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Abstract: Contrary to microbial taxis, where a tactic response to external stimuli is controlled by
complex chemical pathways acting like sensor-actuator loops, taxis of artificial microswimmers is
a purely stochastic effect associated with a non-uniform activation of the particles’ self-propulsion.
We study the tactic response of such swimmers in a spatio-temporally modulated activating medium
by means of both numerical and analytical techniques. In the opposite limits of very fast and very
slow rotational particle dynamics, we obtain analytic approximations that closely reproduce the
numerical description. A swimmer drifts on average either parallel or anti-parallel to the propagation
direction of the activating pulses, depending on their speed and width. The drift in line with the
pulses is solely determined by the finite persistence length of the active Brownian motion performed
by the swimmer, whereas the drift in the opposite direction results from the combination of the
ballistic and diffusive properties of the swimmer’s dynamics.

Keywords: microswimmers; taxis; inhomogeneous activating medium

1. Introduction

The directed movement of microorganisms, such as bacteria or cells, induced by an external
stimulus is called taxis. It is categorized based on the nature of the stimulus and on whether the
microorganisms head toward (positive taxis) or away (negative taxis) from the stimulus’ source [1].
Commonly, taxis is induced by certain chemicals (chemotaxis) or light (phototaxis), but alternative
tactic mechanisms are also known, like rheotaxis, the response to fluid flows, or gravitaxis, the response
to the gravitational field [2]. Taxis plays a major role in many biological processes, e.g., in the formation
of cell layers and other biological structures. Moreover, many bacteria profit from pronounced tactic
capabilities in their search for food or escape from toxic substances [3,4]. They do so by means
of a built-in chemical signaling network, which elaborates their physiological response to external
stimulus gradients [5].

A biomimetic counterpart of microbial motility is the self-propulsion of artificial microswimmers,
synthetically fabricated microparticles that propel themselves by converting an external activating
“fuel” into kinetic energy [6–9]. Under certain operating conditions, such particles generate local
non-equilibrium conditions in the suspension medium, which in turn exerts on them a thermo- [10–13],
electro- [14,15] or diffusiophoretic [16–18] push. Because the ability to control the transport of such
particles is emerging as a key task in nanorobotic applications, rectification of artificial microswimmers
is currently the focus of intense cross-disciplinary research. Unlike biological microorganisms, simple
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artificial microswimmers lack any internal sensing mechanism and, thus, cannot detect an activation
gradient, with their response to the activating stimulus being instantaneous. Nevertheless, over the past
few years, artificial microswimmers have been reported to undergo a tactic drift when exposed to static
stimuli [19–23]. In biological systems, however, tactic stimuli are seldom static, but more frequently
modulated in the form of spatio-temporal signals, like traveling wave pulses. Some microorganisms
are capable of locating the pulse source and heading toward it [24,25]. This is an apparently paradoxical
effect, because one expects rectification to naturally occur in the opposite direction, irrespective of
the microorganisms’ tactic response to a monotonic gradient. Indeed, assuming a symmetric pulse
waveform, a microorganism orients itself parallel to the direction of the pulse propagation on one side
of the pulse, and opposite to it on the other side. As the swimmer spends a longer time within the
pulse when moving parallel to it, one would then expect it to “surf” the pulse and effectively move
away from the pulse’s source (Stokes’ drift [26,27]). Experimental evidence to the contrary has been
explained by invoking a finite adaption time of the microorganisms’ response to temporally varying
stimuli [28,29].

By analogy with the taxis of “smart” adaptive biological swimmers, in a recent paper [30],
we investigated the question of whether similar effects can be observed also for “dumb” artificial
swimmers, that is we considered a self-propelled particle subjected to traveling activation wave
pulses. We numerically found that the particle drifts on average either parallel or anti-parallel to the
incoming wave, the actual direction depending on the speed and width of the pulses. This behavior is
a consequence of the spatio-temporal modulation of the particle’s self-propulsion speed within the
activating pulses. We complement now that first report by deriving new analytical results for the tactic
drift of an artificial swimmer. For this purpose, in Section 2, we review the results of [30]. In Section 3,
we then focus on two limiting cases of the swimmer’s dynamics, where an analytical treatment is
viable. We conclude with a brief résumé in Section 4.

2. Artificial Microswimmers Activated by Traveling Wave Pulses

At low Reynolds numbers, the dynamics of an artificial microswimmer diffusing on a 2D substrate
and subjected to a spatio-temporally modulated activation can be modeled by the Langevin equations
(LEs) [30]:

ẋ = v(x, t) cos φ +
√

D0 ξx(t),

ẏ = v(x, t) sin φ +
√

D0 ξy(t), (1)

φ̇ =
√

Dφ ξφ(t).

Here, v(x, t) is the particle’s self-propulsion velocity and φ denotes its orientation measured with
respect to the x axis. The above dynamics comprises three additive fluctuational noise sources—two
translational of intensity D0 and one rotational of intensity Dφ—which, for simplicity, are represented
by white Gaussian noise processes with zero mean and autocorrelation functions 〈ξi(t)ξ j(0)〉 = 2δijδ(t)
for i, j = x, y, φ, as usually assumed in the current literature [9]. The noises ξi(t) model the combination
of independent fluctuations, namely the thermal fluctuations in the swimmer’s suspension fluid and
the fluctuations intrinsic to its self-propulsion mechanism. Therefore, in the following, we treat D0 and
Dφ as independent parameters. We remind that in the presence of the sole thermal fluctuations, for a
spherical particle of radius R, the translational and rotational diffusion constants are related, that is
D0/Dφ = 4R2/3 [31].

When the swimmer’s activation is not modulated, its self-propulsive velocity is nearly constant,
i.e., v(x, t)→ v0, and the particle performs an active Brownian motion with persistence time τφ = D−1

φ

and corresponding persistence length lφ = v0τφ. On short timescales, its dynamics is then characterized
by a directed ballistic motion and on long timescales by an enhanced diffusion with zero shift and
diffusion constant limt→∞〈[x(t)− x(0)]2〉/(2t) = D0 + Ds, where Ds = v2

0/(2Dφ) [32].
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In Equation (1), we assumed the swimmer’s self-propulsion velocity, v(x, t), to be a local function
of the activating “fuel” concentration, which in turn can be modulated in time and space. An ideal
setup allowing for the creation of traveling activation pulses is illustrated in Figure 1a. In this sketch,
a thermophoretic swimmer activated by laser light [11,18] is placed on a 2D substrate. Traveling wave
pulses of laser intensity I can be generated by sliding at constant speed u a slit screen placed between
the laser source and the particle. Because in a wide range of I, the swimmer’s self-propulsive velocity
is approximately proportional to the laser intensity [12], one thus can generate any desired profile
for v(x, t). Although this is probably the simplest way to experimentally realize traveling activation
pulses, we remark that chemically activated swimmers represent a viable option, as well. Indeed, such
swimmers can be operated under the condition that v(x, t) is proportional to the concentration of the
activating chemical(s), whereas their rotational diffusivity remains almost constant [17,33]. On the
other hand, traveling chemical waves can be conveniently excited in chemical reactors [34–36].

