A Phylogenetic Analysis of Bostrichoidea (Coleoptera) and Revisions of the Southern African Spider Beetle Genera Meziomorphum and Eutaphroptinus (Ptinidae: Coleoptera)

Olivia M. Gearner
Western Kentucky University, olivia.gearner529@topper.wku.edu

Follow this and additional works at: https://digitalcommons.wku.edu/theses
Part of the Biodiversity Commons, Biology Commons, Entomology Commons, and the Evolution Commons

Recommended Citation

Gearner, Olivia M., "A Phylogenetic Analysis of Bostrichoidea (Coleoptera) and Revisions of the Southern African Spider Beetle Genera Meziomorphum and Eutaphroptinus (Ptinidae: Coleoptera)" (2019). Masters Theses \& Specialist Projects. Paper 3100. https://digitalcommons.wku.edu/theses/3100

A Thesis
Presented to
The Faculty of the Department of Biology
Western Kentucky University
Bowling Green, Kentucky

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science

By
Olivia M. Gearner
May 2019

A PHYLOGENETIC ANALYSIS OF BOSTRICHOIDEA (COLEOPTERA) AND REVISIONS OF THE SOUTHERN AFRICAN SPIDER BEETLE GENERA MEZIOMORPHUM AND EUTAPHROPTINUS (PTINIDAE: COLEOPTERA)

T. Keith Philips, Director of Thesis

Albert J. Meier

Carl W. Dick
$\frac{\text { Chang } 8.0 \text { avo }}{\text { Dean, Graduate Studies and Research }} \frac{4 / 23 / 19}{\text { Date }}$

ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. Keith Philips, for introducing me to the world of beetle systematics and for training me as a researcher in taxonomy, systematics, and molecular phylogenetics. I would also like to thank my committee members Dr. Carl Dick and Dr. Albert Meier, for all of their help and guidance throughout my career here at WKU.

I would like to thank Karen Bell, Kelsey Willen, and Suzanne Scott for their help in obtaining DNA sequences used in this study, as well as Naomi Rowland for helping me troubleshoot PCR and DNA sequencing. I would also like to thank Dr. John Andersland for his aid in collecting specimens from South Africa as well as his assistance with Automontage. I thank Rob Neidlinger for imaging and creating plates of Eutaphroptinus. I am very grateful to the following people and institutions for providing specimens for DNA used in this study: Pablo Bercedo (León, Spain), Paul Skelley (Gainesville, Florida), Brian Fisher (California Academy of Sciences), Rüth Muller and the late Charles Bellamy (Ditsong National Museum of Natural History, formerly the Transvaal Museum), Mike Ivie (Montana State University), Dan Young (University of Wisconsin), Jim Moore (Westwood, CA), Richard Buss (Albuquerque, NM), Brent Collins (Portland, TN), Gustavo Flores (CONICET, Mendoza, Argentina), Zack Falin (University of Kansas), and Shaun Forgie (Aukland, New Zealand). I am also grateful to the following curators for providing us with the opportunity to study specimens of Meziomorphum and Eutaphroptinus in their care: R. Müller and the late C. Bellamy (Ditsong National Museum of Natural History, Pretoria); Margie Cochrane and A. Mayekiso (Iziko South African Museum, Cape Town); and Riaan Stals and Beth

Grobbelaar (National Collection of Insects, Pretoria). I would like to thank Peter Koniar (Prague, Czech Republic) for providing us specimens of the newly described M. boroveci and M. nama as well as a new record for M. krimpvarkie. I would also like to thank Y. Marusik (Magadan, Russia) who brought to our attention and mailed us specimens he collected resulting in the new record for M. speldekussing. I also appreciate the support of the Center for Biodiversity Studies at Western Kentucky University as well as the following funding sources: an NSF Biological Surveys and Inventories grant (DEB 0430132), a Faculty-Undergraduate Student Engagement (FUSE) grant (17-SP253), and the WKU Graduate School (221533).

CONTENTS

Phylogenetic Analysis of Bostrichoidea (Coleoptera) 1
Introduction 1
Materials and Methods 4
Results 6
Discussion 32
References 41
Appendices 84
New Species of the Bizarre South African Endemic Genus Meziomorphum Pic (Coleoptera: Ptinidae) 45
Introduction 45
Materials and Methods 45
Descriptions 53
Discussion 68
Revised Species Status 70
New Records 71
References 72
A Revision of the Spider Beetle Genus Eutaphroptinus Borowski (Coleoptera: Ptinidae)
Introduction 74
Materials and Methods 74
Taxonomy 74
Discussion 75
References 83

NOTE: This thesis is composed of three chapters, including one that is published (the Meziomorphum revision) and two others that will be in peer-reviewed journals. Due to this formatting, figure numbering begins in numerical sequence for each chapter.

LIST OF FIGURES

Phylogenetic Analysis of Bostrichoidea (Coleoptera)
Fig 1: CO1, Strict Consensus 7
Fig 2: CO1, Majority Rules 10
Fig 3: 28S, Strict Consensus 14
Fig 4: $\quad 28$ S, Majority Rules 16
Fig 5: $\quad 28 \mathrm{~S}$ and CO1 Limited Taxa 18
Fig 6: $\quad 28$ S and CO1 Expanded Dataset, Strict Consensus 20
Fig 7: $\quad 28$ S and CO1 Expanded Dataset, Majority Rules 23
Fig 8: $\quad 28$ S and CO1 Expanded Dataset, Unrooted Phylogram 28
Fig 9: 16S, 28S, and CO1, Parsimony Analysis 29
Fig 10: 16S, 28S, and CO1, Bayesian Analysis 30
Fig 11: Distributions of Spider Beetle Taxa, Two Gene Analysis 38
Fig 12: Evolution of Winglessness in the Spider Beetles 39
New Species of the Bizarre South African Endemic Genus Meziomorphum Pic (Coleoptera: Ptinidae)
Figs 1-4: Meziomorphum ystervarkie 47
Figs 5-8: Meziomorphum speldekussing 48
Figs 9-12: Meziomorphum echinatum 49
Figs 13-16: Meziomorphum krimpvarkie 50
Figs 17-20: Meziomorphum montagu 51
Figs 21-26: Genitalia 52
Figs 27-30: Meziomorphum boroveci spec. nov. 55
Fig 31: Distribution map 56
Figs 32-35: Meziomorphum bulla spec. nov. 59
Figs 36-39: Meziomorphum cederbergensis spec. nov. 62
Figs 40-43: Meziomorphum endrödyi spec. nov. 65
Figs 44-47: Meziomorphum nama spec. nov. 67
Fig 48: Broken pronotum of M. krimpvarkie 68
Figs 49-52: Meziomorphum habitats 71
A Revision of the Spider Beetle Genus Eutaphroptinus Borowski (Coleoptera: Ptinidae)
Figs 1-4: Dorsal and lateral habitus 77
Figs 5-7: Ventral, frontal, and elytral punctures 79
Figs 8-10: Dorsal habitus and pronotum 81

