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Abstract: The well-known Jarzynski equality, often written in the form e−β∆F = 〈e−βW〉, provides
a non-equilibrium means to measure the free energy difference ∆F of a system at the same inverse
temperature β based on an ensemble average of non-equilibrium work W. The accuracy of Jarzynski’s
measurement scheme was known to be determined by the variance of exponential work, denoted
as var

(
e−βW). However, it was recently found that var

(
e−βW) can systematically diverge in both

classical and quantum cases. Such divergence will necessarily pose a challenge in the applications of
Jarzynski equality because it may dramatically reduce the efficiency in determining ∆F. In this work,
we present a deformed Jarzynski equality for both classical and quantum non-equilibrium statistics,
in efforts to reuse experimental data that already suffers from a diverging var

(
e−βW). The main

feature of our deformed Jarzynski equality is that it connects free energies at different temperatures
and it may still work efficiently subject to a diverging var

(
e−βW). The conditions for applying our

deformed Jarzynski equality may be met in experimental and computational situations. If so, then
there is no need to redesign experimental or simulation methods. Furthermore, using the deformed
Jarzynski equality, we exemplify the distinct behaviors of classical and quantum work fluctuations
for the case of a time-dependent driven harmonic oscillator dynamics and provide insights into the
essential performance differences between classical and quantum Jarzynski equalities.

Keywords: classical Jarzynski equality; quantum Jarzynski equality; fluctuation theorems

1. Introduction

Work fluctuation theorems constitute one key topic in modern non-equilibrium statistical
mechanics [1–5]. Of particular interest here is the Jarzynski equality (JE) e−β∆F = 〈e−βW〉 [3], which
links free energy differences ∆F at the same inverse temperature β with the ensemble average of
exponential work 〈e−βW〉, where work W here refers to the inclusive form [1]. The JE holds regardless
of the details of a specific work protocol, so long as the initial and final system configurations are
fixed. JE has stimulated vast interests in theory and experiments because it gives a mean of direct
measurement of free energy difference ∆F by a finite sampling of work values W. For N sampled work
values, one obtains

e−β∆F = 〈e−βW〉 ≈
N

∑
i=1

e−βWi

N
. (1)

This measurement scenario has been verified in a number of experiments for both classical and
quantum systems [6–16].
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Note that JE involves the ensemble of an exponential function of W. As such, rare events with large
and negative W could dominate the sample average [17–23]. This motivated people to study the error
of ∆F through var

(
e−βW) and some important insights have been obtained. For example, assuming

a given precision to be reached for ∆F, the corresponding required number of work realizations, N, can
be estimated by the central limit theorem (CLT) from the variance of exponential work, i.e., var

(
e−βW).

Intuitively, a larger var
(
e−βW) requires more realizations to reach the same precision in predicting ∆F.

Suppression of work fluctuations by some control mechanism is hence desirable before applying JE.
For example, in [24,25] we studied some classical and quantum control scenarios in efforts to minimize
var

(
e−βW).
Somewhat surprisingly, we recently found the possibility of obtaining a systematic divergence in

var
(
e−βW) in classical systems, as verified computationally in simple models isolated from a bath [26].

This divergence has immediate implications for the applicability of JE in measuring ∆F, but was
seldom mentioned previously except in some general discussions made in [27] and a specific result on
a one-dimensional gas undergoing an adiabatic work protocol [20]. That the divergence in var

(
e−βW)

is not accidental can be understood as follows. For systems where the principle of minimal work
fluctuations [28] applies, if an adiabatic protocol yields a diverging var

(
e−βW), the same quantity is

expected to diverge as well with increasing non-adiabaticity in the work protocols. We stress that
a divergent var

(
e−βW) makes CLT no longer applicable, and the converging rate of ∑N

i=1 e−βWi /N
towards e−β∆F with respect to increasing N is not obvious. In one particular class of models [26],
a generalized version of CLT indicates that the converging rate is much slower than the conventional
N−1/2 scaling law. Instead, the error is found to scale as N−γ, with the scaling exponent γ being
arbitrarily close to zero in extremely non-adiabatic cases. The lesson learned is that the average
∑N

i=1 e−βWi /N from experiments or simulations may barely converge to the expected value 〈e−β∆F〉 as
N increases.

Our further study reveals even more severe divergence problems in quantum systems isolated
from a bath [29]. This indicates that quantum effects can play a crucial role in work fluctuations.
Quantum JE and classical JE can thus have much different domains for meaningful applications.
For example, a work protocol could still lead to divergence in quantum var

(
e−βW) even if its classical

counterpart has a finite var
(
e−βW). In particular, as the temperature characterizing a quantum

system initially at thermal equilibrium decreases, quantum effects become more appreciable and
then var

