Towards automatic bounding box annotations
from weakly labeled images

Christian X. Ries - Fabian Richter - Rainer Lienhart

Abstract In this work we discuss the problem of automatically determining bounding box
annotations for objects in images whereas we only assume weak labeling in the form of
global image labels. We therefore are only given a set of positive images all containing at
least one instance of a desired object and a negative set of images which represent back-
ground. Our goal is then to determine the locations of the object instances within the positive
images by bounding boxes. We also describe and analyze a method for automatic bound-
ing box annotation which consists of two major steps. First, we apply a statistical model for
determining visual features which are likely to be indicative for the respective object class.
Based on these feature models we infer preliminary estimations for bounding boxes. Sec-
ond, we use a CCCP training algorithm for latent structured SVM in order to improve the
initial estimations by using them as initializations for latent variables modeling the optimal
bounding box positions. We evaluate our approach on three publicly available datasets.

Keywords Automatic annotation - Weakly labeled data - Statistical feature model - Visual
features - Image analysis

1 Introduction

Successful approaches to object detection or image retrieval often require a set of train-
ing images which come with manual annotations indicating the locations of instances of a
wanted object class within the training images. In this context, a common means of anno-
tation is manually drawing tight rectangular regions of interest also called bounding boxes.
Manually annotating bounding boxes, however, is a tedious task. Also, in some cases it is
not desirable or even not possible. For example, consider the case of adult images where
manual annotation is hardly acceptable.

C. X. Ries (<) - F. Richter - R. Lienhart
Universitit Augsburg, Universitatsstr. 6a, 86650 Augsburg, Germany
e-mail: chrisries13@web.de

6092

In this work we discuss the problem of automatic object annotation. Automatic object
annotation denotes the task of automatically finding locations of instances of a given object
class within images without exploiting any knowledge beyond global binary image labels.
Thus, the goal is reducing manually drawing bounding boxes to only providing sets of
positive and negative images and obtaining bounding box estimations without further human
supervision as illustrated in Fig. 1.

This work constitutes a detailed description of our previous work [16] and [17] on the
topic of automatic object annotation. It also concisely summarizes [18]. We also introduce a
number of enhancements, i.e. multi-object annotation and a latent structured training algo-
rithm. Besides a thorough discussion of the problem, we provide an in-depth explanation of
the methods used in [17] and explain implementation decisions in detail. We also describe
further experiments.

This article is organized as follows. First, we present previous and related work in the
next section. In Section 3, we give a problem definition for the task of automatic object
annotation. Afterwards, in Section 4 we explain an approach to automatic object annota-
tion based on a straight forward statistical feature model. The next section describes two
implementations of the statistical model, namely a color model and a visual words model.
In Section 6, we propose a CCCP-based structured latent learning algorithm for improving
the bounding boxes obtained from the initial model. Evaluations and discussion of results
are given in Sections 7 and 8. Finally, Section 9 concludes this work.

2 Previous and related work

In this section we briefly review our previous work on the topic of automatic object
annotation and the basic methods it applies. Also, we name a few approaches on similar
problems.

2.1 Previous work

This work is mainly based on previous work on the topic of automatic annotations, i.e. [16]
and [17].

Fig. 1 Visualization of automatic object annotation problem: We are given a positive (upper left) and a
negative (upper right) image set and find bounding boxes for the object instances within the positive images

6093

In [16], the special problem of creating a color model for an unknown object class is
discussed for the case when only global image labels are available and hence building a
color model based on object pixels is not possible. The basic idea is to use statistics which
can be derived from global labels in order to deduce a discriminative color model. The
discriminative color model is then enhanced by a flood fill algorithm which results in image
regions which are likely to consist of pixels with colors indicative for the wanted object.
From these regions, a histogram-based color model is computed as suggested by Jones and
Rehg [11]. As a result, pixels in test images can then be classified as either object pixels or
background pixels.

The follow-up work [17] deals with the problem of automatic object annotation as
defined in Section 3. Thus, for a given set of images which all contain at least one instance
of an object class, the goal of [17] is to determine the locations of these object instances
without further manual annotation. For this purpose, the same color model as in [16] is
used for determining pixels which are likely to belong to an object instance. In addition
to the color model, a visual words model is used which is implemented analogously to
the color model. As local visual features, Histograms of Oriented Gradients (HOG) [5]
cells are used. The combination of colors and visual features yield bounding boxes which
are candidates for object locations. Based on these candidates, an SVM model is itera-
tively trained and evaluated on the positive images in order to improve the bounding box
locations.

In this work summarizing [18], we present an approach which is basically an enhance-
ment of [17]. We also begin with a statistical feature model. However, we suggest a method
for unifying models for multiple features such that our basic statistical model becomes
generic and independent from the actual feature used. Also, we introduce a heuristic for esti-
mating multiple bounding boxes per image as opposed to [17] which only detects a single
instance for each image. Furthermore, we propose using a latent structured learning algo-
rithm for improving the bounding boxes obtained from the initial model, as opposed to the
custom SVM algorithm used in [17]. Also note that in [17] additional knowledge about the
aspect ratio of the wanted object is exploited in contrast to our approach where the aspect
ratio is modeled by a latent variable. Our learning algorithm is an implementation of the
Convex-Concave Procedure (CCCP) algorithm [27] and is inspired by the approaches of Yu
and Joachims [26] and Zhu et al. [29]. The optimization component of the CCCP algorithm
we use 1s based on Joachims et al. [10] and Tsochantaridis et al. [25].

2.2 Work on related problems

In general, the problem of automatic object annotation belongs in the category of learning
from weakly labeled data, since we try to learn an object model from only global image
labels. It is therefore similar to Multiple Instance Learning (MII) [6] as for example used
in [13, 28]. Another interesting work in this context is provided by Siva et al. [22] who
discuss the benefit of mining negative sets for learning from weakly labeled data.

Recently, learning from unlabeled or weakly labeled data has attracted much interest in
the research community. In the following, we shortly present a selection of works on related
problems.

A very similar problem to automatic annotation is determining generic objects within
images, i.e. finding bounding boxes around image regions which are likely to show an
object. An approach to this problem is proposed by Alexe et al. [1, 2] who measure the
“Objectness” of bounding boxes. We also use their approach for comparison and thus
discuss it in more detail in our evaluation chapter.

6094

Another similar problem is determining discriminative segment annotations from weakly
labeled video as suggested by Tang et al. [24]. Here, a weakly labeled video (i.e. labeled by
a tag) is segmented into candidate regions. Then, regions with consistent visual features are
identified across multiple video frames. They also use a large set of negative video frames
for determining such consistent segments.

Chen et al. [4], search for synthetic training examples in weakly labeled videos based
on a few manually labeled training examples. Despite a different scenario and different
assumptions, their approach tackles a problem related to automatically annotating objects.

3 Problem definition

A main concern of this work is to define the problem of automatic object annotation in a
general manner.

Let P be a set of images which share a common object. More precisely, each image in P
shows at least one instance of a given object class. Thus P is a set of positive images. Also,
we are given a negative set N which contains images which do not show the wanted object
(except for neglible noise).

The task of automatic annotation then requires that we find the locations of said object
instances in all positive images by devising a tight bounding box around them. Thus, a
set of rectangles Ry is assigned to each image / in P whereas the rectangles must have a
large overlap with bounding boxes one would obtain from manual annotation. Therefore,
manual bounding boxes are required for evaluation but may not be exploited for automatic
annotation.

As overlap criterion, we use the widely acknowledged intersection divided by union
measure for rectangles which was for instance used in the VOC challenge [7]. For evalua-
tion, we hence use manual ground truth bounding boxes R; for each positive image /. The
quality of the j-th bounding box estimation 7; ; € R; in image / is then determined by its
overlap with the one rectangle ¢, ; € R; which has the best overlap with 7; ; and is not
already assigned to another estimation with an even higher overlap.