A PHYLOGENETIC ANALYSIS OF BOSTRICHOIDEA (COLEOPTERA) AND REVISIONS OF THE SOUTHERN AFRICAN SPIDER BEETLE GENERA MEZIOMORPHUM AND EUTAPHROPTINUS (PTINIDAE: COLEOPTERA)

Olivia M. Gearner
May 2019
110 Pages
Directed by: T. Keith Philips, Albert J. Meier, and Carl W. Dick
Department of Biology
Western Kentucky University

Proposals for the internal relationships and classification of the bostrichoids are currently poorly supported, and almost all are based on morphology alone. This study improves upon on previous phylogenetic analyses of the group by including more taxa using the standard genes for many phylogenetic analyses. Cytochrome C oxidase subunit 1 (CO1), 28S small subunit rRNA, and 16 S small subunit rRNA mitochondrial genes were sequenced or obtained from Genbank, then analyzed using parsimony and Bayesian analyses. Topologies differed depending on genes used. A three gene tree and a two gene (28 S and CO1) tree both supported relationships in which a basal bostrichid clade was sister to Ptinidae s. s. + anobiids, with another bostrichid clade within the ptinids. Current bostrichid and anobiid subfamilies tested were not supported as monophyletic in any of the trees obtained.

Additionally, five new species of spider beetles in the genus Meziomorphum Pic from South Africa are described including M. endrödyi, M. boroveci, and M. nama from the Richtersveld, M. bulla from south-central Namaqualand, and M. cederbergensis from the Cederberg. Genitalia are illustrated for the genus for the first time for six of the 10 species now known. A brief discussion of the evolution of generic morphology and
biology as well as the relationships of the genus to other spider beetle groups are also provided.

Finally, a revision of the genus Eutaphroptinus is presented. Eutaphroptinus pseudonatalensis is considered a synonym of Eutaphroptinus natalensis. New species records of E. natalensis are also provided, as well as illustrations of the genus.

HYPOTHESIZING RELATIONSHIPS WITHIN BOSTRICHOIDEA (COLEOPTERA) USING MOLECULAR PHYLOGENETICS

Introduction

Insects are the most diverse and speciose group of organisms on the planet. Coleoptera alone comprise 25% of described animal species worldwide (Hammond, 1992). One less commonly known group of beetles that is vastly understudied but highly diverse is the bostrichoids, which include four main groups, the dermestids, bostrichids, anobiids, and the spider beetles. In Ptinidae alone (the anobiids and spider beetles), there are around 230 genera and 2200 species currently known (Philips and Bell 2010; Lawrence 1991; Lawrence and Viedma 1991). Additionally, there are likely numerous taxa worldwide that have yet to be documented due to lack of awareness of these organisms by many entomologists and collectors, high levels of endemicity present in the group, and the obscure nature and small body size of these beetles (Bell and Philips 2012).

The bostrichoids are currently classified into three families, the Dermestidae, Bostrichidae, and the Ptinidae. Within the Ptinidae, there are nine subfamilies of "anobiids" (formerly the family Anobiidae), as well as the two subfamilies that constitute the spider beetles, the Gibbiinae and Ptininae (Borowski and Zahradníc 2007). Henceforth, bostrichids will refer to members of Bostrichidae, anobiids will refer to members of the former family Anobiidae, and ptinids will refer to members of Ptininae and Gibbiinae.

In the early 1800s, the Bostrichidae, Anobiidae, and Ptinidae were classified in the family Ptinidae by coleopterists like LeConte and Horn (Philips and Bell 2010). Fall (1905) later classified the bostrichids as their own family, and Pic (1912a, 1912b) recognized Anobiidae and Ptinidae as separate families. Decades later, Lawrence and Newton (1995) combined anobiids and ptinids into the family Anobiidae, despite the fact the name Ptinidae had priority. Most recently, the anobiids and ptinids were rejoined in the family Ptinidae (Borowski and Zahradníc 2007). However, all of these classifications, as well as most of the subfamilies, tribes, and genera, are largely based on morphological data using the traditional Linnaean system of classification, rather than on phylogenetic analyses.

Anobiid and some ptinid larvae typically bore into wood, bark, seeds, and fungi and can be serious pests to buildings, furniture, and book bindings (White 1962; Lawrence et al. 1999). However, most Ptinidae are not wood, bark, or fungal borers. Many species feed on dried animal and plant material (Howe 1959), while some breed in animal dung such as that of rodents, hyraxes, or bats (Philips and Bell 2010). Some inhabit bird or animal nests (Philips and Bell 2010) likely feeding on detritus, and a few, such as Ptinus californicus and Ptinus sexpunctatus, can be found in solitary bee nests feeding upon pollen stores and perhaps dead bee larvae (Linsley and MacSwaine 1942). One species of Pitnus is a leaf miner (Philips et al. 1998), and a species of Stereocaulophilus reportedly grazes on lichen (Bellés 1994). Additionally, there are several myrmecophilous (ant-associated) species in Ptininae (e.g. Lawrence and Reichardt 1969; Philips 1998; Bell and Philips 2008). The biology of these taxa is unknown with the exception of a laboratory observation where a species of Gnostus
solicited and received food from a host via trophallaxis (Thomas et al. 1992). Ptinidae larvae usually pupate in their feeding chambers, and some form distinctive cocoons from their peritrophic membrane, a membrane that lines and protects the midgut in insects (Tristam 1977).

Ptinidae are distributed throughout the world and are currently known to be most diverse in temperate regions rather than tropical regions (White 1974; Philips 2000a). However, this may be an artifact of poor sampling and lack of knowledge of diversity in the tropics, and not representative of the true distribution of the family. Diversity hotspots for the ptinids appear to be in the southwestern Palaearctic (especially the circumMediterranean) region and in southern Africa (Philips and Bell 2010).