(
e−βW) tends to diverge purely due to nonclassical effects [29]. This finding should have

an important impact on future experimental studies of the quantum JE.
Our early results hence motivate us to consider the following situation. Suppose an experiment or

a computer simulation has been carried out, and the ensemble average ∑N
i=1 e−βWi /N based on finite

sampling does not seem to converge. A further checking on the quantity var
(
e−βW) hints that it is

probably a diverging quantity as N increases. Given such a situation, is there a scheme to reprocess
the data to extract useful predictions about equilibrium properties of the system (throughout this
study, we assume no bath is involved during the work protocol)? The aim of this work is to give
a partially positive answer to this question. We do so by deforming the definition of the physical
work to some quantity tunable, which in turn then yields a deformed JE. So long as the variance of
the exponential function of the newly defined quantity can be suppressed to a finite value, then the
deformed JE will work effectively. We argue that our deformed JE proposed here is relevant to existing
experiments [6–16] and computational methods [23,30–32] motivated by JE. As learned from our
model studies, the deformed JE can eliminate the above-mentioned divergence issue in classical cases
effectively, but may not work well in the deep quantum regime. This observation itself also exposes
again the intrinsic difference between classical and quantum JEs in terms of their potential applications.

This paper is organized as follows. We propose in Section 2 a deformed classical JE. The model for
illustration is a simple classical parametric harmonic oscillator (because such a model already suffices
to show the divergence in var

(
e−βW)). In Section 3 we present a parallel deformed JE in the quantum
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domain and discuss why its usefulness is different from the classical version. Section 4 concludes this
paper. Throughout, our notation follows closely our early studies [26,29].

2. Classical Deformed JE

2.1. General Discussion

We consider a general closed system whose Hamiltonian is given by H(p, q; λ), with phase space
coordinates (p, q) ∈ Γ and a time-dependent control parameter λ = λ(t). The protocol starts at t = 0
and ends at t = τ, i.e., t ∈ [0, τ]. Given an initial phase space coordinate (p0, q0) as well as an arbitrary
work protocol λ(0) = λ0 → λ(τ) = λτ , the inclusive work [1] is obtained from

W = H(pτ , qτ ; λτ)− H(p0, q0; λ0), (2)

with (pτ , qτ) =
(
p(p0, q0, τ), q(p0, q0, τ)

)
being the final phase space coordinate. Note also that

a proper gauge for the Hamiltonian H(p, q; λ) is assumed here such that its value does equal to the
energy of the system with no additional time-dependent gauge relying on λ(t)[1]. Moreover (see
below), we assume that this Hamiltonian is bounded from below while not being bounded from above.
Let Z(λ; β) =

∫
Γ exp

(
− βH(p, q; λ)

)
dpdq be the partition function with parameter λ and inverse

temperature β , which we assume to exist with β > 0. Then the JE, which is valid for any protocol
λ0 → λτ , assumes the following form

〈e−βW〉 =
∫

Γ
exp

[
− β (H(pτ , qτ ; λτ)− H(p0, q0; λ0))

]
P0(p0, q0; λ0; β)dp0dq0 (3)

=
Z(λτ ; β)

Z(λ0; β)
= e−β∆F . (4)

Here 〈•〉 represents taking average w.r.t. the initial Gibbs distribution P0(p, q; λ0; β) = exp
(
−

βH(p, q; λ0)
)
/Z(λ0; β). We also assume that this ensemble average itself does exist (which may not be

always the case [33]). From the JE above, it is seen that 〈e−βW〉 over the initial Gibbs state (at inverse
temperature β) will yield the same e−β∆F once H(p, q; λ0) and H(p, q; λτ) are fixed. It is also clear that,
the variance of exponential work, namely, var

(
e−βW) = 〈e−2βW〉 − e−2β∆F, can be readily obtained

through the second moment ; i.e.,

〈e−2βW〉 =
∫

Γ
exp

[
− 2β

(
H(pτ , qτ ; λτ)− H(p0, q0; λ0)

)]
P0(p0, q0; λ0; β)dp0dq0

=
∫

Γ

1
Z(λ0; β)

exp
[
− β

(
2H(pτ , qτ ; λτ)− H(p0, q0; λ0)

)]
dp0dq0 . (5)

To better illustrate the relation between classical and quantum cases, we choose to use the adiabatic
invariant Ω(E, λ) [34–40] as an analogue of a quantum number indexing quantum energy levels. The
adiabatic invariant is defined as the phase space volume up to an energy E

Ω(E; λ) =
∫

Γ
Θ
(
E− H(p, q; λ)

)
dpdq , (6)

where Θ denotes the step function. Given that Ω(E, λ) equals the positive valued integrated density of
states, Ω(E, λ) is monotonically growing with increasing energy E [41]; therefore, the inverse function
of Ω(E; λ) could be found from E(Ω; λ) in principle. Equation (3) could be rewritten as

〈e−βW〉 =
∫ ∞

0

∫ ∞

0
exp

[
− β

(
E(Ωτ ; λτ)− E(Ω0; λ0)

)]
P(Ωτ |Ω0)P0(Ω0; λ0; β)dΩ0dΩτ , (7)

where Ω0 and Ωτ act like the initial and final “energy index” while P(Ωτ |Ω0) is the transition
probability between the states under a certain protocol, which is defined in [26] and is proven
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to be bi-stochastic. Note here that the lower bounds Ω0, Ωτ = 0 correspond to minimum of the lower
bounded energy under fixed λ0, λτ . Likewise, Equation (5) can now be written as

〈e−2βW〉 =
∫ ∞

0

∫ ∞

0
exp

[
− β

(
2E(Ωτ ; λτ)− E(Ω0; λ0)

