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1 Introduction

1 Introduction

Let X be a complex manifold. The Riemann–Hilbert correspondence of M. Kashiwara
([Kas84]) establishes an equivalence

Db
rh(DX)

'−→ Db
C−c(CX), M 7−→ DRX(M ) = ΩX

L
⊗DX M (1.1)

between the triangulated categories of regular holonomic DX -modules and C-construc-
tible sheaves on X. Recently, A. D’Agnolo and M. Kashiwara extended this result to the
case of irregular holonomic DX -modules in [DK16b]. This enhanced Riemann–Hilbert
correspondence provides a fully faithful embedding, in form of the enhanced de Rham
functorDRE , ofDb

hol(DX) into the category of so called enhanced ind-sheaves E(X) (this
category is denoted by Eb(ICX) in [DK16b]), together with a reconstruction functor that
allows us to recover a holonomic DX -module from its associated enhanced ind-sheaf.
Let us denote by Perv(CX) the abelian category of perverse CX -sheaves. It is well

known (e. g. [Bjö93, theorem 5.5.4]) that the Riemann–Hilbert-correspondence restricts
to an equivalence Modrh(DX) ' Perv(CX). In [DK16a], A. D’Agnolo and M. Kashiwara
proved an analogue to this in the enhanced setting: The triangulated category ER−c(X)
of R-constructible enhanced ind-sheaves admits a self-dual generalized t-structure

(1/2E6cR−c(X), 1/2E>cR−c(X))c∈R,

and the enhanced de Rham functor DRE is exact with respect to this (generalized) t-
structure and the standard t-structure on Db

hol(DX), i. e. DRE(M ) ∈ 1/2E0
R−c(X) for

any M ∈ Hol(DX). A noteworthy difference compared to the classical case – besides
the fact that DRE : Hol(DX) → 1/2E0

R−c(X) still is not essentially surjective – is that
1/2E0

R−c(X) is only a quasi-abelian category in general (cf. [DK16a; Sch98] and [Bri07,
section 4]).
This thesis is motivated by the following line of thoughts: Recall that in [Kat95, section

5.2], N.M. Katz stated his main theorem on the structure of rigid local systems, which
(roughly) says that one can reduce any cohomologically rigid l-adic sheaf F on A1 (over
an algebraically closed field k with characteristic different from l) with generic rank at
least 2 of a certain class1 to a rigid sheaf of generic rank one by successively applying
two invertible operations – one of these is the so called (additive) middle convolution
of F with some Kummer-sheaf and the other is the middle tensor product of F with
some appropriate (lisse, tamely ramified) rank one sheaf (this latter operation is essen-
tially a tensor product, followed by a middle extension). Later, the techniques of [Kat95]
have been applied in a range of different settings, including complex local systems (e. g.

1 The Ql-sheaf in question has to be a middle extension of a lisse and irreducible sheaf on a dense open
subset U ⊂ A1, has to be tamely ramified at every point of P1 \ U and it has to have at least two
singularities in A1, cf. [Kat95, section 5.1].
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1 Introduction

[DR03]), see [Sim09] for an expository view on different versions of Katz’ middle con-
volution algorithm. In particular, based on investigations of S. Bloch and H. Esnault
([BE04]) concerning the preservation of rigidity of (possibly irregular) meromorphic con-
nections on P1 under Fourier transforms, D. Arinkin proved a Katz algorithm in the
setting of rigid meromorphic connections on P1 with arbitrary singularities ([Ari10]). In
this setting, and because the middle convolution of [Ari08; Ari10] may even transform
regular meromorphic connections into irregular ones, this Katz-Arinkin algorithm is not
accessible by the classical Riemann–Hilbert correspondence. With the emergence of the
enhanced version though, it seems natural to ask if there is a counterpart to this in the
setting of (R-constructible) enhanced ind-sheaves. Certainly, one of the main ingredients
of the Katz algorithm is the middle convolution operation, so in our thesis, we want to
focus on establishing an enhanced version of this. Our approach is to stick to the motto
stated in the introduction of [Sim09], that the geometric nature of the definition of Katz’
middle convolution in [Kat95, section 2.6] allows for transferring it in basically any set-
ting where one has a Grothendieck formalism and a category of perverse sheaves. Both
of these prerequisites are satisfied for the case of R-constructible enhanced ind-sheaves,
so that we would like to define our enhanced middle convolution, in complete analogy to
[Kat95], as

K
E∗mid L := Im

(
Eσ!!

(
K

+
� L

)
→ Eσ∗

(
K

+
� L

))
for K,L ∈ 1/2E0

R−c(A), where A is the bordered space (A,P) with A := C = (A1)an and
P := (P1)an ' S2, and σ : A→ A is the morphism of bordered spaces induced by

σ : A×A → A, (a, b) 7→ a+ b.

We will call this construction the enhanced middle convolution. Furthermore we will
introduce the shorthands K

E∗! L := Eσ!!(K
+
⊗ L) and K

E∗∗ L := Eσ∗(K
+
⊗ L) for the

above two convolution terms.
There are two main issues with this approach though. First, as we mentioned above,

1/2E0
R−c(A) is only quasi-abelian, in particular image and coimage of K

E∗! L→ K
E∗∗ L

need not necessarily be isomorphic. So if we want to stay with our approach, there is no
way around defining the dual version

K
E∗co−mid L := Coim

(
Eσ!!

(
K

+
� L

)
→ Eσ∗

(
K

+
� L

))
as well, which we will refer to as the (enhanced) co-middle convolution. One of our main
goals in this thesis will therefore be to find some criterion for when middle and co-middle
convolution are actually isomorphic. Our criterion, theorem 3.14, will be obtained by
transferring the ideas for the proofs of some classical results on the interplay between
middle convolution and middle extensions [Kat95, section 2.8] and on the characterization
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of middle extension perverse sheaves [HTT08, section 8.2] to the enhanced setting. The

second issue is that, in order to build middle or co-middle extension K
E∗mid L resp.

K
E∗co−mid L for some pair (K,L) of objects in 1/2E0

R−c(A) at all, we obviously first need

to assure that the convolutions K
E∗! L and K

E∗∗ L are again enhanced perverse, i. e.
objects of 1/2E0

R−c(A). This part of the problem is already known from the classical
setting in [Kat95], and in resemblance of the original notation we will say that a pair

(K,L) as above has property P if K
E∗! L,K

E∗∗ L ∈ 1/2E0
R−c(A). Our second task will

then be to find some non-trivial (e. g. not coming from some pair of classical perverse
sheaves which are known to have property P in the original sense, cf. lemma 2.5) pair
(K,L) with property P, which we will do in section 2.4.
The last section is then dedicated to investigating if our enhanced middle convolution

(with the second argument fixed as a enhanced Kummer-sheaf LEλ , where λ ∈ C \ Z) is
compatible with the Arinkin–Katz convolution (for the same λ) defined in [Ari10] via the
enhanced Riemann–Hilbert correspondence. To be precise, when we denote the latter one
by M ∗midKλ in notation of [Ari10], then we would like to show that for some irreducible
meromorphic connection M on P1 with singularities containing∞ as in [Ari10], we have

Ej−1
A Sol

E
P (M ∗mid Kλ)[1] ' Ej−1

A Sol
E
P (M )[1]

E∗mid L
E
λ [1],

and that middle and co-middle convolution agree in this case (conjecture 4.17). Here,
jA : A → P is the bordered open embedding and LEλ = SolEP (Kλ). In theorem 4.20,
we will give a proof of this conjecture under the assumption that the Fourier transform
transfers two specific canonical constructions into each other, cf. assumption 4.19.
In order to someday get a full version of a Katz algorithm for enhanced ind-sheaves,

a lot more work would still have to be done. For example, finding a criterion to verify
property P for pairs (K,L) as in [Kat95, section 2.6] would be desirable, and, to get
to a similar classification result as [Kat95] or [Ari10], an appropriate concept of rigidity
for enhanced ind-sheaves would have to be found. However, both of these tasks seem to
be out of the scope of these notes. With regard to this conclusion, we want to mention
at least one more justification for our choice of the middle convolution operation as the
starting point of our investigation, by pointing out that besides being in some way the
centerpiece of Katz’ algorithm, Katz’ middle convolution has been used beyond that, in
non-rigid cases as well, cf. e. g. [Sim09] for an overview of examples. For the rest of this
first section, we will recall – mainly from [DK16b] and [DK16a] – some of the technical
prerequisites we will use.

Acknowledgments I am deeply grateful to my supervisor Marco Hien, for his advice
and great encouragement, giving me confidence without which I would never have made it
to the point at which I am writing these acknowledgments now. I would like to thank my
friends and colleagues Ingo Blechschmidt, Andreas Hohl and Anna-Laura Sattelberger,
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for many interesting discussions and a wonderful time in Augsburg. I also owe a lot to
Ingo Blechschmidt, Marco Hien and Marc Nieper-Wißkirchen for shaping my mathemati-
cal understanding during my years of study, and to Giovanni Morando, for a great course
on D-modules. I would like to additionally thank my present and former colleagues Hed-
wig Heizinger and Stephanie Zapf, Pavel Hájek, Kathrin Helmsauer, Matthias Hutzler
and Seongchan Kim, as well as Carolina Dujo, Katrin Geier and Christine Schäfer, for
a great working atmosphere. Finally, I’m much obliged to Masaki Kashiwara, for an
explanation that helped me a lot in proceeding with the last chapter of this thesis.

1.1 Bordered spaces

Definition 1.1 (definition 3.2.1 of [DK16b]). A bordered space X is a pair (X, X̌) of good
topological spaces, where X ⊂ X̌ is an open subset. A morphism of bordered spaces
(X, X̌) = X → Y = (Y, Y̌ ) is a continuous map f : X → Y , such that, if we consider
projections

X̌
prX̌←− X̌ × Y̌

prX̌−→ Y̌

and label the closure of the graph Γf in X̌ × Y̌ with Γf , the projection prX̌ |Γf is proper.

Definition 1.2 (definition 2.3.5 of [DK16a]). A morphism f : X→ Y of bordered spaces
is called semi-proper, if prY̌ |Γf is proper. It is called proper if in addition the continuous
map f : X → Y is proper.
Remark 1.3 (cf. section 3.2 of [DK16b]). The category of bordered spaces has a final
object ({pt}, {pt}) and fiber products, which are, for X = (X, X̌), Y = (Y, Y̌ ) resp.
Z = (Z, Ž) and morphisms f : X→ Z, g : Y → Z, represented by

X×Z Y = (X ×Z X,Γf ×Ž Γg).

Remark 1.4 (cf. remark 2.3.2 of [DK16a]). When we set X̊ := X for a bordered space
X = (X, X̌), this defines a forgetful functor (̊•) from bordered spaces to good topological
spaces. It has a fully faithful left adjoint, given by X 7→ (X,X). For some morphism
f : X → Y of bordered spaces we will, if the context is clear, often write f : X → Y
when referring to f̊ : X̊→ Y̊.
Remark 1.5 (cf. remark 3.2.4 of [DK16b]). The morphisms Id : X → X and jX : X → X̌
induce morphisms of bordered spaces

(X,X) −→ X
jX−→ (X̌, X̌).

Definition 1.6 (cf. notation 2.3.3 of [DK16a]). For any locally closed Z ⊂ X, denote by
Z∞ the bordered space (Z,Z), where Z is the closure of Z in X̌. The embedding Z ⊂ X
induces a morphism iZ∞ : Z∞ → X of bordered spaces.
Definition 1.7 (definition 2.3.6 of [DK16a]). An (open, closed, locally closed) subset of
a bordered space X = (X, X̌) is an (open, closed, locally closed) subset of X. Such a
subset is called relatively compact if it is contained in a compact subset of X̌.
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1 Introduction

1.2 Ind-sheaves on bordered spaces

From now on let k be some field. For the theory of ind-sheaves cf. e. g. [KS01]. The
bounded derived category of ind-sheaves (over the fixed base k) on a space X is denoted
by D(X) (short for Db(IkX), in notation of e. g. [KS01; DK16b] – the version we use
here is that of [DK16a]). Let again X be a bordered space (X, X̌), and consider the
continuous mappings

X̌ \X i−→ X̌
j←− X.

Then, i gives an embedding

Ri∗ ' Ri!! : D(X̌ \X) ⊂ D(X̌).

Definition 1.8 (cf. proposition 2.4.1 of [DK16a]). The derived category of ind-sheaves on
the bordered space X may be defined as the quotient

D(X) := D(X̌)/D(X̌ \X).

Remark 1.9 (cf. section 2.4 of [DK16a]). In particular, there is the quotient functor

qX : D(X̌)→ D(X).

It has left and right adjoints, lX and rX, which satisfy

lXqXF ' kX ⊗ F, rXqXF ' RIhom(kX , F ).

Remark 1.10 (cf. remark 2.4.2 of [DK16a]). One has a canonical exact embedding

ιX : Db(kX)→ D(X)

determined by the following commutative diagram:

Db(kX) D(X)

Db(kX̌)/Db(kX̌\X) D(X̌)/D(X̌ \X)

'

ιX

ιX̌

=

Definition 1.11 (cf. section 3.4 of [DK16b]). The classical t-structure on D(X) is denoted
by (D60(X), D>0(X)). We have

D60(X) = {K ∈ D(X)|RjX,!!K ∈ D60(X̌)}
D>0(X) = {K ∈ D(X)|RjX,!!K ∈ D>0(X̌)}

Definition 1.12 (cf. section 3.3 of [DK16b]). For a morphism f : X → Y of bordered
spaces and F, F ′ ∈ D(X̌), G ∈ D(Y̌ ), one sets (with X̌

q1← X̌ × Y̌
q2→ Y̌ the usual

projections)

9



1 Introduction

• qXF ⊗ qXF ′ := qX(F ⊗ F ′),

• RIhom(qXF, qXF
′) := qXRIhom(F, F ′),

• Rf!!qXF := qYRq2 !!(kΓf ⊗ q
−1
1 F ),

• Rf∗qXF := qYRq2 ∗RIhom(kΓf , q
!
1F ),

• f−1qYG := qXRq1 !!(kΓf ⊗ q
−1
2 G),

• f !qYG := qXRq1 ∗RIhom(kΓf , q
!
2G).

Remark 1.13 (cf. proposition 3.4.4 of [DK16b]). For a morphism f : X→ Y of bordered
spaces, Rf!! and Rf∗ are left exact and f−1 is exact. If f−1(y) has soft-dimension at
most d, for every y ∈ Y , then in addition Rf!![d] is right exact and f ![−d] is left exact.

Remark 1.14 (cf. remark 2.4.3 of [DK16a]). Let f : X → Y be a morphism of bor-
dered spaces. The natural embeddings ιX resp. ιY commute with the operations ⊗,
RIhom (actually, ι commutes RIhom with RHom), Rf∗, f−1, f !. If f is semi-proper,
ι commutes with Rf!! as well, i. e., denoting with f̊ : X → Y the map underlying f , the
diagram

Db(kX) D(X)

Db(kY ) D(Y)

ιX

Rf̊! Rf!!

ιY

(quasi-)commutes.

Remark 1.15 (cf. remark 2.4.4 of [DK16a]). One can express the quotient functor qX
and its adjoints, lX and rX, in terms of the natural embedding jX : X→ X̌, as

qX ' j−1
X ' j!

X, lX ' jX !!, rX ' jX ∗.

In particular, the quotient functor is exact.

1.3 Enhanced ind-sheaves

Let X be a bordered space and R∞ the bordered space (R,R), where

R := R ∪ {±∞}

is the two-point-compactification of R. Consider the following natural morphisms:

X
π←− X× R∞

j̃R∞−→ X× R π−→ X

10
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Definition 1.16 (cf. section 2.6 of [DK16a]). Now set N := π−1D(X), then

E(X) := D(X× R∞)/N

is called the category of enhanced ind-sheaves on the bordered space X.
In particular, we get a quotient functor QX : D(X×R∞)→ E(X), which has left and

right adjoints, LE resp. RE . With p1, p2, µ : R2 → R the first and second projection and
the sum map (t1, t2) 7→ t1 + t2, respectively, and using the same labels for the induced
maps p1, p2, µ : X× R2

∞ → X× R∞, one defines functors

+
⊗ : D(X× R∞)×D(X× R∞)→ D(X× R∞)

(K1,K2) 7→ K1

+
⊗K2 := Rµ!!(p

−1
1 K1 ⊗ p−1

2 K2)

and
Ihom+ : D(X× R∞)op ×D(X× R∞)→ D(X× R∞)

(K1,K2) 7→ Ihom+(K1,K2) := Rp1,∗RIhom(p−1
2 K1, µ

!K2).

These induce functors
+
⊗ : E(X)× E(X)→ E(X), Ihom+ : E(X)op × E(X)→ E(X),

cf. definition 1.20 below. One can show (cf. [DK16a, section 2.6]) that

LEQXF ' (k{t>0} ⊕ k{t60})
+
⊗ F,

REQXF ' Ihom+(k{t>0} ⊕ k{t60}, F )

for any F ∈ D(X× R∞).
Remark 1.17. We will consider a sheaf F ∈ Db(kX×R) as the enhanced ind-sheaf

QXιX×R∞(F ) ∈ E(X)

which we will often denote by F again, as long as the context is clear.
One may as well consider some F ∈ Db(kX) resp. D(X) as an enhanced ind-sheaf, as

in the following
Remark 1.18 (cf. section 2.6 of [DK16a]). The functor ε : D(X)→ E(X), defined by

F 7→ QX(k{t=0} ⊗ π−1F ),

is fully faithful.
Definition/Proposition 1.19 (cf. def. 2.6.1 and prop. 2.6.2 of [DK16a]). We get a t-struc-
ture on E(X) by setting, for n ∈ Z:

E6n(X) := {K ∈ E(X)|LEK ∈ D6n(X× R∞)},
E>n(X) := {K ∈ E(X)|LEK ∈ D>n(X× R∞)}.

11
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The Grothendieck-operations for enhanced ind-sheaves Let f : X → Y be a mor-
phism of bordered spaces. Set fR∞ := f × IdR∞ .

Definition 1.20 (cf. section 2.7 of [DK16a]). The functors

+
⊗ : E(X)× E(X)→ E(X),

Ihom+ : E(X)op × E(X)→ E(X),

Ef!!, Ef∗ : E(X)→ E(Y),

Ef−1, Ef ! : E(Y)→ E(X)

are defined, for K,K ′ ∈ D(X× R∞) and L ∈ D(Y × R∞), as

QXK
+
⊗QXK

′ := QX(K
+
⊗K ′),

Ihom+(QXK,QXK
′) := QXIhom+(K,K ′),

Ef!!QXK := QYRfR∞ !!K,

Ef∗QXK := QYRfR∞ ∗K,

Ef−1QYL := QXf
−1
R∞L,

Ef !QYL := QXf
!
R∞L.

The duality functor DQ
X is defined by

DQ
X : E(X)→ E(X)op, K 7→ Ihom+(K,ωQX),

for ωQX := ε(ωX) = QX(k{t=0} ⊗ π−1ωX) ∈ E(X) with ωX := j!
XωX̌ ' j

−1
X ωX̌ .

Note that the functors

π−1(•)⊗ (•) : D(X)× E(X)→ E(X),

RIhom(π−1(•), •) : D(X)op × E(X)→ E(X),

are defined, for L ∈ D(X) and K ∈ D(X× R∞), as

π−1L⊗QXK := QX(π−1L⊗K),

RIhom(π−1L,QXK) := QXRIhom(π−1L,K),

cf.[DK16a, section 2.7].

1.3.1 Idempotent and stable objects

The category D(X× R∞) is a commutative tensor category with tensor product
+
⊗ and

unit element k{t=0}, cf. [DK16b, corollary 4.2.2].

12
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Idempotent objects Consider the sheaves kI on X × R with, for some fixed a ∈ R,
I = {t > a},{t 6 a},{t > a},{t < a},{t = a} or I = X × R. We will refer to these as
objects in D(X× R∞), meaning the objects ιX×R∞(kI).

Lemma 1.21 (cf. lemma 4.2.3 of [DK16b]). The objects k{t>0} (resp. k{t60}), k{t>0}[1]

(resp. k{t<0}[1]), k{t>0} ⊕ k{t60} and kX×R[1] are idempotents (with respect to
+
⊗) in

D(X× R∞). Furthermore there are the following relations:

k{t>0}
+
⊗ k{t60} '0,

k{t>0}[1]
+
⊗ k{t<0}[1] 'kX×R[1],

k{t>0}
+
⊗ k{t>0}[1] '0,

k{t>0}
+
⊗ kX×R[1] '0,

k{t>0}[1]
+
⊗ kM×R[1] 'kX×R[1],

k{t>0}
+
⊗ k{t<0}[1] 'k{t>0}.

Applying QX, we will interpret these kI as objects of E(X) as well. We will sup-
press QX as well as ιX×R∞ in our notation if the context is clear. Then k{t>0} ∈ E(X)
has the following noteworthy property:

Lemma 1.22. Let K = QX(K ′) ∈ E(X) with K ′ ∈ D(X× R∞). Then

k{t>0}
+
⊗K ' Ihom+(k{t>0},K).

Proof. This is clear from the existence of the distinguished triangle

π−1L −→ k{t>0}
+
⊗K ′ −→ Ihom+(k{t>0},K

′)
+1−→

in D(X× R∞), where L ' Rπ∗(k{t>0}
+
⊗K ′), cf. [DK16b, proposition 4.3.10].

Stable objects Consider the following object in D(X̌ × R):

k{t�0} := “ lim−→”
a→+∞

k{t>a}.

The corresponding object in E(X) is denoted by

kEX := QX(k{t�0})

and is another idempotent object, i. e. kEX
+
⊗ kEX ' kEX, cf. [DK16a, section 2.8]. One

defines the full subcategory Est(X) of stable objects in E(X) as

Est(X) := {K ∈ E(X)|K '→ kEX
+
⊗K}.

13
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1.3.2 The functor e : D(X)→ Est(X)

The inclusion Est(X)→ E(X) has left adjoint kEX
+
⊗ (•) and right adjoint Ihom+(kEX, •),

cf. [DK16a, section 2.8].

Lemma 1.23 (cf. lemma 2.8.2 of [DK16a]). The endofunctor kEX
+
⊗(•) on E(X) is exact.

Definition/Proposition 1.24 (cf. section 2.8 of [DK16a]). The embedding

e : D(X)→ Est(X)

is defined as
e(F ) := kEX ⊗ π−1F = QX(k{t�0} ⊗ π−1F )

for any F ∈ D(X) and it is fully faithful and exact.

Remark 1.25. We have e(•) ' kEX
+
⊗ ε(•).

Definition 1.26. The duality for stable enhanced ind-sheaves is defined as

DE
X : Est(X)→ Est(X)op, K 7→ Ihom+(K,ωEX)

with dualizing object ωEX := e(ωX).

1.3.3 R-constructible enhanced ind-sheaves

From now on, let X = (X, X̌) be a subanalytic2 bordered space, cf. [DK16a, definition
3.1.1] (i. e. X̌ is a subanalytic space and X is an open subanalytic subset of X̌). Fur-
thermore all morphisms f : X → Y of bordered spaces considered shall be subanalytic,
meaning that their graph Γf ⊂ X̌ × Y̌ is a subanalytic subset.

Definition 1.27 (cf. definition 3.1.2 of [DK16a]). The category Db
R−c(kX) is the full

subcategory of Db(kX) consisting of the objects

Db
R−c(kX) := {F ∈ Db(kX)|RiX,!F ∈ Db

R−c(kX̌)},

where iX : X → X̌ is the open embedding. In particular, Db
R−c(kX) is a full subcategory

of Db
R−c(kX), as i−1

X preserves R-constructibility.
The following result conveys the compatibility of this notion of R-constructibility with

external operations, which essentially is as one might expect from the case of R-construc-
tibility on non-bordered spaces.

Proposition 1.28 (cf. proposition 3.1.3 of [DK16a]). Let f : X→ Y be a morphism of
subanalytic bordered spaces, then

2All bordered spaces that will appear in this thesis will actually be analytic, resp. complex bordered
spaces in the sense of [KS16, definition 4.11]. For a definition of subanalytic sets, cf. e. g. [BM88].

14
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i) f−1 and f ! induce functors Db
R−c(kY)→ Db

R−c(kX).

ii) If f is semi-proper, then Rf! and Rf∗ induce functors Db
R−c(kX)→ Db

R−c(kY).

Note that ii) is put slightly differently here compared to [DK16a, proposition 3.1.3],
where Db

R−c(kX) is considered as a full subcategory of D(X) via ιX, but as we know that
ιY ◦ Rf! ' Rf!! ◦ ιX in the given case that f is semi-proper (ιY ◦ Rf∗ ' Rf∗ ◦ ιX holds
anyway), both formulations are clearly equivalent.

Lemma 1.29. DX induces an equivalence Db
R−c(kX)

'→ Db
R−c(kX)op.

Proof. Let F ∈ Db
R−c(kX), then jX,!F ∈ Db

R−c(kX̌) by definition and so

G := DX̌(jX,!F ) ∈ Db
R−c(kX̌)

as well. Assume G is cohomologically constructible with respect to some locally finite
covering X̌ =

⋃
i∈I Xi of X̌ by subanalytic subsets. Then

jX,! DX F ' jX,! DX j
−1
X DX̌ G ' GX

is cohomologically constructible with respect to the (locally finite) subanalytic covering⋃
i∈I

((Xi ∩X) ∪ (Xi ∩ (X̌ \X)),

thus R-constructible, as (RjX,! DX F )x ' 0 for x ∈ X̌ \X and (RjX,! DX F )x ' (DX F )x
if x ∈ X, which is a perfect complex because DX F is known to be R-constructible, as F
was R-constructible by hypothesis (cf. [KS90, definition 8.4.3]).

Definition 1.30 (cf. definition 3.3.1 of [DK16a]). An object K ∈ E(X) is called R-con-
structible, if for any relatively compact subanalytic open subset U of X, one has

Ei−1
U∞
K ' kEU∞

+
⊗QU∞ιU∞×R∞F ∈ E(U∞) for some F ∈ Db

R−c(kU∞×R∞).

The strictly full triangulated subcategory of E(X) consisting of the R-constructible ob-
jects is denoted by ER−c(X).

In particular, R-constructible enhanced ind-sheaves are stable objects in E(X). Fur-
thermore, with jX : X→ X̌ as usual, for some K ∈ E(X), one finds that K ∈ ER−c(X)

if and only if EjX,!!K ∈ ER−c(X̌), in analogy to the situation in definition 1.27, cf.
[DK16a, lemma 3.3.2]. The following result encloses many other features of ER−c(X)
one might expect with regard to the case of usual sheaves.

Proposition 1.31 (proposition 3.3.3 of [DK16a]). Let f : X → Y be a morphism of
subanalytic bordered spaces.

15
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i) ER−c(X) is a triangulated subcategory of E(X).

ii) The duality functor DE
X induces an equivalence ER−c(X)op '→ ER−c(X), and there

is a canonical isomorphism of functors

IdER−c(X)
'→ DE

X ◦DE
X .

iii) The functors Ef−1 and Ef ! induce functors ER−c(Y)→ ER−c(X) and

DE
X ◦Ef−1 'Ef ! ◦DE

Y

DE
X ◦Ef ! 'Ef−1 ◦DE

Y .

iv) If f is semi-proper, Ef∗ and Ef!! induce functors ER−c(X)→ ER−c(Y) and

DE
Y ◦Ef∗ 'Ef!! ◦DE

X

DE
Y ◦Ef!! 'Ef∗ ◦DE

X .

Remark 1.32. Note that e(F ) = kE ⊗ π−1(F ) = kE
+
⊗ (k{t=0} ⊗ F ), showing that the

embedding e : D(X)→ Est(X) from section 1.3.2 induces a functor

eX := e ◦ ιX : Db
R−c(kX)→ ER−c(X).

If the context is clear, we will write e again instead of eX .

1.4 Some properties of enhanced ind-sheaves on bordered spaces

If not otherwise stated, we will assume all bordered spaces (and corresponding mor-
phisms) to be subanalytic. Let X,Y be two such bordered spaces.

Lemma 1.33 (cf. lemma 4.3.1 of [DK16b]). For K1,K2 ∈ D(X × R∞) and L ∈ D(X)
one has

i) π−1L⊗ (K1

+
⊗K2) ' (π−1L⊗K1)

+
⊗K2,

ii) RIhom(π−1L,Ihom+(K1,K2)) 'Ihom+(π−1L⊗K1,K2)

'Ihom+(K1, RIhom(π−1L,K2)).

Proof. It is enough to apply j−1
X,R∞ to [DK16b, lemma 4.3.1], where

jX,R∞ : X× R∞ → X̌ × R∞

is the bordered open embedding induced by jX : X→ X̌.
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Lemma 1.34 (cf. lemma 4.3.2 of [DK16b]). Let a : X × R∞ → X × R∞ be the map
induced by R→ R, t 7→ −t. For K ∈ D(X× R∞) and L ∈ D(X) one has:

i) π−1L⊗K ' (π−1L⊗ k{t=0})
+
⊗K,

ii) RIhom(π−1L,K) ' Ihom+(π−1L⊗ k{t=0},K),

iii) a−1RIhom(K,π!L) ' Ihom+(K,π−1L⊗ k{t=0}).

Proof. Apply j−1
X,R∞ to [DK16b, lemma 4.3.2].

Remark 1.35. As DE
X(kEX

+
⊗QXι(F )) ' kEX

+
⊗QXι(a

−1 DX×R F ) for some F ∈ Db(kX×R)
is known from [DK16a, lemma 2.8.3], we can get the bordered space analogue to [DK16b,
corollary 4.8.4] by repeating step by step the proof given there: Let F ∈ Db

R−c(kX), then

DE
X(kEX ⊗QXι(π

−1F )) 'DE
X(kEX

+
⊗QXι(k{t=0} ⊗ π−1F ))

'kEX
+
⊗QXι(a

−1 DX×R(k{t=0} ⊗ π−1F ))

'kEX
+
⊗QXι(k{t=0} ⊗ π−1 DX F )

'kEX
+
⊗QXι(π

−1 DX F ).