Since we aim at automatic annotation, we assume no further knowledge about the wanted
object class besides the fact that each positive image has at least one object instance.
Therefore, an approach to automatic object annotation must be weakly supervised, i.e. unsu-
pervised except for providing a positive set of images. Also, we assume we are given a
negative image set which does not contain any object instances.

Note that providing a positive set of images is nowadays a considerably easier task than
drawing bounding box manually, since there are many ways for obtaining images with an
assigned verbal tag from the Internet. Even though downloading images by tag usually
yields many irrelevant (i.e. negative) images, browsing through a set of images and manually
deleting irrelevant ones is still less work than annotating bounding boxes. Also, obtaining
a negative set of background images is straightforward for many object classes, since often
“random” scenes are acceptable. Therefore, we think that our problem definition describes
a realistic scenario.

From our problem definition, two major assumptions arise about the wanted object class.
First, it must obviously be possible to distinguish object instances from background with
regards to the set of features used. In other words, the intra-class variance of the respec-
tive object class must be smaller than the variance in the backgrounds of the positive
images. Second, the negative set must contain a fairly representative collection of back-
ground scenes. If the background set is heavily biased towards certain scenes, we cannot

6095

deduce which visual features are likely to be present in positive images only due to their
regular appearance in background.

4 Statistical feature model

Our first approach to automatic annotation is based on the intuition that visual features exist
which are indicative for the wanted object class. The method is an enhanced version of [17].
The main difference is the dynamic threshold which replaces feature-specific thresholds
of [17].

4.1 Confidence interval

An indicative visual feature is a feature f from a set F' of discrete visual features which
appears regularly on the wanted object without appearing as often in random background.
We also refer to indicative features as positive features while the remaining features are
negative features.

Note that without annotations, we do not know whether f appears on the wanted object
or in the background of a positive image. In fact, the number of images which contain
feature f at least once, however, is an upper bound to the number of images which contain
f only because the wanted object is present (which characterizes an indicative feature).
Let therefore f (/) = 1 denote the event that image / contains feature f at least once (on
the object or in the background) and let Pp(f (/) = 1) be the relative number of images
in positive set P for which f(I) = 1. Analogously, let Py(f(I) = 1) be the relative
number of negative images containing f. Now Py (f (/) = 1) serves as our expected value
for observing feature f in a set of images if f is not an indicative feature. If feature f
is observed in the positive images less often, i.e. if Py(f(I) = 1) > Pp(f(I) = 1)
we can safely assume that f is a negative feature. Even if f was characteristic for the
wanted object, it could not help distinguishing the object from background. In the opposite
case, i.e. Py(f(I) = 1) < Pp(f(I) = 1) we cannot directly deduce that f is a positive
feature since the fact that we observed f more frequently in P might be due to the fact
that the background of the positive images is not completely random or set N is not quite
representative. In fact, experiments show that there are many cases where negative features
appear more frequently in P than in N.

We therefore analyze our confidence that the observation of relative frequency
Pp(f(I) = 1) implies that f is still a negative feature despite being more frequently present
in the positive set. We borrow our confidence model from sample statistics: If we observe a
property f (/) among a relative number Py (f (/) = 1) of individuals of a set NV, the proba-
bility of observing the same property Pp(f(I) = 1) in another (sample) set is governed by
a binomial distribution which we approximate by the following Gaussian:

n_lN()Cf;pL‘f,O‘]%) (D

where n = |P|, xy = Pp(f(I) = 1), and uy = Py(f(I) = 1). The variance of this
distribution is (7]% =pr-d—pn f)n_l. On this distribution we can define our confidence
that a feature is a negative feature by means of a one-sided confidence interval and devise a
binary decision function c¢(f) : ' — {0, 1} as

c(f)=8(xf ¢ 10, pr +05D. 2)

6096

The bound of a confidence interval is usually expressed in terms of the standard devi-
ation in order to dynamically adjust to different sizes n and observations ¢ (which both
determine the standard deviation o¢):

Of =zF-0f 3

This equation involves a constant zr which depends on feature type F. However, since
we do not assume any knowledge about how suitable feature F is for the object class at
hand, we need to select zy dynamically as explained in the following section.

4.2 Dynamic threshold selection

For bounding our confidence in feature f being not indicative for the wanted object class,
we cannot simply introduce an empirical constant. The reason is that the degree to which
a feature type F is suitable for a given object class is unknown and may strongly vary. For
example consider a color feature applied on the object class of cars. Since cars come in a
large number of different colors which are not unusual in background scenes, color is not
indicative for cars. If the object class is for instance a certain brand logo, however, color
may be very useful for locating object instances.

For features which are highly suitable for the given object class, we want a large con-
fidence interval resulting in a small number of positive features, since usually a few very
distinctive features are sufficient to locate an object. As explained below, we aim at com-
bining multiple features by merging them using a logical AND operator. As a consequence,
features which are not suitable should yield a relative small confidence interval and thus a
large number of positive features.

In order to determine how suitable feature type F is for the wanted object class, we
examine the “most indicative” feature which is the feature with the smallest value of the
normal distribution of (1). To account for noise, we actually use the median of the 5 features
with the 5 smallest values in practice. Let f* denote this reference feature. Now we can
determine a value z}. for zF in (3) such that only f* becomes a positive feature. Finally, we
set our confidence bound relative to this value z7%:

O =azy - O']% “)

Note that constant & € [0, 1] does not depend on the actual feature type but scales the

feature-dependent z}. which we can compute without any previous knowledge about the

feature type or the object class. Empirically, we determine that « = 0.75 is a reasonable
value.

Now feature types with a strong reference feature f* will obtain a large confidence

interval and a small set of positive features and vice versa, i.e. we obtain a large set of

positive featues for feature types with weak reference feature. This is beneficial for our
method which merges multiple features as explained in the following section.

4.3 Combining multiple features

Let F,5 be the set of positive features for feature type F, i.e. the set of features which lie
outside our confidence interval defined in (2):

Fpos:{fEFlc(f):l})

A visual feature can usually be linked to one or multiple pixel locations. Since the rela-
tions between features and pixels depends on the actual feature type, they are explained

6097

Fig. 2 Examples for positive pixels based on two features and resulting bounding box estimations. Left:
Positive pixels based on color B.(I) (green), on HOG features By, (1) (blue), and their intersection B([)
(cyan). Center: Gaussian Mixture models selected by the multi-box heuristic. Right: resulting bounding
boxes. Best viewed in color

in the respective sections below. Now let Br(I) be the set of positive pixels obtained via
positive feature set Fjy;.

For combining multiple features in order to obtain a single set B(I) of positive pixels,
we simply intersect the sets of positive pixels over all feature types F':

B(I) = ﬂBF(I) (6)
F

Note that the intersection is equivalent to a logical AND on every pixel over all feature
types. As a consequence, false positive pixels of one feature do not harm the overall result if
another feature is more accurate. Therefore we want large sets F),s for features which are
not suitable for the wanted object class which is the reason for our method of determining
the confidence bound by dynamic threshold as described above.

The left column of Fig. 2 shows a few examples for two sets of positive pixels based on
a color model (green pixels) and a HOG model (blue pixels), and their intersection (cyan
pixels). In the second column the intersection is visualized by white pixels, i.e. the white
pixels correspond to the cyan pixels of the left column. It can be seen that if one feature
“over detects” the object, the respective other feature dominates the overall result. Also,
Fig. 3 gives examples for positive features found by our feature model.

6098

4.4 Bounding boxes

The positive set of pixels can be viewed as a binary map of positive pixels, i.e. a two-
dimensional distribution of positive pixels. In order to determine bounding boxes we now
attempt to fit Gaussian mixture models into this two-dimensional distribution using a stan-
dard EM algorithm. Since we do not know how many object instances image / contains,
we apply an heuristic which fits Gaussian mixture models with k € {1, ..., 5} mixture com-
ponents into B(/). The fitting method (a standard EM algorithm) implicitly estimates the
likelihood of the Gaussian model parameters which we then use to determine a value for k.
For each £ we compare this likelihood to the likelihood we obtained for the previous value
k — 1 which yields the increase (i.e. the difference) i (k) of likelihood for k mixture compo-
nents. We finally pick the value of k for which we observe the largest increase i (k) of the
likelihood of the model parameters of the mixture model (with an empirical lower bound of
minimum increase). We also add a bias factor in order to slightly prefer larger k, i.e. it is
only required that i (k) > 0.8 - i (k — 1) for k to be selected.

