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1 Introduction

1 Introduction

Let X be a complex manifold. The Riemann-Hilbert correspondence of M. Kashiwara
(|[Kas84]) establishes an equivalence

~ L
DY.(Zx) — D%_.(Cx), M+~ DRx(M)=0x @q, M (1.1)

between the triangulated categories of regular holonomic Zx-modules and C-construc-
tible sheaves on X. Recently, A. D’Agnolo and M. Kashiwara extended this result to the
case of irregular holonomic Zx-modules in [DK16b|. This enhanced Riemann—Hilbert
correspondence provides a fully faithful embedding, in form of the enhanced de Rham
functor DRE, of D? | (Zx) into the category of so called enhanced ind-sheaves E(X) (this
category is denoted by E°(ICx) in [DK16b]), together with a reconstruction functor that
allows us to recover a holonomic Zx-module from its associated enhanced ind-sheaf.

Let us denote by Perv(Cx) the abelian category of perverse Cx-sheaves. It is well
known (e.g. [Bj693, theorem 5.5.4]) that the Riemann-Hilbert-correspondence restricts
to an equivalence Mod,,(Zx) ~ Perv(Cx). In [DK16a|, A. D’Agnolo and M. Kashiwara
proved an analogue to this in the enhanced setting: The triangulated category Ep_.(X)
of R-constructible enhanced ind-sheaves admits a self-dual generalized t-structure

(MV2ESC (X),Y2EZ (X))eeRr,

and the enhanced de Rham functor DRF is exact with respect to this (generalized) t-
structure and the standard t-structure on D} (Zx), i.e. DRE(.#) € 2B} (X)) for
any .# € Hol(Zx). A noteworthy difference compared to the classical case — besides
the fact that DRF: Hol(Zx) — 2B} __(X) still is not essentially surjective — is that
12E0  (X) is only a quasi-abelian category in general (cf. [DK16a; Sch98| and [Bri07,
section 4]).

This thesis is motivated by the following line of thoughts: Recall that in [Kat95, section
5.2], N.M. Katz stated his main theorem on the structure of rigid local systems, which
(roughly) says that one can reduce any cohomologically rigid I-adic sheaf .# on Al (over
an algebraically closed field k with characteristic different from [) with generic rank at
least 2 of a certain class! to a rigid sheaf of generic rank one by successively applying
two invertible operations — one of these is the so called (additive) middle convolution
of .% with some Kummer-sheaf and the other is the middle tensor product of F with
some appropriate (lisse, tamely ramified) rank one sheaf (this latter operation is essen-
tially a tensor product, followed by a middle extension). Later, the techniques of [Kat95]
have been applied in a range of different settings, including complex local systems (e. g.

! The Q;-sheaf in question has to be a middle extension of a lisse and irreducible sheaf on a dense open
subset U C A', has to be tamely ramified at every point of P! \ U and it has to have at least two
singularities in A', cf. [Kat95, section 5.1].
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[DRO3]), see [Sim09] for an expository view on different versions of Katz’ middle con-
volution algorithm. In particular, based on investigations of S. Bloch and H. Esnault
(|BE04]) concerning the preservation of rigidity of (possibly irregular) meromorphic con-
nections on P! under Fourier transforms, D. Arinkin proved a Katz algorithm in the
setting of rigid meromorphic connections on P! with arbitrary singularities ([Aril0]). In
this setting, and because the middle convolution of [Ari08; Aril0] may even transform
regular meromorphic connections into irregular ones, this Katz-Arinkin algorithm is not
accessible by the classical Riemann—Hilbert correspondence. With the emergence of the
enhanced version though, it seems natural to ask if there is a counterpart to this in the
setting of (R-constructible) enhanced ind-sheaves. Certainly, one of the main ingredients
of the Katz algorithm is the middle convolution operation, so in our thesis, we want to
focus on establishing an enhanced version of this. Our approach is to stick to the motto
stated in the introduction of [Sim09], that the geometric nature of the definition of Katz’
middle convolution in [Kat95, section 2.6] allows for transferring it in basically any set-
ting where one has a Grothendieck formalism and a category of perverse sheaves. Both
of these prerequisites are satisfied for the case of R-constructible enhanced ind-sheaves,
so that we would like to define our enhanced middle convolution, in complete analogy to

[Kat95], as
E + +
K *xpq L :=1Im (Ean (K X L) — Fo, <K X L>)

for K, L € 1/2]5]1%_6(A), where A is the bordered space (A, P) with A := C = (A!)*® and
P = (P2 ~ S2 and 0: A — A is the morphism of bordered spaces induced by

o AxA— A, (a,b)—~a+0d.

We will call this construction the enhanced middle convolution. Furthermore we will
introduce the shorthands K 5; L := Eoy(K é L) and K E* L := FEo.(K ég L) for the
above two convolution terms.

There are two main issues with this approach though. First, as we mentioned above,
1/ 2EHO§7 .(A) is only quasi-abelian, in particular image and coimage of K E! L— K E* L
need not necessarily be isomorphic. So if we want to stay with our approach, there is no
way around defining the dual version

E + +
K *%co—_mia L := Coim <Ea” <K X L) — Eo, (K X L>)

as well, which we will refer to as the (enhanced) co-middle convolution. One of our main
goals in this thesis will therefore be to find some criterion for when middle and co-middle
convolution are actually isomorphic. Our criterion, theorem 3.14, will be obtained by
transferring the ideas for the proofs of some classical results on the interplay between
middle convolution and middle extensions [Kat95, section 2.8] and on the characterization
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of middle extension perverse sheaves [HTTO08, section 8.2] to the enhanced setting. The

second issue is that, in order to build middle or co-middle extension K Emid L resp.
E

K *¢o_miq L for some pair (K, L) of objects in 1/QEH%%,(A) at all, we obviously first need

E E
to assure that the convolutions K %, L and K *, L are again enhanced perverse, i.e.
objects of 1/ 2E9 .(A). This part of the problem is already known from the classical
setting in [Kat95|, and in resemblance of the original notation we will say that a pair

(K, L) as above has property B if K E! L K E* L € 'Y2E3 _(A). Our second task will
then be to find some non-trivial (e.g. not coming from some pair of classical perverse
sheaves which are known to have property 9 in the original sense, cf. lemma 2.5) pair
(K, L) with property 3, which we will do in section 2.4.

The last section is then dedicated to investigating if our enhanced middle convolution
(with the second argument fixed as a enhanced Kummer-sheaf L¥, where A € C\ Z) is
compatible with the Arinkin—Katz convolution (for the same \) defined in [Aril0] via the
enhanced Riemann—Hilbert correspondence. To be precise, when we denote the latter one
by M #miq K in notation of [Ari10], then we would like to show that for some irreducible
meromorphic connection .# on P! with singularities containing oo as in [Aril0], we have

B S0l (A Hamiq KM)[1] = By SolE(.a)[1] ¥mia LE[1],

and that middle and co-middle convolution agree in this case (conjecture 4.17). Here,
ja: A — P is the bordered open embedding and LY = Solg(lC’\). In theorem 4.20,
we will give a proof of this conjecture under the assumption that the Fourier transform
transfers two specific canonical constructions into each other, cf. assumption 4.19.

In order to someday get a full version of a Katz algorithm for enhanced ind-sheaves,
a lot more work would still have to be done. For example, finding a criterion to verify
property ‘B for pairs (K, L) as in [Kat95, section 2.6] would be desirable, and, to get
to a similar classification result as [Kat95| or [Aril0]|, an appropriate concept of rigidity
for enhanced ind-sheaves would have to be found. However, both of these tasks seem to
be out of the scope of these notes. With regard to this conclusion, we want to mention
at least one more justification for our choice of the middle convolution operation as the
starting point of our investigation, by pointing out that besides being in some way the
centerpiece of Katz’ algorithm, Katz’ middle convolution has been used beyond that, in
non-rigid cases as well, cf. e.g. [Sim09] for an overview of examples. For the rest of this
first section, we will recall — mainly from [DK16b| and [DK16a| — some of the technical
prerequisites we will use.

Acknowledgments 1 am deeply grateful to my supervisor Marco Hien, for his advice
and great encouragement, giving me confidence without which I would never have made it
to the point at which I am writing these acknowledgments now. I would like to thank my
friends and colleagues Ingo Blechschmidt, Andreas Hohl and Anna-Laura Sattelberger,
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for many interesting discussions and a wonderful time in Augsburg. I also owe a lot to
Ingo Blechschmidt, Marco Hien and Marc Nieper-Wifskirchen for shaping my mathemati-
cal understanding during my years of study, and to Giovanni Morando, for a great course
on Z-modules. I would like to additionally thank my present and former colleagues Hed-
wig Heizinger and Stephanie Zapf, Pavel Hajek, Kathrin Helmsauer, Matthias Hutzler
and Seongchan Kim, as well as Carolina Dujo, Katrin Geier and Christine Schéfer, for
a great working atmosphere. Finally, I'm much obliged to Masaki Kashiwara, for an
explanation that helped me a lot in proceeding with the last chapter of this thesis.

1.1 Bordered spaces

Definition 1.1 (definition 3.2.1 of [DK16b]). A bordered space X is a pair (X, X) of good
topological spaces, where X C X is an open subset. A morphism of bordered spaces
(X,X) =X - Y = (Y,Y) is a continuous map f: X — Y, such that, if we consider
projections

X xxyv 2By
and label the closure of the graph I'y in X x Y with Ff, the projection er|W is proper.
Definition 1.2 (definition 2.3.5 of [DK16a]). A morphism f: X — Y of bordered spaces
is called semi-proper, if pry\ﬁ is proper. It is called proper if in addition the continuous
map f: X — Y is proper.
Remark 1.3 (cf. section 3.2 of [DK16b]). The category of bordered spaces has a final
object ({pt}, {pt}) and fiber products, which are, for X = (X, X), Y = (Y,Y) resp.
Z = (Z,Z) and morphisms f: X — Z, g: Y — Z, represented by

XXZY:(X XzX,TfXZFg).

Remark 1.4 (cf. remark 2.3.2 of [DK16a]). When we set X := X for a bordered space
X = (X, X), this defines a forgetful functor (o) from bordered spaces to good topological
spaces. It has a fully faithful left adjoint, given by X — (X, X). For some morphism
f: X — Y of bordered spaces we will, if the context is clear, often write f: X — Y
when referring to f X Y.

Remark 1.5 (cf. remark 3.2.4 of [DK16b]). The morphisms Id: X — X and jx: X — X
induce morphisms of bordered spaces

(X, X) — X 2% (X, X).

Definition 1.6 (cf. notation 2.3.3 of [DK16a|). For any locally closed Z C X, denote by
Zso the bordered space (Z, Z), where Z is the closure of Z in X. The embedding Z C X
induces a morphism iz_ : Zo, — X of bordered spaces.

Definition 1.7 (definition 2.3.6 of [DK16a|). An (open, closed, locally closed) subset of
a bordered space X = (X, X) is an (open, closed, locally closed) subset of X. Such a
subset is called relatively compact if it is contained in a compact subset of X.
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1.2 Ind-sheaves on bordered spaces

From now on let k& be some field. For the theory of ind-sheaves cf. e.g. [KSO01]. The
bounded derived category of ind-sheaves (over the fixed base k) on a space X is denoted
by D(X) (short for D*(Ikx), in notation of e.g. [KSO1; DK16b| - the version we use
here is that of [DK16a]). Let again X be a bordered space (X, X), and consider the
continuous mappings

X\ X -5 X x.
Then, ¢ gives an embedding

Ri, ~ Riy: D(X \ X) C D(X).

Definition 1.8 (cf. proposition 2.4.1 of [DK16a|). The derived category of ind-sheaves on
the bordered space X may be defined as the quotient

D(X) := D(X)/D(X \ X).
Remark 1.9 (cf. section 2.4 of [DK16al). In particular, there is the quotient functor
gx: D(X) = D(X).
It has left and right adjoints, Ix and rx, which satisfy
IxqgxF ~kx ® F, rxqxF ~ RShom(kx,F).
Remark 1.10 (cf. remark 2.4.2 of [DK16a]). One has a canonical exact embedding
ix: DP(kx) = D(X)

determined by the following commutative diagram:

Db(kx) X D(X)

3 -

Db(kg)/ DY (kg x) —— D(X)/D(X \ X)

Definition 1.11 (cf. section 3.4 of [DK16b]). The classical t-structure on D(X) is denoted
by (DS°(X), D>9(X)). We have
DSY(X) = {K € D(X)|RjxnK € DS°(X)}
D?'(X) = {K € D(X)|RjxnK € D*°(X)}
Definition 1.12 (cf. section 3.3 of [DK16b]). For a morphism f: X — Y of bordered
spaces and F,F' € D(X), G € D(Y), one sets (with X & X x Y B ¥ the usual
projections)
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gxF @ ¢xF' := qx(F ® F'),

RShom(qx F,qx F') :== qx RIhom(F, F'),
RfugxF = qyRgau(kr, ® g7 ' F),

Rfwqx F' = qy Rga«RIhom(kr,, ¢ F),

o flayG = qxRqn(kr, ® ¢; 'G),
o floyG = QXRQHthOm(ka’q!?G)‘

Remark 1.13 (cf. proposition 3.4.4 of [DK16b]). For a morphism f: X — Y of bordered
spaces, Rfy and Rf, are left exact and f~! is exact. If f~!(y) has soft-dimension at
most d, for every y € Y, then in addition Rfy[d] is right exact and f'[—d] is left exact.

Remark 1.14 (cf. remark 2.4.3 of [DK16a]). Let f: X — Y be a morphism of bor-
dered spaces. The natural embeddings tx resp. ¢y commute with the operations ®,
R.hom (actually, : commutes R.%hom with R¢om), Rf,, f~*, f'. If f is semi-proper,
v commutes with Rfy as well, i.e., denoting with f X — Y the map underlying f, the
diagram

Db(kx) —*= D(X)

lRf ! JRf 1

D*(ky) — D(Y)

(quasi-)commutes.

Remark 1.15 (cf. remark 2.4.4 of [DK16a]). One can express the quotient functor gx
and its adjoints, Ix and rx, in terms of the natural embedding jx : X — X, as

QXﬁj;(lﬁjé(, Ix ~jxu, X X«

In particular, the quotient functor is exact.

1.3 Enhanced ind-sheaves

Let X be a bordered space and Ry, the bordered space (R, R), where
R :=RU {£oc}

is the two-point-compactification of R. Consider the following natural morphisms:

X~ X xRy, P8 X xR -5 X

10
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Definition 1.16 (cf. section 2.6 of [DK16a]). Now set N := 71 D(X), then
E(X) := D(X x Ry)/N

is called the category of enhanced ind-sheaves on the bordered space X.

In particular, we get a quotient functor @x: D(X X R ) — E(X), which has left and
right adjoints, L¥ resp. R¥. With pq, pa, t: R? — R the first and second projection and
the sum map (¢1,t2) — t1 + t2, respectively, and using the same labels for the induced
maps pi1, p2, 4: X x RZ — X x Ry, one defines functors

Jr

®: D(X X Rs) X D(X xRy) = D(X x Ry)
+ 1 1

(K1, K2) = K1 @ Ko := Run(p] " K1 ® py K>)

and
Fhom™: D(X x Ryo)P x D(X x Ry) = D(X x Ry)

(Kl, KQ) —> ﬂlom+(Kl, Kg) = Rpl,*RJhom(pglKl, [L!Kg).
These induce functors
+
®: E(X) x E(X) —» E(X), Shom™*: E(X)? x E(X) — E(X),
cf. definition 1.20 below. One can show (cf. [DK16a, section 2.6]) that

LPQxF ~ (kysoy ® kyi<op) ® F,
REQxF ~ Jhom™ (ko) @ ky<oy. F)
for any F' € D(X x Ro).
Remark 1.17. We will consider a sheaf F' € D°(kxxr) as the enhanced ind-sheaf
Qx X xRk (F) € E(X)

which we will often denote by F again, as long as the context is clear.

One may as well consider some F' € D(kx) resp. D(X) as an enhanced ind-sheaf, as
in the following

Remark 1.18 (cf. section 2.6 of [DK16al). The functor e: D(X) — E(X), defined by
F Qx(k{t:()} ® WﬁlF),

is fully faithful.

Definition/Proposition 1.19 (cf. def. 2.6.1 and prop. 2.6.2 of [DK16a]). We get a t-struc-
ture on E(X) by setting, for n € Z:

ES(X) :={K € E(X)|L¥K € DS*(X x Ruo)},
E”"(X) = {K € E(X)|L¥K € D""(X x Ruo)}.

11
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The Grothendieck-operations for enhanced ind-sheaves Let f: X — Y be a mor-
phism of bordered spaces. Set fr_ = f x Idg_.

Definition 1.20 (cf. section 2.7 of [DK16a|). The functors

+
®: E(X) x BE(X) = E(X),
SJhom™: E(X)°P? x E(X) — E(X),
Efy, Efi: E(X) — E(Y),
Ef~LEf': E(Y) = E(X)
are defined, for K, K/ € D(X X Ry) and L € D(Y x Ry), as

+ +
QxK ® QxK' = Qx (K ® K'),
Jhom™t (Qx K, QxK') := Qx.Yhom™ (K, K'),
EfmQxK = QyRfr, 1K,
Ef.QxK = Qv Rfr. K,
Ef7'QyL:=Qxfg! L,
Ef\QyL = Qxfa L.
The duality functor D?( is defined by
DY: E(X) = E(X)®, K — Shom™ (K,w$),
for wgg = e(wx) = Qx(kj—oy @ 7 'wx) € B(X) with wx := Jxwy =~ jxlwyg.
Note that the functors

7 (o) @ (e): D(X) x E(X) = E(X),
R.Jhom (w1 (e),): D(X)°P x E(X) — E(X),

are defined, for L € D(X) and K € D(X x Ry), as

L@ QxK = Qx(r 'L ® K),
RIhom(r 'L, Qx K) := Qx RIhom(r 'L, K),

cf.[DK16a, section 2.7].
1.3.1 Idempotent and stable objects

+
The category D(X x Ry) is a commutative tensor category with tensor product ® and
unit element kg—qy, cf. [DK16b, corollary 4.2.2].

12
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Idempotent objects Consider the sheaves kr on X x R with, for some fixed a € R,
={t>za}l{t <a}{t >a}{t <a},{t =a} or I = X xR. We will refer to these as
objects in D(X x Ry), meaning the objects tx xr.. (k7).

Lemma 1.21 (cf. lemma 4.2.3 of [DK16b|). The objects kyi=oy (resp. kp<oy ), kpsoy[l]

_l’_
(resp. kg<oy[1]), ki=0y © kp<oy and kxxr[l] are idempotents (with respect to ®) in
D(X x Ry). Furthermore there are the following relations:

+
kit=0y ® kpi<oy =0,
+
kpso0y[1] @ kgeoy[1] ~kxxr[1],
+
kiiz01 @ kgi=o0y[1] ~0,
+
k‘{tg()} ® kXXR[l] ~(,
+
kgsoy[1] @ karxr[1] ~=kx xr[1],

+
kgi=01 @ kgi<oy[1] ~=kgi>0y-

Applying Qx, we will interpret these k7 as objects of E(X) as well. We will sup-
press Qx as well as txxr,, in our notation if the context is clear. Then k> € E(X)
has the following noteworthy property:

Lemma 1.22. Let K = Qx(K') € E(X) with K' € D(X X Ro). Then
+
k{t}O} ® K ~ fh0m+(k{t>0}, K)
Proof. This is clear from the existence of the distinguished triangle
+
7L — kysoy © K — Shom™ (kgsoy, K') =

+
in D(X x Ry), where L >~ Ry (k=01 @ K'), cf. [DK16b, proposition 4.3.10]. O

Stable objects Consider the following object in D(X x R):

Fgsoy = T k(i)

a——400

The corresponding object in E(X) is denoted by
k% = Qx (kgis0))

+
and is another idempotent object, i.e. k)b; ® k}b; ~ k)b;, cf. |DK16a, section 2.8]. One
defines the full subcategory Eq(X) of stable objects in E(X) as

Ea(X) = (K € EX)|K 5 kE © K).

13
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1.3.2 The functor e: D(X) — Es(X)

+
The inclusion Eg(X) — E(X) has left adjoint k% © () and right adjoint Shom™ (k% e),
cf. [DK16a, section 2.8].

+
Lemma 1.23 (cf. lemma 2.8.2 of [DK16a]). The endofunctor k¥ @ (e) on E(X) is ezact.
Definition/Proposition 1.24 (cf. section 2.8 of [DK16a|). The embedding
e: D(X) = Eg(X)
is defined as
e(F) = k% QnlF = Qx(k{t>>0} & 7T_1F)
for any F' € D(X) and it is fully faithful and exact.

Jr
Remark 1.25. We have e(e) ~ k¥ © ¢(e).
Definition 1.26. The duality for stable enhanced ind-sheaves is defined as

D¥: By (X) = E4(X)P, K — Jhom™ (K,w¥)

with dualizing object w¥ := e(wx).

1.3.3 R-constructible enhanced ind-sheaves

From now on, let X = (X, X) be a subanalytic? bordered space, cf. [DK16a, definition
3.1.1] (i.e. X is a subanalytic space and X is an open subanalytic subset of X). Fur-
thermore all morphisms f: X — Y of bordered spaces considered shall be subanalytic,
meaning that their graph I'y C X x Y is a subanalytic subset.

Definition 1.27 (cf. definition 3.1.2 of [DK16a]). The category D% _(kx) is the full
subcategory of D°(kx) consisting of the objects

D]%fc(kx) = {F € Db(kX)‘RiX7!F < D]If%fc(k)i')}a
where ix: X — X is the open embedding. In particular, Dﬁ‘g,c(k‘x) is a full subcategory
of Db (kx), as iy' preserves R-constructibility.

The following result conveys the compatibility of this notion of R-constructibility with
external operations, which essentially is as one might expect from the case of R-construc-
tibility on non-bordered spaces.

Proposition 1.28 (cf. proposition 3.1.3 of [DK16a]). Let f: X — Y be a morphism of
subanalytic bordered spaces, then

2All bordered spaces that will appear in this thesis will actually be analytic, resp. complex bordered
spaces in the sense of [KS16, definition 4.11]. For a definition of subanalytic sets, cf. e.g. [BM88].

14
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i) 71 and f' induce functors D%_(ky) — D% _(kx).
i) If f is semi-proper, then Rfi and Rf. induce functors D% __(kx) — D% __(ky).

Note that ii) is put slightly differently here compared to [DK16a, proposition 3.1.3],
where D% (kx) is considered as a full subcategory of D(X) via tx, but as we know that
ty o Rfi ~ Rfy oux in the given case that f is semi-proper (vy o Rf. ~ Rf. otx holds
anyway), both formulations are clearly equivalent.

Lemma 1.29. Dy induces an equivalence D% _(kx) — D§_(kx)°P.

Proof. Let F' € D __(kx), then jx,F € D __(ky) by definition and so
G =Dy (jxF) € Di_ (k)

as well. Assume G is cohomologically constructible with respect to some locally finite
covering X = (J;c; Xi of X by subanalytic subsets. Then

jx,Dx F ~jx)Dxjy' Dy G~Gx
is cohomologically constructible with respect to the (locally finite) subanalytic covering

Uxanx)u (xin (X\ X)),
el
thus R-constructible, as (RjxDx F'); ~ 0 for z € X\ X and (Rjx1Dx F)y ~ (Dx F)q

if x € X, which is a perfect complex because Dx F' is known to be R-constructible, as F'
was R-constructible by hypothesis (cf. [KS90, definition 8.4.3]). O

Definition 1.30 (cf. definition 3.3.1 of [DK16a]). An object K € E(X) is called R-con-
structible, if for any relatively compact subanalytic open subset U of X, one has

EillK~kE ©Q F b
v = Ry Uso lUoo xR &' € E(UOO) for some F' € DR—C(kaoXRoo)'

The strictly full triangulated subcategory of E(X) consisting of the R-constructible ob-
jects is denoted by Ep_ . (X).

In particular, R-constructible enhanced ind-sheaves are stable objects in E(X). Fur-
thermore, with jx : X — X as usual, for some K € E(X), one finds that K € Ep_(X)
if and only if EjxnK € ER_C(X), in analogy to the situation in definition 1.27, cf.
[DK16a, lemma 3.3.2]. The following result encloses many other features of Ep_.(X)
one might expect with regard to the case of usual sheaves.

Proposition 1.31 (proposition 3.3.3 of [DK16al|). Let f: X — Y be a morphism of
subanalytic bordered spaces.
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i) Eg_.(X) is a triangulated subcategory of E(X).

ii) The duality functor DE induces an equivalence Ep_(X)°P = Eg_(X), and there
is a canonical isomorphism of functors

IdElRf (X) E) D)E( OD)E( .

iii) The functors Ef~! and Ef' induce functors Ep_(Y) — Eg_(X) and
DEcEf' ~Ef' o D¥
DEoEf ~Ef 1 oDE.
w) If f is semi-proper, Ef. and E fu induce functors Ep_ . (X) = Ex_(Y) and

DE oEf, ~EfyoD%
DE oEfy ~Ef, oD% .

+
Remark 1.32. Note that e(F) = k¥ @ 7= 1(F) = k¥ ® (kgt—oy ® F'), showing that the
embedding e: D(X) — Eg(X) from section 1.3.2 induces a functor
ex =eoux: D% (kx) — Ep_.(X).

If the context is clear, we will write e again instead of ex.

1.4 Some properties of enhanced ind-sheaves on bordered spaces

If not otherwise stated, we will assume all bordered spaces (and corresponding mor-
phisms) to be subanalytic. Let X,Y be two such bordered spaces.