For the third isomorphism, π ◦ a = π was used, as well as the facts that π is a topo-
logical submersion relative dimension 1, i. e. π! DX F ' π−1(DX F )[1], and furthermore
i!π−1 DX F ' i−1π−1 DX F [−1] for the closed embedding i : {t = 0} → X × R, cf.
corollary 2.20. What was shown, in other words, is

eX ◦DX ' DE
X ◦eX .

Lemma 1.36 (cf. [DK16b, Proposition 4.1.5]). For K1,K2,K3 ∈ D(X× R∞) one has

i) (K1

+
⊗K2)

+
⊗K3 ' K1

+
⊗ (K2

+
⊗K3),

ii) HomD(X×R∞)(K1

+
⊗K2,K3) ' HomD(X×R∞)(K1,Ihom+(K2,K3)),

iii) Ihom+(K1

+
⊗K2,K3) ' Ihom+(K1,Ihom+(K2,K3)).

Proof. The proofs of all three statements given in [DK16b] work out the very same way
in the bordered setting.

As [DK16a, lemma 3.3.2] states, F ∈ ER−c(X) if and only if EjX !!F ∈ ER−c(X̌), the
latter referring to the usual enhanced sheaves in the sense of [DK16b]. We thus have
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Lemma 1.37. For F ∈ ER−c(X), G ∈ ER−c(Y), one has

DE
X×Y(F

+
�G) ' DE

XF
+
�DE

YG.

Proof. We observe that Ej−1
X EjX !! ' IdER−c(X) ' Ej!

XEjX ∗ and thus, dropping the
indexes of the duality functors as a shorthand,

DE(F
+
�G) 'DE(Ej−1

X EjX !!F
+
� Ej−1

Y EjY !!G)

'DE Ej−1
X×Y(EjX !!F

+
� EjY !!G)

'Ej!
X×Y DE(EjX !!F

+
� EjX !!G)

(∗)
'Ej!

X×Y(DE EjX !!F
+
�DE EjX !!G)

'Ej!
X×Y(EjX ∗DE F

+
� EjY ∗DE G)

'(Ej!
XEjX ∗DE F )

+
� (Ej!

YEjY ∗DE G)

'DE F
+
�DE G,

where we used the fact that, for a bordered open embedding j, one has Ej−1 ' Ej! and
[DK16b, proposition 4.5.10], or [DK16b, proposition 4.9.22], respectively, and [DK16b,
proposition 4.9.21] for step (∗).

1.5 Quasi-abelian categories

While on the one hand, the concept of a quasi-abelian category is essential for all of the
following, we will on the other hand not need any deeper insights into the corresponding
theory for this thesis. Thus, let us only very quickly recall the basic definitions from
[Sch98]. For the following, let C be an additive category with kernels and cokernels.

Definition 1.38 (definition 1.1.1 of [Sch98]). For some morphism f : A → B in C , one
defines

Im(f) := ker(B → Coker(f)),

Coim(f) := Coker(ker(f)→ A).

By the universal properties of kernel and cokernel, f induces a canonical morphism

Coim(f) −→ Im(f).

Definition 1.39 (section 1.1.1 of [Sch98]). A morphism f : A→ B in C is called strict if
the canonical morphism Coim(f)→ Im(f) is an isomorphism.

Definition 1.40 (definition 1.1.3 of [Sch98]). The category C is called quasi-abelian if:

18
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i) In any cartesian square

A B

A′ B′,

f

f ′

where f is a strict epimorphism, f ′ is also a strict epimorphism.

ii) In any cartesian square

A′ B′

A B,

f ′

f

where f is a strict monomorphism, f ′ is also a strict monomorphism.

One of the drawbacks of the existence of non-strict morphisms is that one now has
to split the definition of exact sequences known from abelian categories to distinguish
(strictly) exact and coexact sequences.

Definition 1.41 (definition 1.1.9 of [Sch98]). A sequence of the form

A
f−→ B

g−→ C

with g ◦ f = 0 is called strictly exact (at B) if f is strict and the canonical morphism

Im(f)→ ker(g)

induced by the universal properties is an isomorphism. It is called strictly coexact if
instead g is strict. A sequence

A1
f1−→ A2

f2−→ . . .
fn−1−→ An

is called strictly exact (resp. coexact) if it is so at every point Aj , 2 6 j 6 n− 1.

However, it turns out ([Sch98, remark 1.1.10]) that a sequence of the form

0 −→ A
f−→ B

g−→ C −→ 0

is strictly exact if and only if it is strictly coexact, if and only if f is a kernel of g and
g is a cokernel of f . In particular, one may introduce the (non-split) notion of a strict
short exact sequence in a quasi-abelian category. One of the main results in view of the
appearance of quasi-abelian categories in the context of generalized t-structures is the
following
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Proposition 1.42 (lemma 4.2 of [Bri07]). An additive category C is quasi-abelian if and
only if there are abelian categories C ] and C [ and fully faithful embeddings C ⊂ C ] and
C ⊂ C [ such that

i) if A→ C is a monomorphism in C ] with C ∈ C , then also A ∈ C ,

ii) if C → B is an epimorphism in C [ with C ∈ C , then also B ∈ C .

If i) and ii) hold, the strict short exact sequences in C are those sequences

0 −→ A −→ B −→ C −→ 0

that are exact both in C ] and in C [.

1.6 Generalized t-structures

Let T be a triangulated category.
Definition 1.43 (definition 1.2 of [Kas15]). For families (T6c)c∈R and (T>c)c∈R of strictly
full subcategories of T , set T<c :=

⋃
b<c T

6b and T>c :=
⋃
b>c T

>b. Then (T6c, T>c)c∈R
is called a generalized t-structure (on T ) if it satisfies the conditions

i) T6c =
⋂
b>c T

6b and T>c =
⋂
b<c T

>b for any c ∈ R,

ii) T6c+1 = T6c[−1] and T>c+1 = T>c[−1] for any c ∈ R,

iii) HomT (A,B) = 0 for any c ∈ R, A ∈ T<c and B ∈ T>c,

iv) for any A ∈ T and c ∈ R, there exist distinguished triangles

A6c −→ A −→ A>c
+1−→

A<c −→ A −→ A>c
+1−→,

where A6c ∈ T6c, A<c ∈ T<c, A>c ∈ T>c and A>c ∈ T>c.

By i) – iii), the objects A6c, A<c resp. A>c, A>c in iv) are unique up to unique
isomorphism and thus define truncation functors τ6c, τ<c, resp. τ>c, τ>c that are right
resp. left adjoint to the inclusion functors T6c → T , T<c → T , resp. T>c → T , T>c → T .
Definition 1.44 (cf. section 1.3 of [DK16a]). For some interval I = [a, b] ⊂ R (resp. (a, b],
[a, b), (a, b)), one sets

T I := T6b ∩ T>a (resp. T6b ∩ T>a, T<b ∩ T>a, T<b ∩ T>a).

The functor

τ6b ◦ τ>a : T → T I , (resp. τ6b ◦ τ>a, τ<b ◦ τ>a, τ<b ◦ τ>a)

is denoted by HI . For I = {c} for some c ∈ R, one writes T c := T {c} and Hc := H{c}.

20



1 Introduction

Remark 1.45 (cf. section 1.2 of [DK16a]). One may show that condition iii) of definition
1.43 is equivalent to either of

iii)’ HomT (T6c, T>c) = 0 for any c ∈ R,

iii)” HomT (T<c, T>c) = 0 for any c ∈ R.

Remark 1.46 (cf. section 1.2 of [DK16a]). For a triangulated category T as above, if
(T60, T>0) is a t-structure in the classical sense, then (T6c, T>c)c∈R with

T6c :=T60[−bcc],
T>c :=T>0[−dce]

is a generalized t-structure on T . On the other hand, if (T6c, T>c)c∈R is a generalized
t-structure on T , then (T6c+1, T>c) and (T<c+1, T>c) are classical t-structures for any
c ∈ R.
Definition 1.47 (cf. definition 1.2.4 of [DK16a]). Let Σ ⊂ R be discrete and such that
Σ+Z = Σ. Then, a generalized t-structure (T6c, T>c)c∈R is called indexed by Σ if T c = 0
for any c ∈ R \ Σ.

For example, the self-dual generalized t-structure on Db
R−c(CX) for some real manifold

X from [Kas15] as well as the generalized self-dual t-structure on ER−c(X) for some
subanalytic bordered space X are 1/2-indexed.

Definition 1.48 (cf. definition 1.4.1 of [DK16a]). Let T, S be triangulated categories and
F : T → S a triangulated functor. Then F is called

i) left t-exact if F (T>c) ⊂ S>c for any c ∈ R,

ii) right t-exact if F (T6c) ⊂ S6c for any c ∈ R, and

iii) t-exact if it is both left and right t-exact.

Some properties of generalized t-structures Let T be a triangulated category equipped
with some generalized t-structure (T6c, T>c)c∈R.

Proposition 1.49 (proposition 1.3.1 of [DK16a] resp. lemma 4.3 of [Bri07]). Let I ⊂ R
be some interval.

i) If I → R/Z is injective, T I is a quasi-abelian category and strict short exact se-
quences in T I correspond (one-to-one) to distinguished triangles in T with all vertices
in T I .

ii) If I → R/Z is bijective, then T I is an abelian category and the functor HI : T → T I

is cohomological.
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Let S be another triangulated category with a generalized t-structure (S6c, S>c)c∈R.
Consider the following result analogous to that in the case of a classical t-structure, cf.
[HTT08, proposition 8.1.15].

Lemma 1.50. Let F : T → S be a left t-exact functor and I ⊂ R an interval such that
I → R/Z is injective. Then one has

τ6cF (τ6c(A)) ' τ6cF (A)

for any A ∈ T . In particular, if I = (a, b) or I = (a, b] (resp. I = [a, b) or I = [a, b]),
then

HI
SF (HI

TA) ' HI
SF (A)

for any object A in T>a (resp. T>a).
If I → R/Z is bijective, so that T I , SI are abelian, HIF is a left exact functor T I → SI .

Proof. The proof works the very same way as the one in [HTT08] for the case of classical
t-structures. Recall that τ6c : T → T6c is right adjoint to the inclusion functor T6c → T
(cf. [Kas15, section 1]). This allows us to show

τ6cF (τ6c(A)) ' τ6cF (A)

for any A ∈ T . Completely analogous to the reasoning in [HTT08], note that is is enough
to prove

HomS6c

(
B, τ6cF (τ6c(A))

)
' HomS6c

(
B, τ6cF (A)

)
for any B ∈ S6c.
By adjunction of τ6c and the inclusion functor, one has the commutative diagram

HomS6c

(
B, τ6cF (τ6c(A))

)
HomS6c

(
B, τ6cF (A)

)
HomS(B,F (τ6c(A)) HomS(B,F (A))

' '

b

(1.2)

(where the horizontal arrows are induced by the canonical morphism τ6cA → A) and
it thus suffices to show the lower map b is an isomorphism for any B ∈ S6c. Now, by
definition of a generalized t-structure,

τ6cA −→ A −→ τ>cA
+1−→

is a distinguished triangle in T , yielding a distinguished triangle

F (τ6cA) −→ F (A) −→ F (τ>cA)
+1−→
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in S. As Hom(B, •) is a cohomological functor by the definition of a triangulated category,
one gets an exact sequence of abelian groups

. . . −→ HomS(B,F (τ>cA)[−1]) −→

−→ HomS(B,F (τ6cA))
b−→ HomS(B,F (A)) −→

−→ HomS(B,F (τ>cA)) −→ . . .

and, as F is left exact by hypothesis, the first and the last of the shown terms in the
above sequence vanish (recall that B ∈ S6c). So b in (1.2) indeed is an isomorphism.
The same works for τ<c as well, as it is again right adjoint to the inclusion T<c → T .
Now let I = [a, b) ⊂ R, where one could as well have chosen an interval of the form (a, b],
(a, b) or [a, b], including the case [a, a], in which we denote the functor H [a,a] by Ha as
usual. Then, as F is left t-exact, we have F (τ>aA) ' τ>aF (τ>aA) and thus, if A ∈ T>a,
i. e. τ>aA ' A, we get

H [a,b)F (A) ' τ>aτ<bF (A) ' τ>aτ<bF (τ<bτ>aA) ' H [a,b)F (H [a,b)A).

Now, suppose that I := [a, a+ 1)→ R/Z is bijective (again everything works completely
analogous for I = (a, a + 1]), so that SI is abelian and HI is cohomological. Let us
consider a short exact sequence

0 −→ A −→ B −→ C −→ 0

in T I . This corresponds to a distinguished triangle

A −→ B −→ C
+1−→

in T (note that T I is nothing but the heart of the classical t-structure (T<a+1, T>a) on
T which is associated to the generalized t-structure (T6c, T>c), cf. remark 1.46 resp.
[Bri07, section 3] and [DK16a, section 1.2]).
So, F (A) → F (B) → F (C)

+1→ is a distinguished triangle in S and applying the
cohomological functor H := HI

S gives us an exact sequence

. . . −→ H−1(F (C)) −→ H0(F (A)) −→ H0(F (B)) −→ H0(F (C)) −→ . . .

with H i = H
[a+i,a+1+i)
S [i] = τ>a+i

S ◦ τ<a+1+i
S [i]. But now C ∈ T I , so, as F is left t-exact,

F (C) ∈ S>a, so τ<aF (C) ' 0, i. e.

H−1(F (C)) = τ>a−1
S ◦ τ<aS F (C)[−1] ' 0,

showing HI
SF : T I → SI is indeed left exact.
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Remark 1.51. The very same proof works if we replace the left t-exact functor F with a
right t-exact functor G and every appearance of “6” (resp. “<”) with “>” (resp. “>”) and
vice versa. Later, we will have to use HomS>c(•, B) (instead of HomS6(B, •), using the
covariant instead of the contravariant Yoneda-embedding), and replace the distinguished
triangle above with

τ<cA −→ A −→ τ>cA
+1−→ .

The very same reasoning then yields that for such right t-exact G, we have

τ>c(G(τ>cA)) ' τ>cG(A)

for any A and G induces a right exact functor

GI : T I → SI

if I → R/Z is bijective.

1.7 Enhanced perverse sheaves

Recall that for some (real analytic) manifoldX and some perversity function p : Z>0 → Z,
one defines the (classical) t-structure on Db

R−c(kX) corresponding to p by defining the
properties

(p60)(F ) : dim(Supp(HjF )) < m for any j, k with j > p(k)

(p>0)(F ) : Hj(i!ZF ) = 0 for any Z ∈ LCS(X) with j < p(dim(Z))

of a F ∈ Db
R−c(X) (notation inspired by the one in [DK16a]), where LCS(X) shall denote

the locally closed subanalytic subsets of X, and then setting

pD60
R−c(kX) :={F ∈ Db

R−c(kX)|(p60)(F ) holds},
pD>0

R−c(kX) :={F ∈ Db
R−c(kX)|(p>0)(F ) holds},

(1.3)

cf. [KS90, definition 10.2.1]. Note that the property (p60)(F ) may be reformulated in a
way formally more similar to (p>0)(F ): Let X =

∐
a∈AXa be a subanalytic stratification

of X, consisting of equidimensional strata, such that F has locally constant cohomologies
with respect to (Xa)a∈A. For every a ∈ A, let ia : Xa → X denote the corresponding
locally closed embedding. Then, (p60)(F ) is equivalent to

(p60)A(F ) : Hj(i−1
a F ) = 0 for any a, j with j > p(dim(Xa)),

cf. [KS90, proposition 10.2.4]. Under the very same assumptions, (p>0)(F ) is equivalent
to

(p>0)A(F ) : Hj(i!aF ) = 0 for any a, j with j < p(dim(Xa)),
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again by [KS90, proposition 10.2.4]. For some perversity function p, one defines p∗ by
p∗(n) = −p(n)− n. Then, it is a well known fact that

DX(pD60
R−c(kX)) ⊂ p∗D>0

R−c(kX), DX(pD>0
R−c(kX)) ⊂ p∗D60

R−c(kX), (1.4)

with DX denoting the Poincaré–Verdier dual on X as usual, cf. [KS90, proposition
10.2.13]. Further recall that, for a complex manifold X, one sets

pD60
C−c(kX) := pD60

R−c(kX) ∩Db
C−c(kX),

pD>0
C−c(kX) := pD>0

R−c(kX) ∩Db
C−c(kX),

cf. [KS90, section 10.3]. For some F ∈ Db
C−c(kX), checking the criteria (p60)A(F ),

(p>0)A(F ) from above, we may choose every stratum Xa to be complex analytic and
thus of even real dimension. This allows us to apply the above definition 1.3 to the so
called middle perversity function p1/2 : 2Z>0 → Z, n 7→ −n/2, yielding

p1/2D60
C−c(kX) ={F ∈ Db

C−c(kX)|∀j : dim(SuppHjF ) 6 −j}
p1/2D>0

C−c(kX) ={F ∈ Db
C−c(kX)|∀j : dim(Cosuppj(F )) 6 j},

where j ∈ Z and Cosuppj(F ) = Supp(H−j(DX F )), cf. [Dim04, section 5.1], [KS90,
section 10.3]. We will write (1/2D60

C−c(kX), 1/2D>0
C−c(kX)) for the p1/2-t-structure on

Db
C−c(kX). As p1/2 is characterized, amongst all perversity functions, by the property

that p∗1/2 = p1/2, the middle perversity t-structure, by (1.4), has the desirable property
of being self-dual, i. e.

DX(1/2D60
C−c(kX)) ⊂ 1/2D>0

C−c(kX), DX(1/2D>0
C−c(kX)) ⊂ 1/2D60

C−c(kX).

Furthermore, moving to the case k = C, the de Rham functor

DRX : Db
rh(DX)→ Db

C−c(CX)

is known to be exact with respect to the standard t-structure on Db
rh(DX) and the middle

perversity t-structure on Db
C−c(CX). The heart

1/2D0
C−c(CX) = 1/2D60

C−c(CX) ∩ 1/2D>0
C−c(CX)

is an abelian category (as is the heart of any classical t-structure), whose objects are
called perverse sheaves.
Clearly, this construction of a middle perversity t-structure does not work for case

of Db
R−c(kX), due to the mere fact that p1/2 takes non-integer values on odd numbers,

conflicting with the definition of a classical perversity function. Actually, in view of (1.4),
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there is in general no peversity function p that would yield a self-dual (classical) t-
structure on Db

R−c(kX). However there is a natural self-dual generalized t-structure on
Db

R−c(CX) ([Kas15]), using the generalized perversity function

p1/2 : Z>0 → R, n 7→ −n/2.

To be precise, one may define (cf. [DK16a, definition 1.7.3, lemma 1.7.4 and proposition
1.7.5] – with notation as above), for any c ∈ R,
1/2D6cR−c(kX) :={K ∈ Db

R−c(kX)|dim(Supp(HjK)) < k, ∀ k ∈ Z>0,∀j : j > c+ p1/2(k)}
1/2D>cR−c(kX) :={K ∈ Db

R−c(kX)|DX K ∈ 1/2D6−cR−c(kX)}.

Building upon these ideas, in [DK16a], M. Kashiwara and A. D’Agnolo prove the ex-
istence of a self-dual generalized t-structure on ER−c(X) for a subanalytic bordered
space X, again using the (generalized) perversity function p1/2.

1.7.1 Enhanced ind-sheaf t-structure

From now on, if the context is clear, we would like to refer to a generalized t-structure
simply as a t-structure and, analogously, to a generalized perversity function, i. e. a map
p : Z>0 → R such that p and p∗ (which is again defined by p∗(n) = −p(n)− n) are both
decreasing, as a perversity function. Let X = (X, X̌) be a subanalytic bordered space,
and let jX denote the corresponding open embedding X → X̌.

t-structure on Db
R−c(kX) Recall from [DK16a] that one may define a self-dual gen-

eralized t-structure on Db
R−c(kX), similar to the case of Db

R−c(kX) (cf. [Kas15]), the
following way: Let CSX denote the closed subanalytic subsets of the bordered space X.
Furthermore write dZ for the dimension of a Z ∈ CSX and set

CS<kX := {Z ∈ CSX |dZ < k}
CS6kX := {Z ∈ CSX |dZ 6 k}.

Definition/Proposition 1.52 (cf. definition 3.1.5 of [DK16a]). ConsiderDb
R−c(kX) as a full

subcategory of D(X) via ιX. For any perversity function p there are given the following
two conditions in [DK16a]:

(Ip6ck ) : i−1
(X\Z)∞

F ∈ D6c+p(k)((X \ Z)∞) for some Z ∈ CS<kX

(Ip>ck ) : i!Z∞F ∈ D
>c+p(k)(Z∞) for any Z ∈ CS6kX

(1.5)

These conditions yield the following full subcategories of D(X):

pD6c(X) := {F ∈ D(X)|(Ip6ck ) holds for any k ∈ Z>0}
pD>c(X) := {F ∈ D(X)|(Ip>ck ) holds for any k ∈ Z>0}
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One defines
pD6cR−c(kX) := pD6c(X) ∩Db

R−c(kX)

pD>cR−c(kX) := pD>c(X) ∩Db
R−c(kX),

and this finally gives a (generalized) t-structure on Db
R−c(kX) (note that, for p = p1/2 and

X = X, this is just the self-dual t-structure on Db
R−c(kX) mentioned above, cf. [DK16a,

lemma 1.7.4]).

Intermediate (not self-dual) t-structure on ER−c(X) Let K be an object in E(X), p
some (generalized) perversity function, c ∈ R and k ∈ Z>0, as above.

Definition 1.53 (definition 3.2.1 of [DK16a]). Consider the following conditions (in anal-
ogy to (1.5)):

(Ep6ck ) : Ei−1
(X\Z)∞

K ∈ E6c+p(k)((X \ Z)∞) for some Z ∈ CS<kX

(Ep>ck ) : Ei!Z∞K ∈ E
>c+p(k)(Z∞) for any Z ∈ CS6kX

(1.6)

The corresponding strictly full subcategories of E(X) are denoted by

pE
6c(X) := {K ∈ E(X)|(Ep6ck ) holds for any k ∈ Z>0},

pE
>c(X) := {K ∈ E(X)|(Ep>ck ) holds for any k ∈ Z>0}.

Remark 1.54. (pE
6c(X), pE

>c(X)) is not a (generalized) t-structure, cf. [DK16a, sec-
tion 3.2]. A useful note supplementing the conditions (1.6) (cf. [DK16a, Remark 3.2.2
(i)]) is that one has:

Ei−1
(X\Z)∞

K ∈ E6c((X \ Z)∞)⇐⇒ π−1kX\Z ⊗K ∈ E6c(X),

Ei!Z∞K ∈ E
>c(Z∞)⇐⇒ RIhom(π−1kZ ,K) ∈ E>c(X)

Definition/Proposition 1.55 (cf. def. 3.3.11 and prop. 3.3.12 of [DK16a]). For a perver-
sity function p and c ∈ R as above,

pE
6c
R−c(X) := pE

6c(X) ∩ ER−c(X),

pE
>c
R−c(X) := pE

>c(X) ∩ ER−c(X)

defines a generalized t-structure on ER−c(X).

However this t-structure still misses the property that DE interchanges pE
6c
R−c with

p∗E
>−c
R−c (X), which is the basis for obtaining a self-dual t-strucure by setting p = p1/2.

This issue is solved in [DK16a] by intersecting (pE
6c
R−c(X), pE

>c
R−c(X))c∈R with its dual

t-structure, to finally obtain a self-dual t-structure for p = p1/2.
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Dual intermediate enhanced t-structure Let p be a perversity function and c ∈ R, as
above.

Definition 1.56 (notation 3.4.1 in [DK16a]). One sets

′
pE
6c
R−c(X) := {K ∈ ER−c(X)|DE

XK ∈ p∗E
>−c
R−c (X)

′
pE
>c
R−c(X) := {K ∈ ER−c(X)|DE

XK ∈ p∗E
6−c
R−c (X).

This again defines a t-structure on ER−c(X), cf. [DK16a, proposition 3.4.2], and DE
X

interchanges pE6cR−c(X) and ′
p∗E

>−c
R−c (X) resp. pE>cR−c(X) and ′

p∗E
6−c
R−c (X), by definition.

Enhanced t-structure

Definition 1.57 (definition 3.5.1 of [DK16a]). For a perversity function p and c ∈ R as
above, set

pE6cR−c(X) := pE
6c
R−c(X) ∩ ′pE

6c+1/2
R−c (X)

= {K ∈ ER−c(X)|K ∈ pE
6c
R−c(X) and DE

XK ∈ p∗E
>−c−1/2
R−c (X)},

pE>cR−c(X) := pE
>c−1/2
R−c (X) ∩ ′pE

>c
R−c(X)

= {K ∈ ER−c(X)|K ∈ pE
>c−1/2
R−c (X) and DE

XK ∈ p∗E
6−c
R−c (X)}.

In [DK16a] it is shown that one has

Theorem 1.58 (cf. theorem 3.5.2 of [DK16a]). For a bordered space X as above,
(pE6cR−c(X), pE>cR−c(X))c∈R is a t-structure on ER−c(X), and DE

X interchanges pE6cR−c(X)

and p∗E>−cR−c (X).

In particular, setting p = p1/2, the resulting generalized t-structure is self-dual.

Definition 1.59 (definition 3.5.8 of [DK16a]). The self-dual generalized t-structure on
ER−c(X) for the perversity p1/2 is denoted by(

1/2E6cR−c(X), 1/2E>cR−c(X)
)
c∈R

and called the enhanced middle perversity t-structure.

Defining p[d] by p[d](n) = p(d+ n), one can show

Proposition 1.60 (proposition 3.5.6 of [DK16a]). Let f : X → Y be a morphism of
bordered spaces, and d ∈ Z>0 such that dim(f̊−1(y)) 6 d for any y ∈ Y̊. Then, for any
c ∈ R, one has

i) Ef−1(p[d]E6cR−c(Y)) ⊂ pE6cR−c(X),
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ii) Ef !(p[d]E>cR−c(Y)) ⊂ pE>c−dR−c (X),

iii) ER−c(Y) ∩ Ef∗(pE>cR−c(X)) ⊂ p[d]E>cR−c(Y),

iv) ER−c(Y) ∩ Ef!!(
pE6cR−c(X)) ⊂ p[d]E6c+dR−c (Y).

Proposition 1.61 (proposition 3.5.7 of [DK16a]). The embedding

e : Db
R−c(kX)→ ER−c(X)

is exact with respect to the generalized t-structures (pD6cR−c(kX), pD>cR−c(kX))c∈R resp.
(pE6cR−c(X), pE>cR−c(X))c∈R described above.

1.7.2 Riemann–Hilbert correspondence

Let X be a complex manifold and k = C.

Theorem 1.62 (cf. theorem 4.5.1 of [DK16a]). The enhanced de Rham and (shifted)
solution functors DREX resp. SolEX [dCX ] are exact with respect to the standard t-structure
on Db

h(DX) and the enhanced middle perversity t-structure on ER−c(X). In particular,
one has the following (quasi-)commutative diagrams

Modhol(DX) 1/2E0
R−c(X)

Modrh(DX) 1/2D0
R−c(CX)

DREX

DRX

Modhol(DX)op 1/2E
dCX
R−c(X)

Modrh(DX)op 1/2D
dCX
R−c(CX),

SolEX

SolX

where dCX denotes the complex dimension of X.

1.8 Meromorphic connections

As stated in the introduction of [Sim09] and built on in [Ari10], the setting of irregular
meromorphic connections on an algebraic variety provides a natural framework for ap-
plying the concept of Katz’s middle convolution operation. As announced at the very
beginning of this section, we would like to find an enhanced counterpart to this in this
thesis. However, to make use of the enhanced Riemann–Hilbert correspondence later
on, we would have to pass over to the analytic setting via the analytification functor
described in [Ser56]. With that said, let us finally recall some basic facts about mero-
morphic connections, in the algebraic as well as in the analytic setting.
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Algebraic case LetD ⊂ X be a divisor on a smooth varietyX and denote by U := X\D
its complement, as well as by j : U → X the corresponding open embedding. Let us
denote by OX(∗D) := j∗OU the sheaf of meromorphic functions on X with poles on D.
Recall from [HTT08, section 5.3] that an (algebraic) meromorphic connection on X along
D is a DX -module M that is isomorphic to some coherent OX(∗D)-module as an OX -
module. In particular, for such M , one has that jFM ' j†M ' j−1M is an integrable
connection on U . As in [HTT08], we denote the category of (algebraic) meromorphic
connections on X with poles along D by Conn(X,D) and that of integrable connections
on X by Conn(X). A result that distinguishes the algebraic case from the analytic case
in a fundamental way is the following

Lemma 1.63 (lemma 5.3.1 of [HTT08]). The functor j−1 establishes an equivalence of
categories

Conn(X,D)
∼−→ Conn(U)

with quasi-inverse j∗.

In particular, any algebraic meromorphic connection is holonomic (this of course is
true in the analytic case as well).

Analytic case For the analytic case, we are referring to [HTT08, section 5.2] and [Bjö93,
section III.6]. If X is a complex manifold and D ⊂ X a divisor, we denote again by
OX(∗D) the sheaf of (analytic) meromorphic functions on X with poles on D. An
(analytic) meromorphic connection on X along D is a DX -module M such that M
is isomorphic as an OX -module to some coherent OX(∗D)-module, or equivalently, a
holonomic DX -module M such that M |X\D is a integrable connection and M 'M (∗D),
cf. [Bjö93, section 3.6.6]. We write Conn(X,D) again for the category of meromorphic
connections on X along D.
As mentioned in [HTT08, section 5.3], on a projective smooth variety, the analytifica-

tions of algebraic meromorphic connections are analytic meromorphic connections,

Lemma 1.64. Let X be a projective smooth variety, D ⊂ X some divisor, as above, and
M ∈ Conn(X,D). Then M an is an analytic meromorphic connection on Xan along Dan,
i. e. M an ∈ Conn(Xan, Dan).

As is well known, no analog of lemma 1.63 exists in the analytic case.

Meromorphic connections and enhanced Riemann–Hilbert correspondence Let X
be a complex manifold, D ⊂ X some divisor and U := X \D as above, where we again
denote by j : U → X the corresponding open embedding. The following is an observation
used in [DHMS17, section 2].
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Lemma 1.65. In the above setting, let M be some DX-module satisfying M 'M (∗D)
(e. g. M ∈ Conn(X,D)). Then

DREX(M ) ' RIhom(π−1CU , DREX(M )) resp. SolEX(M ) ' π−1CU ⊗ SolEX(M ).