The effect of a single Gaussian activation pulse, v(x, t) = v0 exp[−(x− ut)2/(2L2)], hitting the
swimmer from the left is depicted in Figure 1b. Clearly, a pulse speed u � v0 causes the particle to
shift to the left, ∆(t) := 〈x(t)− x(0)〉 < 0, whereas a pulse speed of about the same magnitude as the
swimmer’s maximum propulsion speed, v0, causes it to shift slightly to the right. Indeed, we observe
the final shift in the particle’s position, ∆(∞) = limt→∞ ∆(t), to attain a positive maximum at u ' v0

and tend toward large negative values for u → 0. As discussed in more detail in Section 3, ∆(∞)

actually diverges in this limit if translational noise is neglected, D0 = 0.
The existence of two opposing tactic regimes can be explained by considering the modulation

of the swimmer’s dynamics under the wave crests. Assuming no translational fluctuations, D0 = 0,
the swimmer can only diffuse within the pulse and comes to rest outside of it. For slow pulses, u� v0,
it propels very quickly (compared to the pulse speed) in the wave center and, thus, quickly hits either
pulse’s edges, defined as the points where u equals v(x, t). Due to its movement to the right, the pulse’s
symmetry is dynamically broken, and the two edges are not equivalent: if the swimmer crosses the
right edge, it becomes slower than u and is recaptured by the traveling pulse, whereas by the same
argument, it is left behind by the pulse once it crosses the left edge. The right (left) edge thus behaves
like a reflecting (absorbing) boundary, which allows the particle to exit the pulse on the left only, hence
inducing a negative tactic shift. For pulse speeds approaching v0, a contrasting effect comes into play:
within the pulse, the particle can travel a longer distance to the right than to the left. This “surfing”
behavior, already mentioned in Section 1, is most pronounced at u = v0, where the distance a swimmer
can travel to the right without hitting a pulse edge is solely limited by its rotational diffusivity, Dφ.
Accordingly, ∆(∞) turns positive if u becomes comparable to v0 and vanishes monotonically in the
limit u→ ∞, where the pulse sweeps through the swimmer so quickly that it cannot respond. We note
that the latter argument holds also for D0 6= 0; as discussed in Section 3, translational noise tends to
suppress the swimmer’s tactic shift, though not completely.

In Figure 1c,d, we consider a periodic sequence of pulses, namely v(x, t) = v0 sin2[(x− ut)π/L],
and measure the resulting steady-state tactic drift vx = limt→∞〈ẋ〉 of the swimmer. Again, we keep
the particle parameters v0 and Dφ fixed and vary the wave parameters L and u. In the absence of
translational noise (Figure 1c), we see essentially the same effect as in the case of a single activation
pulse: vx is negative for u � v0 and turns positive as u approaches v0, exhibiting a pronounced
maximum at u ' v0. However, the ratio between the maximum strength of the positive and negative
tactic velocity, respectively, appears to be inverted (for a single pulse, the negative shift at low u is
markedly larger than the positive shift at u ' v0). In this regard, we remind that in Figure 1c, we
plotted the net tactic drift, i.e., the speed defined as an average tactic shift divided by the relevant
observation time. Since the large negative shift in Figure 1b occurs over a long time (the time needed
by the swimmer to fully cross the Gaussian pulse is proportional to L/u), we expect the tactic drift
velocity in Figure 1c to be less pronounced in the negative regime.
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Figure 1. Taxis of an artificial microswimmer subjected to traveling activation pulses. (a) Model
setup to experimentally realize activating wave pulses as considered in the present paper; see
the text. (b) Tactic shift ∆(t) of the swimmer’s mean position generated by a Gaussian activation
pulse, v(x, t) = v0 exp[−(x− ut)2/(2L2)], vs. time t in units of the pulse crossing time tL = L/u. In the
inset, the final shift ∆(∞) is plotted as a function of the pulse speed u. The swimmer’s self-propulsion
parameters were set to v0 = 53 µm/s and Dφ = 165 s−1, and the pulse width was chosen according to
L = 1 µm, about three times the swimmer’s propulsion length lφ = v0/Dφ. Here, the translational noise
intensity D0 was set to zero in order to focus on the essential mechanism giving rise to the swimmer’s
tactic shift. (c,d) Tactic drift vx induced by a sinusoidal activation pulse, v(x, t) = v0 sin2[(x− ut)π/L].
The swimmer’s parameters are the same as in (b), and we set D0 = 0 in (c) and D0 = 2.2 µm2/s
in (d). The position of the maximum positive drift and the maximum negative drift, respectively,
is marked by white crosses, and the white contours depict the separatrices dividing the regions of
positive and negative taxis. All results were obtained either by stochastic integration of the Langevin
Equations (LEs) (1) ((b), crosses and (c)) or by solving the corresponding Fokker–Planck Equation
(FPE) (3) ((b), solid lines and (d)); see [30] for numerical details.

Moreover, we note that for pulse wavelengths L larger than the swimmer’s persistence length lφ,
the action of the rotational noise becomes appreciable, leading to a suppression of vx. This behavior
is clearly consistent with Equation (3), where for D0 = 0, an increase in L is equivalent to an
increase in Dφ.

As illustrated in Figure 1d, translational fluctuations, D0 > 0, suppress the tactic drift of the
swimmer, as well, because they help it diffuse across the wave troughs in both directions. Furthermore,
the particle’s “surfing” effect becomes less efficient, and the tactic speed, vx, diminishes overall.
However, we notice that the translational noise has a stronger impact for small values of L, where it
drastically suppresses the negative drift. This causes a sharp down-bending of the separatrix curve
that divides the regions of positive and negative taxis, in correspondence with a critical value of
D0/(Lv0) [30]. As a matter of fact, one sees immediately that a decrease in L is equivalent to an
increase in D0, since it is easier for the translational noise to kick a swimmer out of a pulse of a smaller
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width. By the same argument, it is also evident that translational fluctuations impact negative taxis
more strongly than positive taxis. Indeed, the mechanism responsible for the negative drift requires
preventing the swimmer from crossing a wave trough from left to right, which grows less efficient
with increasing D0.