The phylogenetic relationships within Bostrichoidea are still both poorly known and supported. The most recent, expansive phylogenetic study was performed by Bell and Philips (2012), in which they used a mitochondrial gene, Cytochrome C oxidase subunit 1 (CO1), and two ribosomal genes, the nuclear large subunit rRNA (28S) and the mitochondrial large subunit rRNA (16S) to build a molecular phylogeny. They found that Bostrichidae may be the most basal group, with the ptinids and anobiids as sister taxa (see Figure 1). However, some of their analyses also suggested that the ptinids could be the basal group, with bostrichids and anobiids as sister taxa. This study aims to improve on the phylogenies proposed by Bell and Philips by including a much denser taxon sampling with more than three times number of the taxa included (from 82 to 251), as well as including CO1 and 28S genes that were missing in some taxa included by Bell and Philips (2012).

Materials and Methods

Sampling

Taxa representing 11 subfamilies and about 75 genera of Ptinidae were included in the study. Subfamilies represented were Anobiinae, Dorcatominae, Dryophilinae, Ernobiinae, Eucradinae, Gibbiinae, Mesocoelopodinae, Ptilininae, Ptininae, and Xyletininae. No species from Alvarenganiellinae (which contains only one genus: Dasytanobium) were included. Additionally, 25 genera of bostrichids and 7 genera of dermestids were included.

One hundred and twenty-three sequences from Bell and Philips (2012) were included, as well as an additional 160 sequences accessed from GenBank. Additionally, DNA from recently collected specimens was isolated and sequenced (87 sequences). DNA Sequencing

DNA was extracted using the Omega Biotek E.Z.N.A. Insect DNA kit. Sequences for three genes-CO1, 28S, 16S-were amplified using the polymerase chain reaction. Typical PCR reactions contained $12.5 \mu \mathrm{~L}$ of GoTaq Hotstart Master Mix, 15 pmol of each primer, $2 \mathrm{mM} \mathrm{Mg}(\mathrm{OAc})_{2}$, and 1-7.5 $\mu \mathrm{L}$ of DNA template (usually $\sim 100 \mathrm{ng}$ DNA), for a total volume of $25 \mu \mathrm{~L}$. PCR cycles for CO 1 included an initial 2 minute denaturation step at $96^{\circ} \mathrm{C}$, followed by 35 cycles of 35 seconds at $96^{\circ} \mathrm{C}, 1$ minute at $48^{\circ} \mathrm{C}$, and 30 seconds at $72^{\circ} \mathrm{C}$, and a final extension step for 10 minutes at $72^{\circ} \mathrm{C} . \mathrm{PCR}$ cycles for 28 S included an initial 2 minute denaturation step at $95^{\circ} \mathrm{C}$, followed by 44 cycles of 35 seconds at $95^{\circ} \mathrm{C}, 45$ seconds at $62^{\circ} \mathrm{C}$, and 1 minute at $72^{\circ} \mathrm{C}$, and a final extension step for 10 minutes at $72^{\circ} \mathrm{C}$.

PCR products for CO1 and some 28 S samples were sequenced using ABI DYETERMINATOR 3.1, following the standard protocol, on an ABI 3130 sequencer. Several 28S samples were outsourced to GENEWIZ for Sanger Sequencing. DNA sequences were edited using Geneious 7.1.9.

Table 1. Primers used in the current study.

Gene	Primer	Sequence
CO1	CO1-Forward Mixed	5'-TAYTAGGRTTTATTGTDTTGRGC-3'
	CO1-Reverse Mixed	5'-GCATCWGGRTARTCWGARTATCG-3'
28S	Olivia-F	5'-GGTAAACTCCATCTAAGG-3'
	Olivia-R	5'-CCTGAAAKYACCCAA-3'

Phylogenetic Analysis

Sequences were aligned using the ClustalW algorithm in Geneious. The default gap opening penalty of 5 was used for CO 1 and 28 S gene sequences. A gap opening penalty of 0.5 was used for aligning 16 S sequences, as this was found by Bell and Philips (2012) to result in the least incongruency between length variable and length invariable regions. The default gap extension penalty of 6.66 was used for all three genes.

Parsimony analyses were performed using the NONA program in WINCLADA 1.00 .08 (Nixon, 1999). Each analysis was run for 5,000 repetitions with taxon order randomized, time used as the random seed, and 100,00 trees total held in the memory.

Bayesian analyses were performed using MRBAYES 3.2 (Ronquist et al. 2012). Optimal models for sequence evolution for each gene region were determined using JModelTest 2.1 (Darriba et al. 2012), based on Bayesian information criterion (BIC). For CO1 and 16S, general time reversal (GTR) with a gamma distribution (G) was used. For 28S, the Hasegawa, Kishino and Yano (HKY) model was used with invariable sites (I) and a gamma distribution (G). Two simultaneous searches were run, each with four

Markov chain Monte Carlo (MCMC) chains (one cold and three hot), with a sample frequency of 100 . These were run for several generations at a time, until the standard deviation of the split frequencies between the two analyses fell below 0.01 . A burn-in of 25% was used for the three gene dataset and 35% for the two gene (28 S and CO1) dataset.

All trees were rooted using Dermestidae, as this family has been found to be sister to the clade of bostrichids, ptinids, and anobiids (Hunt et al. 2007; Lawrence et al. 2011).

Results

CO1 Gene

A parsimony analysis of 221 taxa using the CO 1 gene region resulted in 36 trees ($\mathrm{L}=12716, \mathrm{CI}=10, \mathrm{RI}=70$). A strict consensus of these trees is quite unresolved, with a few large polytomies (Fig 1). Conserved clades of note include monophyletic clades of some genera such as Dorcatoma, Lyctus, and Xyletinus and one containing most, but not all, species of Ptinus. Another clade contains the Australasian genera Kedirinus and Sundaptinus (but including the dermestid- Anthrenus), one containing the genera Ochina, Xestobium, and Ernobius, all of which are classified in the subfamily Ernobiinae, and several other clades of bostrichids, anobiids, and spider beetles.

In the majority rules consensus tree (Fig 2), there is a great deal more resolution although the ptinids, bostrichids, and anobiids are all polyphyletic. Additionally, some taxa from the outgroup (Dermestidae) have been placed in the ingroup.

Figure 1
Strict consensus of 36 trees from a parsimony analysis of the CO 1 gene region.

Break A

Figure 1. Continued

Break B

Figure 1. Continued

28S Gene

The parsimony analysis of 114 taxa using the 28S gene region resulted in 114 trees $(\mathrm{L}=5019, \mathrm{CI}=31, \mathrm{RI}=69)$. The strict consensus of these trees (Fig 3) was better resolved than in the CO 1 trees, but there is a large polytomy consisting of nine clades at the base. One conserved clade to note is one containing the genera Dignomus, Pseudomezium, and Casapus, suggesting that Pseudomezium and Casapus are derived Dignomus.

