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For many institutions, especially community colleges, college algebra has been 

the default mathematics or quantitative reasoning requirement. However, the topics that 

have been taught in college algebra, teaching methods, and the goals of a quantitative 

reasoning requirement have changed and vary over time and among different institutions. 

Because of history, policy, and political influences, this study sought to explore 

commonalities and disparities of college algebra as it has evolved through the University 

of Kentucky. The three central research questions were What have been the common 

topics or themes of the competencies and topics covered in CA over the years at UK? 

(RQ1), What internal forces have led to topic coverage or attribute changes in CA? 

(RQ2), and How has QR evolved at UK? (RQ3). 

Through a review of literature, common topics were discovered among Kentucky 

college algebra course descriptions. These commonalities were used as a foundation by 

which, through the qualitative lens of historical methods, the history of college algebra 

was measured and studied. The origins and motivations for these changes were explored 

using multiple sources of data. 
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CHAPTER I: STATEMENT OF THE PROBLEM 

Introduction 

Within a general education curriculum, most institutions require a mathematics or 

statistics course for the purpose of meeting a quantitative reasoning (QR) requirement. 

The purpose of a general education curriculum in Kentucky has traditionally grown from 

a liberal arts education philosophy that insisted all students have a broad, common 

knowledge base in order to graduate not only with intense knowledge of their major 

discipline, but also with breadth of knowledge from many areas (Eastern Kentucky 

University, n.d.; Kentucky State University, 2014a; Northern Kentucky University, n.d.a; 

Southern Association of Colleges and Schools [SACSCOC], 2012; University of 

Kentucky, 2016a). QR has historically been one of those areas. Any approved QR course, 

therefore, could serve myriad degree programs unless a particular major prescribes 

specific QR or mathematics coursework (Latzer, 2004). For example, a degree program 

in chemistry may mandate two semesters of calculus, for which College Algebra (CA) 

would typically be the prerequisite. If all three courses in that sequence met institutional 

QR requirements, no chemistry major had to worry about failing to meet the general 

education requirement of QR.  

However, history majors may not have an explicit QR course outlined in their 

program. Therefore, in order to meet the QR requirement of the core curriculum, they 

may have chosen a course they wanted in order to meet this requirement, assuming the 

institution offered a variety that satisfied the QR requirement. In many instances, the QR 

course of choice appears to have been, by default, a mathematics or statistics course, 

especially at community colleges. Despite the range of potential courses—mathematics 
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or non-mathematics—that could satisfy QR requirements, CA has been the default 

mathematics requirement in the thinking of many institutional policy makers (Vandal, 

2015). 

This study investigates the content that has been covered in CA at the University 

of Kentucky (UK) as the course has evolved over the years, examining reasons for 

content change. This qualitative research focuses on historical events at the university, 

state, and the national levels that have played a role in the evolution of mathematics 

curriculum at UK. By using historical methods (document analysis), changes to the 

course competencies and course description are highlighted for the purposes of 

determining the reason the current incarnation of CA covers specific topics while 

excluding others. The discernments gleaned from this project will be useful in 

establishing (a) what CA is, (b) why it contains the specific material taught, and (c) 

historical context that will challenge why CA seems to be the default quantitative 

reasoning class of choice for many institutions, especially community colleges. 

College Algebra 

Every year over a million college students enroll in CA, a proverbial cash cow of 

the department and institution, yet close to half fail the course (Gordon, 2008). Further, as 

with most college classes, material covered in CA varies from institution to institution. 

While some topics may be common to many colleges, there are invariably differences in 

content and focus, as no national consensus or uniformity of curriculum exists among 

colleges and universities for any general education curriculum; in fact, the SACSCOC 

allows for variation (SACSCOC, 2012; Toombs, Amey, & Chen, 1991). While this in 

itself may not necessarily constitute a problem, any expectations of consistency would be 
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an issue. As CA typically serves as a prerequisite for other mathematics coursework such 

as calculus (Vandal, 2015), taking CA at one institution while taking calculus at another 

may represent a conundrum under the fallacy of consistency. This research reveals the 

deficit of uniformity in definition as to that which has constituted college-level algebra. 

In addition, within any individual institution, there will be a course description outlining 

the topics that an aforementioned institutional class covers, although depth of topic 

emphasis is at the discretion of the instructor. Many times instructors pick their books, so 

different sections of the same course may manifest themselves in radically different 

fashions. One instructor may mention a particular topic in passing, while another spends 

several weeks working with it. As such, there has been no consensus as to what CA 

should entail across the nation or even within a single college. CA textbooks may also 

play a role in the selection of topic coverage. Instructors, especially adjuncts, whose 

numbers are starting to increase with the reduction of full-time college instructors (Jolley, 

Cross, & Bryant, 2014), may follow a textbook’s organizational structure more so than 

their own particular thoughts (or that of the institution) about what should be emphasized.  

Within any given institution, common competencies or course descriptions would 

allow for continuity among different sections and instructors. Western Kentucky 

University (WKU) has regularly offered trigonometry; in fact, students could choose 

from 13 sections taught by eight different instructors in the fall 2016 semester, all of 

which shared the similar course description asserting the course would include “unit 

circle, trigonometric functions and graphs, trigonometric identities and equations, right 

triangle trigonometry, laws of sines and cosines, DeMoivre’s Theorem, vectors and 

applications of trigonometry” (WKU, 2016, p. 256). While the course description 
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outlined specific topics to be covered, the length of time each instructor spent on each 

topic may depend upon instructor discretion. The books used by individual section also 

varied by instructor—per WKU’s online bookstore, different sections of the same course 

required different textbooks (WKU Store, 2017). Additionally, course descriptions have 

never precluded topics; they have simply stated what will allegedly assuredly be covered. 

Professors have enjoyed the academic freedom of electing the material they wish to 

supplement to their courses as it benefits their field (Post, 2008; Stone, 2006). As such, 

instructors have always enjoyed the liberty of appending relevant topics at their 

discretion. The assortment in textbook selection, depth of topic, and any section-specific 

material supplementation has resulted in discontinuity among various sections of the 

same class within the same institution. 

While no formal legislation has mandated all colleges, universities, or instructors 

to conform to homogeneous placement guidelines, curricular content, textbooks, or depth 

of topic coverage (nor, under the ideas of academic freedom, should they), individual 

institutions or departments may forge their own internal policies, rules, or agreements. 

However, even in the scenario wherein a department has established the implementation 

of a practice in which all instructors work from the same text, have the same number of 

tests (even conceivably authored from commonly-adopted test templates), and operated 

on a shared grading scale, bias inherently would influence individual professor appraisal 

of student work. Perception as to the degree of an error’s significance would likely vary 

among instructors when trying to establish partial credit, even with the application of a 

common rubric. That which one teacher felt was a major error, another may have found 

trivial. On a single exam or assignment, elements need not be evenly distributed. One 
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mathematics instructor may have an exam with 20 questions, all worth five points apiece. 

Another may have a 20-question exam on which some problems are worth more than 

others. Likewise, weight of examinations, homework, and other assignments to the final 

overall course grade may not be parallel among a department. For example, per syllabi, 

one section of WKU’s CA course listed exams as being worth 50% of the total course 

grade (Wilson, 2017), while another listed exams as being worth 60% of the total course 

grade (Wells, 2017).  

More research is needed to determine what, if any, consistencies exist among 

sections within an institution, a geographical region, and nationally to establish a 

commonly-accepted notion of what has been taught in a given section of CA and the 

competencies or learning outcomes therein. Further, it should be noted I have not claimed 

inconsistencies themselves have represented problems in need of solution, with exception 

of expectations of consistency under a prerequisite model of mathematical hierarchy. 

Rather, the aim is to see to what degree there has or has not been an effort to establish 

commonly-accepted definitions. 

Quantitative Reasoning 

Quantitative Reasoning, Quantitative Literacy, Mathematical Reasoning, 

Numeracy, Quantitative Thinking, and Mathematical Thinking have been, depending 

upon the source, synonyms that can either be used quite interchangeably or differentiated 

through rigorous minutiae in definition. Despite that some educational and mathematical 

philosophers have meticulously worked to delineate among these terms, for the purposes 

of this piece the terms will be used interchangeably and, except in cases in which scholars 

have made deliberate and overt effort to identify differences between or among the terms, 
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when a referenced work uses one name, this piece shall assume synonymy with all others. 

To distinguish the minutiae among these terms goes beyond the scope of this research, 

and the overall intent of these topics within the framework of higher education will 

generally be to address a graduation requirement for a baccalaureate credential. 

Therefore, philosophical nuances of meaning will be irrelevant to the purpose of this 

work.  

Many definitions for QR have been suggested. Kirsch and Jungeblut (1990) 

defined it as “the knowledge and skills needed to apply arithmetic operations, either alone 

or sequentially, that are embedded in printed materials, such as in balancing a checkbook, 

figuring out a tip, completing an order form, or determining the amount of interest from a 

loan advertisement” (p.4). Steen (1997) defined QR over five dimensions: “practical, for 

immediate use in the routine tasks of life; civic, to understand major public policy issues; 

professional, to provide skills necessary for employment; recreational, to appreciate 

games, sports, lotteries; and cultural, as part of the tapestry of civilization” (pp. 6-7). 

Boersma, Diefenderfer, Dingman, and Madison (2011) identified six core competencies 

for quantitative reasoning:  

…a ‘habit of mind,’ competency, and comfort in working with numerical data. 

Individuals with strong QL skills possess the ability to reason and solve 

quantitative problems from a wide array of authentic contexts and everyday life 

situations. They understand and can create sophisticated arguments supported by 

quantitative evidence and they can clearly communicate those arguments in a 

variety of formats (using words, tables, graphs, mathematical equations, etc., as 

appropriate) (p. 3).  
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The International Life Skills Survey (as cited in Steen, 2001) defined QR as “an 

aggregate of skills, knowledge, beliefs, dispositions, habits of mind, communication 

capabilities, and problem-solving skills that people need in order to engage effectively in 

quantitative situations arising in life and work. Dwyer, Gallagher, Levin, and Morley 

(2003) defined QR as including the following: 

…reading and understanding information given in various formats, such as in 

graphs, tables, geometric figures, mathematical formulas or in text (e.g., in real-

life problems); interpreting quantitative information and drawing appropriate 

inferences from it; solving problems, using arithmetical, algebraic, geometric, or 

statistical methods; estimating answers and checking answers for reasonableness; 

communicating quantitative information verbally, numerically, algebraically, or 

graphically; recognizing the limitations of mathematical or statistical methods (p. 

13). 

Hughes-Hallett (as cited in De Lange, 2003) insisted that QR required students “to stay in 

context. Mathematics is about general principles that can be applied in a range of 

contexts; quantitative literacy is about seeing every context through a quantitative lens” 

(p. 94). Rocconi, Lambert, McCormick, and Sarraf (2013) leaned on several other 

definitions (including Steen’s 1997 definition) to say QR were the skills necessary to be 

quantitatively literate, and quantitatively literate included “an everyday understanding of 

mathematics; in other words, the ability to use numerical, statistical, and graphical 

information in everyday life” (p. 1). The general theme of the definitions of QR has been 

application of mathematical thinking to contexts beyond academia—that those who are 

engaging in QR are not only learning some general form of mathematics, statistics, or 
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algebra, but the knowledge has authentic meaning to the student. 

QR (or some mathematics coursework) requirements are typically encouraged or 

mandated by regional accrediting agencies and state advisory agencies (such as the 

SACSCOC and the Kentucky Council on Postsecondary Education [CPE], respectively) 

(CPE, 2011; SACSCOC, 2012). It is, however, up to the individual institution to decide 

what courses meet the QR requirement. The goals of QR have typically been established 

as encouraging students to think abstractly, demonstrate an understanding of critical 

thinking, or apply mathematics to real-world situations (Elrod, 2014; CPE, 2011). While 

most colleges and universities make explicit the reason for a QR requirement as a part of 

their general education curriculum, it has not necessarily been clear why the particular 

classes, including CA, were the courses offered to satisfy QR requirements. For example, 

trigonometry satisfied the QR requirement for the Kentucky Community and Technical 

College System (KCTCS) Associate of Arts (AA) degree, but a class called applied 

mathematics did not (Kentucky Community and Technical College System, 2016). 

Furthermore, why mathematics courses have typically served as the classes designated to 

meet the QR requirement has not been established. As one of the purposes of a QR 

requirement under the CPE definition was to apply mathematics to real-world situations, 

it has not necessarily been made explicit why applied mathematics has not satisfied the 

AA degree QR requirement. A possible factor in determining why applied mathematics, 

or any particular course, would be precluded from an accepted QR course might be rigor. 

If rigor were a factor, then while trigonometry may be a more collegiate-level course, to 

my knowledge, no evidence has been demonstrated that trigonometry—or any of the 

KCTCS AA QR-certified courses—has met CPE stipulations for QR status.  
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While newly-created classes may have to undergo a process to certify they meet 

the requirements of general education QR status (KCTCS, 2017), this study furthers the 

research into whether preexisting courses, which have been granted QR status, have been 

designed in a fashion which reflected the aims of a QR requirement. Furthermore, it has 

not been established why non-mathematics courses have seldom been awarded QR status. 

There have been exceptions; the University of Kentucky (UK) has allowed certain 

science and philosophy classes to meet their QR requirement (UK, 2016a). However, 

only mathematics and statistics courses have satisfied the KCTCS QR requirement for 

degree-seeking students (Kentucky Community and Technical College System, 2016). 

Additionally, as there may have been a disconnect between course design and 

course application (i.e., the teaching of the course), this study ascertains to what extent 

the course has reflected the aims of a QR requirement.  

College Algebra as a Quantitative Reasoning Course 

As aforementioned, the evolution of all college courses, including CA, has been 

subject to independent historical paths particular to each college and to each department 

within the college. Hence, discrepancies have existed between the content of CA among 

higher education schools, as well as between CA and the QR requirement. This 

discrepancy grew from a general education QR requirement—which was set forth by 

forces external to the college—that has been met by courses potentially predating QR 

legislation that were not designed with QR-specific goals in mind. However, since there 

has been no consensus as to what CA means (e.g., what competencies it should include, 

what admissions or prerequisites should be, i.e., ACT score, depth of competency 

coverage, etc.), sometimes even among faculty within the same institution, it cannot be 
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guaranteed that CA has satisfied the purposes underpinning a QR requirement. In 

addition to research into why any given CA class covers the specific topics of its course 

description, research should be conducted to determine whether that course should be 

used to satisfy its purported QR requirement. Once a sense is gained as to why CA has 

manifested itself in its current form, the findings of the study can be used to evaluate if it 

is the best choice for meeting QR requirements of a general education core that serves a 

multitude of majors. Ultimately, this study will gain an idea of what CA actually is.  

Historical Influences 

Many national, statewide, and institutional historical influences have altered the 

landscape of higher education. At the national level the STEM race of the 1950s 

encouraged curriculum across America to re-emphasize mathematics and science. Due to 

Kennedy’s appeal to put a man on the Moon by the end of the decade, not only were 

science and mathematics emphasized in curricula, but also specifically the mathematics 

and science necessary to put a man on the Moon. Thus, the prerequisite engineering and 

physics knowledge needed for astronomy and ballistics operations were purposely 

targeted, giving rise to an explicit subset of mathematics topic coverage (Wissehr, 

Concannon, & Barrow, 2011), namely algebra and calculus. However, algebra and 

calculus do not comprise all the branches of mathematics, yet mathematics curricula have 

been dominated by algebra for decades, arguably due to political motivations no longer 

germane to the general public and society. Logic, set theory, proof theory, number theory, 

computation theory, non-Euclidean geometry, topology, analysis, graph theory, and 

complex analysis are some subfields, to my knowledge, that have not been regularly 

covered at the precollege level, which has consequently cultivated a postsecondary 
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overemphasis on algebra and calculus.  

Problematic, then, has been that the fields into which these other underrepresented 

areas feed have suffered precollege representation. For example, logic would befit one 

who has interest in professionally working within philosophy or law (Geach, 1979). 

Further, if a goal of higher education includes fostering critical thinking skills, research 

has shown studying formal logic improves scores on critical thinking skills—an example 

being experimentation conducted at UK measuring analytic prowess before and after 

taking a course in logic (Melzer, 1949). Another example would be topology, which 

traditionally might be considered an upper-level baccalaureate mathematics course 

explicitly reserved for mathematics majors. According to Hilton (1971), the field has not 

been taken seriously by professionals and therefore disregarded as a “fun” subject of 

“rubber sheet geometry” (p. 437). However, topics covered in a high school topology 

class would “penetrate so many other disciplines that it must be learnt by any one 

wanting to become conversant with modern mathematics at large” (p. 438), and “are 

among those most immediately apprehended by our intelligence when coupled through 

our senses with the world of experience” (p. 436). Hilton also commented that a high 

school topology course would better prepare students for calculus and make future 

mathematics Ph.D. students better understand their field before enrolling in college.  

Even within algebra and calculus, specific topics are considered rudimentary 

(although which topics might vary by school or institution), while other topics have been 

ignored. For example, the KCTCS CA courses cover polynomial graphs, but not partial 

fraction decomposition (KCTCS, 2016). Additional research would establish the 

historical influences of politics on mathematics curriculum today and determine if other 
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areas of mathematics have been needlessly ignored or overlooked in light of a now 

arbitrary overemphasis on CA. 

At the Kentucky state level, higher education has been supported by the Kentucky 

Council on Public Higher Education from 1934 to 1977, the Kentucky Council on Higher 

Education from then up to 1997, and by CPE from 1997 to present (Ellis, 2011). Political 

forces caused postsecondary educational reform in Kentucky independent from, and co-

correlated with, national politics. For example, CPE formed when House Bill 1 

simultaneously separated the community college system from UK while combining 

Kentucky’s technical colleges with the community colleges under the KCTCS 

(Commonwealth of Kentucky, 1997). This historical event, which forced technical and 

general education faculty departments to merge, brought about countless policy changes 

to curriculum and academic policies (Warren, 2008). Individual colleges invariably have 

had their own historical political influences (e.g., factions of faculty, long-term faculty 

retiring, and new faculty with innovative ideas) that have prompted curriculum changes 

independent from their department and institution. 

This study investigates the content that has been covered in CA at UK as the 

course has evolved over the years, examining reasons for content change. This qualitative 

research focuses on historical events at the university, in Kentucky and at the national 

level that have played a role in the evolution of mathematics curriculum at UK. By using 

historical methods (document analysis), changes to the course competencies and course 

description are highlighted for the purposes of determining why the current incarnation of 

CA covers specific topics while excluding others. The discernments gleaned from this 

project will be useful in establishing (a) what CA is, (b) why it contains the specific 
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material taught, and (c) historical context that will challenge why CA seems to be the 

default quantitative reasoning class of choice for many institutions, especially community 

colleges. 

UK and KCTCS. UK in Lexington, Kentucky was founded in 1865 via the 

Morrill Land Grant Act in 1862 and a state legislative act on February 22, 1865 (The 

Kentucky Encyclopedia, 2000). The campus has stretched over seven hundred acres, and 

had undergone three iterations before becoming the University of Kentucky in 1916 (The 

Kentucky Encyclopedia, 2000). It was a private, denominational institution called the 

Agricultural and Mechanical (A&M) College of Kentucky University from 1865 through 

1878 before becoming the Agricultural and Mechanical College of Kentucky (The 

Kentucky Encyclopedia, 2000). It was called State University of Lexington from 1908 

through 1916 (The Kentucky Encyclopedia, 2000). UK was ranked number 133 under the 

US News & World Report’s National Universities category (2017). In 1960 the 

Northwest Center of the University of Kentucky opened in Henderson County, and the 

campus was renamed Henderson Community College (HCC) four years later (Henderson 

Community College, n.d.). From 1919 through 1997, the community college system in 

Kentucky fell under the jurisdiction of UK through both independent community colleges 

as well as extension centers (Commonwealth of Kentucky, 1997; KCTCS, 2008). The 

separation of the community colleges from UK and the creation of KCTCS was 

controversial, and many students, faculty, and staff were opposed to the legislative 

decision (Kentucky Community & Technical College System, 2008). However, to study 

the history of CA at the community colleges in Kentucky before 1997 would have been 

to study UK. 
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Purpose and Central Research Questions 

This study brings together the issues described previously. There is no 

established, commonly-accepted definition of CA nor the competencies therein. QR 

requirements, while defined by regional accreditation and state authorities, are met 

through coursework as designated by individual institutions, but seldom have sufficient 

justification as to why those courses—which are primarily mathematics—were 

designated to meet QR requirements nor if they reflect QR purposes or definition. 

Specifically, CA may not be sufficient to satisfy the purpose of a QR requirement of a 

general education program. Finally, historical influences and past political agendas have 

impelled mathematics curricula at the postsecondary level to cultivate an inequitable 

emphasis on algebra and specific topics therein.  

The purpose of this qualitative research project is to investigate the history of CA 

at a research facility, namely UK, as well as the oldest community college in Kentucky—

HCC—to see how and why the course has changed over the years. Data sources include 

course catalogs and other records of the UK archives, government regulatory and 

memorandum documents, and scholarly works on historical influences in mathematics 

curriculum in higher education. To do so, document analysis will be used within an 

historical research framework, which will follow prescribed coding techniques later 

defined.  

 Once the evolutionary track has been established, the findings can be used as a 

springboard for further research into the validity of widespread CA coursework as an 

answer to quantitative reasoning, along with a better understanding as to what CA, as a 

class, means to a research one facility and, historically, why. The central research 
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question will be “what forces have influenced the growth of CA competencies at UK?” 

Empirical Research Questions. Empirical research questions include the following: 

1. What have been the common topics or themes of the competencies and topics 

covered in CA over the years at UK? (RQ1) 

2. What internal forces have led to topic coverage or attribute changes in CA? 

(RQ2) 

3. How has QR evolved at UK? (RQ3) 

The answers to these questions will allow for research on some of the deficiencies 

aforementioned, which will add to the knowledge of the field. By understanding how CA 

and QR requirements have progressed in the current state of affairs, challenges to the 

status quo, growth, and productive change can be achieved through an understanding of 

how potentially antiquated ideals are no longer relevant in the current landscape of higher 

education.  

Additionally, educational leaders—especially those within the KCTCS—should 

understand how history and other political motivations have shaped the current 

understanding of CA and QR when making policy and curricular decisions in the current 

climate, in which such issues as performance-based funding, accreditation, and external 

policy makers (i.e., Kentucky Governor Matt Bevins and newly-elected President Trump) 

are having an impact on the activities of higher education. For example, under 

performance-based funding, institutions would likely be expected to enable students to 

take their gateway mathematics coursework without remediation. Understanding what 

should be in CA, or in a QR-sanctioned class versus what historically has been in CA or 

in a QR-sanctioned class, would allow policy stakeholders to make informed decisions. 
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Chapter I summary.  This study was motivated by the central research questions 

and the aforementioned issues. However, prior to the necessary steps in tracing the 

evolutionary pathway of CA at UK, a review of the pre-existing research within the field 

follows in the next chapter. The literature review establishes some background of CA, 

CA in Kentucky, the history of education reform, and national government and politics. 

Following the literature review is a chapter discussing the qualitative methodology, 

methods, data collection, researcher biases, and limitations/delimitations of the study. 

The fourth chapter provides results of the research, which will be organized by the three 

research question and divided among the different types of documents analyzed. The fifth 

and final chapter provides discussion of the findings and relevance to educational 

leadership, along with suggestions for further research.  
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CHAPTER II: REVIEW OF LITERATURE 

This study investigates the content that has been covered in CA at UK as the 

course has evolved over the years, examining reasons for content change. This qualitative 

research focuses on historical events at the university, in Kentucky and at the national 

level that have played a role in the evolution of mathematics curriculum at UK. By using 

historical methods (document analysis), changes to the course competencies and course 

description are highlighted for the purposes of determining why the current incarnation of 

CA covers specific topics while excluding others. The discernments gleaned from this 

project will be useful in establishing (a) what CA is, (b) why it contains the specific 

material taught, and (c) historical context that will challenge why CA seems to be the 

default quantitative reasoning class of choice for many institutions, especially community 

colleges. 

According to Randolph (2009), while the most common function of a literature 

review is to focus on research outcomes, “the scientific reasons for conducting a literature 

review are many” (p. 2). Cooper and Cooper (1998) suggested a literature review can be 

described through six characteristics: focus, goal, perspective, coverage, organization, 

and audience. This literature review (a) focuses on practices and applications; (b) seeks 

explication of an argument; (c) adopts a qualitative perspective of admitting authorial 

bias; (d) approaches the literature with purposive sampling (e.g., selecting literature I 

perceive as pivotal to the central research goals); (e) follows a conceptual organization 

wherein relevant constructs will be reviewed by topic; and (f) addresses academic 

audiences (Cooper & Cooper, 1998; Randolph, 2009). The overall goal of the literature 

review is to justify the material to be presented. Because the goal is to seek explication 
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based on historical practices, influences, and applications, I have adopted a coverage 

philosophy of Cooper and Cooper’s notion toward purposive sampling; therefore, the 

literature is not limited to peer-reviewed scholarly research and dissertations, and much 

of the supportive literature is historical analyses and policy documents. 

Specifically, literature on the purposes and the history of higher education 

mathematics curricula provided legitimacy for the study. For example, according to 

Tucker (2013), in the late 1800s most college students took algebra in their freshman and 

sophomore years, while “Well prepared students at better colleges took calculus in the 

sophomore year” (p. 2). However, as higher education progressed, in the second half of 

the 20th century the proliferation of computer science, physics, and engineering required 

emphasizing calculus-based mathematics curricula. Additionally, “The launching of 

Sputnik in 1957, in the larger context of the Cold War competition with the Soviet Union, 

made mathematicians, scientists, and engineers the country’s Cold War heroes” (p. 9), 

awarding the mathematical constructs used to achieve this feat more prestige than pure 

and abstract mathematics. This tradition of following calculus-based curricula in the 

mathematics undergraduate degree programs (for which college algebra is a prerequisite) 

made college algebra the natural QR course of choice for the general education programs 

because it prepared students for calculus (Vandal, 2015). 

Literature on the purposes and the history of quantitative reasoning also provided 

legitimacy for the study. The 2001 work by The National Council of Education and the 

Disciplines (NCED) established commonly-accepted definitions for quantitative 

reasoning as well as numerous purposes. According to Ewell (as cited in the work of The 

NCED, 2001), there has been a misunderstanding of the difference between mathematics 
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and quantitative reasoning. 

While the aforementioned pieces are examples of supporting literature, part of the 

deficiency in the field has been a lack of research on why college algebra has been the 

choice course for satisfying the QR requirement. Furthermore, according to Ewell (as 

cited in the work of The NCED, 2001), college algebra has not addressed the real-world 

applications necessary to address differences between mathematics coursework and QR. 

College Algebra 

Nationally, CA has been offered at most public universities and has been a staple 

among community colleges, in which CA tends to be the commonly-accepted gateway 

course (Simmons, 2014). Despite perceptions that the course is universally understood, 

differences among universities exist. While these differences themselves may not 

necessarily constitute a problem, assumptions of congruence of content and uniformity 

can be problematic for student transfer. For example, a student who takes college algebra 

at one university who transfers to another may discover the transfer institution’s calculus 

instructors assume certain knowledge was covered in college algebra. Specifically, the 

KCTCS course description of CA does not include sequences, and to my knowledge, 

sequences have generally not been taught in the KCTCS CA curriculum. However, 

Morehead State University’s (Morehead) CA course description explicitly identifies 

sequences as a topic to be covered (Morehead, 2016a), and presumably a KCTCS student 

who transfers to Morehead may be expected to know sequences prior to enrolling in 

calculus. Additionally, assumptions of college readiness and prerequisite placement 

differences may cause considerable complications. Differing QR requirements may 

additionally be frustrating for students who took college algebra at a college and then 
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transferred to UK or Northern Kentucky University (NKU), where college algebra 

currently does not satisfy their QR requirement. 

College Algebra in Kentucky 

As this study focuses on CA at UK, most of this dissertation, and a substantive 

amount of the literature review, is written with heavy emphasis on events in and about 

Kentucky. Every public postsecondary institution in Kentucky offers college algebra 

(Eastern Kentucky University [EKU], 2016; KCTCS, 2016; Kentucky State University 

[KSU], 2016; Morehead, 2016a; Murray State University [MSU], 2016; NKU, 2016; UK, 

2016b; University of Louisville [UL], 2002; WKU, 2016). At EKU, the course focused 

on “real and complex numbers, integer and rational exponents, polynomial and rational 

equations and inequalities, graphs of functions and relations, exponential and logarithmic 

functions,” and the “use of graphing calculators” (EKU, 2016, p. 330), which is the only 

mention of graphic calculators in the official course description of any public institution 

(although WKU’S description of the course stated that a graphing calculator was 

required).  

At KSU, the course aimed to develop “the algebraic skills necessary for further 

studies in mathematics,” and covers “the algebra of functions; graphing techniques; 

quantitative and qualitative analysis of polynomial, rational, exponential and logarithmic 

functions, including limits at infinity and infinite limits; and appropriate applications,” 

(KSU, 2016, p. 381). Kentucky State University was the only public university in 

Kentucky that explicitly included limits in college algebra.  

Morehead’s course included “field and order axioms; equations, inequalities; 

relations and functions; exponentials; roots; logarithms; [and] sequences,” (Morehead, 
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2016a, p. 269). Morehead was the only public institution which included sequences in its 

course description of college algebra.  

At MSU, college algebra was designed to develop and extend “the student's basic 

algebra concepts and problem-solving skills in the context of functions, models, and 

applications,” (MSU, 2016, p. 516). The course covered “exponents and radicals; 

graphing; setting up and solving equations in linear, quadratic, and other forms; systems 

of equations; and operations on functions;” additionally, the course addressed “properties 

and applications of linear, quadratic, polynomial, rational, exponential, and logarithmic 

functions” (MSU, 2016, p. 516). MSU was the only public institution to address 

modeling explicitly, although many colleges mention applications, under which modeling 

might fall.  