We furthermore stress that in Equation (1), we neglected hydrodynamic effects, which, at least in
the absence of activation gradients, are strongly suppressed by: (i) restricting the swimmers’ motion
to the bulk, that is away from all confining walls; (ii) lowering the swimmer density so as to avoid
particle clustering [37]; and (iii) choosing spherical active particles of a small size, i.e., almost point-like,
in order to reduce hydrodynamic backflow effects. However, the modulated activation gradients
considered here certainly give rise to additional hydrodynamic contributions, of which the most
prominent one is a self-polarization of the swimmer: the particle strives to align itself parallel or
anti-parallel to the gradient, depending on its surface properties [22,38]. We addressed the influence of
such a self-polarizing torque on the swimmer’s diffusion in a recent study [39] and concluded that
for a small to moderate self-polarizing affinity, the tactic response of a swimmer behaves as reported
in the present work. Its magnitude however slightly increases or decreases, subject to whether the
swimmer tends to align itself parallel or anti-parallel to the gradient.

Finally, we remark that the setup considered in Figure 1a bears resemblance to that of [23].
However, a main difference between both setups is the way in which the spatial symmetry of the pulse
waveform is broken, which was found to constitute the key factor, alongside the swimmer’s finite
persistence time, accountable for the emergence of any tactic drift. In the present setup, the pulse
symmetry is broken due to the constant propagation of the pulses to the right, whereas in [23],
an asymmetric pulse shape is considered. A tactic drift can be observed in both cases; however,
the underlying mechanisms are rather different: in [23], the observed tactic effect is explained with
a saturation of the self-polarizing torque mentioned above, while in the model as considered in the
present work, the swimmer’s tactic drift solely results from the modulation of its active diffusion
inside the traveling wave pulses.

3. Results and Discussion

In the following, we analytically study the tactic drift of an artificial microswimmer subjected
to traveling activation pulses. We assume that the spatio-temporal modulation of the swimmer’s
self-propulsion velocity has the form of a generic traveling wave, v(x, t) = v0w[(x− ut)/L], with static
profile w(x/L). Upon changing coordinates from the resting laboratory frame to the co-moving wave
frame, x− ut→ x, the Fokker–Planck equation (FPE) associated with the LEs (1) reads:

∂P(r, φ, t)
∂t

=

{
D0∆−∇

[
v0w

( x
L

)
n− u

]
+ Dφ

∂2

∂φ2

}
P(r, φ, t), (2)

where r = (x, y)ᵀ, u = (u, 0)ᵀ, n = (cos φ, sin φ)ᵀ and ∆ and ∇ denote, respectively, the Laplace
operator and the gradient in Cartesian coordinates (x, y). The swimmer’s dynamics perpendicular to
the incoming wave exhibits no tactic behavior, since the pulse does not break the spatial symmetry
in the y direction. Therefore, integrating over the y coordinate and conveniently rescaling x and t,
x =: Lx′ and t =: (L/v0)t′, we obtain a (still strictly Markovian) reduced FPE for the 2D marginal
probability density P(x′, φ, t′), reading:

∂P(x′, φ, t′)
∂t′

=

[
D0

Lv0

∂2

∂x′2
− ∂

∂x′

(
w(x′) cos φ− u

v0

)
+

DφL
v0

∂2

∂φ2

]
P(x′, φ, t′). (3)

Here, the effective rotational diffusion constant, DφL/v0, equals the ratio of the pulse width L to
the swimmer’s persistence length lφ = v0/Dφ. The effective translational diffusion constant, D0/(Lv0),
corresponds instead to the ratio of the time the swimmer takes to ballistically travel a pulse width L in
a uniform activating medium, L/v0, to the time it takes to diffuse the same length subject to the sole
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translational noise, L2/D0. This ratio characterizes the relative strength of translational fluctuations
and coincides with the reciprocal of the Péclet number for mass transport. We agree now to drop the
prime signs, so that in the remaining sections, x and t denote the above dimensionless coordinates in
the co-moving wave frame (unless stated otherwise).

3.1. Diffusive Regime

The wave pulses can be wide and slow enough to regard the swimmer’s motion inside each
of them as purely diffusive. More precisely, this happens when the swimmer’s rotational diffusion
time, D−1

φ , is significantly smaller than the shortest ballistic pulse crossing time, L/(v0 + u), i.e., when
DφL/v0 � 1 + u/v0. Under this condition, we can further eliminate the orientational coordinate φ,
so that the effects of self-propulsion boil down to an effective 1D diffusive dynamics. For this purpose,
we apply to Equation (3) the homogenization mapping procedure detailed in [40] and obtain a partial
differential equation for the marginal probability density:

P(x, t) =
2π∫
0

P(x, φ, t)dφ. (4)

Following [41], we assume that the latter operation can be inverted by means of a “backward”
operator ψ̂(x, φ),

P(x, φ, t) =
∞

∑
n=0

εnψ̂n(x, φ)
P(x, t)

2π
, (5)

where ψ̂0(x, φ) = 1 and ε := v0/(DφL). The expansion of ψ̂(x, φ) in Equation (5) is justified by the fact
that for ε→ 0, the swimmer rotates infinitely quickly, in which case the self-propulsion can no longer
contribute to its translational dynamics: the active particle behaves like a passive one, i.e., the rotational
and translational dynamics decouple, and P(x, φ, t) simply becomes P(x, t)/(2π). Making use of
Equations (4) and (5), respectively, in Equation (3) and reordering all terms thus obtained according to
their powers of ε [40,41] yields a recurrence relation for the operators ψ̂n,

∂2
φψ̂n+1(x, φ) =

[
ψ̂n(x, φ),

(
D0

Lv0
∂2

x +
u
v0

∂x

)]
+ cos φ ∂xw(x)ψ̂n(x, φ)

− 1
2π

n

∑
m=0

ψ̂n−m(x, φ)∂xw(x)
2π∫
0

cos φ ψ̂m(x, φ)dφ, (6)

where [... , ...] denotes a commutator. By using the aforementioned initial condition ψ̂0(x, φ) = 1,
the periodicity condition ψ̂n(x, 0) = ψ̂n(x, 2π) and the normalization condition

∫ 2π
0 ψ̂n(x, φ)dφ =

2πδn,0, Equation (6) can be solved iteratively, at least in principle, up to any arbitrarily high order.
However, with increasing n, this task becomes more and more laborious, and the results for the ψ̂n

read increasingly complicated. In the diffusive limit, however, the swimmer’s rotational dynamics is
significantly faster than its translational dynamics, and P(x, φ, t) relaxes very quickly in the φ direction,
that is it only slightly differs from P(x, t)/(2π). It thus suffices to collect the terms of Equation (5) up
to O(ε), that is,

P(x, φ, t) =
1

2π
[1− ε cos φ ∂xw(x)]P(x, t). (7)

Finally, upon inserting Equation (7) into Equation (3) and successively integrating with respect to
φ, we obtain the reduced 1D FPE [30]:

∂P(x, t)
∂t

= F̂(x)P(x, t) =
[

∂2

∂x2

(
v0

2DφL
w2(x) +

D0

Lv0

)
− ∂

∂x

(
v0

4DφL
dw2(x)

dx
− u

v0

)]
P(x, t), (8)
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which describes the probability density of the swimmer’s longitudinal position in the diffusive regime.
Here, F̂(x) denotes the Fokker–Planck operator, detailed on the right-hand side.