After determining k Gaussian mixture components, each component yields one bounding
box, i.e. one estimation for the location of an object instance. The bounding box is obtained
as a box around the mixture component’s mean. Width and height of the bounding box
correspond to the component’s standard deviation in the respective direction, multiplied
with a empirically determined enlargement factor of 1.6.

Since this procedure may lead to unreasonable bounding boxes, we reject boxes with
aspect ratios which contradict common sense thresholds. Also, pairs of bounding boxes
which overlap by at least 0.1 are merged into a single bounding box surrounding both
original boxes.

As a final post-processing step we apply Hough voting in order to merge pairwise bound-
ing box configurations which occur in many positive images into single bounding boxes.
Consider for example an object which consists of two parts which are detected by our
method but disconnected due to non-indicative features in-between the two parts. We then
obtain similar pairs of bounding boxes with respect to their relative locations and aspect
ratios among a large number of positive images. By Hough voting such regularities can be
identified and merged into single boxes with acceptable computational effort. We build a
histogram over the aforementioned pair-wise features (relative locations and aspect ratios)
and determine which configurations appear in a considerable number of positive images.
Then, the respective pairs are merged into their convex hull.

In the center column of Fig. 2, some example results of the multi-bounding box heuris-
tic are shown. The selected Gaussian mixture model is visualized by ellipses around 1.6
standard deviations in each direction. The right column shows the resulting bounding boxes
along with white boxes which are manual annotations. The second example also shows a
mixture component which is rejected during post-processing due to its extreme aspect ratio.

5 Implementations of statistical model

For our statistical model, we use two instantiations with two different visual features:
Color and gradient based local features, i.e. HOG features [5]. In the following we give
implementation details on both features.

6099

5.1 Color

As our first feature, we use colors. Colors are arguably the most straightforward visual
features. Still, they are discriminative for a relatively large number of object classes, since
many objects occur in a limited number of different color combinations.

Our set of features F, is hence a set of discretized colors. We conduct experiments anal-
ogous to [16] for determining the number of bins and color space for the color model. For
our model, the HSV color space and 8 bins per color channel perform best (even though the
difference to other color spaces and numbers of bins is relatively small). We determine a set
F(. 05 of positive colors as explained in the previous section based on (5).

Following [16], we enhance the color model by using a flood-fill algorithm. In short, the
positive colors from F. . are used to determine seed pixels in the positive images. Starting
at these seed pixels, similarly colored regions are determined which enables us to apply
the region-based histogram approach explained in [11] which yields our final set F s of
positive colors.

The relation between positive features and positive pixels is trivial since each pixel has

exactly one color.
5.2 Local visual features

As our second feature we use Histograms of Oriented Gradients (HOG) [5]. Since HOG fea-
tures model gradient information, they are often complementary to color features to a certain
degree. Recall that our feature set must be discrete. Therefore, we cluster a large number of
HOG features into a set Fy, of 10,000 discrete features represented by the respective cluster
id. This procedure is commonly known as building a visual vocabulary [23].

As HOG cell size we use 8 x 8 pixels and we extract features over multiple scaled
versions of the respective image (our scaling factor is 27-2° and we use 13 scales). Note
that the color model already provides bounding boxes indicating (often too large) regions of
interest which in almost all cases contain the wanted object. We therefore exploit this prior
information for removing some background by creating a single bounding box per image
based on the color model. We then extract the HOG features from the positive images only
within these bounding boxes over all scales. The HOG implementation we use follows [8].
Also, we enrich our local feature representation by concatenating 2 x 2 HOG cells into a
single feature vector before clustering.

Again, we apply the statistic model explained above in order to obtain a set of positive
features Fj, 5. Positive pixels are then determined by considering all pixels positive which
lay under a positive HOG cell which we re-scale into the original image.

5.3 Feature examples

In Fig. 2 we show a few examples for the positive pixel sets B.(I) and B, (1) obtained from
positive colors (F¢ pos) and HOG features (F, pos), respectively. We also show the set of
pixels B(I) we obtain from intersecting B, () and By (I).

The first example shows a situation where the HOG model works better than the color
model. In the second example, the color model has less false detections and thus dominates
the intersection. However, some false positive pixels of the color model are still removed by
the HOG model. In the third example both features remove different background areas.

Fig. 3 Examples for positive features. Left: Four example training images (out of 70) for the class “DHL”
from FlickrLogos-32 dataset [20]. Center: All positive colors determined by our statistical model with f;* on
top (for visualization, we use RGB color space instead of HSV). Right: Three examples for positive visual
words, each represented by four image patches with f; ¢ On top. Best viewed in color

Figure 3 shows examples for positive features. On the left, a few training images are
shown. Next to the images, all positive colors are displayed beginning with the most indica-
tive color f on top. On the right, three positive visual words are visualized, each by four
example patches falling into the respective feature cluster. Again, the uppermost feature cor-
responds to the most indicative visual word f,* 2 For the sake of visualization, here f and
Tro o are the actual best features (with lowest values for the distribution of (1)) instead of the
median of the top 5 features.

6 CCCP algorithm

In many cases, our initial model yields rectangle estimations which contain the wanted
object. However, they often also contain relatively large background areas. In this section
we explain how we improve our estimations by a latent structured learning algorithm.

Note that our initial feature model treats all features as independent entities. However,
objects from the same class are likely to produce co-occurring features within confined
regions, i.e. their bounding boxes. Over multiple bounding boxes containing instances from
the same object class, indicative features are likely to be observed together. We present an
algorithm which, based on the HOG features, aims at finding bounding boxes within the
positive images which share such feature co-occurrences.

In the following section, we explain how we therefore represent bounding boxes by Bag-
of-Visual-Words (BOW) histograms which are histograms over the occurrence frequencies
of clustered local visual features.

Afterwards, we formulate the task of finding bounding boxes based on the BOW his-
tograms as a latent structured learning problem in Sections 6.2 and 6.3. We then explain
the algorithm we use for solving this problem in Section 6.4 whereas the latent structured
problem formulation is based on [26] and [29].

Finally, in Section 6.5 we explain how we implement the CCCP algorithm [27] for
solving the learning problem and finding improved bounding box estimations.

6.1 Feature representation

From our initial statistical model, we obtain a set of estimated rectangles Ry per image. We
now want to describe each rectangle from R; by a fixed-size feature vector based on our

6101

HOG features. Since our estimations may be inaccurate and include relatively large back-
ground areas, we cannot expect to find similar HOG cells at similar relative locations within
different rectangles. Therefore we choose a Bag-of-Visual-Words histogram representation
which discards the locations of the local features and only counts their occurrence fre-
quencies. For each rectangle 7; ; we thus obtain a BOW histogram with 10,000 occurrence
frequencies.

Since HOG features are computed on a fixed grid we must find a grid rectangle which
represents 7;, 7. For this purpose, we first define a set of reasonable aspect ratios on our grid
which range from 15 x 7 to 7 x 15 HOG cells. We thus postulate that all possible objects
have an aspect ratio of 0.5 in the extreme case and can be found with roughly 100 HOG
cells on some scale.

Then, we search all image scales for the one rectangle which has one of these aspect
ratios and at the same time the largest overlap with 7; ;. Note that the number of scales con-
sidered depends on image size and on the number of scales which are required for extracting
feature vectors for all examples. Counting the occurrence frequencies of the visual words
within the respective grid rectangle then yields our BOW histogram. Each initial rectangle
thus yields one training example x; ; for the learning problem below.