)]
P(Ωτ |Ω0)P0(Ω0; λ0; β)dΩ0dΩτ . (8)

One can note from Equation (8) that 〈e−2βW〉 (and hence var
(
e−βW) ) diverges if, for example,

we have E(Ωτ ; λτ) < E(Ω0; λ0)/2 for all Ωτ . To see this possibility clearly, consider an adiabatic
work protocol applied to a system with a constant density of states, with Ω(E, λ) ∼ λE. Then,
because Ω(E, λ) must be an adiabatic invariant, we have λτE(Ωτ ; λτ) = λ0E(Ω0; λ0), or E(Ωτ ; λτ) =

(λ0/λτ)E(Ω0; λ0). Thus, if (λ0/λτ) < 1/2, 〈e−2βW〉 diverges. One can then infer [28] that any
nonadiabatic protocol under fixed λ0 and λτ will also yield a diverging var

(
e−βW).

In order to overcome the divergence issue illustrated above, we now propose a deformed version
of JE for H(p, q; λ) not bounded from above. The main idea is to treat the statistics of an exponential
function of Wg (with Wg = W if g = 1) as a deformed W. Specifically, for an arbitrary value g ∈ (0, 1],
we define Wg as follows:

Wg =
H(pτ , qτ ; λτ)

g
− H(p0, q0; λ0)

=
E(Ωτ ; λτ)

g
− E(Ω0; λ0) . (9)

The motivation to introduce the g-factor is to make the quantity Wg less negative as compared
with W itself when it applies to transitions from high-energy initial states to low-energy final states.
Then, for positive β values (which is assumed throughout this study) [42], the exponential function
e−βWg would yield less dominating rare events and as a result, we hope that the variance in e−βWg

could be finite even when var
(
e−βW) diverges [43].

Consider then the ensemble average of e−βWg over the same initial Gibbs state as used in the
standard JE. We have

〈e−βWg〉 =
∫ ∞

0

∫ ∞

0

1
Z(λ0; β)

exp
(
− β

E(Ωτ ; λτ)

g
)

P(Ωτ |Ω0)dΩ0dΩτ =
Z(λτ ; β/g)

Z(λ0; β)
. (10)

In obtaning the second equality above we have used the bi-stochastic nature of P(Ωτ |Ω0).
Equation (10) indicates the following useful deformed JE:

F(λτ ; β/g)− gF(λ0; β) = − g
β

ln〈e−βWg〉 . (11)

As seen from above, by calculating 〈e−βWg〉, we do not directly arrive at a free energy difference
at the same inverse temperature β. Rather, we would obtain a class of relations between the free
energy F(λ0; β) at the inverse temperature β and a free energy F(λτ ; β/g) at inverse temperature
β/g. This result for the special case g = 1 recovers the original JE. The potential benefit is that the
second moment of e−βWg , i.e.,

〈e−2βWg〉 =
∫ ∞

0

∫ ∞

0

1
Z(λ0; β)

exp
(
− β

(
2

E(Ωτ ; λτ)

g
− E(Ω0; λ0)

))
P(Ωτ |Ω0)dΩ0dΩτ (12)

can be finite for a range of g values even if it diverges for g = 1.
In a typical classical experiment setup, the inclusive work W is usually measured along the work

protocol in various ways [13–16]. So is it feasible that Wg defined in Equation (9) can be indirectly
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measured along a classical trajectory? The answer is yes under certain conditions. We suppose that in
an experiment each individual value of W is already measured. Then we may calculate Wg as

Wg =
W
g

+
(1− g)

g
E(Ω0; λ0) (13)

if additionally the initial energy E(Ω0; λ0) of each trajectory can be measured [44]. That is, our
knowledge of the initial energy values is the additional cost we have to pay in order to process our
experimental data through Wg and e−βWg . In addition, since all the initial energy values sampled
from the Gibbs state are known, it is natural to assume that F(λ0; β) is already known. Then
from Equation (11) we can obtain F(λτ ; β/g). Under these assumptions, we barely need to change
an experiment setup to make use of our deformed JE. Note also that in non-equilibrium numerical
simulations [19,27,30], the situation is even more obvious, because all the initial energy values of each
sampling trajectory are by default registered in the simulations.

Let us now outline how to actually use our deformed JE for free energy measurements. We assume
that the aim is to measure the free energy F(λτ ; β̄) with β̄ being the target inverse temperature. As
discussed above, this task may not be easily solved by use of JE because of the divergence in the second
moment of exponential work. We hence first choose a trial g. Then, before applying a non-equilibrium
work protocol, we prepare the system at thermal equilibrium at the inverse temperature β = β̄g.
Finally, we use the relation

F(λτ ; β̄) = gF(λ0; β)− 1
β

ln〈e−βWg〉 (14)

to obtain F(λτ ; β̄). We stress that the above procedure is mainly about a new way of reprocessing the
experimental or simulation data, with experimental or simulation details untouched. Regarding the g
value to be determined, it can be in a range of values so long as the second moment of e−βWg is not
too large. This would be most appreciated, when JE suffers from the efficiency issue due to a diverging
〈e−2βW〉. Next we illustrate the method by using the classical harmonic oscillator as an example to
show how a proper choice of g indeed eliminates divergence in 〈e−2βWg〉.