3.1.1. Single Activation Pulse

Following the presentation of Section 2, we first consider a single activating pulse hitting the
swimmer and neglect translational fluctuations, D0 = 0. The particle’s tactic shift is then obtained
by measuring its displacement from an initial position x0, placed outside the pulse, on the right.
Transforming back to the laboratory frame and taking the ensemble average, we define the tactic
shift as ∆ =: 〈x(t)− x0 + ut/v0〉. Note that ∆ is still expressed in terms of the dimensionless units
introduced above. We now can quantify the tactic shift in two ways: we either set a time t and calculate
the corresponding average swimmer’s displacement in the pulse frame, 〈x(t)〉, hence:

∆(t) = 〈x(t)〉 − x0 +
u
v0

t, (9)

or, vice versa, we set the longitudinal shift, x1− x0, in the moving frame and calculate the corresponding
mean first-passage time 〈t(x1|x0)〉, hence:

∆̃(x1) = x1− x0 +
u
v0
〈t(x1|x0)〉. (10)

We remind that 〈t(x1|x0)〉 denotes the average time the particle takes to reach x1 for the first time
from x0 [42].

As long as x1 < x0, both methods are valid and equivalent, since in the moving frame,
the swimmer travels to the left and its position eventually takes on all values with x < x0. However,
for finite t and x1, we a priori do not know how to choose the values x1 and t that verify the identity
∆(t) = ∆̃(x1). However, if we consider the full shift of the swimmer after it has completely crossed the
pulse (that is, for large enough t or for x1 placed far enough to the left of the pulse), both expressions
yield the same result, that is, ∆(∞) = ∆̃(−∞). This identity proved very helpful, since for the problem
at hand, the mean first-passage time can be calculated in a much simpler way than the average particle
position. If the Fokker–Planck operator is time independent, the mean first-passage time is the solution
of the ordinary differential equation F̂†(x)〈t(x1|x)〉 = −1 [43,44]. Here, F̂† is the adjoint Fokker–Planck
operator acting upon the swimmer’s starting position x, now taken as a variable, and 〈t(x1|x)〉 obeys
an absorbing boundary condition, 〈t(x1|x1)〉 = 0, at x = x1. We thus have to solve the ordinary
differential equation:

− 1 =

[
v0

2DφL
w2(x)

∂2

∂x2 +

(
v0

4DφL
dw2(x)

dx
− u

v0

)
∂

∂x

]
〈t(x1|x)〉. (11)

A second boundary condition follows naturally from the observation that outside of the pulse,
the swimmer’s motion is deterministic. Namely, we know that ẋ = −u/v0 at x = x0, hence:

∂〈t(x1|x)〉
∂x

∣∣∣∣
x=x0

=
v0

u
(12)

(because the swimmer starts at a position with x > x1, to the right of the pulse, and crosses it to the
left, increasing x causes an increase in 〈t(x1|x)〉). With the above boundary conditions, Equation (11)
returns a unique solution,

〈t(x1|x)〉 =
x∫

x1

v0

u
exp

 x0∫
y

f (q)dq

+

x0∫
y

2
εw2(z)

exp

 z∫
y

f (q)dq

dz

dy, (13)
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where ε = v0/(DφL) and:

f (q) :=
(

ε

4
dw2(q)

dq
− u

v0

)(ε

2
w2(q)

)−1
=

d ln(q)
dq

− 2u
εv0w2(q)

. (14)

For a smoothly decaying pulse profile w(x), the condition for the swimmer to sweep through
the entire pulse requires taking the limits x0 → ∞ and x1 → −∞. The tactic shift of a swimmer in the
diffusive regime is thus given by the expression:

∆(∞) = lim
x1→−∞
x0→∞

x1− x0 +
u
v0

x0∫
x1

v0

u
exp

 x0∫
y

f (q)dq

+

x0∫
y

2
εw2(z)

exp

 z∫
y

f (q)dq

dz

dy

 . (15)

The right-hand side of Equation (15) contains two removable singularities; a partial integration yields
the more compact result:

∆(∞) =

∞∫
−∞

1
w(y)

∞∫
y

dw(z)
dz

exp

−2
DφL
v0

u
v0

z∫
y

1
w2(q)

dq

dz dy. (16)

Note that this expression is independent of the boundary condition (12). Indeed, outside the
pulse, i.e., when w(x) = 0, Equation (11) reduces to a first-order differential equation, and thus,
the boundary condition at x = x0 becomes superfluous. A comparison between the analytical
prediction of Equation (16) and results obtained by numerically integrating the FPE (3) is plotted in
Figure 2. As in Section 2, for the activating pulse, we chose a Gaussian profile, w(x) = exp(−x2/2),
of width L ∼ 12lφ (we remark that due to the dimensionless scaling introduced at the beginning of
this section, L does not explicitly enter the waveform anymore, but instead, it is incorporated into
the effective diffusion constants; see Equation (3)). The analytical and numerical curves for ∆(∞)

versus u overlap in the regime of slow pulse speeds, u � v0, thus confirming the validity of the
diffusive approximation.
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Figure 2. Tactic shift of an artificial microswimmer across a single traveling pulse of the form
(a) w(x) = exp(−x2/2) and (b) w(x) = sech(x): ∆(∞) vs. u in units of the self-propulsion speed, v0.
The swimmer parameters are as in Figure 1b: v0 = 53 µm/s, Dφ = 165 s−1 and D0 = 0. We remind
that here x and ∆(∞) are expressed in units of L. In (a), L = 4 µm, i.e., about 12 times lφ; in (b), L was
set to 3.58 µm, so that the two pulse profiles have the same half-width. The numerical results were
obtained by solving the FPE (3).