The UL course included “advanced topics in algebraic and rational expressions 

and factoring; polynomial, rational, exponential, and logarithmic functions; [and] 

applications,” (UL, 2002), which was the only public university that explicitly addressed 

rational expressions (although most, including UL, include rational equations, which can 

be taught independently of rational expressions).  

At WKU, the course included “graphing and problem solving” that were 

“integrated throughout the study of polynomial, absolute value, rational, radical, 

exponential, and logarithmic functions” (WKU, 2016, p. 312), which was the only course 

description to include absolute value functions.  

NKU had a class called “Algebra for College Students,” that reviewed “advanced 

topics from Algebra II essential for success in MAT 112 and MAT 119,” which are 

courses in applied calculus and calculus I, respectively (NKU, 2016, p. 329). This course, 
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which did not count toward the general education requirement for the institution, seemed 

to read more like a developmental course than a gateway course.  

UK’s college algebra aimed to develop “manipulative algebraic skills and 

mathematical reasoning required for further study in mathematics,” and included “brief 

review of basic algebra, quadratic formula, systems of linear equations, [and] 

introduction to functions and graphing” (UK, 2016b). UK’s CA did not meet their QR 

general education requirement from the 2010-2011 to the 2016-2017 academic years 

(UK, 2011). 

Commonalities. Regardless of the potentially commonly-held notion that all 

college algebra courses cover the same material, few topics were common to all 

descriptions. Functions was the unequivocal front-runner for most-often-appearing term. 

With exception of NKU, functions were explicitly identified in every course description; 

however, function is an exceptionally vague term. To cover linear functions, for example, 

would be radically different from covering exponential functions. In essence, functions 

would likely be more of a category than a competency. Thus, the second most-often-

appearing terms, exponential and logarithmic functions, which were identified in six of 

the eight public universities, might be construed as the most representative topics of CA. 

It should be noted that exponential and logarithmic functions always followed each other, 

which would make sense as logarithmic functions are inverse functions of exponential 

functions (which could possibly imply that inverse functions were also covered at these 

institutions, although inverse functions were not mentioned by name in any description).  

Polynomial and rational functions were next, being cited in five of the course 

descriptions. No other competency was listed at more than three instances. While it is 
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possible that some topics—such as linear, quadratic, radical, or inverse functions—have 

been taught in all university CA courses, based on the course descriptions, this would not 

be certain without looking into course syllabi or exams at all the institutions. Further, 

while some topics may be covered beyond the course descriptions, the absence of 

quadratic functions, for example, may reveal emphases or institutional value has not been 

the same across Kentucky universities.  However, it should be noted that absences within 

a description does not automatically preclude coverage; the inclusion within a curriculum 

may be inherently understood at that university. No one at EKU, for example, might 

teach CA without spending a lecture or two covering linear functions in detail; 

nonetheless, from an outsider’s perspective there has been no guarantee this competency 

was addressed.  

Disparities.  Differences were more prevalent than commonalities based on the 

university course descriptions, i.e., WKU was the only institution that explicitly 

identified absolute value functions. Further, it would seem unlikely that absolute value 

functions would be covered without including some linear functions, although linear 

functions were not identified explicitly. EKU identified rational inequalities, rational 

exponents, complex numbers and graphing calculators—topics no other course 

description addressed. Complex numbers would likely be considered pre-college material 

at most universities. Rational exponents may also be considered pre-college material if 

what was meant was real numbers with rational exponents; however, if what was meant 

was algebraic expressions with rational exponents in an equation, then the difficulty 

level would arguably be much more collegiate, especially if EKU CA students are 

expected to solve and graph them. However, because EKU explicitly identified graphing 
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calculators, it may be possible that some instructors have taught the class entirely through 

numerical or technological methods. Teaching students to graph rational equations 

without a graphic calculator would likely imply many skills relying on algebraically 

determining vertical, horizontal, and oblique asymptotes, removable discontinuities, and 

understanding the effects of odd and even powers on linear factors as they pertain to 

defining x-intercepts. However, technological approaches could circumvent an effort to 

compel students to learn those algebraic skills. The controversy of technology in the 

classroom has been prevalent for decades; in fact, a study in the 1940s argued against 

teaching the slide rule until high school, for fear students would become too reliant on 

technology and not grasp mathematical concepts (Hartung, 1942). Although theoretically 

this approach might be present at any university, it would seem using a graphic calculator 

to some degree has been explicitly encouraged at EKU. Again, while this may not 

necessarily constitute a problem or deficiency at EKU, it certainly would constitute 

inconsistencies on curricular delivery among the universities. 

Instrument variation and the myth of college readiness. Instrument variation—

both in physical differences among instruments and utilization policies on instrument 

scores—as well as differences among the universities have led to an unintended 

consequence. EKU required students to earn a score a 22 on the mathematics portion of 

the ACT exam (math ACT score of 22), earn a score of 510 on the mathematics portion 

of the SAT (math SAT score of 510), or earn a “passing score on an algebra placement 

test” in order to enroll in CA (EKU, 2016). Murray, however, allowed students to have a 

math ACT score of 21 (MSU, 2016). Two students with identical ACT scores, for 

example, would be placed into different categories depending on which Kentucky 
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university they attended. While college readiness may be at the forefront of many policies 

and political agendas, numerous nontrivial challenges have prevented this objective from 

being an attainable goal. Particular examples of these barriers include a lack of 

uniformity of admissions standards among postsecondary institutions, a lack of 

uniformity of individual discipline readiness indicators—even with respect to the same 

assessment and placement instrument such as COMPASS, which was a computer-based 

assessment designed for placement testing for students who had not taken the ACT or 

who had not scored well on the ACT (MyCompassTest, 2014)—a lack of uniformity of 

content skills taught within the same discipline but different among colleges, a lack of 

uniformity of content skills taught within the same discipline and within the same 

college, and inconsistencies among instructors within a single school regarding depth of 

content, grading, and assessment of that grading. College readiness has implied different 

skill sets to different stakeholders in both the postsecondary and K-12 arenas. Some 

might hear the term and immediately assume being college ready means having content 

knowledge necessary to be successful in a college-level course. However, others might 

believe the word applies to assessment and admissions metrics. Their conclusion could be 

that college readiness implies content knowledge necessary to test into a credit-bearing 

college class. The ideal interpretation may be the conjunction of both placement and 

success in a college-level course, but such an interpretation assumes college readiness 

speaks specifically to content knowledge. Moreover, before a student can successfully 

pass a college-level course, the student must apply, be accepted, and pay for the first 

semester. Operating under this perception, the admissions counselor might assume 

college readiness relies more on knowledge about the college process rather than rote 



 

26 

 

knowledge of specific subject disciplines. A rudimentary understanding of what college 

is, what kinds of degree programs and majors exist, what processes are necessary to gain 

entrance into an institution (application, orientation, FAFSA, etc.), and institution-

specific policies and practices may be challenging to students who are unaware of 

postsecondary culture, especially to first-generation students (first in their families to 

attend college). Once students navigate through the processes necessary to enroll in 

college-level courses, retention then becomes the next item for scrutiny. Even if students 

succeed well in their first semester, many discover that college is simply not for them. 

The most current data from the National Center for Educational Statistics (NCES) 

indicate less than 60% of students “who began seeking a bachelor's degree at a 4-year 

institution in fall 2007 completed that degree within 6 years” (NCES, 2015, p. 10). 

Theoretically, students who performed exceptionally well in high school might discover 

that college success relies heavily on a student-based accountability model as opposed to 

a teacher-based model. In this sense, students who had near-perfect GPAs were not 

college ready because of a general lack of understanding of the mentality and practices 

needed to be successful in a college setting. While many interpretations and definitions of 

college readiness have been researched, this article follows the notion of content 

knowledge necessary to gain access (and complete) a college-level course. Borrowing 

from Conley (2007), this work will use the definition that college readiness means “the 

level of preparation a student needs in order to enroll and succeed—without 

remediation—in a credit-bearing general education course at a postsecondary institution 

that offers a baccalaureate degree or transfer to a baccalaureate program” (p. 5). The 

central idea of this piece emphasizes the nonexistence of an overarching concept of 
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college readiness. While the claim would still be valid for many meanings of college 

readiness, including aforementioned definitions addressing college culture and mentality, 

the Conley definition likely encapsulates the most prevalent understanding of the term. 

Another comment should be made about a subtle difference between attaining and 

measuring college readiness. Ideally, it would seem having graduated high school or 

earning a GED would denote a student has achieved college readiness. However, nearly 

60% of community college students must take at least one developmental education 

course (Bailey, 2009), and this assumes every student who ought to take a developmental 

course actually enrolls in one; in fact, most KCTCS who tested into developmental 

courses typically did not immediately enroll in college if at all (Complete College 

America, 2007). Determining if a student meets college readiness indicators may be 

accomplished through high school GPA, standardized assessment and placement 

instruments such as ACT score or COMPASS, or individual institutional practices which 

might include multiple measures, portfolios, interviews, and so forth. While these 

constructs will be scrutinized later, the point being made here revolves around the 

delineation between a student’s being college ready and a student’s measurement of that 

degree of college readiness; the two sets are not isomorphic. 

The first barrier to realizing universal college readiness lives at the forefront of 

every high school senior’s mind when awaiting the dreaded acceptance letter from the 

university of choice. For example, the admissions standards for Berea College and HCC, 

both in Kentucky, have differed considerably. Any given public institution will have 

radically different admissions standards from a private school such as Berea. However, 

perhaps college readiness would imply the normal four-year institution, such as WKU, 
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Murray State, or the UK. Referring back to the established definition for this section 

would reveal virtually no demarcation regarding institutional type, whether it be open, 

selective, or highly selective admissions. Our definition simply spoke to a postsecondary 

institution offering a bachelor’s degree or a degree leading to a bachelor’s degree. Herein 

lies the situation: if college readiness means any college, then surely all high school 

graduates could get into some college somewhere. As this fatuous claim simply does not 

embody the spirit of the meaning of college readiness, regional colleges relative to a 

given high school might be the target of said college readiness (later this too will be 

refuted). As such, community colleges and regional colleges seem to be fair game for 

comparison; therefore, excluding the Research 1 and private colleges will allow the 

exploration to continue. However, admissions standards even among regional institutions 

prove no regularity. For example, to be admitted to MSU, students must have a minimum 

high school GPA of a 2.0 (MSU, n.d.a). WKU, which is 125 miles away, has required 

their students to have a high school GPA of a 2.5 or higher before they may be admitted 

(WKU, n.d.a). These two universities are not anomalies as there are no universal 

admissions standards for university type, even within a regional geographic area. 

However, the general admissions standards do not necessarily speak to content 

knowledge needed to enroll and succeed in a credit-bearing course. Not only do 

minimum admissions criteria fall more into the culture of college readiness definition 

more so than the academic definition (although clearly overlap exists), GPA may not 

necessarily be the most accurate measure of college readiness and is seldom used for 

individual course placement. Additionally, other admissions conditions, such as ACT or 

COMPASS scores, typically either allow students to bypass the GPA requirement or, 



 

29 

 

quite possibly, add to the list of preadmissions requirements.  

Ignoring general school admissions requirements, the next issue can be found in 

individual discipline readiness indicators. College may use ACT, SAT, COMPASS, or 

other national standardized testing instruments, or they may use their own internal 

assessment for placing students into either credit-bearing courses that count toward 

graduation or remedial coursework. The inconsistency with institution-specific 

assessments would be straightforward to understand, but such common practices as ACT-

based placement present less than obvious issues. For example, while WKU has had a 

general admissions requirement of an ACT composite score of 20 or higher, in order to 

enroll in their college-level English course, students must have earned a 16 or higher on 

the ACT English section (WKU, n.d.b). At MSU, the equivalent class prerequisite has 

been an 18 on the ACT English section (MSU, n.d.a). So, while two students might both 

have identical ACT scores, one would be considered college ready at one regional 

university and the other considered underprepared at another. No standardized ACT score 

exists among postsecondary facilities, even within the same state or geographic locale, 

and this has been the case not just for the ACT exam; no such agreement exists for 

COMPASS, SAT, or any other testing instrument. 

While the ACT is the same general assessment, the test, which has been offered 

six times per year (ACT, 2016), has had slight question variation. While the overall 

content remained unchanged, the individual questions varied among tests. This slight 

question exchange has introduced a small, possibly nominal, threat to test validity. 

Institutions that utilize COMPASS introduce a new level of discrepancy. While ACT test 

questions change slightly among versions, the overall test has remained more or less 
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constant. COMPASS, owned by ACT, has had many versions and can be customizable to 

a certain degree by the institution. While the ACT has had a set number of questions and 

unable to be edited by any unique school, COMPASS testing has allowed for more user 

discretion with diagnostics versions, pre-algebra and algebra initial domains, and 

variation of question number (MyCompassTest, 2014). In addition, the COMPASS 

adapts to the user’s answers. One student’s mathematics COMPASS test may be five 

questions, while another’s may be four times that number. As students correctly or 

incorrectly answer questions, the test changes in complexity and length 

(MyCompassTest, 2014). The issue has not been that the COMPASS is more or less valid 

than the ACT or SAT; it has been that these assessments are drastically different in 

structure with no agreement as to cut score from one institution to another. Yet, they all 

presume to establish the same result: measure the college readiness of a student. 

One final comment should be made regarding college readiness among high 

schoolers about a regional university: even if some collaborative effort established all 

high school graduates within a regional college feeding system had sufficient knowledge 

to be prepared for their closest postsecondary school of choice, such a system assumes a 

one-to-one correlation between the student populations at both high school and college. 

Not all college students come from within a geographic location (although most typically 

do), and not all high school students stay within a given number of miles from home. As 

such, even achieving agreement of curriculum and skill among any fixed set of high 

schools and colleges would at best satisfy the needs of a majority of students. As has 

been demonstrated, no such pact exists or can exist regionally, national and international 

college readiness are concepts beyond unreachable. While a student can be a college 
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ready, few students can be college ready.  

While I do not suggest all universities should be compelled to adopt a uniform 

policy or be subject to legislation, college leadership should acknowledge that no such 

level has ever existed where all high school graduates are ready for college, despite the 

long history of attempts to establish such standards. Throughout American history, both 

at the college and K12 levels, there have been attempts both formally and informally to 

adopt common practices, policies, and laws to assume universal standards and 

expectations of mathematics curriculum and performance. This history of such reforms 

illustrates that colleges in the US have never been united. There was never a golden age 

in mathematics higher education where all universities and instructors were in agreement 

about content, philosophy, and content definitions. 

History of Educational Reform 

It has been established that, currently, college algebra (CA) has appeared to be 

different among the public universities in Kentucky—or, at a minimum, the course 

descriptions have seemed to imply different emphases or values currently preside over 

the CA curricula across the state. However, there were commonalities among topics. 

Noticeably, CA in Kentucky and various orders of functions appeared to be parallel. 

However, why all Kentucky universities have come to incorporate functions (with 

exponential and logarithmic appearing most often), but not partial fraction 

decomposition, has yet to be explored. It would seem that other, possibly larger forces, 

have influenced higher education. 

Mathematics and Early American Colleges 

In colonial times, American colleges resembled British universities and primarily 
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served to provide training for ministers (Thelin, 2011; Tucker, 2013). As such, the church 

had considerable influence over curriculum (Nichols, Smith, & Ginsberg, 1934; Thelin, 

2011; Tucker, 2013). Colonial colleges avoided mathematics until the late 18th century 

(Brubacher & Rudy, 2008). The exceptions were Yale and Harvard, which offered 

courses in consumer as well as higher-level courses in algebra and what would today be 

called calculus (Hornberger, 1945). When they did offer courses in mathematics, early 

colleges focused mostly on Euclidean geometry and arithmetic (Cajori, 1890). The 

curricula of these early colleges were modeled after colleges and universities with which 

the colonists were familiar, to topic coverage and course offerings resembled the classics 

of the European tradition, hence the reason early American mathematics resembled an 

amalgamation of customary ideas borrowed from Europe, although many mirrored the 

current curriculum of Cambridge (Cohen & Kisker, 2010). Harvard, a leader in all 

matters concerning mathematics curriculum, heralded such instructors as Isaac 

Greenwood who taught algebra, focusing on quadratic equations, cubic equations, and 

converging series (Nichols et al., 1934). However, Euclidean geometry and practical 

topics (such as elliptical functions and projections as they pertain to astronomy) became 

the norm, although topics in early American colleges were constantly changed from a 

combination of desire for American colleges to distinguish themselves from their 

European counterparts as well as new professorships being established via attrition 

(Cohen & Kisker, 2010). 

Reform of curriculum has been, in many senses, an American tradition; colleges 

have responded to desires for growth and change of disciplines and topics represented 

(Wills, 1936). However, as there were no organizations such as the US Department of 
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Education, which did not appear until 1979 (Stallings, 2002), tradition and political 

influence of other institutions established how college curricula articulated. As such, any 

advanced college mathematics focused primarily on geometry during early America 

(Hofstadter & Smith, 1961; Millett, Hofstadter, & Hardy, 1954). However, outside higher 

education, the landscape of mathematics was mostly barren. Mathematical research in the 

US did not appear until the first half of the 19th century, and it was not until 1888 when 

there was a deliberate effort to establish a venue for publication and comradery among 

professional mathematicians via the New York Mathematical Society, which eventually 

led to the installation of the American Mathematical Society (AMS) (Archibald, 1938). 

In short, early America was not respected by professional mathematicians in 

Europe because mathematics was taught at the universities, but there were no renowned 

U.S. mathematicians (Grabiner, 1977). Additionally, priorities of the early colonists were 

hewing out life in a new world, dealing with diseases such as smallpox, and basic 

survival, so colonists’ needs of mathematics were little more than the limited arithmetic 

needed for basic survival (Cohen, 1983; Cremin, 1988; Dewey, 1985). Thus, the focus on 

geometry was more a byproduct of tradition over high academic standards. It was the 

Mathematical Association of America (MAA) which prompted revisions to the 

curriculum. Harvard, once again being the leader of mathematics curriculum trends, led 

the movement to establish the MAA. Both the MAA and the influences of compulsory 

high school attendance were putting pressures on colleges to improve standards in 

mathematics and to be consistent regarding offerings (Duren, 1967). 

The Mathematical Association of America (MAA) 

The MAA was founded in 1915 to address concerns in the K12 arena about the 
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status of the nation’s mathematics preparation for college (Hedrick, 1916). In response to 

concerns about subpar K12 mathematics, the MAA established the National Committee 

on Mathematical Requirements in 1916. Part of the charge of the committee was to make 

recommendations for specific topics to be covered in mathematics and to provide power 

for a unified effort for reform movements (Boyer, 1972). As many high schools did not 

have algebra or geometry requirements, graduates were unprepared for intense algebra or 

calculus, many colleges had little mathematics required for graduation, and those who did 

offer baccalaureate degrees in mathematics had lackluster programs (Tracey, 1937). As 

such, there was concern not only with the rigor of the mathematics majors themselves 

(i.e., one who majored in undergraduate mathematics at one university may not have the 

same broad exposure as one at another), but for mathematics in college curriculum 

altogether. Many forces in the early 20th century would have foundational effects still 

seen today. For example, an influential force was public desire for college entrance 

requirements and the development of regional and national testing programs (Jones, 

1972).  

While the MAA was well established at the end of the First World War, it was not 

until 1920 when the organization became incorporated (Bennett, 1967). Shortly 

thereafter, the organization focused on the first two years of postsecondary mathematics 

curricula (MAA, 1928). A significant criticism of mathematics in the liberal arts 

education was that the content was disorganized and undergraduates did not see the 

relevance to practical fields such as technology, business, finance, or industry (Schaaf, 

1937). While some factions in higher education were advocating for its removal, the 

MAA supported keeping mathematics, but encouraged curricular revision. There was, 



 

35 

 

however, much disagreement about what should be covered. At the 1921 meeting of the 

National Committee on Mathematical Requirements, some members advocated for 

college algebra, solid geometry, and analytics geometry; others advocated for 

trigonometry, analytic geometry, and calculus; some even advocated for calculus to be a 

freshman-level course (Boyer, 1972). In 1927, discussion about including material 

designed to make freshman and sophomore mathematics curricula more interesting to 

students led to the proposal of non-routine topics to be included in mathematics, 

including “historical, biographical, recreational, practical, philosophical, and aesthetic” 

(Boyer, 1972, p. 30) aspects of mathematics, including portions of class dedicated to 

student discussions. 

Even if a consensus as to what should constitute a postsecondary curriculum had 

come of these MAA meetings, the nature of CA at the time was possibly less clear than 

today. Rietz (1910) commented that the topics that fall under college algebra typically 

exceed the time allotted for the course, and the chief danger in selection of material “is 

that it is likely to be a sort of scrap heap of disconnected or rather remotely connected 

topics, rather than an organized body of knowledge” (p. 51). It should be pointed out that 

Rietz insisted that determinants (recall that no Kentucky university mentioned matrices or 

determinants in their course descriptions today), limits, and infinite series are paramount 

topics that should be covered in unifying CA, but admitted there was disagreement 

among CA professors in including limits and series.  

At the first summer meeting of the MAA, member Cairns suggested that rates of 

change and basic integral problems (typically considered topics in calculus, not algebra) 

be included in CA (Hedrick & Cairns, 1916). At the seventh summer meeting of the 
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MAA, member C.E. Comstock of the Bradley Polytechnic Institute called CA “a 

complex of somewhat unrelated topics, such as the solution of equations and the 

transformation of expressions containing the common functions of algebra” (MAA, 1922, 

p. 284). Smith (1939) suggested that mathematical induction should be used in tandem 

with combinations to prove the Binomial Theorem, which was covered in “most good 

texts” (p. 346), but not mentioned in any course description of CA in Kentucky today. 

Danieley (1948) nonchalantly spoke of quadratic equations, exponents, radicals and 

progressions (similar to series and sequences) when speaking of the pedagogy of teaching 

CA.  

Nevertheless, distinct themes could be seen in college algebra textbooks. In 

Lehmer’s (1917) review of College Algebra with Applications by E. J. Wilczynski and H. 

E. Slaught, he commented on the author’s claim that the textbook “probably contains 

everything ever given under the title College Algebra in any American college” (p. 230). 

Further, Lehmer mentioned the organization of content, which begins with irrational and 

complex numbers, then moved to linear functions, then quadratic functions, then high-

degree functions, then fractional functions (probably what we would call rational 

functions today), then irrational functions, and then power functions (probably what we 

would call exponential functions today), along with chapters over determinants (implying 

matrices), a chapter on permutations, and a chapter on probabilities. The last chapters of 

the book include limits, series, and convergence. Lehmer suggested that the book would 

likely not be adopted by many instructors, who might choose to omit a chapter, and the 

act of doing so would likely make the student think the instructor does not know that 

material very well. In short, the book contains too much material. In Wells’ 1918 review 
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of A First Course in Higher Algebra by H. A. Merrill and C. E. Smith, she commented on 

how well the authors established theorems and concepts early in the first chapter on 

integers to better prepare students for later chapters on limits, series, and convergence. 

Further, she mentioned Cauchy tests, Maclaurin’s expansions, and first and second 

derivatives of algebraic functions, which would today be considered calculus, not 

algebra. She also mentioned finding undetermined coefficients, which might be seen in a 

matrix algebra or differential equations class today more so than a CA course. As with 

the Wilczynski and Slaught text, the Merrill and Smith text included material that would 

today be considered calculus, not algebra. In Burgess’ 1920 review of the second edition 

of College Algebra by H. L. Rietz and A. R. Crathorne, mathematical induction and 

proofs were mentioned for undetermined coefficients, which is a proof-based method for 

exploring a topic typically seen in a matrix algebra course. Weaver’s 1928 review of the 

revised edition of College Algebra by W. B. Ford lamented the exclusion of “advanced” 

topics such as “partial fractions and limits and series” (p. 32), which Weaver indicated 

seemed to be a trend as of late. However, Weaver commented on both how the derivative 

was defined and used to maximum and minimum values and how “most readers will be 

pleased to find Sylvester’s method of elimination” (p. 33). These reviews would suggest 

some common themes among CA textbooks, and therefore presumably CA courses.  

First, most of the textbooks included content that would not likely be in any CA 

course today, such as limits, derivatives, and undetermined coefficients. Second and 

possibly more important, the textbooks showed a much purer form of algebra than is seen 

today. There was a distinct tendency for the reviewers to praise rigor and depth of proof 

of theorems rather than execution of method. While the overarching theme seemed to 
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suggest algebra was less rote a process and more understanding the underlying theory, 

agreement to specific topic coverage seemed to vary among authors and professors. 

Despite that CA was still largely lacking continuity, the MAA continued to push 

for a unified postsecondary requirement of mathematics at a time when the organization 

had little influence on community colleges (Boyer, 1972). In response, the MAA created 

in 1939 the Committee on Collegiate Curricula, which was to “collect, review, and 

collate facts pertinent to mathematical instruction in the colleges” (Boyer, 1972, p. 43).  

The MAA was founded during the First World War, and it probably changed the 

most during the Second World War. Between the 1941-1942 and 1942-1943 academic 

years, enrollment in mathematics courses at the university level increased an average of 

30%, although some institutions reported increases as high as 300% (Price, 1943). This 

increase in enrollment occurred at a time when many faculty were joining the war effort, 

causing a shortage of mathematics professors. As such, in addition to increased 

workloads, fewer vacation days, and recalling retired professors, higher education 

curricula experienced changes. While non-essential courses were being eliminated, new 

content was introduced, including “spherical trigonometry and navigation, dynamics, 

aeronautics, meteorology, ballistics, [and] cryptanalysis,” (Stark, 1972, 56). In 1941, the 

MAA made recommendations to both secondary and post-secondary faculty as to what 

curriculum would be most beneficial to the armed forces, including a college course on 

war mathematics that focused on artillery and machine gun, army engineering, and 

aviation problems (Hart, 1941).  

By many accounts, there have been two competing factions within the discipline 

of mathematics—the pure and the applied. Pure mathematicians work with axioms and 



 

39 

 

theorems. Kline (1963, not to be confused with German mathematician Felix Klein) once 

said that “Mathematicians never know whether what they are saying is true because, as 

pure mathematicians, they make no effort to ascertain whether their theorems are true 

assertions about the physical world” (p. 167). Prior to World War II, the MAA focused 

primarily on pure mathematics, and therefore the beginning of the war marked a shift in 

paradigm when many purists made the claim that those who argued for application 

ceased to be mathematicians (Stark, 1972). By the end of the war, however, the MAA 

had largely become an agency working in part for the application of mathematics (Hart, 

1941; Rees, 1980; Rosenbaum, 1967; Stark, 1972). 

Because of this shift in paradigm, CA moved from a theoretical, proof-based 

course to more of what one might expect to see today—little proof and more algorithmic 

processes. As early as 1934, this change in paradigm seemed to have started. Bell (1934) 

passionately lamented the new revolution where rigor was being replaced in college 

mathematics; proof was falling out of the textbooks, which meant a textbook simply gave 

formulae and theorems and math students were relying on faith, not their own logical 

faculties. Knaebel (1952) said that College Algebra by E. B. Miller and R. M. Thrall was 

an endeavor to meet the requirements of students who wished to either pursue 

mathematics or fields requiring mathematics, so the authors took the middle road 

between “a brief treatment of the various topics and one offering a proof for every 

statement” (p. 480). In Feinstein’s (1955) review of College Algebra by H. G. Apostle, 

the author reportedly “tried to present the conventional topics of algebra as logical 

principles of science, employing both deductive and inductive methods …. with 

numerous applications from the fields of physics, mechanics, engineering, commerce, 
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etc.” (p. 173). While Feinstein suggested this text attempted to present algebra within the 

context of its basic theorems and axioms, the application of mathematics to other 

disciplines was explicitly mentioned, showing movement from one era to another. 

Additionally, a new feature in many of the reviews was the mention of pedagogy and 

teaching methods, which were mostly present from earlier reviews that focused primarily 

on topics covered and organization; however, many reviews pointed to the psychological 

and educational merits of explaining material (Grant, 1954; Russell, 1950; Scott, 1947; 

Strehler, 1947; Wagner, 1948; Wegner, 1948). 

Postwar MAA reflected this paradigm shift as well. While the MAA alleged that 

their primary function was pedagogical in nature, most of their activities mirrored that of 

the AMS. Duren (1967) called the postwar era the revival of the MAA. It was 1953 when 

MAA President Edward McShane created the Committee on the Undergraduate 

Mathematical Program (CUP, later CUPM), and the organization gained significantly 

more influence in higher education (Zitarelli, 2015). CUPM sought to increase training in 

college mathematics instructors; unify undergraduate mathematics; and, possibly most 

famously, promote the creation of Universal Mathematics, a freshman course in 

mathematics for all students regardless of major (Evans, 1956). While the effort to create 

such a course never came to fruition, it was CUPM that ignited the role of the MAA as a 

notable force and leader in national mathematics curriculum work (Duren, 1967).  

In the 1960s and 1970s, the MAA continued its focus on application of 

mathematics over pure mathematics research and began to integrate areas of computer 

science and engineering, both in the mathematics of computers and the use of computers 

in mathematics (Rosenberg, 1973; Tarwater, 1981). The space age created new demand 
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for mathematics majors, and the MAA experienced a time where better mathematics 

students were enrolling in colleges, but the number of quality mathematics teachers was 

the lowest in 50 years (Duren, 1967). Alan Tucker, son of MAA President Albert Tucker, 

referred to 1955-1974 as the “Golden Age of Mathematics Majors” (Tucker, 2013, p. 9; 

Zitarelli, 2015, p. 18). It was in this so-called Golden Age that the community college 

boom of the 1960s, partially fueled by the GI Bill and other political factors, led to the 

rise of two-year colleges (Vaughan, 1985). In 1967 the New York State Mathematics 

Association of Two-Year Colleges was formed to act as a resource and decision-making 

entity for their community colleges, which led to American Mathematical Association of 

Two-Year Colleges (AMATYC) ironically following a similar pattern as the AMS (Blair 

& Cheifetz, 1999).   

