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The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in
hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique
can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the
AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, dem-
onstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE
exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms
measured on branches of grapevine (Vitis vinifera L. ‘Chardonnay’) during bench dehydration with broadband sensors, and applied
an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns
during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we
distinguished three different types of AE signals, of which the frequency cluster with high 100-200 kHz frequency content was
strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources,

which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions.

Introduction

Plant survival during drought is of increasing interest in plant
science. We need accurate quantification of the vulnerability to
drought, not only for predicting plant responses to a changing
climate but also as a tool to select and breed suitable, drought-
tolerant plants for production. Vulnerability to air emboli forma-
tion in sap-conducting elements is one of the key features in this
context (Lens et al. 2013, Carevic et al. 2014, Delzon and
Cochard 2014). The formation of air emboli, also called cavita-
tion because air bubbles are formed in the sap under tension,
reduces the plant’s hydraulic conductivity and impedes the man-
ifold vital functions of sap transport in plants. Several techniques
(Cochard et al. 2013) have been developed to quantify

vulnerability to cavitation, based on the reduction in hydraulic
conductivity with respect to increasing xylem tension. Acoustic
emission (AE) sensors can be used to measure the loss in
hydraulic conductivity (Vergeynst et al. 2015a). The AE tech-
nique is gaining renewed attention (Rosner 2015) because it is
non-destructive and can be applied without cutting the xylem
conduits open, a process which is currently facing a barrage of
criticism because of the risk of artificial embolisms when using
the hydraulic method (McElrone et al. 2012, Sperry 2013,
Martin-StPaul et al. 2014, Torres-Ruiz et al. 2015).

Despite the practical advantages of the AE technique, being
automatic and less labour intensive compared with other known
techniques, the indirect measurement of hydraulic conductivity
loss is considered a major drawback. The actual nature of the AE



signals, and thus their link with hydraulic conductivity loss, is not
fully understood, questioning the belief that all AEs originate
from gas emboli formation (Tyree and Dixon 1983). It has been
demonstrated that cavitation in xylem conduits induces a pres-
sure wave that is detectable with AE sensors (Ponomarenko
et al. 2014) in dehydrating microscopic xylem slices of the
gymnosperm Pinus sylvestris L. However, when measuring on
larger samples (Rosner et al. 2006) or whole branches
(Vergeynst et al. 2015a), the number of measured AE signals
may largely exceed the number of xylem conduits. Also, AE
activity is observed to continue beyond the point of 100% loss
of conductivity (Wolkerstorfer et al. 2012, Vergeynst et al.
2015a). This implies that cavitation cannot explain all detected
AE signals, and that most likely other sources of drying-induced
AE signals exist. To become confident in the use of the AE tech-
nique for measuring hydraulic conductivity loss, it is imperative
for us to elucidate the different sources that produce AE signals
in drought-stressed plants.

If different AE sources are active, they should be distinguished
based on the waveforms of the detected AE signals (Sause
2010, Aggelis et al. 2013). Therefore, in this research, we
recorded whole waveforms of AE signals from dehydrating
grapevine branches (Vitis vinifera L. ‘Chardonnay’) with broad-
band point-contact sensors. We searched for different types of
AE signals using an automated clustering algorithm based on a
set of seven frequency features. During branch dehydration, we
also recorded diameter shrinkage, gravimetric water loss and
xylem water potential. In this article, we explain the meaning of
different types of AE signals by relating their activity to the dif-
ferent phases observed during bench dehydration as given by
the acoustic vulnerability curve (VC) (Vergeynst et al. 2015a).

Materials and methods

Measurements during branch dehydration

Plant material was collected in September 2014 from fruit-bear-
ing wood of grapevine (V. vinifera L. ‘Chardonnay’) in a vineyard
located in Lede, Belgium (50°57’57”N, 3°5839”E). The day
before cutting the branches, the leaves of three branches of
~100 cm length and 7.5 £ 1.1 mm diameter were packed in alu-
minium foil. A broadband point-contact AE sensor (KRNBB-PC,
KRN Services, Richland, WA, USA) and a holder for the diameter
dendrometer (DD-S, Ecomatik, Dachau, Germany) were installed
on the branches at distances of ~30 and ~22 cm, respectively,
from the top of the branch. Use of a broadband point-contact AE
sensor was needed for this experiment, because of its flat spec-
tral response in the frequency range 20—1000 kHz (Sause et al.
2012b), which makes this sensor most appropriate to experi-
mentally verify simulated signals (Vergeynst et al. 2015b). The
AE sensor was pressed to the branch surface using a compres-
sion spring (D22050, Tevema, Amsterdam, The Netherlands) in
a small PVC tube. A droplet of vacuum grease (High-Vacuum