Proof. Because the proof is omitted in [DHMS17], let us give a short sketch here for con-
venience. By [DK16a, lemma 2.4.5], both versions correspond to each other via duality,
so it is certainly enough to prove the first one. Now, OX(∗D) is regular holonomic and
SolX(OX(∗D)) ' CU , so3 we get

DREX(M ) ' DREX(O(∗D)
D
⊗M ) ' RIhom(π−1SolX(O(∗D)), DREX(M ))

' RIhom(π−1CU , DREX(M ))

by [DK16b, theorem 9.1.2 (iv)].

3To see this aforementioned equation, consider the distinguished triangle

RΓ[D](OX) −→ OX −→ OX(∗D)
+1−→

from [Bjö93, section 2.5] and apply SolX(•), together with

RΓ[D](OX) ' Thom(CD,OX)

from [KS96, theorem 5.12], which means that

SolX(RΓ[D](OX) ' CD.
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2 Convolution operations

2 Convolution operations

Recall that a group object G in the category of smooth algebraic varieties or complex
manifolds is a variety or manifold equipped with the corresponding structure morphisms,
i. e. a group operation σ : G × G → G, an identity {∗} → G (where {∗} denotes the
corresponding one-point terminal object), and inverses given by ι : G → G, subject to
the ordinary group axiom diagrams.
The concept of the additive convolutions in [Kat95] is based on the additive group

structure of A1. When proceeding to the enhanced setting, probably the first basic issue
coming up is that, though A := (A1)an of course still is a group object in the category
of manifolds, for some meromorphic connection M on P1 with a pole at ∞, obviously
SolEP (M )|A (with P := (P1)an) does not capture enough information to recover M – on
the other hand, P is not a group object with respect to the appropriate additive structure.
Our suggestion here is based on the following observation that emerges quite naturally:
The bordered spaceA := (A,P) is a group object in the category of (subanalytic, actually
complex in the sense of [KS16, section 4.3]) bordered spaces, with respect to the sum
map

σ : A×A→ A

that is induced by the group operation A × A → A, (a, b) 7→ a + b on A, with unit
morphism ({pt}, {pt}) → A induced by {pt} → A, pt 7→ 0 and inverses morphism
ι : A → A determined by A → A, a 7→ −a. In addition, SolEX(M )|A does keep the
necessary information on M , see lemma 1.65. In the course of this section, we will use
this observation, together with the concept of enhanced perverse sheaves established in
[DK16a], to define additive !- and ∗-convolutions on ER−c(A) and, building on these,
an enhanced middle convolution operation on 1/2E0

R−c(A) (definition 2.8), in nearly
complete analogy to the concepts of [Kat95, section 2.6]. In particular, our enhanced
middle convolution operation will rely on a pair (K,L) of objects in 1/2E0

R−c(A) satisfying
some property P, similar to the one of [Kat95, section 2.6] for the classical case. The
major part of this section is then devoted to finding some non-trivial pair (i. e. not both
objects originating from classical perverse sheaves, cf. proposition 1.61) of objects in
1/2E0

R−c(A) meeting this requirement.

Remark 2.1. Some observations concerning A.

• The group operation +: A×A → A does indeed induce a morphism

σ : A×A→ A,

as P and thus P × P is compact, so in particular, the restriction of the first
projection pr1|Γ+

: Γ+ → P (cf. definition 1.1) is proper. The same argument of
course works for identity and inverses morphism as well.
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• For the same reason as above, pr2|Γ+
: Γ+ → P (for pr2 the second projection

P ×P → P) is proper as well, which makes σ a semi-proper morphism of bordered
spaces (cf. definition 1.2).

• As P1 is compact and of dimension one, the analytification functor (•)an from
[Ser56] gives an equivalence Db

hol(DP1) ' Db
hol(DP) between algebraic and analytic

holonomic D-modules, cf. [Mal91, section I.4].

• The homeomorphism

α : A×A → A×A, (a, b) 7→ (a, a+ b)

induces an isomorphism of bordered spaces α : A×A
'→ A×A, such that

p2 ◦ α = σ

for the projection p2 : A×A→ A on the second factor.

Definition 2.2 (Enhanced convolution). Let us now define two kinds of convolution oper-

ations
E∗!,

E∗∗ : ER−c(A)×ER−c(A)→ ER−c(A) (analogous to the definitions in [Kat95])
– let K,L be objects in ER−c(A), denote by p1, p2 the projections

A
p1←− A×A

p2−→ A

and set4

K
E∗∗ L := Eσ∗(K

+
� L) = Eσ∗(Ep

−1
1 K

+
⊗ Ep−1

2 L),

K
E∗! L := Eσ!!(K

+
� L) = Eσ!!(Ep

−1
1 K

+
⊗ Ep−1

2 L).

2.1 Compatibility with “classical” convolution

Recall the embedding eA : Db
R−c(kA) → ER−c(A) (section 1.3.2). In this section, we

want to assure that the above convolutions correspond to the “classical” ones, as defined
e. g. in [Kat95], via this embedding e.

Lemma 2.3. Eσ!! and Eσ∗ commute with e, to be precise:

Eσ∗ ◦ eA×A ' eA ◦Rσ∗, Eσ!! ◦ eA×A ' eA ◦Rσ!.

Proof. As known from [DK16a, remark 2.4.3], we have ιA ◦ Rσ∗ ' Rσ∗ ◦ ιA×A, and
ιA ◦Rσ! ' Rσ!! ◦ ιA×A as σ is semi-proper. Let us show the commutativity

Eσ!! ◦ e ' e ◦Rσ!!.

4Recall that Eσ!! and Eσ∗ preserve R-constructibility as σ is semi-proper, cf. [DK16a, proposition 3.3.3]
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We set X := A×A and σR∞ := σ × IdR∞ as shorthands and compute

Eσ!!(e(F )) =Eσ!!(QX(kX{t�0} ⊗ π
−1F )) ' QA(RσR∞ !!(σ

−1
R∞(kA{t�0})⊗ π

−1F ))

'QA(kA{t�0} ⊗RσR∞ !!π
−1F ) ' QA(kA{t�0} ⊗ π

−1Rσ!!F ) = e(Rσ!!(F ))

for some F ∈ D(X), using the obvious fact that σ−1
R∞k

A
{t�0} ' kX{t�0} (second step),

[DK16b, proposition 3.3.13] (third step) and [DK16b, lemma 3.3.14] (fourth step). Fi-
nally, one has DE

A ◦Eσ!! ' Eσ∗ ◦DE
X and DE

X ◦e ' e◦DX , as well as DA ◦Rσ! ' Rσ∗ ◦DX

and DE
X ◦DE

X ' Id, DX ◦DX ' Id (and of course all the same on A), cf. [DK16a,
Proposition 3.3.3], so we get

Eσ∗(e(F )) 'Eσ∗(e(DX ◦DX(F ))) ' Eσ∗(DE
X(e(DX F )))

'DE
A ◦Eσ!!(e(DX F )) ' DE

A ◦e(Rσ!(DX F )) ' e(DA ◦Rσ!(DX F ))

'e(Rσ∗(DX ◦DX(F ))) ' e(Rσ∗F ).

Lemma 2.4. eX (with notation as above, i. e. X = A×A) interchanges � with
+
�.

Proof. It is enough to show this for e (instead of eX) and for ⊗ and
+
⊗ (instead of �

and
+
�), as e clearly commutes with inverse images. For any K1,K2 ∈ D(X× R∞), and

L ∈ D(X), one has (cf. [DK16b, lemma 4.3.1] resp. lemma 1.33)

π−1L⊗ (K1

+
⊗K2) ' (π−1L⊗K1)

+
⊗K2.

So, in particular we have

e(F )
+
⊗ e(G) =(kEX ⊗ π−1F )

+
⊗ (kEX ⊗ π−1G) ' π−1F ⊗ (kEX

+
⊗ (kEX ⊗ π−1G))

'π−1F ⊗ π−1G⊗ (kEX
+
⊗ kEX) ' π−1(F ⊗G)⊗ kEX = e(F ⊗G).

Let us denote by K ∗! L and K ∗∗ L the classical additve convolutions from [Kat95].
With the above observations, we get

Lemma 2.5. Let F,G ∈ Db
R−c(kA), then

e(F ∗� G) ' e(F )
E∗� e(G)

for � =!, ∗.
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2.2 Duality interchanges the two types of convolutions

Let X := A × A be as above. We already used that DA ◦ Rσ! ' Rσ∗ ◦ DX and
DE

A ◦Eσ!! ' Eσ∗ ◦DE
X. It is a well known fact that, for any reasonably good (cf. [KS90]

for a precise description) topological spacesX and Y , and F ∈ Db
R−c(kX), G ∈ Db

R−c(kY ),
we have

DX×Y (F �G) ' DX(F )�DY (G).

The same was proven for the enhanced setting in [DK16b, Proposition 4.9.21], and the
result immediately carries over to the enhanced setting (cf. lemma 1.37). We thus have

Lemma 2.6. Let K,L ∈ ER−c(A), then

DE
A(K

E∗! L) 'DE
AK

E∗∗ DE
A L,

DE
A(K

E∗∗ L) 'DE
AK

E∗! DE
A L.

2.3 Enhanced middle convolution

Before we state our definition, we would like to recall the following fact.

Lemma 2.7. Let f : X → Y be a morphism of bordered spaces, K ∈ D(X). Then we
have a canonical morphism

Rf!!K → Rf∗K.

In particular, for K ∈ E(X), this induces a canonical morphism

Ef!!K → Ef∗K.

Proof. Let us first note that in case f is an open (bordered) embedding j, we have
j! ' j−1 and thus we get the morphism in question as

Rj!!K → Rj∗j
−1Rj!!K ' Rj∗K, (2.1)

using the unit of the j−1 a Rj∗ adjunction and base change5. For the general case, by
[DK16b, lemma 3.2.5], we may factor f as

(X, X̌)
p1←−
'

(Γf ,Γf )
p2−→ (Y, Y̌ ),

where Γf is the closure of Γf in X̌ × Y̌ and the pi are induced by the projections

X̌
q1←− Γf

q2−→ Y̌ ,

5Note that this construction coincides with the canonical morphism obtained by

Rj!!K ' Rj!!j−1Rj∗K → Rj∗K.
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in particular, q1 is proper by definition of a morphism of bordered spaces, and q2, likewise
by definition, is proper if and only if f is semi-proper. As p1 is an isomorphism of bordered
spaces, we have, by [DK16b, corollary 3.3.11], that

Rf!!K ' Rp2,!!p
−1
1 K, Rf∗K ' Rp2,∗p

−1
1 K. (2.2)

As p2 is induced by q2, writing jX : X → X̌ and jY : Y → Y̌ for the open embeddings
as usual, we get

Rp2,!!L ' j−1
Y Rq2,!!RjX,!!L, Rp2,∗L ' j−1

Y Rq2,∗RjX,∗L

for any L ∈ D((Γf ,Γf )) by [DK16b, lemma 3.3.12]. We have a canonical morphism
Rq2,!! → Rq2,∗ (cf. [KS01, proposition 5.2.6]) that actually is an isomorphism if q2 is
proper (i. e. if f is semi-proper). Together with (2.1) and (2.2) this gives the desired
canonical morphism Rf!! → Rf∗.

In particular, lemma 2.7 proves that we have a canonical morphism K
E∗! L→ K

E∗∗ L
for some pair (K,L) as above. Furthermore recall that 1/2E0

R−c(A) is a quasi-abelian
category.

Definition 2.8 (Enhanced middle convolution). For K,L ∈ 1/2E0
R−c(A), we want to say,

in a slight alteration of the definition in [Kat95], that the pair (K,L) has property P!

(resp. P∗, P), if K
E∗! L ∈ 1/2E0

R−c(A) (resp. K
E∗∗ L ∈ 1/2E0

R−c(A), resp. both). If
(K,L) has property P, we set

K
E∗mid L := Im

(
K

E∗! L→ K
E∗∗ L

)
∈ 1/2E0

R−c(A)

and call this the enhanced middle convolution of K and L. Clearly there is no reason to
prefer the image over the coimage here, so we introduce

K
E∗co−mid L := Coim

(
K

E∗! L→ K
E∗∗ L

)
∈ 1/2E0

R−c(A),

which we will refer to as the enhanced co-middle convolution of a pair (K,L) with prop-
erty P.

Immediately by the definitions, duality interchanges middle and co-middle convolution
(cf. lemma 2.6), and the two versions coincide if and only if the canonical morphism

K
E∗! L→ K

E∗∗ L is strict.
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2.4 A non-trivial pair (K,L) with property P

As announced in the course of the introduction, our definition of the enhanced middle
convolutions raises (at least) two major issues. One point is if there are actually any non-
trivial pairs (K,L) – where by this we mean, in the context of lemma 2.5, that the objects
of such a pair should not both be in the essential image of e, i. e. not be coming from some
ordinary perverse sheaves – that have property P. A positive answer to this seems to be
indispensable in order to justify definition 2.8. The second question emerging naturally
is about the existence of some criterion asserting K

E∗mid L ' K
E∗co−mid L for a given

pair (K,L). For the rest of this section, we would like to address the first of these two
matters. Our main result here will be theorem 2.30, stating that the pair (Ew[1], LEλ [1])
has property P, where Ew = SolEP (E w) is the image under the enhanced solutions functor
of the irregular exponential meromorphic connection E w ∈ Conn(P, {∞}), cf. [DK16b,
definition 6.1.1], where w is a local coordinate of the chart A ' P \ {∞}, and LEλ is the
enhanced ind-sheaf associated to a classical Kummer-sheaf for some λ ∈ C \ Z via the
embedding e (cf. section 1.3.2). The rest of this section is devoted to the proof of this
theorem.

2.4.1 Kummer-sheaves

Definition 2.9. Let z be the affine coordinate of A1. For λ ∈ C \ Z we define a rank one
connection

K̃ λ :=

(
OA1\{0},d +λ

d z

z

)
on U := A1 \ {0} ⊂ P1, cf. e. g. [Ari10, section 2.3]. For j : U → P1, let us denote by
Kλa := j∗K̃ λ and K λ := (Kλa)an ∈ Hol(DP) the extension of K̃ λ to a regular (analytic)
meromorphic connection on P.
Let us denote by A1 ' U := P1 \{∞} and A1 ' V := P1 \{0} the two standard charts

of P1. Let us write w resp. z for the corresponding local coordinates and jU : U → P1

resp. jV : V → P1 for the associated open embeddings. Then, Kλ|U ' DU/DUPU and
Kλ|V ' DV /DV PV , for PU = w∂w + λ and PV = z∂z − λ. In particular, we have

(jan
U )−1DPKλ ' (DUKλa |U )an ' (DU/DUP

∗
U )an

(jan
V )−1DPKλ ' (DVKλa |V )an ' (DV /DV P

∗
V )an

for P ∗U resp. P ∗V the transpose operators, cf. [HTT08, pages 70,71], i. e.

P ∗U =− ∂ww + λ = −w∂w − (1− λ),

P ∗V =− ∂zz − λ = −z∂z + (1− λ).
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We naturally get DP1Kλa ' K1−λ
a and thus DPKλ ' K1−λ. Furthermore, there is a

canonical isomorphism K̃1−λ ' K̃−λ, cf. lemma 4.22, so we have

DPKλ ' K−λ.

Let us denote by L̃λ := Sol(K̃ λ) ∈ Db(CA\{0}) the local system corresponding to K̃ λ.
Due to the algebraic origin of K λ, we have (cf. [HTT08, theorem 7.1.1])

DR(K λ) ' Rj∗DR(K̃ λ), Lλ := Sol(K λ) ' j!Sol(K̃ λ) = j!L̃λ.

We will call Lλ the Kummer-sheaf corresponding to λ ∈ C \Z. Clearly, L̃λ is a rank one
local system with monodromies e−2πiλ 6= 1 (resp. e2πiλ) around 0 (resp. ∞) – and write

LEλ := SolE(K λ) = e(Lλ).

If the context is clear, we will consider Lλ as an object Lλ|A ∈ Db
R−c(CA) ⊂ Db

R−c(CA).
Note that LEλ [1] = e(Lλ[1]) ∈ 1/2E0

R−c(P) by [DK16a, proposition 3.5.7 and theo-
rem 4.5.1.].

2.4.2 The pair (K,L)

On the other hand, consider the irregular meromorphic connection

E w := E w
P\{∞}|P ∈ Hol(DP)

(notation as in [DK16b]), where w is a local coordinate on A = P \ {∞}. We know that

SolEP (E w) = CE
+
⊗ C{t=−Re(w)} =: Ew

by [DK16b, corollary 9.4.12]. By theorem 1.62, Ew[1] ∈ 1/2E0
R−c(P). We will consider

LEλ [1] and Ew[1] as objects of 1/2E0
R−c(A) via Ej−1

A . Note that, for the following calcu-
lations, we would like to use some general meromorphic function ϕ(w) instead of w as
long as this does not complicate things too much, where we will assume, without loss of
generality, that ϕ has one of its poles at ∞ ∈ P. Analogous to our notation above, we
will write

Eϕ := SolEP (E ϕ) = CE
+
⊗ C{t=−Re(ϕ)}.

Let us also point out that choosing one part of a pair (K,L) as above to be a Kummer-
sheaf seems natural with regard to the fact that the main use of the classical middle
convolution construction as e. g. in [Kat95] and [Ari10] lies in their application within the
framework of the corresponding middle convolution algorithms, for which convolutions
with Kummer-sheaves resp. their D-module counterparts Kλ are distinctive.
While LEλ [1] is in the essential image of e by construction, Ew[1] certainly is not, so

the pair (K,L) := (Ew[1], LEλ [1]) is non-trivial in the sense we mentioned above. Let us
show that (Ew[1], LEλ [1]) has property P.

38



2 Convolution operations

2.4.3 Reduction to the case of usual sheaves, part I

Recall the choice for the bordered space A = (A,P) from above. Let us denote

K! :=Eϕ
E∗! L

E
λ = Eσ!!(E

ϕ
+
� LEλ ),

K∗ :=Eϕ
E∗! L

E
λ = Eσ∗(E

ϕ
+
� LEλ )

as shorthands. For the following calculations, for a bordered space X = (X, X̌), let
as before ιX : Db

R−c(CX) → D(X) denote the embedding of sheaves to ind-sheaves,
QX : D(X×R∞)→ E(X) the quotient functor and π : D(X×R∞)→ D(X) the projec-
tion (the restriction of π to the full subcategory of usual sheaves will be denoted by π
again). If the situation is clear from the context we will often drop the indices. Finally let
us recall the notation LE , RE for the left resp. right adjoints to the quotient functor Q.
We will write

A
p1←− A×A

p2−→ A

for the projections, and, if there is no risk of confusion, we will use the same labels for the
corresponding projections A×A → A resp. P ×P → P. We will denote the coordinates
on A×A by (z1, z2). So we may write (with ϕ(z1) := ϕ ◦ p1)

K! = Eσ!!(E
ϕ

+
� LEλ )

= Eσ!!

(
Ep−1

1 (CEA
+
⊗ C{t=−Re(ϕ)})

+
⊗ Ep−1

2 (CEA ⊗ π−1Lλ)

)
' Eσ!!

(
CEA×A

+
⊗
(
Ep−1

1 C{t=−Re(ϕ)}
+
⊗ Ep−1

2 (C{t=0} ⊗ π−1Lλ)
))

' CEA
+
⊗ Eσ!!

(
(C{t=−Re(ϕ(z1))}

+
⊗ C{t=0})⊗ p−1

2 π−1Lλ
)

' CEA
+
⊗
(
RσR,!(C{t=−Re(ϕ(z1))} ⊗ p−1

2 π−1Lλ)
)
.

where we write σR to denote the morphisms σ × IdR and omit the functors Q and ι, as
we will often do if the context is clear. Furthermore, as σ is semi-proper, we get

K∗ = Eσ∗(E
ϕ

+
� LEλ )

' DE
AEσ!! DE

A×A

(
CEA×A

+
⊗
(
Ep−1

1 C{t=−Re(ϕ)}
+
⊗ Ep−1

2 (C{t=0} ⊗ π−1Lλ)
))

' DE
AEσ!!

(
CEA×A

+
⊗DA×A×R a

−1
(
p−1

1 C{t=−Re(ϕ)}
+
⊗ p−1

2 (C{t=0} ⊗ π−1Lλ)
))

' CEA
+
⊗
(

DA×R a
−1RσR,! DA×A×R a

−1
(
p−1

1 C{t=−Re(ϕ)}
+
⊗ p−1

2 (C{t=0} ⊗ π−1Lλ)
))

' CEA
+
⊗
(
RσR,∗(C{t=−Re(ϕ(z1))} ⊗ p−1

2 π−1Lλ)
)
.
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Remark 2.10. We could without any further changes have replaced any appearance of
C{t=0} with C{t>0} in the above lines, as for any F ∈ Db

R−c(CX) we have

CE
+
⊗ (C{t=0} ⊗ π−1F ) ' (CE

+
⊗ C{t=0})⊗ π−1F ' CE ⊗ π−1F =

= (CE
+
⊗ C{t>0})⊗ π−1F ' CE

+
⊗ (C{t>0} ⊗ π−1F ).

Remark 2.11. In this context, let us also verify, for the sake of completeness, that

C{t>0}
+
⊗ C{t=−Re(ϕ)} ' C{t>−Re(ϕ)},

as one would expect. Consider the obvious morphism C{t>−Re(ϕ)} → C{t=−Re(ϕ)}. We

want to convince ourselves that this induces, applying C{t>0}
+
⊗(•), a canonical morphism

C{t>−Re(ϕ)} → C{t>0}
+
⊗ C{t=−Re(ϕ)},

which we may then easily prove to be an isomorphism by checking stalks (and using
lemma 1.21). To do so we would like to verify that the canonical morphism

C{t>0}
+
⊗ C{t>−Re(ϕ)} → C{t>−Re(ϕ)}

induced by C{t>0} → C{t=0} (together with the fact that C{t=0}
+
⊗ K ' K for any K)

is an isomorphism. Note that the latter morphism fits into the standard distinguished
triangle

C{t>0} −→ C{t>0} −→ C{t=0}
+1−→

so we may equivalently prove that C{t>0}
+
⊗C{t>−Re(ϕ)} ' 0. We can check this on stalks

again: For some y ∈ A at which ϕ is defined, let iy : {y} → A and iy,R : {y}×R→ A×R
denote the canonical closed embeddings. Then, obviously

i−1
y,R(C{t>0}

+
⊗ C{t>−Re(ϕ)}) ' C{t>0}

+
⊗ C{t>−Re(ϕ(y))}.

Now, setting a := −Re(ϕ(y)) ∈ R and µa : R→ R, t 7→ t+a the translation map (where,
as usual, we label any map X × R → X × R that is induced by µa with µa again), we
get that

C{t>a} ' Rµa,∗C{t>0} ' C{t>0}
+
⊗ C{t=a},

cf. [DK16b, section 4.6], and so

C{t>0}
+
⊗ C{t>a} ' C{t>0}

+
⊗ (C{t>0}

+
⊗ C{t=a}) ' (C{t>0}

+
⊗ C{t>0})

+
⊗ C{t=a} ' 0,

cf. lemma 1.21 resp. [DK16b, section 4.6].
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Finally, as for any subanalytic space X and any F ∈ Db
R−c(CX×R∞), we have

DE
X(CEX ⊗Qι(F )) ' CEX ⊗Qι(DX×R a

−1F )

(cf. [DK16a]), as we already used above, the dual cases DE
AK! and DE

AK∗ can be handled
the same way.

2.4.4 Enhanced perversity conditions

By definition, we have Eϕ[1]
E∗! L

E
λ [1] = K![2] and Eϕ[1]

E∗∗ LEλ [1] = K∗[2]. For proving
K![2],K∗[2] ∈ 1/2E0

R−c(A), in view of [DK16a, definition 3.5.1] (cf. section 1.7.1 for a
short summary), what we have to show is

K![2],K∗[2],DE(K![2]), DE(K∗[2]) ∈ 1/2E
[−1/2,0]
R−c (A).

Filling in the definitions, this amounts to showing that, for

G ∈ {K![2],K∗[2],DE(K![2]),DE(K∗[2])},

we have (notation as in [DK16a, section 3] resp. section 1.7.1)

i) for any k ∈ Z>0, there exists a Z ∈ CS<kA such that

Ei−1
(A\Z)∞

G ∈ E6−k/2((A \ Z)∞),

ii) for any k ∈ Z>0, for any Z ∈ CS6kA one has

Ei!Z∞G ∈ E
>−(k+1)/2(Z∞).

Remark 2.12 (Summary of what to show). Item i) is trivially true for k > 3, as we may
chose Z = A in this case. Considering k = 0, i) implies that we must have

G ∈ E60
R−c(A).

Analogously, ii), applied for k > 2, implies that we must have

G ∈ E>−1
R−c (A).

If we manage to show these two, as the standard t-structure on ER−c(A) is 1-indexed,
what remains to check is that there is a Z ∈ CS<1(A) such that

Ei−1
(A\Z)∞

G ∈ E6−1((A \ Z)∞)

and that, for all Z ∈ CS60(A), we have

Ei!Z∞G ∈ E
>0(Z∞),

cf. [DK16a, rem. 3.2.2 and prop. 2.7.3 (iv,v)].
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2.4.5 Reduction to the case of usual sheaves, part II

Now, let us consider how cohomology of enhanced ind-sheaves of the type CEA
+
⊗F for some

F ∈ Db
R−c(CA×R∞) can be computed from the cohomology of F (or rather C{t>0}

+
⊗ F ).

To do so, recall the definition

E6n(A) := {K ∈ E(A)|LEK ∈ D6n(A× R∞)}
E>n(A) := {K ∈ E(A)|LEK ∈ D>n(A× R∞)},

cf. [DK16a, definition 2.6.1]. Furthermore,

D6n(A× R∞) = {K ∈ D(A× R∞)|RjA×R∞,!!K ∈ D6n(P × R)},
D>n(A× R∞) = {K ∈ D(A× R∞)|RjA×R∞,!!K ∈ D>n(P × R)},

for jA×R∞ : A × R∞ → P × R the canonical morphism of bordered spaces, as usual,
cf. [DK16b, section 3.4]. In particular, as LE ◦ EjA,!! = RjA×R∞,!! ◦ LE , this implies

E6n(A) = {K ∈ E(A)|EjA,!!K ∈ E6n(P)}
E>n(A) = {K ∈ E(A)|EjA,!!K ∈ E>n(P)},

so that we may apply the results of [DK16b, section 4.6]. In particular, we are going to
use that, for some K ∈ E(P) (resp. K ∈ E(A), as Ej−1

A is exact, compare the above
characterization), one has

u(K) = Q(u(LEK)) for u = Hn, τ6n, τ>n,

cf. [DK16b, section 4.6]. Recalling [DK16b, notation 4.4.5] resp. [DK16a, section 2.6],
if, for some bordered subanalytic space X, we write K ∈ E(X) as K = Q(G) for some
G ∈ D(X× R∞), then

LEK = LEQ(G) = (C{t>0} ⊕ C{t60})
+
⊗G.

We know that C{t�0}
+
⊗ C{t>0} ' C{t�0} and C{t�0}

+
⊗ C{t60} ' 0, so

Hn(CEM
+
⊗Q(F )) 'Q(Hn(LE(CE

+
⊗Q(F ))))

'Q(Hn(C{t�0}
+
⊗ F )) ' CE

+
⊗Q(Hn(C{t>0}

+
⊗ F )),

cf. [DK16b, proposition 4.7.2]. As Db
R−c(CX×R∞) is closed under

+
⊗, this reduces compu-

tation of cohomologies to the case of usual sheaves for the case that F ∈ Db
R−c(CX×R∞)

as it occurs in our example.
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2.4.6 Characteristic Varieties and µ-stratifications

With regard to the subsequent calculations, let us recall some more tools and definitions
from [KS90] and [Dim04]. Let X be a n-dimensional (real) manifold, M ⊂ X a closed
submanifold. Then, the normal resp. conormal bundle TMX resp. T ∗MX to M in X are
defined by the short exact sequences of vector bundles on M (cf. [KS90, section A.2])

0 −→ TM −→M ×X TX −→ TMX −→ 0,

0 −→ T ∗MX −→M ×X T ∗X −→ T ∗M −→ 0.

Keeping the notation of [KS90], one defines the normal deformation ofM inX (cf. [KS90,
section 4.1]), to be a manifold X̃M with maps p : X̃M → X and t : X̃M → R, characterized
by

p−1(X \M) '(X \M)× (R \ {0}),
t−1(R \ {0}) 'X × (R \ {0}),

t−1({0}) 'TMX.

Definition 2.13 (normal cones, definition 4.1.1 of [KS90]). Consider the open subset
Ω := t−1(R>0) ⊂ X̃M . Let p̃ : Ω → X denote the restriction of p to Ω and let s be the
isomorphism TMX

'→ t−1({0}).

i) For a subset S ⊂ X, define the normal cone to S along M by

CM (S) := s−1
(
t−1({0}) ∩ p̃−1(S)

)
.

ii) For two subsets S1, S2 ⊂ X, define the normal cone C(S1, S2) as

C(S1, S2) := C∆X
(S1 × S2),

for ∆X ⊂ X ×X the diagonal subset.

Now, for a given manifold X, consider its cotangent bundle T ∗X and two subsets
A,B ⊂ T ∗X. If the context is clear, we will identify X with its image ∆X under the
diagonal embedding, again following the notation of [KS90, section 6.2]. Note that the
cone C(A,Ba) (where Ba is the image of B under the antipodal map for bundles) is a
subset of TT ∗X(X×X)T

∗(X×X) ' T ∗T ∗X(X×X) (cf. [KS90, p. 259] for the isomorphism).
Denoting with q the induced projection q : T ∗X(X ×X)→ X, we can consider T ∗X as a
subset of TT ∗X(X×X)T

∗(X ×X) via

T ∗X ' X×XT ∗X
ι×IdT∗X−→ T ∗X(X×X)×XT ∗X

tq′−→ T ∗T ∗X(X×X) ' TT ∗X(X×X)T
∗(X×X),

where ι : X → T ∗X(X ×X) is the zero section.
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Definition 2.14 (cf. definition 6.2.3 resp. proposition 6.2.4 of [KS90]). For conic subsets
A,B ⊂ T ∗X as above, one defines

A+̂B := qπ
tq′−1(C(A,Ba)) = T ∗X ∩ C(A,Ba).