For the sake of readability, we omit the image index I for our rectangle estimations 7; and
subsequently for training examples x; for the remainder of this work. Implicitly, multiple
rectangles or examples may hence stem from the same image in the following.

6.2 Structured learning problem

We first restate the structured learning problem as defined in [25], since the latent optimiza-
tion problem explained below is based on it. A structured learning problem is characterized
by a multi-dimensional label space Y. Therefore, a decision function fi(x) : R — R* for
a structured problem maps a d-dimensional feature vector to a k-dimensional output space.
As a consequence, our feature representation W(x, y) for example x may also depend on
the label y, i.e. x may be an image and y may be a rectangle determining the region for
which a BOW histogram is extracted. Learning a linear maximum margin decision func-
tion fw(x) = (w, W(x, y)) involves solving a constrained optimization problem for model
vector w:

1 n+m
. o2 .
w —arg‘inm (2||w|| +C Z§l> (7

i=1

sit. Vie{l,.,n+m}:VyeY\y:(w V(x,y)—VY(x,y))))
= A()A/’ yl) - gi
The constraints require that, under model vector w, for each prediction y the difference
between the original feature representation W (x;, y;) of example x; and the predicted rep-
resentation W (x;, y) must have a score which exceeds the value of a loss function A(y, y;)
quantifying the error committed by hypothesis y. In other words, the score required for
the difference between the correct feature representation and the predicted representation
depends on “how incorrect” the prediction is. As for standard soft-margin classifiers, slack
variables &; soften the constraints, i.e. allow violations. Maximizing the margin while mini-
mizing over the sum of the slacks as stated in (7) yields an optimum solution with minimum
constraint violations.

6102

6.3 Latent variables

A latent learning problem is a problem which involves unobserved properties which are
modeled by latent variables. In our case, the latent variables /; represent the unknown actual
best bounding box for object instance i, i.e. in fact each latent variable is five-dimensional,
since it models the x— and y— position as well as the width, height, and HOG grid scale.
Object instances are created by the initial model and come with an initial estimation 7; for
the latent variable /;. Note that 4; also implicitly contains a scale on the multi-scale HOG
grid which is initialized as explained above. We assume that all object instances are positive
examples while all rectangles in negative images are negative examples, thus we assign a
label y; € {—1, 1} to each example. Overall, our examples have thus the form (x;, y;, h;)
whereas x; denotes the grid of visual HOG words of image i.

It should be mentioned in this context that in our implementation, the label y; is a binary
label and our problem is thus only a structured problem in terms of the latent variable space.
Adapting the terminology of [29] we refer to our problem as a latent structured problem.
From structured learning we borrow the notation of W (x;, y;, h;) for denoting the feature
vector we obtain if we extract a BOW histogram from rectangle /#; on HOG grid x;. Also,
we treat our problem like a structured problem during the model vector training phase of
the CCCP algorithm as explained below.

Now our problem is to find the optimal setting for the latent variables over all positive
examples x;. Inspired by [29], we use the CCCP algorithm proposed by [27] which itera-
tively trains an SVM model based on the current setting of latent variables and then applies
this model to the training images in order to estimate new values for latent variables.

Overall, we need to learn a linear decision function which predicts the most likely label
of an example i along with the optimal rectangle location:

Jw(xi) = argmax (w, W(xi, yi, hi)).)
(yi,h[)EYXH

If we extend the structured optimization problem of (7) for latent variables as shown
in [26], we obtain the following optimization problem:

min (f(w) = g(W)) (10)
where
1 n-+m . .
fon=IwlP+C Y0 max (WG §.)+ AG Ay (D
i—1 (3,h)eYxH
and
n+m
gw) =C) max(w, W(x;, yi, h)). (12)

i=1

This optimization problem includes the maximization of the margin and minimization of
slacks in f(w) which implicitly includes the constraints of (8) with added latent variables.
Also, the formulation incorporates the maximization over the latent variables in g(w). Also
following [29] and [26], we solve this non-convex optimization problem by applying the
CCCP algorithm as explained in the following section.

6103

6.4 Training algorithm

Our training algorithm is an instance of the Convex-Concave Procedure (CCCP) by Yuille
and Rangarajan [27]. Algorithm 1 provides a brief description of the CCCP algorithm in
our scenario.

In line 1 our latent variables are initialized. Note that this applies only to positive exam-
ples. For negative examples, we simply begin with pseudo-random rectangles which roughly
describe the full negative images. In later iterations, the negative examples are mined as
explained below.

Line 2 contains the main loop over the iterative process of training a linear model and
inferring latent variables. Analogous to [26] we begin each iteration by constructing a lin-
ear upper bound to the objective function f(w) — g(w) of (10) which we then minimize
instead of the non-convex f(w) — g(w). The linear upper bound is given in line 4 and based
on the hyperplane constructed in line 3 which constitutes a linearization of the objective
function.

Algorithm 1: CCCP training algorithm

Input
n positive and negative examples (x1,y1, hi), .-, (Tn, Yn, i);
Initial rectangle estimations 7; for positive examples

Vi:h? =h; =7;; wog =0;t=0;

=

2 repeat
// Construct upper-bound hyperplane for objective function
3 vie = S0 W (g, yi, B
// Solve optimization for linear lower bound of objective function
4 wip1 = argmin[f(w) + (W, vi)];
w
// Infer latent variables h] for each positive example xz; € X
5 h} = argmax(wiy1, ¥ (xq,yi, h));
"LEI‘I2
6 t=141;
until (f(wet1) — g(wet1)) — (f(we) — g(we)) <€
Output

Latent variable h for each positive example

Minimizing this upper bound yields a model vector w which we then use in line 5 for
inferring new values of the latent variables, i.e. the bounding box rectangles for the positive
examples. Both the optimization step in line 4 and the inference step in line 5 require some
implementation decisions which we elaborate in the next section.

6.5 Implementation decisions

For our CCCP algorithm we need a training strategy for the optimization step in line 4 and
an inference method in line 5. In this section we explain our implementations of both steps
in detail.

6.5.1 Model training
Our objective function is f(w) — g(w) whereas minimizing f (w) corresponds to finding a

maximum decision margin and —g(w) is introduced for finding the best setting for latent
variables. Since we assume fixed latent variables for this step, we can at this point interpret

6104

the problem as a (non-latent) structured constrained learning problem. For this purpose,
the latent variable /#; now takes the role of the structured label in a non-latent structured
problem, i.e. we use h; as the current true bounding box and h denotes a bounding box
prediction.

This problem can then be solved using the Cutting Plane algorithm by [10]. The Cutting
Plane algorithm iteratively trains an SVM model by building sets of constraints and then
solving the resulting constrained optimization problem for a model vector w. The constraints
of our problem have the form

Vi, heY x H:(w,8¥) > AG, h,y)—& (13)

where
SW = W(x;, yi, hi) — W (xi, §, h) (14)

and A(y, h, y;) is the loss function quantifying the error of estimated label y and rectangle
h. The loss function may not depend on h; which is a prerequisite for deriving the objective
function of the latent structured problem as elaborated in [26]. Following [29], we simply
use a straightforward binary loss function, i.e. A(9, &, yi) = d(y; #) where d(A) = 1 if
A is true and 0 otherwise. We discuss why this is a reasonable choice for our problem below.

A rectangle estimation h is only meaningful for a positive example or, in other words,
the correct prediction for a negative example would be an empty rectangle (denoted by ¢)
and hence an empty feature vector. As a consequence, we define the representation of an
empty prediction as W (x;, y = —1, h = ¥) = 0 where 0 is a zero-vector.

For building the set of constraints for the optimization problem, we now search each
training example for the most violated constraint, i.e. the most useful constraint for the
current iteration. Positive examples may thereby either be predicted correctly or incorrectly,
whereas an incorrect prediction is made if the empty prediction’s score (i.e. 0) is larger than
or equal to the score of the actual positive example’s feature vector (which in this case would
be < 0). We do not consider rectangles which are different from the current estimation 4; in
positive images, since quantifying the error for partially correct rectangles is not applicable
in our scenario as also explained below.