2.2. Classical Harmonic Oscillator

We investigate a 1-dimensional (1D) harmonic oscillator with angular frequency ω> 0

H(p, q; ω) =
p2

2m
+

1
2

mω2q2. (15)

The equilibrium partition function for this system is given by Z(ω; β) = 2π/ωβ. The phase space
volume is given by

Ω(E; ω) =
∫

Γ
Θ
(
E− p2

2m
− 1

2
mω2q2)dpdq

= 2π
E
ω

. (16)

and E(Ω; ω) = ωΩ/2π. Clearly, this system belongs to the class of systems with a constant density of
states we used earlier for discussions. Work is done to the system as ω is forced to change with time,
from ω0 to ωτ . Under an arbitrary time-dependent ω(t), t ∈ [0, τ], the transition probability P(Ωτ |Ω0)
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can be calculated analytically. Particularly, the transition probability under adiabatic driving is known
to be P(Ωτ |Ω0) = δ(Ωτ −Ω0) [26], thus by choosing 2ωτ < ω0,

〈e−2βW〉ad =
∫ ∞

0

∫ ∞

0

1
Z(ω0; β)

exp
(
− β

(
2E(Ωτ ; ωτ)− E(Ω0; ω0)

))
P(Ωτ |Ω0)dΩ0dΩτ

=
∫ ∞

0

1
Z(ω0; β)

exp
(
− βΩ0

2π

(
2ωτ −ω0

))
dΩ0 = ∞ . (17)

Since adiabatic protocols minimize 〈e−2βW〉, we conclude all work protocols produce divergent
〈e−2βW〉 as long as 2ωτ < ω0.

For an arbitrary non-adiabatic protocol, the transition probability can be calculated explicitly for
the harmonic oscillator (see Appendix A) , yielding the following expression

P(Ωτ |Ω0) =


1

π
√

(Ωτ−µ−Ω0)(µ+Ω0−Ωτ)
, Ωτ ∈ [µ−Ω0, µ+Ω0];

0 , otherwise.
(18)

Here, µ± are dimensionless constants satisfying µ+µ− = 1 and 0 < µ− < µ+, which are
determined merely by the protocol λ(t). Equation (18) indicates that, given an initial Ω0, the final
Ωτ always fall in the interval [µ−Ω0, µ+Ω0]. One can also verify the bi-stochastic property, i.e.,∫ ∞

0 P(Ωτ |Ω0)dΩ0 =
∫ ∞

0 P(Ωτ |Ω0)dΩτ = 1. With Equation (18), the second moment of e−βWg can be
found from

〈e−2βWg〉 =
∫ ∞

0

∫ ∞

0

1
Z(ω0; β)

exp
(
− β

(
2E(Ωτ ; ωτ)− E(Ω0; ω0)

))
P(Ωτ |Ω0)dΩ0dΩτ

=
∫ ∞

0

∫ µ+Ω0

µ−Ω0

1
Z(ω0; β)

exp
(
− β

2π

(
2

ωτΩτ

g
−ω0Ω0

))
P(Ωτ |Ω0)dΩτdΩ0

≤
∫ ∞

0

∫ µ+Ω0

µ−Ω0

1
Z(ω0; β)

exp
(
− β

2π

(
2

ωτµ−Ω0

g
−ω0Ω0

))
P(Ωτ |Ω0)dΩτdΩ0

=
∫ ∞

0

1
Z(ω0; β)

exp
(
− βΩ0

2π

(
2

ωτµ−
g
−ω0

))
dΩ0 . (19)

The above inequality shows that if we choose g < 2ωτµ−/ω0 ( a sufficient but not necessary
condition), then 〈e−2βWg〉 becomes finite. For such g values, we can safely look into

Wg =
E(Ωτ ; ωτ)

g
− E(Ω0; ω0), (20)

whose second moment 〈e−2βWg〉must be finite. We have thus offered an explicit example where the
practical issue in applying JE due to a diverging second moment can be overcome by considering
a deformed JE.

3. Deformed Quantum JE

3.1. General discussion

The inclusive work in quantum cases is obtained by two-time measurements [1], with

W = Eλτ
j − Eλ0

i , (21)
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where Eλ0
i and Eλτ

j are the energies of projected eigenstates after measurements before and after the

work protocol. With the initial canonical distribution P0
i (λ0; β) and transition probability Pi→j, the

quantum JE can be obtained as follows:

〈e−βW〉 = ∑
i,j

exp
(
− β(Eλτ

j − Eλ0
i )
)

Pi→jP0
i (λ0; β) =

Z(λτ ; β)

Z(λ0; β)
, (22)

where the bi-stochastic nature of Pi→j, i.e., ∑i Pi→j = ∑j Pi→j = 1, has been used. The second moment
in exp(−βW) is given by

〈e−2βW〉 = ∑
i,j

1
Z(λ0; β)

exp
(
− β(2Eλτ

j − Eλ0
i )
)

Pi→j . (23)

As shown recently [29], this quantum second moment can also diverge in systems with
an infinite-dimensional Hilbert space. As a matter of fact, the divergence in the quantum case occurs
more frequently than in the classical case.