Lemma 1.33 (cf. lemma 4.3.1 of [DK16b]). For Ki, K2 € D(X X Ry) and L € D(X)
one has

+ +
i) 7L ® (K @ Ko) ~ (17 ® K1) @ Ko,

i) RSIhom(n 1L, Shom™ (K1, K3)) ~Fhom™ ('L @ K, Ky)
~ 9hom™* (K1, RIhom(r 'L, K>)).

Proof. 1t is enough to apply j;(lRoo to [DK16b, lemma 4.3.1|, where
JX R X X Roo = X x Ry

is the bordered open embedding induced by jx: X — X. O

16
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Lemma 1.34 (cf. lemma 4.3.2 of [DK16b|). Let a: X x R — X x Ro be the map
induced by R - R, t — —t. For K € D(X x Ry) and L € D(X) one has:

i) T UL @K ~ (1L @ kggy) © K,
it) RIhom(n 'L, K) ~ Jhom™ ('L & ky—gy, K),
ii) a 'R.%hom(K, 7' L) ~ Shom™ (K, 7 'L ® k{—oy)-

Proof. Apply j)_clRoo to [DK16b, lemma 4.3.2]. O

+ +
Remark 1.35. As DY (k¥ @ Qxu(F)) ~ k& ® Qxt(a™ ' Dxxg F) for some F € D®(kxxr)
is known from [DK16a, lemma 2.8.3], we can get the bordered space analogue to [DK16b,
corollary 4.8.4] by repeating step by step the proof given there: Let F' € D%_ (kx), then
+
D% (kx ® Qxu(r ' F)) ~ DX (k% © Qxt(ky—oy @ 7 'F))
+ _ _
Zk)E( ® QXL(G ! DXXR(k{t:D} ®m 1F))
+
Zk‘)E( X QxL(kJ{t:O} X 7'&'71 Dx F)
+
~kE ® Qxu(r ! Dx F).

For the third isomorphism, w 0 a = w was used, as well as the facts that 7 is a topo-
logical submersion relative dimension 1, i.e. 7' Dx F ~ 7~ (Dx F)[1], and furthermore
i'm'Dx F ~ i~ 'r7 ' Dx F[~1] for the closed embedding i: {t = 0} — X x R, cf.
corollary 2.20. What was shown, in other words, is

ex ODX ~ D)E(O(Bx.

Lemma 1.36 (cf. [DK16b, Proposition 4.1.5]). For K1, K2, K3 € D(X X Ro) one has
, + + + +
i) (K1® K2)® K3~ K1 ® (K, ® Ks),
. +
i) Hompx xr..) (K1 @ Ka, K3) ~ Hompx xr..) (K1, Fhom™ (K3, K3)),

i) Shom™ (K, & Ky, K3) ~ Jhom™ (K1, Yhom™ (Ks, K3)).

Proof. The proofs of all three statements given in [DK16b| work out the very same way
in the bordered setting. O

As [DK16a, lemma 3.3.2] states, F' € Ep_.(X) if and only if EjxnF € Eg_.(X), the
latter referring to the usual enhanced sheaves in the sense of [DK16b|. We thus have

17
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Lemma 1.37. For F € Ep_ (X)), G € Ey__(Y), one has

+ +
DL . v(FRG)~DEFXDY G.

Proof. We observe that Ej)_(lEjX” ~ Idg, (x) ~ Ej;(ij* and thus, dropping the
indexes of the duality functors as a shorthand,

E & E —1 1 + JY
D¥(FXG) ~D"(Ejx EjxnF X Ejy EjyviQ)
E 1 —1 . + .
~D" Ejx v (EjxnF X EjynG)

+
~Fjx y D¥(EjxnF X EjxnG)

+
(QEJ‘!XXY(DE EjxuF ®D” Ejx Q)

N . E + . E
ZEJXXY(E]X*D FXEjy.D"G)
. . E + .l - E
Z(EJXE]X* D F) X (E]YE]Y* D G)
+
~DF FRDF @G,
where we used the fact that, for a bordered open embedding j, one has Ej~! ~ Fj' and

[DK16b, proposition 4.5.10|, or [DK16b, proposition 4.9.22|, respectively, and [DK16b,
proposition 4.9.21] for step (x). O

1.5 Quasi-abelian categories

While on the one hand, the concept of a quasi-abelian category is essential for all of the
following, we will on the other hand not need any deeper insights into the corresponding
theory for this thesis. Thus, let us only very quickly recall the basic definitions from
[Sch98|. For the following, let € be an additive category with kernels and cokernels.

Definition 1.38 (definition 1.1.1 of [Sch98]). For some morphism f: A — B in %, one

defines
Im(f) :=ker(B — Coker(f)),

Coim(f) := Coker(ker(f) — A).
By the universal properties of kernel and cokernel, f induces a canonical morphism

Coim(f) — Im(f).

Definition 1.39 (section 1.1.1 of [Sch98|). A morphism f: A — B in % is called strict if
the canonical morphism Coim(f) — Im(f) is an isomorphism.

Definition 1.40 (definition 1.1.3 of [Sch98|). The category ¥ is called quasi-abelian if:

18
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i) In any cartesian square

A%B

[

A —— B,
where f is a strict epimorphism, f’ is also a strict epimorphism.

ii) In any cartesian square

a B

[

A1 B,
where f is a strict monomorphism, f’ is also a strict monomorphism.

One of the drawbacks of the existence of non-strict morphisms is that one now has
to split the definition of exact sequences known from abelian categories to distinguish
(strictly) exact and coexact sequences.

Definition 1.41 (definition 1.1.9 of [Sch98|). A sequence of the form
AL,p 50

with g o f = 0 is called strictly exact (at B) if f is strict and the canonical morphism
Im(f) — ker(g)

induced by the universal properties is an isomorphism. It is called strictly coezact if
instead g is strict. A sequence

Ay 2L Ay B g,

is called strictly exact (resp. coexact) if it is so at every point A;, 2 < j<n—1.

However, it turns out ([Sch98, remark 1.1.10]) that a sequence of the form

0—>Ai>Bi>C—>O

is strictly exact if and only if it is strictly coexact, if and only if f is a kernel of g and
g is a cokernel of f. In particular, one may introduce the (non-split) notion of a strict
short exact sequence in a quasi-abelian category. One of the main results in view of the
appearance of quasi-abelian categories in the context of generalized t-structures is the
following
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Proposition 1.42 (lemma 4.2 of |[Bri07]). An additive category € is quasi-abelian if and
only if there are abelian categories €' and € and fully faithful embeddings € C €' and
€ C 6 such that

i) if A— C is a monomorphism in €% with C € €, then also A € €,
ii) if C' — B is an epimorphism in € with C € €, then also B € €.
If i) and ii) hold, the strict short exact sequences in € are those sequences
0—A—B—C—0

that are exact both in € and in €.

1.6 Generalized t-structures

Let T be a triangulated category.

Definition 1.43 (definition 1.2 of [Kas15]). For families (T<¢).cr and (T7¢).cg of strictly
full subcategories of T, set T<¢ := J,_, T’ and T7¢ := (J,.,T2°. Then (IS¢, T%°).cr
is called a generalized t-structure (on T') if it satisfies the conditions

i) TS =Nys TS’ and T7¢ = N, T7" for any c € R,

i) Tsetl = Ts¢[—1] and TZ¢t! = T>¢[—1] for any c € R,

)
iii) Homyp(A,B) =0 for any c€ R, A € T<¢ and B € T~¢,
iv)

for any A € T and ¢ € R, there exist distinguished triangles

+1
Ace —m A— As. —

1
Ace —r A — Ase 5,
where A<, € TS¢, A, € T<¢, A5, € T?¢ and A~ € T”C.

By i) — iii), the objects A<., A<c resp. Asc, As. in iv) are unique up to unique
isomorphism and thus define truncation functors 7S¢, 7<¢, resp. 72¢, 77¢ that are right
resp. left adjoint to the inclusion functors T<¢ — T, T<¢ — T, resp. T7¢ — T, T>¢ — T.

Definition 1.44 (cf. section 1.3 of [DK16a|). For some interval I = [a,b] C R (resp. (a,b],
[a,b), (a,b)), one sets

T :=T"NT>* (resp. TS*NT>*, T<'NT>*, T<'NT>%).
The functor
r<torze. T 5 T (resp. rSbo e p<bgrza 1<bg, %)

is denoted by H'. For I = {¢} for some ¢ € R, one writes T¢ := T1¢} and H¢ := H{},
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Remark 1.45 (cf. section 1.2 of [DK16a|). One may show that condition iii) of definition
1.43 is equivalent to either of

iii)” Homp (7S¢, T>¢) = 0 for any ¢ € R,
iii)” Homyp(T<¢,T>¢) = 0 for any c € R.

Remark 1.46 (cf. section 1.2 of [DK16a]). For a triangulated category T as above, if
(TSP, T2°) is a t-structure in the classical sense, then (T<¢, T>¢).cgr with

is a generalized t-structure on 7. On the other hand, if (7S¢, T>¢).cr is a generalized
t-structure on T, then (TS¢HL T>¢) and (T<¢t! T>¢) are classical t-structures for any
ce R

Definition 1.47 (cf. definition 1.2.4 of [DK16a|). Let ¥ C R be discrete and such that
Y47 = Y. Then, a generalized t-structure (T'S¢, T7¢) cr is called indexed by 3 if T = 0
for any c€ R\ X.

For example, the self-dual generalized t-structure on D&_ -(Cx) for some real manifold
X from [Kasl5| as well as the generalized self-dual t-structure on Ey_(X) for some
subanalytic bordered space X are 1/2-indexed.

Definition 1.48 (cf. definition 1.4.1 of [DK16a]). Let T, S be triangulated categories and
F: T — S a triangulated functor. Then F is called

i) left t-exact if F(T>¢) C S7¢ for any c € R,

ii) right t-ezact if F(T<¢) C SS¢ for any ¢ € R, and

iii) t-exact if it is both left and right t-exact.
Some properties of generalized t-structures Let 7" be a triangulated category equipped
with some generalized t-structure (T'S¢, T%°) cR.

Proposition 1.49 (proposition 1.3.1 of [DK16a| resp. lemma 4.3 of [Bri07]). Let I C R
be some interval.

i) If I — R/7Z is injective, T is a quasi-abelian category and strict short exact se-
quences in T correspond (one-to-one) to distinguished triangles in T with all vertices
in TT.

i) If I — R/7Z is bijective, then T is an abelian category and the functor H': T — T
is cohomological.
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Let S be another triangulated category with a generalized t-structure (SS¢, 5%¢).cr.
Consider the following result analogous to that in the case of a classical t-structure, cf.
[HTTOS8, proposition 8.1.15].

Lemma 1.50. Let F': T — S be a left t-exact functor and I C R an interval such that
I — R/Z is injective. Then one has

for any A € T. In particular, if I = (a,b) or I = (a,b] (resp. I = [a,b) or I = |a,b]),
then
HLF(HLA) ~ HLF(A)
for any object A in T>% (resp. T>%).
If I — R/7Z is bijective, so that T', ST are abelian, H' F is a left evact functor TT — ST,

Proof. The proof works the very same way as the one in [HTTO08| for the case of classical
t-structures. Recall that 75¢: T — T'S¢ is right adjoint to the inclusion functor 7S¢ — T'
(cf. [Kaslb, section 1]). This allows us to show

for any A € T. Completely analogous to the reasoning in [HTTO08|, note that is is enough
to prove
Homge. (B, 75°F(75¢(4))) ~ Homge. (B, 7S°F(A))

for any B € S<¢.

By adjunction of 75¢

and the inclusion functor, one has the commutative diagram

Homge. (B, 7SCF(75¢(A))) —— Homge. (B, 7S°F(A))

l” l: (1.2)

Homg(B, F(75¢(A)) ——2— Homg(B, F(A))
(where the horizontal arrows are induced by the canonical morphism 75¢A — A) and
it thus suffices to show the lower map b is an isomorphism for any B € S<¢. Now, by
definition of a generalized t-structure,
TA — A—s 77A

is a distinguished triangle in T', yielding a distinguished triangle

F(r<¢A) — F(A) — F(r>¢4) ™%
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in S. As Hom(B, e) is a cohomological functor by the definition of a triangulated category,
one gets an exact sequence of abelian groups

... — Homg(B, F(17¢A)[-1]) —

— Homg(B, F(75¢A)) —% Homg (B, F(A)) —

— Homg (B, F(77°A)) — ...
and, as F' is left exact by hypothesis, the first and the last of the shown terms in the
above sequence vanish (recall that B € SS¢). So b in (1.2) indeed is an isomorphism.
The same works for 7<¢ as well, as it is again right adjoint to the inclusion T<¢ — T.
Now let I = [a,b) C R, where one could as well have chosen an interval of the form (a, b],
(a,b) or [a,b], including the case [a,a], in which we denote the functor H'*% by H® as
usual. Then, as F is left t-exact, we have F(77%A) ~ 72¢F(77%A) and thus, if A € T>,
i.e. 779A ~ A, we get

H[a’b)F(A) ~ T>aT<bF(A) ~ T>aT<bF(T<bT>aA) ~ H[a’b)F(H[a’b)A).

Now, suppose that I := [a,a+ 1) — R/Z is bijective (again everything works completely
analogous for I = (a,a + 1]), so that S? is abelian and H' is cohomological. Let us
consider a short exact sequence

0—A—B—C—0
in 7. This corresponds to a distinguished triangle
+1
A—B—C—

in T' (note that T is nothing but the heart of the classical t-structure (T<¢*1 T>%) on
T which is associated to the generalized t-structure (7S¢, T>°), cf. remark 1.46 resp.
[Bri07, section 3] and [DK16a, section 1.2]).

So, F(A) — F(B) — F(C) * is a distinguished triangle in S and applying the
cohomological functor H := H é gives us an exact sequence

.. — HYF(C)) — H°(F(A)) — H°(F(B)) — H°(F(C)) — ...

with H = Hga+i’a+1+i) [i] = 75T o 7S] But now C € T, so, as F is left t-exact,
F(C) € §2%, so 7<F(C) ~ 0, i.e.

HYF(C) =13 or5*F(C)[-1] ~0,

showing H §F : 7T — ST is indeed left exact. O
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Remark 1.51. The very same proof works if we replace the left t-exact functor F' with a
right t-exact functor G' and every appearance of “<” (resp. “<”) with “>" (resp. “>”) and
vice versa. Later, we will have to use Homgs.(e, B) (instead of Homg< (B, ), using the
covariant instead of the contravariant Yoneda-embedding), and replace the distinguished
triangle above with

1
TCA s A 77A

The very same reasoning then yields that for such right t-exact G, we have

for any A and G induces a right exact functor
Gt 8
if I — R/Z is bijective.

1.7 Enhanced perverse sheaves

Recall that for some (real analytic) manifold X and some perversity function p: Z>o — Z,
one defines the (classical) t-structure on D%_C(kx) corresponding to p by defining the
properties

(pSO)(F):  dim(Supp(H’F)) < m for any j,k with j > p(k)
(p?O)(F):  HI(i%F) =0 for any Z € LCS(X) with j < p(dim(Z))
ofa F € Db __(X) (notation inspired by the one in [DK16a]), where LCS(X) shall denote
the locally closed subanalytic subsets of X, and then setting
D3 (kx) ={F € Di_,(kx)|(p=")(F) holds},

PDZ° (k) ={F € Dh_ (k)| (p°°)(F) holds}. .
cf. [KS90, definition 10.2.1]. Note that the property (p<°)(F) may be reformulated in a
way formally more similar to (p>°)(F): Let X = [[,.q Xa be a subanalytic stratification
of X, consisting of equidimensional strata, such that F' has locally constant cohomologies
with respect to (Xg)eeu. For every a € 2, let i,: X, — X denote the corresponding
locally closed embedding. Then, (p<°)(F) is equivalent to

(pSO)o(F):  HI(iy'F) =0 for any a,j with j > p(dim(X,)),

cf. [KS90, proposition 10.2.4]. Under the very same assumptions, (p=°)(F) is equivalent
to
(p*O)o(F): HI(i\,F) =0 for any a,j with j < p(dim(X,)),
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again by [KS90, proposition 10.2.4]. For some perversity function p, one defines p* by
p*(n) = —p(n) — n. Then, it is a well known fact that

Dx ("D, (kx)) €7 DZ°(kx), Dx(DZ°,(kx)) P DE% (kx).  (L4)

with Dx denoting the Poincaré—Verdier dual on X as usual, cf. [KS90, proposition
10.2.13]. Further recall that, for a complex manifold X, one sets

PDZ? (kx) :==PDg’ (kx) N Dg_(kx),

PDE? (kx) =P D (kx) N Dg_(kx),
cf. [KS90, section 10.3]. For some F € DY __(kx), checking the criteria (p<)y(F),
(p?9)9((F) from above, we may choose every stratum X, to be complex analytic and

thus of even real dimension. This allows us to apply the above definition 1.3 to the so
called middle perversity function py/o: 2Z>0 — Z, n — —n/2, yielding

P1/2DR° (kx) ={F € D&_,(kx)|Vj: dim(Supp H'F) < —j}

P2DZ (kx) ={F € D¢_(kx)|Vj: dim(Cosupp’(F)) < j},
where j € Z and Cosupp’(F) = Supp(H 7 (Dx F)), cf. [Dim04, section 5.1], [KS90,
section 10.3]. We will write (1/2Dégc(kx),I/ZDEEC(kX)) for the py/o-t-structure on
Dé’;i kx). As p /2 1s characterized, amongst all perversity functions, by the property

that p} 2 = P1/2; the middle perversity t-structure, by (1.4), has the desirable property
of being self-dual, i.e.

Dx(2Dg° (kx)) € V2DZ° (kx), Dx(*?DZ°.(kx)) c V2D (kx).
Furthermore, moving to the case k = C, the de Rham functor
DRx: D%(2x) — D}_ (Cx)

is known to be exact with respect to the standard t-structure on DY (Zx) and the middle
perversity t-structure on D%__(Cx). The heart

2D_.(Cx) ="?Dg’ (Cx)n'*DE’ (Cx)

is an abelian category (as is the heart of any classical t-structure), whose objects are
called perverse sheaves.

Clearly, this construction of a middle perversity t-structure does not work for case
of D%f (kx), due to the mere fact that p; /2 takes non-integer values on odd numbers,
conflicting with the definition of a classical perversity function. Actually, in view of (1.4),
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there is in general no peversity function p that would yield a self-dual (classical) t-
structure on D]%f .(kx). However there is a natural self-dual generalized t-structure on
D% (Cx) ([Kasl5]), using the generalized perversity function

p1/2:Z>0—>R, n»—)—n/2.

To be precise, one may define (cf. [DK16a, definition 1.7.3, lemma 1.7.4 and proposition
1.7.5] — with notation as above), for any ¢ € R,

YV2Dg° (kx) :={K € D§_,(kx)| dim(Supp(H'K)) < k,Yk € Z30,Yj: j > c + p1/2(k)}
Y2Dge (kx) :={K € D}_.(kx)|Dx K € "*Dg~¢(kx)}-

Building upon these ideas, in [DK16a|, M. Kashiwara and A. D’Agnolo prove the ex-

istence of a self-dual generalized t-structure on Ep_(X) for a subanalytic bordered
space X, again using the (generalized) perversity function py ;.

1.7.1 Enhanced ind-sheaf t-structure

From now on, if the context is clear, we would like to refer to a generalized t-structure
simply as a t-structure and, analogously, to a generalized perversity function, i.e. a map
p: Z>o — R such that p and p* (which is again defined by p*(n) = —p(n) — n) are both
decreasing, as a perversity function. Let X = (X, X) be a subanalytic bordered space,
and let jx denote the corresponding open embedding X — X.

t-structure on D% (kx) Recall from [DK16a| that one may define a self-dual gen-
eralized t-structure on D% __(kx), similar to the case of D% _(kx) (cf. [Kasl5|), the
following way: Let CSx denote the closed subanalytic subsets of the bordered space X.
Furthermore write dz for the dimension of a Z € CSx and set

CSx* :={Z € CSx|dz < k}
Sy == {Z € CSx |dz < k}.

Definition/Proposition 1.52 (cf. definition 3.1.5 of [DK16a]). Consider D% __(kx) as a full
subcategory of D(X) via tx. For any perversity function p there are given the following
two conditions in [DK16a]:

(Ipy°): i()%\Z)mF € DSHPR) (X \ Z) o) for some Z € CSg (L5)
(Ip,fc): i!ZOOF € D>C+p(k)(Zoo) for any Z € CS;k
These conditions yield the following full subcategories of D(X):

pDéc(X) ={F ¢ D(x)|(1plfc) holds for any k € Z>¢}
PD>4(X) :== {F € D(X)|(Ip{°) holds for any k € Z=o}

26



1 Introduction

One defines _ - )
PDR°¢ (kx) :="D>(X) N Dg_.(kx)

PDg¢ (kx) ="D>*(X) N Df_.(kx),
and this finally gives a (generalized) t-structure on D% (kx) (note that, for p = p; ;5 and

X = X, this is just the self-dual t-structure on D% __(kx) mentioned above, cf. [DK16a,
lemma 1.7.4]).

Intermediate (not self-dual) t-structure on Ep_ (X) Let K be an object in E(X), p
some (generalized) perversity function, ¢ € R and k € Z>¢, as above.

Definition 1.53 (definition 3.2.1 of [DK16a|). Consider the following conditions (in anal-
ogy to (1.5)):

(Epy©): Bigg 5 K € ESPW((X\ Z)w0) for some Z € CS5* L6)

(Ep¢):  Eiy, K e E>PH(Z.) for any Z € CSY
The corresponding strictly full subcategories of E(X) are denoted by

pES6(X) = {K € BE(X)|(Ep;°) holds for any k € Zso},
pE74(X) := {K € E(X)|(Ep;°) holds for any k € Zx}.
Remark 1.54. (,E<¢(X),,EZ¢(X)) is not a (generalized) t-structure, cf. [DK16a, sec-
tion 3.2]. A useful note supplementing the conditions (1.6) (cf. [DK16a, Remark 3.2.2
(1)]) is that one has:
Big\ ;) K € EX((X\ Z)x) &= 7 hx\z ® K € BS(X),
BiY, K € E*%(Zs) <= RIhom(r ‘kz, K) € E*(X)

Definition/Proposition 1.55 (cf. def. 3.3.11 and prop. 3.3.12 of [DK16a]). For a perver-
sity function p and ¢ € R as above,

PE]Eic(X) = pEgC(X) N E]R c(X)

pE2C (X) =, B74(X) N Ep_(X)

defines a generalized t-structure on Ep_ (X).

However this t-structure still misses the property that D¥ interchanges pEﬁf . with
o E§:§(X), which is the basis for obtaining a self-dual t-strucure by setting p = pyo.
This issue is solved in [DK16a| by intersecting (,E5° (X), pEz (X))eer with its dual
t-structure, to finally obtain a self-dual t-structure for p = py 5.
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Dual intermediate enhanced t-structure Let p be a perversity function and ¢ € R, as
above.

Definition 1.56 (notation 3.4.1 in [DK16a|). One sets
pERC(X) = {K € By_(X)|DX K € , Bz "5(X)
pERC LX) = {K € By_(X)|DX K € , B3 ~5(X).

This again defines a t-structure on Fy_(X), cf. [DK16a, proposition 3.4.2], and D%
interchanges , E5° .(X) and piEﬂ?:g(X) resp. ,E2¢ (X) and p,:Eﬂ%:g(X), by definition.

Enhanced t-structure
Definition 1.57 (definition 3.5.1 of [DK16a]). For a perversity function p and ¢ € R as

above, set

PERC (X) = p B’ (X) N BT (X)
= {K € Bp_(X)|K € ,E5° (X) and DK € -Ez_**(X)},
PEZC(X) = o BR A (X) 0 R (X)
= {K € Bp_(X)|K € ,Ez°,"*(X) and D¥ K € ,-Ez~¢(X)}.
In [DK16a] it is shown that one has

Theorem 1.58 (cf. theorem 3.5.2 of |[DK16a|). For a bordered space X as above,
(PER° (X),PEZ° (X))cer is a t-structure on Eyp_(X), and D¥ interchanges PESC (X)
and 7" EZ~¢(X).

In particular, setting p = py /5, the resulting generalized t-structure is self-dual.

Definition 1.59 (definition 3.5.8 of [DK16a|). The self-dual generalized t-structure on
Eg_(X) for the perversity p;/; is denoted by

(V2E5e %), 2B (X))
and called the enhanced middle perversity t-structure.

Defining p[d] by p[d](n) = p(d + n), one can show

Proposition 1.60 (proposition 3.5.6 of [DK16al). Let f: X — Y be a morphism of
bordered spaces, and d € Z=q such that diim(f~(y)) < d for any y € Y. Then, for any
c € R, one has

i) BfTY(PERS (Y)) C PERS (X),
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it) Bf ("MEC (Y)) C PERS 1(X),
iii) By _o(Y)NEf,(PEg? (X)) € B (Y),
iv) Ep_(Y)NEf(PERS (X)) C PESTI(Y).
Proposition 1.61 (proposition 3.5.7 of [DK16a|). The embedding
e: Dy_o(kx) = Ep_o(X)
is exact with respect to the generalized t-structures (PDg° (kx),?Dz° (kx))cer Tesp.

(PERC (X),PEZ° (X))cer described above.

1.7.2 Riemann—Hilbert correspondence

Let X be a complex manifold and k = C.

Theorem 1.62 (cf. theorem 4.5.1 of [DK16a]). The enhanced de Rham and (shifted)
solution functors DR)E( resp. Sol)E( [dg] are exact with respect to the standard t-structure
on DY (Zx) and the enhanced middle perversity t-structure on Ep_(X). In particular,
one has the following (quasi-)commutative diagrams

E E
Modpel(Zx) DRy, 12E)_ (X) Modpe1(Zx )P T, 1/231%%6()()
o T T
MOdrh(-@X) *X> 1/2D](I)£fc((cX) Modrh(gx)Op % UQD%%C(C)(),

where dg denotes the complex dimension of X.