In 1999, the MAA’s CUPM formed the subcommittee known as the Committee 

on Renewal and the First Two Years (CRAFTY), which focused specifically on renewing 

college algebra (Ganter & Haver, 2011). CRAFTY made recommendations on course 

goals, competencies, emphases in pedagogy, and assessment that were endorsed by 

CUPM in 2007 (Ganter & Haver, 2011). Course goals included students’ (a) involvement 

with meaningful mathematical experiences; (b) opportunity to analyze, synthesize, and 

work collaboratively; (c) development of reasoning skills; (d) strengthening of algebraic 

and quantitative abilities; (e) development of algebraic techniques necessary for solving 

problems and modeling; (f) improvement of abilities to communicate mathematical ideas 

clearly; (g) development of competence in problem-solving ability; (h) development of 

ability to use technology; and (i) encouragement and ability to take additional coursework 

in mathematics (Ganter & Haver, 2011). Competencies included problem solving (real-
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world situations, modeling, and problem-solving techniques); functions and equations 

(rates of change; symbolic manipulation; graphing; numeric processes; linear, 

polynomial, logarithmic, exponential, and periodic functions; and systems of equations); 

and data analysis (collecting data and presenting them in various forms to apply 

prediction), although specific recommendations were not included (Ganter & Haver, 

2011). As a result, institutions have been encouraged to restructure their CA courses to a 

modelling approach and expand CA to be a QR course applicable to both inside and 

outside the world of academia (Edwards, 2011).  

MAA and QR.  Many mathematicians and educators connected with the MAA 

have affirmed that the QR movement is relatively new in education. Bookman, Ganter, 

and Morgan (2008) claimed QR “is a relatively new and unexplored area in higher 

education” (p. 911) that has only been scrutinized since the 1980s. Bullock (1994) 

referred to quantitative literacy as a “popular buzzword” (p. 743). However, the concepts 

of quantitative literacy, mathematical reasoning, mathematical literacy, and my preferred 

usage of QR, have been argued and advocated throughout the history of the MAA, albeit 

possibly in a different language or framing. Rietz (1919) confessed great satisfaction in 

discovering his former calculus students acquired better quantitative thinking skills long 

after college. Allendoerfer (1947) discussed the purposes of the so-called freshman 

standard course, which he defined as a “year of algebra, trigonometry, analytic geometry, 

and occasionally calculus” (p. 574). He felt such a course was necessary to (a) understand 

numbers, (b) improve the mind for reasoning, and (c) attain understanding of 

mathematics and its contribution to culture (Allendoerfer, 1947). However, Allendoerfer 

insisted the following:  
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The ability to construct a sound mathematical argument is popularly supposed to 

increase our reasoning powers in other fields of endeavor. I insist this position is 

unsound, and furthermore that our freshman course does not even sponsor sound 

mathematical reasoning. In my opinion our standard textbooks train the students 

in a limited number of routine processes and rarely call upon them to carry out 

original logical thought processes (p. 574).  

He further criticized textbooks by comparing them to cookbooks, claiming they were 

designed to help students find the answers by following prescribed steps, which worked 

to help them pass standardized exams but did little to cultivate reasoning (Allendoerfer, 

1947).  

It was not until 1989 when the MAA formed the Subcommittee on Quantitative 

Literacy Requirements, which published in 1994 specific recommendations to help 

reshape the notion of QR: namely that colleges and universities should (a) treat 

quantitative literacy as legitimate and necessary for graduates, (b) expect every graduate 

to apply mathematical methods to real-world problems, (c) develop QR programs, and (d) 

manage their QR programs through measurement instruments and assessments (MAA, 

n.d.a). In 2001, the MAA published Mathematics and Democracy: The case for 

quantitative literacy, an in-depth anthology of the history, need, and future of QR (MAA, 

n.d.b; Steen, 2001). It was followed by anthological publications in 2003, 2004, 2006, 

and 2008 (MAA, n.d.b). Through these publications, it can be seen that the MAA has, in 

recent years, shifted from the stance that CA should be taught for the purposes of 

instilling into students a strong sense of QR to acknowledging that the two are not 

necessarily synonymous (Best, 2008; Cohen, 2003; De Lange, 2003; Lutsky, 2008; 
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Rosen, Weil, & Von Zastrow, 2003; Schield, 2008; Taylor, 2008). 

Quantitative Reasoning Requirement 

While quantitative reasoning had been discussed implicitly by mathematicians 

and educators for years, it was allegedly the 1940s when quantitative reasoning became a 

focus in mathematics and educational curriculum to encourage students to be good 

citizens and fight propaganda (Dwyer et al., 2003; Presseisen, 1987). Bloom’s Taxonomy 

asserted that judgments in terms of external criteria—the highest echelon of his 

taxonomy—in order to be satisfied must include “the techniques, rules, or standards by 

which such works are generally judged; or the comparison of the work with other works 

in the field” (Engelhart, Hill, Furst, & Krathwohl, 1956, p. 190), which would imply 

quantitative reasoning (as meant by application of information outside academia) would 

meet higher-level educational objectives. Nevertheless, modern emphasis on QR 

requirements seems to have developed in the late 1990s and early 2000s. The CUPM-

created Quantitative Literacy Subcommittee gave a description of recommendations and 

guidelines for QR programs in 1996 (Sons, 1996). The foundational and most cited work 

was likely the NCED work Mathematics and Democracy: The Case for Quantitative 

Literacy, edited by Steen (2001). This publication gained much attention and led to the 

rise of formalized QR requirements in governing agencies. The National Numeracy 

Network (NNN) was formed in 2000 as the outreach component of the NCED, focusing 

on QR as its primary concern (The National Numeracy Network, n.d.).  

Current administrative policies.  Kentucky public postsecondary education 

institutions have been members of the SACSCOC, which has set forth the principles of 

accreditation for its members. Part of this accreditation has been the general education 
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component for associate and baccalaureate degrees. Contrary to popular belief, however, 

SACSCOC has not obliged member colleges to require a course in mathematics for 

graduation. Policy 2.7.3 of the general education requirements stated that core 

requirements were “to be drawn from and include at least one course from each of the 

following areas: humanities/fine arts, social/behavioral sciences, and natural 

science/mathematics” (SACSCOC, 2012, p. 19). Within Kentucky, all public 

postsecondary institutions have also met the standards set forth by the Kentucky Council 

on Postsecondary Education (CPE), whose definition of QR follows that of the Liberal 

Education and America’s Promise (LEAP). LEAP was a national public advocacy 

initiative launched in 2005 by the Association of American Colleges and Universities 

(AACU) (Association of American Colleges & Universities, n.d.). In order to satisfy CPE 

policy regarding qualifying as a QR requirement, a course must meet all five of the 

following student learning outcomes, as defined by LEAP:  

1. Interpret information presented in mathematical and/or statistical forms.  

2. Illustrate and communicate mathematical and/or statistical information 

symbolically, visually, and/or numerically.  

3. Determine when computations are needed and when to execute the appropriate 

computations.  

4. Apply an appropriate model to the problem to be solved. 

5. Make inferences, evaluate assumptions, and assess limitations in estimation 

modeling and/or statistical analysis (CPE, 2011, p. 10) 

Further, CPE requires that, in order to meet state general education requirements, degrees 

must include three to six hours of QR (CPE, 2011). Institutions may have more specific 
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requirements; i.e., in order to earn an associate in science from the KCTCS, students must 

have earned a minimum of six hours of QR, but must have had an additional six hours of 

either QR or approved natural science (KCTCS, 2016). At UK, students must have met 

three hours of QR and another three hours of statistical inferential reasoning (for which 

no mathematics can satisfy). Approved QR courses included classes from the disciplines 

of computer science, earth and environmental sciences, forestry, mathematics, and 

philosophy (UK, 2016a).  

Institutional missions & philosophies of QR.  Kentucky universities have had 

different attitudes toward justifying their QR or other general education requirements. 

Some universities have taken much effort in explaining their general education and QR 

programs, including tying them to student learning outcomes, while others have simply 

presented their requirements without much rational.  

EKU’s general education site defended their general education program with an 

analogy. They likened the knowledge of a single discipline to that of a hammer—a 

powerful tool for dealing with problems, but other problems less nail-like in nature would 

render a hammer useless, so having many different tools available would enable students’ 

problem-solving skills more diverse (EKU, n.d.). Further, it should be noted that EKU 

does not have a QR requirement as much as a mathematics requirement with specific 

mathematics and statistics courses identified as satisfying such a requirement (EKU, 

2015).  

KSU’s page dedicated to explaining their general education program purports that 

“Liberal studies education provides the tools by which people come to understand the 

world, one another, and themselves. In short, liberal studies develop independent and 
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critical thinking” (KSU, 2014a). Further, KSU has required students to take either CA or 

contemporary college mathematics, depending on their major (KSU, 2014b). 

Morehead’s site claimed their general education has provided “a foundation of 

knowledge and skills vital for all students” and “the attributes needed to participate 

intelligently and responsibly in the discourses that shape the communities in which they 

live” (Morehead, 2016b). However, Morehead did not provide an explicit justification for 

QR, such as mention of critical thinking, numeracy, or problem-solving skills in their 

overview. Additionally, Morehead has required their students to take one of the following 

mathematics courses to meet their requirement: Problem Solving, Mathematics for 

Technical Students, CA, Pre-Calculus, or Calculus I (Morehead, 2016c).  

MSU’S University Studies component aimed to provide “students with a broad-

based, liberal arts and sciences education as a foundation for their academic specialty” 

(MSU, n.d.b), and partitioned their general education courses into five themes, one of 

which included QR. Only mathematics and statistics courses can satisfy their requirement 

(MSU, n.d.c).  

NKU’s general education program has been predicated on a foundation of 

knowledge, designed around a set of student learning outcomes (NKU, n.d.a). Some of 

the student learning outcome categories have included critical thinking and science and 

technology outcomes (NKU, n.d.b). Within their foundation of knowledge, the general 

education program was partitioned within five categories, including scientific and QR 

(NKU, n.d.c). In order to satisfy the QR requirement, students at NKU have had to take 

three hours of mathematics coursework, although both the disciplines of statistics and 

philosophy were represented among the course choices (NKU, 2014).  
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According to their site, the purpose of the general education core at UK has been 

“designed to broaden the students’ understanding of themselves, of the world we live in, 

of their role in our global society, and of the ideals and aspirations that have motivated 

human thought and action throughout the ages” as well as “provide the bases for critical 

thinking and problem solving, and to develop life-long learning habits” (UK, 2016a). 

While QR was not explicitly addressed, the critical thinking and problem solving 

components of their core mission statement would correlate to the QR component.  

The UL general education program purported to foster “active learning by asking 

students to think critically, to communicate effectively, and to understand and appreciate 

cultural diversity” (UL, n.d.). Their requirements explicitly identified mathematics as an 

area under their general education program, and only mathematics courses could satisfy 

this requirement (UL, 2017).  

Students who entered WKU as of 2014 or later must have met the university’s 

Colonnade Requirements Framework, which included three hours of QR for their 

baccalaureate degree (it should be noted that WKU’s associate degree required three 

hours of QR or science), which would have fallen under their foundations subcategory 

(WKU, n.d.b). WKU has allowed computer science and philosophy coursework to satisfy 

their QR requirement in addition to mathematics (WKU, 2017).  

While some universities solely relied on a mathematics coursework to fulfil their 

QR requirement (or, in some cases, there was not QR requirement, but rather, only a 

mathematics requirement), others included disciplines such as computer science, 

statistics, or philosophy. UK had the most diverse QR course list from which to choose. 

The wide variety of choices has likely been predominantly mathematics. Thus far, all 
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conversation on CA and QR has focused on policies and forces internal to the field of 

mathematics or the university. However, other influences have impacted the topic 

selection of mathematics coursework and the notion of QR. 

Government, Politics, and War 

Previously addressed was the influence the Second World War had on 

postsecondary mathematics through the MAA. However, government, politics, and war 

have had impacted postsecondary mathematics through other mediums as well. WWII, 

aside from encouraging the curricula to incorporate mathematics for wartime, also led to 

the development of many technologies, new fields of study, and opportunities for 

mathematics to grow, thus causing changes in the curricula. For example, prior to WWII, 

mathematicians worked in their own silos and focusing on their own interests, but the 

world war forced mathematicians to think outside their specialties, which gave birth to 

new branches such as cryptanalysis (Hilton, 1984; Rees, 1980). Following WWII, 

however, were influences that allowed opportunities for veterans and their families to 

attend college.  

WWII/GI Bill. While the influence of WWII was previously addressed in 

relation to MAA, other considerations should be addressed as well. Because of the needs 

of the military, many new professional organizations in mathematics have formed, and 

many universities’ mathematics departments started offering courses such as operations 

research, linear programming, and other similar applied mathematics classes (Rees, 

1980). Further, because of the financial strains caused by WWII, many social programs 

were introduced as a way to help boost the economy. The pay-as-you-earn tax (PAYE) 

system of withholding tax per paycheck to be used as advance payments of income tax 
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due was a direct result of WWII (Davies & Stammers, 1975). Probably the most famous 

example of economic programming was the Servicemen’s Readjustment Act of 1944 

(G.I. Bill), which, according to some, has democratized American higher education and 

created the middle class (Batten, 2011; Murray, 2008). The number of veterans who used 

the G.I. Bill to attend college has widely surpassed all predictions (Olson, 1973).  

The most notable impact of WWII on higher education, as well as the G.I. Bill 

and other such programs, has therefore been a new demographic in college classrooms. 

While prewar students were arguably a set of individuals who were interested in pursuing 

academics because they were (a) interested in doing so and (b) equipped with the 

financial resources to attend specific institutions, postwar students who were veterans or 

dependents of veterans had a higher level of economic access. (US Department of 

Veterans Affairs, n.d.) As such, higher education experienced an era of student diversity 

where socioeconomics was less of an entrance barrier (US Department of Veterans 

Affairs, n.d.). Further, the U.S. general population had become captivated with the Cold 

War—specifically the Space Race—and one cannot explore space without focusing on 

science, technology, engineering, and, mathematics (STEM). 

The Space Race—an essential STEM race. Within the context of higher 

education, the term STEM has referred to the teaching of and departments containing 

science, technology, engineering, and mathematics and has origins typically attributed to 

the launching of the Sputnik in 1957 (Gonzalez & Kuenzi, 2012). Sputnik arguably 

created a crisis in America when many felt the Russians were spying on the country, 

leading to a call to fund the sciences (Altbach, Berdahl, & Gumport, 2005; Axelrod, 

2009; Hansen, 2005). For a decade afterward, much emphasis was put on sciences and 
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mathematics at the university level, as well as pressure on Washington to fund such 

endeavors (Altbach et. Al., 2005). The STEM movement was thus born from and 

sustained through the Space Race and the National Defense Act of 1958, which 

established legitimacy of federal funding in postsecondary education and focused on 

education in science and mathematics (Grubbs, 2014; United States Senate, n.d.). Further, 

the National Science Foundation (NSF) was established in 1950 (NSF, n.d.), and money 

from the NSF prompted curricular rewrites in mathematics (Hoff, 1999).  

In 1952, the NSF founded the Graduate Research Fellowship Program (GRFP), a 

fellowship program directly supporting over 50,000 graduate students in STEM degrees 

since its inception (GRFP, n.d.). While STEM has been a major focus of many current 

agendas in politics and higher education, the climax of the STEM focus on ballistics 

technology can be attributed to the International Geophysical Year (IGY) scientific 

project, which narrowed specifically on projectiles and rocket technology (Osman, 1983). 

While many attribute the Space Race as having started in the mid-1950s when the U.S. 

and the Soviet Union implied the launching of a satellite would correspond with the IGY 

(Alexander, 1964; Benford & Wilkes, 1985; D'Antonio, 2014; Neal, Lewis, & Winter, 

1995; Ordway & Sharpe, 1982; Osman, 1983; Von Braun, Ordway, & Dooling, 1985), 

attempts to launch rockets date back as far as 1915, with mathematicians speculating 

about viable planetary ejection as early as 1883 (Von Braun et al., 1985).  

Attempts and tests to break the atmosphere had been many, and the origin of 

space flight has multiple origins (Lewis, 1969). However, Kennedy’s promise in 1961 to 

have a man on the Moon by 1970 likely expedited the growth of space technology and 

caused the lunar landing to occur years before it otherwise would have (Hansen, 2005). 
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Organizations such as NASA were forced to settle debates, such as the pros and cons of 

which theoretical method might be best to put a human safely on the Moon, and to make 

decisions on how to proceed with the selected method (Ordway & Sharpe, 1982). Further, 

more than just orbital mechanics were needed to make the plan succeed—arguments of 

materials engineering, rocket fuel, oxygen delivery systems, waste management, and 

sustenance planning were necessary engineering problems to solve (Alexander, 1964; 

Ordway & Sharpe, 1982; Osman, 1983). As such, an age of applied research began by 

political pressure compelling physicists and mathematicians to develop the field to meet 

Kennedy’s challenge. As previously mentioned, this became what Tucker (2013) referred 

to as the “Golden Age of Mathematics” (Tucker, 2013, p. 9; Zitarelli, 2015, p. 18). 

National education reform.  Because of the increase in students majoring in the 

biological and physical sciences, those majoring in liberal arts and social science 

decreased in the 1960s and early 1970s (Hassenger, 1978). Students were not only 

changing their majors, but their attitudes were also considerably different; they were 

much more vocal and opinionated: protests, sometimes violent, became the norm on 

many college campuses (Spalding, 1973). In addition, the college curriculum was under 

proverbial fire. By the accounts of educators, students, the general public, and 

government agencies, the general education programs of colleges were criticized as 

lacking quality, consistency, and breadth (Altbach et al., 2005; Lucas, 2006; Murphy, 

1989; Spalding, 1973). Tucker (1974) commented on the same poor quality of 

mathematics teachers over the same period. Because of myriad sources of criticisms of 

curriculum, shortfalls in enrollment, and presidential turnover, many colleges were 

pressured to respond, making broadband changes in their curriculum (Finkelstein, Farrar, 
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& Pfnister, 1984).  

From 1976-1993, colleges added more coursework than they dropped, and the 

curriculum accreted (Cohen & Kisker, 2010). With regard to mathematics, Robitaille and 

Dirks (1982) described four forces that have influenced the curriculum changes in 

mathematics: sociological (factors beyond the control of the school itself), psychological 

(beliefs educators hold about mathematics students and their learning, pedagogical 

(methods and materials used in educating mathematics students), and technological 

(using media and computers in teaching). Ralston (1981) reinforced the influences 

mentioned by Robitaille and Dirks (1982) and the accretion of courses mentioned by 

Cohen and Kisker (2010) when he commented on the supplement of computer science 

courses in colleges—both within mathematics departments and independent of them—as 

well as the need to offer discrete mathematics courses to complement a computer-rich 

curriculum. Ralston emphasized a need to add, but not replace, discrete mathematics 

course requirements to majors that required calculus. Because of majors such as 

computer science that required mathematics coursework, along with an overall increase 

in college enrollment, there has been a surge in the number of students enrolling in 

mathematics coursework, increasing both the number of mathematics classes and types of 

courses offered (Tucker, 2013).  

Effects of Economics and Funding. Selingo (2013) lamented the lost decade of 

1999-2009, in which American postsecondary education lost sight and track of its 

purpose, whose end was marked by the economic crises of 2008, when colleges suddenly 

found themselves in a situation at which enrollment plummeted, market demand no 

longer catered to the egregious tuition bills, and administrative bloat and overall 
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operational costs of college campus soared. Since 2007, the number of colleges operating 

in the red has increased by more than 33%, although this rating system only takes in 

account colleges with “strong balance sheets to begin with” (Selingo, 2013, p. 60). In 

2008 financial markets were immobilized, banks stopped lending money to each other, 

and Congress was asked to intervene (Spiegel, 2011). Even the wealthier institutions 

typically immune from the effects of such widespread economic downturns suffered 

damages (Geiger, 2015). Arguably, this economic crisis has expedited efforts to tie 

funding to academic performance (Douglas-Gabriel, 2016). Performance-based funding 

has been a concept in higher education for decades, but has recently experienced a 

resurgence (McLendon & Hearn, 2013). In most states that adopt performance-based 

funding, pressure has been put on colleges to seek ways of enrolling underprepared 

students in gateway courses, including college-level mathematics coursework (Mangan, 

2015; McLendon & Hearn, 2013). Some states have received funding based on the 

number of students who complete their mathematics coursework, and some by the 

number of STEM majors (National Conference of State Legislatures, 2015). Whether 

prompted by economic downturns or performance-based forming, Kentucky has not been 

an exception to the co-requisite movement. In 2015 CPE published its Guiding Principles 

for Developmental Education and Postsecondary Intervention Programming, which 

stated: 

Default placement for students not meeting mathematics benchmarks should be in 

credit-bearing quantitative reasoning courses linked to the degree pathway of the 

student. Quantitative reasoning pathways should include a foundational pathway 

for occupational programs; statistical pathways for most heath care, behavioral 
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and social sciences, and business management programs; broad-based general 

education pathways for most liberal arts programs; and algebraic pathways for 

science, technology, engineering, and mathematics (STEM) pathways. The 

enhanced credit-bearing course or linked course should not carry more than two 

additional credit hours (p. 2). 

The implication of such policies has been that colleges have been enrolling students 

previously considered underprepared, into such courses as CA. 

Chapter II summary.  Higher education mathematics has been mostly influenced by a 

combination of societal forces outside mathematics departments, as well as tradition. 

Early American colleges taught arithmetic because that was the rudimentary mathematics 

necessary for the colonists to survive, but they also included geometry as a throw to the 

classics of academia. Later, undoubtedly the MAA had the most influence on 

postsecondary mathematics, as it was the first professional organization dedicated to 

mathematics education. WWII, the Cold War/Space Race, and corresponding political 

pressures introduced a modern take on mathematics where the focus drifted from classic 

proof and theory to applied mathematics and material useful to evolving fields such as 

computer engineering. Further, reform and other political forces have caused drastic 

changes in content and a heightened emphasis on pedagogy and teaching methods. 

However, absent from these scholarly reports and resources is an important aspect 

in the field: specificity. The literature has been overarching and general, but little has 

been researched as to the specific topics included in the courses, why certain topics are 

specific to college algebra, and why college algebra has still been the default gateway 

course for most college majors, despite the absence of necessity for those specific 
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competencies. Additionally, while the literature has been mostly global, even less 

research has been conducted at the state level, let alone at specific institutions. 

The conclusion I made based on the current body of literature explored above left 

me to realize there have been deficiencies in the field. This recognition has prompted me 

to conduct my own research, which will add to the field and grow the knowledge base of 

higher education. However, before I can conduct this research, the methodology and 

research designs must be explained; the Chapter III has accomplished this task and 

explores the research design, role of the researcher (including trustworthiness and 

authorial biases), sources of data, overview of instrumentation, procedures and data 

collection, as well as the analysis plan.  
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CHAPTER III: METHODOLOGY 

This study investigated the content that has been covered in CA at UK as the 

course has evolved over the years, examining reasons for content change. This qualitative 

research focused on historical events at the university, in Kentucky and at the national 

level that have played a role in the evolution of mathematics curriculum at UK. By using 

historical methods (document analysis), changes to the course competencies and course 

description were highlighted for the purposes of determining why the current incarnation 

of CA covers specific topics while excluding others. The discernments gleaned from this 

project will be useful in establishing (a) what CA is, (b) why it contains the specific 

material taught, and (c) historical context that will challenge why CA seems to be the 

default quantitative reasoning class of choice for many institutions, especially community 

colleges. 

To understand better the current nature of postsecondary mathematics curricula, 

this study followed an historical qualitative methodology, leaning predominantly on 

document analysis as its principal method. Through analyzing documents such as course 

catalogs, syllabi, textbooks, and other primary documents, this study sought to compare 

and contrast changes in content and theme of the nature of mathematics education in 

higher education. This chapter describes the research design of the study and the sources 

of data. Additionally, an overview of instrumentation is provided, along with a discussion 

of procedures, data collection, and analysis plan. 

Research Design 

Creswell (2013) suggested that researchers must first state their philosophical 

position in an inquiry. As such, my epistemological position will follow the postpositive 
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interpretive framework in which reality can be approximated “through research and 

statistics” (p. 36). Ontologically, I would concur with the notion that reality exists beyond 

human experience and interpretation, and the researcher may not have access to 

“understand or get to it because of absolutes” (p. 36); additionally, reality may further 

elude the researcher due to the complexities in ascertaining the historical reasons for the 

culmination of any one event. Because this qualitative investigation followed the 

historical methods approach, an apparent contradiction would seem evident with 

Creswell’s ideas of the axiological position for postpositivism. While Creswell claimed a 

postpositive researcher and the study should be distinct and differentiated, an historical 

researcher would acknowledge that “the facts in history are not necessarily value free and 

possess an objective reality which is the same for all historians” (McDowell, 2002, p. 11). 

This apparent rivalry between the desire to be objective and acknowledgement of 

personal bias would achieve reconciliation through two differentials: (a) historical 

research is a qualitative methodology, whereas most postpositivists have engaged in 

quantitative research; and (b) historical researchers would understand that “ironically, 

however, there is perhaps no scholarly discipline in the humanities or social sciences in 

which the goal of pure objectivity has been more ardently sought, more obsessively 

worried over” (Howell & Prevenier, 2001, p. 146).  

Moreover, as this investigative inquiry constituted an historical look into higher 

education, it followed the rules for such examination. First, any college or university has 

never been dissimilar to a “living, breathing organism that consumes resources, grows, 

has dreams, makes friends and enemies, makes mistakes and, on very rare occasions, 

achieves greatness” (Gasman, 2010, p. 13). A corollary to this personification of the 
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higher education institution would emerge when analyzing any of their publications, 

regardless of the inherent impartiality one might expect from such a document. That is, 

even in a catalog of course descriptions, there will undoubtedly appear some statement of 

mission or purpose which will speak to the superiority of this particular college over its 

rival institutions. In short, all documents and publications from an institution will have 

some marketing overtones or bias in promoting the school.  

Role of the Researcher 

 Following the notion of Denzin and Lincoln (2010) that the researcher is an 

instrument of the data collection, my role was to read, compare, analyze, interpret, and 

report the findings from the document. As not only a community college mathematics 

faculty member, but also a person who has taught CA at HCC, I have had a personal 

connection with both the content of the field as well as the institutions in which the data 

have been drawn. As coding was completed manually, and the narratives were written 

through the themes and observations I perceived, in addition to being the instrument of 

data collection, I am also the mechanism of data analysis.  

Trustworthiness. Merriam (2009) asserted the aim of qualitative studies tends to 

establish understanding more so than faithfully following the strict guidelines and 

procedures of a quantitative study. While both qualitative and quantitative researchers 

would be concerned with validity and reliability, their methods of protecting such 

integrity have been different. Merriam described several tactics for establishing 

credibility, including triangulation, which would include seeking multiple sources of 

data. To this end, I have examined several different documents, which are outlined under 

the Sources of Data section. Another strategy for ensuring credibility was reflexivity, 



 

60 

 

which is described over the next three subsections. It should be known that two guiding 

principles have prompted my pursuit of this research: the objection to the existence of a 

uniform understanding of what material constitutes CA (the denial of the one-to-one 

function, as I will call it), and the notion that CA should be the default QR requirement 

for most college students (e.g., those who are not in a STEM or STEM-H field).  

Denial of the one-to-one function. The one-to-one function to which I refer 

sprang from anecdotal conversations with and perceptions I have of colleagues in my 

field. The one-to-one function would assume that there has been a body of material that, 

when listed, would fall under that category of CA material. That is, were I to list these 

topics, a mathematician would agree these all fall under the umbrella of CA. Further, the 

converse would also be true: that the category of CA material would also generate an 

isomorphic list. That is, were a mathematician to list all the material that falls under the 

umbrella of CA, the same list would be reconstructed. This one-to-one function, I have 

concluded, does not exist, except perhaps in the minds of individual mathematics faculty 

who operate in silos. Based on the analysis in Chapter II, there has been demonstrated 

variation in course descriptions among the public universities in Kentucky. Further, as 

previously stated, issues such as academic freedom, variation in textbook utilization 

(even within the same institution), and individual instructor emphasis will further 

variation of CA delivery from section to section. While I am not claiming these 

differences themselves are inherently good or bad, I am making the assertion that these 

differences exist and have always existed. Not only have they existed in content covered, 

but they also exist in depth and emphasis of content coverage, pedagogy, evaluation of 

content covered, and overall CA course evaluation.  
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Because I deny the one-to-one function exists, I have specifically and deliberately 

utilized a lens to uncover these disparities. The philosophical view undertaken was that, 

to prove the absence of a construct, it must be therefore necessary to prove the existence 

of the counterpart of such a construct. In proving the absence of the one-to-one function, 

I have endeavored to demonstrate material has been different over time due to political or 

internal reasons, but not due to discipline-specific agreement about what CA should 

cover and what material automatically falls under the CA umbrella. Because of this lens, 

the content analysis and themes explored within the documents ascribed to my desires 

and objectives as a researcher.  