In the majority rules consensus (Fig 4), Kedirinus subviolaceous is the most basal taxon and sister to all other ingroup taxa, followed by a basal clade of ptinids. This clade is sister to all bostrichids and nearly all anobiids. The next most basal clade is one
containing anobiids and a group of bostrichids. This clade in turn is sister to another
clade of mainly bostrichids + nearly all included anobiids.

Figure 2
Majority rules consensus of 36 trees from a parsimony analysis of the CO1 gene region. Yellow taxa represent bostrichids, red are anobiids, and blue are ptinids.

Figure 2. Continued

Figure 2. Continued

Figure 2. Continued

Figure 3
Strict consensus of 114 trees from a parsimony analysis of the 28 S gene region.

Figure 3. Continued

CO1 plus 28S Genes

A parsimony analysis of the combined dataset using CO1 and 28S, and only
including taxa with both gene regions, resulted in 4 trees ($\mathrm{L}=10751, \mathrm{CI}=26, \mathrm{RI}=49$).
Similar to the tree derived from only the 28S data, a strict consensus of these trees (Fig 5)
places the Australian ptinid species Kedirinus subviolaceous as basal to all other clades.
The next most basal clade is a group of bostrichids with a few anobiid species included in the clade. This is followed by two clades of anobiids. Finally, at the apical most part of the tree is a clade of all the ptinids that includes one derived anobiid, Utobium elegans, and a derived clade of bostrichids.

Figure 4
Majority rules consensus of 114 trees from a parsimony analysis of the 28S gene region. Yellow taxa represent bostrichids, red are anobiids, and blue are ptinids.

Figure 4. Continued

Figure 5
Strict consensus of four trees generated from a parsimony analysis of 28 S and CO 1 gene regions. Only includes taxa where both gene regions were available. Yellow taxa represent bostrichids, red are anobiids, and blue are ptinids.

Figure 5. Continued

A parsimony analysis of the expanded dataset using CO 1 and 28S, which also includes taxa for which only one gene region was available, resulted in 20 trees ($\mathrm{L}=18612, \mathrm{CI}=16, \mathrm{RI}=68$). A strict consensus of these trees (Fig 6) contains several conserved clades and shows basal similarities with the contracted data set, including a basal southeast Asian ptinid clade (Australasian ptinid genera Kedirinus and Sundaptinus) and then a clade of bostrichids sister to the remaining taxa. This tree reveals ptinids, bostrichids, and anobiids as polyphyletic, and places some members of Dermestidae within the ingroup. After the southeast Asian ptinid clade, there is a clade of bostrichids sister to all remaining taxa. This is followed by a large clade of mainly anobiids with a few bostrichids and ptinids at the base. This is sister to a clade consisting of a large clade of ptinids and anobiids. While the ptinid clade has only a few non-ptinid taxa, the anobiids, in contrast, have a large set of both bostrichids and dermestids and a single ptinid. Examination of a majority rules consensus topology (Fig 7), resolves the two polytomies of the basal dermestids and the anobiid genus Dorcatoma.

Figure 6
Strict consensus of 20 trees generated from a parsimony analysis of 28 S and CO 1 gene regions. Taxa with one or both gene regions were included.

Figure 6. Continued

Figure 6. Continued

Figure 7
Majority rules consensus of 20 trees generated from a parsimony analysis of 28S and CO1 gene regions. Taxa with one or both gene regions were included. Yellow taxa represent bostrichids, red are anobiids, and blue are ptinids.

Figure 7. Continued

Figure 7. Continued

Figure 7. Continued

A Bayesian analysis was also run on this dataset, but after 5,000,000 generations the split frequencies were still above 0.2 , well above the desired level of 0.01 . Due to this and the fact that the resulting tree was highly unresolved, the results are not included in this study. However, an unrooted phylogram demonstrating genetic distance was obtained (Fig 8). This tree contained two large clusters, both containing a mix of all four families, and Fabrasia on one long branch apart from the two clusters.

CO1, 28S, and 16S Genes

The parsimony analysis of a combined dataset using three gene regions (CO1, 28S, and 16S) for taxa in which all three sequences were available resulted in 2 most parsimonious trees (MPTs) with length of 8086 steps (CI=45, RI=53). In a strict consensus of the two trees (Fig 9), a clade of bostrichids was found to be basal. The anobiids came out in a monophyletic clade, sister to a clade containing all the ptinids and a derived clade of bostrichids, that render the former paraphyletic.

In a Bayesian analysis of the same dataset, a convergence of the two simultaneous runs occurred after 3,000,000 generations (Fig 10). This tree displayed similar results to the parsimony analysis but placed the anobiid Ptilinus pectinicornis in the basal clade of bostrichids. When including evolutionary distance in the tree (Fig 10B), we find that there are several long branches in the derived clade of bostrichids. This suggests that the placement of this clade may be an artefact of long branch attraction.

Figure 8
Unrooted phylogram depicting genetic distance obtained from a Bayesian analysis of 28 S and CO 1 gene regions. Taxa with one or both gene regions were included. Due to the large number of taxa included, taxon names in taxon clusters A and B were removed from the image. Both of these clusters contain a mix of all four families (Dermestidae, Bostrichidae, Anobiidae, and Ptinidae).

Figure 9
Strict consensus of two trees generated from a parsimony analysis of three genes, 16S, 28S, and CO1. Only includes taxa where all three gene regions were available. Yellow taxa represent bostrichids, red are anobiids, and blue are ptinids.

Figure 10
Bayesian analysis of three genes, $16 \mathrm{~S}, 28 \mathrm{~S}$, and CO1. Only includes taxa where all three gene regions were available. A: Tree not including genetic distance. Yellow taxa represent bostrichids, red are anobiids, and blue are ptinids. B: Tree where branch length represents genetic distance.

Figure 10. Continued

Discussion

When examining the three gene trees ($16 \mathrm{~S}, 28 \mathrm{~S}$, and CO 1$)$, the parsimony analysis includes anobiids as a monophyletic group. However, Ptinidae is paraphyletic, due to a derived group of bostrichids within the clade of ptinids. Given that there is a disproportionate number of long branches among the apical bostrichids (Fig 10B) it is possible that the placement of this clade is due to long branch attraction and may not represent true relationships. It is also possible that rapid evolution among a group of ptinids resulted in a convergence of phenotypes causing them to look like and be misclassified as bostrichids. However, this is unlikely given the large number of hypothesized synapomorphies supporting bostrichid monophyly. A third possible explanation for the placement of the two bostrichid clades is that the bostrichids are paraphyletic with ptinids and anobiids derived from within the bostrichids, having evolved from bostrichid-like ancestors. This explanation would provide further evidence that wood boring is an ancestral trait in the group, as the majority of bostrichids are wood-borers. However, there are alternative life histories documented in the bostrichids, including, for example, some species that are stored food pests.