Driven by the same motivation as outlined in Section 2, we now define the corresponding
quantum Wg as

Wg =
Eλτ

j

g
− Eλ0

i . (24)

According to the two-time measurement scheme of quantum work, the energy values of both
the initial and final states need to be measured first. Hence, there is no problem in obtaining Wg from
Equation (24), based on known values of Eλτ

j and Eλ0
i . One may then proceed to treat the ensemble

average of e−βWg and arrives at

〈e−βWg〉 = ∑
i,j

exp

−β

Eλτ
j

g
− Eλ0

i

 Pi→jP0
i (λ0; β)

= ∑
i,j

exp

−β
Eλτ

j

g

 Pi→j
1

Z(λ0; β)

= ∑
j

exp
(
−βEλτ

j /g
) 1

Z(λ0; β)

=
Z(λτ ; β/g)

Z(λ0; β)
. (25)

This deformed quantum JE assumes precisely the same form as our previous classical result
summarized by Equation (10). Equation (11) hence also applies to the quantum case here. The
corresponding second moment in e−βWg is given by

〈e−2βWg〉 = ∑
i,j

exp

−2β

(Eλτ
j

g
− Eλ0

i

) Pi→jP0
i (λ0; β) . (26)

It is hoped that by also choosing proper values of g, 〈e−2βWg〉 may merge as finite even when
〈e−2βW〉 diverges. However, as we will show next, the situation in quantum cases can be much more
challenging than in classical cases due to some intrinsic differences between classical and quantum
state-to-state transition probabilities.

As a side note, in Appendix B we have also presented a deformed quantum Crooks relation [4]
based on Wg. This will also help us understand better quantum deformed JE while motivating more
interests in possible extensions of known fluctuation theorems.
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3.2. Quantum Harmonic Oscillator

A closed quantum harmonic oscillator is described by the following Hamiltonian

Ĥ(t) =
p̂2

2m
+

1
2

mω2(t)q̂2, (27)

where ω is still changing with time under a general work protocol. For the quantum work statistics,
it is convenient to examine the so-called characteristic function [1,29,45] Gg(µ), which is the Fourier
transformation of the probability distribution function P(Wg) for Wg. That is, we have

Gg(µ) =
∫

dWgeiµWg P(Wg) . (28)

By choosing µ = 2iβ, we find (as a straightforward extension of the result for inclusive work W
in [29])

Gg(2iβ) = 〈e−2βWg〉

=

√
2sinh(βh̄ω0/2)√

cosh (βh̄(2ωτ/g−ω0))− 1− (Q∗ − 1)sinh(2βh̄ωτ/g)sinh(βh̄ω0)
, (29)

where Q∗ is the Husimi coefficient determined solely by the protocol ω(t) [46]. The deviation of
Q∗ from unity describes the non-adiabaticity [46] of a work protocol. Note that the case of g = 1
reproduces our previous result [29] for the standard quantum work characteristic function.

Because our previous work provides sufficient details regarding the precise quantum-classical
correspondence in terms of P(Wg=1) in the high temperature limit [29], here we will not dive into the
technical details regarding the quantum-classical correspondence for Wg with g 6= 1. Instead, we just
briefly mention that the quantum P(Wg) should also reduce to the corresponding classical distribution
in the high temperature limit.

0 1 2
0

1

2
(a)

β h̄ωτ

β
h̄ ω

0

0 1 2
0

1

2

(a) Domains of finite 〈e−2βWg 〉 for two
values of g.

0 0.2 0.4
0

0.2

0.4
(b)

β h̄ωτ

β
h̄ ω

0

0 0.2 0.4
0

0.2

0.4

(b) Same as in (a) but for smaller βh̄ω0
and βh̄ωτ .

Figure 1. Domains of convergence/divergence for 〈e−2βWg 〉 under a sudden quench protocol from ω0

to ωτ , which is applied to a quantum harmonic oscillator. The Husimi coefficient is given by Q∗sq =

1
2

(
ωτ
ω0

+ ω0
ωτ

)
. Here βh̄ω0 and βh̄ωτ denote the initial and final dimensionless angular frequencies

βh̄ω0, βh̄ωτ of the oscillator scaled by βh̄, which is prepared initially at thermal equilibrium at the
inverse temperature β. For g = 1, the second moment 〈e−2βWg=1 〉 is finite only in the gray regime.
For g = 0.1 the domain for finite 〈e−2βWg 〉 has grown to include the (red) patterned regimes as well.
The (blue) dashed line is given by Equation (34), independent of g. Note that this line almost exactly
overlaps with the boundary of the (red) patterned domain in the lower right corner in (a). The part (b)
depicts a zoom into the parameter regime of smaller dimensionless angular frequencies.
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Remarkably though, the situation in the low temperature regime is much different. Figure 1
depicts the domain of finite 〈e−2βWg〉 for g = 1 (grey area) and g = 0.1 (grey area plus patterned
area, with panel (b) focusing on cases with smaller values of βh̄ω0 and βh̄ωτ (hence more classical
cases). Panel (b) clearly indicates that the use of g = 0.1 has dramatically diminished the domain
of divergence (white area) in 〈e−2βWg〉. However, if we examine panel (a) featuring more quantum
regimes (large values of βh̄ω0 and βh̄ωτ), it is seen that g = 0.1 does not achieve much in suppressing
the divergence domain. We will explain this finding in the next subsection.