1.8 Meromorphic connections

As stated in the introduction of [Sim09] and built on in [Aril0], the setting of irregular
meromorphic connections on an algebraic variety provides a natural framework for ap-
plying the concept of Katz’s middle convolution operation. As announced at the very
beginning of this section, we would like to find an enhanced counterpart to this in this
thesis. However, to make use of the enhanced Riemann—Hilbert correspondence later
on, we would have to pass over to the analytic setting via the analytification functor
described in [Ser56]. With that said, let us finally recall some basic facts about mero-
morphic connections, in the algebraic as well as in the analytic setting.
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Algebraic case Let D C X be a divisor on a smooth variety X and denote by U := X\ D
its complement, as well as by j: U — X the corresponding open embedding. Let us
denote by Ox (xD) := j,.Oy the sheaf of meromorphic functions on X with poles on D.
Recall from [HTTO8, section 5.3| that an (algebraic) meromorphic connection on X along
D is a Zx-module .# that is isomorphic to some coherent Ox (xD)-module as an Ox-
module. In particular, for such .#, one has that j¥X.# ~ jt.# ~ j='.# is an integrable
connection on U. As in [HTTO08|, we denote the category of (algebraic) meromorphic
connections on X with poles along D by Conn(X, D) and that of integrable connections
on X by Conn(X). A result that distinguishes the algebraic case from the analytic case
in a fundamental way is the following

Lemma 1.63 (lemma 5.3.1 of [HTT08]|). The functor j=1 establishes an equivalence of
categories
Conn(X, D) = Conn(U)

with quasi-inverse j.

In particular, any algebraic meromorphic connection is holonomic (this of course is
true in the analytic case as well).

Analytic case For the analytic case, we are referring to [HTTO08, section 5.2] and [Bj693,
section II1.6]. If X is a complex manifold and D C X a divisor, we denote again by
Ox (xD) the sheaf of (analytic) meromorphic functions on X with poles on D. An
(analytic) meromorphic connection on X along D is a Zx-module .# such that .#
is isomorphic as an Ox-module to some coherent Ox (xD)-module, or equivalently, a
holonomic Zx-module .# such that .#|x\ p is a integrable connection and .# ~ .# (xD),
cf. [Bjo93, section 3.6.6]. We write Conn(X, D) again for the category of meromorphic
connections on X along D.

As mentioned in [HTTO08, section 5.3|, on a projective smooth variety, the analytifica-
tions of algebraic meromorphic connections are analytic meromorphic connections,

Lemma 1.64. Let X be a projective smooth variety, D C X some divisor, as above, and
A € Conn(X, D). Then 4" is an analytic meromorphic connection on X** along D*",
i.e. A* € Conn(X?", D).

As is well known, no analog of lemma 1.63 exists in the analytic case.
Meromorphic connections and enhanced Riemann—Hilbert correspondence Let X
be a complex manifold, D C X some divisor and U := X \ D as above, where we again

denote by j: U — X the corresponding open embedding. The following is an observation
used in [DHMS17, section 2|.
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Lemma 1.65. In the above setting, let A be some Px-module satisfying M ~ M (xD)
(e.g. # € Conn(X,D)). Then

DRE (M) ~ RIhom(n'Cy, DRE(M)) resp. Solk (M) ~n'Cy @ Sol& ().

Proof. Because the proof is omitted in [DHMS17], let us give a short sketch here for con-
venience. By [DK16a, lemma 2.4.5], both versions correspond to each other via duality,
so it is certainly enough to prove the first one. Now, Ox (xD) is regular holonomic and
Solx (Ox(xD)) ~ Cy, so® we get

DRE(M) ~ DRE(6(+D) & ) ~ RIhom(x—"Solx (6(xD)), DRE(.M))
~ RIhom(n 'Cy, DRE (1))

by [DK16b, theorem 9.1.2 (iv)]. O

3To see this aforementioned equation, consider the distinguished triangle
RT(p)(6x) — Ox — Ox(xD) =5
from [Bj693, section 2.5] and apply Slx (e), together with
RT(p)(0x) ~ Thom(Cp, Ox)
from [KS96, theorem 5.12], which means that

Solx(RF[D](ﬁx) ~ (CD.
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2 Convolution operations

2 Convolution operations

Recall that a group object G in the category of smooth algebraic varieties or complex
manifolds is a variety or manifold equipped with the corresponding structure morphisms,
i.e. a group operation o: G Xx G — G, an identity {*x} — G (where {*} denotes the
corresponding one-point terminal object), and inverses given by ¢: G — G, subject to
the ordinary group axiom diagrams.

The concept of the additive convolutions in [Kat95] is based on the additive group
structure of A'. When proceeding to the enhanced setting, probably the first basic issue
coming up is that, though A := (A!)3 of course still is a group object in the category
of manifolds, for some meromorphic connection .# on P! with a pole at oo, obviously
SolE ()| 4 (with P := (P1)3) does not capture enough information to recover .# — on
the other hand, P is not a group object with respect to the appropriate additive structure.
Our suggestion here is based on the following observation that emerges quite naturally:
The bordered space A := (A, P) is a group object in the category of (subanalytic, actually
complex in the sense of [KS16, section 4.3|) bordered spaces, with respect to the sum
map

c:AXA—A

that is induced by the group operation A x A — A, (a,b) — a + b on A, with unit
morphism ({pt}, {pt}) — A induced by {pt} — A, pt — 0 and inverses morphism
t: A — A determined by A — A, a = —a. In addition, Sol¥(.#)|a does keep the
necessary information on .#, see lemma 1.65. In the course of this section, we will use
this observation, together with the concept of enhanced perverse sheaves established in
[DK16al, to define additive !- and *-convolutions on Ep__(A) and, building on these,
an enhanced middle convolution operation on Y2EY (A) (definition 2.8), in nearly
complete analogy to the concepts of [Kat95, section 2.6]. In particular, our enhanced
middle convolution operation will rely on a pair (K, L) of objects in */ 2EQ (A) satisfying
some property P, similar to the one of [Kat95, section 2.6] for the classical case. The
major part of this section is then devoted to finding some non-trivial pair (i.e. not both
objects originating from classical perverse sheaves, cf. proposition 1.61) of objects in
12E9  (A) meeting this requirement.

Remark 2.1. Some observations concerning A.
e The group operation +: A x A — A does indeed induce a morphism

c: AxA—= A,

as P and thus P x P is compact, so in particular, the restriction of the first
projection pr1|ﬁ: 'y — P (cf. definition 1.1) is proper. The same argument of
course works for identity and inverses morphism as well.
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e For the same reason as above, pry|p;: T, — P (for pry the second projection
P x P — P) is proper as well, which makes ¢ a semi-proper morphism of bordered
spaces (cf. definition 1.2).

e As P! is compact and of dimension one, the analytification functor ()*" from
[Ser56] gives an equivalence D? (Zp1) ~ D?_(Zp) between algebraic and analytic
holonomic Z-modules, cf. [Mal91, section 1.4].

e The homeomorphism
a:Ax A= Ax A, (a,b)— (a,a+D)
induces an isomorphism of bordered spaces a: A x A = A x A, such that
poa=o0c
for the projection po: A x A — A on the second factor.

Definition 2.2 (Enhanced convolution). Let us now define two kinds of convolution oper-

ations E!, E*: Ep (A)x Egp_(A) = Ey_.(A) (analogous to the definitions in [Kat95])
—let K, L be objects in Ep__(A), denote by p1, pa the projections

AL AxA 2 A

and set?
E + 1.t 1
K x,L:=Fo,(KXL)=FEo.,(Ep; K®Ep, L),

E + 1.t 1
K %\ L:=FEoy(KXL)=FEon(Ep, K®Ep, L).

2.1 Compatibility with “classical” convolution

Recall the embedding e4: D4 _(ka) — Ep_.(A) (section 1.3.2). In this section, we
want to assure that the above convolutions correspond to the “classical” ones, as defined
e.g. in [Kat95], via this embedding e.

Lemma 2.3. Eoy and Eo, commute with e, to be precise:
EO'*OeAXAZeAORO'*, EO’;[OeAXAzeAORO'!.

Proof. As known from [DK16a, remark 2.4.3|, we have 1o o Ro, ~ Ro, o taxa, and
LA © Roy ~ Ronotaxa as o is semi-proper. Let us show the commutativity

FEoyoe~eo Roy.

4Recall that Eoy and Eo, preserve R-constructibility as ¢ is semi-proper, cf. [DK16a, proposition 3.3.3]
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We set X := A x A and og_, := 0 X Idr_, as shorthands and compute

Eou(e(F)) =Eon(@x (ks @ 7 'F)) = Qa(Row (o (kfis0y) @ 7' F))
~Qa (kfis0) ® Rog um ™' F) ~ Qa(kfjsgy ® 7' RoyF) = e(Roy(F))

for some F' € D(X), using the obvious fact that Jﬂgjok:f;»o} ~ k§>>0} (second step),

[DK16b, proposition 3.3.13] (third step) and [DK16b, lemma 3.3.14] (fourth step). Fi-
nally, one has Dg oFoy ~ FEo, oD)E( and DJ)E( oe~eoDyx, as well as D g4 oRoy ~ Ro,oDx
and D¥ oD% ~ Id, DxoDx =~ Id (and of course all the same on A), cf. [DKl16a,

Proposition 3.3.3], so we get

Eo.(e(F)) ~Eo.(e(Dx oDx(F))) ~ Eo.(DZ(e(Dx F))
~DX oEoy(e(Dx F)) ~ D oe(Ro/(Dx F)) ~ e(DgoRoy(Dx F))
~e(Ro«(Dx oDx(F))) ~ e(Ro.F).

+
Lemma 2.4. ex (with notation as above, i.e. X = A x A) interchanges X with X.

+
Proof. 1t is enough to show this for e (instead of ex) and for ® and ® (instead of X

+
and X)), as e clearly commutes with inverse images. For any K, K3 € D(X x Ry), and
L € D(X), one has (cf. [DK16b, lemma 4.3.1] resp. lemma 1.33)

+ +
TL® (K@ Ke) ~ (n 'L ® Kp) @ K.

So, in particular we have

e(F)®e(@) =o' P ok or ') ~m ' Fo kL ok o 'Q))
cr P Go (HEO k)~ (Fo Q) o kL = o(F® G).
O

Let us denote by K *) L and K x, L the classical additve convolutions from [Kat95].
With the above observations, we get

Lemma 2.5. Let F,G € D% __(ka), then

e(F*nG)~e(F) ED e(G)

for O =\ x.
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2.2 Duality interchanges the two types of convolutions

Let X := A x A be as above. We already used that D4 o Roy ~ Ro, o Dx and
DX o Eoy ~ Eo, o DZ. Tt is a well known fact that, for any reasonably good (cf. [KS90]
for a precise description) topological spaces X and Y, and F' € Db (kx), G € D%__(ky),
we have

DXXy(F X G) >~ D)((F) X Dy(G)

The same was proven for the enhanced setting in [DK16b, Proposition 4.9.21], and the
result immediately carries over to the enhanced setting (cf. lemma 1.37). We thus have

Lemma 2.6. Let K,L € Ep__(A), then

DE(k % L)~DE K%, DE L,
DE(k¥. 1) ~DEK ¥ DE L.

2.3 Enhanced middle convolution
Before we state our definition, we would like to recall the following fact.

Lemma 2.7. Let f: X — Y be a morphism of bordered spaces, K € D(X). Then we
have a canonical morphism
Rfi1K — Rf.K.

In particular, for K € E(X), this induces a canonical morphism
Ef”K — Ef*K

Proof. Let us first note that in case f is an open (bordered) embedding j, we have
j' ~ 51 and thus we get the morphism in question as

RjnK — Rj.j ' RjuK ~ Rj.K, (2.1)

using the unit of the j~!' 4 Rj, adjunction and base change®. For the general case, by
[DK16b, lemma 3.2.5], we may factor f as

(X, X) &= (L, Ty) = (Y.Y),
where I‘if is the closure of I'y in X x Y and the p; are induced by the projections

X T Y

5Note that this construction coincides with the canonical morphism obtained by

RjuK ~ Rjuj 'Rj.K — Rj.K.
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in particular, g is proper by definition of a morphism of bordered spaces, and ¢, likewise
by definition, is proper if and only if f is semi-proper. As p; is an isomorphism of bordered
spaces, we have, by [DK16b, corollary 3.3.11], that

RfuK ~ Rpoyp; 'K, Rf.K ~ Rps.p; K. (2.2)

As ps is induced by go, writing jx: X — X and jy: Y — Y for the open embeddings
as usual, we get

RponL ~ j¢'ReanRjxnL, Rpa.L ~ jy'Rgo . Rjx L

for any L € D((T'y,Ts)) by [DK16b, lemma 3.3.12]. We have a canonical morphism
Rgan — Rga s (cf. |[KSO1, proposition 5.2.6]) that actually is an isomorphism if g is
proper (i.e. if f is semi-proper). Together with (2.1) and (2.2) this gives the desired
canonical morphism Rfi — Rf,. O

E E
In particular, lemma 2.7 proves that we have a canonical morphism K ) L — K *, L
for some pair (K, L) as above. Furthermore recall that '/2E3 (A) is a quasi-abelian
category.

Definition 2.8 (Enhanced middle convolution). For K, L € /2EY _ (A), we want to say,
in a slight alteration of the definition in [Kat95|, that the pair (K, L) has property J

(resp. P, P), if KE! L c'2E) (A) (resp. K E* L € 2B} (A), resp. both). If
(K, L) has property 3, we set

K Emid L:=Im <K E! LK%, L) 2By (A)

and call this the enhanced middle convolution of K and L. Clearly there is no reason to
prefer the image over the coimage here, so we introduce

K %o g L := Coim (K Yokl L> c 1250 _(A),

which we will refer to as the enhanced co-middle convolution of a pair (K, L) with prop-
erty ‘L.

Immediately by the definitions, duality interchanges middle and co-middle convolution
(cf. lemma 2.6), and the two versions coincide if and only if the canonical morphism

E E
K % L — K %, L is strict.

36



2 Convolution operations

2.4 A non-trivial pair (K, L) with property B

As announced in the course of the introduction, our definition of the enhanced middle
convolutions raises (at least) two major issues. One point is if there are actually any non-
trivial pairs (K, L) — where by this we mean, in the context of lemma 2.5, that the objects
of such a pair should not both be in the essential image of e, i. e. not be coming from some
ordinary perverse sheaves — that have property 3. A positive answer to this seems to be
indispensable in order to justify definition 2.8. The second question emerging naturally
is about the existence of some criterion asserting K #miq L ~ K *¢o_miq L for a given
pair (K, L). For the rest of this section, we would like to address the first of these two
matters. Our main result here will be theorem 2.30, stating that the pair (E*[1], L¥[1])
has property B, where E* = Solg(é" %) is the image under the enhanced solutions functor
of the irregular exponential meromorphic connection &% € Conn(P, {oc}), cf. [DK16b,
definition 6.1.1], where w is a local coordinate of the chart A~ P\ {oo}, and L¥ is the
enhanced ind-sheaf associated to a classical Kummer-sheaf for some A\ € C\ Z via the
embedding e (cf. section 1.3.2). The rest of this section is devoted to the proof of this
theorem.

2.4.1 Kummer-sheaves

Definition 2.9. Let z be the affine coordinate of A'. For A € C\ Z we define a rank one
connection

— dZ
A = _—
c%/ . <ﬁAl\{0},d+)\ e >

on U := A'\ {0} C P!, cf. e.g. [Aril0, section 2.3]. For j: U — P!, let us denote by
K i= ju A and # 2 := (K2)* € Hol(Zp) the extension of # 2 to a regular (analytic)
meromorphic connection on P.

Let us denote by Al ~ U := P!\ {oco} and A! ~ V := P!\ {0} the two standard charts
of P'. Let us write w resp. z for the corresponding local coordinates and ji: U — P!
resp. ji: V — P! for the associated open embeddings. Then, K*|y ~ 9/ %y Py and
KMy ~ @y | Dy Py, for Py = wdy, + X and Py = 20, — \. In particular, we have

() 'DpKA ~ (DK |u)™ ~ (Zu /Do Pi)™
(I TIDpK =~ (Dy Ky |v)™ =~ (Dv | Dy Py )™

for Pj; resp. Py, the transpose operators, cf. [HTTO08, pages 70,71], i.e.

P == 0pw+ A= —wdy, — (1 = N),
Pr=—0,z—A=—20,+(1—-\).
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We naturally get Dpi/C) ~ ICCIL_)‘ and thus DpkK?* ~ K!=*. Furthermore, there is a

canonical isomorphism 1=* ~ =2, cf. lemma 4.22, so we have
Dpkt ~ K,

Let us denote by Ly := Sol(gi/v)‘) € Db(CA\{O}) the local system corresponding to O
Due to the algebraic origin of .#?, we have (cf. [HTT08, theorem 7.1.1])

DR(A) ~ Rj.DR(AN), Ly :=Sol(H™) =~ jiSol(#*) = jiLx.

We will call L) the Kummer-sheaf corresponding to A € C\ Z. Clearly, IA/; is a rank one
local system with monodromies e=2%* = 1 (resp. €2™**) around 0 (resp. 0o) — and write

LY = SolP () = e(Ly).

If the context is clear, we will consider L) as an object L*|a € D% _(Ca) C D% (C).
Note that L¥[1] = e(Ly[1]) € Y2ES _(P) by |[DKl16a, proposition 3.5.7 and theo-
rem 4.5.1.].

2.4.2 The pair (K, L)
On the other hand, consider the irregular meromorphic connection
éﬁw = (5"71)”\{00”7; € HOl(@’p)

(notation as in [DK16b]), where w is a local coordinate on A = P\ {oo}. We know that
+
Sol (") = CF @ Cpy— pe(wyy = B

by [DK16b, corollary 9.4.12]. By theorem 1.62, E*[1] € Y2E3__(P). We will consider
L¥[1] and E¥[1] as objects of /2E%_(A) via Ej,". Note that, for the following calcu-
lations, we would like to use some general meromorphic function ¢(w) instead of w as
long as this does not complicate things too much, where we will assume, without loss of
generality, that ¢ has one of its poles at co € P. Analogous to our notation above, we
will write

+
E? = Slp(6%) = CF @ Cly—_Re(p)}-

Let us also point out that choosing one part of a pair (K, L) as above to be a Kummer-
sheaf seems natural with regard to the fact that the main use of the classical middle
convolution construction as e. g. in [Kat95] and [Aril0] lies in their application within the
framework of the corresponding middle convolution algorithms, for which convolutions
with Kummer-sheaves resp. their Z-module counterparts IC* are distinctive.

While L¥[1] is in the essential image of e by construction, E“[1] certainly is not, so
the pair (K, L) := (E¥[1], L¥[1]) is non-trivial in the sense we mentioned above. Let us
show that (E™[1], L¥[1]) has property 9.
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2.4.3 Reduction to the case of usual sheaves, part |

Recall the choice for the bordered space A = (A, P) from above. Let us denote
+
K =E¢% LF = Boy(E? K LY),
+
K, =E¢% LF = Bo,(E¥ K LY)

as shorthands. For the following calculations, for a bordered space X = (X X ), let
as before 1x: D% (Cx) — D(X) denote the embedding of sheaves to ind-sheaves,
Qx: D(X xRy) — E(X) the quotient functor and 7: D(X x Ry ) — D(X) the projec-
tion (the restriction of 7 to the full subcategory of usual sheaves will be denoted by 7
again). If the situation is clear from the context we will often drop the indices. Finally let
us recall the notation L”, RE for the left resp. right adjoints to the quotient functor Q.
We will write
AZAXA A

for the projections, and, if there is no risk of confusion, we will use the same labels for the
corresponding projections A x A — A resp. P x P — P. We will denote the coordinates
on A x A by (z1,22). So we may write (with ¢(z1) :== pop1)
S I E
Ky = FEoy(EY K LY)
_ + + _ _
= Eoy, (Epl "(CR @ Cpm_pe(p)}) @ Ep; (CR @7 1L>\)>
E 3+ -1 o -1 -1
~ Eoy <CA><A ® (Epy ' Cl—_Re(y)} ® Epy (Cp—gy ® 7 LA)))

+ + o

~ CX ® Eoy((Cp—— Re(p(=1))} @ Cp—op) @ py ' L)
+ 1

= Ci ® (RO'R,!(C{t:_ Re(p(21))} @ Do Ir ILA)) .

where we write or to denote the morphisms o x Idg and omit the functors @ and ¢, as
we will often do if the context is clear. Furthermore, as ¢ is semi-proper, we get

s E
K, = Eo,(E* X LY)

+ _ + _
~ DEEU!! DJE\XA <C£><A ® (Epl 1C{t:, Re(y)} ® Epg 1(C{t:0} QT 1L)\))>
+ +
~ Dg Eoy (ngA @D gxaxra (pl_l(C{t:_ Re(y)} ® p;l((C{t:O} ® 7T_1L)\))>
+ +
~Ch ® <DA><R a'Rog) Daxaxr 0 (P1 ' Cpm_ re(p)} @ 3 (Ciimoy ® 7T_1LA))>

+ — —
~ CX ® (Ror(Cl—— Re(p(z))) @ P53 '™ L))
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Remark 2.10. We could without any further changes have replaced any appearance of
C{i=oy with Cyy>0y in the above lines, as for any F' € D% (Cx) we have

CF & (Cpegy @7 1F) = (CF @ Cppy) ® 7 ' F = CP @ ' F =
+ +
= (C* ©Czoy) @7 ' F 2 C¥ @ (Cpmpy @7 ' F).

Remark 2.11. In this context, let us also verify, for the sake of completeness, that

+
Criz0) @ Cp=—Re(e)} = Clz—Re(p)}
as one would expect. Consider the obvious morphism Cys>_Re(p)} = Cli=—Re(p)}- We

+
want to convince ourselves that this induces, applying Cy;>01 ® (e), a canonical morphism

+
Citz—re(p)} = Criz0y @ Cri——Re(p)}

which we may then easily prove to be an isomorphism by checking stalks (and using
lemma 1.21). To do so we would like to verify that the canonical morphism

+
Crez01 @ Cpiz—Re(p)} = Cliz—Reo)

+
induced by Cy>0y — Cy—y (together with the fact that Cy_gy @ K ~ K for any K)
is an isomorphism. Note that the latter morphism fits into the standard distinguished

triangle
1
Cps0y — Cpzoy — Cpi—oy =

+
so we may equivalently prove that Cyy0y ® Cyy>_Re(e)y = 0. We can check this on stalks
again: For some y € A at which ¢ is defined, let i : {y} - Aandiyr: {y} xR - AxR
denote the canonical closed embeddings. Then, obviously

- - -
iy2(C>0p ® Cpiz—Re(e)}) = Ce>0p @ Cpiz— Re(o(u))}-

Now, setting a := —Re(p(y)) € R and pg: R — R, t — t+a the translation map (where,
as usual, we label any map X x R — X X R that is induced by p, with u, again), we
get that

+
C{t>a} = Rﬂm*c{@o} = C{1t>0} ® C{t:a}a
cf. [DK16b, section 4.6], and so

+ + + + +
Ci>0y ® Cizay = Cpnoy @ (Cprzoy @ Cpy—ay) = (Cpisoy ® Cpinoy) @ Cpy—gy = 0,

cf. lemma 1.21 resp. [DK16b, section 4.6].
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Finally, as for any subanalytic space X and any F € Db _ (Cxxr..), we have
DR (CX ® Qu(F)) ~ Cx ® Qu(Dxxra 'F)
(cf. [DK16a]), as we already used above, the dual cases DX K and D K, can be handled

the same way.

2.4.4 Enhanced perversity conditions

By definition, we have E¢[1] % LE[1] = K[2] and E*[1] %, L¥[1] = K,[2]. For proving
K\[2],K.[2] € Y2EY_.(A), in view of [DK16a, definition 3.5.1] (cf. section 1.7.1 for a
short summary), what we have to show is

K\[2], K.[2], DP(K\[2]), DP(K.[2)) € 1 o BL/>(A).
Filling in the definitions, this amounts to showing that, for
G € {Ki[2], K.[2], D" (K[2]), D" (K. [2))},
we have (notation as in [DK16a, section 3| resp. section 1.7.1)
i) for any k € Z=o, there exists a Z € CS3F such that
Ei {\5..G € ESTH2((A\ Z)),

ii) for any k € Zx, for any Z € CSik one has

Eiy, Ge B>~ kD27 ),

Remark 2.12 (Summary of what to show). Item i) is trivially true for k& > 3, as we may
chose Z = A in this case. Considering k = 0, i) implies that we must have

G e B3’ (A).
Analogously, ii), applied for k£ > 2, implies that we must have
G € Bz~ (A).

If we manage to show these two, as the standard t-structure on Ep__(A) is 1-indexed,
what remains to check is that there is a Z € CS<!(A) such that

Ei 7.6 € ESH((A\ 2)e0)
and that, for all Z € CSSY(A), we have
EiY, G € B*%(Z),
cf. [DK16a, rem. 3.2.2 and prop. 2.7.3 (iv,v)].
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2.4.5 Reduction to the case of usual sheaves, part Il

_l’_
Now, let us consider how cohomology of enhanced ind-sheaves of the type C£®F for some

+
F € Db (Caxgr.,) can be computed from the cohomology of F (or rather Cpz0y @ F).
To do so, recall the definition

ES"(A) :={K € E(A)|L*K € DS"(A x Ry,)}
E®"(A) :={K € E(A)|LPK € D"™"(A x Ry)},
cf. [DK16a, definition 2.6.1|. Furthermore,
DS (A x Ry) = {K € D(A x Ry)|Rjaxr,, 1K € DS"(P x R)},
D?™"(A x Ry) = {K € D(A x Ry)|Rjaxr,, 1K € D”"(P x R)},

for jaxr..: A x Rye — P x R the canonical morphism of bordered spaces, as usual,
cf. [DK16b, section 3.4]. In particular, as LT o Eja 1 = Rjaxg., n o L¥, this implies

ESY(A) = {K € E(A)|EjanK € ES"(P)}
E”"(A) = {K € E(A)|EjanK € EZ"(P)},

so that we may apply the results of [DK16b, section 4.6]. In particular, we are going to
use that, for some K € E(P) (resp. K € E(A), as Ej,' is exact, compare the above
characterization), one has

uw(K) = Q(u(L¥K)) foru= H",7<" 12",
cf. |[DK16b, section 4.6]. Recalling [DK16b, notation 4.4.5] resp. [DK16a, section 2.6],
if, for some bordered subanalytic space X, we write K € E(X) as K = Q(G) for some
G € D(X x Ro), then
+
LPK = LPQ(G) = (Cyz0) @ Cpucqy) ® G.