Rejecting CA as the default QR.  The tautological and circular argument 

presented, again anecdotally, would be that CA should be the default QR requirement 

because it has been universally accepted as the default (a similar argument has been made 

for transfer: CA should be the default QR because it has transferred everywhere, but it 

has transferred everywhere because it has been the default QR). While some may claim 

that CA should be the default because other courses (i.e., liberal arts mathematics, 

technical mathematics, statistics, or business mathematics) lack the rigor or level of 

respectability as CA. A similar argument has been made by some of my colleagues 

regarding non-mathematics courses with QR status; a graduate with a college degree 

should have at least one course in mathematics, and that course should be CA. My 

contention with these standards has been that they have been seemingly arbitrary. If the 

purpose of QR is to teach students to think quantitatively, it seems egotistic to assume 

only coursework in mathematics can accomplish this goal. The notion that all students 

should have a course in mathematics in order to obtain a degree as a self-evident 



 

62 

 

argument can be made by any discipline, and the number of ever-growing disciplines 

would inflate a baccalaureate general education core beyond its standard two-year time 

frame.  

The fundamental reason I reject CA as the default QR requirement, however, 

comes from the content of CA. The role CA plays in mathematics has historically been to 

serve as a prerequisite for calculus (Vandal, 2015). However, most students do not take 

calculus. Further, other courses both in and outside mathematics could serve to teach 

students to think mathematically within their discipline. While the purpose of a liberal 

arts degree may be to expose students to myriad disciplines and manners of thinking, that 

the only course under the QR or mathematics banners that can accomplish this has been 

CA appeared to be false and ironic in narrow and linear thinking. Coupling this restrictive 

notion with the absence of the one-to-one function has led me to believe momentum and 

reluctance to change have been the genuine reasons many math faculty have not been as 

open to allowing other coursework to serve as a QR (Kentucky Council on Postsecondary 

Education, 2011). 

Other values. As an instructor of CA and other mathematics coursework at HCC, 

issues of rigor versus sensibility have been wrestling in my mind. For example, when 

looking at textbooks, course descriptions, and competencies, I made observations 

regarding levels of difficulty. That is, while I have maintained that there has been no 

uniform agreement about what material is unequivocally CA (nor, when one hears the 

term CA, what material comes to mind), I would disagree that the converse has also been 

true: that there has been material unequivocally not CA, at least in Kentucky. I would 

maintain that integration by parts, for example, has never been considered material found 
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in any CA course. Therefore, proofs based in a calculus line of thinking, which have 

appeared in some textbooks, I considered to be difficult given the level of CA as a course. 

Other such similar comments were made, such as giving a definition and then following 

with an example of a special case or a more advanced situation than the definition (as 

opposed to giving a definition and then an example that mirrored the definition, then 

slowly working up to the more advanced example). These observations were based on 

values of pedagogy from my personal experiences with the content.   

Consistency, according to Merriam (2009), is analogous to reliability; however, 

the goal of the qualitative researcher is to establish that the results are to “convince the 

outsider to concur that, given the data collected, the result make sense—they are 

consistent” (p. 221).  A tactic suggested was the use of an audit trail showing how the 

results were determined from the data. I have tried to do this by (a) being thorough with 

presenting screenshots from the documents analyzed as figures; (b) describing in detail 

the historical contexts surrounding the documents, including an occasional chart or table 

both in-text and in various appendices; and (c) when documents were unpublished, 

making them available in an appendix. 

While quantitative researchers seek generalizing their findings from a random 

sample to a greater population, transferability in qualitative research cannot accomplish 

this feat (Merriam, 2009); however, qualitative researchers can “find a general” and 

therefore “extract a universal from a specific” (p. 226). A strategy for enhancing such 

transferability was rich, thick descriptions that normally would apply to contextualizing 

the settings of a study and or its participants (Merriam, 2009). However, in this study, I 

have attempted to contextualize eras of the mathematics department of UK by including 
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annual reports, including pictures and small biographical information regarding some of 

the key historical figures, and by including newspaper clippings in addition to formal 

documents to enhance the “presentation and setting of the study” (Merriam, 2009, p. 

227). 

Finally, I would add some introspective about the conclusions and inferences in 

Chapters IV and V: my perspective as an instructor of mathematics has likely influenced 

my statements. For example, when a textbook changed or a change in departmental 

leadership occurred, I made assumptions that impacts to the curricula occurred. My 

experiences as a faculty member within the field has given me anecdotal insight to how 

content within a course has changed when staff, textbook, funding, or course descriptions 

change. Further, when a textbook goes into a new edition, I have seen curriculum adapt. 

While these have been my experiences, I can only assume these would be mirrored by 

mathematics faculty in the genesis era through the dark ages.   

Sources of Data 

This piece focused mostly on official university and government documents, 

specifically course descriptions from college catalogs and course syllabi, as well as 

sequential editions of specific textbooks that have been used by UK or HCC. Other 

documents, such as annual reports, self studies, and memorandums, will be analyzed 

when available. While the amount of authorial bias would be considerably less prevalent 

than in a deeper investigation into the history of the institution or any subset academic 

units, course descriptions have typically been straightforward. Nevertheless, course 

descriptions have not been without bias. A course description will have outlined the 

content of any given class, but the specific topics covered and, more subtly, the topics not 
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covered have had historical considerations that may not be easily scientifically derived. 

That is, both political and personal experience may have shaped the content of the class. 

For example, a department chair or influential professor might have persuaded the 

academic decision makers to include or exclude certain topics for personal, political, or 

professional reasons unrelated to some pedagogical or discipline-based contention. As 

such, when evaluating documents from institutions, the criticism of sources must 

transcend what Howell and Prevenier (2001) referred to as “external characteristics” and 

target on “internal criteria” (p. 60), specifically considering the authors’ intentions. 

Unlike most historical artifacts, however, academic literature would be atypical, in that 

attempts to measure validity and reliability have been more apparent; i.e., one does not 

necessarily question the accuracy of, for example, the degree requirements in the catalog. 

If the college literature indicated CA was required for a business major, it would 

generally be accepted this was a true statement; strong accuracy of information would be 

expected in formal publications. Nonetheless, why CA has been required for a business 

major must be considered and has presented a subtler problem. Additionally, any syllabus 

analyzed has had the added personal bias supplemented to the document, regardless of 

the degree to which it is official. As syllabi have been authored by individual instructors 

regardless of their officiality, they may lack peer-review or other scrutiny.  

College catalogs. College catalogs allowed the researcher to access the most 

official understanding of the courses that were analyzed. Catalogs were taken from the 

UK website for the university archives and from the UK website of the registrar. They 

included the academic year 1865-1866 up through the academic year 2016-2017. 

Sections specifically examined were the course descriptions for CA. Catalogs were 
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primarily used in addressing RQ1. 

Course syllabi. Syllabi were collected through the UK website and through the 

UK Department of Mathematics. While official documents, course syllabi allowed the 

researcher to achieve a more intimate understanding of individual course instructor 

values, philosophy, and emphases. According to the current version of UK’s bulletin, the 

syllabus “is the first indicator of the instructor’s expectations” (UK, 2017, p. 83). This 

document should contain detailed descriptions of assignments and course content and 

should be thought of as a contract between the instructor and student (UK, 2017). Not 

only should it contain course-specific information and policies, but it must also provide 

students with resources for out-of-class assistance, including faculty office hours.  

Further, a deeper sense of priority was gleaned from the syllabi. In HCC 

mathematics professor Maura Corley’s CA syllabus from fall 2006, she addressed 

attendance in the figure below. 

 

Figure 1. Excerpt from Maura Corley’s CA fall syllabus (2006) at HCC. 

From this document, information was gathered that would not appear in a policy or 

catalog, so a personal sense of Ms. Corley’s values and attitudes can be seen in the policy 
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itself, as well has her use of bold and underlining. Syllabi were primarily used in 

addressing RQ1. 

Mathematics textbooks. The textbooks analyzed included Algebra & 

Trigonometry by Aufman, Barker, and Nation (ABN), all editions from the first to the 

eighth, as well as Fundamentals of College Algebra by Miller, Lial, and Scheider (MLS), 

all editions from the first to the fourth. These textbooks have been used by both HCC and 

KCTCS, although all editions of the books have not necessarily been used. Despite this, 

the adoption of such textbooks would suggest to the researcher that the topic coverage, 

pedagogy, and depth of coverage were attractive to the majority of decision makers to the 

extent that the overall content and presentation of the crux of the book aligned with the 

values of the faculty. 

In deciding which material from the textbooks would be analyzed versus which 

would be overlooked, I decided to look at the aforementioned results from course 

descriptions from across the state. By examining the course descriptions for CA from all 

public postsecondary colleges, it was observed that functions was the unequivocal front-

runner for most-often-appearing term. With the exception of NKU, functions were 

explicitly identified in every course description; however, function is an exceptionally 

vague term. To cover linear functions would be radically different from covering 

exponential functions. In essence, functions would likely be more of a category than a 

competency. However, functions is still a term that would need to be defined and there 

are concepts within functions that would need to be explored, so the concept was 

included. The second most-often-appearing terms, exponential and logarithmic functions, 

which were identified in six of the eight public universities, might be construed as the 
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most representative and definitive topics of CA. It should further be noted that 

exponential and logarithmic functions always followed each other, which would make 

sense, as logarithmic functions are inverse functions of exponential functions. Therefore, 

the topics of logarithmic and exponential functions were analyzed from the textbooks. 

Polynomial and rational functions were the next most-often-appearing concepts, 

being cited in five of the course descriptions. No other competency was listed at more 

than three instances. Therefore, polynomial and rational functions were also analyzed. It 

should be noted that absences within a description does not automatically preclude 

coverage; the inclusion within a curriculum may be inherently understood at that 

university. Nevertheless, based on the current mentioning of these terms in most 

descriptions, by examining the concept of functions themselves, as well as logarithmic, 

exponential, polynomial, and rational functions, an idea of how CA has changed over the 

years can be gleaned from how these four topics have been presented. 

In the analysis, the topic analyzed were considered in as broad a definition as the 

book defines. When looking at the concept of functions, only the basic notion of what a 

function is could be considered. However, applications of functions, finding the domain 

or range of a function, odd and even functions, one-to-one functions, and other concepts 

tangent to the notion of a function have been included within the section, so they were 

included in the analysis. However, if the book has a section dedicated to functions and a 

separate section dedicated to odd and even functions, then only the former section was 

considered. However, if concepts were included within a section of an edition of the book 

that, in later editions, were removed or expanded into their own section, this was noted. 

Textbooks were primarily used in addressing RQ1. 
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Other documents. When available, other documents were also analyzed. The 

documents included annual reports made to the division chair by the department head, 

memorandums sent out by the department head, minutes from the boards of trustees, 

official committee reports, and self-study final reports. While these documents were not 

always available, detailed, or containing relevant information, they helped (a) fill 

knowledge gaps; (b) give insight to contextualize changes observed in catalogs, syllabi, 

or other documents; and (c) lend to reinforcing validation/trustworthiness strategies of 

“corroborating evidence through triangulation” (Creswell, 2013, p. 260). These 

documents were the primary source for answering RQ2 and RQ3; they were also used in 

assisting with answering, and contextualizing, RQ1.  

Overview of Instrumentation 

 The primary approach for this research was the method of document analysis, 

specifically of course catalog descriptions, syllabi, and official documents for UK 

curriculum-related committee minutes and reports. While any course description or 

obligatory competency listing in a course has prescribed a topic for coverage, its 

profundity and prevalence in the content has almost always been contingent upon the 

individual instructor of the course. While one professor may have spent several class 

periods exploring every facet of an issue, another may only have spent a few minutes and 

moved on. This element of personal subjectivity therefore required course syllabi to be 

used to interpret scope of individual course coverage.  

From these documents, however, neither has more truth to it than the other; 

meaning and interpretation fall to the reader (Hodder, as cited in Denzin & Lincoln, 

2010). Therefore, thematic analysis of documents was used to interpret subtle patterns 
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and emphases and to decipher meaning among the documents.  

Procedures/Data Collection 

Documents were collected via UK’s online bulletin database for course 

descriptions from the college’s catalogs; these have been available to the public. Syllabi 

and tests were collected through communication with UK’s mathematics department and 

through the department’s website, as well as through local records within my department 

at HCC (as HCC and UK used to fall under the same administrative umbrella). Annual 

reports, newspaper clippings, meeting minutes, and memorandums were collected 

through the UK archives of the special collections library (which I have henceforth called 

the physical archives for brevity).  

Analysis Plan 

Coding for this project varied among document types. Meeting minutes and 

annual reports tended to be more formal and factual, so ascertaining beliefs and 

worldviews of the individuals authoring them required a form of value coding (Saldaña, 

2013) where I noted what was said and emphasized more so than trying to develop 

themes within the document (unlike textbook coding). Course descriptions from catalogs 

required the usage of a form of evaluation coding (Saldaña, 2013) by examining common 

terms or concepts from the paragraph, such as solving polynomial equations, or graphing 

logarithmic functions and judging their occurrence, changes, or absence over time. Terms 

and concepts would often disappear, only to reappear later. Sometimes the course 

description topics would be closely related, by which I mean following similar themes of 

subcategories of math; however, these topics would later change completely to a different 

set of closely-related topics, thus being a distinct subcategory from the first. These 
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subcategories were not formally defined under an official mathematical taxonomy but, 

rather, were interpreted from my perspective as a mathematics faculty member. 

Saldaña (2013) suggested codes lead to themes, thus a theme could be derived 

from those data falling under such categories as symbolic manipulation, visual 

representation of concepts, and/or critical thinking/problem-solving skills, which may or 

may not potentially include application of mathematics to real-world scenarios or other 

instructional or pedagogical end goals. Similar codes were used for categorizing question 

types on examinations.  

As this was both a first-time and small-scale study, all coding was completed 

manually as opposed to some CAQDAS software to “touch the data” (Saldaña, 2013, p. 

22) and to avoid the hypothetical overwhelming nature of software. Further, because the 

coding was completed over official documents serving formal purposes and not personal 

interviews or letters, coding followed the applicable logic as I saw fit. While codes 

typically have been categorized as one or two words describing an observation (Saldaña, 

2013), these were sometimes insufficient in describing complex mathematical constructs. 

Precoding reflected in the document analysis protocols as well. 

Keeping in mind that historians are “not reporters or detectives” in the 

professional sense but, rather, they are “interpreters of the past” (Howell & Prevenier, 

2001, p. 60), it must be emphasized that, methodologically, this inquiry was more 

inquisitive than determinant in aim. While questions have been asked, it should be 

understood that, unlike mainstream postpositive projects, no definitive conclusions could 

be determined nor could any propounded theory be validated. The end objective of this 

research is to provide a baseline for further questions to be asked, so analysis of the data 



 

72 

 

collected was targeted at understanding how and why CA at UK evolved into its current 

form based on historical clues. Documents, memorandums, syllabi, and meeting minutes 

served to help understand how the course content, delivery, emphasis, and values thereto 

appertaining progressed over the years. Larger-scale research into personal, political, and 

educational agendas helped to shed light on what factors played a role in changes. 

Delimitations and Limitations of this Study 

The research in this study relied heavily on document analysis. As such, only 

documents that were available were analyzed. Certain documents, such as course syllabi, 

were limited in obtainability. Several of the catalogs were missing in the UK online 

archives. Some of the catalogs were combined with other catalogs of consecutive years. 

For example, the 1914-1915 and 1915-1916 catalogs were combined into a single listing 

in the archives, so it was not possible to determine if any given page from the catalog was 

from the academic year 1914-1915 or 1915-1916 (see Appendix C). Further, because of 

these observed mistakes, an element of credibility was threatened as I cannot claim with 

perfect certainty that other pages were labelled correctly. The 1918-1919 catalog was in 

the archives, but the 1919-1920 catalog was missing; however, I cannot affirm that half 

of each catalog was missing, but an archivist mistakenly blended the two into one. While 

unlikely, there could be trustworthiness issues when working with archival material. 

Additionally, while documents were valuable to this study (I could scan, save, and reread 

them as many times as I wanted), by only relying on documents and not interviewing 

instructors, triangulation of this study was limited. 

Textbooks were another limitation. The two sets of textbooks were analyzed 

because they have both been used in the past at UK; however, the current textbook was 
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not analyzed because of availability (and because not all editions have been used). 

Additionally, a larger study using more than just two of the textbooks might have been 

more revealing if textbooks used over the past several decades were analyzed; however, 

because syllabi have not been archived, it is not known which textbooks have been used 

in the past outside limited library records.   

Another limitation was the choice of topic within textbook analysis. This 

limitation is twofold. The first aspect of this limitation was the decision to look at 

introductory topics concerning functions, polynomial functions, rational functions, 

logarithmic function, and exponential functions. This was based on the common topics of 

course descriptions from public universities around Kentucky. While these were the 

current most-commonly-appearing topics, it could be that different terms would have 

been more commonly appearing in the past. However, this decision was, to a degree, 

arbitrary. Another decision could have been to look at topic coverage from the current 

UK CA course description, although that would have offered a different limitation. 

Unless all possible topics that have ever been covered in any CA course were analyzed 

over all textbooks ever used to teach CA, there will always be a limitation of scope of 

such topic analysis. 

The second aspect of this limitation is the absence of research on how the other 

course descriptions from public universities around Kentucky have evolved. While the 

common topics of functions, polynomial functions, rational functions, exponential 

functions, and logarithmic functions were most prevalent, their evolutionary paths would 

have been different from UK’s CA course description history. While it could be logical 

or explainable that different public universities in Kentucky eventually came to cover 
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many of the same topics in their CA courses through some common state or national 

recommendation or legislation, it could also be coincidental. 

This phenomenon led to another limitation: only UK’s history was studied. The 

reasons UK was the focus of this study include (a) it used to be the administrative body 

of the community colleges in Kentucky, and (b) it is considered to be the only research 

university in the state by many legislative and political metrics. Nevertheless, by studying 

only a single institution, the study was limited by the perspectives and practices of one 

university.  

The final limitation of the study was my choice to include HCC syllabi, but no 

other documents from HCC. The decision to include these documents was based on (a) 

the lack of syllabi available to analyze; and (b) the line of thinking that HCC, being a 

former satellite site of UK, was a pseudo-extension of UK, which meant that the syllabi 

of the faculty who used to be UK employees would be somewhat reflective of the values 

of the UK mathematics department.  

All syllabi analyzed were from HCC faculty who were, at one point, UK 

employees. Nevertheless, this decision, while attempting to triangulate the study and add 

to trustworthiness, approximated the goal of attempting to study UK; UK and a small part 

of HCC were essentially studied.  

Chapter III summary.  This description of how the study was conducted has 

provided not only descriptive and technical information for how the findings were 

cultivated, but has also given insight into how I have endeavored to uncover the 

information evaluated. Therefore, the following chapter serves to recapitulate the findings 

from the data I have collected. The summaries are organized by research question, so all 
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documents pertaining to RQ1 are discussed, followed by documents pertaining to RQ2. 

Finally, the chapter closes with the results from the documents pertaining to RQ3.     
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CHAPTER IV: FINDINGS 

This study investigated the content that has been covered in CA at UK as the 

course has evolved over the years, examining reasons for content change. This qualitative 

research focused on historical events at the university, in Kentucky, and at the national 

level that have played a role in the evolution of mathematics curriculum at UK. By using 

historical methods (document analysis), changes to the course competencies and course 

description were highlighted for the purposes of determining why the current incarnation 

of CA covers specific topics while excluding others. The discernments gleaned from this 

project established (a) what CA is, (b) why it contains the specific material taught, and 

(c) historical context that will challenge why CA has been the default quantitative 

reasoning class of choice for many institutions, especially community colleges. 

Empirical research questions include the following: 

1. What have been the common topics or themes of the competencies and topics 

covered in CA over the years at UK? (RQ1) 

2. What internal forces have led to topic coverage or attribute changes in CA? 

(RQ2) 

3. How has QR evolved at UK? (RQ3) 

The answers to these questions allowed for research on some of the deficiencies 

aforementioned, adding to the knowledge of the field. By understanding how CA and QR 

requirements have progressed over time, challenges to the status quo, growth, and 

productive change can be achieved through an understanding of how potentially 

antiquated ideals are no longer relevant in the current landscape of higher education. 

Through document analysis, thematic comparisons were used to answer RQ1 through 
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RQ3 among textbooks, course descriptions taken from the UK online archive database, 

course syllabi, and other documents as available in the UK online archives. 

 The documents in the following sections were organized primarily by the research 

question they served to address. For example, textbooks analyzed and course descriptions 

from catalogs lent themselves primarily to RQ1, so they follow immediately. For clarity, 

each subsection related to RQ1 was prefixed with a common topics heading. Documents 

from both the UK physical and online archives (as well as from the mathematics 

department website) primarily answered RQ2; for clarity, each subsection related to RQ2 

were prefixed with an internal forces heading. Documents related from the self-study 

effort from the UKCore website answered RQ3; for clarity, each subsection related to 

RQ3 were prefixed with a QR evolution heading.  

Common Topics—Textbooks Once Used in CA 

To analyze functions in the ABN textbooks, sections utilized for data analysis 

were those in which the term functions was defined. To analyze logarithmic functions, 

the sections that defined logarithmic functions were used. It should be noted that the 

ABN textbooks included a section about logarithmic expressions prior to the section 

where logarithmic functions were defined; however, these sections were not included in 

the data collected. To analyze exponential functions, the sections in which exponentials 

were defined were utilized. To analyze polynomial functions, as multiple sections were 

dedicated to operations on polynomial, the decision was made to use only the section 

regarding graphing polynomials. Similarly, to analyze rational expressions, the decision 

was made to use only the section regarding graphing rational functions. 

Common topics—functions. Functions was the topic identified as the most 
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commonly-appearing term in Kentucky course descriptions of CA, as identified in 

Chapter II. Because functions of some sort were identified in seven of the eight public 

universities in Kentucky, an argument could be made that CA in Kentucky is a study of 

functions. However, function is an exceptionally vague term. To cover linear functions, 

for example, would be radically different from covering exponential functions. Therefore, 

functions should be considered more of a category of topics than a singular competency. 

The two sets of books that were analyzed both contained a section on functions. 

Functions were analyzed by textbook through comparing changes in content and delivery 

presentation. Two subheadings were used: (a) definitions of functions and Example 1 and 

(b) other topics related to functions.  

ABN functions. The textbook used by some UK and HCC professors in the mid-

1990s to the present is College Algebra and Trigonometry by Aufmann, Barker, and 

Nation (although Barker was dropped starting with the eighth edition). For simplicity, 

ABN will be used to refer to this set of texts, albeit slightly inaccurate when discussing 

the eighth edition. The textbook’s eighth edition is still in use currently at HCC. ABN 

functions, Example 1, and other topics relating to functions were analyzed with two 

rounds of coding. The first round was an informal scrutinization of observations of 

organization, presentation, definition, and technique. The second round included 

comparisons of the aforementioned traits from the first to the eighth editions. 

Definition of function and Example 1. From the first to the second edition of 

ABN, the first six paragraphs were essentially the same. The definition of function was 

likewise the same, as shown in Figure 2.  
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Figure 2. Definition of a function from ABN edition 2, page 130. 

While this definition did not explain the connection between an equation and a rule, it 

did, however, appear that the definition lent itself to equations as functions that map 

elements of one set onto another set. Both the first and second editions followed this 

definition with paragraphs explaining how the correspondence in a table and an equation 

are not functions, as well as describing how to evaluate a function given a value. The 

second edition added a graph representing the motion of a pendulum swinging to 

illustrate how functions could be represented visually. The second edition also added an 

alternate definition of functions that introduced the idea of sets. Both editions gave 

Example 1 as Evaluating Functions with equations (see Figure 3). 

 

Figure 3. Evaluating functions as Example 1 from ABN edition 2, page 130. 

The third edition of ABN split the first paragraph into two separate paragraphs and added 

the notion of relations to the end of the first paragraph, defining them as a set of ordered 

pairs. It also added a subheading above the opening paragraph labelled Relations. This 

edition also modified its opening table that showed the correspondence between scores 
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and grades by including brackets and parentheses around score classes. The first equation 

given, 𝑑 = 16𝑡2, appeared within the paragraphs of the first two editions; edition three 

moved this equation between paragraphs, centering it in the textbook. Further, the 

pendulum motion graph was moved from the margin in the second edition to the main 

body. Following the pendulum motion graph, another subheading reading Functions was 

added, and a short sentence introduced functions, followed by a heavily revised 

definition, as given in Figure 4. 

 

Figure 4. Revised definition of a function from ABN edition 3, page 144. 

This revised definition of function, which resembled the alternate definition from 

the second edition, removed the symbolic use of f, D, and R while eliminating the idea of 

range and domain from the definition, yet adding the idea of ordered pairs. This edition 

also added explanation of sets as functions following the initial definition. Domain and 

range were then explained within paragraphs after the set explanation, as opposed to 

mentioning them as part of the definition. Following this explanation of domain and 

range, independent and dependent variables were addressed, along with notation when 

using independent and dependent variables. Prior to Example 1, another heading was then 

added called Functional Notation, which was still evaluating functions. Example 1, 

which previously had four parts, now included a fifth part of mild algebra of functions, as 

shown in Figure 5. In Example 1, steps were added to show how to solve the problems, as 

opposed to the previous editions, which simply gave the answers to the problems. 
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Figure 5. Bold bullets were added in the third edition of ABN (page 147) to explain how 

to evaluate functions in Example 1. 

 

A theme starting in this edition was the notion of reminding readers of 

aforementioned concepts and repetition of ideas. For example, on page 146, when 

explaining domain and range, the idea that the first coordinate of an ordered pair cannot 

be repeated was reinforced. A final addition was made in the margin of the textbook: a 

Point of Interest section was included to give some background about Euler’s coining of 

the term functions, adding some content beyond the math, presumably to make material 

more interesting to the typical student. 

The fourth, fifth, and sixth editions of ABN had no substantive changes in the 

definition of function nor Example 1, only minor changes in typography and color were 

observed. However, the sixth edition introduced a Prepare for this Section piece prior to 

the Relations heading that included review topics from previous chapters necessary for a 

student to understand and work the material over functions. This addition continued the 
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growing theme of repetition and reinforcement of previously-presented material.  

The seventh edition contained the biggest revisions since the third. Example 1 

was changed to identifying functions rather than evaluate functions, and appeared earlier 

in the text, coming now before the paragraph explaining function notation. The paragraph 

explaining functions appeared before Example 2, which was changed to evaluating 

functions. As the evaluative instrument, I would comment that this reorganization 

therefore placed more emphasis on defining and explaining functions as Identifying 

Functions logically flowed immediately following defining and explaining rather than 

using functions (e.g., evaluating functions). That is, the prior editions explained, used, 

and explained further while the seventh and later edition explained, explained further, and 

then used (see Figure 6). 

 

Figure 6. Flow of material from definitions to Example 1 to Example 2. 

There were no substantive changes from the seventh to the eighth editions regarding 

defining functions and Example 1. Only minor changes in colors schemes were observed. 

One overt, if insignificant, change was noted: a typo in the opening paragraph in the form 

of a gratuitous the before the word sets was made; this paragraph has otherwise been 

unchanged since the first edition. 

Other topics related to functions. The first edition followed Example 1 with a 

brief description of independent and dependent variables, succeeded by an explanation of 
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how “some equations do not define functions” (Aufmann, Barker, & Nation, 1990, p. 

149), while the second edition reworded this sentence as “not all equations, however, 

define functions” (ABN, 1993, p. 132). Both the first and second edition then gave a brief 

algorithm as to how to determine if an equation defined a function, and then Example 2 

was Identify Functions. It should be noted that the algorithm and example only identified 

functions that were equations; sets and graphs were not mentioned. The first edition then 

explained domain of a function briefly, gave Example 3 as Find the Domain of a 

Function, and then moved into Odd and Even Functions. Because all later editions of 

ABN classified Odd and Even Functions under a different section of the chapter, for the 

purposes of this analysis, the first edition’s section of functions ends after Find the 

Domain of a Function. Therefore, most notable are the concepts absent from the first 

edition, which would later include functions as sets of ordered pairs, graphing functions, 

vertical line test, sets as functions, 1-1 functions, horizontal line test, 

increasing/decreasing/constant functions, piecewise functions, and greatest/lower integer 

functions. The second edition added these concepts in the aforementioned order. Further, 

these concepts emphasized graphing functions, almost entirely absent in the first edition. 

For example, the piecewise function, Example 6, was Graphing a Piecewise-Defined 

Function.  

The third edition changed piecewise functions to Example 2, but changed the 

Graphing a Piecewise Function to Evaluate a Piecewise-Defined Function. Example 3 

remained Identifying Functions, but a set as a function was added as one of the sub-

problems, and a picture of a set as a function was included to further explain this concept. 

The definition of domain was also revised in the third edition to be broader: previous 
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editions identified the domain as all real numbers where division by zero and complex 

roots were avoided; the third edition stated the domain includes the set of all real 

numbers where the answer makes sense and is real. This definition would work for more 

functions than those found only in this section or textbook (e.g., logarithmic, 

trigonometric, or non-elementary functions). Also notable in the third Edition was the 

introduction of using technology to graph and work with functions. Keeping with the 

theme of repetition and reinforcement starting in this edition, Topics for Discussion was 

added prior to the homework that included review questions over the section. 

The fourth, fifth, and sixth editions had few substantive additions. The fourth 

edition added more sentences and paragraphs that continued the theme of repetition and 

reinforcement. The fifth edition added more examples and text on integrating technology. 

The sixth edition had small changes in wording but was mostly indistinguishable from 

the fifth edition. 

 The seventh edition added the concept of finding the zero of a function. This 

concept was explained using a single quadratic in Example 7, and following this example 

was a sentence connecting the concept of a zero of a function with an x-intercept. While 

no other type of function was addressed, zeros of a function would later be covered in the 

chapter on polynomial functions. Topics for Discussion was also removed in this edition. 