For negative images we know that each predicted rectangle is fully incorrect. As a con-
sequence, we search the highest scoring rectangle h in each negative image for building a
most violated constraint. Again, the highest scoring prediction may also be empty which is
the only correct prediction for a negative example.

Training examples which we already predict correctly are not useful for training our
model which is reflected by the fact that such examples do not yield any non-trivial con-
straint. This can be verified by substituting the respective predictions and loss value of
Ay = yi,y,¥i) = 0in (13). For a correct positive or negative prediction, ¥ becomes
0 and altogether the constraint becomes trivial (i.e. inactive), since the current model w
already fulfills it.

Positive training examples which are predicted incorrectly by (y = —1, h = #), however,
yield constraints of the form

(W, W(xi, yi, hi)) = 1 =54 (15)

whereas incorrectly predicted negative examples with (y = 1, h + %) provide constraints
of the form

— (W, W(x;, 5, 9) = 1-§&. (16)

6105

since §W¥ becomes the (positive or negative) feature representation W (x;, y;, h;) of exam-
ple i. Thus, if we predict a rectangle hin a negative example other than the empty
rectangle, it will provide a constraint which requires that the respective feature vec-
tor obtains a score < —1 + & under model vector w. Note that this is equivalent
to a constraint from a standard (non-structured) constrained linear SVM optimization
problem.

After building the set of constraints, we solve the actual optimization problem using
SVMLight [9]. Searching the most violated constraint in negative images involves evalu-
ating a linear model for a large number of rectangles, so we build integral images over
visual-word-contributions as suggested in [12] which reduces evaluating a rectangle to four
lookups.

6.5.2 Inference of latent variables

In line 5 of our algorithm, we update the latent variables of all positive examples. This
basically corresponds to finding the highest scoring rectangle within each positive image
under the current model vector. However, we reduce the search space in two ways.

First, we require that the new rectangle has some minimum overlap (0.1) with the
initial rectangle, because otherwise, all instances would converge to the globally opti-
mal rectangle of the respective image instantly. Note that this does not prevent multiple
initial estimations form converging to the same object if the initial rectangles are close
to each other. This is actually desired behavior because it enables us to reject mul-
tiple estimations covering the same object instance during non-maximum suppression.
Second, we limit the number of valid aspect ratios, since using a linear model based
on a BOW histogram representation which omits all spatial information tends to con-
verge to small rectangles and is not constrained against other unreasonable rectangle
shapes.

For this purpose we identify the one aspect ratio which best fits the majority of positive
examples from the above mentioned set of ratios between 15 x 7 and 7 x 15 in a two-stage
process: First we determine if the majority has horizontal, vertical or square aspect ratios.
Then we select the one aspect ratio within the respective group which explains the most
examples. This aspect ratio is used as a reference and is updated for each CCCP iteration.
We then allow all aspect ratios which deviate at most 2 HOG cells in each dimension from
our reference ratio whereas we forbid shrinking with regards to included number of cells
in order to prevent the aforementioned converging to very small rectangles. Note that for
searching the most violated constraints in negative images we use the same aspect ratios,
since we want negative examples with consistent rectangle shapes.

After the final iteration of the CCCP algorithm, we post-process the resulting bound-
ing boxes. First, we perform the inference on double-resolution versions of the training
images which enables us to find very small object instances more accurately. We only
do this for detections on the lowest and second to lowest scales. Also, for such small
detections, we further shrink the borders towards positive pixels from the initial model in
order to better detect even smaller objects. As a second step, we perform non-maximum
suppression by removing all bounding boxes which overlap more than 2/3 with a higher-
scoring rectangle. Note that this requires a scoring function which is provided by the CCCP
algorithm and which is not available for the initial model. Finally, boxes which do not
deviate more than one HOG cell in any direction from the respective initial estimation
are replaced by the latter. The reason for this step is that in this case the initial model
and the CCCP algorithm are likely to describe the same image region whereas the initial

6106

rectangle which lives on the pixel-grid instead of the coarser HOG-grid is potentially more
accurate.

7 Evaluation

For evaluating how accurate our bounding box estimations are we plot their overlaps with
ground truth annotations. Plotting the overlap for each object instance present in the posi-
tive images yields an overlap-recall (OR) curve. More precisely, we compute the overlap for
each object instance in the dataset and then plot the resulting overlap values in descending
order. Since OR curves do not show false positive detections and can be improved by sim-
ply increasing the number of hypotheses (estimated rectangles) per image, we also state the
average absolute number of false positive detections in the legends of the plots. Note that
this number is not to be confused with a relative false positive rate which may -depending
on the dataset- be significantly smaller since we often have a huge number of possible
rectangles which do not overlap with an object instance. A false detection is defined as
a detection which does not overlap with any instance of the desired object. A detection
which only produces overlap with an object instance already covered by another detec-
tion with better overlap also counts as a false detection as is common in such evaluations
(i.e.in [7]).

We use three publicly available datasets for our experiments for which our assumptions
stated in Section 3 hold to a certain degree. Since our datasets have 32, 17, and 10 classes,
respectively, we cannot show the results for each individual class. We thus aggregate the
results over all classes into a single plot for each dataset.

In each plot, the results of the CCCP algorithm are shown by a green OR curve. As a
baseline we show the result of our initial model labeled as “color AND hog multi” by a red
curve. For comparison, we also use the Objectness measure as a second baseline in each
plot by a purple dashed curve. The Objectness measure and our motivation for choosing it
as a baseline are discussed in Section 7.4.

Even though we propose an offline method and a complexity analysis is beyond the scope
of this work, we still point out that the algorithm requires a reasonable amount of time. On
a 16-core workstation one class is finished after roughly 20 to 30 minutes depending on the
number of images used.

7.1 FlickrLogos-32

Our first dataset is FlickrLLogos-32 [20] which consists of 32 classes of brand logos, each
with 70 images. The dataset also contains a negative set of 6,000 images which does not
contain any of the 32 brand logos and thus serves as our background set. For the initial
HOG model we use the feature representation of the full negative images and add 5 random
bounding boxes per negative image for a total of 36,000 negative examples. The authors of
the dataset provide ground truth bounding boxes for evaluation.

The OR curve in Fig. 4 shows our results on this dataset. Overall, the CCCP algorithm
yields better annotations with regard to overlap with manual annotations then the initial
model. Also, the CCCP algorithm considerably reduces the number of false detections.

A few qualitative examples are shown in Fig. 5. The green rectangles are the bound-
ing boxes found by the CCCP algorithm while the red rectangles are found by the initial

6107

model. The white rectangles are manual ground truth annotations. The first three examples
show images where the CCCP result is better than the initial model. We also show examples
for two error types: In the second example, a missed instance is shown. The third example
shows a false detection indicated by the dark green rectangle. In the fourth and fifth exam-
ple, the initial model yields a better bounding box due to a bad global aspect ratio and a
partial detection, respectively. We want to point out that in some cases, the rectangle we find
does actually cover an indicative part of the respective object class while producing a poor
overlap with the ground truth. In the fifth example of Fig. 5, for instance, the overlap of
the CCCP result is considerably lower than for the initial model, which almost exactly cov-
ers the ground truth (which is hence hardly visible). Still, the rectangle found by the CCCP
algorithm covers the “main” part of the logo which implicitly is the goal of our approach.
The final example in Fig. 5 shows an image where the CCCP algorithm fails to converge
towards the actual object due to background clutter and a poor initial estimation (which is
the full image in this case).

For the FlickrLogos-32 dataset, we also show the OR curves for 6 selected classes:
“DHL”, “Aldi”, “Coca Cola”, “Pepsi”, “Shell”, and “Esso” in Fig. 6. We choose the same
classes as in [17] which we feel are fairly representative for the whole dataset. For all classes
except “Shell” the CCCP algorithm improves the results.