+ +
We know that Cyps.0y ® Cpzoy = Cpsoy and Cyps0y @ Crcoy = 0, s0

H™(CE ® Q(F)) ~Q(H"(LP(CF & Q(F))))
~Q(H(Cpsoy ® F)) = CF & Q(H™(Cpyngy @ F)),

+
cf. [DK16b, proposition 4.7.2]. As D% (Cxxg..) is closed under ®, this reduces compu-
tation of cohomologies to the case of usual sheaves for the case that F € Dﬁ%_ (Cxxr.)
as it occurs in our example.
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2.4.6 Characteristic Varieties and p-stratifications

With regard to the subsequent calculations, let us recall some more tools and definitions
from [KS90| and |Dim04|. Let X be a n-dimensional (real) manifold, M C X a closed
submanifold. Then, the normal resp. conormal bundle T3 X resp. Ty, X to M in X are
defined by the short exact sequences of vector bundles on M (cf. [KS90, section A.2|)

0 —TM—MxxTX —TyX —0,
0—TyX —MxxT°X —T°M — 0.

Keeping the notation of [KS90], one defines the normal deformation of M in X (cf. [KS90,
section 4.1]), to be a manifold X A with maps p: X v — Xandt: X M — R, characterized
by

pHX N\ M) ~(X \ M) x (R\ {0}),

7 R\ {0}) =X x (R\ {0}),

t71({0}) =Ty X.

Definition 2.13 (normal cones, definition 4.1.1 of [KS90]). Consider the open subset
Q:=t"YRso) C Xp. Let p: Q — X denote the restriction of p to  and let s be the
isomorphism Ty X = t~1({0}).

i) For a subset S C X, define the normal cone to S along M by
Cu(8) =571 (1 ({0 N5 1(S))

ii) For two subsets S1,S2 C X, define the normal cone C (S, 52) as
C(Sl,Sg) = CAX(SI X SQ),
for Ax C X x X the diagonal subset.

Now, for a given manifold X, consider its cotangent bundle T*X and two subsets
A, B C T*X. If the context is clear, we will identify X with its image Ax under the
diagonal embedding, again following the notation of [KS90, section 6.2]. Note that the
cone C(A, B®) (where B® is the image of B under the antipodal map for bundles) is a
subset of Ty (xxx)T™ (X x X) = T*T (X x X) (cf. [KS90, p. 259] for the isomorphism).
Denoting with ¢ the induced projection ¢: T% (X x X) — X, we can consider 7*X as a
subset of TT;((XxX)T*(X x X) via

LXIdT*X

T*X ~ X xxT*X T (X X X) xx T -5 T*TE (X x X) =~ Try (x0T (X x X),

where ¢: X — T% (X x X) is the zero section.
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Definition 2.14 (cf. definition 6.2.3 resp. proposition 6.2.4 of [KS90]). For conic subsets
A, B C T*X as above, one defines

AFB = q, ¢ YC(A,B*) = T*X N C(A, BY).

Let us state some properties of + that are obvious from the definitions but helpful for
the forthcoming calculations.

Lemma 2.15. Let A, B C T*X be two conic subsets.

i) If A" € T*X is a conic subset such that A C A’, then ATB C A'*B (and of course
the same for B C B').

i) If A =111, Ai is a disjoint union of conic subsets A; C T*X, then
n
A¥B = J(4+B)
i=1
(and of course the same for B =1, B;).

Definition 2.16 (u-stratification, cf. definition 8.3.19 of [KS90]). Let X =[], .o Xa be a

subanalytic stratification of X.

ac

i) Consider two submanifolds M, N of X. The u-condition for the pair (M, N) is
(T XFTHX) Ny (V) € TR X, (1)
where mx: T*X — X is the projection.

ii) The stratification (Xg)qen is called a p-stratification if for all pairs (a,b) € A x A
such that X, C X, \ X, the pair (X,, X;) satisfies the condition ().

|[KS90, lemma 6.2.1 resp. proposition 6.2.4] give a useful criterion for verifying the
p-condition for a given stratification.

Proposition 2.17 (cf. Proposition 6.2.4 (iii)(a) of [KS90]). Let (x,&) be a system of
local coordinates on T*X (where (x) is a set of local coordinates on X ) and consider two
conic subsets A, B C T*X. Then (x9,&) is in AT B if and only if there is a sequence
{(@n,&n), WYn,mn)} in A x B® such that

Tn — X0,
n—00

Yn njo Zo,

(2.3)

Tin — gn — an
n—00

|xn - yn| ’ |€n| — 0.
n—00
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Note that, for the third line of (2.3), we formally identify 7,; X with Ty X resp. T, X.
To be more precise, we consider (Zy, Yn,&n, Nn) as a sequence in T*(X x X) with local
coordinates (z,y,&,n) induced by the given local coordinates (z,&) resp. (y,n) on both
factors T*X of T*(X x X) ~ T*X x T*X. Then, we apply the change of coordinates
(z,y) = (r—y,y) on X x X and consider the corresponding new coordinates (2,3, &', 1)
on T*(X x X). Let (),,y,,,&.,,m.,) be the above sequence in these new coordinates (i.e.

xl, = X, — yYn etc.) — then, criterion (2.3) may be formulated as

( naywngnann) a0 (0 mOag 50) for some g )

cf. [KS90, proof of proposition 6.2.4].

Example 2.18. Let M, N C X be submanifolds such that M C X is open with M = X
and N C X\ M. We would like to show that (M, N) satisfies the condition (u). So
let us use proposition 2.17 on the conic subsets A = T}, X and B = T X of T*X. By
assumption, Ty, X = M xx T% X, so &, = 0 for all n in any sequence {(@n,&n, Yn,Mn)} as
in proposition 2.17. In particular, the fourth property of (2.3) is trivially satisfied. The
first two lines of (2.3) are realizable if and only if zgp € N. The third line then finally
states that such (xg,&) with 7o € N is in A¥B if and only if for some appropriate
sequence y, € N with y, =2 2o, there is a sequence 7, € ((TXX)%)y, such that

n

M — &o. Let (yn,nn) be the subset of these sequences. To verify condition (u), we
n—oo

may assume xg € N and have to show that, for such x¢, for any (y,,n,) as above with

Yn — xo € N, we have {y = lim,, o0 7, is in T\ X. By choosing a chart U > x¢ around
n—oo

o of X such that IV is closed in U and choosing compatible trivializations of T7*X and
TR X within U, this is clear.

Now consider a complex F' € D?(Cx) and recall the definition of the characteristic
variety CV(F') from [Dim04, definition 4.3.1] resp. [KS90, section 5.1] (where it is also
called singular support of F and denoted SS(F')), as well as the notation of [KS90, section
A.2|, associating to a morphism f: Y — X of manifolds the maps

Y <— Y xxT*X ~5 TX.
A morphism f:Y — X is called non-characteristic for F if
FHCVF)NTyEX CY xx Tk X,

(where Ty X is the kernel of ¢ f” and f; is the canonical projection from above), cf. [Dim04,
definition 4.3.4] resp. [KS90, definition 5.4.12]. What we are going to use extensively in
the next section is the following consequence of a morphism being non-characteristic:
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Proposition 2.19 (cf. proposition 4.3.6 of [Dim04| resp. proposition 5.4.13 of [KS90]).
Let I be an object of D*(Cx) and f:Y — X be non-characteristic for F. Then, the
natural morphism f~H(F) @ wy,x — f'(F) is an isomorphism.

More precisely, we want to use the following

Corollary 2.20 (cf. corollary 4.3.7 of [Dim04|). Let X be a (real, orientable) manifold
andY C X alocally closed (real, orientable) submanifold of X of codimension r. Denote
by i: Y — X the embedding. Let F € D*(Cx) be cohomologically constructible with
respect to a p-stratification X = [[,cq Xa — which we will denote by S — and assume Y
1s transversal to this stratification. Then

Proof. As the formulation of the corollary differs — though very slightly — from the one in
[Dim04, corollary 4.3.7], let us give a sketch of a proof. With exactly the same reasoning
as in [Dim04, proposition 3.2.11], we have wy, x = Cx[—7], so the only thing that remains
to show is that ¢ is non-characteristic for F'. By [KS90, proposition 8.4.1] we have

cv(p) c [] 1%.X.
aeA

Now, Y being transversal to S by definition means nothing but 7Y + 7, X, = T, X for
all @ and all z € Y N X,. We may of course equivalently consider dual spaces, so we find,
denoting with 7: Y — X and i,: X, — X the embeddings and with 7': TY — T'X resp.
4. T*X — T*Y the corresponding tangent space resp. cotangent space map (and the
same for i,), that we have ker(‘d,) Nker(*d}, ,) = {(x,0)} for any = € X, i.e.

(YNX,) xx (Ty X NTx, X) = (Y NX,) xx TxX

and so (where again we consider T, X and Ty X as subsets of 77 X)

i (CVE)NTyX c [[ i (T%,X)NTy X =

ac
=TV nXo) xx (Tx, X NT3X) =Y xx T X,
acA
in other words, ¢ is non-characteristic for F'. O

2.4.7 Duality

Recall the exponential meromorphic connection &¥ and our notation

+
E? =Sl (69)=CF Cli=—Re(p)}
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from above. Let U C A C P denote the open subset on which ¢ is defined. Again we
will denote by w resp. (z1,22) the coordinates on A resp. A x A and write ¢(z1) for
the meromorphic function ¢ o p;: (21,22) — ¢(z1) on A x A. Consider the enhanced
ind-sheaf (notation from section 2.4.3)

E + 1 —
K, = E¥ * Lf\j ~ CIE; Y QL(RURJ((C{t:, Re(p(z1))} @ Do lr IL)\))
+ + 1
~C§ ® (C{t>o} ® Qu(Ror 1 (Cpt—_ Re(p(z1)} @ P T 1LA))> (2.4)

+ _— —
~ CX ® Qu(Rom)(Ciez- Re(p(a))} ®P2 7 L))

(see calculations in section 2.4.3 and 2.4.5). Now let us compute the dual D (K[2]). As
remarked in section 2.4.5, this can be done on the level usual sheaves, by — using the first
line of the equivalent formulations (2.4) —

+
DX (K1[2]) ~ CK @ Qu(Daxr Ror)(CpmRre(u(z1))) ® 3 7 'L)[2])
+
~ CX ® Qu(Rog « RAOM(Cy—pe(p(z1))}> Daxaxe(py 7 Lx[2])))

Here, note that we may — in a slight misuse of notation — write pglw_lLA ~ Tr_lpglL,\,
referring to m: A X R — A and p2: A x A xR — A X R on the left hand side and to
T AXxAXR —- Ax Aand py: AXx A — A on the right hand side, respectively. We
can then continue the calculation with

+

~ (CjEi (%9 QL(RUR,*Rc%ﬂom(@{t:}{e@p(zl))}, ' DAXA(pQ_IL)\[Q])))
+ _

~ (CE & QL(RUR,*ijom((c{t:Re(@(zl))}7 7T71p2 1L_)\)[3]),

where for the last step, we used the following calculations: By definition, Ly = Solp(K?)
(cf. section 2.4.1). As K? is regular singular, we can apply the results from [HTTOS,
section 7.1] to the effect that

Dpxp(py ' Solp(K*)[2]) ~ Dpup(paSolp (KY)) = Dpwp (P, DRp(DpK*)[—1])
~ (Dpxp(DRpxp(ph ™)) [1]

o~ (DRPXP(DPXP@;K )) [1]

~ (DRpxp (¥ Dp(K™)) [1

~ (" DRP(C) ) [1] = p3 Solp (K2,

where we are additionally using [KS90, proposition 3.3.2], together with the fact that po
is a topological submersion of fiber dimension 2.
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Let us call W := {t = Re(p(21))} CAXx AXx R C P x P x R. By definition, W is a
closed subset of Ug := U x A x R. As a graph of the smooth function Re(y(z1))|v, it
is actually a closed submanifold of Ug, i.e. a locally closed submanifold of 4 x A x R,
of (real) codimension 1. Denote by jy (resp. j‘%, ju) the locally closed (resp. closed,
open) embeddings W — A x A X R (resp. W — Ur, Ur — A x A x R). By definition

py Loy = pytn T Loy = Gy Loy,
for j: A\ {0} = Aresp. j: Ax (A\{0}) xR = A x A x R the open embeddings. In
particular, writing V := A\ {0}, we know that p; '7~'L_,|y, is locally constant on the
stratification Sy |y, 1= ((A x V x R)NUg, (A x {0} x R) NUgr) on Ug (which is induced
by the stratification Sy := (A x V xR, A x {0} x R) on A x A x R).

By example 2.18, Sy resp. Sy |y, are p-stratifications. We want to convince ourselves
that jII/]V is transversal to Sy |y, (or, equivalently, jy is transversal to Sy). It is obviously
enough to show that W intersects transversally with U x {0} x R, which is clear as for any
p:=(2,0,t) € U x {0} x R with Re(¢(z)) = t, we have T,(U x {0} x R) ~ R? x {0} x R
and {0} x R? x {0} C T,W. So we can proceed with the calculation of DX (K[2]), where
we would like to set L := W_lpglLA € Ax AxR as a further shorthand, and then write

W= {t = —Re(p(21))}, L*:=7'p;'L_,.
With this we may write

2
>Dj >bj
®+ ®+

D% (K\[2]) ~ Qu(Row «RAom(Cy, L[3]))
QuRow Ry »jiy,diw L") (3]
~ CR & Qu(Row o Rju.jlfyin' L) 2
~ C§ © QuRow. Rju. (i L)w)[2).
By the very same calculations we further get

K.[2] =E*[1] %, LP[1] =~ CE & Qu(Row..(L)we)[2],

+ i
DX (K.[2]) ~CK ® QuRowr Rjv. (i L") w)[2].
In the case of p(z1) = 21 — or slightly more generally the case that ¢ has only one pole

(which we may assume is at co) on P — we have Ur = A x A x R, so the above may be
simplified further, to

K\[2] = C¥ ® Qu(Rog, Lwa)[2],

DX (Ki[2]) =~ CK & Qu(Row . Liy (2], 25
K.[2] ~ C§ & Qu(Row,Lw)[2],

DX (K.[2]) = C§ © Qu(Rog, Ly )[2]
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For further reference, let us quickly consider the following reformulation of 2.5: We may
write 0 = g ouoa, for u: A x A — P x A the open embedding,

a:AxA—Ax A, (a,b)— (a,a+Db)

and ¢2: P x A — A the (now proper) projection on the second factor, where we will use
the same letters for the induced morphisms f x Idg (instead of writing fr as usual) for
f =u,a,qa. Then we have (with a(W) = W resp. a(W?) = W*?)

Ki2] = CF © Qu(RgzyRu(cv L)) 2],

“Iw) (2],
Jwa)[2],
DE (K, [2]) ~ CE & Qu(Ran, Ru(cs L)) [2)-

(ax L
(2.6)
(ax L

(
Dg(Kl [2]) ~ (Cﬁ é Qu(Rga, Ru
K.[2] ~ (Cfg é Qu(Rqa ) Ru
(

2.4.8 Cohomology computations

We will keep the notation of the last section, only we will use ¢(w) = w from here on.
Recall from section 2.4.5 that for some F' € D*(Cxxg.,) we have

+ + +
H™(CX ® QuF)) ~ Cx ® QuH™(Cyyz0y ® F)
and note that, for F' as above and some morphism u: X — Y of bordered spaces
+ +
RU!(C{tgo} ® F) =~ (C{t>0} ® RU[F,
cf. [DK16b, porposition 3.3.13]. Furthermore we are going to use the fact that

+ + +
Cpz0y @ Lw = Cp20y @ (Cw @ L) =~ (Cpyz0y @ Cy) @ L

and the same of course for any re lacement of L resp. W with L® resp. W?%). With
regard to our previous notation, we will write

Ws = {t > Re(z1)}, W% :={t>—Re(z1)},
and we then know that
+ +
C{t;O} ® Cyy =~ (CW> resp. (C{t;g} ® Cyya ~ (ng,

cf. remark 2.11. To determine the vanishing of the cohomologies of (2.5) resp. (2.6), it
is thus enough to consider the cohomologies

H"(Rpa, (o L)we),
+ +
H"(Cyz0) ® Rp2s(aul)w) =~ H"(Ciz0y ® Rao 1 Rus (o L) w),

n iy n iy
H (C{tQO} ® RpQ,*(a*L)Wa) ~H (C{tQO} & RQQ’lRU*(O[*L)Wa),
H"(Rpa (L") w, ).
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Without loss of generality (interchanging A with —\ resp. w with —w), it is enough to
handle the first two of these cases. With regard to considering stalks at (y,s) € A x R,
let us denote by i, 5 : {y} x {s} = A x R the corresponding embedding. The following
diagram will recall resp. introduce the associated labeling we will use for the rest of this
section (all squares are obviously cartesian).

p2

AXAXR —% s AxAXR — % s Px AxR —2 3 AxR

R 2 O D iR r
- L I

A xR — L P fyl xR —2 5 {1 xR

T oL

A x {y} x {s} ~% Do [y) x {5} =P [y} x {5}

fi(y@)

Now let us consider the first case, i.e. we want to determine the vanishing of the coho-
mologies
Hn(RpZ!(Oé*L)W;). (2.8)

From now on, if the point (y,s) € A x R is specified, we will often write A instead of
Ax{y} x{s} resp. AxR instead of A x {y} x R (and the same of course for A replaced
with P) for the sake of notational brevity. Considering stalks at (y,s) € A x R, we get

(H"(Rp2 (o L)wa))(y,s) ~ He' (A, ijl(a*L)W;),

so let us have a look on i;ll (a*L)Wg. Recall that we defined L := W_lpglL,\, where we

have Ly = jo,gg\ for the open embedding jo: A\ {0} — A (cf. section 2.4.1) and Ly is
a local system on A\ {0}, with monodromy e~2™* € C\ {1} around 0. So L is a local
system on A x (A\ {0}) x R with monodromy =2 around D := A x {0} x R and o, L
is a local system on

Vi=AxAxR)\a(D)=(AxAxR)\ (AgxR),

where A4 := {(w,w)|w € A} C A x A is the diagonal, with monodromy e~2™* around
D' := A4 x R. Note that D'N A x {y} x {s} = {y} x {y} x {S}, i.e.

Vi (Ax{y} x {s}) = (A\{y}) x {y} x {s} = A\ {y},

and with the labeling as depicted in the square

V—" 5 AxAxR

S

A\ {y} —2 Ax {y} x {5},
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we may write

L:= i;‘l(a*L) = %Vﬂ;‘lz‘;l(a*L),
where L := :ijli\_/l(Oé*L) € D°(Cuqy) is a local system, with monodromy e 2miA
around y. Analogously we define L% := i;ll (axL%) and L* := %;lli‘_/l(a*l}a). Finally,
writing

VV; = z;lle ={ze€ Als> —Re(z)} C A,

we get ~
iy (exL)we = Ly

with L = %V’!ﬁ. Now we may state that

HY(WE, Lljra) if s < —Re(y),

0 -—1 ~ O/ T . ~ N
He(A iy (anLwe) = He (WS, L) = {H9<w; V) Lliperg,y)  if s >~ Re(y)

which obviously vanishes in both cases, as neither W; nor Wg \ {y} is compact. On the
other hand,

HE (A, L) = HXAivy£) = HXA\ {y}, £) = H* 7" (A\ {y}, £%)"

by Poincaré—Verdier duality, where ()" as usual denotes the dual of vector spaces resp.
local systems. In particular, as £V has monodromy 627r~i)‘ € C\ {1} around y, we have
H7(A, L) ~ 0 for all n. We denote the complement of W< by

We = A\ W2
The standard distinguished triangle

= = ~ 1
Liw — L —sLon o5
a We

induces the long exact sequence on cohomologies

— Hy (A L) — He(A Lya) — HZ(A Lyja) — HZ(A, L) — HZ(A, Lyya) — 0,

which in turn implies H2(A, f’vi/g) ~ 0 because of H2(A, L) ~ 0. So we have shown as a

first intermediate step the follow/ing

Lemma 2.21. We have

Ki[2] ~ CE & Qu(Roz, Lw)[2] € Bzl (A).
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When addressing the second case, concerning the cohomologies

+ +
H"(Cyiz0y @ Rpas(anL®)w) =~ H"(Cyy0y ® R Rus (L) w),

some additional work has to be done. We want to start by reducing dimensions so as
to simplify the calculations. Recall the notation of diagram (2.7). Let us choose a point
y € A and consider

-— n Y a n T s SPy— a
i H (Cp=0y @ Rga 1 Rus (o L) w) =~ H" (Cpyz0y ® R (k) ™ Rus (o L) ).

Lemma 2.22. Ru.((axL®)w)|{soyx.axr 18 @ locally constant sheaf.

Let us denote by i the closed embedding {o0} x A xR — P x A x R. Before we
start proving the lemma, let us quickly note some elementary facts about sheaves that
we will use later on.

Remark 2.23. Let X,Y be topological spaces, f: Y — X a continuous map.

i)

ii)

iii)

For any presheaf FF € PSh(X) let f~'?(F): U hﬂv;f(U) F(V) denote the

presheaf inverse image (note that f~'? - f, as functors on the presheaf categories,
by definition). With this notation we have

fTFS = (fTYPF),

where (e)® denotes the sheafification functor. For a proof consider the canonical
morphism f~1PF — f~WPFS 5 f=1F% of presheaves. For some sheaf G on Y, we
have

HOmpSh(fil’pF, G) ~ HOmpSh(F, f*G) ~ Homgh(Fs, f*G) ~ HomSh(fles, G),
so f~1F* satisfies the universal property of (f~'PF)* and (f~VPF)S ~ f~1F3.

For F,G € PSh(X) we may in particular consider F,G as presheaves on a base
B of X. If we have a morphism F' — G of presheaves on the base B that is an
isomorphism on stalks, then F* ~ G* (by definition of the sheafification functor,
the morphism of the presheaves on a base induces a morphism of the sheafifications,
which, being an isomorphism on stalks, is then indeed an isomorphism).

-
If F'is a local system on X and R < X is a deformation retract of X, then
L

F~r 1R,

cf. |Dim04, remark 2.5.12] resp. [MeNMO90, proposition 1.3.4|. In particular, if X
is contractible, G € Sh(X) is a local system if and only if G ~ pt~1G,, for any
zo € X, with pt: X — {xo}.

52
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Proof of lemma 2.22. We know that Riu, (. L)y is the sheafification of the presheaf
Vs H(u ' (V), (LY wly-10v)) = H(V O W, (0 L) [vaw).

Let us denote this presheaf by F? and choose a base B of the standard topology on
{0} x A X R as

B :={{o0} x B.(z) x (a,b)|z € A, r € Rsg, (a,b) C R}

and denote Vy ;45 := {00} x By(z) X (a,b). Analogously we consider a basis of open
neighborhoods of {oo} € P given by {B,(c0)|q € Rso}, where

By(00) i={z € P| |oo — 2| < ¢} =P\ By4(0),

means a standard open disc around oo.