The eighth edition explored the idea of zeros of a function in far greater detail 

than the seventh edition, adding a figure dedicated to defining and explaining zeros of a 

function that spanned over half the page. A similarly-sized figure was added to explain 1-

1 functions. Otherwise, no substantive changes were made from the seventh to the eighth 

edition. 
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MLS functions. The textbook used by some UK (and HCC) professors in the 

1980s and early 1990s was Fundamentals of College Algebra by Miller and Lial (and 

Schneider, starting with the third edition). For simplicity, MLS will be used to refer to 

this set of texts, albeit slightly inaccurate when discussing the first and second editions. 

The textbook ended publication after the fourth edition, and UK/HCC professors 

switched to the ABN textbook series. MLS functions, Example 1, and other topics 

relating to functions were analyzed with two rounds of coding. The first round was an 

informal scrutinization of observations of organization, presentation, definition, and 

technique. The second round included comparisons of the aforementioned traits from the 

first to the fourth editions. 

Definition of function and Example 1. The first edition of the MLS text initiated 

the section on functions by describing the set of all students studying the textbook on a 

Monday evening at a pizza parlor, and then setting up a visual correspondence between 

the names of the students and their approximate integer weights. The correspondence was 

defined as a function, and a formal definition was given, leaning on the correspondence 

of an element to exactly one of another element. As with the early ABN definitions, this 

definition did not explain the connection between an equation and a rule. Further in the 

chapter, an alternative definition of a function was given that related functions to 

relations, and then examples were given to support that definition. The second edition of 

the MLS text did not change much, except the analogy of student weight was changed to 

student test score. For both the first and second edition, Example 1 was a multipart 

question asking students to identify if a given figure represented a function (see Figure 

7). 
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Figure 7. Example 1, part a, from the first edition of the MLS text, page 152. 

Following the alternative definition of a function, a connection was made to graphing, but 

no examples were given for students to work about this alternate definition, nor its 

connection to graphing. 

As with the ABN text, the third edition of the MLS text had substantial edits made 

to the functions section. The introductory paragraph with the pizza parlor was omitted 

entirely, and a paragraph about relations was added, referring back to a previous chapter 

in the book. The definition of function was revised to combine components of the prior 

two editions’ definitions: “a function is a relation that assigns to each element of a set X 

exactly one element of a set Y” (MLS, 1990, p. 134). This definition was followed by an 

expanded Example 1, which included the previously-used pictures of sets, but also 

included algebraic examples as well as sets in roster notation. 

The fourth edition had a revised introductory paragraph, discussing relations and 

adding a business analogy. The definition of function was unchanged from the third 

edition, but Example 1 was edited from six to four subparts; the pictures of sets were 

removed, the word problem was removed, and more algebraic problems were added. 

While the ABN series had, to date, eight editions, the MLS text ended at the 

fourth edition. From the first to the fourth edition, the finding I would report would be the 

heavy revision of the definition of a function and the move toward a more symbolic 
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approach to functions as opposed to a correspondence argument. The move away from 

the pictures and inclusion of more symbolic algebra seemed to be the overarching 

themes. 

Other topics related to functions. The first and second editions of MLS 

emphasized domain and range heavily before moving on to evaluating functions. Further, 

when addressing evaluation of functions, the texts provided no support or explanation on 

how to evaluate functions, nor was function notation addressed in detail. I also found it 

notable that the difference quotient was included in this section of the first two editions, 

as opposed to being in a section about the algebra of functions. Further, the early editions 

seemed to include many topics that would later be moved into their own sections, such as 

odd and even functions (added in the second edition); increasing, decreasing, and 

constant functions; translations of graphs of functions, and the greatest integer function. 

In the third edition, these concepts were moved into other sections and the authors 

revised much of the (what I would call) issues, including the absence of function notation 

prior to evaluating functions, adding vertical line test to the graphing functions 

explanation, and de-emphasizing domain and range, which were moved to Example 3.  

Starting with the third edition, concepts of maximum and minimum were added 

with domain and range, although they were defined as global maximum and minimum 

values (as opposed to differentiating local versus global) and tied with the concept of a 

restricted versus unbounded domain and range. A graphical argument was used with 

interval notation. 

Common topics—polynomial functions. Polynomial functions were listed in the 

CA course descriptions in five out of the eight public universities in Kentucky. While 
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technically linear and quadratic functions are polynomial functions, I would argue when 

polynomials were identified as a singular topic, it has been understood that, in addition to 

linear and quadratic functions, cubic functions and functions of a higher degree were 

implied. This was the case in the two textbooks that were analyzed. Two subheadings 

were used that included (a) definitions of polynomial functions and Example 1 and (b) 

other topics related to polynomial functions.  

ABN polynomial functions. The ABN textbook never gave an explicit definition 

of polynomial until the eighth edition. However, unlike its approach with functions, the 

general idea of a polynomial remained mostly unchanged among the editions. While an 

entire chapter was dedicated to polynomial functions in the ABN texts, the first section 

that addressed graphing polynomial functions was analyzed. The ABN texts typically 

started the chapter with the first section as synthetic and long division, then covered 

graphing polynomials in section two, addressed zeroes of polynomial functions in section 

three, and then focused on Fundamental Theorem of Algebra and complex zeroes in 

section four. Therefore, for the purposes of this work, section two was analyzed. ABN 

graphing of polynomial functions, Example 1, and other topics relating to polynomial 

functions were analyzed with two rounds of coding. The first round was an informal 

scrutinization of observations of organization, presentation, definition, and technique. 

The second round included comparisons of the aforementioned traits from the first to the 

eighth editions.   

ABN polynomial definitions and Example 1. The first edition of ABN introduced 

the section by revisiting constant, linear, and quadratic functions as special cases of 

polynomial functions. After covering how these functions’ graphs behaved, the first 
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edition then made comment about how the graphs of polynomial functions are smooth 

and continuous, although rigorous definitions of smooth and continuous were not given. 

This claim of smooth and continuous remained unchanged among all editions. Following 

this claim, the first edition then moved into a conversation about far-left and far-right 

behavior of a polynomial function (FL/FR behavior), using language that “a polynomial 

𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0” (ABN, 1990, p. 219). However, no further 

explanation of this designation was given. It was not until the 6th edition that the 

subscripted components of this definition were further explained in the margin, and it was 

not until the eighth edition that this marginal explanation reiterated that a polynomial 

function follows the general form 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0.  

Following the pseudo-definition, the first edition then covered a leading term test, 

which served as a segue into FL/FR behavior, for which a chart was provided to clarify 

the concept further. Example 1 required students to identify the FL/FR behavior over four 

parts, all of which were in standard form. Example 1 remained unchanged among all 

editions, so at no point in this section were students asked to determine the FL/FR 

behavior of a polynomial in factored form. Notable was that in all editions the answers to 

Example 1 included both algebraic and graphic explanations.  

Other topics relating to polynomials. The first edition, following Example 1, 

focused on the Remainder Theorem and used synthetic division to find values for 𝑃(𝑥). 

This remained unchanged in the second edition, but was replaced with a word problem in 

the third and subsequent editions. The Remainder Theorem was moved to section one 

after the second edition.  

Following Example 2, turning points were addressed, and the relationship among 



 

90 

 

zeroes, x-intercepts, linear factors, and roots was established (this was never addressed in 

the MLS text). Following this argument, synthetic division was used to find zeroes/x-

intercepts and then to graph polynomial functions. Zero Locator Theorem (what most 

would probably call the Intermediate Value Theorem) concluded the chapter in the first 

and second editions.  

The third edition included some significant changes in color and organization. 

Many charts were added to explain concepts, several graphing calculator illustrations 

were included, and a Topics for Discussion section was added at the end of the chapter. 

Most notable in the third edition was the addition of global and local maximum and 

minimum points, along with a graphic to illustrate them. This addition remained in 

subsequent editions.  

While most of the fourth edition changes were cosmetic, the most prominent 

addition was the impact of higher multiplicities on linear factors and the influence odd 

and even powers on a linear factor have on the corresponding x-intercept (another 

concept never addressed in the MLS text). After the fourth edition, the only changes not 

already addressed were color, organization, or font-based modifications for emphasis or 

clarity. As the editions were published, there were noticeably more technology examples 

given.  

MLS polynomial functions. The MLS textbook had vastly different 

interpretations of polynomial functions among the four editions. While the ABN book 

seemed to settle on an approach, the MLS textbook had four different approaches, 

changing dramatically from each edition to the next. MLS graphing of polynomial 

functions, Example 1, and other topics relating to polynomial functions were analyzed 
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with two rounds of coding. The first round was an informal scrutinization of observations 

of organization, presentation, definition, and technique. The second round included 

comparisons of the aforementioned traits from the first to the fourth editions. 

MLS Polynomial Definitions and Example 1. The definition of polynomial 

functions stayed mostly consistent among all the MLS editions (see Figure 8). 

 

Figure 8. Definition of a polynomial function from the first edition of MLS, page 233.  

While this definition was consistent, it offered no explanation to the reader how to read 

the symbolically-thick language, nor was an example provided to show how to interpret 

the terms, the coefficients versus the constant, and so forth. Following the definition, the 

first edition immediately made a graphing interpretation of a polynomial function. 

Readers were instructed to plot several points to get an idea of the shape of the graph. 

However, I should note that without a conversation about FL/FR, this method of 

explanation can be inaccurate and relies heavily upon assumptions the student must make 

about polynomial graph behavior.  

The first edition then graphed polynomials in the form 𝑦 = 𝑥𝑛. Stretching and 

compression arguments were made for 𝑦 = 𝑎𝑥𝑛 where 𝑎 > 0 in cases where the leading 

coefficient was greater than one or a proper fraction. Example 1 required students to 

graph a polynomial following this form. 

The second edition had a significant reorganization of the polynomial chapter. 

The first section defined polynomials, but then dedicated the remainder of the section to 

linear functions as special cases of polynomial functions. The chapter then focused on 
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quadratic functions as degree two polynomials, followed by conic sections. Polynomials 

as understood by the first edition were moved to section six of the polynomial chapter. 

Within that section, however, the material remained largely unchanged with exception of 

Example 1, which was to graph a polynomial in the form 𝑦 = 𝑥𝑛, with the former 

Example 1 moved to Example 2 and so forth. 

The third edition of MLS, as with the topic of functions, had major revisions. 

Linear functions, quadratic functions, and conic sections were removed from the chapter. 

The first section covered synthetic division and interpretations of the remainder; the 

second section covered complex roots of polynomial functions; the third section gave 

roots of polynomial functions its own segment. Section four then became graphing 

polynomials, although the arguments of plotting points were dropped. 

In this edition, the Rational Zero Theorem was used to determine the possible 

rational zeroes of a polynomial, although the connection between zeroes and x-intercepts 

of a polynomial was not made explicit. The Intermediate Value Theorem was used to 

determine the existence of zeroes between arbitrary points. The Upper and Lower Bound 

Theorem was used to find boundary of zeroes and determine over which intervals all x-

intercepts would lie, although the connection between zeroes and x-intercepts was still 

never described. Descartes’ Rule of Signs was used to determine the number of positive 

and negative real zeroes. These theorems were used together to sketch graphs of 

polynomial functions, although higher-degree polynomials (meaning polynomials greater 

than a cubic) were not factored into linear factors. There was also no mention of how to 

address zeroes with a multiplicity greater than one, and most of the graphing did not use 

synthetic division with the Rational Zero Theorem to find rational roots (although this 
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was Example 1, which required the student to factor a polynomial in standard form into 

factored form); much of the graphing required students to approximate zeroes/x-

intercepts.  

The fourth edition had major revisions from the third. Section 1 was changed to 

quadratics, and section 2 covered both synthetic division and complex zeroes. Section 

three then became finding zeroes of polynomial functions. Section four was graphing 

polynomial functions.  

The most notable change in the fourth edition was the inclusion of FL/FR 

behaviors in the graphing polynomials section. This concept started the section, and a 

chart was given to show the four FL/FR behaviors based on polynomial degree and sign 

of the leading coefficient. The polynomial given was in standard form. However, 

Example 1 was to graph a polynomial function in factored form, but there was no 

explanation given to the relationship between standard form and factored form. 

Other topics relating to polynomials. The first and second editions of the book 

neglected to include many topics that were included in later editions, such as Rational 

Zero Theorem, Fundamental Theorem of Algebra, Conjugate Pair Theorem, and FL/FR 

behavior. What was most notable was the absence of zeroes of a polynomial function 

prior to graphing polynomial functions. Further, finding the y-intercept was almost 

entirely ignored, albeit sometimes included in charts of value. Additionally, while the 

critical value method was used to discuss positive and negative regions of curves, powers 

on linear factors were never explicitly addressed, and therefore even versus odd powers 

on linear factors could not be linked with behavior about an x-intercept (e.g., crossing 

versus bouncing off the x-axis). While the earlier editions gave examples that lent 
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themselves to rough sketches, later editions became much more accurate by providing 

more theorems and methods for determining where zeroes lay, how many exist, and if 

they were real, rational, positive, negative, and so forth. 

Common topics—rational functions. Rational functions were identified in CA 

course descriptions in five out of eight of the public universities in Kentucky. Further, 

whenever a course description identified polynomial functions, rational functions were 

also mentioned. Because of the frequency of appearance, rational functions will be 

analyzed over all available editions of two textbooks. Two subheadings of (a) definitions 

of rational functions and Example 1 and (b) other topics related to rational functions.  

ABN rational functions. Rational functions appeared in the same chapter as 

polynomial functions; this was the last section, following complex zeroes of polynomial 

functions. As such, graphing rational functions leaned on knowledge of polynomials, 

although many of the concepts (Descartes’ Rule of Signs, Rational Zero Theorem, 

synthetic division, and so forth) never made appearances, despite opportunities. ABN 

graphing of rational functions, Example 1, and other topics relating to rational functions 

were analyzed with two rounds of coding. The first round was an informal scrutinization 

of observations of organization, presentation, definition, and technique. The second round 

included comparisons of the aforementioned traits from the first to the eighth editions.   

ABN rational definitions and Example 1. Unlike previous topics, the first sentence 

in the rational functions section was a definition of rational functions (see Figure 9).  
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Figure 9. Definition of a rational function from the second edition of the ABN textbook, 

page 228. 

 

This definition remained constant among all editions. The definition was succinctly put 

as a quotient of two polynomials, which made rational functions’ placement in the same 

chapter as polynomial functions a convenient organizational decision. Following this 

definition, a conversation about domains addressed the issue with values that would make 

the denominator polynomial zero. Again, this remained constant among all editions of the 

ABN textbook. Two examples of rational functions followed the domain conversation. 

Both centered about the idea of restrictions of the domain due to zeroes in the 

denominator and the asymptotic behavior of the rational about said zero (although the 

early editions did not use the term asymptote until further in the chapter).  

The first edition then followed with another example, giving a five-part 

explanation of the graph of a rational, using the notions of increasing and decreasing 

without bound about a value. It was after this discussion that the first edition addressed 

vertical asymptotes (VA). However, the first edition did not address the four behaviors of 

a VA and the relationship between them and powers on the linear factors from which the 

zeroes are defined. The four behaviors were not added until the sixth edition. Following 

the definition of VA, the first edition then defined horizontal asymptotes (HA). Both 

definitions of VA and HA leaned on the idea of limits (although such language was not 

used), giving a calculus line of thinking when concerning asymptotic behavior. A 
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connection was then made between VA and the zeroes of the denominator. Example 1 

then required students to determine the VA of two rational functions—the first had no 

VA and the second required students to factor a quadratic. Example 1 remained the same 

among all eight editions.  

Other topics relating to rational functions. Following Example 1, a three-part 

description of HA related the degrees of the numerator and denominator, followed by a 

proof of the three cases with HA. However, the first two editions did not explicitly 

address cross tests for HA (nor oblique asymptotes). A sign argument over intervals was 

made for behavior about asymptotes, and then general procedures for graphing rational 

functions were stated. The next two examples required students to graph rational 

functions based on the general procedures. These components remained unchanged 

among all eight editions. After Examples 3 and 4, oblique asymptotes and removable 

discontinuities were covered. The third and later editions then provided one or more word 

problems. Otherwise, the overall content, sans minor changes in color and typography, 

remained steady among all the editions. 

MLS rational functions. Unlike the MLS section on graphing polynomials, the 

MLS section of rational functions did not have significant changes among the four 

editions. While some organizational changes were made, the presentation was overall 

similar. MLS graphing of rational functions, Example 1, and other topics relating to 

polynomial functions were analyzed with two rounds of coding. The first round was an 

informal scrutinization of observations of organization, presentation, definition, and 

technique. The second round included comparisons of the aforementioned traits from the 

first to the fourth editions.  
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MLS Rational definitions and Example 1. The definition among all four chapters 

remained similar (see Figure 10). 

 

Figure 10. Definition of a rational function from the first edition of MLS, page 261. 

The definition from the first edition excludes any values for which the denominator is 

zero. The third and later editions would slightly modify this to say the denominator 

cannot be zero. Nevertheless, the idea of a rational function as a quotient of two 

polynomial functions remained the same throughout the editions of the MLS texts. All 

editions start with the problem of graphing 𝑓(𝑥) =
1

𝑥
, which was identified as the 

simplest form with variable in the denominator. From this problem, a chart argument is 

made to explore the VA of 𝑥 = 0. After exploring the chart, the editions then gave a 

definition that resembled a calculus line of thinking: a VA means as |𝑓(𝑥)| →  ∞ as 𝑥 →

𝑎, then 𝑥 = 𝑎 is the VA.  

The texts then explored the idea of HA, earlier editions leaning again on a chart 

argument. HA were defined as follows: if 𝑦 → 𝑎 as |𝑥| →  ∞, then 𝑦 = 𝑎 is the HA. 

Again, this has a calculus line of thinking. None of the editions addressed how to identify 

the crossing point of a rational function’s graph which intersects a HA, although in the 

fourth edition, such a graph was shown. Further, the first example remained the same 

among all editions; graph  𝑦 =
−2

𝑥
. All editions made the same argument when addressing 

this graph, which was a special case of the function 𝑓(𝑥) =
1

𝑥
. 
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Other topics relating to rational functions. None of the editions addressed the 

four behaviors associated with VA. All of the editions instructed students to plot points to 

determine behavior about a VA. However, since powers on linear factors were not 

addressed in the section on graphing polynomials, by not addressing powers on linear 

factors in this section, there would be no other way to discover behavior about a VA. 

While the first edition did address HA, the first examples given were in the form where 

the degree of the numerator was larger than the degree of the denominator. HA where the 

degrees of the numerator and denominator were the same were addressed toward the end 

of the section. Oblique asymptotes were also addressed in the first edition, but, much as 

was the case with HA, cases where the rational functions graph crossed the oblique 

asymptote were not addressed. Removable discontinuities were never addressed in the 

first edition. 

The second edition was largely unchanged, except VA and HA were defined in 

the same box for clearer organization. Unlike the first edition, rational functions that were 

not in factored form were graphed. HA were expanded greatly, and a division by a 

common factor of all terms within a rational function in standard form was used to find 

the equation of a HA. This method was very reminiscent of a calculus technique to find 

the limit of a rational function. A word problem was also added to the section. 

The third edition was largely unchanged, with exception of including removable 

discontinuities in the section. This replaced the word problem. Fourth edition changes 

were cosmetic only in nature; additional graphics were added to clarify HA and VA, and 

the recipe for graphing rational functions was modified.  

Common topics—exponential functions. Aside from functions, exponential 
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functions were identified in more CA course descriptions at the Kentucky public 

universities than any other topic. Out of the eight universities, exponential functions 

appeared in six of the CA course descriptions. Because of this frequency, exponential 

functions were analyzed across all available editions of two textbooks. Two subheadings 

were used: (a) definitions of exponential functions and Example 1 and (b) other topics 

related to exponential functions.  

ABN exponential functions. The ABN coverage on exponential functions 

underwent changes, and some of the changes were in approach. While the definition 

remained largely unchanged, the ABN works vacillated regarding review. For example, 

the early editions of the book covered inverse functions in the same chapter as functions, 

while the fourth and later editions moved inverse functions to the chapter covering 

exponential functions and logarithmic functions. Unlike with polynomial functions, 

defining, evaluating, and graphing exponential functions always took place in the same 

section; however, solving exponential equations was organized in the same section as 

solving logarithmic equations. Therefore, for the purposes of this piece, the section that 

introduced, defined, and graphed exponential functions was analyzed. ABN graphing of 

exponential functions, Example 1, and other topics relating to exponential functions were 

analyzed with two rounds of coding. The first round was an informal scrutinization of 

observations of organization, presentation, definition, and technique. The second round 

included comparisons of the aforementioned traits from the first to the eighth editions.  

ABN exponential definitions and Example 1. The definition of exponential 

functions remained essentially unchanged among all editions of the ABN textbooks (see 

Figure 11).  
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Figure 11. Definition of an exponential function from the first edition of the ABN 

textbook, page 261. 

 

However, while the first two editions began with a review of properties of exponents, 

followed with a definition of exponential functions, then covered graphing exponential 

functions, the third and later editions spent time explaining, for example, why the base 

must be positive and cannot be one. Example 1 changed several times among the 

editions. While the first edition focused on graphing exponentials (because a review of 

exponential properties preceded the definition), a change was made in the third edition to 

include graphing exponential functions using translations. However, in the third edition, 

more explanation was given to graphing exponential functions prior to Example 1. The 

decision to return to more review was made in the fifth edition when Example 1 became 

evaluating exponential functions, thereby combining elements of exponential properties 

review with the definition of an exponential function.   

Other topics relating to exponentials. Starting with the first edition, there was 

more graphing technology integrated with this section than any other analyzed. While 

some editions focused more on the graphing technology than others, every edition 

included some calculator technology.  

Further, there were properties of exponential graphs given in every edition. The 

first three editions defined seven properties, which were reduced to six properties in the 

fourth edition via collapsing properties together, and then four in the fifth and subsequent 
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editions again through collapsing properties together. Remarkably, a property of 

exponentials that was never explicitly given was opposite powers of x yield reciprocal 

powers of y, which is a property I always cover when teaching. Despite the absence of 

this property, it is illustrated in the graphs of later editions. All editions define e and 

address 𝑦 = 𝑒𝑥, although the first three editions afforded more attention than did later 

editions. Beginning with the fourth edition, there was more emphasis on applications. 

MLS exponential functions. The MLS textbook had some minor changes among 

the four editions when covering exponential functions, although the overall message 

remained largely unchanged. Unlike the ABN textbook, specific topic coverage remained 

mostly consistent; the only changes were organizational and supplementary.  

MLS exponential definitions and Example 1. The first two editions opened with a 

reference to the first chapter wherein the student is asked to recall how to work with the 

expression 𝑎𝑚 when m is rational. While the ABN textbook dedicated formal review of 

laws of exponents, the MLS then moved on to a conversation about considering the 

expression 2√3, leaning on the notion that √3 ≈ 1.7 ≈ 1.73 ≈ 1.732 and making 

connections to rational exponential notation with these rational values. Figure 12 is given 

to illustrate the graph of an exponential function with the domains of whole number, 

rational numbers, and real numbers, respectively.  
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Figure 12. The graph of the same exponential function with different domains in the first 

edition of MLS, page 277. 

 

Avoiding proofs, the first edition then made the assumption that the laws of 

exponents apply equally to real exponents of a function as they would rational numbers, 

and a four-part theorem was introduced (see Figure 13). 

 

Figure 13. A four-part theorem regarding properties of exponential expressions from the 

first edition of the MLS textbook, page 278. 

 

To keep exponential functions defined as functions of real numbers, the MLS text 

defended that a must be positive, and defined exponential functions (see Figure 14). 

 

Figure 14. The MLS definition of an exponential function from the first edition of the 

MLS textbook, page 278. 
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This definition remained unchanged among all four editions. Example 1 of the MLS first 

and second editions were evaluation of an exponential function, which followed the 

definition.  

The third edition only changed by adding an introduction prior to the section that 

included a paragraph giving a real-world example of an exponential function (doubling a 

penny a day salary versus $1000 per month), and organizational changes were made to 

concepts. There was also an informal definition of exponential functions given in words 

prior to the definition box. Further, the third edition changed the first example from 

evaluation of an exponential expression to solving an exponential equation (for an 

exponent). The only substantive change to definition and the first example in the fourth 

edition was to move the properties of an exponential box prior to the first example. 

Other topics relating to exponential functions. After Example 1 in the first edition 

of the MLS textbook, explanation regarding the one-to-one nature of exponentials was 

given. The authors then addressed the notion that exponential functions are asymptotic to 

the x-axis (albeit translations were not mentioned, making this slightly inaccurate for all 

cases). Example 2 required the student to graph 𝑓(𝑥) = 2−𝑥2
 (which I find a bit daunting 

for only the second example, especially since something as simple as 𝑓(𝑥) = 2𝑥 has yet 

to be graphed), succeeded immediately by Example three, which was to graph an 

exponential with a fractional base. Example 4 asked students to solve an exponential for 

the base. This was immediately followed by a definition of Euler’s number using 

compound interest. The fifth and sixth examples of the first edition covered exponential 

growth and decay. 

In the second edition, Example 2 was changed to a two-part problem asking 
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students to graph 𝑓(𝑥) = 2𝑥 and 𝑓(𝑥) = (
1

2
)

𝑥

. Figures were then added to show the 

shapes of various exponentials depending on their bases. Compound interest was further 

explored, and the compound interest formula was given a definition box. Euler’s number 

was expanded upon, and a box showing the number to nine places was given. 

The third edition had the greatest number of substantive changes. Example 2 was 

changed to solving an exponential equation for the base (Example 1 in this edition was 

solving for the exponent), along with a caution about extraneous solutions, which never 

appeared in the previous editions. Example 3 was changed to evaluation of exponential 

functions, Example 4 was graphing 𝑓(𝑥) = 2𝑥 and 𝑓(𝑥) = (
1

2
)

𝑥

 (Example 2 in the 

previous edition), and Example 5 introduced translations of exponential functions, which 

was never addressed in previous editions. The fourth edition had no major changes from 

the third edition. 

Common topics—logarithmic functions. Along with exponential functions, 

logarithms were identified more than any other topic (sans functions) in the Kentucky 

public universities’ CA course description. Whenever exponential functions were named, 

the course description also included logarithms, so six of the eight public universities in 

Kentucky identified logarithms as a part of CA. Because of this frequency of appearance, 

logarithms were analyzed in all available editions of two textbooks. Two subheadings 

were used: (a) logarithmic definitions and Example 1 and (b) other topics related to the 

logarithm.  

ABN logarithmic functions. Much like the ABN approach with exponentials, the 

ABN approach to logarithms also changed significantly, mostly between the third and 

fourth editions. While the first three partitioned logarithmic properties separately from 
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graphing logarithmic functions, a substantial reorganization occurred in the fourth edition 

where some properties were deemed more basic properties and coupled with graphing, 

while other properties were moved to a later section and more application problems were 

added. Because the change in approach impacted how graphing logarithmic functions 

was organized, for the purposes of this analysis, the first section which introduced and 

defined logarithms will be analyzed. ABN definition of the logarithm, Example 1, and 

other topics relating to logarithmic properties and graphing were analyzed with two 

rounds of coding. The first round was an informal scrutinization of observations of 

organization, presentation, definition, and technique. The second round included 

comparisons of the aforementioned traits from the first to the eighth editions.   

ABN logarithmic definitions and Example 1. The first edition introduced the 

concept of logarithms by reviewing previous knowledge on exponential functions and 

inverse functions, making a logarithm-is-an-inverse-of-an-exponential argument. The 

edition then showed the exponential form of a logarithm, while presenting the quandary 

that solving for the dependent variable was not possible using previously-established 

method, therefore introducing new notation for a logarithm. The logarithmic form was 

then defined (see Figure 15).  

 

Figure 15. Definition of a logarithm from the first edition of the ABN text, page 268. 

The nomenclature was then explained, and the congruency was explained between the 

exponential form and logarithmic form of a logarithmic equation. Example 1 therefore 
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required students to convert from logarithmic form to exponential form, and Example 2 

required students to convert from exponential form to logarithmic form. Starting with the 

fourth edition, the relationship between exponentials and logarithms was expanded, but 

otherwise throughout the other editions, only minor changes were made to the definition 

and explanation of a logarithm and the first two examples.  

Other topics relating to the logarithm. Other topics covered included equality of 

exponents theorem, which was moved to the following section after the third edition, 

eight properties of logarithms (see Figure 16), common and natural logarithmic 

definition, change of base, and antilogarithms.  

 

Figure 16. Properties of logarithms from the first edition of the ABN textbook, page 270. 

Of the eight properties identified, I would note that reciprocal values of x yield opposite 

values of y was not among them. This would be consistent with the analogous property of 
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exponents—opposite values of x yield reciprocal values of y—which was omitted in the 

section on exponential functions. 

In the first three editions, graphing logarithmic functions was not included in the 

introductory section on logarithms. However, in the fourth edition, the change of base 

rule and five of the eight properties were moved to the following section. Graphing 

logarithms were added, and a chart of values was included to show the relationship 

between exponential and logarithmic values. Translations of logarithmic graphs, domain 

of logarithmic functions, and applications of logarithms were also added. Starting with 

the fifth edition, a function composition argument was added to illustrate the inverse 

relationship between logarithms and exponents.  

MLS logarithmic functions. The MLS textbook had more changes in its 

presentation of logarithms than it did of exponential functions. While there was usually 

one noticeable change from second to third edition, and other changes were minor or 

organizational, nearly every edition had an extreme change in definition, organization, or 

topic addition or deletion.  