Grease, Dow Corning, Seneffe, Belgium) was applied between
sensor tip and wood to ensure good acoustic contact. The next
day, before sunrise, the three branches were excised under
water and the cut surface was kept under water in plastic test
tubes. Packed in an opaque plastic bag, the branches were
transported to the laboratory. In the laboratory, the dendrome-
ters were installed after removing the bark at the dendrometer
contact area with a scalpel and smearing with petroleum jelly to
prevent direct evaporation through the wound.

We cut a piece of ~40 cm at the lower side of each branch
and placed it on an electronic balance (2x DK 6200 and 1x PS
4500/C/1, Henk Maas, Veen, The Netherlands), stripped of all
leaves. The wounds of the cut petioles were covered with petro-
leum jelly (Vaseline). A wood sample of ~4 cm was taken from
the cut end of the other branch part. Also, after the 4.5-day
dehydration period, a wood sample was taken from the middle
of both branch parts. We determined the volumetric water con-
tent (VWC, kg m=3) of the samples and used these measure-
ments, together with the continuous measurements of the
balance, to calculate continuous VWC throughout the dehydra-
tion period (details of the method in Vergeynst et al. 2015a).

Every 3 h, we measured xylem water potential (y, MPa) on an
excised leaf with the pressure bomb (PMS Instrument Company,
Corvalis, OR, USA). We determined the linear stress—strain rela-
tionship (Irvine and Grace 1997, Vergeynst et al. 2015a) for
each branch and calculated continuous xylem water potential as
described by Vergeynst et al. (2015a).

The dendrometers and the electronic balances were read out
each minute using custom-built acquisition boards. The AE sig-
nals were amplified by 35.6 dB (AMP-1BB-J, KRN Services) and
waveforms of 7168 samples length were acquired at 10 MHz
sample rate. An electronic bandpass filter of 20—1000 kHz was
applied and all waveforms above the noise level of 28 dB,z were
collected.

Feature extraction and automated clustering algorithm

To investigate the presence of different AE sources, we first
grouped the signals based on similarity of their frequency fea-
tures using an automated clustering algorithm as described in
detail in Sause et al. (2012a). A flow chart of this clustering
algorithm, adapted for our specific application, is shown in
Figure 1. To this end, a set of seven frequency features and four
waveform features were calculated for each waveform in the
software NOESIS (Envirocoustics S.A., Athens, Greece). These
features were chosen because each of them contains different
information about the AE source, and the more information that
is incorporated in this analysis, the larger the chance is of finding
specific features that can be linked to cavitation as an AE source.
Feature extraction was conducted on the initial 50 us after the
time of arrival (500 samples) and frequencies below 50 kHz
were filtered with an eighth order Butterworth filter. The follow-
ing waveform features were calculated: amplitude (dB), rise time



(us), rise angle (rad) (Figure 2) and absolute energy (al)
(Sause 2010). From the frequency spectrum (Figure 2), we
extracted peak frequency (PF), frequency centroid (FC),
weighted PF (WPF, geometric mean of PF and FC) and the par-
tial powers of the following frequency ranges: 0—100, 100-200,
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Figure 1. The amount of natural clusters and the optimal feature combi-
nation using an automated clustering algorithm. The flow chart of Sause
etal. (2012aq) is adapted here for our specific application.
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200-400 and 400-800 kHz (PP1—4) (Sause 2010). We then
screened the dataset for the presence of two to four clusters
using each possible combination of four to seven frequency fea-
tures (Figure 1). The algorithm gives as output the ranking of
the 192 clustering results (64 features combinations X 3 num-
bers of clusters) according to four cluster indices: the Tou-index,
Rousseeuw'’s silhouette value, the Pearson's Gamma statistic
and the Davies—Bouldin index. For each cluster index, the 25
best partitions get a score of 25-1, and the partitions are
ordered according to the sum of the four scores. Because the
calculation of the cluster indices is computationally intensive for
very large datasets (in our case in the order of magnitude of 10°
AE signals), we used for each of the 64 feature combinations a
new random sample of 4000 AE signals from all signals col-
lected in the three branches and a pooled analysis was done
where data of all three branches were put together. Data analy-
sis and graphical display were performed using the R software
(R version 3.0.1; R Development Core Team 2013). Next, we
investigated whether these natural clusters or signal types
belong to a certain physiological process during dehydration.