Furthermore write K := «a, L%|y for the local system that a,L* is away from A4 x R
(recall V :i= (A x A X R)\ (Agq x R)) and set P := (00,0,0) € {0} x A x R and
ptp: {oo} x A x R — {P}. For the presheaf F* we then may observe — with denoting
Vyrs = Bg(0co) x Br(0) x (—s,s) — that

(Riu*(a*La)W)P = Fliﬁ = hﬂ Hi(v N W, (L) |vow)
VaP
= lm H'(Vors N W, (o L)|v,,..ow)

r,q,5—0

As soon as ¢ < 1/2, s < 1, we in particular have 2¢ < 1/s and Vg, N W consists of
two disjoint parts, which we will refer to as qun s Wyrs I r <2, we additionally have

r < 1/q, which implies that ((By(c0) \ {oco}) x B-(0)) N A4 = 0 such that

a
a*L |(Vq,T,SﬁW) = ]C‘Vq,r,snw
and we may continue the above lines with

= lim  H' (Vgrs N W, (L), ,.cow)
q,r,s—0
q,r,s<1/2

= hﬂ (Hi(W;,_r,svlC’W(j:ns)®Hi(W(]_,r,svlc|ijT,s))'
q,r,s—0

q,r,s<1/2

Note that in particular we get (Riu.(csL®)w)p =~ 0 if i # 0, actually Riu.(a L)y ~ 0
for i # 0, as the very same argument clearly works as well for any choice (z,y) € A x R
(instead of (0,0)) for P. On the other hand, using the same reasoning and notation —
but introducing furthermore
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and F' := Fi|{oo}xAxR — we may, for some V, ;. . € B, consider

Fi(vx,r,a,b) = hﬂ Hi(‘/;],ac,r,a,b N W, (Oé*La)|quzma7bmW)

q—0
_ lim H' (Viairas N W (LY, i)
q—0
q<min(mﬁum)
~ hﬂ H' (Vg zrap N W, K|Vq7xﬂ"’a7bmW)
q—0
q<min< ‘wllJr,.vm)
~ limy H' (Vg |zl +rmax(lal o)) VWKV, o/ maxlal op W)
q—0
q<min<‘z|1+7"m>
~Y i . +
~ lim H Wy maxal oy Klwr o )®
q—0 S

g<min( s sy ) |
D H W, maxlal ol) Clw- )

gq,r;max(|al,|b])
— Fb = FL ~ (Riuy (e LY w ) p,

which is clearly compatible with restrictions and thus gives us a morphism of presheaves
on the base B from the presheaf "’ to the constant presheaf F]’;. Also this is clearly an
isomorphism on stalks, so that we indeed get

Rl (0 L) | foo) xaxe = (F)°* = (Fp)*,

that is, Riu, (L)W |{soy x.AxR 18 locally constant for all i (recall we already showed that
Riuy (e L)y ~ 0 for i # 0). O

Remark 2.24. Note that the fact that W splits into two disjoint parts when restricted to
some small enough V, ;. s doesn’t matter for the above proof, but only that from a certain
index in the directed colimit on, (axL®)|y, ., is the restriction of some local system and
all subsequent W NV, ;. s are homotopy equivalent to each other. In particular, by lemma
1.22, we might have done the proof for W instead of W which would have been even
easier, as Vg s N W is just homotopy-equivalent to a point (as soon as the indices are
small enough, in the sense of the above proof). This may seem a little weird at first
glance, as replacing W with Ws changes the stalks — as just sketched — from C? to
C, but becomes more reasonable in view of the fact that lemma 1.22 only holds in the
enhanced setting, together with the observation stated in the proof of lemma 3.15 (that,
for some local system on X x R, for some space X, one obviously has Q¢(L) ~ 0 by the
very definition of the category of enhanced ind-sheaves).
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Now let us use lemma 2.22 to observe that Ru.(ca.L®)w is cohomologically con-
structible with respect to the following stratification S of P x A x R = [, g Si, where
A={1,...,6}, given by:

(Sp :={(a,b,t)ja#be A, t>Re(a)}
S :={(a,b,t)ja#be A, t =Re(a)}
Sy :={(a,b,t)ja#be A, t <Re(a)}
S:=1¢ S3:={(a,b,t)Ja=be A, t >Re(a)} (2.9)
Sy :={(a,b,t)ja=be A, t =Re(a)}
Ss = {(a,b,t)ja=be A, t <Re(a)}
S :={(a,b,t)|a = oo}

In order to verify this is indeed a stratification, it is enough to remark that Sg C S; for
i=0,1,2 — to be a little more precise: Sy \ Sp = S1 US3 U Ss U Ss. The situation is the
very same for Sy \ So. Then 81 \ S = S4 USs and S5\ S3 = Sy (and the same for Ss).

In view of corollary 2.20, we would like to show that S is a p-stratification. As it will
turn out in the course of our proof below, the steps concerning the stratum Sg are a little
cumbersome, so we will weaken our objective to verifying that 5]17{? is non-characteristic for
the sheaf Ru. (L) (and iz is non-characteristic for (., L%)y/). This is enough to apply
[KS90, proposition 5 4.13], telling us that (iF)' Ru.(aL®)ws ~ (ik) ' Ru.(aL®)w[-2]
(and the same for i% and (., L%)w).

Due to symmetry, and taking into account example 2.18, we only need to check con-
dition (i) for the pairs (S1,84), (S1,S6) and (S3,S4). As in example 2.18, we want to
use proposition 2.17. Let us write a = z 4 iy and b = z + iw for a,b in (2.9) and let
(z,y,z,w,t) be the corresponding local coordinates of the real manifold X := P x A xR
(the actual coordinates for the chart A x A x R excluding {oo} x A x R). The induced
coordinates on T*X are denoted by (x,y, z, w,t, &, &y, &, &w, &t )-

e To the pair (S1,84). In the above coordinates,
TE‘lX = {(Zlf, Y, 2, W, T, gaﬁ 07 Oa 07 _£I)|(':U7 y) ?é (Z, U])}

and
T§4X = {(xaya$)y7xvgr7£y7£Z7 _éyv _5512 - fz)}

Using propgsition 2.17, we know that some (x¢, yo, 20, wo, to, §2,00§y,00§2,05 §w,0, §t,0)
is in Tg X+T¢g, X if and only if there are sequences

(al,nu a2 n, A3 n, A4 ns Al n, 51,717 07 07 07 _gl,n)
in T'g X and
1

(bl,na b2,na bl,n, b2,na bl,na M —M2ms —N3n T2 Myn + 7]3,n)
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in TS*4X % such that
(a1,n, G20y 30, G4, G1n) — (20, Yo, 20, Wo,t0) <— (bim, 02,0, 010,02.0,010),

in particular (zo,yo, 20, wo,to) = (z,y,z,y,x) € Sy for some z,y € R, as S is
closed, furthermore

|(a1,n, a2 ny A3 n, A4,n, al,n) - (bl,n; b2,n7 bl,n7 b2,n7 bl,n)| : |(£1,n7 07 07 Oa _gl,n)| njo 07

as well as

(_771,77,7 —1N2,ny —N3.n, 772,n7 Mn + 773,71) - (gl,ru O, 0; 07 _gl,n)
=2 (6,05 €4,05 62,05 €w,0, €1.0)-

In this last condition, we observe that

(Exns Syims Ezms Swns Etn) = (=M — ELns —N2,ns — 3,05 N2ms M + N30 + §1,0)
has the property
Sy + &wn =0=(=Mn —&n) + (=m30) + (M + M0 + &) = &an + Een + &

for all n, so we get

(.T07 Yo, 20, Wo, th ga},Oa §y,0’ 62707 6’11),07 gt,ﬂ) -
= JL%(bl,m bQ,nv bl,m bQ,na bl,nv é-x,na gy,na gz,na 5’111,717 é‘t,n) € T§4X7

proving that (S1,S4) satisfies condition (p).

To the pair (S3,S4). In the same local coordinates as above,

T§3X = {(.’IJ, y,x,y, tv gmv gya _§$7 _‘£y> O)’t > 1‘}
By the very same argument as before, we find
(T8, X+T5X) N7y (Sy) € T, X,

so (S3,S4) satisfies (u) as well (where mx denotes the projection 7" X — X).

So far, we know that S, restricted to A x A x R is a p-stratification. The remaining part
to check is:
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e To the pair (S, Sg). Here we have to switch to a chart around co € P. We chose the
standard chart A ~ P\ {0} to get new local coordinates (2,1, z,w, t) of P x AXR,

where the relation t = z = Re(x + iy) becomes t = Re (x,_iiy,) = With

respect to these coordinates,

"El
I/2+y/2 .

Se = {(0,0,z,w,t)}

and

5= { (@200 0,0) £ (.0,

! y/ 7
(x’2+y’2’ﬂ:/2+y’2> 75 (Z’w)’ t= $/2+y/2}‘

We will again denote X :=P x A x R and write (2, v/, z,w,t, &, &y, &2, €, &) for
the induced local coordinate on T*X. Then,

T§6X - {(0707Z7w7t7§$’7§y’707070)} - X

and

' ) 2 I,
* _ oo T r=—Yy 2ry
TSlX = { <37 Y, 2, W, 22 4 2’ ($/2 +y/2)2€t’ (:E/Q +y/2)2€t70’0’§t>
/ /

‘(0,0)#(:1:’,1/),( ° Y )#(z,w)}.

22 + y/27 x'2 + y/2

In particular, we need to be careful when applying proposition 2.17. Let

! l,/2 _ y/2 24! y/
(X , 2 ):: (l‘/?y/?z s W, - ) 5 5> §t7 ) - gt, ’O’O’gtv
S e e Gl R G gt O
and

(Yna @n) = (07 07 Zny Wiy Ty gx’,nu gy’,na 07 0, 0)7

n € N, be sequences of the appropriate form. Because of lim, ., X, € S¢ we must
have that 2,3/, "=3 0 in such a way that |[lim, e 2/, /(22 + 3/2)| < co. Here,
proposition 2.17 still clearly yields

Ts XFTE X C{0,0,2,w,¢,&,6,,0,0,&} C T*X.
This will be sufficient for our purposes.

Remark 2.25. Let us conclude the above observations for later reference: The given
stratification S, restricted to Ax AXR (using the chart A ~ P\{oo}), is a u-stratification,
and (P x AxR)\ (A x A xR) = S satisfies

(T5 XF+T5.X) N (Se) C T, X
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for i € {0,2} and

Ts X+T5X C{0,0,2,w,t,&,6,,0,0,&} C T*X

=86 XX T{ ooy Ax (03X

with respect to the local coordinates on the chart A ~ P\ {0} around oo € P given
above.

In particular, we have already shown
(i)' (e L)w = (ig) " (e L")w[-2],

by corollary 2.20, as A x {y} x R is clearly transversal to S| 4xaxr — recall the morphism
labeling from diagram (2.7). In view of [KS90, proposition 5.4.13] resp. proposition 2.19
we now want to show that if: P x {y} x R — P x A x R is non-characteristic for
R (a0 L)y w- - As a shorthand we will write X ;=P x Ax Rand Y := A x A xR, as

well as 7 := EIE. Recall the morphisms
* o/ U *
Y «— Y xxT"X —T°X
induced by u: Y — X. As u is an open embedding, we know that

CV((axL?)w) = CV(u ' Ruy (s LY w)
="/ (uyt CV(Rus(ax LYY w)) = 75 (V) N CV(Rus (e LYYW ),

where mx : T*X — X is the usual projection, cf. [KS90, proposition 5.4.5]. On the other
hand, we can tell from [KS90, proposition 6.3.2] that

OV (Ruw(au L) Ny (X \Y) C CV((auL)w)+ Ty X

Note that X \ Y = Sp and, as (a.L®)w is cohomologically constructible with respect to
the p-stratification SNY of Y, we have

CV((axL®)w CHTS

by [KS90, proposition 8.4.1], with 7§ X =TgY fori=0,...,5, as S; C Y. This shows

CV(Ru (o L) w) Ny (Sg) CCV((au L)) FT5, X

(H T: > FTEX

o8



2 Convolution operations

5
U Ts X+T5.X)

CSG XX T{OO}X.AX{O}X

by the observations summarized in remark 2.25. But P x {y} x R clearly is transversal
to {oo} x A x {0}, in particular

i (CV(Ruw(au LYw)) N Ty gy wm X C (P x {y} x R) xx Tx X

by the very same argument as in the proof of corollary 2.20. So i is non-characteristic
for Ru, (. L®)w, as desired, and we have shown

(i)~ (Ru(a Lw) = (iF)'(Rus(au L)) [2]

= Rﬂy7*({£)'(a*L“)W)[2] ; Rﬂy,*(%ﬁ)_l(&*l—ﬂ)w (210)

Let us again introduce some shorthand notation. Recall that we write A x R resp. P xR
instead of A x {y} x Rresp. P x {y} x R if the context is clear. Let us furthermore set

Vo= (P xR)\ ({g} xR) = (5) (P x Ax R)\ (A x ),

Vi=VN(AxR)and D := {y} xR = (i)' (A4 xR). Let iy-: V — A xR be the open
embedding and L* := (Tﬁ)_ (o L% (and the same of course for L with L% replaced

~

by L) as well as K% := iv,' L (and the same for K= i(,lﬁ), then
L* =iy, K",

where K¢ is a local system on V with monodromy €*™* around D. Finally, let us set

W= (i)"'W = {(2,t) € A x Rt = Re(2)}, and @ := i,: A x R — P x R. We now
want to determine, for ga: P x R — R the second projection as in diagram (2.7), the
cohomologies

Lo ~ Ta n T s fa
Hn(C{t>0} ® RQZIRU*LW) ~H (C{tZO} & RPQ’*LW)
With embeddings labeled as in the following diagram

W —" . AxR

24 ] ivT

WA {(y,Re(y))} = Wnv v,

we have that
La|W >~ iM!ICa|VVﬁV' (211)

As K% has monodromy €2 e C\ {1} around (y, Re(y)) € W, we have the following
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Lemma 2.26. The restrictions K< := Rﬁgj*f/%/k,ooﬂe(y)) and K~ := Rﬁg,*ﬁ%]me(y)m)
are local systems and

R Riin L, ~ Rpp L%, ~ L @ L,

where L 1= i(Re(y),00),/K> and L< := i(_og Re(y)), /<, for i(ap): (a,b) — R the obvious
embeddings.

Proof. First, recall that Riﬁ27*fj% is the sheaf associated to the presheaf

R DU —H (p, (U), ﬁ;ﬂﬁglw))

:HZ(.AX Uaff%/’.AxU>
C ifi=0and Re(y) ¢ U

0 else,

~H((AXU)NW, f’a‘(AxU)mW) ~ {

cf. (2.11) and [Dim04, theorem 3.4.4]. This in particular shows that (Rﬁz,*fz%/)Re(y) ~ (),

which means Rﬁg’*ﬁ%/ ~ [ @ L. as was claimed above, where we still have to show that
K<, K~ are local systems. To do so, we might argue exactly as in the proof of lemma 2.22,
or slightly shorten the proof by the following observation: Let U := (—oo,Re(y)) (the
case for U = (Re(y), 00) works completely analogous) and V := {z|Re(z) € U} C A.
Let us furthermore write Y := V x U and denote the projections by pry;: Y — U,
pry: Y — V. Finally, let pty: V — {*} and pty;: U — {*} be the canonical morphisms
to a point, as depicted in the following (cartesian) square:

y 2. p

Prvl lth

Vg

Clearly, L% is a local system on Y of the form Lo = pr‘_/lF for some local system F on V.
From the cartesian square above, we may thus read off

Ll — ! ! _
Rpry L%y ~ Rpry,pry,' F ~ Rpry,priy[—1] =~ pty[— 1] Rpty, F' =~ pty;' (pty, F)

is a local system (note that pry resp. pt; are compositions of open embeddings and
topological submersions of fiber dimension 1, so we used j~! ~ j' for any open embedding
and [KS90, proposition 3.3.2|).

The proof is then finished by observing that, for Z := (AxU)N W =Y NW, denoting
by iz: Z — Y the closed embedding and pry;: Z — U the projection induced by pry;,
we have

Ta ~ Ta
pry. Ly ~ pry. LYz,
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and for any U’ C U, the closed embedding iz|y: pry, (U') — pry'(U’) clearly is a
homotopy equivalence, so in the above calculation,

Hi(ﬁrﬁl(U,)v f)a\ﬁr51(U,)) = Hi(Pr(?I(U,)v I:a‘pral(U/))
for all ¢ (compatible with restrictions). Thus
K< ~ Rpry LY ~ Rpry, L°| 7 ~ Rpry Ly
is a local system. O

By the above lemma, Rﬁz,*f/%/ ~ [ & L. is concentrated in degree 0. In particular,

> +
LAXR, (Rﬁg,*L%/) € D°(A x Ry). Recall however that Cit=01 ® () is not an exact
functor, but we know

+ . 2g + . a,
Ciiz0) ® taxra (RP2,+Ly;,) = taxra (Cisoy ® Rp2«Ly;,) € DA x Ry).
Lemma 2.27. We have

+ .,
Ciizoy @ RpaxLf, € Dy_o(Caxr.,)
+ .
(resp. tAxRe (Ciizo0y @ Rp2« L) € DY (A x Ry)).

. +
Proof. Recall from lemma 2.26 that Rﬁg,*L%/ ~ Lo ® L>. We apply Cyi>0) ® (e) to the
distinguished triangle associated to the split short exact sequence

00— L —Lo®Ls. — L. —0

and consider the associated cohomology long exact sequence

i—1 + i + i +
e — _H (C{t>0} ® L>) — H (C{tZO} &® L<) — H (C{tZO} & (L< ) L>)) —
: + . +
— HZ(C{t>0} ® L>) — HZ+1(C{t>O} ® L<) — ...

. + A . +
We find that HZ(C{@O}@R@,*L%/) ~ H'(Cp>0y®(L<BL>)) is caught between the terms

. + +
H'(Cy=0y ® L) for O € {<,>}. It thus obviously suffices to prove H%(Cy;=0y ® L) ~ 0
for O € {<,>}. To do so, we might either explicitly consider stalks of

Cror ® Lo = Ruu(pr'C 17
(=01 @ Lo = Ru(py Cyiz0y ® py L),
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or, a little faster, observe the following: First consider L.. Set U< := (—oo, Re(y)) and
denote by iy_ : U< — R the open embedding. Then, by definition, Lo = iy_ 1K< (recall
the notation from lemma 2.26). For the morphisms

U< L) R
N [
{x}

where {x} denotes the one point set, let us identify {*} with some point s € U. and
write K := (K<)s. Then, as a local system on U, Ko =~ pt(}iK (cf. remark 2.23), in
particular

Ke=ig:Ke with Koi=7"K.

So we get
. ~ 1 -1
Lo =iy K<~ zU<7gzU<IC< ~Cy.@rm K

. +
and finally, with Cy_ = Cycre(y)} = Cii=re(y)) ® Cii<oys

+ +
Cpz0y @ L = Cpyn0y @ (Cy. ® 7 IK) ~
+ _ —+ + _
~ (C{tzo} ® CU<) Qn K ~ (C{tzo} & (C{t:Re(y)} & C{t<0})) Qr K ~

+ + B
~ ((Cgz0p ® Cpreoy) ® Cpympey}) @1 K =
= (C{t>Re(y)} ® W_IK)[_l] S Dﬂ%_c(CAka)’

where we used lemma 1.21 and the fact that

+
C{t:Re(y)} & (.) =~ RﬂRe(y),*(.)

is exact, where p, for some a € R denotes the translation p,: R — R, t — ¢ + a, cf.
[DK16b, lemma 4.2.1]. Completely analogous we get, for Us := (Re(y),0), iy. the
associated embedding and K’ := (K<) for some s € U, that

L. ~ z&il&> with Ks =7 'K’
and thus
+ + + _
Ci=01 @ L> = ((Cyz0y ® Cpn0y) @ Cpy—Rey))) ® T "K' ~0,
cf. lemma 1.21. ]

To conclude, we have proven the following
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Lemma 2.28. We have
+ _
DX (Ki[2]) ~ CK © Qu(Rog..Ly)[2] € Eg' (A).

Note that, as we already stated, the two remaining cases, K,[2], DX (K,[2]) € Ex' (A)
work completely analogous, so in view of remark 2.12 in section 2.4.4, all that remains
to show is

Lemma 2.29. For any Z € CSSC(A), we have
Eiy, G e B’ (Zs)
for
i) G = Ki[2] = CE & Qu(Row, L)[2],
ii) G = DE(Ki[2]) = CE & Qu(Row..L%)[2),
iii) G = K.[2] = CE & Qu(Rog.Lye)[2],

iv) G =DE(K,[2]) = CE © Qu(Rop.L%)[2].

Proof. Again it clearly suffices to consider the cases i) and ii). Without loss of generality
we may furthermore assume that Z = {y} is a single point. Recall the labeling from (2.7).
In particular, we again will denote the closed embedding Z = {y} — A by ¢ and write

ir: {y} x R - A x R for the induced embedding, as in (2.7). From what we have

shown above, we already know that ZIE (resp. %ﬁ) is non-characteristic for Ru,o, L§;, and

Ruja Lye (vesp. a.Lfy), in particular
(k) Ru (e Lify) ~ (i)~ Ru. Liy)[-2],
SO
.1 + a + ! a
R (C{t>0} X RO’R,*(O[*LW)> ~ C{t}(]} &® Z]RRPQ,*Q*L) ~
T s ~AN! a I ~AN—1 a
~ Cpz0y @ Rp2+((iR) axLiy) = Cpzoy @ Rp2«((ig) ™ Ly [—2]) ~
T . A
~ (C{t>0} ® R (i) la*LCva> [-2] € Dg? .(Caxr.,),
which proves ii). Similarly,
Z.]!R(RqQJRu!O[*LW;) ~ R(ng(%]?R?)ilRu!a*ng[—ﬂ c Dﬁgc(CAwa)

shows 1). O
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2 Convolution operations

So, we have finally proven all parts (cf. remark 2.12) of
Theorem 2.30. The pair (E“[1], L¥[1]) has property B.

Proof. We combine lemmata 2.21, 2.28 and 2.29.
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3 Enhanced middle extensions

3 Enhanced middle extensions

In sections 2.7 and 2.8 of [Kat95|, the construction of a so called “middle direct image”
is introduced and the middle convolution is expressed in terms of it. In the context of
(enhanced) sheaves we will restrict ourselves to the case of (bordered) open embeddings
and refer to the corresponding type of construction as a middle extension, which is kind
of a mixture between the terminology cited above and the one of [HTTO08|, where the
term “minimal extension” is used (for the case of locally closed embeddings).

To be precise, we would like to consider the following situation: For a bordered space
X =(X ,X), let j: Usy — X denote the bordered open embedding associated to some
open U C X. For K € Y2E}_(U) we may define

Ej K :=Im("?H°Ej K — '?H°Ej,K),
EjP°K :=Coim(?HEjyK — /?HEj.K),

where the splitting in middle and co-middle extension again is due to the fact that image
and coimage do not necessarily need to coincide in the quasi-abelian category 1/ QE[%_ A(X).
This is the very same phenomenon that we already encountered in the definition of the
enhanced middle convolution in the previous section. Recall that the remaining of the
two main issues about this definition of our enhanced middle convolution, as stated in the
introduction or at the beginning of section 2.4, was if there can be given some criterion
for when enhanced middle and co-middle convolution agree for some given pair (K, L)
(with property B). Adapting the techniques of [Kat95, sections 2.7, 2.8] to the enhanced
setting, we will be able to reduce this problem to examining if a certain enhanced middle
extension coincides with its co-middle version — to be precise, theorem 3.14 will prove
that for the (bordered) open embedding

u: AXA—-PxA

- +
and a pair (K, L) with property B such that Euy(KXL), Bu.(KXL) € Y2E3_ (P xA)
+ +
and Fui, (K X L) ~ Euf?(K X L), we have

E E
K *mid L~K * co—mid L.

Despite, at first glance, deciding if splitting occurs in the middle extension situation
seems to be a similar problem, compared to the original question about splitting in the
case of enhanced middle convolutions, it turns out that theorem 3.14 indeed simplifies
things substantially, as, with proposition 3.7, we will be able to transfer some well known
characterization result concerning classical middle extensions of perverse sheaves to the
enhanced setting, giving us a criterion for when precisely some enhanced perverse sheaf
is the enhanced middle resp. co-middle extension of its restriction to some bordered
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open subspace, which in particular naturally contains a description of the special case of
coincidence of middle and co-middle version (corollary 3.8). Finally, we will apply these
results to our example pair (E*[1], L¥[1]) of section 2.4.

As there is an immediate interplay between the middle extension in the setting of
classical perverse sheaves on the one, and the minimal extension of regular integral con-
nections on the other hand, provided by the classical Riemann—Hilbert correspondence,
one might at first sight hope for some similar relation in the irregular resp. enhanced
setting. This can not happen though, for reasons that will become obvious along the
definitions of the middle extensions given below (cf. remark 3.2), so it seems that the
further benefits of this enhanced (co-)middle extension on its own are questionable.

3.1 Definition

Consider the classical construction of the middle extension of a perverse sheaf: For the
open embedding j: U — X of a Zariski-open (dense) subset of some irreducible analytic
space (or algebraic variety) and some perverse sheaf L on U such that RjL and Rj.L
are constructible again, the middle extension ji,.L of L is defined as

L = Im (1/2H0Rj;L = 1/2H0Rj*L) e 12p0_ (X).

For the purpose of better coping with the (co-)image splitting in the enhanced setting,
let us recall the idea behind the proof that !/ 2B} _(X) (or, more generally the heart of
any generalized t-structure) is quasi-abelian (cf. [DK16a, proposition 1.3.1] resp. |Bri07,
lemma 4.3]|). The truncation functors 7<¢ for some ¢, associated to the generalized t-
structure (V/2E5¢ (X),Y2Ez° (X)) are right adjoint to the embedding

VPERC (X)) = Bep_o(X)

(cf. |Kaslb, section 1]). In particular, if K — L is a monomorphism in 1/QEB({_lc’O}(X)
with L € 1/2E9 (X)), then
7K - <L ~0

is a monomorphism in UQE@Y:(X) c 2E5° (X) and thus 7<°K ~ 0 and K is
in 12E9  (X) as well.

Analogously, if L — K is an epimorphism in 1/QEH[é)’_lc)(X) with L € 1/QEH%_C(X), then
Kisin 1/2E%  (X). As UQE&S’_IC) (X) and Eﬂ({_lc’o] (X) are abelian, this proves /2EY __(X)
is quasi-abelian (cf. [Bri07, lemma 4.2]) and images and cokernels (resp. coimages and
kernels) can be computed in E]g)’l)(X) (resp. I/QEIS&:EO] (X)), cf. [Sch98, lemma 1.2.34]

—C
and [DK16a|. In particular, t-exact endofunctors on Ep_.(X) preserve images (and

coimages) in Ef_(X), cf. lemma 1.50.
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Let X = (X, X) be a bordered space, U C X open, and denote by j: Uy, — X
the induced embedding of bordered spaces. As j is semi-proper, Eji and Ej, preserve
R-constructibility (cf. [DK16a, proposition 3.3.3]).

Definition 3.1 (Enhanced middle extensions). In the above setting, for L € /2EY  (Us),
we call
Ej. L :=Im(*?H°EjyL — Y?H°Ej,L)

the enhanced middle extension of L to X. Dually we would like to refer to
Eji?L := Coim('*H°EjyL — '*H'Ej..L)

as the enhanced co-middle extension. By definition, both versions agree if and only if
12HEj L — Y2HOEj.L is a strict morphism in '/2E3 __(X).