MLS logarithmic definitions and Example 1. In all four editions of the MLS 

textbook, the introductory conversation mentioned that, in the previous section on 

exponential functions, it was discussed that exponential functions were 1-1, which 

implies there must exist inverse function, and this section would therefore look at these 

inverse functions. The first edition defined the inverse function of an exponential 𝑦 = 𝑎𝑥 

as 𝑦 = log𝑥 𝑥. A box showing this definition of both exponential and logarithmic forms 

of a logarithm was then displayed, followed by proper language and vernacular (see 

Figure 17). 
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Figure 17. The definition of a logarithm from the first edition of the MLS textbook, page 

287. 

 

Example 1 was then a chart showing equivalent expressions of the two forms. Example 1 

remained the same among all four versions. Following Example 1, a definition of 

logarithmic functions was then given. The definition of logarithmic function changed 

only slightly among all four versions (unlike the definition of a logarithm, which had 

several changes). 

The second edition started with the same conversation about 1-1 functions, but 

then the notion of switching x and y is addressed, and the exponential form of a logarithm 

is given before the logarithmic form of a logarithm. A box then illustrated both forms, 

followed by the same language about vernacular. More explanation was then given about 

how the two form are related, including arrows connecting the same features among both 

forms. Example 1 and the definition were then presented. 

In the third edition, the introduction remained unchanged, but the box that defined 

logarithms was removed (although the text remained), a new box with a new definition 

was given (see Figure 18). 

 

Figure 18. The definition of a logarithm from the third edition of the MLS textbook, page 

261. 

Example 1 then followed, still being the chart as given in the prior editions. 



 

109 

 

In the fourth edition, the 1-1 argument and definitions remained, but the definition 

of a logarithm changed again (see Figure 19). 

 

Figure 19. The definition of a logarithm from the fourth edition of the MLS textbook, 

page 265. 

 

A fill in the box argument was made to explain the concept of logarithms’ usefulness in 

determining unknown exponents. This was then used to explain the relationship between 

the two forms of a logarithm.  

Notable is that the definition of a logarithm changed with every edition, although 

the change from the first to second editions was somewhat minor. The third edition 

definition was the only definition where a logarithm was explicitly defined as an 

exponent.  

Other topics relating to logarithm. The first edition’s Example 2 required students 

to graph a logarithmic function with a translation (which I found daunting because a 

graph without translations had not yet occurred). Example 3 in the first edition was then a 

graph of a logarithm with its argument under an absolute value. Example 4 was then 

solving a logarithmic equation for its base. Following were five properties of logarithms, 

as shown in Figure 20. 
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Figure 20. Five properties of logarithms as given in the first edition of ABN, page 290. 

These five properties appeared in all four editions of the MLS textbook. Examples 6 and 

7 were then expansion and condensing of logarithms, respectively, and a theorem and 

example of exponentials within the argument of a logarithm ended the chapter. 

The second edition inserted a new Example 2 to a graph of a logarithmic function 

without translation, leaving a new Example 3 to be a graph with a translation. The only 

other substantive change in the second edition was Example 5 (the former Example 4), 

which became a two-part example in which students were asked to solve a logarithmic 

equation for both the base and the argument. 

In the third edition, Example 2 became the two-part example in which students 

were asked to solve a logarithmic equation for both the base and the argument. The 

newly-formed definition of a logarithmic function then followed Example 2, which was a 

significant reorganization given that the definition of a logarithmic function was moved 

after two examples. Example 3 was changed to a two-part graphing problem with no 

translations, and the figure that showed the inverse relationship between logarithms and 

exponentials was moved to follow Example 3. Example 4 then became graphing with a 

translation, succeeded by the graphing of a logarithm with an absolute value in its 

argument (which had been deleted in the second edition), and the property of exponents 

in the argument was moved from the end of the section to become Example 6. The five 
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properties of logarithms were numbered (they had previously been denoted with letters) 

and inserted after Example 6, leaving Examples 7 and 8 to be expansion and condensing, 

respectively. Example 9 was evaluation of logarithms given assumptions, and a history of 

logarithms and John Napier was added to end the section. 

In the fourth edition, Example 3 became a graph using a single base (as opposed 

to the two-part with different bases from prior editions), and a box was added to illustrate 

features of a logarithmic graph, adding concepts about (a) the point (1,0) being on the 

graph, (b) increasing versus decreasing logarithmic functions, (c) being asymptotic to the 

y-axis (which is technically incorrect if there is a horizontal translation), and (d) domain 

and range. Two new concepts were also introduced in the fourth edition: the natural 

logarithm and the Change of Base property. Examples were added to reflect these new 

changes. Concluding the section was a new word problem that incorporated diversity of 

ecology. 

Common Topics—Relating RQ1 with Textbooks  

Reporting findings over these two books among their many editions revealed to 

me a couple of noticeable themes. The most blatant would be that later editions included 

more detail, more material, and more examples. Earlier editions tended to give a 

definition and then move into content. Examples may not necessarily reflect explanation 

or definition and would often be a special or more advanced case than the immediate 

preceding content. Later editions tended to give a definition, explain, and then give an 

example immediately relevant to the explanation.  

The second theme would be the increasing inclusion of more real-world 

application problems. While the early editions of both textbooks would include at least 
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one application, the later editions included several.  

Another theme would be increased supplemental background material. Later 

editions would include information about the mathematicians who helped develop the 

content covered, historical or cultural references of the material, or other information not 

pertinent to the mathematics itself that only served to make the content more interesting 

or enriched.  

Common Topics—Course Descriptions from Catalogs 

 The second type of document analyzed for RQ1 was course descriptions taken 

from catalogs. Course descriptions from the UK catalogs were gathered from the online 

special collections database. The course descriptions and catalogs will primarily be used 

to answer RQ1, although some other information may be embedded within the catalogs, 

especially earlier catalogs that did not resemble the modern format of such publications. 

The oldest catalog in the UK online archives was from 1865. Unlike modern catalogs, 

which have typically included a course description section outlining topics to be covered 

in a particular class, catalogs of UK from this era resembled more of a schedule of 

classes. Rather than describe what classes a student would take with a description of 

those classes, early catalogs listed what book would be used within a discipline based on 

student rank (see Figure 21).  

 

Figure 21. Screenshot of the UK catalog from 1865, page 24. 
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From academic years 1865-1866 through 1876-1877, the catalog simply listed “Towne’s 

Algebra” under the first term for the school of mathematics (UK Catalogs 1865-1876), 

although the catalogs were missing for the academic years 1874-1875, and 1877-1878. 

Because specific topics were not identified from Towne’s work, it is unknown what 

specifically was covered in the course.  

However, it is conceivable all chapters over the 282 pages of content were 

addressed. Some of the topics in Towne’s textbook included basic algebraic expressions, 

factoring, rational expressions, linear equations, systems of linear equations, logarithmic 

functions, quadratic functions, radical expressions, and polynomial functions (Towne, 

1865). It should be noted that absent were exponential functions, which always appeared 

with logarithmic functions in the Kentucky public university course descriptions. While 

the 1877-1878 catalog was not in the online archives, in the 1878-1879 edition, Towne’s 

textbook was replaced with Peck’s Manual of Algebra through chapter eleven. Peck’s 

textbook, as Towne’s, included basic algebraic expressions, factoring, rational 

expressions, linear equations, systems of linear equations, logarithmic functions, 

quadratic functions, radical expressions, and polynomial functions, but also covered 

sequences and series (Peck, 1875).  

In 1882, the catalog switched to Wentworth’s Complete Algebra (Elements of 

Algebra). The Wentworth textbook, in addition to the aforementioned topics, also 

included material over loci of equations, inequalities, and limits (Wentworth, 1881). 

Wentworth’s textbook was the first of the textbooks to cover graphing in detail. In 1883, 

specific chapters of Wentworth’s work were identified, indicating that topics in the first 

semester mathematics course were simultaneous quadratic equations, simple 



 

114 

 

indeterminate equations, inequalities, exponents (including basic exponents, radical 

expression, radical equations, and reciprocal equations), variation, series, interest, 

indeterminate coefficients, number theory, and polynomial equations. It should be noted 

that the chapter on logarithms was specifically skipped per the catalog, possibly implying 

logarithms were not typically covered, a juxtaposition against the prevalence of 

logarithms in modern course descriptions. Selected chapters of Wentworth’s textbook 

continued to be the closest approximation of a course description through the 1891-1892 

academic year. However, in the 1892-1893 academic year, more information was added 

to the catalog:  

A thorough knowledge of Arithmetic and Algebra through equations of the 

second degree is required for this class. The first five months of the session is 

occupied in studying the Algebra, beginning with chapter XVI. The remainder of 

the session is devoted to the study of the first five books of Geometry (UK, 1891). 

This paragraph was the first instance of prerequisite information appearing in the catalog. 

The following year, aside from minor revisions to the prerequisite information 

(specifying quadratics over equations of the second degree), paragraphs—as opposed to 

short sentences—were used to describe not only textbook information, but also to give 

more information about how the freshmen semesters would unfold, as shown in Figure 

22.. 
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Figure 22. Screenshot of the UK catalog from 1892, page 74. 

By explaining the prerequisite information, identifying the textbook to be used (which 

implicitly gives some notion to what topics will be covered), and forecasting the 

procession of curriculum, the 1892-1893 catalog was the closest iteration of early 

bulletins to give what would likely be considered a modern course description, albeit the 

focus was still on the semester as opposed to individual course specificity. 

For the next three years, the catalogs continued the practice of describing the 

details of the first few semesters of mathematics, but the 1896-1897 catalog omitted 

information previously given, and the 1898-1899 catalog had almost no information at 

all, giving only prerequisite information and book title. This custom remained consistent 

until 1908 (the 1907-1908 catalog was missing from the online archives), when a 

comprehensive revision was made in the catalog. In the 1908-1909 catalog, the student 

classification system was dropped in determining what course was required, and instead 
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course names were listed. Further, full paragraphs were given following the names of the 

course, fully resembling modern day course descriptions. Most notably, the first 

appearance of the course title college algebra was used. In essence, college algebra as a 

singular, differentiable concept, came into existence during this time (see Figure 23). 

 

Figure 23. The first mention of college algebra in the 1908-1909 catalog, page 105. 

The specific topics of general cubic and biquadratic equations (quartic equations that are 

quadratic in form—i.e., three terms with no odd variable powers), are specific forms of 

general polynomial equations. The topic theory of equations could be interpreted as 

polynomial or otherwise; equations need not be functions, so without looking at the 

textbook, there is no way to understand what constituted theory of equations.  

The 1909-1910 through 1911-1912 catalogs were not available in the online 

catalog system, and the specific topics were omitted in the 1912-1913 catalog. Specific 

topics returned in the 1913-1914 catalog, but neither mentions of theory of equations, 

cubic functions, nor biquadratic functions appeared (See Figure 24). 
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Figure 24. The return of specific topics in CA from the 1913-1914 catalog, page 90. 

 

Starting with this catalog, functions, graphs, and determinants are identified. However, as 

aforementioned in chapter two, functions would be more a general category than a 

specific topic, and I would claim graphs would also be more of a category than a topic as 

well. For example, a graph could be a linear function or even a set of disjoint points in a 

plane, and the skill set necessary to plot a single point would not be nearly as rigorous as 

the skill set necessary to graph a rational function with asymptotes. As such, the 1913-

1914 catalog, while providing some information, was not as specific as the 1908-1909 

catalog.  

This course description remained unchanged until the 1918-1919 catalog (the 

1917-1918 catalog was unavailable in the online archives), when the mention of the word 

function was removed and added were review of elementary algebra, the number concept, 

and the fundamental idea (see Figure 25). 

 

Figure 25. The removal of functions in the 1918-1919 catalog, page 166. 

The 1919-1920 and 1920-1921 catalogs were unavailable, and the 1921-1922 

catalog removed all mention of specific topics; the course description was severely 
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reduced in specificity (see Figure 26). 

 

Figure 26. The 1921-1922 catalog returned to a limited information format, page 96. 

This course description remained unchanged until the 1931-1932 catalog (the 

1930-1931 catalog was unavailable), when a sentence was added reading “the usual 

course leading to further work in mathematics” (UK, 1931), as shown in Figure 27. 

 

Figure 27. The 1931-1932, catalog returned to a limited information format page 126. 

The language the usual course would seem to imply mathematicians has a general 

understanding of the content that would be in a college algebra course; however, through 

examining the changes in catalog so far, such a common understanding has not been 

demonstrated.  

This language remained constant through all catalogs until the 1940-1941 edition, 

which saw the return of specific topics, including quadratics, variations, permutations, 

combinations, and theory of equations (see Figure 28). 

 

Figure 28. The 1940-1941 catalog, page 182, included specific topics. 

The topics of variations, permutations, and combinations, however, were not mentioned 

in any previous version. Therefore, the decade-long description of the standard course 
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connects dissimilar topics. 

This version of the course continued essentially the same until the 1943-1944 

catalog, which introduced the sentence “A standard course.” prior to the unchanging 

description. From the 1943-1944 academic year until the 1949-1950 academic year, the 

course description remained unchanged. However, in the 1950-1951 catalog, the 

description returned to the practice of not mentioning specific topics, simply reading “a 

standard course” and giving prerequisite information (see Figure 29). 

 

Figure 29. The 1950-1951 catalog, page 190, excluded specific topics. 

From the 1950-1951 academic year to the 1976-1977 academic year (the 1975-1976 

catalog was unavailable), the course description of CA was simply Standard course. It 

should be noted that, from 1967-1977, CA was non-credit bearing, making calculus I the 

first credit-bearing course. Therefore, for 27 years, using the course description alone, it 

was unknown what topics CA included at UK. 

In the 1976-1977 academic year, substantive changes occurred to CA. Not only 

did it become credit-bearing again, but it was also renumbered from MA 111 to MA 109, 

and a full course description returned, including specific topics. This version of CA and 

the overall course descriptions resembled the contemporary look of a college catalog. 

There were no nontrivial changes in the course description from the academic year 1976-

1977 to the year 2008-2009. In the academic year 2008-2009, the topic of conic sections 

was removed, and that was the only substantive change. Since 2008-2009, there have 

been no substantive changes in the course description (see Figure 30). 
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Figure 30. The wording from the 1976-1977 catalog, page 181, was mostly unchanged 

until 2008. 

 

Aside from removing conics in 2008, the course description of CA at UK has 

therefore been unchanged since 1976. I suggest there have therefore been six eras of 

relevant history, for which I will introduce nomenclature in the interests of discussion: 

the genesis era spanning 1865 through 1907 where books were used to identify the first-

semester course (which may not align well with the concept of CA) with fluctuations in 

level of specificity of coverage in the first-semester course, the inception era from 1908 

to 1920 when CA was identified by textbook and specific topics were usually addressed 

(many catalogs were missing in this era), the prewar era from 1922-1939 when course 

descriptions did not include much in the way of identifying course aims, the war era from 

1940-1950 when specific ideas were addressed and the course remained largely 

unchanged, the dark ages from 1950-1975 where a standard course was the extent of the 

description, and 1976 to the present, which will be called the modern era with the current 

topics identified.  

To help to visualize the topics covered in CA by era, I have provided Table 1, 

which shows select eras, e.g., eras in which substantive information was provided in 

course descriptions. By comparing course descriptions over time, changes and similarities 

can be seen. 
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Table 1 

Topics covered in CA identified by era and starting year 

Era Beginning Year Topics Identified Notes 
in

ce
p
ti

o
n
 e

ra
 

1908 Theory of Equations Textbook identified 

 The General Cubic  

 Biquadratic Equations  

   

1913 Elementary Algebra  

 The Number Concept  

 The Functional Idea  

 Introduction to graphs  

 Introduction to determinants  
 

 

 

  

w
ar

 e
ra

 

1940 Review of Quadratic Equations  

 Simultaneous Quadratics  

 Variations  

 Permutations  

 Combinations  

 Theory of Equations  
 

 

 

  

m
o
d
er

n
 e

ra
 

1976 Brief Review of Basic Algebra  

 Quadratic Formula  

 Systems of Linear Equations  

 

Introduction to Analytic 

Geometry including Conics and 

Graphing  

   

2008 Brief Review of Basic Algebra Conics removed 

 Quadratic Formula  

 Systems of Linear Equations  

 

Introduction to functions and 

graphing  

 

Common topics—Relating RQ1 with Course Descriptions  

Using course descriptions in catalogs along with early textbooks, RQ1 was 

addressed through analyzing common themes. In the genesis era, individual books, such 
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as Towne’s Algebra or Peck’s Manual of Algebra were the only qualifying data given for 

topic coverage. While topics or chapters from Towne’s Algebra were never explicitly 

identified, the content spanned eight chapters and included what would today be 

considered basic algebra, linear functions, quadratic functions, logarithmic functions, 

polynomial functions, systems of linear equations, and series and sequences, although it 

was not possible to determine what, if any, topics were omitted. Further, because, in the 

genesis era, the freshman level course was not identified as CA, including material in this 

era as an integral part of the progression of the course would be fallacious. The inception 

era had two sets of topics identified under CA course descriptions. The first included (a) 

theory of equations, (b) the general cubic, and (c) biquadratic equations. The second 

included (a) elementary algebra, (b) the number concept, (c) the functional idea, (d) 

introduction to graphs, and (e) introduction to determinants. Based on the changes from 

1908 to 1913, the theme seemed to be to reach higher-level polynomial functions. By 

specifically identifying cubic and biquadratic, the underlying assumption I would make is 

that linear and quadratic functions must either first be covered or assumed to be known. 

The latter would be implied in the war era course description that included review of 

quadratic equations in many of the descriptions. In the war era, variations, combinations, 

and permutations were added to the polynomial-heavy topics. However, these topics were 

removed from the descriptions by the modern era, and analytic geometry returned.  

The finding that I can report, based on course descriptions, is that CA at UK 

always included elements of polynomial functions with heavy focus on quadratics. 

Quadratic functions, equations, or forms appeared in almost every course description 

where topics were identified. Further, it would seem that analytic geometry has been a 
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longstanding tradition at UK, having appeared not only in modern course descriptions, 

but also in some inception era descriptions. What topics seemed to have been abandoned 

are those relating to matrix algebra, series, sequences, combinations, and permutations.  

While polynomials, quadratics, and graphing have been topics that have endured, 

it should also be noted that logarithmic and exponential functions have never explicitly 

been identified in the course descriptions at UK, while most Kentucky postsecondary 

institutions have included them in current publications. While this has not precluded topic 

coverage of logarithms nor exponentials, emphasis at the publication level has never been 

a priority. 

Summary of RQ1—transition to RQ2.  RQ1 was analyzed with textbooks and 

course descriptions taken from textbooks. Documents taken from the UK online archives, 

the physical archives at the UK Special Collections Library, and from the UK 

Mathematics Department website were used to answer RQ2: What internal forces have 

led to topic coverage or attribute changes in CA?  

Internal Forces—Documents from the UK Archives and the Math Website 

Both the online special collections database as well as the physical UK archives 

contained numerous miscellaneous documents from which internal political or historical 

influences have undoubtedly had an impact on CA or the mathematics department. 

Additionally, online examinations have been stored on the UK mathematics department 

website since 2011. From these documents, RQ2 will be addressed. 

The unequivocally most powerful internal force in the genesis and inceptions eras 

was the White family. Professor James G. White, the first mathematics faculty member in 

the genesis era, led the mathematics and astronomy department from 1865 through his 
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death in 1913 (Cone, 2015; Lexington Herald, 1934). Most of the catalogs of the genesis 

era identified White as the sole professor within the mathematics and astronomy 

department. However, the 1908 edition of The Kentuckian showed the images of three 

mathematics faculty, one of whom was Martha White, although the last name could be 

coincidental (see Figure 31). 

 

Figure 31. Another professor White in the 1908 edition of The Kentuckian, page 29. 

 

In the 1909 edition of The Kentuckian, J.G. White was described as an able and 

thoughtful man (see Figure 32). 

 

Figure 32. The 1909 edition of The Kentuckian, page 60, described J.G. White. 

It was also revealed in this edition that aforementioned M. White had died. 

Regardless of potential nepotism, I would claim that J.G. White was the single most 
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influential person in the early years of the history of CA at UK because it was under his 

leadership the course came into named existence in the 1908-1909 college catalogs. As 

White was the dean of the department, his vision of the college likely shaped the topics 

identified early in the course’s history. 

In the 1910 edition of The Kentuckian, language regarding the mathematics 

department seemed to imply there were more mathematics majors than any other, and 

specific mentions of the BA and the BS in mathematics were made (see Figure 33). 

 

Figure 33. The 1910 The Kentuckian, page 122, described CA and baccalaureate 

information. 

 

This edition of the publication also addressed basic courses required in the degrees, for 

which CA was required in both.  
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Departmental annual reports in the early 1950s included insight into the 

enrollments of courses such as CA, the activities of the math faculty, and the political and 

workload struggles experienced by the department. For example, in 1954, 371 students 

took CA (at the time, there was a three-hour CA and a five-hour CA; the former was the 

more popular choice), which represented 21 percent of the entire math student population 

(Brown, 1954). The increasing number of students in mathematics coursework prompted 

the department to seek funding for a large class study the following year. The Ford 

Foundation Grant allowed $12,000 to be invested in a project that eliminated several 

smaller sections (which had previously an average of 35 students per section [Brown, 

1954]) and replace them with fewer large sections of 100 to 150 students per section 

(Courier-Journal, 1965; Eaves, 1956; Lexington Leader, 1956). In department chair 

reports from 1960 and 1963, while exact numbers of CA were not given, both documents 

noted growth; specifically, in the 1960 departmental report, the number of students 

majoring in math had increased from six to 26 from 1955 to 1960 (Eaves, 1960a, 1963). 

With more students, invariably problems arose. Eaves identified an increase in students 

repeating CA for the third time (Eaves, 1960a), which brought about a policy (still being 

followed at HCC) in which third-time enrollments required departmental permission prior 

to registration approval (Eaves, 1960b). Throughout the 1960s, the mathematics 

department continued to grow. From 1963 to 1967, the department had grown from 11 

faculty members to 25 (Tevis, 1985).  

In 1967, CA became non-credit bearing; calculus became the first gateway 

course. It was also during this academic year that the Board of Trustees’ minutes 

reflected the creation of the school of mathematical sciences with the appointment of Dr. 
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W. C. Royster as its chair (Office of the President, 1967). Further, in the next academic 

year, an NSF grant close to one million dollars was awarded to UK to strengthen the 

mathematics program (Lexington Herald, 1968; Office of the President, 1968). 

The creation of the school of mathematical sciences, the awarding of a million 

dollar NSF grant, and the demotion of CA to non-credit bearing all corresponded with 

Royster’s leadership, which seemed to have a theme of continuing to increase the size of 

the mathematics department, both in faculty and students. Further, language suggesting 

the department’s curricula were being improved, coupled with compelling all students to 

take calculus as their first credit-bearing course, would suggest that Royster had a vision 

in place for the rigor associated with the department. As CA had, up until 1967, been a 

credit-bearing integral part of both baccalaureate programs in mathematics, this transition 

period illustrated a time in which the department sought more mathematics as a part of 

their students’ general education curricula.  

The decision to make calculus the first credit-bearing course was reversed in the 

April faculty senate meeting 1976 (Department of Mathematics, 1976), and it was in this 

year the last major revision of CA to date took place. Royster was still a member of the 

mathematics faculty during this time, but reasons for the changes were not available in 

the online nor physical archives. 

Internal forces—examinations. Beginning in the Spring 2011 semester, the UK 

mathematics department began to upload CA examinations on their website. Looking at 

these tests over the past twelve semesters, I analyzed changes. I broke the types of 

questions into four categories: algebra (symbolic manipulation), critical thinking (word 

problems), arithmetic (no variables used), and analytic geometry (graphs). Among those, 



 

128 

 

answer choices were divided between multiple choice (MC) or short-answer (SA). I then 

noted the number of each in a table (see Appendix E). Most of the tests were 20 

questions, although a couple were 18 in length during the 2011-2012 academic year. 

While the balance between MC and SA questions favored MC for several semesters, as 

of Fall 2014, all tests have become completely MC. Analytic Geometry has become more 

prevalent in the examinations, now accounting for 20% of the questions. No critical 

thinking questions have been asked in the past three semesters. There are more arithmetic 

questions being asked than there were in 2011. 

While examinations were analyzed with the aim of exploring RQ2, it should be 

noted that they could have reinforced an element of RQ1: What have been the common 

topics or themes of the competencies and topics covered in CA over the years at UK? 

Specifically, examinations illustrated that the topics in the course descriptions were on 

the exams (and some exam content were not in the course descriptions). While the 

number available examinations were limited to the past few years, they did give insight to 

content in the course, which presumably influenced how instructors taught the course, 

considering the examinations were uniform across the department. 

Internal forces—syllabi. Course syllabi have not historically been preserved at 

UK. They were not in the online nor physical archives, and the UK mathematics faculty 

liaison assigned to answer my questions was unable to produce very many syllabus 

outside the current version used by all CA instructors. In all, 23 syllabi were collected 

from both UK and HCC (far more were sent to me, but as a vast majority of them were 

mine, I excluded them). One HCC syllabus was from 2007; it belonged to an adjunct 

instructor and was from an evening class. The remaining HCC syllabi were from 2011 to 



 

129 

 

the present with several gaps. All the UK syllabi were from 2010-2012. A fall 2016 

syllabus was located on the department chair’s webpage, and the fall 2017 syllabus was 

on the department website.  

The UK syllabi were essentially carbon copies. The only differences among all of 

them were instructor names and office times. No other substantive changes were 

observed as UK has a group syllabus format in which all sections of CA follow the same 

evaluation and course design. This notion would be reinforced by uniform CA 

examinations. As such, CA at UK has included tests, homework, written assignments, 

and the instructor score (attendance, pop quizzes, etc.). The weight of these assignments 

was also homogeneous. It appeared that the instructor score was the opportunity for 

individual instructors to have their own flexibility in course management. 

All the 2010-2012 UK syllabi indicated homework (18% of overall grade) was 90 

points, three exams were worth 90 points each (18% of overall grade), the final exam was 

worth 90 points, the written assignments were worth a total of 20 points (four percent of 

the overall grade), and the instructor score was worth 30 points (six percent of the overall 

grade). Interestingly, the current syllabus for fall 2016 did not include the written 

assignment, and the points were changed to an overall 550 points. The fall 2017 syllabus, 

scaled to include 500 overall points, included a written project that was 20 points and 

therefore worth four percent of the overall grade. Among all the syllabi were links to 

online homework resources and software; UK has been embracing technology in CA 

since at least 2010. 

HCC syllabi also followed the notion of a group syllabus. As with UK, all the 

syllabi (again, excluding my own) at HCC were essentially carbon copies with only 
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minor edits to them (i.e., faculty and staff room changes or updated website URL 

changes). All syllabi indicated there were five exams, each worth 100 points for a total of 

500 points overall. The final exam replaced the lowest or a missing exam grade. 

Homework was not a grade in any syllabus. All syllabi indicated that 30 bonus points 

were awarded at the end of class to any student who had never missed a day. Missing a 

day for any reason resulted in a deduction of five points. The final exam was the only 

makeup opportunity for a missed exam. None of the syllabi indicated any sort of online 

assignments or software. From personal experience, I would comment that, while UK had 

ample online assignments and resources, HCC has always been vehemently opposed to 

the integration of technology in the classroom with very few exceptions (my being one of 

them).  

Overall, the surprising finding to report on syllabi was the overall absence of 

diversity. While a community college might argue that uniform execution of a course 

would be the priority in course design to ensure as smooth a transfer experience as 

possible, it did surprise me that the only research institution in Kentucky had as 

homogeneous a syllabus and course design as a community college. Additionally, I found 

it contrary that there have been near-zero changes in the syllabus and course design since 

2007 at HCC and 2010 at UK. Technology, people, pedagogical theory, and culture all 

change. I would have thought some major adjustments would have been made to CA 

based on trends in higher education. Another finding I would report was the difference 

between the grading between a community college and a research university. While UK 

included attendance, homework, and written assignments to assist with grading outside 

summative and high-stakes assessment, the only grade at HCC was the exam, coupled 
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with an attendance-based bonus score. Additionally, UK allowed a modest opportunity 

for individual instructor flexibility; HCC did not. It has been my goal to present findings 

bereft of value statements, but this would seem to indicate the standards of the 

community college have been higher than that of UK, which might seem counterintuitive.  

Internal Forces—Relating RQ2 with archival and website documents  

While archival information for catalogs allowed for analysis to span from the 

inception to modern eras, annual reports both online and in the physical archives were 

limited mostly to the 1950s through the 1970s. Prior years were not retrievable in the 

online archives and the UK archivist was unable to locate anything prior to 1954. While I 

am sure the documents are still maintained and housed at UK, they were not available to 

me during this research. Syllabi, exams, and other instructor-specific documents have not 

been historically preserved at UK. From these documents, the idea previously 

propounded that not much has changed since 1976 extends more than just to course 

descriptions. While grants, growth of department, enrollment, and technology all 

prompted changes in the 1950s and 1960s, the modern era seemed to have little in the 

way of changing content. 

Summary of RQ2—transition to RQ3.  Examinations, syllabi, and other 

documents from the UK website were used to answer RQ2: What internal forces have led 

to topic coverage or attribute changes in CA? However, these documents were 

insufficient for addressing RQ3: How has QR evolved at UK? Because QR was a 

relatively new notion at UK, institutional documents relating to the UK self-study effort 

were used.  
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QR Evolution—Documents from the Self-Study 

When researching the history of QR through the online and physical archives, it 

became quite clear the notion of QR has not been a longstanding concept at UK. In fact, 

the term quantitative reasoning did not appear in any of the online catalogs prior to 2011 

to refer to an academic requirement, although synonymous terms were used among 

disciplines such as nursing within course descriptions. Prior to the QR requirement, 

catalogs had an inference requirement for several years, and a mathematics-philosophy 

requirement since at least 1972. Catalogs prior to 1972 indicated a general studies 

component for degrees, but these were not made explicit under graduation requirements, 

nor did entries exist in the indices. It should be noted that, since at least 1972, one did not 

have to take CA, nor even a mathematics or statistics course, to earn a baccalaureate 

degree if one opted to take specific philosophy courses. While an argument could be 

made that the differences between a QR requirement and an inference requirement are 

trivial, to narrow the scope of the research, QR was specifically researched in RQ3. 