The same analysis with feature extraction and automated clus-
tering was also performed on the AE data obtained during the
dehydration experiment described in Vergeynst et al. (2015a). In
this experiment, we used two broadband point-contact sensors to
monitor AE activity during 40 h dehydration of a grapevine branch
simultaneous with continuous visualization of cavitated vessels
using micro-computed tomography (LCT). The two sensors were
installed at 2 cm (upper sensor) and 16 cm (lower sensor) dis-
tance from the scanned zone in the middle of the branch.

End point of the acoustic VC and transition between
elastic shrinkage and cavitation

For each of the obtained clusters and for all the AE signals
together, we constructed an acoustic VC in order to compare the
appearance of the clusters with other plant physiological mea-
surements. For the calculation of the characteristic points of the
curves, the end points were defined by the end of the AE activity
peaks. We determined the end point of the curves as the point
at which the decrease in AE activity, following the AE activity
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Figure 2. Frequency features PF, WPF, FC and four partial powers (PP1-4) were used for the automated clustering algorithm. Waveform features rise

time, amplitude and rise angle describe the shape of the AE signal.
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Figure 3. We calculated the point of 100% loss of hydraulic conductivity as the end point of the AE activity (first derivative of the curve of cumulative
AE) peak, where the third derivative of the curve of cumulative AE signals in time reached a local maximum, as indicated by the vertical dashed line.
Here, the curves of total AE are shown. The recorded spikes in the AE activity of Branch 2 are probably due to background noise (e.g., from cutting the
leaves for water potential measurements) but do not influence the cumulative AE as they are negligible compared with the other signals and are there-

fore not completely shown.

peak, decreased most strongly. Mathematically, this point can be
found where the third derivative of the curve of cumulative AE
versus time reaches a local maximum (Figure 3). The AE activity
(first derivative) was calculated numerically over a time interval
of 15 min, while a time interval of 12 h was used for the second
and third derivatives. The longer interval was chosen in order to
eliminate the strong small-scale fluctuations of the first deriva-
tive and was based on the timescale at which the AE peak
occurred. When dehydration occurs much faster, in different
samples or under different conditions, this time interval may be
adapted in order to obtain meaningful results. The recorded
spikes in AE activity were attributed to noise but did not influ-
ence the cumulative AE as they were negligible compared with
the other signals (Figure 3). For the transition point between the
elastic shrinkage and the cavitation phase, we searched for a
minimum in the second derivative to the curve of VWC versus
water potential. This is the point where the hydraulic capaci-
tance (first derivative to the curve) increased most strongly. The
elastic shrinkage phase is characterized by few cavitation events
and a strong diameter contraction (Vergeynst et al. 2015a).

Results

Clustering of AE signals reveals three clusters

A first application of the automated clustering algorithm
(Figure 1) suggested an optimal clustering based on the
frequency features (Figure 2) FC, PF, WPF and partial power in
the range 400-800 kHz (PP4) (Figure 4a and b; Table 1). The
clustering resulted in a small partition containing signals with
high PP4 and high WPFE. The other cluster contained 98-99% of
all signals and showed a large variation in the frequency range
100-200 kHz. A second clustering of this predominating cluster
resulted in a third cluster (Figure 4c and d; Table 1), based on
the frequency features PR, WPF and partial powers in the fre-
quency ranges 0—100 kHz (PP1) and 100-200 kHz (PP2).
Based on their frequency content, the three clusters were labelled
as the low-, mid- and high-frequency clusters. High PP1 and PP2
were typical for the low- and mid-frequency clusters, respectively

(Figure 5). The high-frequency cluster was characterized by a
high PP4, PF, FC and WPF. These signals were slightly larger in
amplitude and had a shorter rise time, resulting in the largest rise
angles. The low-frequency cluster also contained signals with
small rise time, but from the violin plots (Figure 5), it is clear that
a large portion has longer rise times and small rise angles. The
average absolute energy was highest for the low-frequency clus-
ter and lowest for the mid-frequency cluster.