The Bayesian tree has a similar topology to the parsimony, but places Ptilinus pectinicornis sister to the basal bostrichid clade, rendering the anobiids paraphyletic. This is most likely not indicative of a true relationship, as nearly all other topologies show Ptilinus species well within the anobiids.

The restricted two-gene tree (CO 1 and 28 S) had similar results to the three-gene topology, with basal bostrichids and apical ptinids and a derived group of bostrichids within the ptinids. Notable differences are the appearance of a couple ptinids and
anobiids in the basal bostrichids, and Kedirinus subviolaceous (absent from the three gene trees) as the most basal taxon. The expanded two gene dataset resulted in substantial polyphyly among all of the families. However, there are numerous taxa in this dataset for which only one gene region was available, and so many of these taxa are likely misplaced. This is especially apparent given the many members of Dermestidae (for which only one gene region was available) placed within the ingroup. Members of this family are fairly morphologically homogeneous and the dermestids are fairly well established as sister to the clade containing bostrichids, anobiids, and ptinids. Therefore, it is highly unlikely that the placement of these dermestid species represent true relationships.

If the placement of Kedirinus subviolaceous at the base of this tree represents true relationships, this could suggest that this taxon is misclassified as a ptinid and instead is a basal bostrichoid. This could also suggest that the larger clade of bostrichids, anobiids, and ptinids originated in Southeast Asia or Australia.

When comparing the strict consensus trees of the single gene 28 S and CO 1 trees, we find that the 28 S gene tree is much better resolved with fewer polytomies and a larger number of conserved clades. This suggests that 28S may provide more phylogenetic signal and is therefore potentially more useful for resolving relationships in this group. Additionally, the presence of members of Dermestidae in the outgroup suggests that there are likely several misplaced taxa in the CO 1 tree. This could be due to the fact that CO 1 is too quickly evolving to accurately resolve relationships. Additionally, many of these sequences (including all of the ingroup dermestids) were obtained from Genbank.

Because the identifications cannot be confirmed, it is possible that some of the taxa are
misidentified, although this is less likely at the family level. Finally, as the quality of the sequences obtained from Genbank cannot be assessed, it is possible that some of these sequences are inaccurate due to noise from spurious amplicons during sequencing.

Bell and Philips (2012) hypothesized two alternative relationships among the three families, one with the bostrichids as sister to the anobiids + ptinids and the other placed ptinids as sister to bostrichids + anobiids. While our trees did have bostrichids as sister to ptinids + anobiids, the presence of a second bostrichid clade within the ptinid clade renders the trees in this study very different than those of Bell and Philips (2012). Notes on Taxonomic Classifications

The close relationship of the anobiids and ptinids requires further investigation. Interestingly, a recently collected specimen from New Zealand supports the recognition of both of these groups as a single family. This beetle has the classic anobiid characteristic of three connate abdominal ventrites but also the ptinid characters of close antennal insertions and lack of a lateral pronotal margin.

Among all of the trees obtained, none of the anobiid subfamilies for which more than one genus was available were monophyletic. In the CO 1 tree and two gene expanded dataset, the genera Hedobia and Ptinomorphus (Eucradinae), are nearly monophyletic except for the presence of Attagenus pellio in the clade. However, not all eucradine genera were included in the study. The lack of monophyly in the families and subfamilies included in the study suggests the need for serious internal reclassification within the Bostrichoids.

There is little support for the bostrichid subfamilies as well. While Lyctinae is monophyletic in the three gene tree, in the restricted two gene tree this subfamily is split
into two clades, one in the basal bostrichid clade and the other in the apical clade. None of the other bostrichid subfamilies were supported by any of the phylogenies obtained. In the restricted two gene tree (Fig 5), Endecatomus rugosus is placed basal to the bostrichids. This genus, though sometimes considered a bostrichid, is classified in its own family, Endecatomidae (LeConte 1861) and its location at the base of the bostrichids in the phylogeny could justify this placement, but more research into genetic distance would need to be performed.

Within the past few decades, many species of the speciose genus Ptinus have been reclassified as new genera (e.g. Belles 1991). There are likely several more species in the genus that should be elevated to new genera. For example, Ptinus tectus, currently a member of its own sub-genus, is a good candidate for reclassification. This Australian species was placed as sister to Diplocotes foveatus, another Australian ptinid, outside a major Ptinus clade in the restricted two gene phylogeny (Fig 5). Other Ptinus species placed outside this clade include Ptinus fur from North America and Ptinus interruptus, which came out sister to Pitnus.

Dignomus Clade

Both two gene trees (limited and expanded dataset), as well as the 28S gene tree, support the hypothesis proposed by Smiley and Philips (2011) that the genus Pseudomezium is a derived Dignomus, or is at least closely related. The presence of Casapus in this clade, a genus known only from the Canary Islands, suggests that this too many be derived from Dignomus. All of these taxa possess a similar modified pronotum with a basal cleft.

Myrmecophily

When examining the myrmecophilous taxa included in this study, including Fabrasia, Diplocotes, Polyplocotes, and Gnostus, we find evidence that this lifestyle likely evolved multiple times within Ptinidae. This is consistent with findings by Mynhardt (2012). It is also unsurprising, considering mymecophily has evolved independently numerous times among and within other beetle families (see Parker 2016, for a comprehensive review of myrmecophily in Coleoptera). Additionally, the CO1 tree suggests that Fabrasia could be a basal anobiid. If so, this would be the first documentation of a myrmecophilous anobiid. The phylogram obtained from the Bayesian analysis of the expanded CO1 and 28S dataset suggests that Fabrasia is extremely genetically different from any other bostrichoid taxa. Fabrasia is also very morphologically distinct from other ptinids due to its unique body shape including well developed humeral callosities, greatly modified femora with trichomes, large elytral punctures (glandular pores) at middle arranged transversely, and a unique pronotal shape with lateral spines. Based on these morphological and genetic differences, it could be argued that this genus belongs in its own family.

Biogeography

Examination of the distributions of spider beetle taxa present in the restricted twogene dataset reveals two New World ptinid clades nested within Old World clades (Fig 11). The New World species Gnostus floridanus is also placed within an Old World clade. Overall, the relationships hypothesized by this phylogeny suggest an Old World origin of the spider beetles (possibly in Australia or southern Africa). A formal biogeographic analysis would still need to be performed on this data, and inclusion of
more representative species from all regions where spider beetles are known to exist is needed to really understand where this group originated and how it has dispersed across the globe.