Moreover, for a soliton-like pulse profile, that is w(x) = sech(x), we succeeded in obtaining an
explicit analytical expression for ∆(∞), namely (see Appendix A):

∆(∞) =
π

2
+ γ− ln

(
v0

DφL
v0

u

)
, (17)
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where γ denotes the Euler–Mascheroni constant. Here, the agreement between numerical results
and analytic approximation is quite close, as well. The range of validity of Equation (17), however,
shrinks to lower values of u/v0, compared to the general result of Equation (16), which is due to the
fact that in the derivation of Equation (17), we repeatedly assumed a very slow pulse propagation;
see Equation (A2).

The analytical estimate of ∆(∞) in Equation (17) lends itself to a simple heuristic interpretation.
As mentioned in Section 2, in the diffusive regime, the effective pulse half-width, xu, is defined by
the identity w(xu) = u/v0. Since for u� v0, the swimmer propels itself inside an almost static pulse
until it exits for good to its left, its tactic shift must be of the order of xu. For the soliton-like profile
w(x) = sech(x), this implies that:

∆(∞) ≈ − ln
(

2v0

u

)
. (18)

Of course, this argument cannot fully reproduce Equation (17). Nevertheless, it explains why the
swimmer’s tactic shift diverges in the limit u→ 0: as the pulse nearly comes to rest, its effective width
grows exceedingly large; in the diffusive regime, the effect of the pulse’s fore-rear symmetry breaking
is therefore steadily enhanced.

Analogously, for the slow Gaussian pulse of Figures 1b and 2a, the dependence of ∆(∞) on u is
expected to be of the form

√
2 ln(v0/u), also in good agreement with our numerical and analytical

curves. Here, the pulse tails decay more quickly than for the soliton-like pulse, thus leading to a
smaller tactic shift in the limit u→ 0.

The influence of translational noise: We next consider the more realistic case with non-zero translational
fluctuations, D0 > 0. A very low translational noise level may be negligible in an appropriate
range of pulse speeds. However, for u → 0, the timescale on which the tactic shift approaches
its asymptotic value, ∆(∞), grows exceedingly long, which implies that at least in this regime,
translational fluctuations must be taken into account. To a good approximation, the translational noise
strength is independent of the spatio-temporal modulation of the swimmer’s activation mechanism
(see Equation (1)). As a main difference with the noiseless case D0 = 0, in the presence of translational
noise, the pulse edges are “open”, as the swimmer can now cross them repeatedly back and forth.
However, for sufficiently long observation times, the swimmer surely moves past the pulse, no matter
how small u and large D0. Therefore, for D0 > 0, we can calculate ∆(∞) following the procedure
already adopted for D0 = 0. Even the boundary condition (12) remains unchanged (and here is not
superfluous), since at x = x0, that is outside the pulse, we have 〈ẋ〉 = −u/v0. We thus obtain:

∆(∞) =

∞∫
−∞

∞∫
y

w(z) dw(z)
dz√

[w2(y) + α] [w2(z) + α]
exp

−2
DφL
v0

u
v0

z∫
y

1
w2(q) + α

dq

dz dy, (19)

with α := 2D0Dφ/v2
0. Obviously, in the limit D0 → 0, we recover Equation (16).

In Figure 3, the dependence of ∆(∞) on the pulse speed u was determined both by computing
the integrals in Equation (19) and numerically solving Equation (3). Again, the agreement between
analytical and numerical results is quite close. We notice that in the presence of translational noise,
the limit of ∆(∞) for u→ 0 is finite. We attribute this property to the fact that translational diffusion,
which tends to suppress tactic rectification, prevails over self-propulsion, but only in the pulse’s tails.
More precisely, the swimmer’s dynamics is dominated by translational diffusion when D0/(Lv0)�
v0w2(x)/(2DφL) (see Equation (8)) or w2(x)� α (see Equation (19)). Under this condition, a natural
definition of the effective pulse width is min[xu, xt], with xt being the solution of the equation w(xt) ∝√

2D0Dφ/v2
0. On decreasing u, the ratio xu/xt diverges, the effective pulse width coincides with xt

and ∆(∞) becomes a function of the sole parameter α = 2D0Dφ/v2
0.
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Figure 3. Tactic shift ∆(∞) as in Figure 2a, but for non-zero translational noise with D0 = 2.2 µm2/s.
The numerical results were again obtained by solving the FPE (3).

3.1.2. Periodic Pulse Train

In the following, we consider a periodic sequence of activating pulses, w(x + n) = w(x) ∀n ∈ Z,
with unit period (in dimensionless units), which corresponds to a period of L in the unscaled notation of
Section 2. To calculate the resulting longitudinal drift speed, vx = limt→∞〈ẋ〉+ u/v0 from Equation (8),
we introduce the reduced one-zone probability:

P̃(x, t) =
∞

∑
n=−∞

P(x + n, t), (20)

which maps the overall probability density P(x, t) onto one period of the pulse sequence [30,45,46].
That is, instead of considering the time-evolution of the swimmer’s probability density along an
infinite periodic pulse sequence, we focus on a single wave period and impose periodic boundary
conditions to ensure the existence of a stationary state. Accordingly, we define the corresponding
reduced probability current, J̃(x, t), and obtain the continuity equation:

∂P̃(x, t)
∂t

= − ∂ J̃(x, t)
∂x

, (21)

where, upon introducing the two auxiliary functions g(x) := v0w2(x)/(2DφL) + D0/(Lv0) and
h(x) := v0(d/dx)w2(x)/(4DφL)− u/v0, J̃(x, t) can be written in a compact form as:

J̃(x, t) = − exp

 x∫
0

h(y)
g(y)

dy

 ∂

∂x
g(x) exp

− x∫
0

h(y)
g(y)

dy

 P̃(x, t). (22)

In the stationary limit, J̃(x, t→ ∞) =: J̃st becomes constant and can be calculated explicitly [46],

J̃st =
v0

2DφL

1− exp

2
DφL
v0

u
v0

1∫
0

1
w2(x) + α

dx


×
 1∫

0

1∫
0

1√
[w2(x) + α] [w2(x + y) + α]

exp

2
DφL
v0

u
v0

x+y∫
x

1
w2(z) + α

dz

dy dx

−1

. (23)

Upon transforming back to the laboratory frame, we finally obtain a simple expression for the
swimmer’s tactic drift speed, namely:

vx =

1∫
0

J̃st dx +
u
v0

= J̃st +
u
v0

. (24)
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Taking the limit D0 → 0 and assuming w(0) = w(1) = 0 (as for w(x) = sin2(πx) in Figure 1c,d),
Equation (23) can be given the more convenient form:

J̃st =
u
v0

 1∫
0

1∫
0

w′(x + y)
w(x)

exp

−2
DφL
v0

u
v0

x+1∫
x+y

1
w2(z)

dz

dy dx

−1

, (25)

where the prime sign denotes the derivative with respect to the function’s argument.
In Figure 4, we compare the analytical approximation of Equations (23)–(25) with the exact values

for vx, computed by numerically integrating the FPE (3) or the LEs (1). As for that, we remark that both
numerical approaches yield, within their accuracy, the same results, so that we can adopt either of them,
as more convenient. In general, solving the FPE is advantageous, since numerically integrating the LEs
for an ensemble of particles is rather time consuming. For some parameter ranges, however, namely
when the probability density P(x, φ, t) is sharply peaked, the spatial grid, on which the temporal
evolution of the FPE is solved, has to be extremely fine. Memory consumption and computation time
then explode, so that numerically integrating the LEs proves more effective.