Let us state some properties of +̂ that are obvious from the definitions but helpful for
the forthcoming calculations.

Lemma 2.15. Let A,B ⊂ T ∗X be two conic subsets.

i) If A′ ⊂ T ∗X is a conic subset such that A ⊂ A′, then A+̂B ⊂ A′+̂B (and of course
the same for B ⊂ B′).

ii) If A =
∐n
i=1Ai is a disjoint union of conic subsets Ai ⊂ T ∗X, then

A+̂B =
n⋃
i=1

(Ai+̂B)

(and of course the same for B =
∐n
i=1Bi).

Definition 2.16 (µ-stratification, cf. definition 8.3.19 of [KS90]). Let X =
∐
a∈AXa be a

subanalytic stratification of X.

i) Consider two submanifolds M,N of X. The µ-condition for the pair (M,N) is

(T ∗MX+̂T ∗NX) ∩ π−1
X (N) ⊂ T ∗NX, (µ)

where πX : T ∗X → X is the projection.

ii) The stratification (Xa)a∈A is called a µ-stratification if for all pairs (a, b) ∈ A × A
such that Xb ⊂ Xa \Xa, the pair (Xa, Xb) satisfies the condition (µ).

[KS90, lemma 6.2.1 resp. proposition 6.2.4] give a useful criterion for verifying the
µ-condition for a given stratification.

Proposition 2.17 (cf. Proposition 6.2.4 (iii)(a) of [KS90]). Let (x, ξ) be a system of
local coordinates on T ∗X (where (x) is a set of local coordinates on X) and consider two
conic subsets A,B ⊂ T ∗X. Then (x0, ξ0) is in A+̂B if and only if there is a sequence
{(xn, ξn), (yn, ηn)} in A×Ba such that

xn −→
n→∞

x0,

yn −→
n→∞

x0,

ηn − ξn −→
n→∞

ξ0,

|xn − yn| · |ξn| −→
n→∞

0.


(2.3)
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Note that, for the third line of (2.3), we formally identify T ∗xnX with T ∗ynX resp. T ∗x0
X.

To be more precise, we consider (xn, yn, ξn, ηn) as a sequence in T ∗(X × X) with local
coordinates (x, y, ξ, η) induced by the given local coordinates (x, ξ) resp. (y, η) on both
factors T ∗X of T ∗(X × X) ' T ∗X × T ∗X. Then, we apply the change of coordinates
(x, y) 7→ (x−y, y) on X×X and consider the corresponding new coordinates (x′, y′, ξ′, η′)
on T ∗(X ×X). Let (x′n, y

′
n, ξ
′
n, η
′
n) be the above sequence in these new coordinates (i. e.

x′n = xn − yn etc.) – then, criterion (2.3) may be formulated as

(x′n, y
′
n, ξ
′
n, η
′
n) −→

n→∞
(0, x0, ξ̃

′, ξ0) for some ξ̃′,

|x′n| · |ξ′n| −→n→∞ 0,

cf. [KS90, proof of proposition 6.2.4].

Example 2.18. Let M,N ⊂ X be submanifolds such that M ⊂ X is open with M = X
and N ⊂ X \M . We would like to show that (M,N) satisfies the condition (µ). So
let us use proposition 2.17 on the conic subsets A = T ∗MX and B = T ∗NX of T ∗X. By
assumption, T ∗MX = M ×X T ∗XX, so ξn = 0 for all n in any sequence {(xn, ξn, yn, ηn)} as
in proposition 2.17. In particular, the fourth property of (2.3) is trivially satisfied. The
first two lines of (2.3) are realizable if and only if x0 ∈ N . The third line then finally
states that such (x0, ξ0) with x0 ∈ N is in A+̂B if and only if for some appropriate
sequence yn ∈ N with yn −→

n→∞
x0, there is a sequence ηn ∈ ((T ∗NX)a)yn such that

ηn −→
n→∞

ξ0. Let (yn, ηn) be the subset of these sequences. To verify condition (µ), we
may assume x0 ∈ N and have to show that, for such x0, for any (yn, ηn) as above with
yn −→

n→∞
x0 ∈ N , we have ξ0 = limn→∞ ηn is in T ∗NX. By choosing a chart U 3 x0 around

x0 of X such that N is closed in U and choosing compatible trivializations of T ∗X and
T ∗NX within U , this is clear.

Now consider a complex F ∈ Db(CX) and recall the definition of the characteristic
variety CV(F ) from [Dim04, definition 4.3.1] resp. [KS90, section 5.1] (where it is also
called singular support of F and denoted SS(F )), as well as the notation of [KS90, section
A.2], associating to a morphism f : Y → X of manifolds the maps

T ∗Y
tf ′←− Y ×X T ∗X

fπ−→ T ∗X.

A morphism f : Y → X is called non-characteristic for F if

f−1
π (CV(F )) ∩ T ∗YX ⊂ Y ×X T ∗XX,

(where T ∗YX is the kernel of tf ′ and fπ is the canonical projection from above), cf. [Dim04,
definition 4.3.4] resp. [KS90, definition 5.4.12]. What we are going to use extensively in
the next section is the following consequence of a morphism being non-characteristic:
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Proposition 2.19 (cf. proposition 4.3.6 of [Dim04] resp. proposition 5.4.13 of [KS90]).
Let F be an object of Db(CX) and f : Y → X be non-characteristic for F . Then, the
natural morphism f−1(F )⊗ ωY/X → f !(F ) is an isomorphism.

More precisely, we want to use the following

Corollary 2.20 (cf. corollary 4.3.7 of [Dim04]). Let X be a (real, orientable) manifold
and Y ⊂ X a locally closed (real, orientable) submanifold of X of codimension r. Denote
by i : Y → X the embedding. Let F ∈ Db(CX) be cohomologically constructible with
respect to a µ-stratification X =

∐
a∈AXa – which we will denote by S – and assume Y

is transversal to this stratification. Then

i!(F ) ' i−1(F )[−r].

Proof. As the formulation of the corollary differs – though very slightly – from the one in
[Dim04, corollary 4.3.7], let us give a sketch of a proof. With exactly the same reasoning
as in [Dim04, proposition 3.2.11], we have ωY/X = CX [−r], so the only thing that remains
to show is that i is non-characteristic for F . By [KS90, proposition 8.4.1] we have

CV(F ) ⊂
∐
a∈A

T ∗XaX.

Now, Y being transversal to S by definition means nothing but TxY + TxXa = TxX for
all a and all x ∈ Y ∩Xa. We may of course equivalently consider dual spaces, so we find,
denoting with i : Y → X and ia : Xa → X the embeddings and with i′ : TY → TX resp.
ti′ : T ∗X → T ∗Y the corresponding tangent space resp. cotangent space map (and the
same for ia), that we have ker(ti′x) ∩ ker(ti′a,x) = {(x, 0)} for any x ∈ X, i. e.

(Y ∩Xa)×X (T ∗YX ∩ T ∗XaX) = (Y ∩Xa)×X T ∗XX

and so (where again we consider T ∗XaX and T ∗YX as subsets of T ∗X)

i−1
π (CV(F )) ∩ T ∗YX ⊂

∐
a∈A

i−1
π (T ∗XaX) ∩ T ∗YX =

=
∐
a∈A

(Y ∩Xa)×X (T ∗XaX ∩ T
∗
YX) = Y ×X T ∗XX,

in other words, i is non-characteristic for F .

2.4.7 Duality

Recall the exponential meromorphic connection E ϕ and our notation

Eϕ := SolE(E ϕ) = CE
+
⊗ C{t=−Re(ϕ)}

46
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from above. Let U ⊂ A ⊂ P denote the open subset on which ϕ is defined. Again we
will denote by w resp. (z1, z2) the coordinates on A resp. A × A and write ϕ(z1) for
the meromorphic function ϕ ◦ p1 : (z1, z2) 7→ ϕ(z1) on A × A. Consider the enhanced
ind-sheaf (notation from section 2.4.3)

K! = Eϕ
E∗! L

E
λ ' CEA

+
⊗Qι

(
RσR,!(C{t=−Re(ϕ(z1))} ⊗ p−1

2 π−1Lλ)
)

' CEA
+
⊗
(
C{t>0}

+
⊗Qι

(
RσR,!(C{t=−Re(ϕ(z1))} ⊗ p−1

2 π−1Lλ)
))

' CEA
+
⊗Qι

(
RσR,!(C{t>−Re(ϕ(z1))} ⊗ p−1

2 π−1Lλ)
)


(2.4)

(see calculations in section 2.4.3 and 2.4.5). Now let us compute the dual DE
A(K![2]). As

remarked in section 2.4.5, this can be done on the level usual sheaves, by – using the first
line of the equivalent formulations (2.4) –

DE
A(K![2]) ' CEA

+
⊗Qι

(
DA×RRσR,!(C{t=Re(ϕ(z1))} ⊗ p−1

2 π−1Lλ)[2]
)

' CEA
+
⊗Qι(RσR,∗RHom(C{t=Re(ϕ(z1))},DA×A×R(p−1

2 π−1Lλ[2]))
)

Here, note that we may – in a slight misuse of notation – write p−1
2 π−1Lλ ' π−1p−1

2 Lλ,
referring to π : A × R → A and p2 : A × A × R → A × R on the left hand side and to
π : A × A × R → A× A and p2 : A × A → A on the right hand side, respectively. We
can then continue the calculation with

' CEA
+
⊗Qι(RσR,∗RHom(C{t=Re(ϕ(z1))}, π

! DA×A(p−1
2 Lλ[2]))

)
' CEA

+
⊗Qι

(
RσR,∗RHom(C{t=Re(ϕ(z1))}, π

−1p−1
2 L−λ)[3]

)
,

where for the last step, we used the following calculations: By definition, Lλ = SolP(Kλ)
(cf. section 2.4.1). As Kλ is regular singular, we can apply the results from [HTT08,
section 7.1] to the effect that

DP×P(p−1
2 SolP(Kλ)[2]) ' DP×P(p!

2SolP(Kλ)) ' DP×P(p!
2DRP(DPKλ)[−1])

'
(

DP×P(DRP×P(p†2K
−λ))

)
[1]

'
(
DRP×P(DP×P(p†2K

−λ)
)

[1]

'
(
DRP×P(pF2 DP(K−λ))

)
[1]

'
(
p−1

2 DRP(Kλ)
)

[1] ' p−1
2 SolP(K−λ)[2],

where we are additionally using [KS90, proposition 3.3.2], together with the fact that p2

is a topological submersion of fiber dimension 2.

47



2 Convolution operations

Let us call W := {t = Re(ϕ(z1))} ⊂ A × A × R ⊂ P × P × R. By definition, W is a
closed subset of UR := U × A × R. As a graph of the smooth function Re(ϕ(z1))|UR , it
is actually a closed submanifold of UR, i. e. a locally closed submanifold of A × A × R,
of (real) codimension 1. Denote by jW (resp. jUW , jU ) the locally closed (resp. closed,
open) embeddings W → A×A× R (resp. W → UR, UR → A×A× R). By definition

p−1
2 π−1L−λ = p−1

2 π−1j!L̃−λ = j̃!π
−1p−1

2 L̃−λ,

for j : A \ {0} → A resp. j̃ : A× (A \ {0})× R → A×A× R the open embeddings. In
particular, writing V := A \ {0}, we know that p−1

2 π−1L−λ|UR is locally constant on the
stratification SV |UR :=

(
(A× V ×R)∩UR, (A×{0}×R)∩UR) on UR (which is induced

by the stratification SV := (A× V × R,A× {0} × R) on A×A× R).
By example 2.18, SV resp. SV |UR are µ-stratifications. We want to convince ourselves

that jUW is transversal to SV |UR (or, equivalently, jW is transversal to SV ). It is obviously
enough to show thatW intersects transversally with U×{0}×R, which is clear as for any
p := (x, 0, t) ∈ U ×{0}×R with Re(ϕ(x)) = t, we have Tp(U ×{0}×R) ' R2×{0}×R
and {0}×R2×{0} ⊂ TpW . So we can proceed with the calculation of DE

A(K![2]), where
we would like to set L := π−1p−1

2 Lλ ∈ A×A×R as a further shorthand, and then write

W a := {t = −Re(ϕ(z1))}, La := π−1p−1
2 L−λ.

With this we may write

DE
A(K![2]) ' CEA

+
⊗Qι(RσR,∗RHom(CW , La[3]))

' CEA
+
⊗Qι(RσR,∗RjU,∗jUW,∗j!

WL
a)[3]

' CEA
+
⊗Qι(RσR,∗RjU,∗jUW,!j−1

W La)[2]

' CEA
+
⊗Qι(RσR,∗RjU,∗(j−1

U La)W )[2].

By the very same calculations we further get

K∗[2] :=Eϕ[1]
E∗∗ LEλ [1] ' CEA

+
⊗Qι(RσR,∗(L)Wa)[2],

DE
A(K∗[2]) 'CEA

+
⊗Qι(RσR,!RjU,∗(j−1

U La)W )[2].

In the case of ϕ(z1) = z1 – or slightly more generally the case that ϕ has only one pole
(which we may assume is at ∞) on P – we have UR = A×A× R, so the above may be
simplified further, to

K![2] ' CEA
+
⊗Qι(RσR,!LWa)[2],

DE
A(K![2]) ' CEA

+
⊗Qι(RσR,∗LaW )[2],

K∗[2] ' CEA
+
⊗Qι(RσR,∗LWa)[2],

DE
A(K∗[2]) ' CEA

+
⊗Qι(RσR,!LaW )[2].


(2.5)
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For further reference, let us quickly consider the following reformulation of 2.5: We may
write σ = q2 ◦ u ◦ α, for u : A×A → P ×A the open embedding,

α : A×A → A×A, (a, b) 7→ (a, a+ b)

and q2 : P ×A → A the (now proper) projection on the second factor, where we will use
the same letters for the induced morphisms f × IdR (instead of writing fR as usual) for
f = u, α, q2. Then we have (with α(W ) = W resp. α(W a) = W a)

K![2] ' CEA
+
⊗Qι(Rq2,!Ru!(α∗L)Wa)[2],

DE
A(K![2]) ' CEA

+
⊗Qι(Rq2,!Ru∗(α∗L

a)W )[2],

K∗[2] ' CEA
+
⊗Qι(Rq2,!Ru∗(α∗L)Wa)[2],

DE
A(K∗[2]) ' CEA

+
⊗Qι(Rq2,!Ru!(α∗L

a)W )[2].


(2.6)

2.4.8 Cohomology computations

We will keep the notation of the last section, only we will use ϕ(w) = w from here on.
Recall from section 2.4.5 that for some F ∈ Db(CX×R∞) we have

Hn(CEX
+
⊗Qι(F )) ' CEX

+
⊗QιHn(C{t>0}

+
⊗ F )

and note that, for F as above and some morphism u : X→ Y of bordered spaces

Ru!(C{t>0}
+
⊗ F ) ' C{t>0}

+
⊗Ru!F,

cf. [DK16b, porposition 3.3.13]. Furthermore we are going to use the fact that

C{t>0}
+
⊗ LW = C{t>0}

+
⊗ (CW ⊗ L) ' (C{t>0}

+
⊗ CW )⊗ L

(and the same of course for any replacement of L resp. W with La resp. W a). With
regard to our previous notation, we will write

W> := {t > Re(z1)}, W a
> := {t > −Re(z1)},

and we then know that

C{t>0}
+
⊗ CW ' CW> resp. C{t>0}

+
⊗ CWa ' CWa

>
,

cf. remark 2.11. To determine the vanishing of the cohomologies of (2.5) resp. (2.6), it
is thus enough to consider the cohomologies

Hn(Rp2,!(α∗L)Wa
>

),

Hn(C{t>0}
+
⊗Rp2,∗(α∗L

a)W ) ' Hn(C{t>0}
+
⊗Rq2,!Ru∗(α∗L

a)W ),

Hn(C{t>0}
+
⊗Rp2,∗(α∗L)Wa) ' Hn(C{t>0}

+
⊗Rq2,!Ru∗(α∗L)Wa),

Hn(Rp2,!(α∗L
a)W>).
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Without loss of generality (interchanging λ with −λ resp. w with −w), it is enough to
handle the first two of these cases. With regard to considering stalks at (y, s) ∈ A × R,
let us denote by i(y,s) : {y} × {s} → A×R the corresponding embedding. The following
diagram will recall resp. introduce the associated labeling we will use for the rest of this
section (all squares are obviously cartesian).

A×A× R A×A× R P ×A× R A× R

A× {y} × R P × {y} × R {y} × R

A× {y} × {s} P × {y} × {s} {y} × {s}

α u

p2

q2

ĩAR
ũy

p̃2

ĩPR
q̃2

iR

iA

ũ(y,s)

ĩA

pt

ĩP

i(y,s)

i

(2.7)

Now let us consider the first case, i. e. we want to determine the vanishing of the coho-
mologies

Hn(Rp2,!(α∗L)Wa
>

). (2.8)

From now on, if the point (y, s) ∈ A × R is specified, we will often write A instead of
A×{y}×{s} resp. A×R instead of A×{y}×R (and the same of course for A replaced
with P) for the sake of notational brevity. Considering stalks at (y, s) ∈ A× R, we get

(Hn(Rp2,!(α∗L)Wa
>

))(y,s) ' Hn
c (A, i−1

A (α∗L)Wa
>

),

so let us have a look on i−1
A (α∗L)Wa

>
. Recall that we defined L := π−1p−1

2 Lλ, where we

have Lλ = j0,!L̃λ for the open embedding j0 : A \ {0} → A (cf. section 2.4.1) and L̃λ is
a local system on A \ {0}, with monodromy e−2πiλ ∈ C \ {1} around 0. So L is a local
system on A× (A\{0})×R with monodromy e−2πiλ around D := A×{0}×R and α∗L
is a local system on

V := (A×A× R) \ α(D) = (A×A× R) \ (∆A × R),

where ∆A := {(w,w)|w ∈ A} ⊂ A ×A is the diagonal, with monodromy e−2πiλ around
D′ := ∆A × R. Note that D′ ∩ A× {y} × {s} = {y} × {y} × {S}, i. e.

V ∩ (A× {y} × {s}) = (A \ {y})× {y} × {s} ' A \ {y},

and with the labeling as depicted in the square

V A×A× R

A \ {y} A × {y} × {s},

iV

ĩV

ĩA iA
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we may write
L̃ := i−1

A (α∗L) = ĩV,!ĩ
−1
A i−1

V (α∗L),

where L := ĩ−1
A i−1

V (α∗L) ∈ D0(CA\{y}) is a local system, with monodromy e−2πiλ

around y. Analogously we define L̃a := i−1
A (α∗L

a) and La := ĩ−1
A i−1

V (α∗L
a). Finally,

writing
W̃ a
> := i−1

A W a
> = {z ∈ A|s > −Re(z)} ⊂ A,

we get
i−1
A (α∗L)Wa

>
= L̃W̃a

>

with L̃ = ĩV,!L. Now we may state that

H0
c (A, i−1

A (α∗L)Wa
>

) ' H0
c (W̃ a

>, L̃|W̃a
>

) '

{
H0
c (W̃ a

>,L|W̃a
>

) if s < −Re(y),

H0
c (W̃ a

> \ {y},L|W̃a
>\{y}

) if s > −Re(y)

which obviously vanishes in both cases, as neither W̃ a
> nor W̃ a

> \ {y} is compact. On the
other hand,

Hn
c (A, L̃) ' Hn

c (A, ĩV,!L) ' Hn
c (A \ {y},L) ' H2−n(A \ {y},L∨)∨

by Poincaré–Verdier duality, where (•)∨ as usual denotes the dual of vector spaces resp.
local systems. In particular, as L∨ has monodromy e2πiλ ∈ C \ {1} around y, we have
Hn
c (A, L̃) ' 0 for all n. We denote the complement of W̃ a

> by

W̃ a
< := A \ W̃ a

>.

The standard distinguished triangle

L̃W̃a
<
−→ L̃ −→ L̃W̃a

>

+1−→

induces the long exact sequence on cohomologies

−→ H1
c (A, L̃) −→ H1

c (A, L̃W̃a
>

) −→ H2
c (A, L̃W̃a

<
) −→ H2

c (A, L̃) −→ H2
c (A, L̃W̃a

>
) −→ 0,

which in turn implies H2
c (A, L̃W̃a

>
) ' 0 because of H2

c (A, L̃) ' 0. So we have shown as a
first intermediate step the following

Lemma 2.21. We have

K![2] ' CEA
+
⊗Qι(RσR,!LWa)[2] ∈ E−1

R−c(A).
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When addressing the second case, concerning the cohomologies

Hn(C{t>0}
+
⊗Rp2,∗(α∗L

a)W ) ' Hn(C{t>0}
+
⊗Rq2,!Ru∗(α∗L

a)W ),

some additional work has to be done. We want to start by reducing dimensions so as
to simplify the calculations. Recall the notation of diagram (2.7). Let us choose a point
y ∈ A and consider

i−1
R Hn(C{t>0}

+
⊗Rq2,!Ru∗(α∗L

a)W ) ' Hn(C{t>0}
+
⊗Rq̃2,!(̃i

P
R )−1Ru∗(α∗L

a)W ).

Lemma 2.22. Ru∗((α∗La)W )|{∞}×A×R is a locally constant sheaf.

Let us denote by i∞ the closed embedding {∞} × A × R → P × A × R. Before we
start proving the lemma, let us quickly note some elementary facts about sheaves that
we will use later on.

Remark 2.23. Let X,Y be topological spaces, f : Y → X a continuous map.

i) For any presheaf F ∈ PSh(X) let f−1,p(F ) : U 7→ lim−→V⊃f(U)
F (V ) denote the

presheaf inverse image (note that f−1,p a f∗ as functors on the presheaf categories,
by definition). With this notation we have

f−1F s = (f−1,pF )s,

where (•)s denotes the sheafification functor. For a proof consider the canonical
morphism f−1,pF → f−1,pF s → f−1F s of presheaves. For some sheaf G on Y , we
have

HomPSh(f−1,pF,G) ' HomPSh(F, f∗G) ' HomSh(F s, f∗G) ' HomSh(f−1F s, G),

so f−1F s satisfies the universal property of (f−1,pF )s and (f−1,pF )s ' f−1F s.

ii) For F,G ∈ PSh(X) we may in particular consider F,G as presheaves on a base
B of X. If we have a morphism F → G of presheaves on the base B that is an
isomorphism on stalks, then F s ' Gs (by definition of the sheafification functor,
the morphism of the presheaves on a base induces a morphism of the sheafifications,
which, being an isomorphism on stalks, is then indeed an isomorphism).

iii) If F is a local system on X and R
τ
�
ι
X is a deformation retract of X, then

F ' τ−1(ι−1F ),

cf. [Dim04, remark 2.5.12] resp. [MeNM90, proposition I.3.4]. In particular, if X
is contractible, G ∈ Sh(X) is a local system if and only if G ' pt−1Gx0 for any
x0 ∈ X, with pt: X → {x0}.
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Proof of lemma 2.22. We know that Riu∗(α∗La)W is the sheafification of the presheaf

V 7→ H i(u−1(V ), (α∗L
a)W |u−1(V )) = H i(V ∩W, (α∗La)|V ∩W ).

Let us denote this presheaf by F i and choose a base B of the standard topology on
{∞} ×A× R as

B := {{∞} ×Br(x)× (a, b)|x ∈ A, r ∈ R>0, (a, b) ⊂ R}

and denote Vx,r,a,b := {∞} × Br(x) × (a, b). Analogously we consider a basis of open
neighborhoods of {∞} ∈ P given by {Bq(∞)|q ∈ R>0}, where

Bq(∞) := {z ∈ P| |∞ − z| < q} = P \B1/q(0),

means a standard open disc around ∞.
Furthermore write K := α∗L

a|V for the local system that α∗La is away from ∆A × R
(recall V := (A × A × R) \ (∆A × R)) and set P := (∞, 0, 0) ∈ {∞} × A × R and
ptP : {∞} × A × R → {P}. For the presheaf F i we then may observe – with denoting
Vq,r,s := Bq(∞)×Br(0)× (−s, s) – that

(Riu∗(α∗L
a)W )P ' F iP = lim−→

V 3P
H i(V ∩W, (α∗La)|V ∩W )

= lim−→
r,q,s→0

H i(Vq,r,s ∩W, (α∗La)|Vq,r,s∩W )

As soon as q < 1/2, s < 1, we in particular have 2q < 1/s and Vq,r,s ∩W consists of
two disjoint parts, which we will refer to as W+

q,r,s,W
−
q,r,s. If r < 2, we additionally have

r < 1/q, which implies that ((Bq(∞) \ {∞})×Br(0)) ∩∆A = ∅ such that

α∗L
a|(Vq,r,s∩W ) = K|Vq,r,s∩W

and we may continue the above lines with

= lim−→
q,r,s→0
q,r,s<1/2

H i(Vq,r,s ∩W, (α∗La)|Vq,r,s∩W )

' lim−→
q,r,s→0
q,r,s<1/2

(H i(W+
q,r,s,K|W+

q,r,s
)⊕H i(W−q,r,s,K|W−q,r,s)).

Note that in particular we get (Riu∗(α∗L
a)W )P ' 0 if i 6= 0, actually Riu∗(α∗La)W ' 0

for i 6= 0, as the very same argument clearly works as well for any choice (x, y) ∈ A× R
(instead of (0, 0)) for P . On the other hand, using the same reasoning and notation –
but introducing furthermore

Vq,x,r,a,b := Bq(∞)×Br(x)× (a, b),
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and F̃ i := F i|{∞}×A×R – we may, for some Vx,r,a,b ∈ B, consider

F̃ i(Vx,r,a,b) = lim−→
q→0

H i(Vq,x,r,a,b ∩W, (α∗La)|Vq,x,r,a,b∩W )

= lim−→
q→0

q<min
(

1
|x|+r ,

1
max(|a|,|b|)

)H
i(Vq,x,r,a,b ∩W, (α∗La)|Vq,x,r,a,b∩W )

' lim−→
q→0

q<min
(

1
|x|+r ,

1
max(|a|,|b|)

)H
i(Vq,x,r,a,b ∩W,K|Vq,x,r,a,b∩W )

' lim−→
q→0

q<min
(

1
|x|+r ,

1
max(|a|,|b|)

)H
i(Vq,|x|+r,max(|a|,|b|) ∩W,K|Vq,|x|+r,max(|a|,|b|)∩W )

' lim−→
q→0

q<min
(

1
|x|+r ,

1
max(|a|,|b|)

)(H i(W+
q,r,max(|a|,|b|),K|W+

q,r,max(|a|,|b|)
)⊕

⊕H i(W−q,r,max(|a|,|b|),K|W−q,r,max(|a|,|b|)
))

−→ F̃ iP = F iP ' (Riu∗(α∗L
a)W )P ,

which is clearly compatible with restrictions and thus gives us a morphism of presheaves
on the base B from the presheaf F̃ i to the constant presheaf F̃ iP . Also this is clearly an
isomorphism on stalks, so that we indeed get

Riu∗(α∗L
a)W |{∞}×A×R ' (F̃ i)s ' (̃F iP )s,

that is, Riu∗(α∗La)W |{∞}×A×R is locally constant for all i (recall we already showed that
Riu∗(α∗L

a)W ' 0 for i 6= 0).

Remark 2.24. Note that the fact that W splits into two disjoint parts when restricted to
some small enough Vq,r,s doesn’t matter for the above proof, but only that from a certain
index in the directed colimit on, (α∗L

a)|Vq,r,s is the restriction of some local system and
all subsequentW ∩Vq,r,s are homotopy equivalent to each other. In particular, by lemma
1.22, we might have done the proof for W> instead of W which would have been even
easier, as Vq,r,s ∩W> is just homotopy-equivalent to a point (as soon as the indices are
small enough, in the sense of the above proof). This may seem a little weird at first
glance, as replacing W with W> changes the stalks – as just sketched – from C2 to
C, but becomes more reasonable in view of the fact that lemma 1.22 only holds in the
enhanced setting, together with the observation stated in the proof of lemma 3.15 (that,
for some local system on X × R, for some space X, one obviously has Qι(L) ' 0 by the
very definition of the category of enhanced ind-sheaves).
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2 Convolution operations

Now let us use lemma 2.22 to observe that Ru∗(α∗La)W is cohomologically con-
structible with respect to the following stratification S of P × A × R =

∐
i∈A Si, where

A = {1, . . . , 6}, given by:

S :=



S0 := {(a, b, t)|a 6= b ∈ A, t > Re(a)}
S1 := {(a, b, t)|a 6= b ∈ A, t = Re(a)}
S2 := {(a, b, t)|a 6= b ∈ A, t < Re(a)}
S3 := {(a, b, t)|a = b ∈ A, t > Re(a)}
S4 := {(a, b, t)|a = b ∈ A, t = Re(a)}
S5 := {(a, b, t)|a = b ∈ A, t < Re(a)}
S6 := {(a, b, t)|a =∞}

(2.9)

In order to verify this is indeed a stratification, it is enough to remark that S6 ⊂ Si for
i = 0, 1, 2 – to be a little more precise: S0 \ S0 = S1 ∪ S3 ∪ S4 ∪ S6. The situation is the
very same for S2 \ S2. Then S1 \ S1 = S4 ∪ S6 and S3 \ S3 = S4 (and the same for S5).
In view of corollary 2.20, we would like to show that S is a µ-stratification. As it will

turn out in the course of our proof below, the steps concerning the stratum S6 are a little
cumbersome, so we will weaken our objective to verifying that ĩPR is non-characteristic for
the sheaf Ru∗(αLa)W (and ĩAR is non-characteristic for (α∗L

a)W ). This is enough to apply
[KS90, proposition 5.4.13], telling us that (̃iPR )!Ru∗(αL

a)W> ' (̃iPR )−1Ru∗(αL
a)W [−2]

(and the same for ĩAR and (α∗L
a)W ).