Remark 3.2. Recall the following well known compatibility of middle extensions and the
Riemann-Hilbert correspondence in the classical setting, cf. [HTTO08, remark 7.2.10].
Let X be a smooth complex variety and U C X open (actually the same correspondence
would work for U some open dense subset of the regular part of some locally closed
subvariety Z C X, as described in [HTTO8]). Let furthermore .# be a regular integrable
connection on U and let L denote the local system on U®" corresponding to .Z via the
Riemann—Hilbert correspondence (i.e. DRyan () = L[dS] € Perv(Cyan)). Writing
j: U — X for the open embedding, we then have

DRyon((Dju)™) = ji (L[AF]) = ji DRywn (£°). (3.1)

In the irregular setting, the situation is very different. For example, consider X = Al
and U = A\ {0}. Let us denote by z the affine coordinate on A'. Then,

Zl = .@U/@UBI ~ ﬁU
clearly is a regular integrable connection on U. On the other hand, let
Ly = Dy | Dy (2°0, — 1),

which is an irregular integrable connection on U (both examples are taken from [HTTO0S,
example 5.1.24]). In particular, with j: Al\ {0} — Al denoting the open embedding,

(j*gl)an = (Dj!*gl)an ¢ (Dj!*XQ)an = (j*$2)an7

as the left hand side is regular while the right hand side is irregular. But we also have
P 22" (cf. [HTTO8, example 5.1.24]), so in particular

DREan (glan) ~ DREan <g2an)7

which shows that there can clearly be no enhanced analog of (3.1).
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Ezample 3.3. Let X :=R and U = R\ {0}. Consider the following example taken from
[DK16a, example 3.5.10]: Set S :={x >0,0<t<1/z} U{x=0,t >0} C X xR and

+
K :=Cg[1] = C” © Qu(Cs)[1].
Then, as calculated in [DK16a], we have K € /2E3_ (R), as well as
BiggyK ~0, PBig\K ~C[1] € B! ({0})

for igpy: {0} — R the corresponding closed embedding (cf. also [DK16a, example 3.5.9]).
By corollary 3.8 below, K is the enhanced middle extension of its quotient, to be precise,

K ~ Eiy, wEij' K ~ Eiff_ |, Ei;' K.
Now consider the following slight variation of this example: Set
S'={r<0,1/z<t<0}uU{zr=0,t <0}

and
+ —
L:=CE[1] = CF ® QuCs)[1] € ELLI(R).

To compute D¥ L, we consider the distinguished triangle
_ +1
a 'Cy — Cla=0,t20yuf{z<0,-1/2>t20} — Claco=0} —

(where a, as usual, is the antipodal map induced by R — R, ¢ — —t) and observe that

Cle=0,t20yuf{z<0,~1/z>t>0} = RIxCpco,—1/e>t>0) for j: {r <0,1/z >t >0} — R? such
that the dual triangle is

_ +1
D(Cyo<o,=0) — Claco,—1/2>1>01[2] — @ 'DCy — . (3.2)
It remains to determine D(Cy,<g¢—o}). For that, take the distinguished triangle

1
Cie<o,=0) — Ca<o,t=0; — Ca=0,t=0 REN

which, by applying duality, gives us a triangle
+1
DCp—0t=0y — DCrco,=0y — D Cypcot=0y —,
— —
~Cyp—0,t=0} ~Ciago0,t=0}[1]

with it Cpa =~ iﬂglCRa [—1] for the embedding ig: R ~ {z,t = 0} — R? and analogously
for the embeddings of {x < 0, = 0} and the point {x = 0,7 = 0}. Thus we get a long
exact sequence
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3 Enhanced middle extensions

o0 — Hil(D Cia<o,=0}) — Ciaco=0y — Ca—o,i—0y —
— HO(D (C{xgo’t:()}) — 00— ...
where we may observe that H°(D Claco=0}) = (F{xgo,t:O}((C[RQ)){m<0 t=0) = 0 and get

D Ciz<o,=01 = Cip<o,=03[1]. So the long exact cohomology sequence associated to (3.2)
is

oo — 00— C{x<0,—1/x>t>0} — H_Q(a_l D(CS/) — (C{x<0,t:()} — 00— ...,

showing that a ™' DCg = Cl<0,~1/2>t=0}[2] and thus

+
D¥ L =~ Cfib<0,—1/x>t>0}[1] =C"® QL(C{I<O,—1/x>t>0})[1]

(cf. [DK16b, proposition 4.8.3]). Now Ei{*xl} DE L ~ 0 for all z € R (cf. [DK16a, example
3.5.9]), i.e.
! ~DE -1 NET ~

for all z € X, and L € Eg' (X). On the other hand, D L € Ex! (X) as well, and for
all z € R, we have

0 ifz#0
Ei' DEL:DEEZ'_IL:{ : .
{a} {a} D¥ (CHy) ~Cfy € Ep_(X)  ifz=0,

(cf. lemma 1.21), so L € Y/2E9__(R). But here, as we just stated,

BigL ~Cfy € ?Eg_ ({0})

by construction, so proposition 3.7 below tells us that L can not be the enhanced middle
(or co-middle) extension of its quotient on (X \ {0})s, that is,

. 1 e -—1
Ei®\{0}) oo, Bl 10}y L 2 L # B0 (0)00 6 B (R) (0} )0 -

3.2 Characterization of enhanced middle extensions

Let X and U C X, resp. X and Uy, C X, be as above. As a preparation for the rest of
this section, we would like to state a simple analogon to the following classical result (cf.
[HTTO8, proposition 8.2.3|):

Proposition 3.4. For any L € Perv(Cy), one has Dx (ji.L) ~ j1.(Dy L).

Let us have a look at the proof given in [HTTO08] and check to what extent it carries
over to the enhanced setting. By definition, Ej,L can be computed as the image of
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1V2H0F L — Y2HOEj,L in UQE&?’_?(X) and thus is determined by the image factor-
ization
V2HOEjL - Ej.L — Y?HEj.L

in 1/ 2EI[[S’_U(X). By definition of the enhanced middle perversity t-structure (cf. [DK16a,

[

definition 3.5.8]), D% is an exact functor from I/QEJETC) (X)°P to 1/2E1é{__10’0] (X). So

DX Y2HEj. (L) —» D¥ Eji. L — DEY2HEj.L
— ———

~1/2HOEjy(Df__ L) ~1/2HOE;j, (Df__ L)

is an image factorization in !/ 2EH(§__IC’O} (X), immediately proving the following
Lemma 3.5. For U C X and L € '?EY__(Us) as above, we have:
i) DX(EjnL) ~ Ejee(DE_L).
ii) The canonical morphism
DX (EjuL) = Eji.(Df;_ L)

is an isomorphism if and only if the natural morphism Y2HOEjyL — Y2HOEj, L is
strict.

Now, consider the following well known characterization result on classical middle
extension perverse sheaves (cf. [HTTO08, proposition 8.2.5]).

Proposition 3.6. Let U C X and L € Perv(Cy) be as above, G = ji.L be the middle
extension of L to X and finally denote by i: Z := X \ U — X the closed embedding of
the complement of U in X. Then

i) Gly ~ L,
i) i7'\G € V2D5"1(2),
iii) i'G € V2DZ! (Z).
Any other perverse sheaf on X satisfying i) — iii) is canonically isomorphic to G.

Let us find the analogon to this characterization in the enhanced setting (so we replace
X by a bordered space X = (X, X) and U C X with the induced embedding U, C X)
by adapting the proof of proposition 3.6 given in [HTTO08|. Let L € 1/2EHO£_C(UOO) and
recall the definition of the enhanced middle extensions,

Eji L :=Im(*?H°Ej L — ?H°Ej,L),
Ej°L := Coim(?H Ejy L — Y?H Ej, L),
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from above. Then, as Ej ' ~ Ej' is t-exact ([DK16a, Proposition 3.5.6]), and further-
more Ej~1Ejy ~ Id ~ Ej!Ej*7 one gets

(EjiL)|v. = Ej'Eji L =Ej ' Im(*?H°Ej L — Y?HEj,L)
~Im("?H°Ej"'Ejy L — ?H°Ej'Ej,L)
~Im(L > L)~ L

and the same of course for (Ej’L)|y., ~ L. Now, set G := Ej,L and consider the
distinguished triangle
(CU — (CX — (CZ +—1> (3.3)

in DY __(Cx), which induces a distinguished triangle

ICr G — I Cx®G — 1 iCr G L

with 771Cy ® G ~ EjyEj~'G by [DK16a, lemma 2.4.5], as well as 7 'Cx ® G ~ G and
7 1C;®G ~ EBinEi~'G ~ FEi,Fi~'G, for i the closed embedding i: Z,, — X and j the
open embedding U,, — X. Recall that the functor

V2H0D: By (X) = V2ER (X)

is cohomological (cf. [DK16a, Proposition 1.3.1]). Denoting this functor by H, and
writing H' := H (e[i]) = "/2H+1)(e)[i], we get a long exact sequence

...— H°EjyEj'G — H°G — H°Fi,Ei"'G — H'EjuEj 'G — . ..

in 1/2EIE3’_16)(X), where HG ~ G = Ej, L by definition of G, H'EjyEj'G ~ H°Ej,L
by the above, and H'EjyEj~'G = 0, as Ej! is t-exact, and Ejy is right t-exact by
[DK16a, Proposition 3.5.6], so EjuEj~'G € Y?Eg° (X) and H' = Y2H12)(e)[1]. So

the above exact sequence is of the form
... — HEjyL — Eji L — HEi,Fi 'G — 0 (3.4)

and, as Ejy is right t-exact, we have HYEjyL ~ 1/2H0Ej”L, so that the morphism
H°EjnL — Ej,L from above is surjective by definition of Eji.L, so H'Ei,Ei~'G ~ 0.
Because Ei~! is right t-exact (again by [DK16a, proposition 3.5.6]) and Fi, ~ Eiy, this
implies
Ei7'G e VB’ (Zs),

which can be easily seen by applying H° o Fi~! and using lemma 1.50.

Now let us review the above lines and replace G by G := DF G = Ejf? D¥ L and
1200 by H = Y2HE10 where HY is defined analogously to H® above. We will
furthermore write L := DF L. Then we still have H (EjyEj~'G) ~ 0 due to right
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t-exactness of Ejy (recall H' = /2H 01 (e)[1]) and arrive at the long exact sequence
analogous to (3.4)

...— H°EjyL — Ej*°L — HEi,Fi"'G — 0.
Recall that by [DK16a, proposition 3.5.5], there is a distinguished triangle
<K K — 20

in Ep_(X) for any K € Ep_(X). Applying this to K = EjnL and taking the H-
cohomologies gives us an exact sequence

f{_17‘>0Ej”[~4 ~0— FIOT<OEj!1E — ﬁOEj!!i — I~{0T>0Ej!1f/ — 0~ I;TIT<0Ej![I~/
—_—
=1/2HOEj) L

in 1/215]1({_16’0}()(). The very same applies to K = Fi,Ei~'G and, trivially, to G = Ejfff),
so we get a diagram

12HOEj [ —%— Ej°L —t— 2HRi, Ei'G

A

c = /
. —— HEjy L —4— Ej®°L —— H°Ei,Ei ‘G —— 0
HO7_EjnL 0 Hr Ei Ei G
0 0 0

in 1/ QEH({_{:’O] (X), where all columns and the middle row are exact. Now a is an epi-
morphism by construction of the co-middle extension and ¢ is an epimorphism by ex-
actness of the first column, so d is an epimorphism as well. This implies e = 0 resp.
0 ~ HO°Ei,Ei~'G as e is the cokernel of d by exactness of the middle row. Again,
right t-exactness of Fi~', Ei, ~ FEi, and the application of HOo Ei1! together with
lemma 1.50 thus give us Ei G € 1/2E§:01(Zoo) or, equivalently,

Ei'G~DP i 'DEP G~ DP Bi7'G € V2EZ! (Zo).

With these observations, we have already done half of the work on proving
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Proposition 3.7. Let G € Y2EY_(X), L € Y?E}__(Ux), and j: Us, — X the bordered
open embedding as above. Then G ~ Eji. L if and only if G satisfies

i) Ej7'G ~ L,
i) Bi~'G € V2E5° (Z),
iii) Bi'G € 2B (Zs).
On the other hand, we have the dual version: G ~ Ej’L if and only if
i) Ej7'G ~ L,
i) Bim'G € \V2ES " (Zy),
iii)” Bi'G € V2EZ° (Zs).
In particular, as an obvious but useful consequence we get

Corollary 3.8. Let G € /2EY_(X) and L € Y2E}_ (Uw) as in proposition 3.7. Sup-
pose G satisfies

i) BEj7'G ~ L,

i) Bim'G e V2Es "N Z.),
iii) Bi'G € V2EZ! (7).
Then G ~ Ej.L ~ Eji’L.
Proof of proposition 3.7. Cf. [HTTO8, proof of proposition 8.2.5]. Without loss of gener-
ality, let us focus on the case of characterizing the middle extension, as the situation for
the co-middle version corresponds to this via duality (cf. lemma 3.5). Note that above
we have already shown that Ej. L satisfies i)-iii). Now let us recall that the canonical
morphism EjyL — Fj,L may be constructed (cf. lemma 2.7) using the adjunction unit
Id - Ej.Ej~' and Id S Ej'Ejy ~ Ej'Eju, by

EjyL — Ej.Ej ' EjyL = Ej.L.

In particular, for G satisfying i), the canonical morphism

EjnL ~ EjwEj'G - G — Ej,Ej G ~ Ej,L

constructed from the respective counit and unit is the canonical morphism from above,
as the unit Id — Ej,Fj~! induces a commutative square

Ej![Ej_lG G

| |

Ej,Eji 'EjEj~'G —=— Ej,Ej 'G.
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So, in order to prove the result, it remains to show that
12HEj L — G — Y?HYEj, L (3.5)

induced by the above is an image factorization in !/ QEILé)’_lC) (X).
Let us assume G satisfies ii) and iii) as well. First, we would like to show that
12HOEjy L — G is an epimorphism in 1/2E£)’1)(X). Let C € UQE&S’}(S(X) denote the

—C

cokernel, then, by hypothesis i), Ej~'C ~ 0, so, by considering the distinguished triangle
EjnEj~'C — C — Ei,Ei'c 5
in B _.(X), we find C ~ Fi,K for some K € Y?Eg° (Zs). So the cokernel sequence is
2HOEjL — G — Ei,K — 0.

Using the fact that Ei~! is right t-exact and thus induces a right exact functor on
1/ 2E]£0’_1€) (X), applying 120D B~ to the above cokernel sequence gives an exact se-
quence

0120V E1q — Y2HOVE 0

i)

in 1/2]5’]£§)’_1)(Z(><3), which shows V2HIODK ~ 0 and thus

Cc

Bi,K ~ 120V, Kk~ 1200 g 1200~

(cf. lemma 1.50), which means /2H°EjyL — G is an epimorphism in 1/2EIL£’_12(X). To
show G — /2H°Ej, L is a monomorphism in / 2Eﬂ[g’_lg(X), let us denote its kernel by
Ce I/ZEIE)’_IC) (X). As before, by hypothesis i), we get £ 1C ~ 0and C ~ Ei, K ~ EiyK

for some K €/ 2E§9 (Zx). So the kernel sequence is of the form
0— Fi,K — G — "?HEj,G.

Recalling that Ei' is left t-exact and thus induces a left exact functor on '/ QE]g ’1)(X),

—C

applying Y/2HIOV B4 to the kernel sequence yields an exact sequence

0— V2OV 5 12g0b Bl ~ o

i)
in 1/2E]1[q§)f2(zoo), so 2HODK ~ 0 and

Bi,K ~12g0V g, Kk~ 1200 g 1200~

(cf. lemma 1.50), which implies G — 12HYEj, L is indeed a monomorphism. O
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3.3 Minimal extensions of holonomic Z;-modules

In this section, we want to quickly recall the definition of the minimal extension of
an algebraic holonomic Z-module and observe that a characterization result completely
analogous to that of corollary 3.8, resp. [HTTO08, proposition 8.2.5], holds if we assume
that the open subset in question has a smooth complement. Exactness of the enhanced de
Rham functor then implies that minimal extensions of holonomic Z-modules correspond,
via the enhanced Riemann-Hilbert correspondence, to enhanced ind-sheaves which are
the enhanced middle extensions of their quotients — in particular, as we can apply corol-
lary 3.8 and the standard t-structure on the category of Z-modules trivially is 1-indexed,
middle and co-middle extension agree for this special class of enhanced perverse sheaves
that are in the essential image of algebraic holonomic Z-module minimal extensions (cf.
corollary 3.11).

Consider j: U — X as above (i.e. Zariski-open and dense) and let .# be an algebraic
holonomic Zy-module. When speaking of the enhanced solutions resp. de Rham complex
of an algebraic ., we are of course referring to the functors SolZ := Sol¥ o (e)*" resp.
DRE := DRF o (e)*. The well known minimal extension of .# to a Zx-module is
defined as

Dyt = Im (/ M — ////) S HOI(.@)()
J! J
(cf. [HTTO8, definition 3.4.1]).

Lemma 3.9. Let j: U — X and i: Z := X \U — X be an affine open resp. a closed
embedding as above, i. e. such that Z is smooth, and .# € Hol(Zy). Then N := Dj.M
has the properties

Q) JEN = M,
ii) i* N € D5 NZ)
i) itV € DEN(Z),
(where i* := Dy o il o Dy in notation of [HTTOS]).

Proof. The proof works completely analogous to the one in section 3.2, resp. to that
of [HTTO8, proposition 8.2.5]. Nevertheless, we would like to give a sketch of proof for
convenience. By the basechange theorem [HTTOS8, theorem 1.7.3], applied to jT and fj
(which yields jT o fj ~ Id), and exactness of jT ~ j=! ~ j* (cf. [HTTOS, example
1.5.12]), one has

IV ~1Im <jTID)X/}D>U/!%jT////) ~Im( S M)~ M,
J J
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3 Enhanced middle extensions

where for the second step [HTTO08, theorem 2.7.1] was applied (as open embeddings are
smooth and thus non-characteristic), which shows i). Then, consider the distinguished
triangle

/iTJV—>JV—>/jTJV+—1>
i J

from [HTTO8, Proposition 1.7.1] (by hypothesis, Z is a smooth variety). Taking coho-
mologies, this yields a long exact sequence

...—>H1</jjT</V)—>H0</iiT</V>—></V—>HO</jjT</V>—>...

As fj ~ Rj, ~ j, (cf. [HTTO8, example 1.5.22]) is left exact and j' is exact, we have
H-1 (fj jt/V) ~ 0. Furthermore jT.#" ~ .# by i) and

W—>H0</jij>:H0</j//z):j*///

is injective by definition of A" = Dj,.#. So we get

H° (/ﬂw) =0 (3.6)

and thus, as [; is exact (cf. e.g. [HTTO8, proposition 1.5.24]) and if ~ Ri* is left exact
(cf. [HTTO8, propositions 1.5.24 and 1.5.16]), by applying H%' to (3.6) we get that
ity e DfOll(Z ), which means iii) holds. Finally, ii) follows from using property iii) for

i'Dji(Dy. ) ~ i'Dx Djrytt ~Dyi* N

and the fact that Dz maps D}ill(Z) to leofl(Z) —here we used Dx D, ~ Dj(Dy A ),
cf. [HTTO8, proposition 3.4.3]. O

Thanks to Kashiwara’s equivalence (cf. e.g. [HTTO8, theorem 1.6.1]), the converse to
lemma 3.9 holds as well, finishing the announced characterization.

Lemma 3.10. For an affine open embedding j: U — X as above, such that its comple-
ment Z = X \ U is a smooth variety and .# € Hol(Zy) as in lemma 3.9, any holonomic
Dx-module N € Hol(Zx) satisfying conditions i) — ii1) of lemma 8.9 is naturally iso-
morphic to Dji. .

Proof. Again, the proof of [HTTO08, proposition 8.2.5] may be transferred to the Z-
module setting virtually without any changes. We would like to show that the factoriza-

tion
////—>JV—>////
J! J
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3 Enhanced middle extensions

of the canonical morphism fj!/// — fj/// obtained from the adjunctions fj! ~+ 4T and
5% 4 fj and the isomorphism jT ~ j* is an image factorization. Let </ be the kernel

0—>£/—>JV—>////.
J

By assuming i), and with G* fj! ~ Id, it is clear that « is supported on Z, hence of the

form [, o' for some o/’ € Hol(Zz) by Kashiwara’s equivalence (note that [, is exact,
cf. [HT'T08, proposition 1.5.24]). Applying H? o if (note that it ~ Ri% is left exact with
respect to the standard t-structure, cf. [HTTO8, proposition 1.5.16]) to this sequence, we
get an exact sequence
0— o — HUT.A) = 0
211
and thus &/’ = 0, meaning & = 0, so A — f] A is injective. By the same reasoning,

applying ¥ to the cokernel sequence

M— N — B —0

4!
one finds that fj! M — N is surjective. O

Note that, in notation of [DK16b], () = D(f2)*[dx — dy] for some f: X — Y and
dx,dy the dimensions of X and Y, respectively. In particular, [DK16b, theorem 9.1.2]
and [DK16b, corollary 8.4.10], in the Z-module notation from [HTT08] that we are using
here, are saying that, for any 4" € D} (Y), one has

DRS((fI./)™) ~ Ef'DRY.,

DRE((f*/)™) ~ Ef 'DREY. @0

In the setting of j: U — X and i: Z := X \ U — X as above, let .# € Hol(Zy)
and K := DRE((Djn..)™) € V/2EY (X" (recall that [DK16a, theorem 4.5.1] proves
DRF is t-exact). By t-exactness of DR” and (3.7), we furthermore have
Ei'K ~DRF((i' Dji.at ™) € Y2 EZ! (2),
Ei 'K ~DRE((i* Dji..4)*™) € V2 ES (7™,
where we used that for X = X" = (X" X)) and Z*" C X" closed, Z2' = Z*" by

definition. This concludes our example by showing the following immediate consequence
of corollary 3.8, aiming towards a setting as in e.g. [BE04| or [Aril0|:

Corollary 3.11. For some smooth complex variety, with notation as above, we again
denote by j the bordered open embedding Uy, ~ (U, X) — X. Let # € Hol(Zx) be the
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3 Enhanced middle extensions

middle extension of its restriction jT.# € Hol(2y). Then, with G := DRE(.#*) and
L:=Ej~'G e ?E) (UX), we have that

G ~ Ej.L ~ Ej.L

is the enhanced middle extension of its quotient.

3.4 Enhanced middle convolution and middle extension

In this section, we finally use the observations made on the enhanced middle extension
to give a first criterion for the coincidence of middle and co-middle convolution, which
we then apply to our example of section 2.4.

Consider the following situation, which is precisely the one of [Kat95, proposition 2.7.2],
adapted to the bordered enhanced setting: Let X = (X,X) and Y be (subanalytic)
bordered spaces, U C X open and j: Uy, — X the induced bordered open embedding,
set Z:= X\ U and let f: X — Y be a proper morphism of bordered spaces with the
additional property that f|z._: Zo — Y is a finite morphism, which shall mean here a
proper morphism such that the underlying map Z — Y has finite fibers (for example this
situation occurs in the case of the bordered version of the analytification of the original
situation in [Kat95, proposition 2.7.2|, cf. [GR71, proposition 3.2]). Let f := foj. All
these morphisms are depicted in the following diagram (cf. [Kat95, section 2.7]).

UOOLX*ZOO

N3

Proposition 3.12 (cf. proposition 2.7.2 of [Kat95]). Assume K € /2EQ_(Us) has the
following properties:

i) EfyK € Y2EY_ (Y) and Ef.K € Y2E}_ (Y),
i) EjnK € V2EY_ (X) and Ej.K € V2E}_ (X),
iti) Eji K ~ Ej°K.

Then
E?*EJI*K ~ Im(Ef”K — Ef*K) ~ COim(Ef”K — Ef*K)

Proof. The proof is almost literally the same as the one of [Kat95, proposition 2.7.2],
except for some changes in terminology that are due to the enhanced resp. quasi-abelian
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3 Enhanced middle extensions

setting. Let us write down the details anyway. By hypothesis, we know that the mor-
phism EjnK — Ej,K is strict. In particular, we get strictly exact kernel rep. cokernel
sequences in /2EY (X)),

0—A— EjyK — Ej, K — 0
0 — EjK — Ej.K — B —0,

which thus correspond to distinguished triangles

A— EjwK — Ej. K +—1> (3.8)
Ej.K — Ej.K — B 24 '

in By _(X), where, by proposition 3.7, we have Ej 1A~ 0~ Ej~'B. So
A~ EizEi ‘A~ Ei,Fi'A,
(cf. [DK16a, lemmata 2.7.6 and 2.7.7]) and we get
Ei'A~ Ei'EiyEi'A~ Ei'\Ei,Ei'A~ Bi"'A e V2B (Zy),

i,e. A~ EiwF ~ FEi,F for some F € 1/2Eﬂ%70(200) and the very same of course for B.
By the finiteness assumption made on f|z_, we furthermore have

Ef|z.F ~Ef A~ Ef A~ Ef EiyF ~ Ef|;._nF € ?E}_(Y)

and, by the same argument, Ef.B ~ Ef,B € 1/2Eﬂ%_c(Y). Now, applying Ef, ~ Ef,
to the distinguished triangles (3.8), we obtain distinguished triangles
Ef,A— EfuK — EJ.Eji.K 5,

a g (3.9)
Ef,EjK — Ef.K — Ef,B =5,

where EfyK — Ef.Ej.K — Ef.K is a factorization of the canonical morphism
EfyK — Ef.K, which we want to prove is indeed a strict image factorization. So
far, we know that Ef A, EfuK,Ef.K,Ef.,B € 1/QEH%%(Y). Let us apply the cohomo-
logical functors H := /2HOD resp. H := V2HEL to the triangles (3.9) and write
Hi(e) := H(eli]) resp. H'(e) := H(e[i]) as usual.

e Applying H to the first triangle of (3.9) yields an exact sequence

...—0— HYEf,Ej.K)— Ef,A— EftK —
— HY(Ef,Ej,K) — 0 — ...