As expected, a close agreement between the numerical and analytical curves in Figure 4 is
achieved if both conditions DφL/v0 � 1 and u/v0 � 1 are simultaneously fulfilled. In contrast to our
initial conjecture, under the weaker condition DφL/v0 � 1 + u/v0, the motion of an active swimmer
inside a traveling pulse may well be regarded as purely diffusive, but the corresponding diffusive
approximation fails to correctly predict its tactic drift when u & v0 (see Figure 4b,d).
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analytics, Eq. (23)
a
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v x
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b
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Figure 4. Tactic drift velocity of an artificial microswimmer subjected to the sinusoidal activating
pulse sequence of Figure 1c,d: vx vs. the pulse width L (a,c) and pulse speed u (b,d). The swimmer
parameters v0 and Dφ are the same as in the previous figures and D0 = 2.2 µm2/s in (a,b) (D0 = 0
in (c,d)). Furthermore, u = 0.01v0 in (a,c) and L = 100lφ in (b,d). The numerical data plotted here have
been obtained by numerically integrating the LEs (1) or, equivalently, the FPE (3).

As a consequence, we find that the positive branches of the vx curves are purely determined
by the ballistic nature of the swimmer’s dynamics (which is indeed rather subordinate for L � lφ,
but nevertheless cannot be neglected if u & v0). This conclusion is supported by Figure 4a,c, where
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for L/lφ . 10, the tactic response clearly depends on D0, and more importantly, the analytic and
numerical curves seem to part ways. In the diffusive approximation (dashed curves), the effect of the
translational fluctuations is predicted to just prevent the drift from growing more negative, whereas in
the full dynamics treatment (solid curves), the influence of D0 causes vx to change sign.

3.2. Ballistic Regime

We focus now on the opposite dynamical regime, termed ballistic. Here, the traveling pulses are
assumed to be so narrow and sweep through the swimmer so quickly that the swimmer’s orientation
almost does not change during a single pulse crossing, i.e., the time a single activating pulse takes to
pass the swimmer is negligible with respect to the angular diffusion time D−1

φ . In such a limit, we take
φ constant and rewrite the FPE (3) as:

∂Pφ(x, t)
∂t

=

[
D0

Lv0

∂2

∂x2 −
∂

∂x

(
w(x) cos φ− u

v0

)]
Pφ(x, t), (26)

where Pφ(x, t) is the corresponding conditional probability density at fixed angle φ. In the following,
we make use of Equation (26) to calculate the conditional tactic shift, ∆φ(∞), or drift, vφ

x , as appropriate.
Since the angular coordinate is actually not fixed, but rather freely diffusing on an exceedingly
long timescale, the quantities ∆φ(∞) and vφ

x will be eventually averaged with respect to φ, which is
uniformly distributed on the interval [0, 2π].

3.2.1. Single Activation Pulse

The tactic shift ∆(∞) of a swimmer swept through a single activating pulse can be calculated,
once again, as in Section 3.1.1, namely:

∆(∞) =
1

2π

2π∫
0

∆φ(∞)dφ =
Lv0

D0

∞∫
−∞

∞∫
x

w(y) exp
[
− Lu

D0
(y− x)

]
I1

 Lv0

D0

y∫
x

w(z)dz

dy dx, (27)

where I1(x) := (1/π)
∫ π

0 exp(x cos φ) cos φ dφ is a modified Bessel function of the first kind [47].
Although in the absence of translational fluctuations, D0 = 0, the swimmer’s fixed-angle dynamics is
purely deterministic, we can still employ the mean first-passage time technique to calculate ∆(∞) for
D0 = 0, yielding:

∆(∞) =

∞∫
−∞

 1√
1−

(
v2

0/u2
)

w2(x)
− 1

dx, (28)

which surely is well-defined in the ballistic regime with u > v0. Here, the positive tactic shift must
be attributed to the fact that swimmers oriented to the right, i.e., parallel to the direction of pulse
propagation, “surf” the pulse for a longer time than swimmers oriented in the opposite direction.

By inspecting Figure 5, we notice that the ballistic approximation holds good for fast activating
pulses. One might expect it to work well only if the swimmer’s rotational diffusion time, D−1

φ , is larger
than the timescale on which a swimmer oriented to the right (φ = 0) ballistically crosses the pulse,
L/(u − v0). By analogy with Section 3.1, one would end up with the condition u/v0 � 1 + L/lφ.
This argument however totally disregards the influence of translational fluctuations and thus only
applies when D0/(Lv0) can be safely neglected (see Figure 5a). More in general, we must require that
D−1

φ is larger than the pulse crossing timescale in the ballistic regime, L/(u− v0), or in the diffusive
regime, L2/D0, whichever is smaller. This leads to the weaker condition for the validity of the ballistic
approximation, lφ/L� min

[
(u/v0 − 1)−1, Lv0/D0

]
.

By comparing the data for D0 = 0 and D0 > 0 in Figure 5, we also observe that translational
fluctuations affect the tactic response of a ballistic swimmer only marginally: contrary to the diffusive
regime, here, the swimmer crosses the pulse quite quickly, so that the translational noise has almost
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no time to act on it (provided the pulses are not too narrow). The simple expression of Equation (28)
can thus be safely employed to predict the tactic shift of a swimmer in the ballistic regime also in the
presence of translational noise.

10−6

10−3

100

1 10 100 1000

∆
(∞

)

u/v0

numerics

analytics

a 10−6

10−3

100

1 10 100 1000

∆
(∞

)

u/v0

numerics

analytics

b

Figure 5. Tactic shift of an artificial microswimmer hit by a single Gaussian pulse, like in Figures 2
and 3, but for larger values of the pulse speed u. The particle parameters are as in the previous
figures; furthermore, L = 1 µm (∼3lφ) in (a) and 0.1 µm in (b). The numerical curves were obtained
by solving the FPE (3) or integrating the LEs (1); the analytical curves were calculated in the ballistic
approximation of Equation (27) or (28), as appropriate. For the sake of a comparison, we plotted
the curves for D0 = 2.2 µm2/s (solid lines) together with the corresponding curves for D0 = 0
(dashed lines).