Due to symmetry, and taking into account example 2.18, we only need to check con-
dition (µ) for the pairs (S1,S4), (S1,S6) and (S3,S4). As in example 2.18, we want to
use proposition 2.17. Let us write a = x + iy and b = z + iw for a, b in (2.9) and let
(x, y, z, w, t) be the corresponding local coordinates of the real manifold X := P ×A×R
(the actual coordinates for the chart A×A× R excluding {∞} ×A× R). The induced
coordinates on T ∗X are denoted by (x, y, z, w, t, ξx, ξy, ξz, ξw, ξt).

• To the pair (S1,S4). In the above coordinates,

T ∗S1
X = {(x, y, z, w, x, ξx, 0, 0, 0,−ξx)|(x, y) 6= (z, w)}

and
T ∗S4

X = {(x, y, x, y, x, ξx, ξy, ξz,−ξy,−ξx − ξz)}.

Using proposition 2.17, we know that some (x0, y0, z0, w0, t0, ξx,0, ξy,0, ξz,0, ξw,0, ξt,0)
is in T ∗S1

X+̂T ∗S4
Xa if and only if there are sequences

(a1,n, a2,n, a3,n, a4,n, a1,n, ξ1,n, 0, 0, 0,−ξ1,n)

in T ∗S1
X and

(b1,n, b2,n, b1,n, b2,n, b1,n,−η1,n,−η2,n,−η3,n, η2,n, η1,n + η3,n)
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in T ∗S4
Xa such that

(a1,n, a2,n, a3,n, a4,n, a1,n) −→
n→∞

(x0, y0, z0, w0, t0) ←−
n→∞

(b1,n, b2,n, b1,n, b2,n, b1,n),

in particular (x0, y0, z0, w0, t0) = (x, y, x, y, x) ∈ S4 for some x, y ∈ R, as S4 is
closed, furthermore

|(a1,n, a2,n, a3,n, a4,n, a1,n)− (b1,n, b2,n, b1,n, b2,n, b1,n)| · |(ξ1,n, 0, 0, 0,−ξ1,n)| −→
n→∞

0,

as well as

(−η1,n,−η2,n,−η3,n, η2,n, η1,n + η3,n)− (ξ1,n, 0, 0, 0,−ξ1,n)
−→
n→∞

(ξx,0, ξy,0, ξz,0, ξw,0, ξt,0).

In this last condition, we observe that

(ξx,n, ξy,n, ξz,n, ξw,n, ξt,n) := (−η1,n − ξ1,n,−η2,n,−η3,n, η2,n, η1,n + η3,n + ξ1,n)

has the property

ξy,n + ξw,n = 0 = (−η1,n − ξ1,n) + (−η3,n) + (η1,n + η3,n + ξ1,n) = ξx,n + ξz,n + ξt,n

for all n, so we get

(x0, y0, z0, w0, t0, ξx,0, ξy,0, ξz,0, ξw,0, ξt,0) =

= lim
n→∞

(b1,n, b2,n, b1,n, b2,n, b1,n, ξx,n, ξy,n, ξz,n, ξw,n, ξt,n) ∈ T ∗S4
X,

proving that (S1,S4) satisfies condition (µ).

• To the pair (S3,S4). In the same local coordinates as above,

T ∗S3
X = {(x, y, x, y, t, ξx, ξy,−ξx,−ξy, 0)|t > x}.

By the very same argument as before, we find

(T ∗S3
X+̂T ∗S4

X) ∩ π−1
X (S4) ⊂ T ∗S4

X,

so (S3,S4) satisfies (µ) as well (where πX denotes the projection T ∗X → X).

So far, we know that S, restricted to A×A×R is a µ-stratification. The remaining part
to check is:
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• To the pair (S1,S6). Here we have to switch to a chart around∞ ∈ P. We chose the
standard chart A ' P\{0} to get new local coordinates (x′, y′, z, w, t) of P×A×R,
where the relation t = x = Re(x + iy) becomes t = Re

(
1

x′+iy′

)
= x′

x′2+y′2 . With
respect to these coordinates,

S6 = {(0, 0, z, w, t)}

and

S1 =

{
(x′, y′, z, w, t)

∣∣∣∣(0, 0) 6= (x′, y′),(
x′

x′2 + y′2
,

y′

x′2 + y′2

)
6= (z, w), t =

x′

x′2 + y′2

}
.

We will again denote X := P ×A×R and write (x′, y′, z, w, t, ξx′ , ξy′ , ξz, ξw, ξt) for
the induced local coordinate on T ∗X. Then,

T ∗S6
X = {(0, 0, z, w, t, ξx′ , ξy′ , 0, 0, 0)} ⊂ T ∗X

and

T ∗S1
X =

{(
x′, y′, z, w,

x′

x′2 + y′2
,
x′2 − y′2

(x′2 + y′2)2
ξt,

2x′y′

(x′2 + y′2)2
ξt, 0, 0, ξt

)
∣∣∣∣(0, 0) 6= (x′, y′),

(
x′

x′2 + y′2
,

y′

x′2 + y′2

)
6= (z, w)

}
.

In particular, we need to be careful when applying proposition 2.17. Let

(Xn,Ξn) :=

(
x′n, y

′
n, z̃n, w̃n,

x′n
x′2n + y′2n

,
x′2n − y′2n

(x′2n + y′2n )2
ξt,n,

2x′ny
′
n

(x′2n + y′2n )2
ξt,n, 0, 0, ξt,n

)
and

(Yn,Θn) := (0, 0, zn, wn, tn, ξx′,n, ξy′,n, 0, 0, 0),

n ∈ N, be sequences of the appropriate form. Because of limn→∞Xn ∈ S6 we must
have that x′n, y′n

n→∞−→ 0 in such a way that |limn→∞ x
′
n/(x

′2
n + y′2n )| < ∞. Here,

proposition 2.17 still clearly yields

T ∗S1
X+̂T ∗S6

X ⊂ {0, 0, z, w, t, ξx′ , ξy′ , 0, 0, ξt} ⊂ T ∗X.

This will be sufficient for our purposes.

Remark 2.25. Let us conclude the above observations for later reference: The given
stratification S, restricted toA×A×R (using the chartA ' P\{∞}), is a µ-stratification,
and (P ×A× R) \ (A×A× R) = S6 satisfies

(T ∗SiX+̂T ∗S6
X) ∩ π−1(S6) ⊂ T ∗S6

X
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for i ∈ {0, 2} and

T ∗S1
X+̂T ∗S6

X ⊂ {0, 0, z, w, t, ξx′ , ξy′ , 0, 0, ξt}︸ ︷︷ ︸
=S6×XT ∗{∞}×A×{0}X

⊂ T ∗X

with respect to the local coordinates on the chart A ' P \ {0} around ∞ ∈ P given
above.

In particular, we have already shown

(̃iAR )!(α∗L
a)W ' (̃iAR )−1(α∗L

a)W [−2],

by corollary 2.20, as A×{y}×R is clearly transversal to S|A×A×R – recall the morphism
labeling from diagram (2.7). In view of [KS90, proposition 5.4.13] resp. proposition 2.19
we now want to show that ĩPR : P × {y} × R → P × A × R is non-characteristic for
Ru∗(α∗L̂

a)W> . As a shorthand we will write X := P × A× R and Y := A×A× R, as
well as ĩ := ĩPR . Recall the morphisms

T ∗Y
tu′←−
=

Y ×X T ∗X
uπ−→ T ∗X

induced by u : Y → X. As u is an open embedding, we know that

CV((α∗L
a)W ) = CV(u−1Ru∗(α∗L

a)W )

= tu′(u−1
π CV(Ru∗(α∗L

a)W )) = π−1
X (Y ) ∩ CV(Ru∗(α∗L

a)W ),

where πX : T ∗X → X is the usual projection, cf. [KS90, proposition 5.4.5]. On the other
hand, we can tell from [KS90, proposition 6.3.2] that

CV(Ru∗(α∗L
a)W ) ∩ π−1

X (X \ Y ) ⊂ CV((α∗L
a)W )+̂T ∗X\YX.

Note that X \ Y = S6 and, as (α∗L
a)W is cohomologically constructible with respect to

the µ-stratification S ∩ Y of Y , we have

CV((α∗L
a)W ) ⊂

5∐
i=0

T ∗SiY

by [KS90, proposition 8.4.1], with T ∗SiX = T ∗SiY for i = 0, . . . , 5, as Si ⊂ Y . This shows

CV(Ru∗(α∗L
a)W ) ∩ π−1

X (S6) ⊂CV((α∗L
a)W )+̂T ∗S6

X

⊂

(
5∐
i=0

T ∗SiY

)
+̂T ∗S6

X

58



2 Convolution operations

=
5⋃
i=0

(T ∗SiX+̂T ∗S6
X)

⊂S6 ×X T ∗{∞}×A×{0}X

by the observations summarized in remark 2.25. But P × {y} × R clearly is transversal
to {∞} ×A× {0}, in particular

ĩ−1
π (CV(Ru∗(α∗L

a)W )) ∩ T ∗P×{y}×RX ⊂ (P × {y} × R)×X T ∗XX

by the very same argument as in the proof of corollary 2.20. So ĩ is non-characteristic
for Ru∗(α∗La)W , as desired, and we have shown

(̃iPR )−1(Ru∗(α∗L
a)W ) ' (̃iPR )!(Ru∗(α∗L

a)W )[2] '
' Rũy,∗(̃iAR )!(α∗L

a)W )[2] ' Rũy,∗(̃iAR )−1(α∗L
a)W

(2.10)

Let us again introduce some shorthand notation. Recall that we write A×R resp. P×R
instead of A× {y} ×R resp. P × {y} ×R if the context is clear. Let us furthermore set

Ṽ := (P × R) \ ({y} × R) = (̃iPR )−1((P ×A× R) \ (∆A × R)),

V := Ṽ ∩ (A×R) and D := {y}×R = (̃iPR )−1(∆A×R). Let iV : V → A×R be the open
embedding and L̂a := (̃iAR )−1(α∗L

a)W (and the same of course for L̂ with La replaced
by L) as well as K̂a := i−1

V L̂a (and the same for K̂ := i−1
V L̂), then

L̂a = iV,!K̂a,

where K̂a is a local system on V with monodromy e2πiλ around D. Finally, let us set
Ŵ := (̃iAR )−1W = {(z, t) ∈ A × R|t = Re(z)}, and ũ := ũy : A × R → P × R. We now
want to determine, for q̃2 : P × R → R the second projection as in diagram (2.7), the
cohomologies

Hn(C{t>0}
+
⊗Rq̃2,!Rũ∗L̂

a
Ŵ

) ' Hn(C{t>0}
+
⊗Rp̃2,∗L̂

a
Ŵ

).

With embeddings labeled as in the following diagram

Ŵ A× R

Ŵ \ {(y,Re(y))} Ŵ ∩ V V,

iŴ

=
ĩŴ

ĩV iV

we have that
L̂a|Ŵ ' ĩV,!K̂

a|Ŵ∩V . (2.11)

As K̂a has monodromy e2πiλ ∈ C \ {1} around (y,Re(y)) ∈ Ŵ , we have the following

59



2 Convolution operations

Lemma 2.26. The restrictions K< := Rp̃2,∗L̂
a
Ŵ
|(−∞,Re(y)) and K> := Rp̃2,∗L̂

a
Ŵ
|(Re(y),∞)

are local systems and

Rq̃2,!Rũ∗L̂
a
Ŵ
' Rp̃2,∗L̂

a
Ŵ
' L> ⊕ L<,

where L> := i(Re(y),∞),!K> and L< := i(−∞,Re(y)),!K<, for i(a,b) : (a, b) → R the obvious
embeddings.

Proof. First, recall that Rip̃2,∗L̂
a
Ŵ

is the sheaf associated to the presheaf

R ⊃ U 7→H i(p̃−1
2 (U), L̂a

Ŵ
|p̃−1

2 (U))

=H i(A× U, L̂a
Ŵ
|A×U )

'H i((A× U) ∩ Ŵ , L̂a|(A×U)∩Ŵ ) '
{
C if i = 0 and Re(y) /∈ U
0 else,

cf. (2.11) and [Dim04, theorem 3.4.4]. This in particular shows that (Rp̃2,∗L̂
a
Ŵ

)Re(y) ' 0,
which means Rp̃2,∗L̂

a
Ŵ
' L>⊕L< as was claimed above, where we still have to show that

K<,K> are local systems. To do so, we might argue exactly as in the proof of lemma 2.22,
or slightly shorten the proof by the following observation: Let U := (−∞,Re(y)) (the
case for U = (Re(y),∞) works completely analogous) and V := {z|Re(z) ∈ U} ⊂ A.
Let us furthermore write Y := V × U and denote the projections by prU : Y → U ,
prV : Y → V . Finally, let ptV : V → {∗} and ptU : U → {∗} be the canonical morphisms
to a point, as depicted in the following (cartesian) square:

Y U

V {∗}

prU

prV ptU

ptV

Clearly, L̂a is a local system on Y of the form L̂a = pr−1
V F for some local system F on V .

From the cartesian square above, we may thus read off

RprU,∗L̂
a|Y ' RprU,∗pr−1

V F ' RprU,∗pr!
V [−1] ' pt!

U [−1]RptV,∗F ' pt−1
U (ptV,∗F )

is a local system (note that prV resp. ptU are compositions of open embeddings and
topological submersions of fiber dimension 1, so we used j−1 ' j! for any open embedding
and [KS90, proposition 3.3.2]).
The proof is then finished by observing that, for Z := (A×U)∩Ŵ = Y ∩Ŵ , denoting

by iZ : Z → Y the closed embedding and p̃rU : Z → U the projection induced by prU ,
we have

prU,∗L̂
a
Z ' p̃rU,∗L̂

a|Z ,
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and for any U ′ ⊂ U , the closed embedding iZ |U ′ : p̃r−1
U (U ′) → pr−1

U (U ′) clearly is a
homotopy equivalence, so in the above calculation,

H i(p̃r−1
U (U ′), L̂a|p̃r−1

U (U ′)) ' H
i(pr−1

U (U ′), L̂a|pr−1
U (U ′))

for all i (compatible with restrictions). Thus

K< ' RprU,∗L̂
a
Z ' Rp̃rU,∗L̂

a|Z ' RprU,∗L̂
a|Y

is a local system.

By the above lemma, Rp̃2,∗L̂
a
Ŵ
' L> ⊕ L< is concentrated in degree 0. In particular,

ιA×R∞(Rp̃2,∗L̂
a
Ŵ

) ∈ D0(A × R∞). Recall however that C{t>0}
+
⊗ (•) is not an exact

functor, but we know

C{t>0}
+
⊗ ιA×R∞(Rp̃2,∗L̂

a
Ŵ

) ' ιA×R∞(C{t>0}
+
⊗Rp̃2,∗L̂

a
Ŵ

) ∈ D[0,1](A× R∞).

Lemma 2.27. We have

C{t>0}
+
⊗Rp̃2,∗L̂

a
Ŵ
∈ D1

R−c(CA×R∞)

(resp. ιA×R∞(C{t>0}
+
⊗Rp̃2,∗L̂

a
Ŵ

) ∈ D1(A× R∞)).

Proof. Recall from lemma 2.26 that Rp̃2,∗L̂
a
Ŵ
' L< ⊕L>. We apply C{t>0}

+
⊗ (•) to the

distinguished triangle associated to the split short exact sequence

0 −→ L< −→ L< ⊕ L> −→ L> −→ 0

and consider the associated cohomology long exact sequence

. . . −→ H i−1(C{t>0}
+
⊗ L>) −→ H i(C{t>0}

+
⊗ L<) −→ H i(C{t>0}

+
⊗ (L< ⊕ L>)) −→

−→ H i(C{t>0}
+
⊗ L>) −→ H i+1(C{t>0}

+
⊗ L<) −→ . . .

We find thatH i(C{t>0}
+
⊗Rp̃2,∗L̂

a
Ŵ

) ' H i(C{t>0}
+
⊗(L<⊕L>)) is caught between the terms

H i(C{t>0}
+
⊗L�) for � ∈ {<,>}. It thus obviously suffices to prove H0(C{t>0}

+
⊗L�) ' 0

for � ∈ {<,>}. To do so, we might either explicitly consider stalks of

C{t>0}
+
⊗ L� = Rµ!(p

−1
1 C{t>0} ⊗ p−1

2 L�),
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or, a little faster, observe the following: First consider L<. Set U< := (−∞,Re(y)) and
denote by iU< : U< → R the open embedding. Then, by definition, L< = iU<,!K< (recall
the notation from lemma 2.26). For the morphisms

U< R

{∗}

iU<

ptU<

π

where {∗} denotes the one point set, let us identify {∗} with some point s ∈ U< and
write K := (K<)s. Then, as a local system on U<, K< ' pt−1

U<
K (cf. remark 2.23), in

particular
K< = i−1

U<
K̃< with K̃< := π−1K.

So we get
L< = iU<,!K< ' iU<,!i−1

U<
K̃< ' CU< ⊗ π−1K

and finally, with CU< = C{t<Re(y)} ' C{t=Re(y)}
+
⊗ C{t<0},

C{t>0}
+
⊗ L< ' C{t>0}

+
⊗ (CU< ⊗ π−1K) '

' (C{t>0}
+
⊗ CU<)⊗ π−1K ' (C{t>0}

+
⊗ (C{t=Re(y)}

+
⊗ C{t<0}))⊗ π−1K '

' ((C{t>0}
+
⊗ C{t<0})

+
⊗ C{t=Re(y)})⊗ π−1K '
' (C{t>Re(y)} ⊗ π−1K)[−1] ∈ D1

R−c(CA×R∞),

where we used lemma 1.21 and the fact that

C{t=Re(y)}
+
⊗ (•) ' RµRe(y),∗(•)

is exact, where µa for some a ∈ R denotes the translation µa : R → R, t 7→ t + a, cf.
[DK16b, lemma 4.2.1]. Completely analogous we get, for U> := (Re(y),∞), iU> the
associated embedding and K ′ := (K>)s for some s ∈ U>, that

L> ' i−1
U>
K̃> with K̃> := π−1K ′

and thus

C{t>0}
+
⊗ L> ' ((C{t>0}

+
⊗ C{t>0})

+
⊗ C{t=Re(y)})⊗ π−1K ′ ' 0,

cf. lemma 1.21.

To conclude, we have proven the following
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2 Convolution operations

Lemma 2.28. We have

DE
A(K![2]) ' CEA

+
⊗Qι(RσR,∗LaW )[2] ∈ E−1

R−c(A).

Note that, as we already stated, the two remaining cases, K∗[2],DE
A(K∗[2]) ∈ E−1

R−c(A)
work completely analogous, so in view of remark 2.12 in section 2.4.4, all that remains
to show is

Lemma 2.29. For any Z ∈ CS60(A), we have

Ei!Z∞G ∈ E
>0
R−c(Z∞)

for

i) G = K![2] = CEA
+
⊗Qι(RσR,!LWa)[2],

ii) G = DE
A(K![2]) = CEA

+
⊗Qι(RσR,∗LaW )[2],

iii) G = K∗[2] = CEA
+
⊗Qι(RσR,∗LWa)[2],

iv) G = DE
A(K∗[2]) = CEA

+
⊗Qι(RσR,∗LaW )[2].

Proof. Again it clearly suffices to consider the cases i) and ii). Without loss of generality
we may furthermore assume that Z = {y} is a single point. Recall the labeling from (2.7).
In particular, we again will denote the closed embedding Z = {y} → A by i and write
iR : {y} × R → A × R for the induced embedding, as in (2.7). From what we have
shown above, we already know that ĩPR (resp. ĩAR ) is non-characteristic for Ru∗α∗L

a
W and

Ru!α∗LWa
>
(resp. α∗LaW ), in particular

(̃iPR )!Ru∗(α∗L
a
W ) ' (̃iPR )−1Ru∗L

a
W )[−2],

so

i!R

(
C{t>0}

+
⊗RσR,∗(α∗LaW )

)
' C{t>0}

+
⊗ i!RRp2,∗α∗L

a
) '

' C{t>0}
+
⊗Rp̃2,∗((̃i

A
R )!α∗L

a
W ) ' C{t>0}

+
⊗Rp̃2,∗((̃i

A
R )−1α∗L

a
W [−2]) '

'
(
C{t>0}

+
⊗Rp̃2,∗(̃i

A
R )−1α∗L

a
W

)
[−2] ∈ D>2

R−c(CA×R∞),

which proves ii). Similarly,

i!R(Rq2,!Ru!α∗LWa
>

) ' Rq̃2,!(̃i
P
R )−1Ru!α∗LWa

>
[−2] ∈ D>2

R−c(CA×R∞)

shows i).
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2 Convolution operations

So, we have finally proven all parts (cf. remark 2.12) of

Theorem 2.30. The pair (Ew[1], LEλ [1]) has property P.

Proof. We combine lemmata 2.21, 2.28 and 2.29.
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3 Enhanced middle extensions

3 Enhanced middle extensions

In sections 2.7 and 2.8 of [Kat95], the construction of a so called “middle direct image”
is introduced and the middle convolution is expressed in terms of it. In the context of
(enhanced) sheaves we will restrict ourselves to the case of (bordered) open embeddings
and refer to the corresponding type of construction as a middle extension, which is kind
of a mixture between the terminology cited above and the one of [HTT08], where the
term “minimal extension” is used (for the case of locally closed embeddings).
To be precise, we would like to consider the following situation: For a bordered space

X = (X, X̌), let j : U∞ → X denote the bordered open embedding associated to some
open U ⊂ X. For K ∈ 1/2E0

R−c(U∞) we may define

Ej!∗K := Im(1/2H0Ej!!K → 1/2H0Ej∗K),

Ejco
!∗K := Coim(1/2H0Ej!!K → 1/2H0Ej∗K),

where the splitting in middle and co-middle extension again is due to the fact that image
and coimage do not necessarily need to coincide in the quasi-abelian category 1/2E0

R−c(X).
This is the very same phenomenon that we already encountered in the definition of the
enhanced middle convolution in the previous section. Recall that the remaining of the
two main issues about this definition of our enhanced middle convolution, as stated in the
introduction or at the beginning of section 2.4, was if there can be given some criterion
for when enhanced middle and co-middle convolution agree for some given pair (K,L)
(with property P). Adapting the techniques of [Kat95, sections 2.7, 2.8] to the enhanced
setting, we will be able to reduce this problem to examining if a certain enhanced middle
extension coincides with its co-middle version – to be precise, theorem 3.14 will prove
that for the (bordered) open embedding

u : A×A→ P ×A

and a pair (K,L) with property P such that Eu!!(K
+
�L), Eu∗(K

+
�L) ∈ 1/2E0

R−c(P×A)

and Eu!∗(K
+
� L) ' Euco

!∗ (K
+
� L), we have

K
E∗mid L ' K

E∗co−mid L.

Despite, at first glance, deciding if splitting occurs in the middle extension situation
seems to be a similar problem, compared to the original question about splitting in the
case of enhanced middle convolutions, it turns out that theorem 3.14 indeed simplifies
things substantially, as, with proposition 3.7, we will be able to transfer some well known
characterization result concerning classical middle extensions of perverse sheaves to the
enhanced setting, giving us a criterion for when precisely some enhanced perverse sheaf
is the enhanced middle resp. co-middle extension of its restriction to some bordered
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3 Enhanced middle extensions

open subspace, which in particular naturally contains a description of the special case of
coincidence of middle and co-middle version (corollary 3.8). Finally, we will apply these
results to our example pair (Ew[1], LEλ [1]) of section 2.4.

As there is an immediate interplay between the middle extension in the setting of
classical perverse sheaves on the one, and the minimal extension of regular integral con-
nections on the other hand, provided by the classical Riemann–Hilbert correspondence,
one might at first sight hope for some similar relation in the irregular resp. enhanced
setting. This can not happen though, for reasons that will become obvious along the
definitions of the middle extensions given below (cf. remark 3.2), so it seems that the
further benefits of this enhanced (co-)middle extension on its own are questionable.

3.1 Definition

Consider the classical construction of the middle extension of a perverse sheaf: For the
open embedding j : U → X of a Zariski-open (dense) subset of some irreducible analytic
space (or algebraic variety) and some perverse sheaf L on U such that Rj!L and Rj∗L
are constructible again, the middle extension j!∗L of L is defined as

j!∗L := Im
(

1/2H0Rj!L→ 1/2H0Rj∗L
)
∈ 1/2D0

C−c(X).

For the purpose of better coping with the (co-)image splitting in the enhanced setting,
let us recall the idea behind the proof that 1/2E0

R−c(X) (or, more generally the heart of
any generalized t-structure) is quasi-abelian (cf. [DK16a, proposition 1.3.1] resp. [Bri07,
lemma 4.3]). The truncation functors τ<c for some c, associated to the generalized t-
structure (1/2E6cR−c(X), 1/2E>cR−c(X)) are right adjoint to the embedding

1/2E<cR−c(X)→ ER−c(X)

(cf. [Kas15, section 1]). In particular, if K → L is a monomorphism in 1/2E
(−1,0]
R−c (X)

with L ∈ 1/2E0
R−c(X), then

τ<0K → τ<0L ' 0

is a monomorphism in 1/2E
−1/2
R−c (X) ⊂ 1/2E<0

R−c(X) and thus τ<0K ' 0 and K is
in 1/2E0

R−c(X) as well.
Analogously, if L→ K is an epimorphism in 1/2E

[0,1)
R−c (X) with L ∈ 1/2E0

R−c(X), then
K is in 1/2E0

R−c(X). As 1/2E
[0,1)
R−c (X) and E(−1,0]

R−c (X) are abelian, this proves 1/2E0
R−c(X)

is quasi-abelian (cf. [Bri07, lemma 4.2]) and images and cokernels (resp. coimages and
kernels) can be computed in E[0,1)

R−c (X) (resp. 1/2E
(−1,0]
R−c (X)), cf. [Sch98, lemma 1.2.34]

and [DK16a]. In particular, t-exact endofunctors on ER−c(X) preserve images (and
coimages) in E0

R−c(X), cf. lemma 1.50.
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Let X = (X, X̌) be a bordered space, U ⊂ X open, and denote by j : U∞ → X
the induced embedding of bordered spaces. As j is semi-proper, Ej!! and Ej∗ preserve
R-constructibility (cf. [DK16a, proposition 3.3.3]).

Definition 3.1 (Enhanced middle extensions). In the above setting, for L ∈ 1/2E0
R−c(U∞),

we call
Ej!∗L := Im(1/2H0Ej!!L→ 1/2H0Ej∗L)

the enhanced middle extension of L to X. Dually we would like to refer to

Ejco
!∗ L := Coim(1/2H0Ej!!L→ 1/2H0Ej∗L)

as the enhanced co-middle extension. By definition, both versions agree if and only if
1/2H0Ej!!L→ 1/2H0Ej∗L is a strict morphism in 1/2E0

R−c(X).

Remark 3.2. Recall the following well known compatibility of middle extensions and the
Riemann–Hilbert correspondence in the classical setting, cf. [HTT08, remark 7.2.10].
Let X be a smooth complex variety and U ⊂ X open (actually the same correspondence
would work for U some open dense subset of the regular part of some locally closed
subvariety Z ⊂ X, as described in [HTT08]). Let furthermore L be a regular integrable
connection on U and let L denote the local system on Uan corresponding to L via the
Riemann–Hilbert correspondence (i. e. DRUan(L an) = L[dCU ] ∈ Perv(CUan)). Writing
j : U → X for the open embedding, we then have

DRXan((Dj!∗L )an) ' jan
!∗ (L[dCU ]) = jan

!∗ DRUan(L an). (3.1)

In the irregular setting, the situation is very different. For example, consider X = A1

and U = A1 \ {0}. Let us denote by x the affine coordinate on A1. Then,

L1 := DU/DU∂x ' OU

clearly is a regular integrable connection on U . On the other hand, let

L2 := DU/DU (x2∂x − 1),

which is an irregular integrable connection on U (both examples are taken from [HTT08,
example 5.1.24]). In particular, with j : A1 \ {0} → A1 denoting the open embedding,

(j∗L1)an ' (Dj!∗L1)an 6' (Dj!∗L2)an ' (j∗L2)an,

as the left hand side is regular while the right hand side is irregular. But we also have
L an

1 ' L an
2 (cf. [HTT08, example 5.1.24]), so in particular

DREUan(L an
1 ) ' DREUan(L an

2 ),

which shows that there can clearly be no enhanced analog of (3.1).
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3 Enhanced middle extensions

Example 3.3. Let X := R and U = R \ {0}. Consider the following example taken from
[DK16a, example 3.5.10]: Set S := {x > 0, 0 6 t < 1/x} ∪ {x = 0, t > 0} ⊂ X × R and

K := CES [1] = CE
+
⊗Qι(CS)[1].

Then, as calculated in [DK16a], we have K ∈ 1/2E0
R−c(R), as well as

Ei!{0}K ' 0, Ei−1
{0}K ' CE{0}[1] ∈ 1/2E−1

R−c({0})

for i{0} : {0} → R the corresponding closed embedding (cf. also [DK16a, example 3.5.9]).
By corollary 3.8 below, K is the enhanced middle extension of its quotient, to be precise,

K ' EiU∞,!∗Ei−1
U∞
K ' Eico

U∞,!∗Ei
−1
U∞
K.

Now consider the following slight variation of this example: Set

S′ := {x < 0, 1/x 6 t < 0} ∪ {x = 0, t < 0}

and
L := CES′ [1] = CE

+
⊗Qι(CS′)[1] ∈ E[−1,0]

R−c (R).