The “Shell” class is an example for the minority of classes where the CCCP algorithm
fails to improve the results. The initial model works exceptionally well on the “Shell” class
while the CCCP algorithm is less flexible due to its global reference aspect ratio which is
not estimated very accurately for this class as the lower left example of Fig. 5 indicates.

The number of false detections is reduced by the CCCP algorithm for all of our selected
classes except “Pepsi”. This means that for “Pepsi” a few instances converge from rect-
angles overlapping with an object instance towards regions which are completely in the
background. The reason is that for Pepsi, the CCCP algorithm moves rectangles from the
annotated circular logo towards the non-annotated writing of the word “Pepsi” which is also
present in most positive images.

FlickrLogos-32

color AND hog multi avg. # FP: 0.36
——— CCCP algorithm avg. # FP: 0.25[]
Objectness avg. # FP: 0.17||

overlap

0 0.2 0.4 0.6 08 1
recall

Fig. 4 Overlap-recall curve for FlickrLogos-32 dataset

Fig. 5 Qualitative example results for FlickrLogos-32: Red box is returned by the initial model, green box
is the result of CCCP, white is the manually annotated ground truth

7.2 Oxford 17 flowers

Even though the task of annotating flowers may arguably not be a highly relevant one, the
Oxford 17 Flowers dataset [14] is still an interesting dataset for our approach. The reason is
that Flowers usually have strong discriminative color features while gradient-based features
are less suitable. The dataset consists of 17 flower classes and provides 80 images for each
class. For a subset of 848 images pixel-annotations are provided from which we infer ground
truth bounding boxes by creating rectangles around connected components. Note that this
process may result in a few incorrect annotations for overlapping instances, even though we
have re-annotated the majority of these cases. Also note that the number of annotations per
class varies and one class has no annotations at all.

The OR curves are shown in Fig. 7. For the Flowers dataset, the CCCP algorithm does not
improve the bounding boxes beyond the initial model. The reason is that the initial model
uses color features which are very suitable for flowers. However, the CCCP algorithm again
reduces the number of false detections.

A few examples are shown in Fig. 8. In the first example, the CCCP algorithm slightly
improves the bounding box. In the remaining examples, the initial model yields better esti-
mations. The third example shows a situation where the CCCP algorithm loses one object
instance since both object instances are close enough for iteratively converging towards two
close rectangles whereas one does not survive non-maximum suppression.

7.3 3D object categories

Our final dataset is the 3D Object Categories dataset [21] which consists of images from
10 different object classes such as “car”, “bicycle”, or “stapler”. This dataset is arguably
the opposite of the Flowers dataset with regards to our features, since the object classes
are usually not characterized by strong discriminative colors. However, we expect stronger
gradient features than for flowers.

6109

] dhl . aldi
color AND hog multi avg. # FP: 0.33 color AND hog multi avg. # FP: 0.26
0.9 ——— CCCP algorithm avg. # FP: 0.27[] 0.9 ——— CCCP algorithm avg. # FP: 0.17[]
sl Objectness avg. # FP: 0.14 sl Objectness avg. # FP: 0.10
: 0.7} E
E 0.6} g
Q
K]
1 Hosf 1
>
(o)
1 04f -
1 0.3f 1
1 0.2} -
1 0.1F -
- - B - - - 0 - - - - -
0.8 1 0 0.8 1
recall recall
(a) Class "DHL” (b) Class ” Aldi»
cocacola pepsi
1 . - T T 1 . T T :
color AND hog multi avg. # FP: 0.26 color AND hog multi avg. # FP: 0.16
0.9F ——— CCCP algorithm avg. # FP: 0.06[] 0.9F ——— CCCP algorithm avg. # FP: 0.15[]
08k Objectness avg. # FP: 0.10] | 08l Objectness avg. # FP: 0.19|
0.7F 1 0.7 \ 1
0.6 1 0.6 E
Q. Q.
K] K]
5 050 i1 TTosf .
> >
S o
0.4 1 0.4 1
03] 0.3} ~]
0.2 1 0.2 1
0.1F 1 0.1F 1
0 . . " 0 . . n
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
recall recall
(C) Class ”Coca Cola” (d) Class ”Pepsi”
shell esso
1 . - T T 1 . T T :
color AND hog multi avg. # FP: 0.46 color AND hog multi avg. # FP: 0.51
0.9f ——— CCCP algorithm avg. # FP: 0.39] 0.9, ——— CCCP algorithm avg. # FP: 0.34[]
08 »\ Objectness avg. # FP: 0.16] | 08l Objectness avg. # FP: 0.31] |
0.7} E 0.7} -
0.6 1 0.6 E
Q. Q.
K] K]
S 05F 1 TTosf .
> >
o o
04f 1 04f .
0.3 1 0.3 1
0.2 1 0.2 1
0.1f 1 0.1F 1
0 . . . 0
0 0.2 0.4 0.6 0.8 1 0 1
recall recall
(e) Class ”Shell” (f) Class ” Esso”

Fig. 6 OR curves for six logo classes from FlickrLogos-32

6110

Oxford 17 Flowers

color AND hog multi avg. # FP: 0.44
0.9 ——— CCCP algorithm avg. # FP: 0.20]]
Objectness avg. # FP: 0.02||

0.8

0 1 1 L L
0 0.2 0.4 0.6 0.8 1

recall

Fig. 7 Overlap-recall curve for Oxford 17 Flowers dataset

Each class of the 3D Object Categories dataset consists of 10 different object instances
which are photographed against different backgrounds from different pre-defined points of
view. Since some objects virtually become visually different classes from different perspec-
tives, we only use 15 different versions of each instance which still vary considerably with
regards to point of view. For some objects not all viewpoints are available, so we obtain
between 115 and 150 per class. Note that for this dataset we do not search double-resolution
images as post-processing due to the low image quality.

Figure 9 shows the OR curves. The CCCP algorithm slightly outperforms the statistical
model and reduces the number of false detections, since the HOG features are relatively
suitable for the dataset while the color features do not provide much advantage as for the
flower classes. Recall that the OR curve shows aggregated results for all 10 classes. In fact,
the CCCP algorithm yields better results on 7 of the 10 classes.

In Fig. 10 we again show three example results. The rightmost example in Fig. 10 shows
an image where the CCCP algorithm removes one false detection of the initial model during
non-maximum suppression.

Fig. 8 Qualitative example results for Oxford 17 Flowers: Red box is returned by the initial model, green
box is the result of CCCP, white is the manually annotated ground truth

6111

3D Object

color AND hog multi avg. # FP: 0.49
0.9 ~——— CCCP algorithm avg. # FP: 0.21]
0s \\ — — Objectness avg. # FP: 0.08||

overlap

0 0.2 0.4 0.6 0.8 1
recall

Fig. 9 Overlap-recall curve for 3D Object Categories dataset

7.4 Comparison to objectness measure

For comparison, we use the approach by Alexe et al. [1, 2], which finds bounding boxes
which are likely to contain an object by assigning an “Objectness” score to bounding boxes
based on a five-feature model which is trained on manually annotated objects from the
VOC challenge 2007 dataset [7]. For using it in the context of automatic annotation, we
simply retrieve the most likely object location according to the Objectness measure for each
positive image. We do not use multiple hypotheses in order to keep the results reasonable
with regards to false detections and comparable to the CCCP approach as discussed below.

We want to emphasize that the Objectness measure is not designed for our definition
of the problem of automatic annotation. In particular, the idea of the Objectness measure
is to find any object in an individual image and does not aim at finding instances of the
same object class across a set of images. This has two important consequences: First, our
evaluation does not make a statement about the performance of the Objectness measure for
its intended use but only in the context of our problem. Second, if we use the Objectness

Fig. 10 Qualitative example results for 3D Object Categories: Red box is returned by the initial model, green
box is the result of CCCP, white is the manually annotated ground truth

6112

measure in our context, we implicitly change our assumptions, since if only one object is
present in the image, the Objectness measure often finds it with almost perfect accuracy.
This, however, is a special case where the positive images do not show any object besides
the wanted object.