3.3. Persistent Divergence of 〈e−2βWg〉

To gain analytical insights we stick with the quantum harmonic oscillator case. Without loss of
generality, we will focus on the even-parity states. The transition probabilities between even-parity
states under an arbitrary frequency-driving protocol are given by

P2i→2j =

(
2

Q? + 1

)1/2(Q? − 1
Q? + 1

)i+j
(2i)!(2j)!

22i+2j

{min{i,j}

∑
m=0

[−23/(Q? − 1)]m

(2m)!(j−m)!(i−m)!

}2

. (30)

We next look into the asymptotic behaviour of the transition probabilities between the initial 2ith
state to the final ground state (j = 0) for very large i:

P2i→0 =

(
2

Q? + 1

)1/2(Q? − 1
Q? + 1

)i
(2i)!
22i

(
1
i!

)2

∼
(

2
Q? + 1

)1/2(Q? − 1
Q? + 1

)i√2π × 2i(2i)2i

22ie2i

(
ei

ii
√

2πi

)2

=

(
2

Q? + 1

)1/2(Q? − 1
Q? + 1

)i 1√
πi

, (31)

where we have used Stirling’s formula n! ∼
√

2πnnn/en for very large n.
We are now ready to examine the contribution made by an individual transition P2i→0 to the

second moment 〈e−2βW〉 relevant to applications of the standard JE. It is found to be

exp
(
−2β

(
Eωτ

0 − Eω0
i
))

P2i→0P0
i (λ0; β) =

1
Z(λ0; β)

exp
(
−β
(
2Eωτ

0 − Eω0
2i
))

P2i→0 (32)

=
1

Z(λ0; β)
exp

(
−β

(
h̄ωτ − (2i +

1
2
)h̄ω0

))
P2i→0

∼
exp

(
−βh̄(ωτ − 1

2 ω0)
)

Z(λ0; β)
√

πi

(
2

Q? + 1

)1/2(Q? − 1
Q? + 1

e2βh̄ω0

)i

.

(33)

Clearly, even this individual contribution diverges with increasing i if the following condition
is met:

Q? − 1
Q? + 1

e2βh̄ω0 > 1 . (34)

Dramatically, such a diverging contribution to 〈e−2βW〉 has no classical analog. Indeed, according
to Equation (18), the classical transition probability from an initial highly excited state to a final low
energy state is always strictly zero. That is, it is the quantum non-vanishing transition probabilities
that open ups a possibility for highly rare transitions to make contributions to exponential work
fluctuations. Put differently, the nonzero quantum transition probability P2i→0, though decreasing
very fast with increasing i, can nevertheless make a diverging contribution to 〈e−2βW〉 due to the
exponential increasing factor arising from negative work values. As a consequence, the more rare the



Entropy 2017, 19, 419 10 of 16

initial state sampled from the Gibbs distribution is, the more it contributes to 〈e−2βW〉. This mechanism
for quantum divergence in the second moment of exponential work can take effect, irrespective of
whether or not the corresponding classical second moment of exponential work is finite. This uncovers
the potential difficulty in applying the standard quantum JE without first suppressing quantum work
fluctuations [29].

Inspecting the parallel situation for 〈e−2βWg〉 reveals a similar problem. The contribution made by
the P2i→0 to 〈e−2βWg〉 is given by

exp
(
−2β

(
Eλτ

0
g − Eλ0

2i

))
P2i→0P0

2i(λ0; β)∼ exp(−βh̄(ωτ/g− 1
2 ω0))

Z(λ0;β)
√

πi

(
2

Q?+1

)1/2(
Q?−1
Q?+1 e2βh̄ω0

)i

. (35)

This expression is essentially the same as Equation (33), except for some irrelevant factors. Thus,
we can again conclude that no matter what the g value is, 〈e−2βWg〉 diverges under the condition of
Equation (34). This observation has important implications. Specifically, within the domain specified
by Equation (34), the second moment 〈e−2βWg〉 always diverges, regardless of our choice of the g
values. This theoretical insight is confirmed by our computational results in Figure 1. In particular,
from Figure 1 it is seen that upon introducing g = 0.1, the enlarged domain for finite 〈e−2βWg〉 cannot
go beyond the dashed line. Figure 1 in connection with the quantum divergence domain beyond the
dashed line also shows that, closer to the quantum regime (larger values of βh̄ω0 and βh̄ωτ), most
of the quantum divergence domain is occupied by the divergence domain determined by the above
simple insight focusing on transitions from highly excited states to a single ground state. Thus, most
of the quantum divergence domain shown in Figure 1a cannot be removed by considering Wg. Given
this insight, we note that closer to the classical regime, the divergence in 〈e−2βWg=1〉 can occur outside
the domain given by Equation (34) (for example, due to many other classical-like transitions). For the
latter cases, Wg is effective in removing divergences (see Figure 1b).