To compute DE L, we consider the distinguished triangle

a−1CS′ −→ C{x=0,t>0}∪{x<0,−1/x>t>0} −→ C{x60,t=0}
+1−→

(where a, as usual, is the antipodal map induced by R → R, t 7→ −t) and observe that
C{x=0,t>0}∪{x<0,−1/x>t>0} ' Rj∗C{x<0,−1/x>t>0} for j : {x < 0, 1/x > t > 0} → R2, such
that the dual triangle is

D(C{x60,t=0}) −→ C{x<0,−1/x>t>0}[2] −→ a−1 DCS′
+1−→ . (3.2)

It remains to determine D(C{x60,t=0}). For that, take the distinguished triangle

C{x<0,t=0} −→ C{x60,t=0} −→ C{x=0,t=0}
+1−→

which, by applying duality, gives us a triangle

DC{x=0,t=0}︸ ︷︷ ︸
'C{x=0,t=0}

−→ DC{x60,t=0} −→ DC{x<0,t=0}︸ ︷︷ ︸
'C{x60,t=0}[1]

+1−→,

with i!RCR2 ' i−1
R CR2 [−1] for the embedding iR : R ' {x, t = 0} → R2, and analogously

for the embeddings of {x < 0, t = 0} and the point {x = 0, t = 0}. Thus we get a long
exact sequence
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3 Enhanced middle extensions

. . . −→ 0 −→ H−1(DC{x60,t=0}) −→ C{x60,t=0} −→ C{x=0,t=0} −→
−→ H0(DC{x60,t=0}) −→ 0 −→ . . .

where we may observe that H0(DC{x60,t=0}) =
(
Γ{x60,t=0}(CR2)

)
{x60,t=0} ' 0 and get

DC{x60,t=0} ' C{x<0,t=0}[1]. So the long exact cohomology sequence associated to (3.2)
is

. . . −→ 0 −→ C{x<0,−1/x>t>0} −→ H−2(a−1 DCS′) −→ C{x<0,t=0} −→ 0 −→ . . . ,

showing that a−1 DCS′ = C{x<0,−1/x>t>0}[2] and thus

DE L ' CE{x<0,−1/x>t>0}[1] = CE
+
⊗Qι(C{x<0,−1/x>t>0})[1]

(cf. [DK16b, proposition 4.8.3]). Now Ei−1
{x}DE L ' 0 for all x ∈ R (cf. [DK16a, example

3.5.9]), i. e.
Ei!{x}L ' DE Ei−1

{x}DE L ' 0

for all x ∈ X, and L ∈ E−1
R−c(X). On the other hand, DE L ∈ E−1

R−c(X) as well, and for
all x ∈ R, we have

Ei!{x}DE L ' DE Ei−1
{x}L '

{
0, if x 6= 0

DE(CE{0}) ' CE{0} ∈ E
0
R−c(X) if x = 0,

(cf. lemma 1.21), so L ∈ 1/2E0
R−c(R). But here, as we just stated,

Ei−1
{0}L ' CE{0} ∈

1/2E0
R−c({0})

by construction, so proposition 3.7 below tells us that L can not be the enhanced middle
(or co-middle) extension of its quotient on (X \ {0})∞, that is,

Ei(R\{0})∞,!∗Ei
−1
(R\{0})∞L 6' L 6' Ei

co
(R\{0})∞,!∗Ei

−1
(R\{0})∞L.

3.2 Characterization of enhanced middle extensions

Let X and U ⊂ X, resp. X and U∞ ⊂ X, be as above. As a preparation for the rest of
this section, we would like to state a simple analogon to the following classical result (cf.
[HTT08, proposition 8.2.3]):

Proposition 3.4. For any L ∈ Perv(CU ), one has DX(j!∗L) ' j!∗(DU L).

Let us have a look at the proof given in [HTT08] and check to what extent it carries
over to the enhanced setting. By definition, Ej!∗L can be computed as the image of
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1/2H0Ej!!L → 1/2H0Ej∗L in 1/2E
[0,1)
R−c (X) and thus is determined by the image factor-

ization
1/2H0Ej!!L� Ej!∗L ↪→ 1/2H0Ej∗L

in 1/2E
[0,1)
R−c (X). By definition of the enhanced middle perversity t-structure (cf. [DK16a,

definition 3.5.8]), DE
X is an exact functor from 1/2E

[0,1)
R−c (X)op to 1/2E

(−1,0]
R−c (X). So

DE
X

1/2H0Ej∗(L)︸ ︷︷ ︸
'1/2H0Ej!!(D

E
U∞ L)

� DE
XEj!∗L ↪→ DE

X
1/2H0Ej∗L︸ ︷︷ ︸

'1/2H0Ej∗(DEU∞ L)

is an image factorization in 1/2E
(−1,0]
R−c (X), immediately proving the following

Lemma 3.5. For U ⊂ X and L ∈ 1/2E0
R−c(U∞) as above, we have:

i) DE
X(Ej!∗L) ' Ejco

!∗ (DE
U∞ L).

ii) The canonical morphism

DE
X(Ej!∗L)→ Ej!∗(D

E
U∞ L)

is an isomorphism if and only if the natural morphism 1/2H0Ej!!L→ 1/2H0Ej∗L is
strict.

Now, consider the following well known characterization result on classical middle
extension perverse sheaves (cf. [HTT08, proposition 8.2.5]).

Proposition 3.6. Let U ⊂ X and L ∈ Perv(CU ) be as above, G = j!∗L be the middle
extension of L to X and finally denote by i : Z := X \ U → X the closed embedding of
the complement of U in X. Then

i) G|U ' L,

ii) i−1G ∈ 1/2D6−1
C−c (Z),

iii) i!G ∈ 1/2D>1
C−c(Z).

Any other perverse sheaf on X satisfying i) – iii) is canonically isomorphic to G.

Let us find the analogon to this characterization in the enhanced setting (so we replace
X by a bordered space X = (X, X̌) and U ⊂ X with the induced embedding U∞ ⊂ X)
by adapting the proof of proposition 3.6 given in [HTT08]. Let L ∈ 1/2E0

R−c(U∞) and
recall the definition of the enhanced middle extensions,

Ej!∗L := Im(1/2H0Ej!!L→ 1/2H0Ej∗L),

Ejco
!∗ L := Coim(1/2H0Ej!!L→ 1/2H0Ej∗L),
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from above. Then, as Ej−1 ' Ej! is t-exact ([DK16a, Proposition 3.5.6]), and further-
more Ej−1Ej!! ' Id ' Ej!Ej∗, one gets

(Ej!∗L)|U∞ = Ej−1Ej!∗L =Ej−1 Im(1/2H0Ej!!L→ 1/2H0Ej∗L)

' Im(1/2H0Ej−1Ej!!L→ 1/2H0Ej−1Ej∗L)

' Im(L
∼→ L) ' L

and the same of course for (Ejco
!∗ L)|U∞ ' L. Now, set G := Ej!∗L and consider the

distinguished triangle
CU −→ CX −→ CZ

+1−→ (3.3)

in Db
R−c(CX), which induces a distinguished triangle

π−1CU ⊗G −→ π−1CX ⊗G −→ π−1CZ ⊗G
+1−→

with π−1CU ⊗G ' Ej!!Ej−1G by [DK16a, lemma 2.4.5], as well as π−1CX ⊗G ' G and
π−1CZ ⊗G ' Ei!!Ei−1G ' Ei∗Ei−1G, for i the closed embedding i : Z∞ → X and j the
open embedding U∞ → X. Recall that the functor

1/2H [0,1) : ER−c(X)→ 1/2E
[0,1)
R−c (X)

is cohomological (cf. [DK16a, Proposition 1.3.1]). Denoting this functor by H, and
writing H i := H(•[i]) = 1/2H [i,i+1)(•)[i], we get a long exact sequence

. . . −→ H0Ej!!Ej
−1G −→ H0G −→ H0Ei∗Ei

−1G −→ H1Ej!!Ej
−1G −→ . . .

in 1/2E
[0,1)
R−c (X), where H0G ' G = Ej!∗L by definition of G, H0Ej!!Ej

−1G ' H0Ej!!L
by the above, and H1Ej!!Ej

−1G = 0, as Ej−1 is t-exact, and Ej!! is right t-exact by
[DK16a, Proposition 3.5.6], so Ej!!Ej−1G ∈ 1/2E60

R−c(X) and H1 = 1/2H [1,2)(•)[1]. So
the above exact sequence is of the form

. . . −→ H0Ej!!L −→ Ej!∗L −→ H0Ei∗Ei
−1G −→ 0 (3.4)

and, as Ej!! is right t-exact, we have H0Ej!!L ' 1/2H0Ej!!L, so that the morphism
H0Ej!!L→ Ej!∗L from above is surjective by definition of Ej!∗L, so H0Ei∗Ei

−1G ' 0.
Because Ei−1 is right t-exact (again by [DK16a, proposition 3.5.6]) and Ei∗ ' Ei!!, this
implies

Ei−1G ∈ 1/2E<0
R−c(Z∞),

which can be easily seen by applying H0 ◦ Ei−1 and using lemma 1.50.
Now let us review the above lines and replace G by G̃ := DE G = Ejco

!∗ DE L and
1/2H [0,1) by H̃ := 1/2H(−1,0] where H̃ i is defined analogously to H i above. We will
furthermore write L̃ := DE L. Then we still have H̃1(Ej!!Ej

−1G̃) ' 0 due to right
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t-exactness of Ej!! (recall H̃1 = 1/2H(0,1](•)[1]) and arrive at the long exact sequence
analogous to (3.4)

. . . −→ H̃0Ej!!L̃ −→ Ejco
!∗ L̃ −→ H̃0Ei∗Ei

−1G −→ 0.

Recall that by [DK16a, proposition 3.5.5], there is a distinguished triangle

τ<0K −→ K −→ τ>0K
+1−→

in ER−c(X) for any K ∈ ER−c(X). Applying this to K = Ej!!L̃ and taking the H̃-
cohomologies gives us an exact sequence

H̃−1τ>0Ej!!L̃ ' 0 −→ H̃0τ<0Ej!!L̃ −→ H̃0Ej!!L̃ −→ H̃0τ>0Ej!!L̃︸ ︷︷ ︸
=1/2H0Ej!!L̃

−→ 0 ' H̃1τ<0Ej!!L̃

in 1/2E
(−1,0]
R−c (X). The very same applies to K = Ei∗Ei

−1G̃ and, trivially, to G̃ = Ejco
!∗ L̃,

so we get a diagram

0 0 0

1/2H0Ej!!L̃ Ejco
!∗ L̃

1/2H0Ei∗Ei
−1G̃

. . . H̃0Ej!!L̃ Ejco
!∗ L̃ H̃0Ei∗Ei

−1G̃ 0

H̃0τ<0Ej!!L̃ 0 H̃0τ<0Ei∗Ei
−1G̃

0 0 0

a b

c

d

=

e

f

in 1/2E
(−1,0]
R−c (X), where all columns and the middle row are exact. Now a is an epi-

morphism by construction of the co-middle extension and c is an epimorphism by ex-
actness of the first column, so d is an epimorphism as well. This implies e = 0 resp.
0 ' H̃0Ei∗Ei

−1G̃ as e is the cokernel of d by exactness of the middle row. Again,
right t-exactness of Ei−1, Ei∗ ' Ei!! and the application of H̃0 ◦ Ei−1 together with
lemma 1.50 thus give us Ei−1G̃ ∈ 1/2E6−1

R−c (Z∞) or, equivalently,

Ei!G ' DE Ei−1 DE G ' DE Ei−1G̃ ∈ 1/2E>1
R−c(Z∞).

With these observations, we have already done half of the work on proving
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Proposition 3.7. Let G ∈ 1/2E0
R−c(X), L ∈ 1/2E0

R−c(U∞), and j : U∞ → X the bordered
open embedding as above. Then G ' Ej!∗L if and only if G satisfies

i) Ej−1G ' L,

ii) Ei−1G ∈ 1/2E<0
R−c(Z∞),

iii) Ei!G ∈ 1/2E>1
R−c(Z∞).

On the other hand, we have the dual version: G ' Ejco
!∗ L if and only if

i) Ej−1G ' L,

ii)’ Ei−1G ∈ 1/2E6−1
R−c (Z∞),

iii)’ Ei!G ∈ 1/2E>0
R−c(Z∞).

In particular, as an obvious but useful consequence we get

Corollary 3.8. Let G ∈ 1/2E0
R−c(X) and L ∈ 1/2E0

R−c(U∞) as in proposition 3.7. Sup-
pose G satisfies

i) Ej−1G ' L,

ii) Ei−1G ∈ 1/2E6−1
R−c (Z∞),

iii) Ei!G ∈ 1/2E>1
R−c(Z∞).

Then G ' Ej!∗L ' Ejco
!∗ L.

Proof of proposition 3.7. Cf. [HTT08, proof of proposition 8.2.5]. Without loss of gener-
ality, let us focus on the case of characterizing the middle extension, as the situation for
the co-middle version corresponds to this via duality (cf. lemma 3.5). Note that above
we have already shown that Ej!∗L satisfies i)–iii). Now let us recall that the canonical
morphism Ej!!L→ Ej∗L may be constructed (cf. lemma 2.7) using the adjunction unit
Id→ Ej∗Ej

−1 and Id
'→ Ej−1Ej!! ' Ej!Ej!!, by

Ej!!L→ Ej∗Ej
−1Ej!!L

∼→ Ej∗L.

In particular, for G satisfying i), the canonical morphism

Ej!!L ' Ej!!Ej−1G→ G→ Ej∗Ej
−1G ' Ej∗L

constructed from the respective counit and unit is the canonical morphism from above,
as the unit Id→ Ej∗Ej

−1 induces a commutative square

Ej!!Ej
−1G G

Ej∗Ej
−1Ej!!Ej

−1G Ej∗Ej
−1G.'
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3 Enhanced middle extensions

So, in order to prove the result, it remains to show that

1/2H0Ej!!L→ G→ 1/2H0Ej∗L (3.5)

induced by the above is an image factorization in 1/2E
[0,1)
R−c (X).

Let us assume G satisfies ii) and iii) as well. First, we would like to show that
1/2H0Ej!!L → G is an epimorphism in 1/2E

[0,1)
R−c (X). Let C ∈ 1/2E

[0,1)
R−c (X) denote the

cokernel, then, by hypothesis i), Ej−1C ' 0, so, by considering the distinguished triangle

Ej!!Ej
−1C −→ C −→ Ei∗Ei

−1C
+1−→

in ER−c(X), we find C ' Ei∗K for some K ∈ 1/2E60
R−c(Z∞). So the cokernel sequence is

1/2H0Ej!!L −→ G −→ Ei∗K −→ 0.

Using the fact that Ei−1 is right t-exact and thus induces a right exact functor on
1/2E

[0,1)
R−c (X), applying 1/2H [0,1)Ei−1 to the above cokernel sequence gives an exact se-

quence
0 '
ii)

1/2H [0,1)Ei−1G −→ 1/2H [0,1)K −→ 0

in 1/2E
[0,1)
R−c (Z∞), which shows 1/2H [0,1)K ' 0 and thus

Ei∗K ' 1/2H [0,1)Ei∗K ' 1/2H [0,1)Ei∗
1/2H [0,1)K ' 0

(cf. lemma 1.50), which means 1/2H0Ej!!L → G is an epimorphism in 1/2E
[0,1)
R−c (X). To

show G → 1/2H0Ej∗L is a monomorphism in 1/2E
[0,1)
R−c (X), let us denote its kernel by

C ∈ 1/2E
[0,1)
R−c (X). As before, by hypothesis i), we get Ej−1C ' 0 and C ' Ei∗K ' Ei!!K

for some K ∈ 1/2E60
R−c(Z∞). So the kernel sequence is of the form

0 −→ Ei∗K −→ G −→ 1/2H0Ej∗G.

Recalling that Ei! is left t-exact and thus induces a left exact functor on 1/2E
[0,1)
R−c (X),

applying 1/2H [0,1)Ei! to the kernel sequence yields an exact sequence

0 −→ 1/2H [0,1)K −→ 1/2H [0,1)Ei!G '
iii)

0

in 1/2E
[0,1)
R−c (Z∞), so 1/2H [0,1)K ' 0 and

Ei∗K ' 1/2H [0,1)Ei∗K ' 1/2H [0,1)Ei∗
1/2H [0,1)K ' 0

(cf. lemma 1.50), which implies G→ 1/2H0Ej∗L is indeed a monomorphism.
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3.3 Minimal extensions of holonomic DU -modules

In this section, we want to quickly recall the definition of the minimal extension of
an algebraic holonomic D-module and observe that a characterization result completely
analogous to that of corollary 3.8, resp. [HTT08, proposition 8.2.5], holds if we assume
that the open subset in question has a smooth complement. Exactness of the enhanced de
Rham functor then implies that minimal extensions of holonomic D-modules correspond,
via the enhanced Riemann–Hilbert correspondence, to enhanced ind-sheaves which are
the enhanced middle extensions of their quotients – in particular, as we can apply corol-
lary 3.8 and the standard t-structure on the category of D-modules trivially is 1-indexed,
middle and co-middle extension agree for this special class of enhanced perverse sheaves
that are in the essential image of algebraic holonomic D-module minimal extensions (cf.
corollary 3.11).
Consider j : U → X as above (i. e. Zariski-open and dense) and let M be an algebraic

holonomic DU -module. When speaking of the enhanced solutions resp. de Rham complex
of an algebraic M , we are of course referring to the functors SolEan := SolE ◦ (•)an resp.
DREan := DRE ◦ (•)an. The well known minimal extension of M to a DX -module is
defined as

Dj!∗M := Im

(∫
j!

M →
∫
j
M

)
∈ Hol(DX)

(cf. [HTT08, definition 3.4.1]).

Lemma 3.9. Let j : U → X and i : Z := X \ U → X be an affine open resp. a closed
embedding as above, i. e. such that Z is smooth, and M ∈ Hol(DU ). Then N := Dj!∗M
has the properties

i) jFN 'M ,

ii) iFN ∈ D6−1
hol (Z)

iii) i†N ∈ D>1
hol(Z),

(where iF := DZ ◦ i† ◦ DX in notation of [HTT08]).

Proof. The proof works completely analogous to the one in section 3.2, resp. to that
of [HTT08, proposition 8.2.5]. Nevertheless, we would like to give a sketch of proof for
convenience. By the basechange theorem [HTT08, theorem 1.7.3], applied to j† and

∫
j

(which yields j† ◦
∫
j ' Id), and exactness of j† ' j−1 ' jF (cf. [HTT08, example

1.5.12]), one has

j†N ' Im

(
j†DX

∫
j
DUM → j†

∫
j
M

)
' Im(M

∼→M ) 'M ,
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3 Enhanced middle extensions

where for the second step [HTT08, theorem 2.7.1] was applied (as open embeddings are
smooth and thus non-characteristic), which shows i). Then, consider the distinguished
triangle ∫

i
i†N −→ N −→

∫
j
j†N

+1−→

from [HTT08, Proposition 1.7.1] (by hypothesis, Z is a smooth variety). Taking coho-
mologies, this yields a long exact sequence

. . . −→ H−1

(∫
j
j†N

)
−→ H0

(∫
i
i†N

)
−→ N −→ H0

(∫
j
j†N

)
−→ . . .

As
∫
j ' Rj∗ ' j∗ (cf. [HTT08, example 1.5.22]) is left exact and j† is exact, we have

H−1
(∫

j j
†N

)
' 0. Furthermore j†N 'M by i) and

N −→ H0

(∫
j
j†N

)
' H0

(∫
j
M

)
' j∗M

is injective by definition of N = Dj!∗M . So we get

H0

(∫
i
i†N

)
= 0 (3.6)

and thus, as
∫
i is exact (cf. e. g. [HTT08, proposition 1.5.24]) and i† ' Ri\ is left exact

(cf. [HTT08, propositions 1.5.24 and 1.5.16]), by applying H0i† to (3.6) we get that
i†N ∈ D>1

hol(Z), which means iii) holds. Finally, ii) follows from using property iii) for

i†Dj!∗(DUM ) ' i†DXDj!∗M ' DZiFN

and the fact that DZ mapsD>1
hol(Z) toD6−1

hol (Z) – here we used DXDj!∗M ' Dj!∗(DUM ),
cf. [HTT08, proposition 3.4.3].

Thanks to Kashiwara’s equivalence (cf. e. g. [HTT08, theorem 1.6.1]), the converse to
lemma 3.9 holds as well, finishing the announced characterization.

Lemma 3.10. For an affine open embedding j : U → X as above, such that its comple-
ment Z = X \U is a smooth variety and M ∈ Hol(DU ) as in lemma 3.9, any holonomic
DX-module N ∈ Hol(DX) satisfying conditions i) – iii) of lemma 3.9 is naturally iso-
morphic to Dj!∗M .

Proof. Again, the proof of [HTT08, proposition 8.2.5] may be transferred to the D-
module setting virtually without any changes. We would like to show that the factoriza-
tion ∫

j!
M −→ N −→

∫
j
M
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of the canonical morphism
∫
j! M →

∫
j M obtained from the adjunctions

∫
j! a j

† and
jF a

∫
j and the isomorphism j† ' jF is an image factorization. Let A be the kernel

0 −→ A −→ N −→
∫
j
M .

By assuming i), and with jF
∫
j! ' Id, it is clear that A is supported on Z, hence of the

form
∫
i A
′ for some A ′ ∈ Hol(DZ) by Kashiwara’s equivalence (note that

∫
i is exact,

cf. [HTT08, proposition 1.5.24]). Applying H0 ◦ i† (note that i† ' Ri\ is left exact with
respect to the standard t-structure, cf. [HTT08, proposition 1.5.16]) to this sequence, we
get an exact sequence

0 −→ A ′ −→ H0(i†N ) '
iii)

0

and thus A ′ = 0, meaning A = 0, so N →
∫
j M is injective. By the same reasoning,

applying iF to the cokernel sequence∫
j!

M −→ N −→ B −→ 0

one finds that
∫
j! M → N is surjective.

Note that, in notation of [DK16b], (fan)† = D(fan)∗[dX−dY ] for some f : X → Y and
dX , dY the dimensions of X and Y , respectively. In particular, [DK16b, theorem 9.1.2]
and [DK16b, corollary 8.4.10], in the D-module notation from [HTT08] that we are using
here, are saying that, for any N ∈ Db

hol(Y ), one has

DREX((f †N )an) ' Ef !DREY N ,

DREX((fFN )an) ' Ef−1DREY N .
(3.7)

In the setting of j : U → X and i : Z := X \ U → X as above, let M ∈ Hol(DU )
and K := DRE((Dj!∗M )an) ∈ 1/2E0

R−c(X
an) (recall that [DK16a, theorem 4.5.1] proves

DRE is t-exact). By t-exactness of DRE and (3.7), we furthermore have

Ei!K 'DRE((i†Dj!∗M )an) ∈ 1/2E>1
R−c(Z

an),

Ei−1K 'DRE((iFDj!∗M )an) ∈ 1/2E6−1
R−c (Zan),

where we used that for X = Xan = (Xan, Xan) and Zan ⊂ Xan closed, Zan
∞ = Zan by

definition. This concludes our example by showing the following immediate consequence
of corollary 3.8, aiming towards a setting as in e. g. [BE04] or [Ari10]:

Corollary 3.11. For some smooth complex variety, with notation as above, we again
denote by j the bordered open embedding U∞ ' (U,X) → X. Let M ∈ Hol(DX) be the
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3 Enhanced middle extensions

middle extension of its restriction j†M ∈ Hol(DU ). Then, with G := DREX(M an) and
L := Ej−1G ∈ 1/2E0

R−c(U
an
∞ ), we have that

G ' Ej!∗L ' Ejco
!∗ L

is the enhanced middle extension of its quotient.

3.4 Enhanced middle convolution and middle extension

In this section, we finally use the observations made on the enhanced middle extension
to give a first criterion for the coincidence of middle and co-middle convolution, which
we then apply to our example of section 2.4.
Consider the following situation, which is precisely the one of [Kat95, proposition 2.7.2],

adapted to the bordered enhanced setting: Let X = (X, X̌) and Y be (subanalytic)
bordered spaces, U ⊂ X open and j : U∞ → X the induced bordered open embedding,
set Z := X \ U and let f : X → Y be a proper morphism of bordered spaces with the
additional property that f |Z∞ : Z∞ → Y is a finite morphism, which shall mean here a
proper morphism such that the underlying map Z → Y̊ has finite fibers (for example this
situation occurs in the case of the bordered version of the analytification of the original
situation in [Kat95, proposition 2.7.2], cf. [GR71, proposition 3.2]). Let f := f ◦ j. All
these morphisms are depicted in the following diagram (cf. [Kat95, section 2.7]).

U∞ X Z∞

Y

j

f
f

i

f |Z∞

Proposition 3.12 (cf. proposition 2.7.2 of [Kat95]). Assume K ∈ 1/2E0
R−c(U∞) has the

following properties:

i) Ef!!K ∈ 1/2E0
R−c(Y) and Ef∗K ∈ 1/2E0

R−c(Y),

ii) Ej!!K ∈ 1/2E0
R−c(X) and Ej∗K ∈ 1/2E0

R−c(X),

iii) Ej!∗K ' Ejco
!∗K.

Then
Ef∗Ej!∗K ' Im(Ef!!K → Ef∗K) ' Coim(Ef!!K → Ef∗K).

Proof. The proof is almost literally the same as the one of [Kat95, proposition 2.7.2],
except for some changes in terminology that are due to the enhanced resp. quasi-abelian
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setting. Let us write down the details anyway. By hypothesis, we know that the mor-
phism Ej!!K → Ej∗K is strict. In particular, we get strictly exact kernel rep. cokernel
sequences in 1/2E0

R−c(X),

0 −→ A −→ Ej!!K −→ Ej!∗K −→ 0

0 −→ Ej!∗K −→ Ej∗K −→ B −→ 0,

which thus correspond to distinguished triangles

A −→ Ej!!K −→ Ej!∗K
+1−→

Ej!∗K −→ Ej∗K −→ B
+1−→

(3.8)

in ER−c(X), where, by proposition 3.7, we have Ej−1A ' 0 ' Ej−1B. So

A ' Ei!!Ei−1A ' Ei∗Ei!A,

(cf. [DK16a, lemmata 2.7.6 and 2.7.7]) and we get

Ei!A ' Ei−1Ei!!Ei
!A ' Ei−1Ei∗Ei

!A ' Ei−1A ∈ 1/2E0
R−c(Z∞),

i. e. A ' Ei!!F ' Ei∗F for some F ∈ 1/2E0
R−c(Z∞) and the very same of course for B.

By the finiteness assumption made on f |Z∞ , we furthermore have

Ef |Z∞,∗F ' Ef∗A ' Ef !!A ' Ef !!Ei!!F ' Ef |Z∞,!!F ∈ 1/2E0
R−c(Y)

and, by the same argument, Ef∗B ' Ef !!B ∈ 1/2E0
R−c(Y). Now, applying Ef !! ' Ef∗

to the distinguished triangles (3.8), we obtain distinguished triangles

Ef∗A −→ Ef!!K −→ Ef∗Ej!∗K
+1−→,

Ef∗Ej!∗K −→ Ef∗K −→ Ef∗B
+1−→,

(3.9)

where Ef!!K → Ef∗Ej!∗K → Ef∗K is a factorization of the canonical morphism
Ef!!K → Ef∗K, which we want to prove is indeed a strict image factorization. So
far, we know that Ef∗A,Ef!!K,Ef∗K,Ef∗B ∈ 1/2E0

R−c(Y). Let us apply the cohomo-
logical functors H := 1/2H [0,1) resp. H̃ := 1/2H(−1,0] to the triangles (3.9) and write
H i(•) := H(•[i]) resp. H̃ i(•) := H̃(•[i]) as usual.

• Applying H to the first triangle of (3.9) yields an exact sequence

. . . −→ 0 −→ H−1(Ef∗Ej!∗K) −→ Ef∗A −→ Ef!!K −→
−→ H0(Ef∗Ej!∗K) −→ 0 −→ . . .
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which tells us that Ef∗Ej!∗K ∈ 1/2E
[−1,1)
R−c (Y). Similarly, applying H̃ to the same

triangle gives an exact sequence

. . . Ef!!K −→ H̃0(Ef∗Ej!∗K) −→ 0 −→ . . .

and thus shows H̃1(Ef∗Ej!∗K) ' 0, i. e. Ef∗Ej!∗K ∈ 1/2E60
R−c(Y), so, overall,

Ef∗Ej!∗K ∈ 1/2E
[−1,0]
R−c (Y).

• Analogously, applying H̃ to the second triangle of (3.9) gives us the exact sequence

. . . −→ 0 −→ H̃0(Ef∗Ej!∗K) −→ Ef∗K −→ Ef∗B −→
−→ H̃1(Ef∗Ej!∗K) −→ 0 −→ . . .

showing Ef∗Ej!∗K ∈ 1/2E
(−1,1]
R−c (Y) and applying H results in the observation that

Ef∗Ej!∗K ∈ 1/2E>0
R−c(Y), so Ef∗Ej!∗K ∈ 1/2E

[0,1]
R−c(Y).

Putting together both of these points, we have

Ef∗Ej!∗K ∈ 1/2E
[−1,0]
R−c (Y) ∩ 1/2E

[0,1]
R−c(Y) = 1/2E0

R−c(Y).

In particular, the two distinguished triangles (3.9) correspond to strict short exact se-
quences in 1/2E0

R−c(Y), proving that Ef!!K → Ef∗K is a strict morphism and

Ef∗Ej!∗K ' Im(Ef!!K → Ef∗K) ' Coim(Ef!!K → Ef∗K).

Remark 3.13. Note that condition iii) is indispensable here, in particular the above proof
does not work for either middle or co-middle extension considered separately in the case
of Ej!∗K 6' Ejco

!∗K.

Now, let us recall the situation of our enhanced middle convolution from section 2: Let
K,L ∈ 1/2E0

R−c(A) be such that (K,L) has property P, that is we require that

Eσ!!(K
+
� L), Eσ∗(K

+
� L) ∈ 1/2E0

R−c(A)

(notation as in section 2). Consider the morphisms (with Z := {∞} ×A)

A×A P ×A Z∞

A,

p2

u

p2
p2|Z∞

'

i
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where p2 is proper and p2|Z∞ is clearly finite, and recall from section 2 that, with

α : A×A
'→ A×A, (a, b) 7→ (a, a+ b)

we have
Eσ!!(K

+
� L) ' Ep2,!!Eα∗(K

+
� L) ' E(p2)∗Eu!!Eα∗(K

+
� L),

Eσ∗(K
+
� L) ' Ep2,∗Eα∗(K

+
� L) ' E(p2)∗Eu∗Eα∗(K

+
� L).

So, by proposition 3.12, we immediately get

Theorem 3.14. If, in the above situation, Eu!!Eα∗(K
+
� L) ∈ 1/2E0

R−c(P × A) and

Eu∗Eα∗(K
+
�L) ∈ 1/2E0

R−c(P×A) and furthermore Eu!∗Eα∗(K
+
�L) ' Euco

!∗Eα∗(K
+
�L),

then we have
K

E∗mid L ' K
E∗co−mid L.