79



3 Enhanced middle extensions

which tells us that Ef,Ej, K € 1/QE]EQ_lc’l)(Y). Similarly, applying H to the same
triangle gives an exact sequence

...EfyK — HY(Ef,Ej,K) — 0 — ...

and thus shows H (Ef,Ej,K) ~ 0, i.e. Ef,EjK € 1/2E§96(Y), so, overall,
Ef.Ej.K € V2B O (Y).

e Analogously, applying H to the second triangle of (3.9) gives us the exact sequence

...—0— HYEf,EjK) — Ef.K — Ef,B —
— HYEf,EjK) — 0 — ...

showing Ef, Eji K € '/ QE]%_M] (Y) and applying H results in the observation that

—C

Ef,EjuK € ?EZ° (Y), so Ef,Eju.K € V2 EZ(Y).
Putting together both of these points, we have
T s -1,0 0,1
Ef EjuK € P E DY) 0 P ERN(Y) = E)_(Y).

In particular, the two distinguished triangles (3.9) correspond to strict short exact se-
quences in 1/ 2EQ (Y), proving that EfyK — Ef.K is a strict morphism and

Ef,Ej K ~Im(EfyK — Ef.K) ~ Coim(EfyK — Ef.K).
O

Remark 3.13. Note that condition iii) is indispensable here, in particular the above proof
does not work for either middle or co-middle extension considered separately in the case
of Eji. K # Eji’K.

Now, let us recall the situation of our enhanced middle convolution from section 2: Let
K,Le 1/QEH%_C(A) be such that (K, L) has property ‘B, that is we require that

+ +
Eoy(KRL),Eo, (KX L) e2EY (A)
(notation as in section 2). Consider the morphisms (with Z := {oo} x A)

AxA Y3 PxAct 7

|
P2
P2 + D2| Zoo
A,
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where pg is proper and pz|z._ is clearly finite, and recall from section 2 that, with
a: AxASAxA, (a,b)— (a,a+Db)

we have N .
Eoy(KX L)~ Epg,”EOz*(K X L)~ E(p2)«EunEa, (KX L),

+ + +
Eo, (KX L)~ Epy Ea,(KX L)~ E(D2)«Eu.Eo, (K XL).

So, by proposition 3.12, we immediately get

+
Theorem 3.14. If, in the above situation, FuyFa.(K X L) € Y2E) (P x A) and

+ + +
Eu,Eo.(KXL) € V2EY_ (PxA) and furthermore EuEa.(KXL) ~ Bu®Ea,(KXL),
then we have
E E
K %mig L = K *co—mid L-

Proof. By hypothesis and proposition 3.12, we have

E _ + E
K #pmig L ~ E(D2)sEucEoy (K K L) ~ K *co—miq L.
O

Consider our example from section 2.4, that is K = E"[1] (with w a local coordinate
on A =P\ {oo}) and L = L¥[1]. We already showed that K E* L, K E! Le'?EY (A)

Jr
in section 2.4. Now let us write G := a, (K X L) as a shorthand and prove the following

Lemma 3.15. In the situation of the example in section 2.4, we have (with notation as
above):

i) BunG € Y?EY_ (P x A) and Eu.G € Y2EY (P x A),
i) Eui,G ~ Euf®G.

Proof. We will actually show Ei~'Eu,G ~ 0 ~ Ei' EuyG, for i: {oo} x A — P x A, that
is
EuyG ~ Fu,G ~ Eu;,G ~ Euj,

So, technically, it turns out we do not really need corollary 3.8 for this particularly simple
case — still it does obviously apply in a trivial way. We will only show Ei~'Fu,G ~ 0
(the other case corresponds to this one via duality). Recall from section 2.4 that (we will
write o and u again instead of ag := a x Idg or ug, as in section 2)

Fu,G ~CF é Qu(Ruy (s L)ya),
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and that F' := Ru,(ca.L)wa|zxr is a local system on Z x R, for Z := {00} X A (lemma
2.22). In particular, by remark 2.23, as Z clearly is a deformation retract

75 ZxR
p

of Z x R, we have F = 77 1(p~!F) and thus

M”EmGgEf%@%&wmmmdmwn:CEé@F:Q

For the dual case, we use (with notation as in section 2.4.7)

+
Ei' BuyG ~ DF Ei~1Fu, D G ~ DF Fi 1(C¥ ® Qu(Ru. (. L) w)) ~ 0.

O
Corollary 3.16. We have
E E
E*[1] ¥mia LY 1] = EY[1] ¥ co—mia L [1].
Proof. This is an immediate application of theorem 3.14 to the above observation. [

82



4 Arinkin-Katz convolution and enhanced middle convolution

4 Arinkin—Katz convolution and enhanced middle
convolution

As we already stated at the very beginning, the studies carried out in this thesis are
largely emerging from the idea of finding a way towards an enhanced counterpart to
Arinkin’s version of the classical Katz’ algorithm for irregular meromorphic connections
on P! ([Ari10]). In this final section of our notes, we would thus like to show that our en-
hanced middle convolution is compatible with the the middle convolution for irreducible
holonomic modules on P! as in [Ari08; Aril0] via the enhanced Riemann-Hilbert corre-
spondence, cf. conjecture 4.17. After making some effort to connect the algebraic setting
of minimal extension Z-modules to the one of enhanced ind-sheaves on complex bor-
dered spaces, we will be able to give a prove of this conjecture, under assumption 4.19,
cf. theorem 4.20.

4.1 Holonomic Z-modules on (projective) algebraic bordered spaces

Definition 4.1 (cf. definition 3.2.1 of [DK16b]). Let us call (X, X) an algebraic bordered
space if X is a smooth complex variety and X C X is an open subvariety such that the
embedding j: X — X is affine. We say that (X, X) is projective if X is so. A morphism
of algebraic bordered spaces f: X — Y is a morphism f: X — Y of smooth varieties
such that the projection I‘if — X is a proper morphism of algebraic varieties (where m
of course refers to the scheme-theoretic closure).

Remark 4.2. For the purpose of feeling more confident about this scheme-theoretic version
of the classical bordered space setup of [DK16b, section 3.2], let us recall, for our algebraic
setting, the proof of [DK16b, lemma 3.2.3|, stating that the composition of morphisms
of bordered spaces is well defined. So, let f: X — Y and ¢g: Y — Z induce morphisms
X — Y resp. Y — Z of algebraic bordered spaces. For a morphism f: X — Y of
varieties inducing a morphism X — Y of bordered spaces, let us introduce some notation
concerning the graph of f, as depicted in the following diagram (by definition, I'f is the

1d
scheme-theoretic image of X 10 x » Y).
!
P
1 X
2
f

Here, of course, iy oy = (Id, f). If the context is clear, we will use the same labels for
the induced projections of the closure ITf CXxY, ie. p{: IT« — X and pg: I’if —Y.
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We would like to prove that go f: X — Z gives a morphism X — Z, i.e. the projection
pﬁ’of: Lyor — X is proper. By hypothesis, p{: Iy — X and p{: Iy — Y are proper, so
we know ;
— — (Idp?) — S .
o Ty xy Ty PO T, o v o Ty 24 X

is proper ([Har77, corollary 4.8.(c)]). As we may trivially factor ¢ as
- — 9 - & T -~
Ty xy Ty P X 2 7% %

(with pry the first projection), we get that (0,p): Tf xy Ty — X x Z is proper, by
[Har77, corollary 4.8.(e)]. Let A C X x Z be the image of ¢ := (p,p)) and denote the
corresponding closed embedding by i4: A — X x Z. Then, note that I'jo; is the image
of the morphism

x"9%) x vz 5 Xx2.
By definition, this morphism X — X x Z factors as

Xa—Xb>F7f><YFig—¢>X><Y,

) L i f . o
where a: X 'y - T'y and b: X N Iy Ry s 'y — I'y. In particular, we have

I'yor C A by definition of the scheme-theoretic image. As ¢ is proper, we know that the

induced morphism A X %7 Xis proper, by [Stacks, tag 01WO0, lemma 28.39.9].
So pi’of is a composition of a closed embedding I'goy C A and a proper morphism A — X,
hence itself proper.

Remark 4.3. For an algebraic bordered space (X, X) as above, the analytification
(X, X)an = (Xan’Xvan)

is a complex bordered space in the sense of [KS16, section 4.3] and the same holds true
for morphisms (cf. [GR71, proposition 3.2]).

Let us denote by j: X — X the open embedding and by j2" its analytification. Due to
the assumption that j is affine, we know that fj = j, is exact, as is jT ~ j~1 (because j
is an open embedding), cf. [HTT08, examples 1.5.12 and 1.5.22]. As before we will write
X := (X, X) and X?" := (X, X)®, In view of [Ari10], let us make the following

Definition 4.4. For an algebraic bordered space X as above, set
Hol(X) := {.# € Hol(D)|.M ~ Dj.(j " 4)}.
Note that D¢ induces a duality

Dx : Hol(X)°P = Hol(X).
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Definition 4.5. For algebraic bordered spaces X = (X, X) and Y = (Y,Y), where we
will denote the corresponding open embeddings by jx: X — X and jy: Y — Y, and a
morphism f: X — Y of algebraic bordered spaces, we define operations

0 0
/ , / : Hol(X) — Hol(Y)
Jf I
o0 %0 Hol(Y) — Hol(X)

which are given, for .# € Hol(X) and .4 € Hol(Y), by
0
| 0 =it [ )

/f?(///) = DjyH" /ﬂ(‘j)_(l//l)

YN = Djx n HO f1 0N
fXUAN) = Djx 1 HOf* 50N

Let us recall from [KS16, section 4.3] the definition of Z-modules on the complex
bordered space X*" = (X", X2"),

Dio)(Zxan) 7= Dipo(X™) /{ll € Dyoi(PDan)| Supp(t) X%\ X2}
Lemma 4.6. By analytification, Hol(X) becomes a full subcategory of DY (Pxan).

Proof. Suppose that for .#, .4 € Hol(X), we have a morphism f: .# — A fitting into
a distinguished triangle

Y Ay L N BN (4.1)
in Db (P san), Where Supp(C) C Xan\ X2 Then we know that C' ~ C?" for some
C € D! (Z%) with Supp(C) C X \ X. From (4.1) we thus get a cohomology exact
sequence

0— HC— L5 ¥ — HC —0

1 1

and using the image

in Hol(Zy). By applying the exact functors j.j~" resp. jij~

factorizations

g > Djug M Guj T M GG N = D N A
v S
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we get a diagram with exact rows

0 ——— juf 'l —— juj TN ——— 0

0 —— H1C L;/ ! >jV y H'C —— 0
I I

0 —— jij "t —— jij 'V —— 0,

proving that f has indeed already been an isomorphism in Hol(X). O

Before we continue, we want to recall one more concept concerning Z-modules on
bordered spaces from [KS16, section 4.3]. Let X be some smooth complex variety, Z C X
a closed subset and U = X \ Z its open complement. Let I be the defining sheaf of ideals
of Z. In this situation, the algebraic cohomology functor is, for some Ox-module F
defined by

Liz(F) := lim Home, (Ox /1", F),
k

cf. [KS96, section 5| (this functor is also referred to as the temperate supports functor,
e.g. in [Bj693, section I1.5], where it is denoted by ’H?Z] (F)). For the open complement

U C X, on the other hand, we may definef

Ty (F) = h?nlﬂomﬁx (1%, F)

(which is denoted by p(*Z)(F') in [Bj693, remark 2.5.12]) and, for some locally closed
W=VNK C X, where V C X is open and K C X is closed, set

Loy (F) = Py (L ().

We will denote the right derived functors of these by RI'(z and RI'yy), resp. Ry,
cf. [KS96; Bjo93] (in [Bj693], RI'7)(F') is denoted by F(*Z)). Concerning the definition
of RI'yy) from above, note that I'|) maps injective objects to stalkwise injective objects
(|Bjo93, proposition 2.5.7]) and that, as I is &x-coherent ([Har77, proposition 11.5.9]),
we have
Ertly (I*, F)y ~ Bxtly (I¥, Fy)

for all i, F and x € X ([Har77, proposition II1.6.8|), which means that stalkwise injective
objects are I'jy-acyclic. So, in conclusion, Ry = R(L'[yol k) =~ Ry RU'[g). This
applies analogously to the setting of a complex manifold X, when Z C X is a complex
analytic subset and I its (coherent, cf. [GR84, section 4.2|) defining sheaf of ideals. If X

SHere, I'm much obliged to M. Kashiwara for clarifying this to me.
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is the analytification of some projective smooth complex variety (as it will be the case
in our situation), both versions obviously correspond to each other via analytification
([Ser56, section 3, proposition 10 and theorem 3|). If F is a (left) Z-module then so
is RL [y (F), cf. [Bj693, section IL.5].

Lemma 4.7. Let X be a smooth complex variety (resp. a complex manifold). If U C X
1s open, where j: U — X 1is the open embedding, and W C X 1is a locally closed subset
(resp. a locally closed complex analytic subset, in case X is a manifold), then

j7" o RTyw) =~ BTy 0§

Proof. The point here simply is that j7! is compatible with quotients and directed co-
limits (as it has left and right adjoint) and with J#om, and it preserves injectives (and
of course stalkwise injectivity), so it is enough to state that, for W = K NV as above, I
the defining ideal of X \ V and J the defining ideal of K, and for any F', we have

§t ligt%”om(lk, lignt%”om(ﬁx/Jl,F)) o~
k !

o~ lig%”om((jflf)k,lig%om(ﬁU/(jflJ)l,jle)).
k !

O

Definition 4.8 (cf. section 4.3 of [KS16]). Let f: X — Y be a morphism of complex (or
algebraic) bordered spaces X = (X, X) and Y = (Y,Y). As usual let prg: X x Y — X
and pry: X xY — Y be the projections. Then, for # € D} (Zx) and A € D? (Zv),
we choose representing objects /# € Db (P%) and N e Db (Zy) and set

D ~
/f M = / (Rr[pf](ﬁxm[d% @ Dpry. 4 )

D ~
Df* N = <RF[Ff](ﬁXxY)[d§:f] ®Dpr§7‘/j/>

Prx

If, in the above situation, X and Y are projective bordered spaces, algebraic and
analytic construction correspond to each other via analytification, i.e. we have

()= for wrer=umyio

Remark 4.9. In [KS16, definition 4.14], bordered versions of the enhanced de Rham
and solutions functors are established, denoted by DRfc resp. Sol)]-g, for some complex
bordered space X. By [KS16, proposition 4.15], these are compatible with the enhanced
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direct resp. inverse images in the usual way, in particular, for .Z € Dﬁol(@X) and
M € D! (Z) some representing object, one has

DRE (M) ~ Ejx* DRE (1),
where jx : X — X is the bordered open embedding, as usual.

Lemma 4.10. Let f: X — Y be a morphism of smooth complex varieties (resp. man-
ifolds). We can consider this a morphism of algebraic (resp. complex) bordered spaces
X =(X,X) and Y = (Y,Y). Then, the bordered versions of the external operations
above agree with the usual ones, 1. e.

////g////, Df* N ~Df* N
2f f -

for any A € D (Px), N € D} (D).

Proof. Let us denote by 7 the closed embedding I'y — X x Y and consider the projections
X xxy By

Let us only write down the direct image case, the other one working completely analogous.
Before we start, let us state the following observation: By hypothesis, we have that
I C (X x Y)™ is a complex analytic (closed) subset. So, by [KS96, theorem 5.12], we
know

RF[F?D](ﬁ(XXY)an) >~ %Om(CFe}n, ﬁ(XXy)an).

On the other hand, Fhom(e, O(x «yyn) is nothing but the quasi-inverse to the solution
functor
&)Z(Xxy)an: th(.@(XXY)an) —> D(IE:_C((C(XXY)an)

of the classical Riemann—Hilbert-correspondence (|Kas84]|), also cf. paragraph 1.4 of the
introduction of [DK16b| for a very short summary. With

Sol ( / (-)> ~ Ri{Sol(e)[dr, — dX y] = Rif"Sol(e)[~dy],

which holds algebraically — for fz — as well as analytically —i.e. for fian — as 1 is proper

as a closed embedding, we thus find

an
RF[F"}"](ﬁ(XxY)a“) o~ (/ﬁl“f> [—dy],
resp.
Rr[pf](ﬁxxy) ~ /ﬁrf[—dgc/].
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Now we can calculate

pry ot

e
pryoi J (pryoi)~! f

where we used the projection formula [HTTO8, corollary 1.7.5]. O

:/ D(pry oi)*. 4

Remark 4.11. In the notation of [KS16, section 3.1], Dg—hol(@X) is denoting the objects
in D*(Zx) with good holonomic cohomology, and Dg—hol(-@X) is defined accordingly.

We have that Df* preserves goodness (as well as holonomicity) and [ ; Preserves the

property of being good and holonomic, that is [ 7 induces a functor

/fﬁ Dg—hol(@X) - Dg_hol(%),

cf. [KS16, lemma 4.13]. From here on, we will assume that all appearing Z-modules
have good cohomologies.

Remark 4.12. We used the unshifted Z-module inverse image Dp* for p = prg,pry
above. As in [HTTO8, section 1.5|, we would like to write fT := Df*[d% — d$] in this
setting, where dg:( = d(():( for the bordered space X = (X, X), and define ﬂ = ]D)Xfi]D)Y
as well as [ n =Dy J Dx, where Dx, for some bordered space X = (X, X), shall refer

to the duality functor on D! (2x) induced by Dy.

Proposition 4.13. Suppose that f: X — Y is a morphism of projective algebraic bor-
dered spaces, f*" its analytification, and let 4 € Hol(X) and A4 € Hol(Y). Then

];;n/ //an ~ (/f j)—(lﬂ)an’

Ty (F) T2 = (gt )™,

Proof. By definition of the minimal extension, we have exact sequences

0 — Djx iy M — jxpjx M — A—0,
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4 Arinkin-Katz convolution and enhanced middle convolution

0 — Djyujy' A — jyuiy' N — B —0,
where clearly Supp(A4) € X \ X and Supp(B) C Y \ Y. So we have

M = (Djx i M) = (jx iy M )™ € Dig(Pxan),
N~ (Dijyafy i AV = (Gyaiy )™ € Dhoy(Pryan).

In particular,

j;aln MO J;;n/ (jX,*j)_(lﬂ)anv
fan fan
T (S 2 G (P (g )™

Note that, as X and Y are projective, we have

Jyn / aﬂ///”z(jyl /f /f) L (i)

Let us introduce (resp. recall) some notation, depicted in the following diagram, in which
both sides and the top quadrangle are pullbacks:

X xY

S e N

X><Y—>X><Y<—X><Y
prx / \ pry

By repeatedly using lemma 4.7, base change ([HTTO08, theorem 1.7.3]) and the projection
formula (|[HTTO8, corollary 1.7.5]), we get

i oot |
Jf pry

~ IR (G VdCT e i1 Dort (=L
- Jy [Ff]( X><Y)[ Y]®.7Y JX % pTX(JX )
Pry

(RF[FJ]( O wy)ldy] ® Dpr¥ (JX,*jxl///)>

D -—_ * -
= [ (B Ox ) B Dors )
pry
~ v (15 R (O oy )dS] & i3 Dpry (ot
= s | by [Ff}( xxy)ldy] ®ix Dpry(jx )
pry

= [ (Bowp o 18 Driti) = [ G,
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4 Arinkin-Katz convolution and enhanced middle convolution

where, for the last line, we denoted by p1, p2 the canonical projections of X X Y so that,

by definition, p; = pry oix and pa = pry oy, and used lemma 4.10. Analogously, we
get

s | e B s |
i [ (Rr[rfuﬁmndﬂ®Dpry<gy,*<yy //z>)

D .~ * 7 o—
= / (Rf[rﬂ(ﬁmy)[d‘g] ®JXIJY,*DPYY<JY1°/V)>
Prx
. C D -—1 * ¢ —1
~ ixq | BUr,(Oxxy)ldy]| ® ity Dpry (jy )
PTx

~ C D s/ .—1 ~ ftra—1
o~ RT'r,)(Ox xy)dy] @ Dp3(jyA) ) = [1(Gy " A),
P

again using the projection formula and lemma 4.10. O
The compatibility result we have been working for in this section so far is the following

Proposition 4.14. Let .# € Hol(X) and 4 € Hol(Y) be meromorphic connections
on projective algebraic bordered spaces X resp. Y. Let us denote by jx resp. jy the
bordered open embeddings X — X resp. Y — Y and by jx: X — X resp. jy: Y =Y
the non-bordered versions. Let f: X — Y be a morphism of bordered spaces such that
Ji(ix" ) € Hol(Zy) and f1(jy' A) € Hol(Zx). Then

0 an
E(j$)"'DR{., (( / /f) ):Eff“E(j%é)‘lDszanv/ﬂ“),
Jf
BGE) DR, ((1°4) ) 2B(™) BGY) " DRE.. (™),

Before we prove this, we would like to state another auxiliary observation.

Lemma 4.15. Let X = (X, X) be an algebraic bordered space and let j: X — X denote
the corresponding open embedding, whereas we write jx : X — X for the bordered version,

as above. For ./ € Hol(X) we have
Ejx'DRE (™) ~ Ejx' DRE((Djij " )™).
Proof. By |[DK16b, theorem 9.1.2 (iv)] and [DK16a, lemma 2.7.6] we have

E(jR) ' DRE. (Djuj A )™) = EGR) T B E(X) DR (Djuj ™ A )™)

~E (&) 'R Ihom(n 'Cxan, DRE, ((Djij Lt )™)

D
~E(j%) ' DRE..(Thom(Cxn, O gan) @ (Dj1ej ' A )™)
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~E(jX')” Xan((J*ﬁx)a“ (Djeg ="t )™)
~E(j) ' DR, ((joj " O & Djuj ™" )™
~E(jX) T DR ((jud M )™)

~E(j%)” 1DR§an<J*<ﬁx®g L))
2E(j§‘£‘>‘1DR§m((J*ﬁx>a“ M)
~E(j%") ' RIhom(n ™' Cxan, DRY,,. (™))
~FE(%)" 1DRE(///”)

O

Proof of proposition 4.14. Recall that we denote by jx resp. jy the open embeddings
X — X resp. Y — Y and with jx resp. jy the corresponding bordered versions. Again
we would like to only prove the direct image case, the proceeding is completely analogous
for the inverse images. With proposition 4.13 and lemma 4.15, we get

E(j¥)'DRE,, ((/foj/ym) ~FE(j%) 'DRE,, <<Djy,!*/fj)_<l//l>an>
~E(j¥") ' DRE,, ((DjY,!*jyl / ///>an>

~E(j¥") 1DR$1H<<////) )
~E(j¥') 'DRE,, ( / | ///an>

ﬁEfan(jan) 1DR§an ('%am)7

where for the last line, we used the compatibility of f fan and DREM proven in [DK16a,

proposition 4.15|, c¢f. remark 4.9 — here, it is important that f is semi-proper (as X
and Y are projective by hypothesis). O

By applying duality, we get analogous results for the case of using the enhanced solu-
tions functor Sol¥ instead of DRF.

4.2 Middle convolutions and enhanced Riemann—Hilbert correspondence
Consider the canonical projections

Al p1 AQ Al
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4 Arinkin-Katz convolution and enhanced middle convolution

and let us denote by (z,y) the coordinates on A2, Recall from [Mal91, appendix A.1]
that for some Z,1-module .#, the Fourier transform on D?_(Z,1) may be defined as

Fra = [ wha o) = [ ol e,

p2 p2

with quasi-inverse FT (o) = fp2 (pf(o) ® e™)[1]. We know from [Mal91, appendix A.4|
that we have

FT oDy ~ Dy o FTL,

As in section 2.4.1, we denote by K* € Mod,,(P') the Kummer Z-module for some
A € C\ Z. If the context is clear, we will use the same label for the restriction K*|41.
Let jo be the open embedding A!\ {0} — A'. Now, in [Ari10], for some irreducible
M € Hol(P') with singularities containing co € P!, writing .# again for its restriction
to Al, a middle convolution on A' is defined by

M Hmia K = FT (Do (4 ! K
*mid K7 - Josx(Jo - (FT(A) @ K77))). (4.2)

We would like to refer to this construction as the Arinkin-Katz convolution. Let us
set A = (A!,P!) and denote the corresponding open embedding by j: Al — P! and
its bordered version by ja: A — P! As stated in [Aril0], this middle convolution
() #miq £ is an autoequivalence on the irreducible objects in Hol(A) with quasi-inverse
() *mia K. For the sake of precision, let us formulate the details here. First, we would
like to extend the above to

A_ P B | 1 Do 1o

M #mia K = Djie FT™(Djo o (FT( ) © 57 K™7)).
Then, for some irreducible .# € Hol(A), we have
(% *mid ]C)‘) *mid ,Ci)\ ~
~ . -1 . 1 =1 . -1 . —1 1 D 1=\ D 11\
~ Dji FT7" Djoyjo (FT(™ Dju FT7" Djonje (FT( )@ K 7)®j K")

D D
~ Dju FT" Djosejo (Djoseo (FT( ) ® 57 K7 @ 571K
D D
~ Dji T~ Djo,(jo ' FT( ™) @ jog ' K= @ jg i~
~ Dji. FT™" Djo o  FT(j~ M) = Djuj ™' M ~ A,

where for the last line, we used that .# is irreducible by hypothesis, which implies j~!.#
and its Fourier transform FT(j~1.#) are irreducible as well (cf. [Ari10, section 2.2]), so
Djorjo ' FT(j~ ) ~FT(j7 ) and Djpj~ 'l ~ M .