Vulnerability curves

The VC developed with all AE signals (Figure 6a) contained an
initial shrinkage phase, followed by a cavitation phase with
higher capacitance (Figure 6b; Table 2). The VCs based on the
low- and mid-frequency clusters (Figure 6¢; Table 3) were quite
similar to the curve that included all AE signals. However, the
activity of the low-frequency cluster remained high after the end
point of the curve (Figure 6d), whereas the activity of the mid-
frequency cluster reached almost zero. The high-frequency clus-
ter, in contrast, was mainly active during the elastic shrinkage
phase with fast shrinkage (Figure 6e), and reached its end point
far before the two other clusters.

Validation with uCT

The AE signals from the grapevine branch in the uCT experiment
contained the same three clusters. The high-frequency signal
type showed a strong activity at the beginning of dehydration
(Figure 7), while mid-frequency and, especially, low-frequency
signal types showed a better correlation with the number of
emptied vessels.

Discussion

Vuinerability curves based on AE activity peak

Defining the end point of the cavitation phase, when percentage
loss of conductivity (PLC) reaches 100%, is crucial to the devel-
opment of meaningful acoustic VCs, but has always been a main
difficulty with the AE technique, particularly in angiosperms
(Rosner 2015). Ideally, PLC should by definition be only linked
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Figure 4. The first clustering of the whole dataset (all AE signals from three branches) resulted in two clusters (a and b). When removing the high-
frequency cluster (grey) from the dataset, a second clustering split the lower-frequency cluster into the low-frequency (light grey) and mid-frequency

(black) clusters (c and d).

Table 1. The cluster indices are a measure of the clustering quality. The
second clustering is based on the data from the lowest frequency cluster
that resulted from the first clustering.

Davies—Bouldin  Tou-index Rousseeuw’s Pearson’s

index silhouette Gamma
value statistic
First 0.564 2.568 0.786 0.746
clustering
Second 0.784 2.032 0.594 0.752
clustering

to cumulative AE and according to Aggelis et al. (2010), a spe-
cific AE-inducing mechanism results in an AE activity. Therefore,
in contrast to our previous work (Vergeynst et al. 2015a), the
end point of the VC is now determined by the behaviour of
the AE activity peak and its return to zero, and corresponds to
the local maximum of the third derivative of the curve of cumula-
tive AE versus time (Figure 3). This makes it possible to define
a clear end point, even in situations where the VC does not
clearly level off due to strong decrease in diameter shrinkage,
e.g., for Branch 3 in Figure 6a, and also when continuous mea-
surements of water potential are not available.

The difficulty in determining the end point of VCs based on
AEs has also been addressed by Nolf et al. (2015). To tackle this
problem, the authors hypothesized that the highest acoustic
activity should occur near the steepest part of the VC, which is

the inflection point, reflecting Ps,. They obtained good similarity
when comparing their method with hydraulic measurements of
16 species, although Pg, in angiosperms derived from AE mea-
surements was consistently slightly overestimated (i.e., more
negative). The major drawback of this approach is the require-
ment of a VC that is perfectly sigmoidal S-shaped. A deviation
from this ideal curve causes the steepest part to deviate from the
targeted Pg, value, which implies that using maximum AE activity
in practical applications might not always be a good measure for
Pso. An origin-based selection of AE, like clustering, should be
done first to make sure that the considered AE activity is corre-
lated to cavitation activity before conclusions can be made.

Transition between elastic shrinkage and cavitation (Figure 6b)
delimits two phases with different hydraulic capacitance. We
therefore consider it most meaningful to define the transition at
the point where the capacitance changes most strongly. We cal-
culated the point of the dehydration curve where the hydraulic
capacitance increased most strongly, instead of taking the aver-
age of the breakpoints of both curves as defined in Vergeynst
et al. (2015a). The re-definition of the end points does not alter
results previously presented, but we propose to use these new
definitions because they have a physiological meaning.