Flightlessness

Philips (2000b) hypothesized at least three independent origins of complete flightlessness in the spider beetles, with winged species capable of flight being the ancestral trait. The relationships within the spider beetles hypothesized by our restricted two-gene dataset suggests two alternative hypotheses for winglessness in the spider beetles. One hypothesis is that possessing wings is the ancestral trait, and that wing-loss has evolved at least 13 times within this group (Fig 12). The other is that winglessness is the ancestral trait in the group, and that wings have been regained at least 6 times within the group. The latter hypothesis is the most parsimonious and would be more likely if the gain and loss of wings are equally likely and caused by random mutations. It is also possible and more likely, however, that environmental pressures on the group have selected for the evolution of wing loss, leading to numerous evolutionary origins of this trait within the ptinids. Selective advantages of wing loss in insects include increased ova production in females (Roff 1990; Roff and Fairbairn 1991), which is likely the case for many members of the genus Ptinus where only females are flightless (Philips 2000b). Further, the loss of wings in xeric habitats helps to reduce water loss via elytral fusion (Philips 2000b). Additional investigations including a denser taxon sampling of represented species in this group would further support the multiple origins of wing loss within the spider beetles.

Figure 11
Distributions of spider beetle taxa from the restricted two gene analysis. For cosmopolitan pest species, known or hypothesized origins of the species are identified.

Figure 12
Evolution of winglessness among spider beetle taxa from the restricted two gene analysis. X's represent hypothesized evolutionary origins on wing loss. The two Gibbium species are treated as a monophyletic clade, as the bostrichid taxa are assumed to be misplaced due to long branch attraction.

Conclusions and Future Directions:

Our data suggests that there is likely major taxonomic revision needed within Bostrichoidea, particularly at the subfamily level but even potentially at the family level.

However, more genetic data is likely needed before many of these revisions can occur.

More gene sequences are needed for taxa for which only one or two sequences are available. A more extensive three gene phylogeny would likely yield a useful, well resolved tree on which new taxonomic classifications could be based. Ultimately, future studies using next generation sequencing will be needed to verify the results obtained in this study, and further clarify relationships in this group. Additionally, once the relationships within the spider beetles are clarified, many of the mysteries surrounding this fascinating group of beetles (where this group originated, how certain morphological adaptations, such as winglessness, and alternative lifestyles have evolved, and when and where radiations occurred) can begin to be solved.

References

Bell, K. L., and T. K. Philips. 2008. A revision of the South African myrmecophile Diplocotidus (Coleoptera: Ptinidae). African Entomology 16: 33-40.

Bell, K.L., and T.K. Philips. 2012. Molecular systematics and evolution of the Ptinidae (Coleoptera: Bostrichoidea) and related families. Zoological Journal of the Linnean Society 165: 88-108.

Bellés, X. 1991. Los generos Kedirinus nov., Sundaptinus nov. y Hanumanus nov. en el archipielago Indo-Australiano y sureste Asiatico, y nuevos datos sobre el genero Maheoptinus Pic (Coleoptera, Ptinidae). Graellsia 47: 71-96.

Bellés, X. 1994. Stereocaulophilus volcanius gen. n., sp. n. (Coleoptera: Ptinidae) from Lanzarote (Canary Islands). Elytron 8: 43-47.

Borowski, J., and P. Zahradníc. 2007. Ptinidae. In Catalogue of palaearctic coleoptera. I. Lobl and A. Smetana (eds.). Apollo Books, Stenstrup, Denmark, p. 328-362.

Darriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772-772.

Fall, H. C. 1905. Revision of the Ptinidae of boreal America. Transactions of the American Entomological Society 31: 97-296.

Hammond, P. M. 1992. Species inventory. In Global biodiversity: Status of the Earth's living resources: A report compiled by the World Conservation Monitoring Centre. B. Groombridge (ed.). Chapman and Hall, London, p. 17-39.

Hebert, P.D., S. Ratnasingham, E. V. Zakharov, A. C. Telfer, V. Levesque-Beaudin, M. A. Milton, S. Pedersen, P. Jannetta, and J. R. deWaard. 2016. Counting animal species with DNA barcodes: Canadian insects. Philos. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150333.

Hendrich, L., J. Moriniere, G. Haszprunar, P. D. Hebert, A. Hausmann, F. Kohler, and M. Balke. 2015. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Molecular Ecology Resources 15: 795-818.

Howe, R. W. 1959. Studies on beetles of the family Ptinidae. XVII, conclusions and additional remarks. Bulletin of Entomological Research 50: 287-326.

Hunt, T., J. Bergsten, Z. Levkanicova, A. Papadopoulou, O. St. John, R. Wild, P. M. Hammond, D. Ahrens, M. Balke, M. S. Caterino, J. Gómez-Zurita, I. Ribera, T. G. Barraclough, M. Bocakova, L. Bocak, and A. P. Vogler. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318: 1913-1916.

Ide, T., N. Kanzaki, W. Ohmura, and K. Okabe. 2016. Molecular Identification of an Invasive Wood-Boring Insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) Using Frass by Loop-Mediated Isothermal Amplification and Nested PCR Assays. Journal of Economic Entomology 109: 1-5.

Lawrence, J. F. 1991. Ptinidae (Bostrichidea). In Immature insects, volume 2. F. W. Stehr (ed.). Kendall/Hunt Publishing Co., Dubuque, Iowa, p. 444-445.

Lawrence, J. F., A. M. Hastings, M. J. Dallwitz, T. A. Paine, and E. J. Zurcher. 1999. Beetles of the world: A key and information system for families and subfamilies. CD-ROM, Version 1.0 for MS Windows. CSIRO Publishing, Melbourne.

Lawrence, J. F., and A. F. Newton, Jr. 1995. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In Biology, phylogeny and classification of Coleoptera: Papers celebrating the 80th birthday of Roy A. Crowson. J. Pakaluk and S. A. Slipinski (eds.). Muzeum i Instytut Zoologii PAN, Warsaw, Poland, p. 779-1006.

Lawrence, J. F., and H. Reichardt. 1969. The myrmecophilous Ptinidae (Coleoptera), with a key to Australian species. Bulletin of the Museum of Comparative Zoology 138: 1-27.

Lawrence, J. F., and M. G. de Viedma. 1991. Anobiidae (Bostrichidea). In Immature insects, volume 2. F. W. Stehr (ed.). Kendall/Hunt Publishing Co., Dubuque, Iowa, p. 441-444.