4. Conclusions

Exponential work fluctuations characterized by var
(
e−βW) or 〈e−2βW〉 may systematically

diverge [26,29]. This presents an obstacle for a direct application of JE without effectively suppressing
work fluctuations. To meet this challenge in connecting non-equilibrium statistics with equilibrium
properties, we propose in this work a deformed work expression, denoted as Wg and obtained
deformed JE for both classical and quantum cases. This deformed JE is based on an ensemble
average of exponential quantities e−βWg and connects this average with free energy values at different
temperatures. Using the parametric harmonic oscillator as a test example, we show that the classical
deformed JE exhibits improved convergence features as compared to the case with the standard JE
(with g = 1), because a possible divergent second moment 〈e−2βWg〉 can be be rendered convergent
(i.e., finite) by a proper choice of g ∈ (0, 1]. This tailored modification does not require a different design
of simulation methods, but constitutes a beneficial possibility to reprocess the experimental data based
on a finite number of work realizations, yielding better performance. As to the quantum deformed JE,
it is shown that its performance may not be improved as effectively as compared with the standard
quantum JE. This is because the divergence in 〈e−2βWg〉may not be lifted by introducing a reduced
positive g value smaller than unity. This feature reflects a fundamental difference between classical
and quantum work statistics over exponential work functions. While in classical cases, state-to-state
transition probabilities can have very sharp cutoffs suppressing effectively the contributions from
rare events; the state-to-state transition probabilities in quantum cases, though already exponentially
suppressed, are not cut off sharply enough and can still create a scenario where more rare events make
even larger contributions to var

(
e−βW). These findings indicate that the efficiency of employing the

quantum (standard or deformed) JE in predicting equilibrium properties is more limited than in the
classical regime. Given the insights gained from this study, it may serve as an inspiration to seek
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other variants of deformed JEs and to apply those to different physical quantities that intrinsically
make use of the conventional JE, classical or in its quantum form [47–54].
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Appendix A. Transition Probabilities for Classical Harmonic Oscillator

As discussed in the main text, we consider the classical harmonic oscillator with a general
time-dependent angular frequency ω(t) > 0, whose Hamiltonian is given by

H
(

p, q; ω(t)
)
=

p2

2m
+

1
2

mω2(t)q2 . (A1)

The phase space volume Ω(E; ω) as defined in the main text is given by

Ω(E; ω) =
∫

Γ
Θ
(
E− H(p, q; ω)

)
dpdq

=
2πE

ω
, (A2)

with any ω(t) = ω at fixed time t.
We define the transition probabilities as in [26]:

P(Ωτ |Ω0) =
∫

Γ
δ

(
Ωτ −Ω

(
H(pτ , qτ ; ωτ); ωτ

)) δ
(
E(Ω0; ω0)− H(p0, q0; ω0)

)
ω
(
E(Ω0; ω0); ω0

) dp0dq0 (A3)

where (pτ , qτ) = (p(p0, q0, τ), q(p0, q0, τ)) denotes the time evolution starting with (p0, q0) and
ending at t = τ, while ω

(
E(Ω0; ω0); ω0

)
represents the density of states. ω

(
E(Ω0; ω0); ω0

)
is also the

normalization constant for a micro-canonical ensemble at E(Ω0; ω0), with

ω
(
E(Ω0; ω0); ω0

)
=
∫

Γ
δ
(
E(Ω0; ω0)− H(p0, q0; ω0)

)
dp0dq0

=
1( ∂E(Ω;ω)

∂Ω

)
Ω0,ω0

=
2π

ω0
. (A4)

Note that here there is no essential difference between using Ω and using E for a harmonic
oscillator. We however still stick to using Ω since this notation is general.

To evaluate Equation (A3) we examine the time evolution during [0, τ]

qt = Yq0 + X
p0

m
(A5)

pt = mẎq0 + Ẋp0 (A6)

where X, Y represent two special solutions satisfying X(0) = Ẏ(0) = 0 and Ẋ(0) = Y(0) = 1 [46]. X,
Y are independent of (p0, q0) due to the fact that the equations of motion are linear. Let

x =
p0√
mω0

;

y =
√

mω0q0 .
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Equation (A3) then becomes

P(Ωτ |Ω0) =
∫

Γ

ω0

2π
δ
(
Ωτ − πγT Mγ

)
δ
(ω0Ω0

2π
− ω0

2
(x2 + y2)

)
dγ (A7)

where γ = (x, y)T and dγ = dxdy, and

M =

(
(X2ω0ωτ + Ẋ2 ω0

ωτ
) (ẊẎ 1

ωτ
+ XYωτ)

(ẊẎ 1
ωτ

+ XYωτ) (Ẏ2 1
ω0ωτ

+ Y2 ωτ
ω0

)

)
(A8)

is a symmetric matrix. Diagonalizing M yields

M = OT DO, (A9)

where

D =

(
µ+ 0
0 µ−

)
(A10)

is diagonal with µ+ > µ− and O is an orthogonal matrix. Note also that M is positive definite, therefore
µ+ > µ− > 0. One can further show that µ+µ− = 1 by noticing that XẎ − ẊY = 1 throughout the
protocol. With these results, Equation (A7) becomes