Although the curve of total cumulative AE signals resulted in
plausible values for Py, (—2.30 to —2.73 MPa; Table 3) when com-
pared with other methods (—2.17 to —2.97 MPa; Choat et al.
2010, Brodersen et al. 2013), the total AE activity continued
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beyond 100% PLC (Figures 3 and 6a). Acoustic emission sources
that were not related to cavitation most likely caused this additional
AE activity. We aimed at filtering out these different AE sources by
searching for natural clusters in the AE signals. Waveform features,
which are generally used in cavitation research in conifers (Rosner
et al. 2006), did not result in a good clustering as there was too
much overlap between the three clusters (Figure 5). For composite
materials, which also include the natural composite wood (Baensch
et al. 2015), frequency features have been proven to be useful for
identification of different AE sources (Sause and Horn 2010). Our
observation of three different clusters of AE signals during dehy-
dration of the branches strongly suggested the presence of at
least three types of AE sources. The activity of the mid-frequency
cluster became almost zero at the VC end point (Figure 6d). This
AE signal type was thus better related to the expected definition of
emboli formation in the xylem than the low-frequency cluster, with
continued activity after the end point, and the high-frequency clus-
ter, which was mainly active during the elastic shrinkage phase
(Figure 6e). During the cavitation phase, however, the low- and
mid-frequency clusters followed a very similar pattern and in the
UCT experiment, we found a good correspondence between both
low- and mid-frequency signals and visually observed cavitated
vessels (Figure 7). The large number of empty vessels we found at

the start of the uCT experiment mainly consisted of small primary
vessels around the central pith (Vergeynst et al. 2015a). Jacobsen
etal. (2015) performed active xylem staining experiments on Vitis
samples, and concluded that bands of primary vessels around the
pith become hydraulically inactive later on in the growing season.
Nuclear magnetic resonance images of Vitis also showed similar
results of empty primary vessels around the central pith before
dehydration (Choat et al. 2010). Taking these inactive vessels into
account has no repercussions on the sigmoidal shape of VCs, but
when comparing different curves, initial vessel condition must be
equal (e.g., all vessels filled or a fixed percentage empty). Finally,
the correlation between visually observed cavitated vessels and
low-frequency signals was slightly stronger than with mid-fre-
quency signals. The higher number of mid-frequency AE signals
causing the slightly weaker correlation during the initial dehydra-
tion phase (elastic shrinkage) compared with low-frequency sig-
nals may be explained by some overlap with the high-frequency
cluster (discussed below).

Acoustic emission features support AE source
identification

Besides AE activity, AE signal features (Figure 5) may also support
identification of different AE sources in dehydrating branches. In
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general, AE signals are caused by sudden microscopic displace- xylem conduit as well as crack surfaces in or between the cell
ments, followed by damped vibration of the surfaces involved. walls. The displacements are propagated away from the source as
These may include the surfaces of newly formed air bubbles in a macroscopic elastic waves (pressure waves and shear waves), of



which the frequencies are influenced by the macroscopic elastic
properties of the surrounding wood. When the initial displacement
is large enough, and when the detector is sensitive for the propa-
gated frequencies, a signal can be measured at the branch surface.
The frequency content of the detected signal is related to the fre-
quency spectrum of the source vibration (Sause and Horn 2010).
We believe that the early activity of high-frequency AE signals (Fig-
ure 6d) resulted from two possible sources: (i) capillary action of
free water and (i) fast contraction of the bark during initial elastic
shrinkage (Figure 6e). According to Tyree and Zimmermann
(2002), capillary water is instantly released at the start of dehy-
dration and, as illustrated by Tyree and Yang (1990), is accompa-
nied by the production of AEs. Based on previous results obtained
by Ogino et al. (1986), Rosner (2012) came to the conclusion
that high-frequency components could be attributed to non-
destructive capillary action of free water. Secondly, the bark of Vitis
contains a proportion of dead cells and is known to easily peel off
during dehydration. Kikuta (2003) examined AEs from different
bark samples and concluded that certain dead elements (e.g.,
fibres) emit ultrasound AEs during dehydration. This type of signal,
containing high frequencies, with relatively high peak amplitude,
short rise time and thus large rise angle (Figure 5), has also been

Table 2. Parameters derived from the dehydration curves: apparent
radial modulus of elasticity (£,) (Figure 6a), water potential at transition
point between shrinkage and cavitation phase (Figure 6b) and hydraulic
capacitance (C) for both phases.

E. (MPa) Transition C (kg m=3 MPa™")
point (MPa)
Shrinkage Cavitation
phase phase
Branch 1 59.1 -2.48 39.1 73.3
Branch 2 44.2 -2.25 30.4 59.5
Branch 3 51.0 -1.90 37.7 36.2

related to surface checking in drying oak (Quercus variabilis Blume)
(Kim et al. 2005). Signals originate from very fast movements of
the microscopic fracture surfaces or micro-cracks in or between
cell walls (Cunderlik et al. 1996) being pulled apart. In the field of
fracture mechanics, this is called tensile cracking (Aggelis et al.
2010). However, as illustrated by Yamamoto et al. (2013), micro-
crack formation occurs when the moisture content decreases
below fibre saturation point. Thus, discussion about whether these
micro-cracks contribute to the high-frequency AE signals at the
start of dehydration remains and further research is necessary.
Note that the high-frequency AE signals decrease to a minimum at
the start of the cavitation phase (Figure 6d), which can be
explained by bark shrinkage reaching its end point.