LeConte, J. L. 1861. Classification of the Coleoptera of North America. Smithsonian Miscellaneous Collections 3: 1-208.

Linsley, E. G. and J. W. MacSwaine. 1942. The bionomics of Ptinus californicus, a depredator in the nests of bees. Bulletin of the Society of the California Academy of Science 40: 126-137.

Myhardt, G. 2012. Phylogeny and evolution of myrmecophily in beetles, based on morphological evidence (Coleoptera: Ptinidae, Scarabaeidae). PhD Dissertation. Ohio State University, Columbus, Ohio.

Nixon, K. C. 1999. WinClada ver. 1.0000 Published by the author, Ithaca, NY, USA.

Pentinsaari, M., P. D. Hebert, and M. Mutanen. 2014. Barcoding beetles: a regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLoS ONE 9: e10865.

Philips, T. K. 1998. A new genus and species of putatively myrmecophilous ptinine: Coleoaethes tetralobus (Coleoptera: Anobiidae: Ptininae). Pan-Pacific Entomologist 74: 113-117.

Philips, T. K. 2000a. Anobiidae. In American beetles, volume 2. R. H. Arnett, M. C. Thomas, P. E. Skelley, and J. H. Frank (eds.). CRC Press, New York, p. 245-260.

Philips, T. K. 2000b. Phylogenetic analysis of the New World Ptininae (Coleoptera: Bostrichoidea). 25: 235-262.

Philips, T. K., and K. L. Bell. 2010. Ptinidae Latrielle, 1802. In Handbook of zoology: Arthropoda: Insecta: Coleoptera, beetles, volume 2: Morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). N. P. Kristensen, R. G. Beutel, R. A. B. Leschen, J. F. Lawrence, and A. Ślipiński (eds.). De Gruyter, Berlin, Germany, p. 217-225.

Philips, T. K., M. A. Ivie, and L. L. Ivie. 1998. Leaf-mining and grazing in spider beetles (Coleoptera: Anobiidae: Ptininae): An unreported mode of larval and adult feeding in the Bostrichidae. Proceedings of the Entomological Society of Washington 100: 147-153.

Pic, M. 1912a. Anobiidae. Coleopterorum Catalogus 10: 1-92.
Pic, M. 1912b. Ptinidae. Coleopterorum Catalogus 10: 1-46.
Roff, D. A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60: 389-421.

Roff, D. A. and D. J. Fairbairn. 1991. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. American Zoologist 31: 243-251.

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.

Smiley, M.E. and T.K. Philips. 2011. Review of the spider beetle genus Pseudomezium. African Entomology 19: 572-596.

Thomas, M. C., P. E. Skelley, and R. W. Lundgren. 1992. New records for Gnostus floridanus (Coleoptera: Ptinidae) and observations on its behavior. Florida Entomologist 75: 287-289.

Tristram, J. N. 1977. Normal and cocoon-forming peritrophic membrane in larvae of the beetle Gibbium psylloides. Journal of Insect Physiology 23: 79-87.

White, R. E. 1962. The Anobiidae of Ohio. Bulletin of the Ohio Biological Survey 1: 158.

White, R. E. 1974. Type-species for world genera of Anobiidae. Transactions of the American Entomological Society 99: 415-475.

Yang, Z., J. F. Landry, and P. D. Hebert. 2016. A DNA barcode library for North American Pyraustinae (Lepidoptera: Pyraloidea: Crambidae). PLoS ONE 11: e0161449.

NEW SPECIES OF THE BIZARRE SOUTH AFRICAN ENDEMIC GENUS MEZIOMORPHUM PIC (COLEOPTERA: PTINIDAE)

Olivia M. Gearner, T. Keith Philips, and Peter Koniar

Introduction

At present, there are 48 species of South African spider beetles described, of which there are 14 endemic and four widespread genera (for the most recent works, see Irish 1996a, 1996b; Philips and Foster 2004; Borowski 2006a, 2006b, 2009; Bell and Philips 2008; Akotsen-Mensah and Philips 2009; Smiley and Philips 2011; Trimboli and Philips 2011; Wood and Philips 2013). Thus, South Africa is home to some of the highest spider beetle diversity currently known in the world. Undoubtedly many species still remain undocumented due to their small size, potentially small populations, and for some, limited distributions.

When describing three new species of Meziomorphum, Irish (1996a) also noted four additional undescribed taxa as species $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . One of these (species D) was formally described by Trimboli and Philips (2011) after additional specimens were collected. The other three are described herein, along with two more species relatively recently discovered.

Materials and Methods

This study was based on the examination of about 150 specimens from the following collections: Iziko South African Museum, Cape Town (SAM), Ditsong National Museum of Natural History (formerly the Transvaal Museum), Pretoria (TMSA), National Collection of Insects, Pretoria (SANC), the South African Museum (SAMC) and the collection of one author (TKPC), Western Kentucky University, Bowling Green.

Label data for the new species and new distribution records are recorded verbatim with labels on the same pin separated by a " $/$ " and a comma inserted at the end of each line. QGIS was used to create distribution maps with Google Satellite Image WMS imported using the OpenLayers plugin for the base map layer.

All holotypes are deposited in the Ditsong National Museum of Natural History, Pretoria, South Africa (TMSA). Paratypes are deposited in the same collection as well as two of the authors for some of the species (T. K. Philips (TKPC) and P. Koniar (PKCI)).

Previously described species are also illustrated to enable easy comparison with our new taxa as follows: M. ystervarkie Irish (Figs 1-4), M. speldekussing Irish (Figs 58), M. echinatum Péringuey (Figs 9-12), M. krimpvarkie Irish (Figs 13-15), M. montagu Trimboli and Philips (Figs 17-20). Genitalia from species that were available to us are also illustrated (Figs 21-26).

Figures 1-4
M. ystervarkie Irish. 1: Dorsal habitus; 2: frontal view of head; 3: dorsal pronotum; 4: lateral habitus. Scale bar: 0.5 mm

Figures 5-8
M. speldekussing Irish. 5: Dorsal habitus; 6: frontal view of head; 7: dorsal pronotum; 8: lateral habitus. Scale bar: 0.5 mm

Figures 9-12
M. echinatum Péringuey. 9: Dorsal habitus; 10: frontal view of head; 11: dorsal pronotum; 12: lateral habitus. Scale bar: 0.5 mm

Figures 13-16
M. krimpvarkie Irish. 13: Dorsal habitus; 14: frontal view of head; 15: dorsal pronotum; 16: lateral habitus. Scale bar: 0.5 mm

Figures 17-20
M. montagu Trimboli and Philips. 17: Dorsal habitus; 18: frontal view of head; 19: dorsal pronotum; 20: lateral habitus. Scale bar: 0.5 mm

Figures 21-26
Genitalia. 21: M. cederbergensis; 22: M. boroveci; 23: M. speldekussing; 24: M. echinatum; 25: M. krimpvarkie; 26: M. montagu. Scale bar: $100 \mu \mathrm{~m}$.