We think that it is interesting to compare the Objectness measure to our approach because
the problem of finding any object is very similar to our problem. By evaluating the Obejct-
ness measure we implicitly show under which circumstances our problem is different from
finding any object and, as a consequence, in which cases we actually need an approach
which models common feature apperances over all images of the positive set. In other words
we show that using our approach can be justified as it actually determines the locations of
the desired object instances and not merely regions of interest.

We show in each OR curve the result of the Objectness measure whereas we simply
accept the highest scoring rectangle as estimation of the wanted object’s location. Since we
only have one detection per image for the Objectness measure, it obviously has a lower false
detection rate. Our approach combines evidence from all positive images in the learning
algorithm, and thus obtains better OR curves for FlickrLLogos-32 and Oxford 17 Flowers,
since more object instances are found.

For the 3D Object Categories dataset, the Objectness measure yields an area under the
curve which is only slightly smaller than for our method with a lower number of false detec-
tions. The reason for this result is that the 3DObjects dataset does in most images not show
any distracting objects beyond background clutter, so the rectangle with the highest Object-
ness score is often the wanted object. As mentioned above, this contradicts our problem
definition, because we do not assume that there are no other objects present in the positive
images.

Interestingly, for all classes the Objectness curves begin at very high overlaps. The rea-
son is that if the Objectness method detects the wanted object it is relatively likely to also
determine its exact bounds.

We also briefly discuss increasing the number of hypotheses, i.e. top scoring bounding
boxes returned per image, for the Objectness measure. Note that the Objectness method
performs non-maximum suppression for detections overlapping by more than 50%, i.e. rect-
angles are found which are fairly different and it is comparable to our approach. If we
allow 2 hypotheses, the area under the curve is roughly on par with the result of the CCCP
algorithm for Logos and Flowers and slightly better for the 3D Objects Categories dataset.
However, we then obtain almost twice the amount of false detections of the CCCP algorithm
and overall we obtain roughly as many false detections as true detections. For automatic
annotation, this is not considered a reasonable result. With 3 or more hypotheses per image,
the false detections clearly outweigh the correct ones while, obviously, the areas under the
curves keep increasing.

7.5 Retrieval with automatic annotations

The overlap-recall statistics reveal how accurate our bounding boxes are compared to
ground truth annotations. However, these statistics do not necessarily indicate the useful-
ness of the automatic bounding boxes for an actual application for two reasons: First, the
overlap measure is relatively strict and the manual annotations are not always flawless.
In particular, if objects are slightly rotated or their shape is naturally non-rectangular, the
manual annotations will also include relatively large background areas. Second, the manual

6113

annotations do not explicitly yield the most discriminative portions of the respective objects
(see for instance the fifth example image (the “Ford” logo) in Fig. 5). In practice, how-
ever, many tasks only require an indicative subset of features from a given object class, as
for instance discussed in [15]. One such task is image retrieval in the popular query-by-
example variant. Query-by-example image retrieval denotes the task of finding images in
a large database which show the same object (scene, concept, or similar) as a given query
image. Clearly, this requires only matching a small subset of features from the object class
at hand between query image and database images.

Our experimental setup follows [19] on the FlickrLogos-32 dataset. First we create an
image database which contains both images from a given logo class and non-logo images
whereas we use the training images as suggested by the authors of the FlickrLLogos-32
dataset. For our database, an inverted index is created based on RootSIFT Bag-of-Words
with tf-idf weighting and burstiness measure as described in [19].

In order to evaluate the quality of the retrieved image lists, we analyze the top k retrieval
results, i.e. the k images which were returned with the highest similarity values with regards
to our query image. We then retrieve the top-k most similar images from our database for
each test image of the respective logo class. For these k images we perform straightforward
knn classification, i.e. a test image is counted as a true positive classification if the majority
of the £k most similar images belong to the same logo class. We then compute the average
recall over all 32 classes. In this context “recall” is the number of query images for which
the majority of k nearest nieghbors has the same class as the query image. Note that false
positive matches reduce the recall in this scenario since they directly influence the knn
results, so this recall value also reflects false positive detections.

Four experiments are conducted. First, we use the full images for retrieval as a baseline,
i.e. the RootSIFT features are extracted on the full positive images. Then, we use the bound-
ing boxes found by our method for the training images, i.e. when building the inverted index,
we ignore all features which do not fall into one of our bounding boxes. For comparison we
also determine the results for Objectness-based bounding boxes. Finally, we also perform
the retrieval exploiting manual annotations on pixel-level. Note that the latter 1s the theoret-
ical optimum for object annotations. Therefore the respective results are the best possible
results with regards to different types of annotations. The average recall values for all four
experiments are shown in Table 1.

As expected, the manual annotations on pixel-level yield the best results while the
Objectness-based boxes slightly improve the retrieval result compared to full-image
retrieval. Our approach (“our boxes” in Table 1) improves the search and comes close to the
manual annotations for small values of &, i.e. informally speaking the top nearest neighbors
are improved. For instance at k = 1 and k = 2, the performance is only 0.01 below the

Table 1 Average recall values of knn classification on top k retrieval results on FlickrLogos-32

k 1 3 5 7 9

Full images 0.83 0.81 0.79 0.78 0.77
Objectness 0.84 0.81 0.80 0.78 0.78
Our boxes 0.86 0.83 0.82 0.81 0.80

Human annotations 0.87 0.85 0.85 0.84 0.84

6114

respective theoretical maximum which exploits manual pixel-wise annotations. We there-
fore conclude that our automatic annotations in fact remove irrelevant features and preserve
the most important indicative features.

8 Discussion

In this section we discuss our methods in the context of the automatic annotation problem.

As mentioned in the beginning of this work, we only want to use global image labels and
no further information. Thus, it seems reasonable that our initial statistical model directly
works on statistics inferred from global image labels. Obviously, the discriminative power
of this model is limited, but it is a straightforward approach which in our experiments for
most classes finds indicative features if such features are present. Also, the approach can
be easily extended to further feature types. However, correctly determined positive fea-
tures may still lead to highly incorrect bounding boxes as can be seen in the upper row of
images of Fig. 5 where the initial model considerably “over detects” the respective object
instances.

Since the actual regions of interest are unknown and we do not want to introduce any fur-
ther knowledge, we turn to a latent learning approach. The CCCP algorithm is hence applied
as it solves latent learning problems. By implementing the unknown bounding box locations
as latent variables, the CCCP algorithm can be used to find boxes based on a model for con-
sistent feature co-occurrences (as opposed to simple occurrences of the initial model). Even
though the CCCP algorithm is usually used for training a discriminative model, it still aims
at finding the best settings for the latent variables on the positive training set which is what
we are interested in.

In this context it is worth mentioning that we use a binary loss function for the CCCP
algorithm instead of an overlap-based loss function as for instance proposed in [3]. An
overlap-based loss function assigns an error < 1.0 to predictions on positive images which
have an overlap of > 0 with the actual ground truth rectangle. It also allows searching for
the most violated constraint in positive images in terms of determining the highest scoring
rectangle. Since we, however, do not use ground truth rectangles and only have the often
inaccurately estimated rectangles from our initial model (or the respective previous iteration
of the CCCP algorithm), it is not reasonable to use a loss function which assigns differ-
ent error values to different incorrect predictions. In many cases multiple predictions exist
which have no overlap with the actual object instance but different overlaps with the current
estimated rectangle. It is obvious that assigning different loss values to these predictions
would be misleading our algorithm. Therefore we implicitly define the current estimation
as the only correct prediction which is then updated in each iteration.

Another important issue are the results of our approach. It is important to emphasize
that we do not claim to have solved the problem of automatic object annotations and there
is obviously room for improvement as suggested by our OR-curves. However, as we have
already addressed in the evaluation section, our results seem promising especially under the
assumption that we do not necessarily want to find bounding boxes which are identical to
subjective manual annotations. In many cases, it is already useful to simply remove back-
ground areas while in other cases, finding a discriminative part of an object is desirable,
which is also indicated by the result of our retrieval experiment. Note that this is arguably
an issue of the evaluation part in our problem definition which does not question manual
bounding box annotations.