The formation of macro-cracks is associated with shear
stresses, and so-called shear cracking is accompanied by AE sig-
nals with high energy, a long rise time and low frequencies
(Aggelis et al. 2010), comparable to the low-frequency cluster
that we observed (Figure 5). Beyond 100% PLC, when tension
in the xylem conduits is released by cavitation, the stress field
changes and existing fractures may grow by shear stresses lead-
ing to strong low-frequency signals. However, we distinguish a
second possible origin for the low-frequency signals beyond
100% PLC. At the moment when all hydraulic conductivity is lost,
the VWC is still far above the fibre saturation point. Free water
that is still left in the wood, and which is disconnected from the
transpiration stream, may move under influence of a combination
of viscous, capillary and gravity forces (Lgvoll et al. 2005). The
movement of the drainage front through a porous medium is
characterized by rapid meniscus displacements, called Haines
jumps (Haines 1930). These rapid rearrangements of the air—
water interfaces have been related to AE signals in the frequency
range 50-250 kHz (Chotard et al. 2007), 10-30 kHz and below
3.75 kHz (DiCarlo et al. 2003), and could occur, e.g., when a

Table 3. Characteristic water potential values of the VCs using all AE signals (Figure 6a), compared with the three clusters (low-, mid- and high-
frequency) of AE signals (Figure 6c). The cumulative number of AE signals at 100% PLC (cumAE, ) is indicated for each curve.

P;,> (MPa) Pso (MPa) Pgg (MPa) Pioo (MPa) cumAE; 4
(%103 signals)

Branch 1

All signals —-1.71 —2.73 -2.98 -3.13 95

Low-frequency -1.71 -2.78 -3.01 -3.17 65

Mid-frequency -2.03 -2.67 -2.92 -3.06 26

High-frequency -0.78 -1.65 -2.33 -2.48 2
Branch 2

All signals —-1.12 —-2.30 -2.74 —-2.94 186

Low-frequency -1.09 -2.32 -2.77 -2.93 125

Mid-frequency -1.14 -2.23 -2.66 -2.96 54

High-frequency -0.76 -1.70 -2.28 -2.56 2
Branch 3

All signals —-1.22 —-2.68 -3.83 —4.23 183

Low-frequency -1.37 -2.81 -3.98 -4.35 139

Mid-frequency -1.15 -2.53 -3.74 —-4.17 43

High-frequency -0.34 —1.21 -1.93 -2.62 2
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Figure 7. The cumulative number of AEs was most related with visual observation of cavitation for the mid- and low-frequency clusters. The high-fre-
quency cluster showed a proportionally higher activity in the beginning of the dehydration experiment. The dehydration experiment in the uCT scanner
lasted for 40 h and the experiment was stopped before the end point of the cavitation phase was reached (Vergeynst et al. 2015a).

meniscus passes a perforation plate of a xylem vessel. Also dur-
ing the cavitation phase, movement of water that was discon-
nected from the transpiration stream by gas emboli may result in
these low-frequency signals. This may explain the high activity of
low-frequency signals with a similar pattern to the mid-frequency
signals during the cavitation phase (Figure 6d).

The formation of a gas bubble (Vincent et al. 2012, 2014) in
a xylem conduit under tension is most probably a more violent
event than drainage of free water because of the large pressure
drop involved. Faster movements at the AE sources result in
higher frequencies, explaining the higher frequencies of the mid-
frequency cluster related to cavitation. Vincent et al. (2014)
found that the bubble vibration frequency is inversely propor-
tional to the bubble radius. This might result in a certain fre-
quency range of cavitation-induced AE signals, dependent on
the bubble size. However, the total number of AE signals in the
mid-frequency cluster (Table 3) exceeds the number of xylem
vessels that might be expected in a 36-cm-long branch
(Vergeynst et al. 2015a) by one or two orders of magnitude. On
the one hand, the boundaries of this cluster, obtained with the
clustering algorithm, might be too wide and might include sig-
nals that belong to one of the other AE sources. On the other
hand, with the current limited mechanistic understanding of the
cavitation process (Rockwell et al. 2014) in angiosperms, it is
not self-evident that one embolized conduit results from the

birth of one air bubble. The nanobubble theory (Schenk et al.
2015) states that many nanobubbles could be formed in the
xylem sap before they coalesce to form an obstructing air bub-
ble. The AEs due to nanobubble formation might explain the
large number of cavitation-related AE signals. Eventually, bubble
collapse in the pit chamber may produce AE signals without
resulting in the embolization of a conduit.