3.2.2. Periodic Pulse Train

For the periodic sequence of activation pulses introduced in Section 3.1.2, the swimmer’s tactic
drift can also easily be calculated in the ballistic approximation, and we obtain analogously as in
Section 3.1.2:

vx =
D0

2πLv0

2π∫
0

1− exp

 Lv0

D0

 u
v0
− cos φ

1∫
0

w(x)dx


×


1∫

0

1∫
0

exp

 Lv0

D0

 u
v0

y− cos φ

x+y∫
x

w(z)dz

dy dx


−1

dφ +
u
v0

. (29)

If we further neglect translational fluctuations, D0 = 0, in the ballistic regime, the longitudinal
LE (1) simplifies to a purely deterministic fixed-angle equation of motion, ẋ = w(x) cos φ − u/v0.
For a sinusoidal pulse sequence, w(x) = sin2(πx), this equation can be solved analytically, i.e.,

x(t) =


− 1

π arctan

[
tan
(

πtu/v0
√

1−(v0/u) cos φ
)

√
1−(v0/u) cos φ

]
: t ≤ v0

2u
√

1−(v0/u) cos φ

− 1
π arctan

[
tan
(

πtu/v0
√

1−(v0/u) cos φ
)

√
1−(v0/u) cos φ

]
− 1 : t > v0

2u
√

1−(v0/u) cos φ
,

(30)

with x restricted to the interval [−1, 0], u > v0, and initial condition x(0) = 0. The ballistic
pulse crossing time tφ

c for a fixed orientation angle, defined by the relation x(tφ
c ) = −1, thus reads

tφ
c = v0/(u

√
1− (v0/u) cos φ). The swimmer’s tactic drift can then be calculated using the known

relation vφ
x = −1/tφ

c + u/v0. If u grows smaller than v0, however, particles oriented to the right
can get trapped inside the pulses. This occurs when their self-propulsion speed in the x direction,
v0w(x) cos φ, compensates for the translational speed, −u. As w(x) is valued between zero and one,
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swimmers get trapped with orientation − arccos(u/v0) < φ < arccos(u/v0). In the co-moving pulse
frame, the velocity of trapped swimmers is zero, so that the φ-averaged drift velocity turns out to be:

vx =


− u

v0

(
1

2π

2π∫
0

√
1− v0

u cos φ dφ− 1

)
: u

v0
≥ 1

− u
v0

(
1

2π

2π−arccos(u/v0)∫
arccos(u/v0)

√
1− v0

u cos φ dφ− 1

)
: u

v0
< 1.

(31)

It is interesting to remark that we can now refine the validity criterion for the ballistic
approximation discussed in the previous section, owing to the more precise estimate of the ballistic
pulse-crossing time derived above. Following the relevant argument of Section 3.2.1, we thus expect
the ballistic approximation to hold for lφ/L > min

(
tφ=0
c , Lv0/D0

)
.

A comparison between exact numerics and the ballistic approximation is shown in Figure 6.
As expected, its range of validity in the parameter u shrinks on increasing L/lφ, and the refined
validity condition just introduced provides an estimate of that range. Another interesting property
illustrated in Figure 6 is that the ballistic approximation also predicts a regime of negative tactic drift,
which we explain as follows. We have already mentioned that for u > v0, all swimmers surely cross
the wave pulse, and the positive net drift results from the fact that particles oriented parallel to the
direction of pulse propagation spend on average a longer time inside the pulse than particles oriented
in the opposite direction. For u < v0, however, the emerging trapping mechanism causes swimmers
with − arccos(u/v0) < φ < arccos(u/v0) to travel to the right with velocity u. If u is suitably smaller
than v0, the trapped swimmers may happen to move considerably slower to the right than swimmers
with |φ| > π/2 to the left, thus causing a negative net drift.
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Figure 6. Tactic drift of an artificial microswimmer induced by the sinusoidal pulse sequence of
Figure 4: vx vs. u in units of v0. In (a,c), we chose a very small pulse periodicity, L = 0.2lφ, whereas
in (b,d), L was set to 5lφ. The swimmer parameters v0 and Dφ were chosen as in the previous figures
and we set D0 = 2.2 µm2/s in (a,b) and D0 = 0 in (c,d). The numerical curves were obtained by
numerically integrating the LEs (1) or solving the FPE (3).
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4. Conclusions

In summary, we analytically showed that the dynamics of artificial microswimmers subjected to
traveling activation pulses manifests two, partially competing tactic effects, both induced by the broken
spatial symmetry associated with the pulse propagation. In the two limiting regimes of high and low
rotational fluctuations, defined with respect to the pulse parameters u and L, we obtained analytical
approximations that are in close agreement with the exact numerical results. Likewise, these analytical
results compare favorably with the numerical data reported before in [30]. Our analytical approach
provides a valuable framework for future studies of the tactic response of artificial microswimmers
in spatio-temporally modulated activation media. Moreover, we identified the positive tactic drift as
being a purely ballistic effect, i.e., to stem solely from the finite persistence of the swimmer’s active
Brownian motion, whereas the negative tactic drift results from the combination of diffusive and
ballistic properties of the swimmer’s dynamics.

A generalization of the single particle model considered in the present work to multiple interacting
swimmers, slightly similar to the setup considered in [48] for macroscopic phototactic robots, could
also give rise to interesting new collective effects, primarily stemming from the coupling of the
hydrodynamic swimmer interactions to the hydrodynamic influence of the activation gradient [39].
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Appendix A. Tactic Shift Induced by a Soliton-Like Pulse

Let the activating pulse have a simple exponentially decaying profile, w(x) = sech(x), and
D0 = 0. Starting from Equation (8), we further rescale the time, t = (v0/u)τ, which leaves only one
effective parameter, η := v2

0/(2DφLu), in the resulting FPE. Upon introducing the auxiliary coordinate
χ, x = arsinh(

√
η χ), we rewrite the new FPE as:

∂P(χ, τ)

∂τ
=

(
∂2

∂χ2 +
∂

∂χ

√
1
η
+ χ2

)
P(χ, τ), (A1)

which, for slow wave pulses, u� v2
0/(2DφL) or η � 1, respectively, can be approximated by:

∂P(χ, τ)

∂τ
=

(
∂2

∂χ2 +
∂

∂χ
|χ|
)
P(χ, τ). (A2)

For χ ≥ 0 [χ < 0], the corresponding Fokker–Planck operator is associated with a Hermitian
operator, F̂(χ)→ exp(χ2/4)F̂(χ) exp(−χ2/4)

[
F̂(χ)→ exp(−χ2/4)F̂(χ) exp(χ2/4)

]
[44]. Accordingly,

the FPE (A2) can be mapped onto the Schrödinger equation for a particle in the piecewise
harmonic potential:

V(χ) =


1
4(χ

2− 2) : χ ≥ 0
1
4(χ

2 + 2) : χ < 0.