Proof. By hypothesis and proposition 3.12, we have

K
E∗mid L ' E(p2)∗Eu!∗Eα∗(K

+
� L) ' K E∗co−mid L.

Consider our example from section 2.4, that is K = Ew[1] (with w a local coordinate

on A = P \ {∞}) and L = LEλ [1]. We already showed that K
E∗∗ L,K

E∗! L ∈ 1/2E0
R−c(A)

in section 2.4. Now let us write G := α∗(K
+
� L) as a shorthand and prove the following

Lemma 3.15. In the situation of the example in section 2.4, we have (with notation as
above):

i) Eu!!G ∈ 1/2E0
R−c(P ×A) and Eu∗G ∈ 1/2E0

R−c(P ×A),

ii) Eu!∗G ' Euco
!∗G.

Proof. We will actually show Ei−1Eu∗G ' 0 ' Ei!Eu!!G, for i : {∞}×A → P×A, that
is

Eu!!G ' Eu∗G ' Eu!∗G ' Euco
!∗G.

So, technically, it turns out we do not really need corollary 3.8 for this particularly simple
case – still it does obviously apply in a trivial way. We will only show Ei−1Eu∗G ' 0
(the other case corresponds to this one via duality). Recall from section 2.4 that (we will
write α and u again instead of αR := α× IdR or uR, as in section 2)

Eu∗G ' CE
+
⊗Qι(Ru∗(α∗L)Wa),
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and that F := Ru∗(α∗L)Wa |Z×R is a local system on Z × R, for Z := {∞} × A (lemma
2.22). In particular, by remark 2.23, as Z clearly is a deformation retract

Z
π
�
ρ
Z × R

of Z × R, we have F = π−1(ρ−1F ) and thus

Ei−1Eu∗G ' Ei−1(CE
+
⊗Qι(Ru∗(α∗L)Wa)) ' CE

+
⊗QιF ' 0.

For the dual case, we use (with notation as in section 2.4.7)

Ei!Eu!!G ' DE Ei−1Eu∗DE G ' DE Ei−1(CE
+
⊗Qι(Ru∗(α∗La)W )) ' 0.

Corollary 3.16. We have

Ew[1]
E∗mid L

E
λ [1] ' Ew[1]

E∗co−mid L
E
λ [1].

Proof. This is an immediate application of theorem 3.14 to the above observation.
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4 Arinkin–Katz convolution and enhanced middle convolution

4 Arinkin–Katz convolution and enhanced middle
convolution

As we already stated at the very beginning, the studies carried out in this thesis are
largely emerging from the idea of finding a way towards an enhanced counterpart to
Arinkin’s version of the classical Katz’ algorithm for irregular meromorphic connections
on P1 ([Ari10]). In this final section of our notes, we would thus like to show that our en-
hanced middle convolution is compatible with the the middle convolution for irreducible
holonomic modules on P1 as in [Ari08; Ari10] via the enhanced Riemann–Hilbert corre-
spondence, cf. conjecture 4.17. After making some effort to connect the algebraic setting
of minimal extension D-modules to the one of enhanced ind-sheaves on complex bor-
dered spaces, we will be able to give a prove of this conjecture, under assumption 4.19,
cf. theorem 4.20.

4.1 Holonomic D-modules on (projective) algebraic bordered spaces

Definition 4.1 (cf. definition 3.2.1 of [DK16b]). Let us call (X, X̌) an algebraic bordered
space if X̌ is a smooth complex variety and X ⊂ X̌ is an open subvariety such that the
embedding j : X → X̌ is affine. We say that (X, X̌) is projective if X̌ is so. A morphism
of algebraic bordered spaces f : X → Y is a morphism f : X → Y of smooth varieties
such that the projection Γf → X̌ is a proper morphism of algebraic varieties (where (•)
of course refers to the scheme-theoretic closure).
Remark 4.2. For the purpose of feeling more confident about this scheme-theoretic version
of the classical bordered space setup of [DK16b, section 3.2], let us recall, for our algebraic
setting, the proof of [DK16b, lemma 3.2.3], stating that the composition of morphisms
of bordered spaces is well defined. So, let f : X → Y and g : Y → Z induce morphisms
X → Y resp. Y → Z of algebraic bordered spaces. For a morphism f : X → Y of
varieties inducing a morphism X→ Y of bordered spaces, let us introduce some notation
concerning the graph of f , as depicted in the following diagram (by definition, Γf is the

scheme-theoretic image of X
(Id,f)−→ X × Y ).

X

X Γf X × Y

Y

γf if

pf1

pf2

p1

p2

Here, of course, if ◦ γf = (Id, f). If the context is clear, we will use the same labels for
the induced projections of the closure Γf ⊂ X̌ × Y̌ , i. e. pf1 : Γf → X̌ and pf2 : Γf → Y̌ .
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We would like to prove that g ◦ f : X → Z gives a morphism X→ Z, i. e. the projection
pg◦f1 : Γg◦f → X̌ is proper. By hypothesis, pf1 : Γf → X̌ and pg1 : Γg → Y̌ are proper, so
we know

ϕ : Γf ×Y̌ Γg
(Id,pg1)
−→ Γf ×Y̌ Y̌ ' Γf

pf1−→ X̌

is proper ([Har77, corollary 4.8.(c)]). As we may trivially factor ϕ as

Γf ×Y̌ Γg
(ϕ,pg2)
−→ X̌ × Ž

prX̌−→ X̌

(with prX̌ the first projection), we get that (ϕ, pg2) : Γf ×Y̌ Γg → X̌ × Ž is proper, by
[Har77, corollary 4.8.(e)]. Let A ⊂ X̌ × Ž be the image of ϕ̃ := (ϕ, pg2) and denote the
corresponding closed embedding by iA : A→ X̌ × Ž. Then, note that Γg◦f is the image
of the morphism

X
(Id,g◦f)−→ X × Z −→ X̌ × Ž.

By definition, this morphism X → X̌ × Ž factors as

X
a×b−→ Γf ×Y̌ Γg

ϕ̃−→ X̌ × Y̌ ,

where a : X
if→ Γf → Γf and b : X

if→ Γf
pf2→ Y

ig→ Γg → Γg. In particular, we have
Γg◦f ⊂ A by definition of the scheme-theoretic image. As ϕ is proper, we know that the

induced morphism A
iA→ X̌ × Ž → X̌ is proper, by [Stacks, tag 01W0, lemma 28.39.9].

So pg◦f1 is a composition of a closed embedding Γg◦f ⊂ A and a proper morphism A→ X̌,
hence itself proper.

Remark 4.3. For an algebraic bordered space (X, X̌) as above, the analytification

(X, X̌)an := (Xan, X̌an)

is a complex bordered space in the sense of [KS16, section 4.3] and the same holds true
for morphisms (cf. [GR71, proposition 3.2]).

Let us denote by j : X → X̌ the open embedding and by jan its analytification. Due to
the assumption that j is affine, we know that

∫
j = j∗ is exact, as is j† ' j−1 (because j

is an open embedding), cf. [HTT08, examples 1.5.12 and 1.5.22]. As before we will write
X := (X, X̌) and Xan := (X, X̌)an. In view of [Ari10], let us make the following

Definition 4.4. For an algebraic bordered space X as above, set

Hol(X) := {M ∈ Hol(DX̌)|M ' Dj!∗(j−1M )}.

Note that DX̌ induces a duality

DX : Hol(X)op '−→ Hol(X).
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4 Arinkin–Katz convolution and enhanced middle convolution

Definition 4.5. For algebraic bordered spaces X = (X, X̌) and Y = (Y, Y̌ ), where we
will denote the corresponding open embeddings by jX : X → X̌ and jY : Y → Y̌ , and a
morphism f : X→ Y of algebraic bordered spaces, we define operations∫ 0

f
,

∫ 0

f !
: Hol(X)→ Hol(Y)

f †,0, fF,0 : Hol(Y)→ Hol(X)

which are given, for M ∈ Hol(X) and N ∈ Hol(Y), by∫ 0

f
(M ) = DjY,!∗H

0

∫
f
(j−1
X M )∫ 0

f !
(M ) = DjY,!∗H

0

∫
f !

(j−1
X M )

f †,0(N ) = DjX,!∗H
0f †j−1

Y N

fF,0(N ) = DjX,!∗H
0fFj−1

Y N .

Let us recall from [KS16, section 4.3] the definition of D-modules on the complex
bordered space Xan = (Xan, X̌an),

Db
hol(DXan) := Db

hol(X̌
an)/{M ∈ Db

hol(DX̌an)| Supp(M ) ⊂ X̌an \Xan}.

Lemma 4.6. By analytification, Hol(X) becomes a full subcategory of Db
hol(DXan).

Proof. Suppose that for M ,N ∈ Hol(X), we have a morphism f : M → N fitting into
a distinguished triangle

M an fan

−→ N an −→ C
+1−→ (4.1)

in Db
hol(DX̌an), where Supp(C) ⊂ X̌an \ Xan. Then we know that C ' C̃an for some

C̃ ∈ Db
hol(DX̌) with Supp(C̃) ⊂ X̌ \ X. From (4.1) we thus get a cohomology exact

sequence
0 −→ H−1C̃ −→M

f−→ N −→ H0C̃ −→ 0

in Hol(DX̌). By applying the exact functors j∗j−1 resp. j!j
−1 and using the image

factorizations

j!j
−1M � Dj!∗j

−1M︸ ︷︷ ︸
'M

↪→ j∗j
−1M , j!j

−1N � Dj!∗j
−1N︸ ︷︷ ︸

'N

↪→ j∗j
−1N
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4 Arinkin–Katz convolution and enhanced middle convolution

we get a diagram with exact rows

0 j∗j
−1M j∗j

−1N 0

0 H̃−1C̃ M N H0C̃ 0

0 j!j
−1M j!j

−1N 0,

'

f

'

proving that f has indeed already been an isomorphism in Hol(X).

Before we continue, we want to recall one more concept concerning D-modules on
bordered spaces from [KS16, section 4.3]. Let X be some smooth complex variety, Z ⊂ X
a closed subset and U = X \Z its open complement. Let I be the defining sheaf of ideals
of Z. In this situation, the algebraic cohomology functor is, for some OX -module F ,
defined by

Γ[Z](F ) := lim−→
k

HomOX (OX/I
k, F ),

cf. [KS96, section 5] (this functor is also referred to as the temperate supports functor,
e. g. in [Bjö93, section II.5], where it is denoted by H0

[Z](F )). For the open complement
U ⊂ X, on the other hand, we may define6

Γ[U ](F ) := lim−→
k

HomOX (Ik, F )

(which is denoted by µ(∗Z)(F ) in [Bjö93, remark 2.5.12]) and, for some locally closed
W = V ∩K ⊂ X, where V ⊂ X is open and K ⊂ X is closed, set

Γ[W ](F ) = Γ[V ](Γ[K](F )).

We will denote the right derived functors of these by RΓ[Z] and RΓ[U ], resp. RΓ[W ],
cf. [KS96; Bjö93] (in [Bjö93], RΓ[U ](F ) is denoted by F (∗Z)). Concerning the definition
of RΓ[W ] from above, note that Γ[K] maps injective objects to stalkwise injective objects
([Bjö93, proposition 2.5.7]) and that, as I is OX -coherent ([Har77, proposition II.5.9]),
we have

ExtiOX (Ik, F )x ' ExtiOX,x(Ikx , Fx)

for all i, F and x ∈ X ([Har77, proposition III.6.8]), which means that stalkwise injective
objects are Γ[V ]-acyclic. So, in conclusion, RΓ[W ] = R(Γ[V ] ◦Γ[K]) ' RΓ[V ] ◦RΓ[K]. This
applies analogously to the setting of a complex manifold X, when Z ⊂ X is a complex
analytic subset and I its (coherent, cf. [GR84, section 4.2]) defining sheaf of ideals. If X

6Here, I’m much obliged to M. Kashiwara for clarifying this to me.
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4 Arinkin–Katz convolution and enhanced middle convolution

is the analytification of some projective smooth complex variety (as it will be the case
in our situation), both versions obviously correspond to each other via analytification
([Ser56, section 3, proposition 10 and theorem 3]). If F is a (left) D-module then so
is RΓ[W ](F ), cf. [Bjö93, section II.5].

Lemma 4.7. Let X be a smooth complex variety (resp. a complex manifold). If U ⊂ X
is open, where j : U → X is the open embedding, and W ⊂ X is a locally closed subset
(resp. a locally closed complex analytic subset, in case X is a manifold), then

j−1 ◦RΓ[W ] ' RΓ[j−1(W )] ◦ j−1.

Proof. The point here simply is that j−1 is compatible with quotients and directed co-
limits (as it has left and right adjoint) and with Hom, and it preserves injectives (and
of course stalkwise injectivity), so it is enough to state that, for W = K ∩ V as above, I
the defining ideal of X \ V and J the defining ideal of K, and for any F , we have

j−1 lim−→
k

Hom(Ik, lim−→
l

Hom(OX/J
l, F )) '

' lim−→
k

Hom((j−1I)k, lim−→
l

Hom(OU/(j
−1J)l, j−1F )).

Definition 4.8 (cf. section 4.3 of [KS16]). Let f : X→ Y be a morphism of complex (or
algebraic) bordered spaces X = (X, X̌) and Y = (Y, Y̌ ). As usual let prX̌ : X̌ × Y̌ → X̌
and prY̌ : X̌× Y̌ → Y̌ be the projections. Then, for M ∈ Db

hol(DX) and N ∈ Db
hol(DY),

we choose representing objects M̃ ∈ Db
hol(DX̌) and Ñ ∈ Db

hol(DY̌ ) and set∫
f
M :=

∫
prY̌

(
RΓ[Γf ](OX̌×Y̌ )[dCY ]

D
⊗Dpr∗

X̌
M̃

)
Df∗N :=

∫
prX̌

(
RΓ[Γf ](OX̌×Y̌ )[dCY ]

D
⊗Dpr∗

Y̌
Ñ

)
If, in the above situation, X and Y are projective bordered spaces, algebraic and

analytic construction correspond to each other via analytification, i. e. we have(∫
f
(•)

)an

'
∫
fan

(•)an,
(
Df∗(•)

)an ' D(fan)∗(•)an.

Remark 4.9. In [KS16, definition 4.14], bordered versions of the enhanced de Rham
and solutions functors are established, denoted by DREX resp. SolEX, for some complex
bordered space X. By [KS16, proposition 4.15], these are compatible with the enhanced
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direct resp. inverse images in the usual way, in particular, for M ∈ Db
hol(DX) and

M̃ ∈ Db
hol(DX̌) some representing object, one has

DREX(M ) ' Ej−1
X DRE

X̌
(M̃ ),

where jX : X→ X̌ is the bordered open embedding, as usual.

Lemma 4.10. Let f : X → Y be a morphism of smooth complex varieties (resp. man-
ifolds). We can consider this a morphism of algebraic (resp. complex) bordered spaces
X = (X,X) and Y = (Y, Y ). Then, the bordered versions of the external operations
above agree with the usual ones, i. e.∫

f
M '

∫
f
M , Df∗N ' Df∗N

for any M ∈ Db
hol(DX), N ∈ Db

hol(DY ).

Proof. Let us denote by i the closed embedding Γf → X×Y and consider the projections

X
prX←− X × Y prY−→ Y.

Let us only write down the direct image case, the other one working completely analogous.
Before we start, let us state the following observation: By hypothesis, we have that
Γan
f ⊂ (X × Y )an is a complex analytic (closed) subset. So, by [KS96, theorem 5.12], we

know
RΓ[Γan

f ](O(X×Y )an) ' Thom(CΓan
f
,O(X×Y )an).

On the other hand, Thom(•,O(X×Y )an) is nothing but the quasi-inverse to the solution
functor

Sol(X×Y )an : Db
rh(D(X×Y )an) −→ Db

C−c(C(X×Y )an)

of the classical Riemann–Hilbert-correspondence ([Kas84]), also cf. paragraph 1.4 of the
introduction of [DK16b] for a very short summary. With

Sol
(∫

i
(•)
)
' Rian

! Sol(•)[dCΓf − d
C
X×Y ] = Rian

! Sol(•)[−dCY ],

which holds algebraically – for
∫
i – as well as analytically – i. e. for

∫
ian – as i is proper

as a closed embedding, we thus find

RΓ[Γan
f ](O(X×Y )an) '

(∫
i
OΓf

)an

[−dCY ],

resp.

RΓ[Γf ](OX×Y ) '
∫
i
OΓf [−dCY ].
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Now we can calculate∫
f
M '

∫
prY

(
RΓ[Γf ](OX×Y )[dCY ]

D
⊗Dpr∗XM

)
'
∫

prY

(∫
i
OΓf

D
⊗Dpr∗XM

)
'
∫

prY

∫
i

(
OΓf

D
⊗Di∗Dpr∗XM

)
'
∫

prY ◦i
D(prX ◦ i)∗M

'
∫

prY ◦i

∫
(prX◦i)−1

M '
∫
f
M ,

where we used the projection formula [HTT08, corollary 1.7.5].

Remark 4.11. In the notation of [KS16, section 3.1], Db
g−hol(DX) is denoting the objects

in Db(DX) with good holonomic cohomology, and Db
g−hol(DX) is defined accordingly.

We have that Df∗ preserves goodness (as well as holonomicity) and
∫
f preserves the

property of being good and holonomic, that is
∫
f induces a functor∫

f
: Db

g−hol(DX)→ Db
g−hol(DY),

cf. [KS16, lemma 4.13]. From here on, we will assume that all appearing D-modules
have good cohomologies.
Remark 4.12. We used the unshifted D-module inverse image Dp∗ for p = prX̌ , prY̌
above. As in [HTT08, section 1.5], we would like to write f † := Df∗[dCX − dCY] in this
setting, where dCX := dCX for the bordered space X = (X, X̌), and define fF := DXf

†DY

as well as
∫
f !

:= DY

∫
fDX, where DX, for some bordered space X = (X, X̌), shall refer

to the duality functor on Db
hol(DX) induced by DX̌ .

Proposition 4.13. Suppose that f : X → Y is a morphism of projective algebraic bor-
dered spaces, fan its analytification, and let M ∈ Hol(X) and N ∈ Hol(Y). Then

j−1
Y an

∫
fan

M an ' (

∫
f
j−1
X M )an,

j−1
Xan(fan)†N an ' (f †j−1

Y N )an.

Proof. By definition of the minimal extension, we have exact sequences

0 −→ DjX,!∗j
−1
X M −→ jX,∗j

−1
X M −→ A −→ 0,
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0 −→ DjY,!∗j
−1
Y N −→ jY,∗j

−1
Y N −→ B −→ 0,

where clearly Supp(A) ⊂ X̌ \X and Supp(B) ⊂ Y̌ \ Y . So we have

M an ' (DjX,!∗j
−1
X M )an ' (jX,∗j

−1
X M )an ∈ Db

hol(DXan),

N an ' (DjY,∗j
−1
Y N )an ' (jY,∗j

−1
Y N )an ∈ Db

hol(DYan).

In particular,

j−1
Y an

∫
fan

M an ' j−1
Y an

∫
fan

(jX,∗j
−1
X M )an,

j−1
Xan(fan)†N an ' j−1

Xan(fan)†(jY,∗j
−1
Y N )an.

Note that, as X and Y are projective, we have

j−1
Y an

∫
fan

M an '

(
j−1
Y

∫
f
M

)an

, j−1
Xan(fan)†N an '

(
j−1
X f †N

)an
.

Let us introduce (resp. recall) some notation, depicted in the following diagram, in which
both sides and the top quadrangle are pullbacks:

X × Y

X × Y̌ X̌ × Y̌ X̌ × Y

X X̌ Y̌ Y

iX iY

jX×Y

j̃X

prX
prX̌ prY̌

j̃Y

prY

jX jY

By repeatedly using lemma 4.7, base change ([HTT08, theorem 1.7.3]) and the projection
formula ([HTT08, corollary 1.7.5]), we get

j−1
Y

∫
f
M 'j−1

Y

∫
prY̌

(
RΓ[Γf ](OX̌×Y̌ )[dCY ]

D
⊗Dpr∗

X̌
(jX,∗j

−1
X M )

)
'
∫

prY

(
j̃−1
Y RΓ[Γf ](OX̌×Y̌ )[dCY ]

D
⊗ j̃−1

Y j̃X,∗Dpr∗X(j−1
X M )

)
'
∫

prY

(
RΓ[Γf ](OX̌×Y )[dCY ]

D
⊗ iY,∗i−1

X Dpr∗X(j−1
X M )

)
'
∫

prY

iY,∗

(
i−1
Y RΓ[Γf ](OX̌×Y )[dCY ]

D
⊗ i−1

X Dpr∗X(j−1
X M )

)
'
∫
p2

(
RΓ[Γf ](OX×Y )[dCY ]

D
⊗Dp∗1(j−1

X M )

)
'
∫
f
(j−1
X M ),

90



4 Arinkin–Katz convolution and enhanced middle convolution

where, for the last line, we denoted by p1, p2 the canonical projections of X × Y so that,
by definition, p1 = prX ◦ iX and p2 = prY ◦ iY , and used lemma 4.10. Analogously, we
get

j−1
X f †N 'j−1

X

∫
prX̌

(
RΓ[Γf ](OX̌×Y̌ )[dCY ]

D
⊗Dpr∗

Y̌
(jY,∗(j

−1
Y M )

)
'
∫

prX

(
RΓ[Γf ](OX×Y̌ )[dCY ]

D
⊗ j̃−1

X j̃Y,∗Dpr∗Y (j−1
Y N )

)
'
∫

prX

iX,∗

(
RΓ[Γf ](OX×Y )[dCY ]

D
⊗ i−1

Y Dpr∗Y (j−1
Y N )

)
'
∫
p1

(
RΓ[Γf ](OX×Y )[dCY ]

D
⊗Dp∗2(j−1

Y N )

)
' f †(j−1

Y N ),

again using the projection formula and lemma 4.10.

The compatibility result we have been working for in this section so far is the following

Proposition 4.14. Let M ∈ Hol(X) and N ∈ Hol(Y) be meromorphic connections
on projective algebraic bordered spaces X resp. Y. Let us denote by jX resp. jY the
bordered open embeddings X → X̌ resp. Y → Y̌ and by jX : X → X̌ resp. jY : Y → Y̌
the non-bordered versions. Let f : X → Y be a morphism of bordered spaces such that∫
f (j−1

X M ) ∈ Hol(DY ) and f †(j−1
Y N ) ∈ Hol(DX). Then

E(jan
Y )−1DRE

Y̌ an

((∫ 0

f
M

)an)
'Efan

∗ E(jan
X )−1DRE

X̌an(M an),

E(jan
X )−1DRE

X̌an

((
f †,0N

)an)
'E(fan)!E(jan

Y )−1DRE
Y̌ an(N an).

Before we prove this, we would like to state another auxiliary observation.

Lemma 4.15. Let X = (X, X̌) be an algebraic bordered space and let j : X → X̌ denote
the corresponding open embedding, whereas we write jX : X→ X̌ for the bordered version,
as above. For M ∈ Hol(X̌) we have

Ej−1
X DRE

X̌
(M an) ' Ej−1

X DRE
X̌

((Dj!∗j
−1M )an).

Proof. By [DK16b, theorem 9.1.2 (iv)] and [DK16a, lemma 2.7.6] we have

E(jan
X )−1DRE

X̌an((Dj!∗j
−1M )an) ' E(jan

X )−1Ejan
X,∗E(jan

X )−1DRE
X̌an((Dj!∗j

−1M )an)

'E(jan
X )−1RIhom(π−1CXan , DRE

X̌an((Dj!∗j
−1M )an)

'E(jan
X )−1DRE

X̌an(Thom(CXan ,OX̌an)
D
⊗ (Dj!∗j

−1M )an)
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'E(jan
X )−1DRE

X̌an((j∗OX)an
D
⊗ (Dj!∗j

−1M )an)

'E(jan
X )−1DRE

X̌an((j∗j
−1OX̌

D
⊗Dj!∗j−1M )an)

'E(jan
X )−1DRE

X̌an((j∗j
−1M )an)

'E(jan
X )−1DRE

X̌an(j∗(OX

D
⊗ j−1M )an)

'E(jan
X )−1DRE

X̌an((j∗OX)an
D
⊗M an)

'E(jan
X )−1RIhom(π−1CXan , DRE

X̌an(M an))

'E(jan
X )−1DRE

X̌
(M an).

Proof of proposition 4.14. Recall that we denote by jX resp. jY the open embeddings
X → X̌ resp. Y → Y̌ and with jX resp. jY the corresponding bordered versions. Again
we would like to only prove the direct image case, the proceeding is completely analogous
for the inverse images. With proposition 4.13 and lemma 4.15, we get

E(jan
Y )−1DRE

Y̌ an

((∫ 0

f
M

)an)
'E(jan

Y )−1DRE
Y̌ an

((
DjY,!∗

∫
f
j−1
X M

)an)

'E(jan
Y )−1DRE

Y̌ an

((
DjY,!∗j

−1
Y

∫
f
M

)an)

'E(jan
Y )−1DRE

Y̌ an

((∫
f
M

)an)

'E(jan
Y )−1DRE

Y̌ an

(∫
fan

M an

)
'Efan

∗ E(jan
X )−1DRE

X̌an(M an),

where for the last line, we used the compatibility of
∫
fan and DREXan proven in [DK16a,

proposition 4.15], cf. remark 4.9 – here, it is important that f is semi-proper (as X
and Y are projective by hypothesis).

By applying duality, we get analogous results for the case of using the enhanced solu-
tions functor SolE instead of DRE .

4.2 Middle convolutions and enhanced Riemann–Hilbert correspondence

Consider the canonical projections

A1 p1←− A2 p2−→ A1
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and let us denote by (x, y) the coordinates on A2. Recall from [Mal91, appendix A.1]
that for some DA1-module M , the Fourier transform on Db

hol(DA1) may be defined as

FT M =

∫
p2

(pF1 M ⊗ e−xy)[1] =

∫
p2

(p†1M ⊗ e−xy)[−1],

with quasi-inverse FT−1(•) =
∫
p2

(pF1 (•)⊗ exy)[1]. We know from [Mal91, appendix A.4]
that we have

FT ◦DA1 ' DA1 ◦ FT−1 .

As in section 2.4.1, we denote by Kλ ∈ Modrh(P1) the Kummer D-module for some
λ ∈ C \ Z. If the context is clear, we will use the same label for the restriction Kλ|A1 .
Let j0 be the open embedding A1 \ {0} → A1. Now, in [Ari10], for some irreducible
M ∈ Hol(P1) with singularities containing ∞ ∈ P1, writing M again for its restriction
to A1, a middle convolution on A1 is defined by

M ∗mid Kλ := FT−1(Dj0,!∗(j
−1
0 (FT(M )

D
⊗K−λ))). (4.2)

We would like to refer to this construction as the Arinkin–Katz convolution. Let us
set A = (A1,P1) and denote the corresponding open embedding by j : A1 → P1 and
its bordered version by jA : A → P1. As stated in [Ari10], this middle convolution
(•) ∗midKλ is an autoequivalence on the irreducible objects in Hol(A) with quasi-inverse
(•) ∗midK−λ. For the sake of precision, let us formulate the details here. First, we would
like to extend the above to

M ∗mid Kλ = Dj!∗ FT−1(Dj0,!∗j
−1
0 (FT(j−1M )

D
⊗ j−1K−λ)).

Then, for some irreducible M ∈ Hol(A), we have

(M ∗mid Kλ) ∗mid K−λ '

' Dj!∗ FT−1Dj0,!∗j
−1
0 (FT(j−1Dj!∗ FT−1Dj0,!∗j

−1
0 (FT(j−1M )

D
⊗ j−1K−λ))

D
⊗ j−1Kλ)

' Dj!∗ FT−1Dj0,!∗j
−1
0 (Dj0,!∗j

−1
0 (FT(j−1M )

D
⊗ j−1K−λ)

D
⊗ j−1Kλ)

' Dj!∗ FT−1Dj0,!∗(j
−1
0 FT(j−1M )

D
⊗ j−1

0 j−1K−λ
D
⊗ j−1

0 j−1Kλ)

' Dj!∗ FT−1Dj0,!∗j
−1
0 FT(j−1M ) ' Dj!∗j−1M 'M ,

where for the last line, we used that M is irreducible by hypothesis, which implies j−1M
and its Fourier transform FT(j−1M ) are irreducible as well (cf. [Ari10, section 2.2]), so
Dj0,!∗j

−1
0 FT(j−1M ) ' FT(j−1M ) and Dj!∗j−1M 'M .

Remark 4.16. Before we formulate our conjecture, let us introduce one more piece of
notation. Let X,Y be smooth algebraic complex varieties and prX : X × Y → X,
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prY : X×Y → Y the usual projections. Then, one may define an external tensor product
for (left) D-modules by

M
D
�N := Dpr∗XM

D
⊗Dpr∗Y N .

By definition7, the above satisfies (M
D
�N )an 'M an

D
�N an for the external product

of analytic D-modules of e. g. [Bjö93, section 2.4], in particular, we have

DX×Y (M
D
�N ) 'DXM

D
� DY N

SolE(X×Y )an((M
D
�N )an) 'SolEX(M an)

+
� SolEY (N an).

7At this point we use again (as we already did before) that analytification commutes with the D-module

tensor product (•)
D
⊗ (•) – here, we would like to once precautionally reassure ourselves of this fact.

By definition, for some smooth complex variety X and M ,N ∈ Db(DX), the tensor product M
D
⊗N

is nothing but the O-module M
L
⊗OX

N , equipped with the D-module structure determined by

θ(m⊗ n) = θ(m)⊗ n+m⊗ θ(n)

for a section θ of ΘX . The definition is the same for the analytic case. On the level of OXan -modules,
we have an isomorphism (let ι denote the continuous map Xan → X)

M an L
⊗OXan N an =

= (OXan ⊗ι−1OX
ι−1M )

L
⊗OXan (OXan ⊗ι−1OX

ι−1N )
'→OXan ⊗ι−1OX

ι−1(M
L
⊗OX

N ),

(f ⊗m)⊗ (g ⊗ n) 7→(fg)⊗ (m⊗ n).