Remark 4.16. Before we formulate our conjecture, let us introduce one more piece of
notation. Let X,Y be smooth algebraic complex varieties and pry: X x Y — X,
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pry: X xY — Y the usual projections. Then, one may define an external tensor product
for (left) Z-modules by

D D
MR N = Dpr’x .M @ Dpry N .

D D
By definition”, the above satisfies (.#Z X .4)3 ~ .4 X 42" for the external product
of analytic Z-modules of e.g. [Bjo93, section 2.4], in particular, we have

D D
DXXy(.//gJV) ~Dx .4 XDy N

Sol (A 2 NN ~SolE (™) 5 SolE (L am)
(X xY)an —0lx Y .

" At this point we use again (as we already did before) that analytification commutes with the 2-module
tensor product (e) <§> (e) — here, we would like to once precautionally reassure ourselves of this fact.
By definition, for some smooth complex variety X and .#, .4 € D?(Zx), the tensor product .# (%JV
is nothing but the &-module .# Q%gx A, equipped with the Z-module structure determined by

Om®n)=60(m)@n+m®c0(n)

for a section 0 of © x. The definition is the same for the analytic case. On the level of O'xan-modules,
we have an isomorphism (let ¢ denote the continuous map X" — X)

L
(%an ®ﬁxan Jyan —
L ~ L
= (ﬁxan ®,-1 Ox Lilk//) ®ﬁxan (ﬁxan ®L715X L71</V) S Oxan ®L—16X Lil(./% ®ﬁX </V),
(feom)®(gen)—(fg)®(man).

Furthermore, the Pxan-structure on the Oxan-module A#*" = Oxan ®,-1 6x v"Y A is determined by
0x(f ®@m) = 0:(f) @ m+ f ® Oom,

for some f@m € .#*" and some local coordinate x on X. So the Zxan-structure on the &'xan-module

L
M D6 an A" is determined, for some section (f ® m) ® (g ® n), by

((fem) @ (gen)=0:(fOm)@(g@n)+ (f @m) @ ds(g @n)
=0 f MR GAN)+(fR®Im)®(gn)+ (f@m) @ (g @n) + (f ®m) ® (9 ® Ozn),

which is mapped to

L
9:(f9) ® (m®@n) + fg® (Oem@n+m® 0zn) € Oxean @,-14, L (M oy N)

under the above isomorphism of Oxan-modules. The latter one, on the other hand, by definition is
nothing but the characterization of the Zxan-action on the &'xan-module

D L
(M DN = Oxon ®,-16, L (M Boy N).

94



4 Arinkin-Katz convolution and enhanced middle convolution

Consider two morphisms f: X — X’ and g: Y — Y’ of smooth complex varieties, then
it is obvious from the definition that

D D
D(f x g)*(M' R N") ~ Df* ' & Dg* A",

where .#' and A" are Px/- resp. Py-modules. Furthermore, we would like to prove
that for .#, .4 as above, we have

D D
/ (///&JV):/,///@/L/V,
fxg f g

(cf. [HTTO8, proposition 1.5.30]). To do so, consider the diagram

\ \ / /

X’#X’XY’LY’

in which all three quadrangles are cartesian and where we are using the shorthands
G=1Idx xg, f = f xIdy, b= f x Idys, a = Idxs xg. By repeatedly using base change
(JHTTO08, theorem 1.7.3]) and the projection formula ([HTTO0S8, corollary 1.7.5]), we get
(we will write dx := dim(X) as usual)

D
/%&/W_Dﬁ’{/.//léDﬁg/W
f g ! 9
= (4 .///D~* N [—dx —d
b1 X Py [ X' Y’]
</p1"1,//® /pr2</V> [—dX/ - dy/]
:/ <Da /prl.///®pr;/1/) [—dx: — dy/]
N/ ( /prl/// X pr&/V) [—dX/ —dyr +dyr — dy]
~ / ( / d prl/%@prgw) [—dxr — dy]
D o
// %@ Df pI'QJV [_dX’ — dy]

/ (p ///®p£=/’/)[ dx' —dy +dx — dx]
fxg
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4 Arinkin-Katz convolution and enhanced middle convolution

D D
~ / (Dpid & DoAY = | RN
Ixg

fxg

With the help of the tools we collected so far, we will be able to reasonably substantiate
our conjecture to the effect that our enhanced middle convolution construction is com-
patible to the one of |[Ari08; Aril0| via the enhanced Riemann-Hilbert correspondence.
Let us make this precise in form of the following

Conjecture 4.17. Let iy: A' — P! denote the open embedding and let .# € Hol(A) be
irreducible, such that®

1 D1 1 D1
(iy A Wiy, K") € Hol(Zp1) and | (i) 4 Ni,"K") € Hol(Zy1), (4.3)

ol

where o is the sum map
o: A2 5 Al (a,b)—a+b

of section 2, and set K := E(j3") " \Sol5(.a/™)(1] € V/2EY_(A™). Then (K, L¥[1]) has
property B (recall LY = Solg(lC)‘), cf. section 2.4), we have

E E
K *mid Lf[l] ~ K * co—mid Lf[l]

and furthermore
— an E
Ejx SolE (M #mmia KN)™) ~ K smia LE[1].

As announced in the introduction, we will be able to give a proof of conjecture 4.17
up to the verification of assumption 4.19 below. Consider the diagonal embedding

A:AY 5 A%z (2,2).

On the associated C-vector spaces of closed points, this obviously is nothing but the
transpose o of the sum map

o: A2 5 Al (z,y) 249

This observation gives rise to the expectation (compare e.g. [KS16, proposition 5.6] for
the enhanced ind-sheaf setting) that we should have a natural isomorphism

FT (/U .) ~ D(67)*FT2(e) = DA*FT 2 (e),

8Note that (4.3) is a necessary condition for (K, L¥) having property §3. The statement of the conjecture
would then imply it is also sufficient.
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where we write FT 2 for the Fourier transform on A2. In particular, for M= M |41 and
o = IC)‘\ Al as in the situation of conjecture 4.17, this would correspond to a canonical
morphism

~D ~D . D N
FT (/ MR O ) ~ DA*FT (M R OY) ~ DA*(FT(#)RFT(07)), (4.4)
g
where we are using that the Fourier transform acts component wise, i. e.
D D
FTy2 (o X o) ~ FT(.) X FT(.),

cf. [Dai00, section 2.2|. Let us give a proof that this canonical morphism (4.4) exists.

Proposition 4.18. There is a canonical morphism
-D . D N
FT <////® % > ~ DA*(FT(#)XFT(0")).

Proof. Consider the following diagram (|Kat90, section 12.2]), for which the outer rect-
angle is cartesian (here, as usual, pi,p2: A? — Al are meant to denote the canonical
projections)

A2 x ALTERR@EVE) g g2

ngId

Al x Al P2Xp2 (4.5)
ip2
Al — 2 5 Alx Al
x—(z,x) ’

Let us start in the upper right corner, with the object (cf. [Kat90, section 12.2])

- D
(Pl @ e )R (pl o> @ e=™)[-2).

Then, on the one hand, we have
% CHR P
DA*/ (P @ e ™)R(p1 0" @ e ™Y)[-2] ~
p2Xp2

o8 ([ ol d o™ & [ 5ot ee™) -

b2 p2

= [oiaecm-g [ olote e-11)

p2

~DA*(FT(.4) RFT(6%))
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~ D
~FT(A) @ FT(07),

while on the other hand,

i Dt oA
/ Dé* ((pl///@) e "N (p 0" ® emy)> [—2] ~
P2 oxId

which shows, by using the base change theorem (|[HTTO08, theorem 1.7.3]), that there
indeed is a canonical isomorphism

FT (/(//Zg ﬁﬁ) ~ DA*(FT(.A) % FT(0))) ~ FT(.A) ® FT(0™). (4.6)

Here, step (x) seems to need some substantiation, which we would like to provide by the
following

Claim. With notations as above, we have
* T 7 —zy D T oA —zy ~ T ;D A —zy
D& ((pyAl @ e )R (p 0" @e™™) | =~ (p [ (A RO) e [1].
oxId o

Proof of claim. First, recall the definition of the Fourier kernel from [Dai00| — let =,y
denote the coordinates on A? and t the coordinate on A'. Then, consider the Z,1-module
Z (notation as in [Dai00, section 2| which is defined by the connection

V:ﬁA1—>QA1, P—dP—Pdt

and define the Z,2-module .
¥ =Ds*' ¥

for s: A2 — Al, (z,y) — zy the inner product. We call .Z the Fourier kernel and denote
it by e i.e. for some Zy1-module .#, we write

i —ay .t D
Pl Qe i=pi M L.

Now, let g1, q2: A% x A2 — A? and 71,79, 73: Al x Al x Al — Al denote the respective
projections, then, obviously, p1 0 ¢ 0§ = r1 and p; 0 g3 © § = rg, so that

t z Dot oa
Do* ((pl/// ®e K (plo* ewy)>
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* % D D * S\ D
=Do* | (Dpi# @ L)X (Dp1 0" @ L) | [2]
~ D " D 2 D N
~Dri# @ D6*Dqi L @ Dry0" @ D§* Dq3.Z 2]
~ D N D D
~Dris (M RO™ ) ® ( DI"Dqi L @ D" Dg; 2 | [2],

where r12: Al x Al x A — A! x Al is the projection on the first two factors. Let us
now show that

D
® D" DLz, -y = Do x 1d)*Z,

21 722)

&L= D(S*D(ﬁ%wl,wg) z1,22)"

where we tagged the Fourier kernels with labels corresponding to the coordinates of the
respective versions of A2. Both sides clearly are isomorphic to @14 41441 as @-modules,
S0 it is enough to compare the © 41, 415 41-actions. Unrolling the definitions, let us note
that the action of @42 — for coordinates, say, (z,y) of A? — on .Z is given by

9p - (g®1)=((0z —y)g)®1, 9y -g1=(0y—z)9) @1

for a section g ® 1 of the @-module ¥ ~ Ds*.¥ = Op2 ®s-10,, s ~ Oz, also cf.
[Dai00, section 2.2]. The maps g1 0, g2 0§ are given by

qlo(slAlXAIXAI%A27 (:U?yvz)'_)(x?’z)’
QQO(52A1XA1XA1_>A27 ($,y72)'_>(y,z)~

So, for some section g ® 1 of the &-module
21 = D(q106)" L = Opniypint ®gro6)-16,, (410 §) L ~ Opigprn,

the connection Vi on %) is given by

2
0p - (g©1) =(02g) @ 1+ g Y Du(w; 0 (q106)) @ Duy, (1),

i=1
:(aﬂcg - Zg) ®1
Oy (g®1)=(0,9) ®1,
0 (g®1) =(0:9 —zg) ® 1

(cf. [HTTO8, page 21| for the formula describing the connection on the inverse image that
we used here). The very same way, we know that the connection Vg on the &-module

Ly = D(q2008)" L = Oprypiwnr Ogyos)-10,5 (4200) 'L = Opiypren
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is determined by
Oz - (g® 1) =(0,9) ® 1,
Oy (g®1) =(0yg — 29) ® 1,
9. (g®1) =(0.9 —yg) ® 1.

D D
Therefore, we have that 2" = D" Dqi Ly, w,) @ D6* D@3 L., .0y = L1 ® L5 is the
O-module Ox1p15p41 Qg Opiypiwnt =~ Opiypispt, equipped with the connection V'
determined by

dr - (g®1) =V1(9)(0x) @ 1+ g @ Va(1)(9,) = (9pg — 29) @ 1
=V1(1)(9z) ® g+ 1 ® V2a(9)(0z) = 05 - (1 ® g),
Iy (g@1) =Vi(9)(0y) ® 1+ g @ V2(1)(0y) = (9yg) @1 + g @ (—2)
=(0yg —29) @1 =0, (1®g),
9:(9®1) =Vi(9)(0:) ® 1 + g ® V2(1)(0:) = (09 —z9) @1 + g ® (—y)
=(0:9—(z+y)g)®1=0.-(1®g).

With regard to the above lines we might, in the sense of the Fourier kernel notation,
denote this Z-module suggestively by e~(@t¥)%  As an @-module,

j = D(O' X Id)*$ = ﬁAleIXAl ®(U><Id)_1ﬁA2 (O' X Id)_lf ~ ﬁAleIXAla

and o x Id is given by (2,y,2) = (z +y,2). Recall we denote the coordinates of A? by
(21, x2) here. Then, we get the connection V on &, for some section g ® 1 of &, as

2
Oz (g®1) =(09) ® 1+ gZ@x(a:i o (o0 x1d)® 0y, (1) = (0z9 — z9) ® 1,
i=1
Oy - (g®1) =(9yg — zg) ® 1,
2:-(g®1) =(0:9 — (z+y)g) @1,

so we indeed have V/ = V, i.e. %/ = .. This allows us to complete the proof of the
claim by observing that the morphism o x Id is defined via the cartesian diagram

oxId

Al x AT x A1 225 Al x AL
J’TIQ lpl
Alx Al 7 AL

so, by base change, we have
[ eprise) = [ erl@i-u=sle @)1,
oxId oxId o
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O

Note that the proof would have worked the absolute same way when we replaced e™*¥
with €™, the kernel of the inverse Fourier transform. So we get an induced canonical
isomorphism

. D -~ D
FT (DN /ID)AQ(.//Z X ﬁA)) ~D,: FT71 (/(DAL///&DN ﬁ*))

~ D
~D 1 DA*(FT Y (Dp1./) RFT (D41 07)) (47)
D

. D

~D 1 DA* (D1 FT () KDy FT(07))
. D

~D 1 DA* D2 (FT(A) RFT(0M)).

Recall the natural morphism Dg1 DA*Dy2(e) — DA*, cf. [HTTO08, theorem 2.7.1] and
consider the following natural

Assumption 4.19. The canonical isomorphisms (4.4) and (4.7) interchange the natural
morphism D1 [ Dp2 — [ with the natural morphism Dy DA*Dy2 — DA*, more
precisely, the following diagram commutes:

. D -~ D
FT <}D>A1 [ Dpi (A K ﬁA)) T:n) Dy1 DA*D g1 <FT(//Z) X FT(ﬁA)>

FT <fo(//i 2 ﬁ*)) (4—ﬁ4)> DA* <FT(//Z) o FT(@”\)> :

Although assumption 4.19 seems highly plausible, finding a proof has turned out to be
surprisingly intricate. It appears that the main part of the difficulties arises from the fact
that the construction of the natural morphism ID fa D — fa relies on a factorization of o
as an open embedding, followed by a proper morphism, e.g. — in notation from section 2
—as 0 = quo(uoa), with go: P! x Al — A? the second projection, a:: A?> — A? given by
(x,9) = (z,2+y) and u: A2 — P! x A% the open embedding. Then, writing j := uoq, a
canonical morphism D f] D — f; may easily be found, e.g. using the adjunction fj! 4 4t
and the fact that ;T f] ~1d, cf. [HTTO8, theorem 3.2.16]. The morphism D [ D — [
is then obtained by applying D fq2 D~ fqz. However, this two stage process is highly
incompatible to any functorial properties of the Fourier transform.

Theorem 4.20. If assumption 4.19 holds, then conjecture 4.17 is true.

Proof. The basic idea for the proof is to use proposition 4.14 to get an affine Z-module
counterpart to the enhanced convolutions, and to then check the statement on Hol(Z,1).
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First note that, in the situation of proposition 4.14, i.e. f: X — Y a morphism of
bordered spaces, .# € Hol(X), applying DZ.. gives us

0 an
E(j") " Sol ., (( /f //) ) ~ Eff*E(j3) ™ Sol Zun (A ™) — dY]

and, similarly, using Solg(]D)go) o~ DR?(O)[—dg] and DRJ)EZ (Do) ~ Sol)EZ(o)[dg] yields

o s ((

0 an
/ .///> ) ~ Eff"E(j§) " Sl (4*)d5 — dY].

D
Note that X induces an operation
D
(o) X (o): Hol(A) x Hol(A) — Hol(A),
so we may apply proposition 4.14 and, denoting the analytified bordered open embeddings
with jaan: A*™ — P resp. jipan)2: (A )2 — P x P, get
-—1 E 0 D A . an r :—1 E D Ayan
EjpanSolp / (A ®WK?) [1] ~Eaf; E](Aan)2‘90l7>><73(('%g|,c )*)[2]
+
~ B0 Ej pany (U5 (4)[1] K Sl ((K*)*)[1])

s E
~Fo}(K X LY [1])

and, analogously,

!

0 D an D
Ejxlsolf (( [ e ;@)) ) (1] ~ B0 Bj s SolE cp (4 K™ 2

B0 B o (SO 1] 0SB (K)) 1)

+
~Eo™ (K X LY)).

D D
In particular, by our hypothesis, f:(% X K*) € Hol(A) and fao!(./// X kM) € Hol(A),

which means, as Sol55(e)[1] and (e)™ are exact (and thus in particular commute with
images), that the pair (K, L¥[1]) has property ¥ and

E E
K *mid Lf[l] ~K * co—mid Lf[l],

as the standard t-structure of Df_(Zp) is 1-indexed (cf. corollary 3.8), which proves the
first part of conjecture 4.17.
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4 Arinkin-Katz convolution and enhanced middle convolution

From here, what remains to show is that the operation

M g K = Im (/O(.///éic*) —>/O(.///§ICA)> (4.8)

!
agrees with ./ #y;q K* on A'. With regard to (4.8), note that Hol(A) C Hol(Zp) is
closed with respect to taking images, by

Proposition 4.21. Let X be a smooth complex variety and j: U — X an affine open
embedding such that Z :== X \ U is a smooth variety. Then, Dji.: Hol(Zy) — Hol(Zx)
preserves injectivity and surjectivity, i. e.

i) if 0 > A — N is exact in Hol(Zy), then
0 — Djill — Dj N
is exact in Hol(Zx),
i) if M — N — 0 is exact in Hol(Zy), then
Djytl — Dy V" — 0
is exact in Hol(Zx).

Proof. The idea for the proof is the very same as in [HTTO08, proposition 8.2.7 and
corollaries 8.2.8, 8.2.9|] for the case of perverse sheaves. Let us denote by ¢ the closed
embedding Z — X. If, for any .# € Hol(Zy), A is a subobject of fj/// = juM with

Supp(A) C Z, then A = [, H%' A by Kashiwara’s equivalence ([HTT08, theorem 1.6.1]).
Applying HY%' to the exact sequence

0— A— juM,

we get HY%TA ~ 0, so A ~ 0. Analogously, if ji.# — B is a quotient (here, as usual,
Jo= fj! = Dxj.Dy) with Supp(B) C Z, then, again, B ~ fl.HOiTB by Kashiwara’s
equivalence, so let us apply H%* to the exact sequence

hH — B — 0.

This yields 0 ~ H* fz HY%'B ~ HO%B, where we used fz o~ fi! as 1 is proper as a closed
embedding, cf. [HTTO08, theorem 3.2.16], so B = 0. In particular, let A C Dj..# be
a subobject and Dj..# — B a quotient such that Supp(A),Supp(B) C Z. Then the

diagram
B
R T

Gl —— Djndll ——s oM

>
/\(
-
-
-
-
-
-

193

A
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4 Arinkin-Katz convolution and enhanced middle convolution

shows that A ~ 0 ~ B. So, for i), let A be the kernel
0 — A — Dju.l — DjN.

As 0 — .# — N is exact by hypothesis (and j~!Dji, ~ Id), we know that j~'A ~ 0,
i.e. Supp(A) C Z and thus A ~ 0 by the above. For ii), we analogously get B ~ 0 for
the cokernel

Djy M — Dj N — B — 0.

O

As we already know that the Arinkin-Katz convolution is an autoequivalence, with

D
((®) *mia K71 =~ (o) xmiq K, it actually is enough to prove that (e) *miq K is a
right-sided quasi-inverse to (e) *piq K=, i.e. there is a natural isomorphism

D
1 . Y S S |
(i A xmia iy K*) kmiaiy K" ~i M,

where iy: A' — P!, as above. As the Fourier transform is exact and thus compatible

with images, as well as igl, we are lead to determining the image of

0 D
FT zgl/ (M REN) | ~

o!

- 1 D 1\ .—1 D —13-~A ~
~FT (Dp1 [ Dp2(iy 4 Riy, K*)) — FT (i A Niy £Y)) ~ (4.9)

~FT <iA1/O(//l % ICA))

For the following, let us again denote M= i&l/// and 0 = ilgllC)‘ for the sake of
notational compactness. Now, assumption 4.19 would give us a commutative square

. D ~ D
FT (]D)Al [, Dy (A K @*)) —= = Dy1 A*Dya (FT(///) X FT(ﬁA))

(4.7)
| |
FT (fa(//i X ﬁﬂ) —ag A <FT(//Z) X FT(ﬁA)> :

and state that (4.9) corresponds to the canonical morphism

Dp1 DA*D 2 (FT(A) 2 FT(0*)) — DA*(FT(.4) 2 FT(0M)). (4.10)

For the subsequent calculations, we will use the following
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4 Arinkin-Katz convolution and enhanced middle convolution

Lemma 4.22. We have FT(0?) ~ 67>,

Proof. Recall that 0* is the regular Z,1-module jo,*lej\, for the integrable connection

A
A — -
K (ﬁA1\{0},d+zdz> ,

where z denotes the affine coordinate on A!, cf. section 2.4.1. In particular, we have
O ~ Pp1/Dp1 P for P = 20, + . So, by definition of the algebraic Fourier transform,
FT(ﬁ)‘) >~ .@Al/.@Alpl with

P =-0,24+X=—-20,+(\—1),

cf. [Dai00, section 2|, i.e. FT(6) ~ ¢'=*. So we will finish the proof with showing
that 01~ ~ ¢=*. To do so, note that we have

O" = jojy ' O"

for any u € C\ Z and jo: A'\ {0} — A! the open embedding, cf. lemma 1.63. So it is
certainly enough to verify j, Lo1-2 ~ Jo 16—*. By definition, these are the connections

jo_lﬁl_A = (ﬁAl\{O},V) , V: ﬁAl\{O} — QAl\{O}

(1L=NS .

f—=df+
jo_lﬁ_)\ = (ﬁAl\{O},V/) , AV ﬁAl\{O} — QAl\{O}
f—=df— gdz

and we find that jalﬁl_)‘ = jglﬁ_’\ is an isomorphism of Z1\ fgy-modules. To prove
this, it is enough to assert the compatibility with the action of 9. For some f € 01\ (0},
we have

V0 = (0:= 2 ) (o) = 0u(ef) AT = 0. + £ = Af =
—. (az n H) f = 29 (1)@.).

O]

This being said, let us continue the proof of theorem 4.20. We would now like to
prove that (4.10) is actually an isomorphism on Al \ {0}, due to the fact that &* is an

integrable connection on A!\ {0}, which we want to denote by £ := KX = j; ' &* for
the rest of this section.
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4 Arinkin-Katz convolution and enhanced middle convolution

Claim. If .# is some holonomic P-module on X := A\ {0} and £ is an integrable

D
connection (on X ), then Ax = A|x: X — X x X is non-characteristic for #4RZL, i. e.
the canonical morphism

D D
DXDA}(///gg) — DA}DXXX(.//gg)

s an isomorphism

D ~ D
Dy (A & L) ~Dyx DA% (M R L) 3 DAY (Dx.# BDx2)
- (4.11)

D D
~Dx M QDL ~Dx M 2V,
D
Proof of claim. By the very definition of X, we have
D D
ML ~ DA (MNKRL).

Let us convince ourselves that A x is non-characteristic for .# %f , which then proves the
remaining step () of (4.11), cf. [HTTO08, thorem 2.7.1]. We know that (cf. e.g. [Bj693,
remark 2.7.5, theorem 2.7.16] — note also that the construction of the characteristic
variety is compatible with analytification)

D
V(i RL)=CV(l) x CV(L) C T*X x T*X =~ T*(X x X),

where we have CV(.Z) = T% X. Labeling the coordinates of T*(X x X)) with (z,y,&,v),
we have

TY(X x X) = {(z,2,§, =€)} C T"(X x X),
so that indeed

D
AYL(CV(A R L) NTH(X x X) C X Xxux TxxxX x X,
D
which proves that Ax is non-characteristic for .# X .%# and thus finishes the proof of the
claim (recall Ax r is the projection X Xy, x T*(X x X) = T*(X x X)).

Using the claim for .# = j; "Dy FT(A) and £ = j; 'Dg1 FT(0*) ~ £, we have
that

-~ D
jo ' Im (DAlDA*]D)Az (FT(.4)RXFT(0%)) — DA*(FT(.A x FT(0M)) >

D
~ Im <]D>XDA§((jO_1]D)A1 FT(A) x;o "Dy FT(6%) — DAY (jo ' FT(A) R L) )
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4 Arinkin-Katz convolution and enhanced middle convolution

. D D
~ Im <DA}]D)XXX <1D>Xj01 FT(.4) &DXQ%—A> — DA% ( TLFT(A) K z”))
. D N _ D
~ Im (DA} <j01FT(///) xz”) 5 DAY < FT(A)R 27 )
—1 1 D A
~ Im (]0 FT(///)@.,? S0V FT( M) @ £

a1 AD

~ gy FT(A) 2 L.

Note that, even without using assumption 4.19, we would at this point have shown that
there is an isomorphism

BT (D [ DA 6Y)) =gt /R 0
]0 Al AQ(%& 0 ) >~ ]0 FT (%lg % ) y
but we could not know if it is really induced by (4.4). Putting it all together, we have

shown (under assumption 4.19) that

~ D D
i (M Zania K) i 1 K =~ FT N (Djo (g  FT(A) @ 27) 8 .27))

~FT Y (Djo o FT(A))
~FT N ET(M)) ~ M =i M,

where, for the last line, we used that .# (so in particular M = i&k//l ) is irreducible by
hypothesis, thus so is its Fourier transform (cf. e.g. [Aril0, section 2.2|), which implies

Djoriy FT(AM) ~ FT(M).
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