Because of this absence of terms, the online and physical archives were insufficient in 

addressing RQ3. Therefore, other institutional documents were used to answer RQ3. 

In the 2010-2011 academic year, the catalog included language that the inference 

requirement for graduation was being revised (UK, 2010). In the 2011-2012 academic 

year, however, the inference requirement for graduation was replaced with the QR 

requirement under the new UK Core; it was this year in which CA no longer satisfied the 

QR (inference) requirement (UK, 2011). This decision was reversed effective fall of the 

2017-2018 academic year. In the November 2016 meeting of the UK Mathematics 

Department, the faculty discussed their desire to convert CA back to a general education 
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course, re-endowing it with QR status (UK Department of Mathematics, 2016a). The  

process of acquiring QR status included an application with a rubric complete with 

examples and a syllabus-based course review (UK Department of Mathematics, 2016b) 

The formal origin of this change can be traced to the recommendations of a 2004 

self-study report of the University Studies Program (USP) that preceded the UK Core. 

The self study reported there were myriad differences of opinion about the value of the 

USP, the role of general education, the role of assessment and evaluation of the USP, and 

the goals of the USP (University Self Study Committee, 2004). Further, the USP report 

urged that, at a minimum, the USP goals needed to be revisited and compared with a 

student learning and development framework. These goals were partitioned into three 

groups relating to (a) interdisciplinary and liberal arts knowledge, (b) common skills 

across disciplines, and (c) broader outcomes over different forms of reasoning or social 

responsibility/citizenship (University Self Study Committee, 2004). Additionally, while 

the USP self study was taking place, the report identified that “other groups on campus 

were recognizing the need to evaluate general education and were making plans for 

innovative methods” (University Self Study Committee, 2004, p. 36).  

Another body (possibly referenced as one of the other groups above) created 

during this time was the External Review Committee (ERC) which also released a report 

on the USP. In 2006, the ERC report examined other universities’ general education 

programs to analyze the requirements of 19 other institutions around the US. The ERC 

report’s first recommendation was that the USP be restructured based on the following 

four curriculum objectives: (a) provide students with eight specifically-identified 

essential skills and three specifically-identified basic skills, (b) enable students to think 
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from perspectives across different disciplines, (c) require students to inquire, analyze, and 

reflect, and (d) include a citizenship/cultural component (ERC, 2006). The ERC 

deliberately avoided making specific recommendations about requirements, programs, or 

curricula, but the body did urge a larger conversation take place at UK based on data-

driven and collaborative research into how the USP could be renovated.  

In 2005, members of the UK Senate Council and its chair worked with both 

Miami University and a team from Indiana University-Purdue University—Indianapolis 

(IUPUI) to study their general studies programs. After researching their program, the 

Senate Council and the UK Provost’s office formed the General Education Reform and 

Assessment (GERA) Committee to encourage campus conversation about USP reform 

and the necessary assessment associated with such reform (GERA, 2006). GERA 

Committee took much time during its formative months to scrutinize the findings and 

recommendations of the ERC final report. Through forums and other feedback, the 

GERA Committee collected and published comments and concerns about the USP. The 

final report addressed issues of individual departments having to provide general 

education requirement services for the entire university (GERA, 2006). For example, 

providing mathematics skills for the USP lay entirely on the mathematics and philosophy 

departments. Ultimately, the GERA final report indicated that reform must occur only if 

the faculty were able to “teach differently and with the prospect of freeing up more of 

their time for research and graduate teaching” (GERA, 2006, p. 9). 

These three reports were then summarized in a self-proclaimed whitepaper by the 

UK provost.  

I share the ERC’s conclusion that the starting point for a reconceptualization of 
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general education is the articulation of a new curricular framework within which 

our current or some new set of courses would be embedded. Indeed, by way of 

foreshadowing, I believe our current set of disciplinary courses, relying as they do 

on the discrete subject matter of pre-major courses, are ill-suited for the curricular 

framework of an ambitious program of liberal education (Subbaswamy, 2006, p. 

2). 

Subbaswamy echoed the notion put forth by the ERC that the UK USP should avoid 

thinking in terms of specific courses faculty want students to take, addressing math by 

name, and to think about the knowledge the faculty want to be transmitted. Subbaswamy 

was forthright in admitting the whitepaper was influenced heavily by ideas and values of 

LEAP and quoted several LEAP standards and research.  

The provost’s report, along with the efforts of the ERC and GERA, were clearly 

grounds for action; a report from the University Committee on Academic Planning and 

Priorities Undergraduate Education Domain Subcommittee (UCAPPUEDS) stated that 

they were “keenly aware of the other groups on campus working in tangential areas, e.g. 

the USP Reform Steering Committee…” (UCAPPUEDS, 2007). The following year, the 

UK Senate adopted the recommendations of this steering committee (UKCore, n.d.-a), 

which were to go into effect during the 2011-2012 academic year (UKCore, n.d-b). It was 

from this decision that quantitative reasoning first became a concept as a requirement at 

UK.  

The year in which the UK core became live excluded CA from the list of 

approved QR courses. However, in November of 2016, the mathematics department 

agenda included an item to add CA to the UK core (UK Department of Mathematics, 
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2016). Included on their website was a document demonstrating how CA could meet all 

the requirements of QR. In the current year’s catalog, CA reappeared on the list of 

courses with QR status (UK Core, 2017). 

QR Evolution—Relating RQ3 with Self-Study Documents 

Based on the website of the UKCore, the documents provided on that website, 

and documents collected from related committee websites, QR as a requirement at UK 

was heavily influenced by research from other institutions’ general education formats, as 

well as from the office of the provost, whose perspective was heavily influenced in turn 

by LEAP. The overarching idea of QR grew from the notion that student learning 

outcomes, not courses out of specific disciplines, should dictate what classes would 

satisfy general education coursework, which explained how CA was able to lose QR 

status and also how several other non-mathematics courses were able to attain the QR 

attribute. 

Chapter IV summary. Findings from this chapter have revealed much data were 

available from the myriad sources in the physical archives, online archives, various 

departmental websites, as well as in library records. These data were, by themselves, 

demonstrative of many personal and political factors that have shaped CA throughout the 

years. However, wider spread implications and conclusions can be made to how these 

findings can influence the broader landscape of higher education. Chapter five has served 

to explore these conclusions.  
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CHAPTER V: CONCLUSIONS 

This study researched, investigated, and analyzed the content that has been 

covered in CA at UK as the course has evolved over the years, examining reasons for 

content change. Additionally, themes in pedagogy and internal UK politics were also 

developed. This qualitative inquiry focused on historical events through document 

analyses. Changes to course descriptions, themes developed in textbooks, observations 

made regarding examinations, comparisons of syllabi, and interpretation of official 

documents were highlighted for the purposes of determining how the current incarnation 

of CA has evolved. The discernments gleaned from this project were useful in 

establishing (a) what CA is, (b) why it contains the specific material taught, and (c) 

historical context that challenge why CA has been the default quantitative reasoning class 

of choice for many institutions, especially community colleges. 

Empirical research questions include the following: 

1. What have been the common topics or themes of the competencies and topics 

covered in CA over the years at UK? (RQ1) 

2. What internal forces have led to topic coverage or attribute changes in CA? 

(RQ2) 

3. How has QR evolved at UK? (RQ3) 

Summaries on RQ1 

RQ1 was what have been the common topics or themes of the competencies and 

topics covered in CA over the years at UK? The most prevalent conclusion that I have 

made was that CA has evolved through the years based on internal values and beliefs of 

the institution. Evidence from chapter two research regarding the disparity of topic 
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coverage revealed that institutions in Kentucky have different ideas about what material 

should be included, although there were commonalities and themes as well. However, 

catalogs from the late 1800s found in the online UK archives revealed that textbooks 

were the guiding principle for topic coverage. Additionally, the content of these early CA 

courses was radically different from the content of any course currently being taught in 

Kentucky.  

After 1907, the practice of using books to identify the material of CA was 

dropped, and descriptive text resembling modern day course descriptions appeared in the 

catalogs. However, their usage was inconsistent. A common practice in the early to 

middle part of the twentieth century was to use a standard course as the description, 

giving me the impression the faculty had great leeway as to what was covered. By the 

late 1970s, this practice fell out of use, and the modern-day course description has been 

nearly unchanged since. However, the topics identified in this description were vastly 

different than the topics identified in the course descriptions prior to the standard course 

years. Because the course description has remained largely the same for over forty years, 

the idea that there has been agreement about the content and material found within CA 

would lend credence to (for example) a seasoned mathematics faculty who made this 

observation. This notion would be further supported by the analysis of syllabi among 

both UK and HCC faculty, as well as the uniformity of examinations observed on UK’s 

mathematics department website. A common syllabus was used by all faculty at both 

institutions for CA, although these documents have not historically been preserved, and 

no syllabus older than ten years was found.  

However, much evidence was discovered that has suggested there has been less 
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agreement than a cursory glance at these documents would reveal. In addition to the 

differences discovered among other public universities in the state, the textbooks that 

have been used to teach CA showed differences. There were organizational, pedagogical, 

and content changes with new editions. Because the authors of the textbook made 

changes, I assume the faculty adjusted their courses to match the changes. Even if 

seasoned faculty refused to change the manner in which they taught their courses, I find it 

highly likely newer faculty (who likely never saw older editions) would be teaching their 

classes differently from their colleagues who had been using the prior editions. Further, 

that textbooks could have organization and topic differences from older to newer editions 

suggested to me that there have been changes in material of the curriculum at a more 

national level.  

Examinations were another source of evidence that suggested there has been no 

universal agreement as to what CA should be. In the examinations from 2011 to spring of 

2014, there were multiple choice questions as well as short answer questions. Starting in 

the fall of 2014, all examinations had become completely multiple choice. While the 

reason for this may be, in part, scarce resources on the part of the department (grading 

short answer questions takes more time and scrutiny than multiple choice), there were 

implications from this change. If CA has been a course where students were being taught 

how to think quantitatively, reason, and draw logical conclusions, then a short answer 

examination would be appropriate for assessing that form of thinking. However, if CA 

has been a course where specific skills have been sought—that the emphasis was on a 

student’s ability to solve particular types of questions accurately—then either multiple 

choice or short answer would be appropriate for assessment. That is, if accuracy of 
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student computation were the most important goal, then multiple choice examinations 

were suitable for course objectives. However, if CA, which did not satisfy QR 

requirements at UK during the time this research was conducted, was supposed to be a 

course where final answer was not as important as the manner of thinking, then a 

multiple-choice examination was ill-suited to measure student performance. This claim 

was further corroborated by the decline and eventual absence of critical thinking 

questions from the exams. While the overall test material did not change much over the 

past six years, the delivery and composition of question type did transform. 

Examinations, therefore, changed over six years. However, a change in test 

questions themselves does not constitute an absence of agreement in CA, but they do 

when considering the syllabi that were analyzed. In all the HCC syllabi reviewed, a 

written work policy was included that explicitly outlined how written work was necessary 

to receive any credit for a given problem (see Appendix F). Therefore, while the tests and 

syllabi I found have not shown explicit differences in CA material, they have 

demonstrated variance in consensus as to how CA should be delivered and philosophical 

differences on CA objective and purpose. 

Syllabi have also revealed that assessment of the course has changed at UK, and 

the UK syllabi were considerably different than the HCC syllabi. These changes and 

differences exposed incongruence between the grading and emphases between a 

community college and a research university. Surprisingly, however, I determined that 

the rigor and difficulty level was more strenuous at the community college than it was at 

UK. HCC’s tests, by prohibiting multiple choice, relied entirely on student work (one can 

guess on a multiple-choice exam). In addition, a student, when given answers, could back 



 

141 

 

track or test them against a function or equation, giving the student an advantage. Finally, 

the UK syllabi indicated homework, attendance, and other grades were considered in 

student assessment. The grade composition of the HCC syllabi allowed only for 

examinations to be considered. 

The overarching conclusion, therefore, is that CA has changed in content at UK. 

Competencies and topics covered have been different, and this was observed over long 

periods of time. While the course has consistently looked at functions, quadratics, and 

analytic geometry, early concepts such as sequences and matrices have disappeared from 

the course. In the past four decades, the course description has been relatively constant 

per the course description, but resources such as technology and funding have altered the 

fashion in which the course has been taught and assessed.  

Summaries on RQ2 

RQ2 was what internal forces have led to topic coverage or attribute changes in 

CA? Internal forces have had considerable impact on topic coverage and attribute 

changes. In the earliest available documents, individual instructors seemed to have great 

influence on what material CA would cover, considering the course descriptions were 

just a list of what chapters would be covered in a textbook. Professor James G. White was 

the first and only mathematics faculty member for most of the genesis era (1865 through 

1908). As the department grew, an effort to make the topic coverage uniform was evident 

with the appearance of course descriptions, but even in the absence of course description, 

there were internal forces that changed course attributes, especially in the war era (1940-

1975). 

Examinations did not date back more than a few years, but they were invaluable 
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in giving me insight to the content of the class. Because examinations were uniform 

across the university, I would think that instructors taught material to prepare their 

students for the exams. This would imply not only examinations, as they changed, 

showed how course attributes changed, but these tests likely reinforced notions from RQ1 

regarding the topics of the course. If examinations were available across all six eras, they 

could be the most useful documents for answering RQ1. Examinations also raised a 

subtle question regarding the purpose of CA. If the goal of CA has been to instill in 

students a set of skills, then multiple choice was an appropriate delivery method for the 

examinations. However, if CA should compel students to learn to reason quantitatively, 

then the simple right or wrong answer of a multiple-choice exam would not appropriately 

measure this outcome. For example, if a student were to work a 15-step problem, but 

erroneously drop a negative in the seventh step, the student would almost certainly arrive 

at an incorrect answer; however, that student might have reasoned through the problem 

exceptionally well and quantitatively. Further, examinations likely led to grading 

consistency. At both HCC and UK, examinations have been uniform. At UK, the same 

examinations were used among all sections of CA, and the multiple-choice format forces 

instructors to weigh problems equally. At HCC, templates have been used to ensure all 

examinations had the same number of questions and addressed the same competencies, 

although differences in grading might introduce some inconsistencies. 

Annual reports and departmental minutes revealed that funding opportunities and 

internal politics impacted CA. Grants in the 1950s and 1960s prompted many changes 

and created new programs in the UK mathematics department. The department grew on 

both the student and faculty side, class sizes were increased, the department was 
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separated from astronomy and defined as its own business unit, and facilities, including 

computer equipment and library services, were added. Several annual reports included 

language about how the department’s curricula were being improved, including a change 

in 1967 where CA was no longer credit bearing. This was the most substantive change in 

course attribute and occurred close to two events: a near-million dollar NSF grant 

awarded to the department and the appointment of Dr. Royster as the chair. The decision 

to make calculus the first credit-bearing course was reversed in the April faculty senate 

meeting of 1976, starting the modern era, where the course description has remained 

mostly unchanged (conic sections were dropped in 2008). 

Despite that the CA course description has hardly changed since 1976, the second 

most significant attribute change to CA occurred in 2011: the course lost its QR status. 

While the course remained credit bearing, simply completing CA did not satisfy the 

university QR requirement following several years of self study and research. Despite 

that CA is still the default QR of choice at the community colleges in Kentucky, the 

university that used to administrate these institutions had ended this practice, only to 

reverse it effective fall 2017.  

Summaries on RQ3 

RQ3 was how has QR evolved at UK? The term quantitative reasoning is 

relatively new at UK. Other terms or requirements have been used to describe a general 

mathematics or reasoning requirement at the university, but since at least 1972, UK has 

required a mathematics/philosophy course in order to graduate with a bachelor’s degree. 

While this requirement would later include statistics (and I have deliberately avoided 

engaging in the is statistics mathematics? conversation), those two fields have dominated 
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the requirement until the UK Core replaced the USP in 2011. This was an unexpected 

finding, and it represented a significant issue in one of my underlying assumptions—that 

CA was the default QR course at UK for a clear majority of the college’s history. 

Without doing further research, I cannot say with certainty how many students took CA 

versus symbolic logic. I can speak locally at HCC by running an internal report on how 

many sections of symbolic logic have been offered at HCC over the past fifteen years 

(zero), so I can say with certainty that CA has been the default QR at HCC, but further 

research would have to be conducted to make the same assertion about UK. 

The origin of the term QR was traced to a 2004 self-study report of the USP that 

spawned several committees. After conducting much external research and encouraging 

campus communication and discussion among faculty, staff, students, and administration, 

UK decided that the idea of a general education should be knowledge learned, not classes 

required. Because of this seven-year dialogue and research, QR (specifically called 

quantitative foundations) was not only defined, but other courses outside mathematics 

and philosophy attained QR status.  

I would conclude, based on statements from the documents, that the faculty’s 

desire to research and teach graduate classes played a small role in motivating the UK 

mathematics and philosophy departments to encourage (or at least not fight) other 

departmental courses from attaining QR status. While I was unable to ascertain whether 

there was considerable encouragement or argument regarding QR to apply to other 

disciplines, the conversations were not limited to the philosophical questions of student 

knowledge versus required courses, but were personal in nature to faculty time and 

resources.  
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Significance to Educational Leadership 

This study had several aims. It examined how CA has evolved at UK in terms of 

content, reasons for content changes, and the development of QR requirements. These 

examinations were completed to define CA—to discover what material has constituted 

CA and if CA constituted covering that material, which I defined as the one-to-one 

function. Further, these examinations served to explore why CA has been the default QR 

requirement at UK and the community colleges (although I now know that there could be 

several students who have taken symbolic logic instead of CA at UK). This study 

therefore bears significance to the educational leader, especially at the community college 

level in Kentucky, when looking at making curricular decisions. 

Performance-based funding. In the past couple of years, on the forefront of 

many educational leaders’ minds has been Senate Bill 153 (SB 153), the legislation for 

performance-based funding (Kentucky Legislature, 2017). SB 153 described a proposal 

for distributing state-allocated money for both public universities and community 

colleges through a model where 35 percent of funding would be contingent upon 

performance outcomes, 35 percent upon credit hours earned, and 30 percent to 

operational costs (Spalding, 2017). Specifically, SB 153 would allow state funding to be 

“based on rational criteria, including student success, course completion, and operational 

support components” (SB 153, 2017, p. 5).  

Because student success and course completion were explicitly identified, 

recognizing the challenges of requiring all community college students to take CA would 

undoubtedly have an impact on funding. While CA may be appropriate for STEM 

majors, a student majoring in the liberal arts, for example, may find CA far more 
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challenging than a course such as liberal arts mathematics. An educational leader might 

choose to research completion rates of such a course versus CA. Additionally, other non-

mathematics coursework that could satisfy LEAP definitions of QR might also be 

substituted to increase student success and completion rates. 

Pathways and meta-majors. The Kentucky CPE’s Guiding Principles (2015), 

while focusing mostly on co-requisite models and courses, addressed the idea that 

“specific connections between the Individual Learning Plan (ILP) for secondary students 

and the student meta-majors or career pathways should be used, where available, by 

academic advisors and career counselors” (p. 3). Pathways and meta-majors have been a 

continuous topic of discussion and is currently being pursued by CPE; the college 

admissions regulation (13 KAR 2:020) is being reviewed, and the addition of QR 

pathways relevant to student credential is a CPE suggestion for consideration (Cain, 

2017).  

Regardless of one’s personal views regarding co-requisite remediation, pathways, 

and the influence of political bodies such as CPE in higher education, leaders must be 

cognizant of these political factors and agendas. Because CPE is actively seeking to 

incorporate QR pathways into state legislation, educational leaders should be aware of 

this to prepare for a potential new law. By planning and anticipating these changes, 

lessening their overall operational and curricular impact through proactive 

implementation makes compliance management and expense manageable. By 

understanding the history of CA and knowing the story of QR development at UK, 

leaders can make more logical and compelling knowledge-driven arguments to faculty as 

to how accomplishing such goals as QR pathway development can be done while 
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maintaining academic integrity.  

Liberal arts philosophy and academic integrity. The idea of liberal arts dates to 

the Roman Republic (O’Banion, 2016; Wintrol, 2014), and the underpinning idea of a 

general education rests heavily in liberal arts philosophy (O’Banion, 2016; Vander Schee, 

2011). While the purpose and value of a general/liberal arts education may be greatly 

debated (Lytle, 2013; McGrath, 1944; O’Banion, 2016; Vander Schee, 2011; Wintrol, 

2014), the overarching idea has been to expose students to myriad disciplines and skills 

for some sense of academic versatility (some authors and researches have taken great 

measures to differentiate among liberal arts, liberal education, and general education; I 

have not). The common theme of these requirements has been to instill in students certain 

skills pertaining to critical thinking, cultural awareness, and stellar citizenship (Dwyer et 

al., 2003; Lytle, 2013; McGrath, 1944; O’Banion, 2016; Presseisen, 1987; University 

Self Study Committee, 2004; Vander Schee, 2011; Wintrol, 2014). Because the aims of 

liberal arts and general education have been to broaden students’ perspectives and 

thinking, and because the literature has indicated this should be accomplished through 

different perspectives and thinking across the disciplines, to compel students to take any 

specific course (and therefore a single approach to quantitative thinking) would ironically 

contradict the latent idea of liberal arts and the traditional meaning of general education.  

If an educational leader fully supports the ideas and philosophies of liberal arts, 

then students should have more than a single choice to satisfy any general education 

requirement to protect academic integrity. If any general education has a set of 

specifically-prescribed courses, then breadth of knowledge being taught follows a 

specific set of skills, not a broad set of knowledge. While I am not making any claims of 
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value to which set should be present in higher education, curriculum decision makers 

should be cognizant of the subtle differentiation. 

This study would serve the educational leader, especially at the community 

college, in making informed decisions about general education, quantitative reasoning 

status and attribute, and policies about CA—whether approving curriculum changes or 

concerning its role as a QR requirement. Contemporary educational leadership depends 

on decisions with regards to forming a more flexible general education curriculum, 

considering the future of higher education with the variables comprising performance-

based funding, establishing QR pathways, and developing/implementing meta-majors.  

Suggestions for Further Research 

Because this research relied heavily on document analysis, and many of the 

documents were unavailable through online or physical archives, a member of the UK 

community might have better access or resources to locate documents that I could not. 

Along those lines, such a UK community member may also be able to discover what 

textbooks were used in the past and could complete research on those textbooks in 

addition to or instead of the MLS and ABN textbooks. The documents that I sought were 

those that were logical to me to analyze; however, future research may seek different 

documents to complete this study from a different perspective. 

Topics within the textbooks, and the lenses that I used to scrutinize those topics, 

were only a small perspective. Future research could investigate different topics and 

analyze them using different coding to develop different themes. While I looked at 

definitions, Example 1, and organization, a stronger emphasis on pedagogy, semiotics, or 

other metrics could present research opportunities.  
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Because UK was the focus of research, many other institutions could be 

examined. This study could be replicated at other postsecondary institutions in Kentucky. 

Further, this study could be completed at other research institutions in other states or 

countries. This study could be repeated at community colleges or could be modified and 

completed at private colleges. Further, a quantitative instrument could be developed or 

located, and a similar study focusing on elements such as course descriptions or elements 

within a syllabus or policy could be conducted on several institutions. While CA and QR 

were the primary subjects scrutinized, calculus, trigonometry, or other courses within 

mathematics could also be considered. Likewise, other disciplines or requirements 

outside of QR (such as written communications or social and behavioral science) could 

also be investigated.  

Finally, a study could be completed to measure what mathematics faculty 

perceive as the fundamental content or crucial topics in CA. A survey, interview, or case 

study into faculty perspectives would be revealing in determining what they feel CA 

should include. It would also be evident if disparities of perception existed in establishing 

the essential topics of the course. Such research would be definitive in disproving the 

absence of the one-to-one function.  

Conclusions 

CA has been a staple not only at UK, but around the nation. It has been a default 

QR, although many other courses allow for quantitative reasoning. While students 

entering the STEM field certainly need the material to be successful in their academic 

and professional careers, to compel blindly all students to take the course does not serve 

student (and often institutional) best interest. Further, there has been much evidence to 
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suggest there has not been a consistent delivery and agreement as to what material 

constitutes CA, nor what material comes to the minds of mathematicians if they were to 

be asked to answer what is college algebra? While this staple course has endured for 

several decades, its popularity may decline as educational leaders start to question 

whether CA is the best fit for most of their students. In the vacuum created by such a 

decline of CA offerings, other QR-worthy courses may further diversify the curricula of 

higher education. 
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APPENDIX C: CATALOG NOTES 

Catalog Notes 

1865-1866 First catalog available in online archives 

1874-1875 Missing 

1876-1877 Last mention of Towne's Algebra 

1877-1878 Missing 

1878-1879 First mention of Peck's Manual of Algebra through XI 

1879-1880 Missing 

1881-1882 Peck's Manual of Algebra through XI 

1882-1883 Switched to Wentworth's Algebra 

1883-1884 First mention of specific chapters 

1891-1892 First attempt at course descriptions 

1892-1893 Sentences used to describe semester 

1896-1897 Less descriptive than prior editions 

1898-1899 Back to almost no description 

1907-1908 Missing 

1908-1909 Introduced course names, CA, and course descriptions with specific topics  

1909-1910 Missing 

1910-1911 Missing 

1911-1912 Missing 

1912-1913 Specific topics removed. 

1914-1915 This and the next year's were merged in archives. May be reversed. 
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1915-1916 This and the prior year's were merged online archives. May be reversed. 

1917-1918 Missing 

1919-1920 Missing 

1920-1921 Missing 

1921-1922 Course descriptions removed 

1926-1927 Missing 

1928-1929 Missing 

1930-1931 Missing 

1931-1932 Started “The usual course” 

1940-1941 Descriptions of topics returned 

1943-1944 Description changed slightly. Included “A standard course” and topics 

1950-1951 Description disappeared; just “A standard course” 

1961-1962 Missing 

1966-1967 Introduction of “CA and Trig” 

1967-1968 “CA & Trig” and CA became non-credit. Calculus was 1st credit-bearing 

1972-1973 Introduction of Pre-calculus  

1975-1976 Missing CA-related pages in catalog 

1976-1977 

CA returned to credit-bearing; descriptions listed separate from dept. 

Contemporary organization of descriptions 

1980-1981 This and the next year's were merged in archives. May be reversed. 

1981-1982 This and the prior year's were merged in archives. May be reversed. 

2008-2009 Conics removed. First change since 1977. Functions added. 
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APPENDIX D: FIRST-ROUND CODING ON TEXTBOOKS 

Functions 

1st Ed. ABN: 

 Assumed only equations (mentioned sets and graphs, but none used in 

examples) 

 Lots of “not functions” used in explanation 

 Used the word correspondence many times without explaining/defining 

 In the Identify Functions example, only equations are given; students not 

shown how to identify graphs or sets as functions despite defining 

functions w/ graphs & sets 

 No graphing of functions at all 

2nd Ed. ABN: 

 Added “alternate definition” using sets 

 Added sets to examples/explanations 

 Added graphing functions to examples/explanations 

 Added horizontal line test to examples/explanations 

 Added vertical line test to examples/explanations 

 Added increasing/decreasing/constant functions to examples/explanations 

 Added piecewise functions to examples/explanations 

 Added greatest integer function to examples/explanations 

3rd Ed. ABN: 

 Relations heading added 1st 
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 Added relation prior to talking about functions 

 Defined correspondence using a table/equation/graph 

 Defined functions using “set of ordered pairs” 

 Still using a lot of “not a function” wording 

 Uses a set in an example on page 146 

 Uses a picture of a set on page 148 

 Defined domain to be more broad on page 149 

 Differentiated graph of a set page 150 

 Many repeated concepts; i.e., page 146. Domain/range and 1-1 concepts 

repeat/reinforce concept of function having no repeating x values 

 Repeated concept on page 148 “Recall that a function is…” 

 “Point of Interest” added about Euler on page 145 in margin 

 Added graphing functions to examples/explanations 

 Added integrating technology to examples/explanations 

 Added mild algebra of functions (arithmetic of functions) to Example 1 (e) 

on page 147 

 Added “topics for discussion” on page 191, a section summary/review of 

new concepts 

4th Ed ABN: 

  “Point of Interest” renamed to “Math Matters” on page 148  

5th Ed. ABN: 

 Added more integrating technology to examples/explanations 
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 Very little substantive changes noted 

6th Ed. ABN: 

 Added “prepare for this section” on page 177, a review of concepts prior 

to starting the section on functions 

7th Ed. ABN: 

 In 6th Ed., font face changed to a sans serif when bold (to emphasize a 

vocabulary word), but in this edition, bold words remained the same font 

face (Times New Roman?) 