Furthermore, the DXan -structure on the OXan -module M an = OXan ⊗ι−1OX
ι−1M is determined by

∂x(f ⊗m) = ∂x(f)⊗m+ f ⊗ ∂xm,

for some f⊗m ∈M an and some local coordinate x on X. So the DXan -structure on the OXan -module

M an
L
⊗OXan N an is determined, for some section (f ⊗m)⊗ (g ⊗ n), by

∂x((f ⊗m)⊗ (g ⊗ n)) = ∂x(f ⊗m)⊗ (g ⊗ n) + (f ⊗m)⊗ ∂x(g ⊗ n)
= (∂xf ⊗m)⊗ (g ⊗ n) + (f ⊗ ∂xm)⊗ (g ⊗ n) + (f ⊗m)⊗ (∂xg ⊗ n) + (f ⊗m)⊗ (g ⊗ ∂xn),

which is mapped to

∂x(fg)⊗ (m⊗ n) + fg ⊗ (∂xm⊗ n+m⊗ ∂xn) ∈ OXan ⊗ι−1OX
ι−1(M

L
⊗OX

N )

under the above isomorphism of OXan -modules. The latter one, on the other hand, by definition is
nothing but the characterization of the DXan -action on the OXan -module

(M
D
⊗N )an = OXan ⊗ι−1OX

ι−1(M
L
⊗OX

N ).
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Consider two morphisms f : X → X ′ and g : Y → Y ′ of smooth complex varieties, then
it is obvious from the definition that

D(f × g)∗(M ′ D�N ′) ' Df∗M ′ D�Dg∗N ′,

where M ′ and N ′ are DX′- resp. DY ′-modules. Furthermore, we would like to prove
that for M ,N as above, we have∫

f×g
(M

D
�N ) '

∫
f
M

D
�
∫
g
N ,

(cf. [HTT08, proposition 1.5.30]). To do so, consider the diagram

X × Y

X X × Y ′ X ′ × Y Y

X ′ X ′ × Y ′ Y ′

f×g

p1

g̃ f̃
p2

f

pr1

b

pr2

a g

p̃1 p̃2

in which all three quadrangles are cartesian and where we are using the shorthands
g̃ = IdX ×g, f̃ = f × IdY , b = f × IdY ′ , a = IdX′ ×g. By repeatedly using base change
([HTT08, theorem 1.7.3]) and the projection formula ([HTT08, corollary 1.7.5]), we get
(we will write dX := dim(X) as usual)∫

f
M

D
�
∫
g
N =Dp̃∗1

∫
f
M

D
⊗Dp̃∗2

∫
g
N

=

(
p̃†1

∫
f
M

D
⊗ p̃†2

∫
g
N

)
[−dX′ − dY ′ ]

'
(∫

b
pr†1M

D
⊗
∫
a

pr†2N

)
[−dX′ − dY ′ ]

'
∫
a

(
Da∗

∫
b
pr†1M

D
⊗ pr†2N

)
[−dX′ − dY ′ ]

'
∫
a

(
a†
∫
b
pr†1M

D
⊗ pr†2N

)
[−dX′ − dY ′ + dY ′ − dY ]

'
∫
a

(∫
f̃
g̃†pr†1M

D
⊗ pr†2N

)
[−dX′ − dY ]

'
∫
a

∫
f̃

(
p†1M

D
⊗Df̃∗pr†2N

)
[−dX′ − dY ]

'
∫
f×g

(p†1M
D
⊗ p†2N )[−dX′ − dY + dX′ − dX ]
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4 Arinkin–Katz convolution and enhanced middle convolution

'
∫
f×g

(Dp∗1M
D
⊗Dp∗2N ) =

∫
f×g

M
D
�N .

With the help of the tools we collected so far, we will be able to reasonably substantiate
our conjecture to the effect that our enhanced middle convolution construction is com-
patible to the one of [Ari08; Ari10] via the enhanced Riemann–Hilbert correspondence.
Let us make this precise in form of the following

Conjecture 4.17. Let iA : A1 → P1 denote the open embedding and let M ∈ Hol(A) be
irreducible, such that8∫

σ
(i−1

A M
D
� i−1

A K
λ) ∈ Hol(DA1) and

∫
σ!

(i−1
A M

D
� i−1

A K
λ) ∈ Hol(DA1), (4.3)

where σ is the sum map
σ : A2 → A1, (a, b) 7→ a+ b

of section 2, and set K := E(jan
A )−1SolEP (M an)[1] ∈ 1/2E0

R−c(A
an). Then (K,LEλ [1]) has

property P (recall LEλ := SolEP (Kλ), cf. section 2.4), we have

K
E∗mid L

E
λ [1] ' K E∗co−mid L

E
λ [1]

and furthermore
Ej−1

A Sol
E
P ((M ∗mid Kλ)an) ' K E∗mid L

E
λ [1].

As announced in the introduction, we will be able to give a proof of conjecture 4.17
up to the verification of assumption 4.19 below. Consider the diagonal embedding

∆: A1 → A2, x 7→ (x, x).

On the associated C-vector spaces of closed points, this obviously is nothing but the
transpose σT of the sum map

σ : A2 → A1, (x, y) 7→ x+ y.

This observation gives rise to the expectation (compare e. g. [KS16, proposition 5.6] for
the enhanced ind-sheaf setting) that we should have a natural isomorphism

FT

(∫
σ
•
)
' D(σT )∗ FTA2(•) = D∆∗ FTA2(•),

8Note that (4.3) is a necessary condition for (K,LEλ ) having propertyP. The statement of the conjecture
would then imply it is also sufficient.

96



4 Arinkin–Katz convolution and enhanced middle convolution

where we write FTA2 for the Fourier transform on A2. In particular, for M̃ := M |A1 and
Oλ := Kλ|A1 as in the situation of conjecture 4.17, this would correspond to a canonical
morphism

FT

(∫
σ

M̃
D
� Oλ

)
' D∆∗ FTA2(M̃

D
� Oλ) ' D∆∗(FT(M̃ )

D
� FT(Oλ)), (4.4)

where we are using that the Fourier transform acts component wise, i. e.

FTA2(•
D
� •) ' FT(•)

D
� FT(•),

cf. [Dai00, section 2.2]. Let us give a proof that this canonical morphism (4.4) exists.

Proposition 4.18. There is a canonical morphism

FT

(∫
σ

M̃
D
� Oλ

)
' D∆∗(FT(M̃ )

D
� FT(Oλ)).

Proof. Consider the following diagram ([Kat90, section 12.2]), for which the outer rect-
angle is cartesian (here, as usual, p1, p2 : A2 → A1 are meant to denote the canonical
projections)

A2 × A1 A2 × A2

A1 × A1

A1 A1 × A1.

(x,y,z)7→(x,z,y,z)

δ

σ×Id

p2×p2

p2

∆

x 7→(x,x)

(4.5)

Let us start in the upper right corner, with the object (cf. [Kat90, section 12.2])

(p†1M̃ ⊗ e−xy)
D
� (p†1O

λ ⊗ e−xy)[−2].

Then, on the one hand, we have

D∆∗
∫
p2×p2

(p†1M̃ ⊗ e−xy)
D
�(p†1O

λ ⊗ e−xy)[−2] '

'D∆∗
(∫

p2

(p†1M̃ ⊗ e−xy)
D
�
∫
p2

(p†1O
λ ⊗ e−xy)

)
[−2]

'D∆∗
(∫

p2

(p†1M̃ ⊗ e−xy)[−1]
D
�
∫
p2

(p†1O
λ ⊗ e−xy)[−1]

)
'D∆∗(FT(M̃ )

D
� FT(Oλ))
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'FT(M̃ )
D
⊗ FT(Oλ),

while on the other hand,∫
p2

∫
σ×Id

Dδ∗
(

(p†1M̃ ⊗ e−xy)
D
� (p†1O

λ ⊗ e−xy)
)

[−2] '

(∗)
'
∫
p2

(
p†1

∫
σ
(M̃

D
� Oλ)⊗ e−xy

)
[−1]

'FT

(∫
σ
(M̃

D
� Oλ)

)
,

which shows, by using the base change theorem ([HTT08, theorem 1.7.3]), that there
indeed is a canonical isomorphism

FT

(∫
σ
(M̃

D
� Oλ)

)
' D∆∗(FT(M̃ )

D
� FT(Oλ)) ' FT(M̃ )

D
⊗ FT(Oλ). (4.6)

Here, step (∗) seems to need some substantiation, which we would like to provide by the
following

Claim. With notations as above, we have∫
σ×Id

Dδ∗
(

(p†1M̃ ⊗ e−xy)
D
� (p†1O

λ ⊗ e−xy)
)
'
(
p†1

∫
σ
(M̃

D
� Oλ)⊗ e−xy

)
[1].

Proof of claim. First, recall the definition of the Fourier kernel from [Dai00] – let x, y
denote the coordinates on A2 and t the coordinate on A1. Then, consider the DA1-module
L̃ (notation as in [Dai00, section 2] which is defined by the connection

∇ : OA1 → ΩA1 , P 7→ dP − P d t

and define the DA2-module
L := Ds∗L̃

for s : A2 → A1, (x, y) 7→ xy the inner product. We call L the Fourier kernel and denote
it by e−xy, i. e. for some DA1-module M , we write

p†1M ⊗ e−xy := p†1M
D
⊗L .

Now, let q1, q2 : A2 × A2 → A2 and r1, r2, r3 : A1 × A1 × A1 → A1 denote the respective
projections, then, obviously, p1 ◦ q1 ◦ δ = r1 and p1 ◦ q2 ◦ δ = r2, so that

Dδ∗
(

(p†1M̃ ⊗ e−xy)
D
� (p†1O

λ ⊗ e−xy)
)
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=Dδ∗
(

(Dp∗1M̃
D
⊗L )

D
� (Dp∗1O

λ
D
⊗L )

)
[2]

'Dr∗1M̃
D
⊗Dδ∗Dq∗1L

D
⊗Dr∗2Oλ

D
⊗Dδ∗Dq∗2L [2]

'Dr∗1,2
(

M̃
D
� Oλ

)
D
⊗
(
Dδ∗Dq∗1L

D
⊗Dδ∗Dq∗2L

)
[2],

where r1,2 : A1 × A1 × A1 → A1 × A1 is the projection on the first two factors. Let us
now show that

L ′ := Dδ∗Dq∗1L(w1,w2)

D
⊗Dδ∗Dq∗2L(z1,z2) = D(σ × Id)∗L(x1,x2),

where we tagged the Fourier kernels with labels corresponding to the coordinates of the
respective versions of A2. Both sides clearly are isomorphic to OA1×A1×A1 as O-modules,
so it is enough to compare the ΘA1×A1×A1-actions. Unrolling the definitions, let us note
that the action of ΘA2 – for coordinates, say, (x, y) of A2 – on L is given by

∂x · (g ⊗ 1) = ((∂x − y)g)⊗ 1, ∂y · g ⊗ 1 = ((∂y − x)g)⊗ 1

for a section g ⊗ 1 of the O-module L ' Ds∗L̃ = OA2 ⊗s−1OA2
s−1L̃ ' OA2 , also cf.

[Dai00, section 2.2]. The maps q1 ◦ δ, q2 ◦ δ are given by

q1 ◦ δ : A1 × A1 × A1 → A2, (x, y, z) 7→ (x, z),

q2 ◦ δ : A1 × A1 × A1 → A2, (x, y, z) 7→ (y, z).

So, for some section g ⊗ 1 of the O-module

L1 := D(q1 ◦ δ)∗L = OA1×A1×A1 ⊗(q1◦δ)−1OA2
(q1 ◦ δ)−1L ' OA1×A1×A1 ,

the connection ∇1 on L1 is given by

∂x · (g ⊗ 1) =(∂xg)⊗ 1 + g

2∑
i=1

∂x(wi ◦ (q1 ◦ δ))⊗ ∂wi(1),

=(∂xg − zg)⊗ 1

∂y · (g ⊗ 1) =(∂yg)⊗ 1,

∂z · (g ⊗ 1) =(∂zg − xg)⊗ 1

(cf. [HTT08, page 21] for the formula describing the connection on the inverse image that
we used here). The very same way, we know that the connection ∇2 on the O-module

L2 := D(q2 ◦ δ)∗L = OA1×A1×A1 ⊗(q2◦δ)−1OA2
(q2 ◦ δ)−1L ' OA1×A1×A1
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is determined by
∂x · (g ⊗ 1) =(∂xg)⊗ 1,

∂y · (g ⊗ 1) =(∂yg − zg)⊗ 1,

∂z · (g ⊗ 1) =(∂zg − yg)⊗ 1.

Therefore, we have that L ′ = Dδ∗Dq∗1L(w1,w2)

D
⊗ Dδ∗Dq∗2L(z1,z2) = L1

D
⊗ L2 is the

O-module OA1×A1×A1 ⊗O OA1×A1×A1 ' OA1×A1×A1 , equipped with the connection ∇′
determined by

∂x · (g ⊗ 1) =∇1(g)(∂x)⊗ 1 + g ⊗∇2(1)(∂x) = (∂xg − zg)⊗ 1

=∇1(1)(∂x)⊗ g + 1⊗∇2(g)(∂x) = ∂x · (1⊗ g),

∂y · (g ⊗ 1) =∇1(g)(∂y)⊗ 1 + g ⊗∇2(1)(∂y) = (∂yg)⊗ 1 + g ⊗ (−z)
=(∂yg − zg)⊗ 1 = ∂y · (1⊗ g),

∂z(g ⊗ 1) =∇1(g)(∂z)⊗ 1 + g ⊗∇2(1)(∂z) = (∂zg − xg)⊗ 1 + g ⊗ (−y)

=(∂zg − (x+ y)g)⊗ 1 = ∂z · (1⊗ g).

With regard to the above lines we might, in the sense of the Fourier kernel notation,
denote this D-module suggestively by e−(x+y)z. As an O-module,

L̂ := D(σ × Id)∗L = OA1×A1×A1 ⊗(σ×Id)−1OA2
(σ × Id)−1L ' OA1×A1×A1 ,

and σ × Id is given by (x, y, z) 7→ (x+ y, z). Recall we denote the coordinates of A2 by
(x1, x2) here. Then, we get the connection ∇̂ on L̂ , for some section g ⊗ 1 of L̂ , as

∂x · (g ⊗ 1) =(∂xg)⊗ 1 + g
2∑
i=1

∂x(xi ◦ (σ × Id)⊗ ∂xi(1) = (∂xg − zg)⊗ 1,

∂y · (g ⊗ 1) =(∂yg − zg)⊗ 1,

∂z · (g ⊗ 1) =(∂zg − (x+ y)g)⊗ 1,

so we indeed have ∇′ = ∇̂, i. e. L ′ = L̂ . This allows us to complete the proof of the
claim by observing that the morphism σ × Id is defined via the cartesian diagram

A1 × A1 × A1 A1 × A1

A1 × A1 A1,

σ×Id

r1,2 p1

σ

so, by base change, we have∫
σ×Id
◦Dr∗1,2(•) =

∫
σ×Id
◦r†1,2(•)[−1] ' p†1 ◦

∫
σ
(•)[−1].
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Note that the proof would have worked the absolute same way when we replaced e−xy

with exy, the kernel of the inverse Fourier transform. So we get an induced canonical
isomorphism

FT

(
DA1

∫
σ
DA2(M̃

D
� Oλ)

)
'DA1 FT−1

(∫
σ
(DA1M̃

D
� DA1Oλ)

)
'DA1D∆∗(FT−1(DA1M̃ )

D
� FT−1(DA1Oλ))

'DA1D∆∗(DA1 FT(M̃ )
D
� DA1 FT(Oλ))

'DA1D∆∗DA2(FT(M̃ )
D
� FT(Oλ)).

(4.7)

Recall the natural morphism DA1D∆∗DA2(•) → D∆∗, cf. [HTT08, theorem 2.7.1] and
consider the following natural

Assumption 4.19. The canonical isomorphisms (4.4) and (4.7) interchange the natural
morphism DA1

∫
σ DA2 →

∫
σ with the natural morphism DA1D∆∗DA2 → D∆∗, more

precisely, the following diagram commutes:

FT

(
DA1

∫
σ DA1(M̃

D
� Oλ)

)
DA1D∆∗DA1

(
FT(M̃ )

D
� FT(Oλ)

)

FT

(∫
σ(M̃

D
� Oλ)

)
D∆∗

(
FT(M̃ )

D
� FT(Oλ)

)
.

'
(4.7)

'
(4.4)

Although assumption 4.19 seems highly plausible, finding a proof has turned out to be
surprisingly intricate. It appears that the main part of the difficulties arises from the fact
that the construction of the natural morphism D

∫
σ D→

∫
σ relies on a factorization of σ

as an open embedding, followed by a proper morphism, e. g. – in notation from section 2
– as σ = q2 ◦ (u ◦α), with q2 : P1×A1 → A2 the second projection, α : A2 → A2 given by
(x, y) 7→ (x, x+y) and u : A2 → P1×A2 the open embedding. Then, writing j := u◦α, a
canonical morphism D

∫
j D→

∫
j may easily be found, e. g. using the adjunction

∫
j! a j

†

and the fact that j†
∫
j ' Id, cf. [HTT08, theorem 3.2.16]. The morphism D

∫
σ D →

∫
σ

is then obtained by applying D
∫
q2
D '

∫
q2
. However, this two stage process is highly

incompatible to any functorial properties of the Fourier transform.

Theorem 4.20. If assumption 4.19 holds, then conjecture 4.17 is true.

Proof. The basic idea for the proof is to use proposition 4.14 to get an affine D-module
counterpart to the enhanced convolutions, and to then check the statement on Hol(DA1).
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First note that, in the situation of proposition 4.14, i. e. f : X → Y a morphism of
bordered spaces, M ∈ Hol(X), applying DE

Xan gives us

E(jan
Y )−1SolE

Y̌ an

((∫ 0

f
M

)an)
' Efan

!! E(jan
X )−1SolE

X̌an(M an)[dCX − dCY ]

and, similarly, using SolE
Y̌

(DE
Y̌
•) ' DRE

Y̌
(•)[−dC

Y̌
] and DRE

X̌
(DX̌•) ' SolEX̌(•)[dCX ] yields

E(jan
Y )−1SolE

Y̌ an

((∫ 0

f !
M

)an)
' Efan

∗ E(jan
X )−1SolE

X̌an(M an)[dCX − dCY ].

Note that
D
� induces an operation

(•)
D
� (•) : Hol(A)×Hol(A)→ Hol(A),

so we may apply proposition 4.14 and, denoting the analytified bordered open embeddings
with jAan : Aan → P resp. j(Aan)2 : (Aan)2 → P ×P, get

Ej−1
AanSolEP

((∫ 0

σ
(M

D
�Kλ)

)an)
[1] 'Eσan

!! Ej
−1
(Aan)2SolEP×P((M

D
�Kλ)an)[2]

'Eσan
!! Ej

−1
(Aan)2(SolEP (M an)[1]

+
� SolEP ((Kλ)an)[1])

'Eσan
!! (K

+
� LEλ [1])

and, analogously,

Ej−1
AanSolEP

((∫ 0

σ!
(M

D
�Kλ)

)an)
[1] 'Eσan

∗ Ej
−1
(Aan)2SolEP×P((M

D
�Kλ)an)[2]

'Eσan
∗ Ej

−1
(Aan)2(SolEP (M an)[1]

+
� SolEP ((Kλ)an)[1])

'Eσan
∗ (K

+
� LEλ [1]).

In particular, by our hypothesis,
∫ 0
σ (M

D
� Kλ) ∈ Hol(A) and

∫ 0
σ!(M

D
� Kλ) ∈ Hol(A),

which means, as SolEP (•)[1] and (•)an are exact (and thus in particular commute with
images), that the pair (K,LEλ [1]) has property P and

K
E∗mid L

E
λ [1] ' K E∗co−mid L

E
λ [1],

as the standard t-structure of Db
hol(DP) is 1-indexed (cf. corollary 3.8), which proves the

first part of conjecture 4.17.

102



4 Arinkin–Katz convolution and enhanced middle convolution

From here, what remains to show is that the operation

M
D∗mid Kλ := Im

(∫ 0

σ!
(M

D
�Kλ)→

∫ 0

σ
(M

D
�Kλ)

)
(4.8)

agrees with M ∗mid Kλ on A1. With regard to (4.8), note that Hol(A) ⊂ Hol(DP) is
closed with respect to taking images, by

Proposition 4.21. Let X be a smooth complex variety and j : U → X an affine open
embedding such that Z := X \ U is a smooth variety. Then, Dj!∗ : Hol(DU )→ Hol(DX)
preserves injectivity and surjectivity, i. e.

i) if 0→M → N is exact in Hol(DU ), then

0 −→ Dj!∗M −→ Dj!∗N

is exact in Hol(DX),

ii) if M → N → 0 is exact in Hol(DU ), then

Dj!∗M −→ Dj!∗N −→ 0

is exact in Hol(DX).

Proof. The idea for the proof is the very same as in [HTT08, proposition 8.2.7 and
corollaries 8.2.8, 8.2.9] for the case of perverse sheaves. Let us denote by i the closed
embedding Z → X. If, for any M ∈ Hol(DU ), A is a subobject of

∫
j M = j∗M with

Supp(A) ⊂ Z, then A =
∫
iH

0i†A by Kashiwara’s equivalence ([HTT08, theorem 1.6.1]).
Applying H0i† to the exact sequence

0 −→ A −→ j∗M ,

we get H0i†A ' 0, so A ' 0. Analogously, if j!M � B is a quotient (here, as usual,
j! =

∫
j! = DXj∗DU ) with Supp(B) ⊂ Z, then, again, B '

∫
iH

0i†B by Kashiwara’s
equivalence, so let us apply H0iF to the exact sequence

j!M −→ B −→ 0.

This yields 0 ' H0iF
∫
iH

0i†B ' H0i†B, where we used
∫
i '

∫
i! as i is proper as a closed

embedding, cf. [HTT08, theorem 3.2.16], so B = 0. In particular, let A ⊂ Dj!∗M be
a subobject and Dj!∗M � B a quotient such that Supp(A),Supp(B) ⊂ Z. Then the
diagram

B

j!M Dj!∗M j∗M

A
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4 Arinkin–Katz convolution and enhanced middle convolution

shows that A ' 0 ' B. So, for i), let A be the kernel

0 −→ A −→ Dj!∗M −→ Dj!∗N .

As 0 → M → N is exact by hypothesis (and j−1Dj!∗ ' Id), we know that j−1A ' 0,
i. e. Supp(A) ⊂ Z and thus A ' 0 by the above. For ii), we analogously get B ' 0 for
the cokernel

Dj!∗M −→ Dj!∗N −→ B −→ 0.

As we already know that the Arinkin–Katz convolution is an autoequivalence, with
((•) ∗mid Kλ)−1 ' (•) ∗mid K−λ, it actually is enough to prove that (•) D∗mid Kλ is a
right-sided quasi-inverse to (•) ∗mid K−λ, i. e. there is a natural isomorphism

(i−1
A M

D∗mid i
−1
A K

λ) ∗mid i
−1
A K

−λ ' i−1
A M ,

where iA : A1 → P1, as above. As the Fourier transform is exact and thus compatible
with images, as well as i−1

A , we are lead to determining the image of

FT

(
i−1
A

∫ 0

σ!
(M

D
�Kλ)

)
'

' FT

(
DA1

∫
σ
DA2(i−1

A M
D
� i−1

A K
λ)

)
−→ FT

(∫
σ
(i−1

A M
D
� i−1

A K
λ)

)
'

' FT

(
i−1
A

∫ 0

σ
(M

D
�Kλ)

) (4.9)

For the following, let us again denote M̃ := i−1
A M and Oλ := i−1

A Kλ for the sake of
notational compactness. Now, assumption 4.19 would give us a commutative square

FT

(
DA1

∫
σ DA1(M̃

D
� Oλ)

)
DA1∆∗DA1

(
FT(M̃ )

D
� FT(Oλ)

)

FT

(∫
σ(M̃

D
� Oλ)

)
∆∗
(

FT(M̃ )
D
� FT(Oλ)

)
,

'
(4.7)

'
(4.4)

and state that (4.9) corresponds to the canonical morphism

DA1D∆∗DA2(FT(M̃ )
D
� FT(Oλ)) −→ D∆∗(FT(M̃ )

D
� FT(Oλ)). (4.10)

For the subsequent calculations, we will use the following
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4 Arinkin–Katz convolution and enhanced middle convolution

Lemma 4.22. We have FT(Oλ) ' O−λ.

Proof. Recall that Oλ is the regular DA1-module j0,∗K̃λ, for the integrable connection

K̃λ =

(
OA1\{0},d +

λ

z
d z

)
,

where z denotes the affine coordinate on A1, cf. section 2.4.1. In particular, we have
Oλ ' DA1/DA1P for P = z∂z + λ. So, by definition of the algebraic Fourier transform,
FT(Oλ) ' DA1/DA1P ′ with

P ′ = −∂zz + λ = −z∂z + (λ− 1),

cf. [Dai00, section 2], i. e. FT(Oλ) ' O1−λ. So we will finish the proof with showing
that O1−λ ' O−λ. To do so, note that we have

Oµ ' j0,∗j−1
0 Oµ

for any µ ∈ C \ Z and j0 : A1 \ {0} → A1 the open embedding, cf. lemma 1.63. So it is
certainly enough to verify j−1

0 O1−λ ' j−1
0 O−λ. By definition, these are the connections

j−1
0 O1−λ =

(
OA1\{0},∇

)
, ∇ : OA1\{0} → ΩA1\{0}

f 7→ d f +
(1− λ)f

z
d z

j−1
0 O−λ =

(
OA1\{0},∇′

)
, ∇′ : OA1\{0} → ΩA1\{0}

f 7→ d f − λf

z
d z

and we find that j−1
0 O1−λ z·−→ j−1

0 O−λ is an isomorphism of DA1\{0}-modules. To prove
this, it is enough to assert the compatibility with the action of ∂z. For some f ∈ OA1\{0},
we have

∇′(zf)(∂z) =

(
∂z −

λ

z

)
(zf) = ∂z(zf)− λf = z∂zf + f − λf =

= z

(
∂z +

1− λ
z

)
f = z∇(f)(∂z).

This being said, let us continue the proof of theorem 4.20. We would now like to
prove that (4.10) is actually an isomorphism on A1 \ {0}, due to the fact that Oλ is an
integrable connection on A1 \ {0}, which we want to denote by L λ := K̃λ = j−1

0 Oλ for
the rest of this section.
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4 Arinkin–Katz convolution and enhanced middle convolution

Claim. If M is some holonomic D-module on X := A1 \ {0} and L is an integrable

connection (on X), then ∆X = ∆|X : X → X×X is non-characteristic for M
D
�L , i. e.

the canonical morphism

DXD∆∗X(M
D
�L )→ D∆∗XDX×X(M

D
�L )

is an isomorphism

DX(M
D
⊗L ) 'DXD∆∗X(M

D
�L )

'→
(∗)
D∆∗X(DXM

D
� DXL )

'DXM
D
⊗ DXL ' DXM

D
⊗L ∨.

(4.11)

Proof of claim. By the very definition of
D
�, we have

M
D
⊗L ' D∆∗X(M

D
�L ).

Let us convince ourselves that ∆X is non-characteristic for M
D
�L , which then proves the

remaining step (∗) of (4.11), cf. [HTT08, thorem 2.7.1]. We know that (cf. e. g. [Bjö93,
remark 2.7.5, theorem 2.7.16] – note also that the construction of the characteristic
variety is compatible with analytification)

CV(M
D
�L ) = CV(M )× CV(L ) ⊂ T ∗X × T ∗X ' T ∗(X ×X),

where we have CV(L ) = T ∗XX. Labeling the coordinates of T ∗(X ×X) with (x, y, ξ, ν),
we have

T ∗X(X ×X) = {(x, x, ξ,−ξ)} ⊂ T ∗(X ×X),

so that indeed

∆−1
X,π(CV(M

D
�L )) ∩ T ∗X(X ×X) ⊂ X ×X×X T ∗X×XX ×X,

which proves that ∆X is non-characteristic for M
D
�L and thus finishes the proof of the

claim (recall ∆X,π is the projection X ×X×X T ∗(X ×X)→ T ∗(X ×X)).
Using the claim for M = j−1

0 DA1 FT(M̃ ) and L = j−1
0 DA1 FT(Oλ) ' L λ, we have

that

j−1
0 Im

(
DA1D∆∗DA2(FT(M̃ )

D
� FT(Oλ))→ D∆∗(FT(M̃ )

D
� FT(Oλ))

)
' Im

(
DXD∆∗X(j−1

0 DA1 FT(M̃ )
D
� j−1

0 DA1 FT(Oλ))→ D∆∗X(j−1
0 FT(M̃ )

D
�L −λ)

)
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4 Arinkin–Katz convolution and enhanced middle convolution

' Im

(
D∆∗XDX×X

(
DXj−1

0 FT(M̃ )
D
� DXL −λ

)
→ D∆∗X

(
j−1
0 FT(M̃ )

D
�L −λ

))
' Im

(
D∆∗X

(
j−1
0 FT(M̃ )

D
�L −λ

)
∼→ D∆∗X

(
j−1
0 FT(M̃ )

D
�L −λ

))
' Im

(
j−1
0 FT(M̃ )

D
⊗L −λ ∼→ j−1

0 FT(M̃ )
D
⊗L −λ

)
' j−1

0 FT(M̃ )
D
⊗L −λ.

Note that, even without using assumption 4.19, we would at this point have shown that
there is an isomorphism

j−1
0 FT

(
DA1

∫
σ
DA2(M̃

D
� Oλ)

)
' j−1

0 FT

(∫
σ
(M̃

D
� Oλ)

)
,

but we could not know if it is really induced by (4.4). Putting it all together, we have
shown (under assumption 4.19) that

i−1
A (M

D∗mid Kλ) ∗mid i
−1
A K

−λ 'FT−1(Dj0,!∗((j
−1
0 FT(M̃ )

D
⊗L −λ)

D
⊗L λ))

'FT−1(Dj0,!∗j
−1
0 FT(M̃ ))

'FT−1(FT(M̃ )) ' M̃ = i−1
A M ,

where, for the last line, we used that M (so in particular M̃ = i−1
A M ) is irreducible by

hypothesis, thus so is its Fourier transform (cf. e. g. [Ari10, section 2.2]), which implies

Dj0,!∗j
−1
0 FT(M̃ ) ' FT(M̃ ).
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