P(Ωτ |Ω0) =
∫

Γ

1
2π

δ
(Ω0

2π
− 1

2
(x2 + y2)

)
δ

(
Ωτ − π(µ+x′2 + µ−y′2)

)
dγ′

by letting γ′ = (x′, y′)T = Oγ. We next replace (x′, y′) by (ρ cos θ, ρ sin θ) as a change of integration
variables, we obtain

P(Ωτ |Ω0) =
∫

Γ

1
2π

δ
(Ω0

2π
− 1

2
(x2 + y2)

)
δ
(
Ωτ − πγT Mγ

)
dγ

=
∫ 2π

0

∫ ∞

0

1
2π

δ
(Ω0

2π
− 1

2
ρ2)δ(Ωτ − π(µ+x′2 + µ−y′2)

)
ρdρdθ

=
∫ 2π

0

∫ ∞

0

1
2π

δ
(Ω0

2π
− 1

2
ρ2)δ(Ωτ − πρ2(µ+ cos2 θ + µ− sin2 θ)

)
d

ρ2

2
dθ

=
∫ 2π

0

1
2π

δ

(
Ωτ −Ω0

(
(µ+ − µ−) cos2 θ + µ−

))
dθ (A11)

For P(Ωτ |Ω0) 6= 0, we require

µ−Ω0 < Ωτ < µ+Ω0 .

Under this condition we arrive at

P(Ωτ |Ω0) =
1

π
√
(Ωτ − µ−Ω0)(µ+Ω0 −Ωτ)

. (A12)

One can then also verify the following bi-stochastic condition∫ ∞

0
P(Ωτ |Ω0)dΩ0 =

∫ ∞

0
P(Ωτ |Ω0)dΩτ = 1. (A13)

Appendix B. Deformed Crooks Relation

Consider the forward characteristic function of work,

G+,g(µ) =
∫

dWgeiµWg P(Wg), (A14)
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where,
P+(Wg) = ∑

i,j
δ(Wg − Eλτ

j /g + Eλ0
i )Pi→jP0

i (λ0; β). (A15)

Substituting Equation (A15) into Equation (A14), one has

G+,g(µ) = ∑
i,j

exp[iµ(Eλτ
j /g− Eλ0

i )]Pi→jP0
i (λ0; β). (A16)

Further,

G+,g(µ + iβ) = ∑
i,j

exp[iµ(Eλτ
j /g− Ei)]exp[−β(Eλτ

j /g− Ei)]Pi→jP0
i (λ0; β)

=
1

Z(λ0; β) ∑
i,j

exp[iµ(Eλτ
j /g− Eλ0

i )]exp(−βEλτ
j /g)Pi→j

=
Z(λτ ; β/g)

Z(λ0; β) ∑
i,j

exp[iµ(Eλτ
j /g− Eλ0

i )][exp(−βEλτ
j /g)/Z(λτ ; β/g)]Pi→j (A17)

where in the last line we have simultaneously multiplied by Z(λτ ; β/g) = ∑j exp(−βEλτ
j /g).

Identifying the following Gibbs distribution at inverse temperature β/g as

Pτ
g,j = exp(−βEλτ

j /g)/Z(λτ ; β/g), (A18)

and using Pi→j = Pj→i, we end up with

G+,g(µ + iβ) =
Z(λτ ; β/g)

Z(λ0; β) ∑
i,j

exp[iµ(Eλτ
j /g− Eλ0

i )]Pj→iPτ
g,j

=
Z(λτ ; β/g)

Z(λ0; β)

∫
dWg ∑

i,j
exp(−iµWg)δ(Wg − Eλ0

i + Eλτ
j /g)Pj→iPτ

g,j. (A19)

Observing that

P−(−Wg) =
∫

dWg ∑
i,j

δ(Wg − Eλ0
i + Eλτ

j /g)Pj→iPτ
g,j, (A20)

we find

G+,g(µ + iβ) =
Z(λτ ; β/g)

Z(λ0; β) ∑
i,j

exp(−iµWg)P−(−Wg). (A21)

Likewise we obtain
G−,g(µ) =

∫
dWgeiµWg P−(Wg). (A22)

Consequently we have the relation that

G+(µ + iβ) =
Z(λτ ; β/g)

Z(λ0; β)
G−(−µ). (A23)

After Fourier transform in both sides, one obtains the Crooks relations. Indeed, for the LHS
of (A23) ∫

dµe−µW ′g G+(µ + iβ) =
∫

dµ
∫

dWge−µ(W ′g−Wg)e−βWg P+(Wg)

=
∫

dWgδ(W ′g −Wg)exp(−βWg)P+(Wg)

= exp(−βW ′g)P+(W ′g) (A24)
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while for the RHS of (A23),∫
dµG−(−µ) =

∫
dµ
∫

dWge−µ(W ′g−Wg)P−(−Wg)

= P−(−W ′g) (A25)

Therefore, (A23) can be written as

e−βW ′g P+(W ′g) =
Z(λτ ; β/g)

Z(λ0; β)
P−(−W ′g) . (A26)

This result then coincides with the standard Crooks relation for g→ 1.
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