) of the driving voltage source (see
Supplementary Note 7, Supplementary Fig. 8). The modulation
speed can be further enhanced up to GHz range without the need
of reducing the device area. For example, by utilizing a wire–grid
contact on the backside of the Si substrate, the substrate
contribution to the total resistance can be reduced by more

than one order of magnitude without affecting the transmission
of THz radiation. The total capacitance can also be significantly
reduced with further optimization of the device architecture, such
as employing a transparent local top-gate for only the GRs or
using resonator structures covering less area.

The demonstrated concept of coupling graphene-based plas-
monic structures with conventional metal-based metamaterials to
achieve highly tunable hybrid metamaterials can be straightfor-
wardly extended to other frequency ranges (for example, mid-
infrared) and different graphene plasmonic and/or metameterial
structures (for example, graphene disks and negative-index
metamaterials), to further broaden the scope of novel function-
alities. The presented device structures also provide a platform for
further exploring intriguing cavity-enhanced light–matter inter-
actions (for example, cavity quantum electrodynamics in the
ultrastrong coupling regime56) and optical processes in graphene
plasmonic structures, which may lead to various additional
applications such as sensing, photo-detection, enhanced thermal
emission and nonlinear frequency generation.

Methods
Device fabrication. The C-SRR-GR hybrid metamaterials are fabricated from pre-
transferred large-area CVD grown monolayer graphene on 300-nm thick SiO2,
which has an underlying Si substrate with resistivity of B10Ocm. Electron-beam
lithography and reactive ion etching with O2 plasma are used to pattern the
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Figure 4 | Simulated spectral response of C-SRR-GR hybrid metamaterials operating at B10 THz. (a) Simulated transmission spectra of the C-SRR-GR

hybrid metamaterial HM1 at various graphene Fermi energies (carrier densities) in comparison with that of a reference bare C-SRR array. The carrier

relaxation time of 50 fs is used in this simulation. (b) Symbols are the extracted peak frequencies of the two hybridized modes in a as a function of the

graphene carrier density (n1/4). The solid black curves are fits of the data points using equation (1), with the dashed lines of the same meaning as in Fig. 3c.

The fits of the corresponding experimental data shown in Fig. 3c are also plotted in solid grey curves for comparison. (c,d) Simulated z-component of the

E-field distributions associated with the two hybridized modes (transmission peaks), that is, the bonding mode (c) and the anti-bonding mode (d), at

|EF|¼0.3 eV. The upper graphs correspond to the field distributions in the x–y-plane right below the C-SRR-GR unit cell, and the lower graphs correspond to

those in the x–z-plane indicated by the dashed line in the upper graphs. (e) Simulated carrier-density-dependent transmission spectra of a C-SRR-GR hybrid

metamaterial in comparison with that of a reference bare C-SRR array, assuming 1 ps for the graphene carrier relaxation time.
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continuous graphene sheet into arrays of ribbons with the designed widths and
separations. A second stage of electron-beam lithography followed by deposition of
Cr/Au (thickness 5/80 nm) and a lift-off process defines the C-SRR arrays, which
are in direct contact with the GRs to enable electrostatic control of the carrier
density using the Si substrate as the back-gate, as well as direct characterization of
the electrical properties of the GRs. The devices operating around 10 THz have a
surface dimension of 2 mm� 2 mm or 0.6 mm� 0.6 mm, and the devices operating
around 4.5 THz have various surface dimensions: 2 mm� 2 mm; 1 mm� 1 mm or
0.5 mm� 0.5 mm.

Transmission characterization. Transmission spectra of the C-SRR-GR hybrid
metamaterial devices are characterized with FTIR spectroscopy. The measurements
are performed at room temperature in the vacuum chamber of a Bruker Vertex 80v
FTIR, with the normally incident radiation linearly polarized perpendicular to the
GRs using a wire–grid polarizer. The resolution is 8 cm� 1 for the B10 THz
devices and 2 cm� 1 for the B4.5 THz devices. The low-frequency measurement
range is limited to B1 THz by the DTGS detector, while the high-frequency
measurement range is significantly above the operating frequencies of the inves-
tigated devices.

Modulation speed measurement. The modulation speed measurement is con-
ducted with a 4.7 THz quantum cascade laser as the light source, a function gen-
erator as the voltage source for modulating the hybrid metamaterial devices (up to
80 MHz), and a superconducting hot electron bolometer as the fast detector (with
response up to 200 MHz), feeding the output signal to a lock-in amplifier with
demodulation frequency up to 50 MHz (limiting the frequency range of the
measurement). The output voltage from the function generator is set to be a
sinusoidal signal with 10 V amplitude (limited by the equipment). The modulation
depth at any specific frequency in Fig. 5d is normalized to the value measured at
1 MHz modulation frequency.

Full-wave simulation. The spectral responses and field distributions of all the
investigated structures are simulated using finite-element frequency domain
methods with CST Microwave Studio. The monolayer graphene sheet is modelled
as a 0.3 nm thin layer with a dynamical surface conductivity described by the
Drude model as s oð Þ ¼ e2EF

p‘ 2
i

oþ it� 1, which is an accurate approximation when the
Fermi energy EF is significantly higher than the corresponding energy of the fre-
quency range investigated. In most of the simulations, the carrier relaxation time is
assumed to be 50 fs which is realistic for the graphene material available for our
experimental demonstration31. The frequency-dependent permittivity of the SiO2

layer (300 nm thick) is computed taking into account the surface optical phonon
mode at B14.5 THz (see Supplementary Note 3), while tabulated data from ref. 57
are used for the low-doped Si substrate (modelled as 5 mm thick). The C-SRR
structure is modelled to consist of 100-nm thick gold, with the permittivity
described by the Drude model assuming the plasma frequency of
2p� 2.184� 1015 s� 1 and the damping constant of 2p� 1.7� 1013 s� 1.
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