6115

9 Summary and conclusion

In this work we have discussed the problem of automatic object annotation. We have pre-
sented an approach to this problem which is based on a statistical feature model which we
have implemented for two different features. We then have explained an enhancement of
this approach by a latent structured learning algorithm.

Our experimental evaluation has shown that we find the location of the wanted object
in many cases to a certain degree on the majority of classes. We have also compared
our approach to a method which determines the locations of any object within our posi-
tive images and thereby show that our discriminative models go beyond detecting salient
regions.

A considerable number of object instances are, however, only found with relatively small
overlap for some classes leaving room for improvement in future work. As indicated by
the OR curves on individual classes in Fig. 6, the quality of results of our approach highly
varies for different classes. For some classes, however, certain features are more suitable.
For instance, for most flower classes colors are suitable while gradient-based features are
not very distinctive in the context of our task.

Since we do not exploit any information except global image labels, many implemen-
tation decisions rely on empirically selected parameters. In fact, our experimental results
can be significantly improved by adjusting parameters for each class individually which we
think shows that the approach is promising but improvable. Also, additional features may
improve our method or make it usable for more challenging datasets. For example, different
local descriptors may capture further visual evidence which can be found among multiple
instances of an object class.

As discussed above, our approach does not ultimately solve the problem of automatic
object annotation. However, we consider our results promising for future work. Besides
presenting our suggestions for tackling this problem, the intention of this work is also to
discuss our view on this recent and relevant topic and to encourage other researchers to
contribute theirs.

References

1. Alexe B, Deselaers T, Ferrari V (2010) What is an object? In: Proceedings of IEEE conference on
computer vision and pattern recognition, CVPR *10

2. Alexe B, Desclaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Trans Pattern
Anal Mach Intell 34(11):2189-2202

3. Blaschko MB, Lampert CH (2008) Learning to localize objects with structured output regression. In:
Proceedings of European conference on computer vision, ECCV 08, pp 2-15

4. Chen CY, Grauman K (2013) Watching unlabeled video helps learn new human actions from very few
labeled snapshots. In: Proceedings of IEEE conference on computer vision and pattern recognition,
CVPR 13

5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of IEEE
conference on computer vision and pattern recognition, CVPR 05, vol 1, pp 886—893

6. Dietterich TG, Lathrop RH, Lozano-Prez T (1997) Solving the multiple instance problem with axis-
parallel rectangles. Artif Intell 89(1-2):31-71

7. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual
object classes challenge (VOC2007) results http://www.pascal-networkorg/challenges/VOC/voc2007/
workshop/indexhtml

8. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discriminatively
trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627-1645

6116

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

. Joachims T (1999) Making large-scale svm learning practical. In: Advances in kernel methods - support

vector learning. MIT Press, pp 169-184

Joachims T, Finley T, Yu CN (2009) Cutting-plane training of structural svms. Mach Learn 77(1):27-59
Jones MJ, Rehg JM (2002) Statistical color models with application to skin detection. Int J Comput Vis
46(1):81-96

Lampert C, Blaschko M, Hofmann T (2009) Efficient subwindow search: a branch and bound framework
for object localization. IEEE Patt Anal Mach Intell 31(12):2129-2142

Maron O, Ratan AL Multiple-instance learning for natural scene classification. In: Proceedings of
international conference on machine learning 1998, ICML "98

Nilsback ME, Zisserman A A visual vocabulary for flower classification In: Proceedings of IEEE
conference on computer vision and pattern recognition, CVPR 06

Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: improving particular
object retrieval in large scale image databases. In: Proceedings of IEEE conference on computer vision
and pattern recognition, CVPR 08, pp 1-8

Ries CX, Lienhart R (2012) Deriving a discriminative color model for a given object class from weakly
labeled training data. In: Proceedings of ACM international conference on multimedia retrieval, [CMR
12, pp 44:1-44:8

Ries CX, Richter F, Lienhart R (2013) Towards automatic object annotations from global image labels.
In: Proceedings of ACM conference on international conference on multimedia retrieval, ICMR 13, pp
207-214

Ries CX (2014) Automatic object annotations from weakly labeled images. Dissertation, University of
Augsburg

Romberg S, Lienhart R (2013) Bundle min-hashing. Int J Multimed Inf Retr 2(4):243-259

Romberg S, Pueyo LG, Lienhart R, van Zwol R (2011) Scalable logo recognition in rcal-world images.
In: Proceedings of ACM international conference on multimedia retrieval, ICMR *11, pp 25:1-25:8
Savarese S, Fei-Fei L (2007) Generic object categorization, localization and pose estimation. In:
Proceedings of IEEE international conference on computer vision, ICCV *07

Siva P, Russell C, Xiang T (2012) In defence of negative mining for annotating weakly labelled data. In:
Proceedings of European conference on computer vision, ECCV ’12, pp 594-608

Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In:
Proceedings of IEEE international conference on computer vision, ICCV 03, vol 2, pp 1470-1477
Tang K, Rahul S, Jay Y, Li FF (2013) Discriminative segment annotation in weakly labeled video. In:
Proceedings of IEEE conference on computer vision and pattern recognition, CVPR *13

Tsochantaridis I, Hofmann T, Joachims T, Altun Y (2004) Support vector machine learning for interde-
pendent and structured output spaces. In: Proceedings of international conference on machine learning,
ICML °04, pp 104-

Yu CNJ, Joachims T (2009) Learning structural svms with latent variables. In: Proceedings of
international conference on machine learning, ICML 09, pp 1169-1176

Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15(4):915-936

Zhang C, Platt JC, Viola PA (2005) Multiple instance boosting for object detection. In: Weiss Y,
Scholkopf B, Platt J (eds) Advances in neural information processing systems, vol 18, pp 1417-1424
Zhu L, Chen Y, Yuille AL, Freeman WT (2010) Latent hierarchical structural learning for object detec-
tion. In: Proceedings of IEEE conference on computer vision and pattern recognition, CVPR ’10, pp
1062-1069

6117

Christian X. Ries acquired the Ph.D. degree at the Multimedia Computing Lab of the University of Augsburg
in 2014. His research interests are in the areas of Computer Vision, Machine Learning, and Image Content
Analysis.

Fabian Richter works as a PhD student at the Multimedia Computing and Computer Vision Lab, University
of Augsburg, Germany. He received his diploma degree in Computer Science from the Uni- versity of Augs-
burg, in November 2009. His re- search interests include Machine Learning, Computer Vision and Document
Analysis.

6118

Rainer Lienhart is a full professor in the computer science department of the University of Augsburg. He
received his Ph.D. in Computer Science from the University of Mannheim, Germany, in 1998, where he was
a member of the Movie Content Analysis Project (MoCA). From August 1998 to July 2004 he was a Staff
Researcher at Intel’s Microprocessor Research Lab in Santa Clara, California, where he worked on trans-
forming a network of heterogencous, distributed computing platforms into an array of audio/video sensors
and actuators capable of performing complex DSP tasks such as distributed beamforming, audio rendering,
audio/visual tracking, and camera array processing. At the same time, he was also continuing his work on
media mining, where he is well-known for his work in video content analysis with contributions in text
detection/recognition, commercial detection, face detection, shot and scene detection, and automatic video
abstraction. He as been a committee member of ACM Multimedia, IEEE International Conference on Mul-
timedia Systems, IEEE International Conference on Multimedia Expo, SPIE Storage and Retrieval of Media
Databases, IEEE Workshop on Content-Based Access of Image and Video libraries and the International
Eurographics Workshop on Multimedia. He is a reviewer for IEEE Transactions on Pattern Recognition and
Machine Learning, IEEE Transaction on Multimedia, Journal of Computer Vision and Image Understanding
and ACM Multimedia Systems Journal. Dr. Lienhart has published over 50 papers in major conferences and
journals and filed 20+ patents.