In principle, the probability density P(χ, τ) could be expressed in terms of the eigenvalues and
eigenfunctions of such a Schrödinger equation, but in view of the potential cusp at χ = 0, that would
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be a challenging task. Therefore, we again resort to computing the mean first-passage time, 〈τ(χ1|χ)〉,
by solving the relevant differential equation associated with the FPE (A2), namely:

− 1 =

(
∂2

∂χ2 − |χ|
∂

∂χ

)
〈τ(χ1|χ)〉, (A3)

with the boundary and continuity conditions:

(i) 〈τ(χ1|χ1)〉 = 0,

(ii) 〈τ(χ1|0+)〉 = 〈τ(χ1|0−)〉,

(iii)
∂〈τ(χ1|χ)〉

∂χ

∣∣∣∣
χ=0+

=
∂〈τ(χ1|χ)〉

∂χ

∣∣∣∣
χ=0−

,

(iv)
∂〈τ(χ1|χ)〉

∂χ

∣∣∣∣
χ→∞

= 0.

Its solution for χ ≥ 0 reads:

〈τ(χ1|χ)〉 = π
2

[
erfi

(
χ√
2

)
− erf

(
χ1√

2

)]
− χ2

2 2F2

(
1, 1; 3

2 , 2; χ2

2

)
+

χ2
1

2 2F2

(
1, 1; 3

2 , 2;−χ2
1

2

)
, (A4)

where erfi(x) = 2/
√

π
∫ x

0 exp
(
v2)dv is the imaginary error function and:

2F2

(
1, 1;

3
2

, 2; x
)
=

√
π

x

√
x∫

0

erf(v) exp
(

v2
)

dv (A5)

is a generalized hypergeometric function [49]. The swimmer’s tactic shift can now be formally
computed as:

∆(∞) = lim
x1→−∞
x0→∞

{
x1− x0 +

π

2

[
erfi

(
sinh(x0)√

2η

)
− erf

(
sinh(x1)√

2η

)]

− sinh2(x0)

2η
2F2

(
1, 1;

3
2

, 2;
sinh2(x0)

2η

)
+

sinh2(x1)

2η
2F2

(
1, 1;

3
2

, 2;−sinh2(x1)

2η

)}
. (A6)

(We remind that in the present notation the particle displacement in the laboratory frame is calculated
as x(t)− x0 + τ).) To explicitly take the above limits, one must determine the asymptotic expansions of
the special functions in Equation (A6). For erfi(x), this can be easily accomplished [50],

erfi(x) ∼ exp
(
x2)

√
π x

. (A7)

The expansion of the hypergeometric function 2F2 for x → ±∞ is somewhat more elaborate.
We start by considering its integral representation for negative arguments,

2F2

(
1, 1;

3
2

, 2;−x
)
=

√
π

x

√
x∫

0

erfi(v) exp
(
−v2

)
dv (x > 0), (A8)

which follows directly from Equation (A5). By means of some algebraic substitutions and a binomial
series expansion, the latter expression can then be brought to the form:

2F2
(
1, 1; 3

2 , 2;−x
)
= 1

2x

x∫
0

1−exp(−v)
v
√

1−v/x
dv = 1

2

∞
∑

m=0
(−1/2

m )(−1)mx−(m+1)
x∫

0
vm−1 [1− exp(−v)]dv. (A9)
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The last integral in the above equation for m = 0 yields:

x∫
0

1− exp(−v)
v

dv = lim
y→0

[ln(x)− ln(y) + E1(x)− E1(y)] , (A10)

where E1(x) =
∫ ∞

x e−v/v dv is the exponential integral [47]. Upon taking the leading orders of the
limits y→ 0 and x→ ∞ of this expression, we finally obtain:

x∫
0

1− exp(−v)
v

dv ∼ γ + ln(x), (A11)

with γ ≈ 0.577 denoting the Euler–Mascheroni constant. For m ≥ 1, the integrand on the right-hand
side of Equation (A9) can readily be integrated [51], namely:

x∫
0

vm−1 [1− exp(−v)]dv =
xm

m
+ exp(−x)

m−1

∑
k=0

(
m− 1

k

)
k! xm−1−k (m ≥ 1). (A12)

In conclusion, the asymptotic expansion of the hypergeometric function of Equation (A8) for large
negative arguments reads, to the lowest orders,

2F2

(
1, 1;

3
2

, 2;−x
)
∼ 1

2x

[
ln(x) + γ +

∞

∑
m=1

(− 1
2

m

)
(−1)m

m

]
. (A13)

To sum the series of Equation (A13), we start from the integral representation of the digamma
function ψ(x) [51],

ψ(x) = −γ +

1∫
0

vx−1− 1
v− 1

dv, (A14)

which, in turn, can be expanded in a binomial series, yielding:

ψ(x) = −γ−
∞

∑
m=1

(
x− 1

m

)
(−1)m

m
. (A15)

On setting x = 1/2 in Equation (A15), one obtains the identity [47]:

∞

∑
m=1

(− 1
2

m

)
(−1)m

m
= −γ− ψ

(
1
2

)
= ln(4), (A16)

which, replaced into Equation (A13), leads to our final result,

2F2

(
1, 1;

3
2

, 2;−x
)
∼ ln(4x) + γ

2x
(x→ ∞). (A17)

The asymptotic expansion of the 2F2 function for large positive arguments follows immediately
from the identity:

2F2

(
1, 1;

3
2

, 2; x
)
=

π

2x
erf
(√

x
)

erfi
(√

x
)
− 2F2

(
1, 1;

3
2

, 2;−x
)

, (A18)

which one derives from Equation (A5) by partial integration. Hence, for x→ ∞,

2F2

(
1, 1;

3
2

, 2; x
)
∼
√

π exp(x)
2x3/2 − ln(4x) + γ

2x
. (A19)
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By inserting the asymptotic expansions of Equations (A7), (A13) and (A18) into Equation (A6),
one verifies that the singularities for x0 → ∞ and x1 → −∞ cancel out as expected, and the final result
simplifies to the tractable expression in Equation (17).
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