Differences, but also overlap, between clusters
due to wave propagation

Although only the mid-frequency cluster complied with the fea-
tures expected upon the occurrence of cavitation, the shape of
the VC (Figure 6¢) and calculated Ps, (Table 3) were very close
when either the low- or mid-frequency cluster was used. More-
over, the correlation between low-frequency signals and visually
observed cavitation (Figure 7) was even better than for mid-
frequency signals. The main reason for this slight deviation in
pattern of the mid-frequency cluster is probably the overlap
between clusters caused by wave propagation. The bulk of the
AE signals has propagated some distance along the branch
before reaching the sensor, which gives rise to guided waves.
Differences in source location (Vergeynst et al. 2015b) may
influence the frequency content and thus the location in the scat-
terplots (Figure 4). Therefore, a particular AE source results in a
point cloud, which may show some overlap with adjacent point



clouds. Moreover, in wood, higher frequencies are attenuated
more strongly than lower frequencies (Beall 2002), and attenu-
ation decreases strongly with ongoing dehydration (Vergeynst
et al. 2015b). Acoustic emission sources of higher frequency
may thus fall into a lower-frequency cluster due to a frequency
shift by attenuation. Part of the activity of the mid-frequency
cluster during the initial elastic shrinkage phase thus probably
resulted from high-frequency AE sources, related to shrinkage at
a longer distance from the detector. This could result in a risk of
overestimating PLC at low tensions (Figure 7). For this reason,
Beall (2002) already suggested using an upper frequency level
of 100-200 kHz for transducers on woody material. In the
same way, part of the low-frequency signals during the cavita-
tion phase could be explained by overlap with the mid-frequency
cluster, resulting in similar VC features (Figure 6c). However,
Haines jumps during drainage of water after tension release by
cavitation form a plausible cause of cavitation-related low-
frequency signals, explaining the good correspondence with
visually observed cavitation (Figure 7) and valid VC curves
(Figure 6¢). To reduce the overlap between AE signal clusters,
source localization would be helpful to account for frequency
changes due to attenuation.

In general, even when no distinction would have been made
between different AE sources (Figure 6a), the VC parameters
(Table 3) did not change substantially compared with the filtered
mid-frequency VC in our experiment. We explain this by the very
low activity of high-frequency AE sources during elastic shrinkage,
and a relatively constant or simultaneous activity of the low-
frequency AE sources during the cavitation phase. However, when
measuring on other branches, other species and in different envi-
ronments, the coordination between the different AE sources might
change, necessitating the filtering of specific cavitation-induced AE
signals as proposed in this article. It is therefore recommended to
use the broadband sensor in future research. The possibility to
distinguish between different AE sources, and to link them to spe-
cific physiological processes, is a major breakthrough in the use of
AE monitoring in cavitation research. However, when it is suffi-
ciently demonstrated that the resonant sensor shows good resullts,
its use might be preferred in further practical applications. This
clustering approach also has great potential to detect non-
destructive cavitation in the field by considering only mid-frequency
signals. This would be of great use to clarify the current contro-
versy about diurnal emboli formation and repair (Sperry 2013).

Conclusion

Three clusters of AE signals were active during the dehydration
of grapevine branches. Based on differences in AE features
and AE activities during consecutive dehydration phases, we
concluded that the mid-frequency signal type was most related
to cavitation. High-frequency signals probably resulted from
capillary action of free water and fast contraction of the bark

during elastic shrinkage, while low-frequency signals were
most likely caused by macro-fractures or Haines jumps. In our
experiment, the filtered VC based on mid-frequency signals did
not strongly differ from the curve based on total AE activity.
However, for reliable widespread application of the AE tech-
nique, and for in vivo measurements, more fundamental
research is necessary to elucidate the AE-inducing processes
during cavitation. To this end, distinction between the different
types of AE signals is imperative. Moreover, the information
contained in the AE signals should be used as a precious
resource to support important ongoing discussions on the pro-
cesses behind hydraulic failure.
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