 Example 1 switched with the paragraph on function notation 

 Example 1 changed to identify function instead of evaluate function 

(which makes more sense to me as being the first example; mention in 

Chapter 5) 

 Piecewise example changed from a word problem to an evaluate/algebra 

problem (which makes more sense to me as an easier/more effective first 

problem for students who have never seen a piecewise function before; 

mention in Chapter 5) 

 Zero of a function added to examples/explanations 

 “Topics for discussion” removed at the end of the section that summarized 

new concepts 

8th Ed. ABN: 

 Odd typo in the first sentence on page 164; this sentence has otherwise 

remained the same since its first appearance in the first addition. 
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 Domain moved ahead of piecewise functions 

 Graph added to piecewise functions, so not just algebra anymore 

 A figure/box was added prior to zero of a function that explained the 

concept more in-depth; box takes up over half a page 

 Colors/graphics changed throughout section 

1st  Ed. MLS: 

 Functions as a correspondence between two sets 

 Domain briefly addressed 

 Three-part description of functions 

 EX1 picture of sets 

 Naming functions after EX1 

 Value/image used to address range 

 Domain further defined as “largest possible set of ℝ where formula is 

meaningful” 

 EX2 is domain/range 

 Independent/dependent variable before  EX3 

 EX3 evaluate (no explanation of how to evaluate) 

 EX4 is difference quotient 

 Alternate definition of function a set of ordered pairs 

 Graphing and vertical line test 

 Increasing/decreasing functions 

 EX5 increasing/decreasing functions; part b was constant function 

 EX6 was greatest integer function 
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 Translations 

2nd  Ed. MLS: 

 Odd/even functions added prior to increasing/decreasing functions 

 Weight changed to test scores in opening paragraph 

3rd Ed. MLS: 

 Relations  added prior to definition of function 

 Pizza parlor intro deleted 

 Definition of function revised to relation  

 EX1 heavily revised with six parts, including sets and word problems 

 Next text regards graphs and vertical line test 

 EX2 graphs points prior to sections 

 Following is function notation 

 EX3 is domains 

 Maximum and minimum  added 

 Odd/even, increasing/decreasing, translations, and greatest integer 

function are all deleted 

 EX6 is a word problem 

4th Ed. MLS: 

 Relation paragraph heavily revised; Replaced with business analogy 

 

Polynomial Functions 

1st Ed. ABN 
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 4.1 long and synthetic division; included Factor Theorem 

 4.2 graphs 

 Starts w/ review using table of constant, linear, and quadratics as special 

cases of polynomials 

 Graphs are first described as smooth and continuous with a figure to 

illustrate 

 Polynomial function is designated as 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ +

𝑎1𝑥 + 𝑎0, although no attention is given to explaining this 

 Then “leading term test” and moves into FL/FR 

 Charts used for FL/FR 

 EX1 is FL/FR w/ four parts all in standard form 

 Answers to EX1 include both algebraic and graphic explanations 

 EX2 is Remainder Theorem 

 Turning points given after EX2 

 Relationship established among zeroes, x-intercepts, linear factors, and 

roots 

 EX3 is intercepts and graphing polynomials, using synthetic division 

 Then “Zero Location Theorem” (Intermediate Value Theorem) 

2nd Ed. ABN 

 Content largely the same; many graphics moved into the margins 

 All examples are in standard form 

3rd Ed. ABN 
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 Section renamed from “graphing polynomial functions” to “introduction to 

polynomial functions”  

 Table explaining constant, linear, and quadratic functions moved 

immediately below paragraph explaining them (prior editions it was at the 

bottom of the page) 

 Chart explaining FL/FR had color added 

 EX1 largely the same 

 FL/FR behavior graphing calculator exercise added 

 Local and absolute minimum and maximum added with figure to explain 

 EX2 changed to word problem 

 Numerous graphing utility examples added 

 “Topics for discussion” added at the end of the section 

4th Ed. ABN 

 Section renamed to “polynomial functions” 

 Relative minimum and maximum expanded; includes intervals 

 FL/FR graphing utility explanation removed 

 Relationship among zeroes, x-intercepts, linear factors, and roots moved 

into colored box for emphasis 

 Powers on linear factors added and x-intercept behavior established 

5th Ed. ABN 

 Section renamed to “polynomial functions of higher degree” 

 Graphing technology put back in for maximum and minimum 
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 EX3 changed to factoring a cubic into linear factors to find x-intercepts 

 General graphing procedures added to the end of the section 

6th Ed. ABN 

 “Prepare for this section” added 

 After polynomials are designated as 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ +

𝑎1𝑥 + 𝑎0, a “take note” is added in the margin to explain the subscripted 

pieces 

 Large table added with graphics to explain FL/FR 

 Turing points moved under maximum and minimum heading 

 Zero Location Theorem renamed Intermediate Value Theorem 

 Graphing technology added to explain powers on linear factors 

7th Ed. ABN 

 Mostly font/color changes 

 Additional word problem with technology added at the end of the section 

8th Ed. ABN 

 In the margin, the definition of the general form of a polynomial is made 

more explicit and subscripted components explained 

1st Ed. MLS: 

 Definition given in thick mathematical notation with no clarifying 

language 

 Graphing interpretation immediate 

 Plot several points to get shape 
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 No FL/FR behavior argument given 

 First forms graphed are of the form 𝑦 = 𝑥𝑛 

 Stretching/compression argument made for 𝑦 = 𝑎𝑥𝑛 where 𝑎 > 0 

 Example 1 is graphing the form 𝑦 = 𝑎𝑥𝑛 where 𝑎 > 0 

 Translation arguments made for 𝑦 = 𝑥𝑛 + 𝑘 

 Reflection argument made for 𝑦 = 𝑎𝑥𝑛 where 𝑎 < 0 

 Odd-powered polynomials have one real zero; pseudo FL/FR argument, 

although even-powered polynomials are not addressed 

 Factoring argument given for general polynomial form 

 Critical value method argument used between linear factors 

 Odd and even powers on linear factors not addressed in depth 

2nd Ed. MLS 

 Moved to section 6 and linear, quadratic, and conics covered first 

 Much the same, except EX1 changed to graph the form 𝑦 = 𝑥𝑛, rest 

examples stay the same but pushed back 

3rd Ed. MLS 

 Major revisions in 3rd edition.  

 Linear and quadratic moved out of the chapter 

 Chapter starts with synthetic division section (section 1) 

 Then complex root section (section 2) 

 Section for polynomial roots follows (section 3) 

 Graphing polynomials is its own section (section 4) 
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 Rational Zero Theorem used to find zeros of a polynomial, although 

connection between zeroes and x-intercepts is not made explicit 

 Intermediate Value Theorem used to determine the existence of zeroes 

 Upper and Lower Bound Theorem introduced to find boundary of zeroes 

 DesCartes Rule of Signs introduced to determine the number of positive 

and negative real zeroes 

 Higher-degree polynomials not factored into linear factors 

 Still no mention of powers on linear factors 

 Much approximation of zero graphing 

4th Ed. MLS 

 Section 1 changed to quadratics 

 Section on synthetic division and complex zeroes collapsed into section 2 

 Section 3 is zeroes 

 Section 4 is graphing; starts with FL/FR behavior 

 EX1 changed to graphing a polynomial in factored form 

 No connection made between standard form and factored form 

Rational functions 

1st Ed. ABN 

 First sentence in the section on rational functions is the definition 

 Given as a quotient of two polynomial functions 

 Following definition is a claim about domains (domain of F is all reals 

except those for which Q is zero) 
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 Example of definition is given immediately following the definition 

 First part of explanation is domain 

 Another example of definition is given 

 Graph of second example is given with 5-part explanation 

 Increasing function without bound language used, notation used to show f 

increasing to infinity as x approaches a value. 

 Following notation is discussion of asymptotes 

 VA defined; four behaviors not identified 

 HA defined 

 Graphics used to show VA and HA 

 Following graphics is a theorem on VA and zeroes of the denominator 

 EX 1 is finding VA of a rational function 

 EX 1 has two parts – one with no VA and another requiring factoring 

 Following EX1 is 3-part theorem on HA 

 EX2 is HA with three parts 

 No mention of cross test for HA 

 Signed argument made for behavior about asymptotes 

 Following EX2 is a proof of HA, using calculus line of thinking 

 Following talk of HA is general procedures for graphing rationals 

 EX3, EX4 graphing rational 

 Following are oblique asymptotes 

 Following oblique asymptotes are removable discontinuities 

2nd Ed. ABN 



 

213 

 

 Color schemes changed 

 Minor organizational changes 

3rd Ed. ABN 

 Charts added to explain increasing w/o bound 

 General procedures moved inside of colored box 

 Cross test for HA addressed in colored box 

 Word problem added at end of section 

 “Topics for discussion” added at the end of the section 

4th Ed. ABN 

 Color schemes changed 

 Minor organizational changes 

5th Ed. ABN 

 Cross test for HA made more explicit in the graph 

 Color scheme adjustment; minor organizational changes 

6th Ed. ABN 

 Prepare for this Section added 

 Four behaviors of VA added after EX1 

 Relationship between four behaviors of VA and powers on linear factors 

added 

7th Ed. ABN 

 More word problems added 

 Color and typographical changes made 
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8th Ed. ABN 

 Color and typographical changes 

1st Ed. MLS 

 Definition as a fraction of polynomials 

 Gives example of 𝑓(𝑥) =
1

𝑥
 as the simplest form with variable in the 

denominator 

 Chart argument made to see behavior about VA 

 VA defined: as |𝑓(𝑥)| →  ∞ as 𝑥 → 𝑎, then 𝑥 = 𝑎 is VA 

 HA defined: if 𝑦 → 𝑎 as |𝑥| →  ∞, then 𝑦 = 𝑎 is HA; cross test not 

mentioned 

 EX1 graph  𝑦 =
−2

𝑥
 

 Reflection argument made for EX1 

 Four behaviors of VA not discussed (since powers of linear factors never 

taught, this makes sense). 

 Graphs completed by charts of value and plugging in points to determine 

four behaviors of VA 

 HA of leading coef/leading coef discussed later 

 All graphs involving both VA and HA were in factored form 

 SA addressed later, cross test not mentioned 

 End of chapter, a recipe for graphing rationals is given 

 Removable discontinuities never addressed 

2nd Ed. MLS 



 

215 

 

 Asymptote definitions combined in one box 

 EX 1 stayed the same 

 Rationals not in factored form were graphed 

 To find HA in non-factored form, division by all terms was used and a 

limit argument was used 

 Word problem added 

3rd Ed. MLS 

 Definition slightly revised to say denominator not zero, as opposed to 

values are not included that make denominator zero 

 EX1 same 

 Word problem deleted; replaced with removable discontinuity 

4th Ed. MLS 

 Additional graphic added to illustrate HA and VA 

 EX1 same 

 Recipe at end of chapter modified 

Exponential Functions 

1st Ed. ABN 

 Begin w/ review of laws of exponents 

 Following review is exp. on calculator 

 Definition exponential function 

 EX1 two-parts 

 Part (a) b > 1 
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 Part (b) 0<b<1 

 Following EX1 is conversation about plane scales 

 Then seven properties: domain, range, (0,1), asymptotic to x-axis, 1-1, 

increasing b>1, decreasing where 0<b<1 

 Graphs given to illustrate some of these properties 

 Following are translations/reflections 

 Definition natural log 

 Calculator natural log 

 Graphing natural log 

 Graph average value function 

2nd Ed. ABN 

 Introduction about perfect numbers prior to review of exp 

 Calculator review removed 

 Seven properties put into colored box 

3rd Ed. ABN 

 Perfect numbers intro changed with optical illusion/ St. Louis Arch 

 Prior to definition, graphic and paragraph about cd-rom sales added 

 Review of exponents removed 

 Following definition, review of exponents worked into definition 

explanation 

 Table added to explain exponential functions 

 Graphing calculator added back after table 
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 EX1 changed to graphing exponentials using translations 

 Graphing utility explanation added after EX1 

 Zeroes of an exponential function added at end of section 

 Topics for discussion added at end of section 

4th Ed. ABN 

 Exponentials moved to second section of the chapter. Section 1 now 

inverse functions 

 Cd-rom intro replaced with number of transistors on a chip 

 Definition of exponential now in a colored box 

 Additional tables added to explain exponential graphs 

 Seven properties reduced to six (last two collapsed into one property) 

 Word problem added after zeroes of a function 

5th Ed. ABN 

 EX1 changed to evaluate an exponential function 

 Six properties reduced to 4. Several collapsed. Increasing/decreasing 

broken back into two 

 EX2 changed to graphing an exponential where 0<b<1 

 EX3 now a translation 

 EX4 now a reflection/stretching 

 Average value removed 

 Zeroes of a function removed 

6th Ed. ABN 
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 Prepare for this Section added 

 EX3 now just a translation; no stretching/compressions 

 EX4 changed to stretching/compressions 

 More information regarding history/famous mathematicians in margins 

7th Ed. ABN 

 Transistors on a chip changed to airport parking 

8th Ed. ABN 

 Color/typographical changes only 

1st Ed. MLS 

 Begins with “we know 𝑎𝑚” when m is rational 

 Conversation about 2√3 and how √3 ≈ 1.7, ≈ 1.73, ≈ 1.732 

 Three graphs of different domains 

 Assumption made that laws of exponents apply to reals as they do rats 

 Four-part theorem 

 Conversation about a>0 

 Exponential function defined 

 EX1 is evaluate an exponential 

 1-1 functions 

 x-axis is asymptote 

 EX2 is graph 𝑓(𝑥) = 2−𝑥2
 

 EX3 is fractional base 

 EX4 is solving an exponential equation for the base 



 

219 

 

 Then defining Euler’s number using compound interest 

 EX5 is exponential growth/decay 

 EX6 is radioactive decay word problem 

2nd Ed. MLS 

 EX2 changed to graph 𝑓(𝑥) = 2𝑥 and graph 𝑓(𝑥) = (
1

2
)

𝑥

 

 Figures added to show different bases 

 EX3 graph 𝑓(𝑥) = 2−𝑥2
 

 EX4 fractional base 

 EX5 solving exponential equation for base 

 Compound interest formula given in box 

 EX6 compound interest word problem and Euler’s number 

 Euler’s number given to nine places 

 EX7 population growth problem 

3rd Ed. MLS 

 Introduction added to section 

 Opening conversation about doubling pennies 

 Definition of exponential given in words 

 Repeat concept from chapter 1 about 𝑎𝑚 for rational values 

 Conversation about 2√3 and how √3 ≈ 1.7, ≈ 1.73, ≈ 1.732 

 Three graphs of different domains given 

 Four-part theorem given 

 EX1 is solving exponential equation for an exponent 
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 EX2 is solving an exponential equation for the base 

 “Caution” added for extraneous solutions 

 Definition of exponential given in box 

 EX3 is evaluate 

 EX4 is graph 𝑓(𝑥) = 2𝑥 and graph 𝑓(𝑥) = (
1

2
)

𝑥

 

 Box of properties of the graph of an exponential, including (0,1) is a point; 

if a>1, f(x) increases, and if 0<a<1, f(x) is decreasing; x-axis is horizontal 

asymptote; and domain and range 

 EX5 is translations 

 EX6 is graph 𝑓(𝑥) = 2−𝑥2
 

 Compound interest box 

 EX7 is compound interest problem and Euler’s number 

 Euler’s number to ten places 

 EX8 is population growth 

4th Ed. MLS 

 Properties box moved prior to EX1 

 Euler’s number changed back to nine digits 

Logarithmic Functions 

 1st Ed. ABN 

 Reviews exponential functions and inverse functions 

 Shows exponential form of logarithm (as inverse of exponential) 

 Defined logarithm and logarithmic form 
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 Explained notation and nomenclature 

 Explained relationship between exponential form and logarithmic form of 

logarithm 

 EX1 change from logarithmic to exponential form 

 EX2 change from exponential to logarithmic form 

 Equality of exponents theorem 

 EX3 evaluate logarithms 4-parts 

 8 properties of logarithms given 

 Following are proofs of the 8 properties 

 EX4 using properties expansions 

 EX5 using properties given values 

 EX6 condensing 

 Common and natural log defined 

 Calculator explanation of common and natural log 

 Change of base 

 Antilogarithms 

2nd Ed. ABN 

 Common and natural logarithms moved to colored boxes 

3rd Ed. ABN 

 EX3 changed to one part 

 Using properties given values deleted 

 EX5 changed to condensing 
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 Topics for Discussion added at end of section 

4th Ed. ABN 

 Combined graphing and definition into same section 

 Explanation of inverse logarithms and exponential functions expanded 

 Following EX2, three properties of logarithms given instead of eight 

 EX3 applying basic properties of logs 

 EX4 evaluating logs using the properties (not given values) 

 Graphing logarithmic functions followed EX4 

 Tables used to explain relationship between exponential and logarithmic 

values 

 EX5 graphing a logarithm 

 Properties of the graph of logarithms followed EX5 

 Domain of logarithms 

 EX6 domain of logarithms 

 EX7 translations 

 Common and natural logarithms 

 Applications of logarithms 

 Topics for Discussion added at end of chapter 

 Other properties, change of base moved to next section, along with more 

applications 

5th Ed. ABN 

 Composition of exponentials and logarithms argument added 
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 Four properties instead of three given 

 EX3 still applying basic properties, but EX4 deleted 

 Application problem added at end of section 

6th Ed. ABN 

 Prepare for this Section added 

 Graphics added to the answers of EX1 and EX2 

7th Ed. ABN 

 Color and typographical changes only 

8th Ed. ABN 

 More examples added to EX3 (apply basic logarithmic properties) 

1st Ed. MLS 

 Conversation previous section 1-1 implies there exists inverse function 

 Look at these inverse functions 

 Inverse of 𝑦 = 𝑎𝑥 is 𝑦 = log𝑥 𝑥 

 Box showing definition of log (both forms) 

 Language and vernacular 

 EX1 is chart of two forms (no work to be done) 

 Definition of logarithmic function 

 Figure showing log and exponential as inverses 

 EX2 is graph a log with translation 

 EX3 is graph a log with abs value 

 EX4 is solving a logarithmic equation for base 
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 Then five properties of logs 

 EX5 is expansion of logs 

 EX6 is condense logs 

 EX7 is log properties 

 Then theorem on exponents in log expressions 

 EX8 is exponents in log expressions 

2nd Ed. MLS 

 Conversation about 1-1 

 X and y are switched before logarithmic notation given 

 Conversation about solving for y given 

 Then box with both forms, followed by vernacular 

 More explanation about log vs exp form of a logarithm 

 EX1 still chart 

 Logarithmic definition follows 

 EX2 changed to graph without translations 

 EX3 graph with translations 

 EX4 graph abs val 

 EX5 solve for base but now also solve for argument 

3rd Ed. MLS 

 Intro same 

 Box removed for definition of logarithm, vernacular same 

 Following two forms conversation, a definition is given in a box different 
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than before 

 EX1 still chart 

 EX2 changed to two-part solve of base and argument 

 Definition of log function then given 

 EX3 changed to two-part graph no translation 

 Figure showing inverse relationship between logs and exps moved here 

 EX4 now graph translation 

 EX5 graph abs val 

 Exponent theorem moved here 

 EX6 now the exp theorem problem 

 5 properties numbered instead of lettered are next 

 EX7 is expand 

 EX8 is condense 

 EX9 is evaluate using properties 

 History of Napier added 

4th Ed. MLS 

 Same 1-1 argument 

 Definition given 

 Fill in the box argument made 

 Relationship between two forms explained 

 EX1 still chart 

 EX2 solve base/argument 

 Definition given 
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 EX3 graph single base 

 Box added to show four features of graph of log 

 EX4 graph translation 

 Natural log introduced 

 EX5 is PH 

 Exp properties of log 

 EX6 is exp properties 

 5 properties of logs given 

 EX7 is expansion 

 EX8 is condense 

 EX9 is evaluate given assumption 

 Change of Base introduced 

 EX10 is change of base 

 EX11 word problem on diversity of ecology  



 

227 

 

APPENDIX E: EXAMINATIONS 

Exam Category Sub-Total MC SA Total 

Exam 1 Spring 2011 

Algebra 15 

13 5 18 
Critical Thinking 1 

Arithmetic 2 

Analytical 

Geometry 2 

Exam 1 Fall 2011 

Algebra 16 

13 5 18 Arithmetic 1 

Analytical 

Geometry 1 

Exam 1 Spring 2012 

Algebra 16 

13 5 18 
Critical Thinking 0 

Arithmetic 1 

Analytical 

Geometry 1 

Exam 1 Fall 2012 

Algebra 17 

14 6 20 
Critical Thinking 0 

Arithmetic 1 

Analytical 

Geometry 2 

Exam 1 Spring 2013 

Algebra 16 

14 6 20 
Critical Thinking 1 

Arithmetic 1 

Analytical 

Geometry 2 

Exam 1 Fall 2013 

Algebra 17 

14 6 20 
Critical Thinking 0 

Arithmetic 1 

Analytical 

Geometry 2 

Exam 1 Spring 2014 

Algebra 18 

15 5 20 
Critical Thinking 1 

Arithmetic 1 

Analytical 

Geometry 0 

Exam 1 Fall 2014 

Algebra 15 

20 0 20 
Critical Thinking 2 

Arithmetic 2 

Analytical 

Geometry 1 
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Exam 1 Spring 2015 

Algebra 16 

20 0 20 
Critical Thinking 1 

Arithmetic 2 

Analytical 

Geometry 1 

Exam 1 Fall 2015 

Algebra 17 

20 0 20 
Critical Thinking 0 

Arithmetic 1 

Analytical 

Geometry 2 

Exam 1 Spring 2016 

Algebra 11 

20 0 20 
Critical Thinking 0 

Arithmetic 6 

Analytical 

Geometry 3 

Exam 1 Fall 2016 

Algebra 11 

20 0 20 
Critical Thinking 0 

Arithmetic 5 

Analytical 

Geometry 4 
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APPENDIX F: SAMPLE HCC SYLLABUS 

SYLLABUS 

MT 150 COLLEGE ALGEBRA 

FALL 2006 

 

INSTRUCTOR:  Maura Corley  PHONE: OFFICE: 831-9683 

OFFICE:      AS 214   CELLPHONE:  270-704-0862 

E-MAIL:  Maura.Corley@kctcs.edu 

 

OFFICE HOURS:  Office hours will be posted. 

 

REQUIRED TEXT:  College Algebra Aufman, Barker, Nation, 5th ed. 

 

REQUIRED SUPPLIES:  Math notebook, scientific calculator. 

 

COURSE DESCRIPTION: 

Selected topics in algebra and analytic geometry.  Develops manipulative skills and 

concepts required for further study in mathematics.  Includes linear, quadratic, 

polynomial, rational, exponential, logarithmic and piecewise functions; systems of 

equations and inequalities; and introduction to analytic geometry.  Students may not 

receive credit for both MT 150 and  

MA 109 or for both MT 150 and MA 110.  Credit not available on the basis of special 

exam.  Lecture:  3 credits (45 contact hours).  Prerequisites:  One of the following:  1.  

Math ACTE score of 20 or above.  2.  Math  ACTE score of 18 or 19 with concurrent MT 

100 workshop.  3.  MT 120 or MT 122 or MT 125.  4.  KCTCS placement exam 

recommendation. 

  

GRADING POLICY:  90 - 100% = A   

80 -  89%  = B    

70 -  79%  = C    

60 -  69%  = D   

          Below 60% = E       

 

There will be five exams, worth 100 points each.  The final exam will be comprehensive 

(covering Chapters P through 4 and part of 9) and will be worth 100 points.  The final is 

optional for those students who have not missed any exams.  The final is mandatory for 

any student who missed one or more of the exams. Students will also have the 

opportunity to earn 30 bonus points for attendance (see attendance policy).  There are 500 

possible points from exams.  No exam score may be dropped unless the final exam is 

taken.   

 

ATTENDANCE: 

Students are expected to be at each class meeting.  Attendance will be taken every day. 

 

All students start with 30 bonus points.  For each day of missed class the student will lose 



 

230 

 

five bonus points until the number of bonus points reaches zero.  The loss of bonus points 

occurs regardless of the reason for the absence.  These are extra credit points given for 

attendance.  Since homework will not be collected for a grade, students may use these 

points to supplement their exam scores.  If a student misses an exam this does not affect 

his or her bonus credit. Make-up exams will not be given. 

 

If one of the exams is missed the comprehensive final will replace the score from that 

exam. If more than one exam is missed the comprehensive final increases in value 100 

points for each additional exam missed.  Any student who has not missed an exam may 

take the comprehensive final if he/she chooses to do so.  In that event, the lowest score of 

all exams including the final will be dropped. 

 

WRITTEN WORK:   

On exams mere answers without supporting steps will receive no points.    

 

MAKE-UP WORK:  See section on ATTENDANCE POLICY 

 
 

ACADEMIC HONESTY POLICY: 
The KCTCS faculty and students are bound by principles of truth and honesty that are 

recognized as fundamental for a community of teachers and scholars.  The college expects 

students and faculty to honor, and faculty to enforce, these academic principles.  The college 

affirms that it will not tolerate academic dishonesty including, but not limited to, violation of 

academic rights of students and student offenses.  (Rules of the Community College Senate, 

Section VII and Code of Student Conduct, Article II) 

 

Information about the academic rights of students and academic offenses and students' 

right to appeal can be found in the Kentucky Community and Technical College System 

Code of Student Conduct, Article II - Academic Policies and Procedures.  The Code of 

Student Conduct is available at the following web site:  

http://www.kctcs.edu/student/studentcodeofconduct.pdf.   

 

REPEATING:   
Any student repeating this class and desiring to replace the old grade with the new grade 

(if the new grade is higher) must complete an “Option to Repeat” form within the first 

two weeks of classes. 

 

WITHDRAWAL: 

Up until midterm, the student may withdraw and receive a “W”.  After midterm, the 

instructor shall consider each case individually.  In general, a student must discuss the 

possible desire for a “W” with the instructor before midterm in order to obtain a “W” 

after midterm. 

 

FINANCIAL AID REPAYMENT: 

Students receiving some forms of federal financial aid, who do not officially withdraw by 

the scheduled deadline, may also face financial penalties.  Students may be required to 

repay a portion of their financial aid or may not be able to receive future financial aid. 
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ADA NOTICE: 

If you need an accommodation because of a documented disability, you are required to 

register  

with Disability Services each semester.  Student(s) should contact the Disability Services 

Coordinator, Larry Tutt, (Administration Building, Room 218) or at (270) 831-9783 or  

1-800-696-9958 (in Western Ky.), ext 19783.   

 

TENTATIVE SCHEDULE 

MT 150 – 02  MWF  7:40 – 8:30 

FALL 2006 

 
AUGUST 

 
21          P.1  

 
22         

 
23          P.2 

 
24         

 
25         P.3           

 
28          P.4   

 
29   

 
30          P.5 

 
31       

 
                   

 

SEPTEMBER 

Monday                       Tuesday                       Wednesday                  Thursday                     Friday  
 
      

   
           

 
           

 
1            P.6 

 
4       Holiday   

 
5         

 
6        Review 

 
7          

 
8         Test 1         

 
11         1.1  

 
12          

 
13        1.2   

 
14       

 
15           1.3  

 
18         1.4 

 
19          

 
20        1.5 

 
21        

 
22      Review 

 
25      Test 2 

 
26      

 
27       2.1 

 
28        

 
29           2.2 

 

OCTOBER 

Monday                       Tuesday                       Wednesday                  Thursday                     Friday  
 
2          2.3 

 
 3    

 
 4         2.4 

 
5      

 
 6           2.5 

 
9      ----------------

--  

 
 10   ----FALL----      

 
 11   ---BREAK--

-           

 
12   -----------------

-     

 
13    ----------------                    

 
16        2.6      

 
 17        

 
 18      Review 

 
19        

 
20       Test 3 

 
23     Prof Dev 

 
24   

 
25        3.1 

 
26        

 
27          3.2 

 
30        3.3  

 
31                  

 
       

 
        

 
  

 

NOVEMBER 

Monday                       Tuesday                       Wednesday                  Thursday                     Friday  
 
         

 
       

 
1           3.4 

 
2          

 
3            3.5             

 
6       Review   

 
7        

 
8        Test 4    

 
9        

 
10          4.1            
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13        4.2 

 
14              

 
15         4.3 

 
16        

 
17          4.4 

 
20        4.5 

 
21         

 
22 –

Thanksgiving-         

 
23   ----Break-----

- 

 
24 ------------------

-     

 
27        4.5 

 
28         

 
29         9.1   

 
30    

 
      

 

DECEMBER 

Monday                       Tuesday                       Wednesday                  Thursday                     Friday  

  
           

 
 

 
         

 
1           9.2   

 
4      Review 

 
5           

 
6       Test 5 

 
7         

 
8        Review 

 
11   Final Exam 

 
12     

 
13      

 
14          

 
15   

 

 
  

 MT 150  

List of Assignments 

 

Chapter    Exercises 

 

 P.1     1 – 113 alternate odds 

P.2     1 – 125 alternate odds 

 P.3     1 – 81 alternate odds 

 P.4     1 – 85 alternate odds 

 P.5     1 – 69 alternate odds 

P.6     1 – 65 alternate odds 

 

 1.1     1 – 57 alternate odds 

1.2     1 – 49 alternate odds 

 1.3     1 – 73 alternate odds 

1.4     1 – 65 alternate odds 

 1.5     1 – 65 alternate odds  

 

 2.1     1, 5, 9, 17, 21; 49 - 73 alternate odds 

 2.2     1 – 37 odds, 49 

 2.3     1 – 41 alternate odds, 73, 75 

 2.4     1 – 8 all, 9, 21, 25, 29, 33, 37, 41, 47, 61, 63 

 2.5     1, 5, 9, 13, 25, 45, 49 

 2.6     1 – 25 and 37 – 57 alternate odds, 69 

 

 3.1     1 – 57 alternate odds 
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3.2     1 – 45 alternate odds except 17 

 3.3     1 – 57 alternate odds 

 3.4     1 – 49 alternate odds except 25 & 29 

3.5     1, 5, 17, 27 

 

 

 4.1     1 – 41 alternate odds  

4.2 1 – 25 alternate odds 

4.3 1 – 57 alternate odds 

 4.4     1 – 41 alternate odds except 25 & 29, 49, 55, 

57 

4.5     1 – 37 alternate odds, 57, 59 

 

 

9.2     1 -17 alternate odds, 33 
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