Descriptions

Meziomorphum boroveci spec. nov. (Figs 27-30, 31)

Diagnosis: This species with reddish brown elytra possesses three full rows of elytral spines. It can be separated from the similar M. bulla and M. krimpvarkie by the lack of a medial dorsal projection at the basal margin of the pronotum.

Description: Length: $1.84 \mathrm{~mm} \pm 0.01(n=2)$; elytra integument reddish brown; pronotum pale yellowish tan; pubescence tan to brown. Head: Antennae about half the length of body; antennomeres slightly longer than wide; appressed setae on clypeus obscuring most of surface; frons-vertex with elongate robust brown setae including one small clump below and a second above antennal insertions at middle, an interrupted transverse row of setae near pronotal margin forming four distinct clumps with three to four setae per clump. Pronotum: In dorsal view, setal covering divided into symmetric right and left portions by medial longitudinally oriented ovoid cavity at posterior $2 / 3$, exposing cuticular surface, completely separating portions except near anterior margin by a narrow transverse connection; projecting laterally at anterior $1 / 3$; posterior to this a small, deep cavity in middle $1 / 4$; in frontal view inflation on either side of middle with narrow cavity oriented dorsoventrally, but interrupted by several narrow transverse connections close to anterior margin, with some projecting setae; laterally just below and behind lateral projection with a series of four cavities oriented dorsoventrally, each with a single seta; posterior half on either side of middle in dorsal view with larger, lower, smoothly rounded dorsal projection than anterior; lacking medial projection near posterior margin; a single long brown seta on anteriolateral margin similar to those on head above eye.

Elytra: On each elytron, nine aligned full puncture rows, punctures elongated, at middle
separated longitudinally by $2 x$ length, separated transversely by $4 x$ width; three interpuncture spine-like setal rows running from base to apex, first row slightly shorter than the others and interrupted near apex, setal length equal to $1.5 \mathrm{x}-2 \mathrm{x}$ the width of the transverse space between puncture rows at middle of elytron; first setal row between $2^{\text {nd }}$ and $3^{\text {rd }}$ puncture rows, second setal row between $6^{\text {th }}$ and $7^{\text {th }}$ puncture rows, and third setal row between $8^{\text {th }}$ and $9^{\text {th }}$ puncture rows; a scattered group of setae near apex.

Etymology. This species is named in honour of one of the collectors of this distinctive species, R. Borovec, to whom we are grateful for his efforts in the field.

Type Material. Holotype (sex unknown). South Africa: RSA Northern Cape,
Richtersveld area 580 m , Ploeberg 18.ix.2013, $28^{\circ} 37^{\prime} 818 \mathrm{~S}, 17^{\circ} 00^{\prime} 462 \mathrm{E}$, R. Borovec (TMSA). Two paratypes (one male and one female) with the same data except with R. Borovec, M. Meregalli lgt. And a second label: Sifting of detritus, died [dead] leaves and branches, below shrubby Euphorbia (TKPC and PKIC).

Figures 27-30
M. boroveci spec. nov. 27: Dorsal habitus; 28: frontal view of head; 29: dorsal pronotum; 30: lateral habitus. Scale bar: 0.5 mm

Figure 31
Distribution map of Meziomorphum species in South Africa: M. boroveci, M. bulla, M. cederbergensis, M. echinatum, M. endrödyi, M. krimpvarkie, M. montagu, M. nama, M. speldekussing, and M. ystervarkie.

Meziomorphum bulla spec. nov. (Figs 32-35, 31)

Diagnosis: This species, with dark brown elytra and a yellowish pronotum, possesses three full rows of elytral spines. Two other species can be confused with this taxon; M. boroveci lacks a median projection at the basal margin of the pronotum, and M.
krimpvarkie has a pronotum with two processes on each side while this new species has three, although the third and lower one near the posterior margin is less conspicuous. Description: Length: $1.73 \mathrm{~mm}(n=1)$; elytra integument dark reddish-brown; pronotum light bronze-tan; pubescence brown to yellow. Head: Antennae about $1 / 3$ length of body, antennomeres slightly wider than long except those near apex; appressed setae on clypeus and genae obscuring most of the surface, frons-vertex also with a single transverse interrupted row of large and a few small erect, robust setae above antennal fossae forming three or four distinct clumps, much smaller recumbent white setae above those, surface medially glabrous. Pronotum: In dorsal view, setal covering divided into symmetric right and left portions by medial longitudinally oriented ovoid cavity at middle $1 / 3$, exposing cuticular surface; each symmetric half with a large, deep cavity at middle $1 / 3$ exposing cuticle below and a shallow, more elongate to rounded pair of smaller cavities in anterior declivous portion with setae curved posteriorly extending beyond surrounding surface; paired dorsal projections on either side of middle, with posterior lobe higher, one shorter projection on posterior margin; projection on middle of each half pointed laterally, with two small cavities; pronotal covering also with very small projection pointed posteriorly in middle of posterior margin. Elytra: On each elytron, seven aligned full puncture rows and one or two partial rows (three or four punctures) between $3^{\text {rd }}$ and $4^{\text {th }}$ full puncture row, punctures elongate, at middle separated longitudinally by about 2 x their length, separated transversely by $4 x-5 x$ their width; three inter-puncture rows of erect, spine-like setae, all of roughly the same length, and equal to $1.5 x-2 x$ the width of the transverse space between puncture rows at middle of elytron; first inter-puncture setal row between $2^{\text {nd }}$ and $3^{\text {rd }}$ puncture rows and running from elytral base to apex; second
setal row between the $4^{\text {th }}$ and $5^{\text {th }}$ puncture rows from base to apex; third setal row between $6^{\text {th }}$ and $7^{\text {th }}$ puncture row from base to apex; apex with row of small recumbent setae.

Etymology. From Latin bulla (-ae), a bubble, after the many distinct rounded bubble shapes on the pronotum of this taxon.

Type Material. Holotype (sex unknown). South Africa: S. Afr., Namaq. Coast, Gemsbok vlakte farm, 30.30 S-17.29 E/ 1.9.1977; E-Y: 1365, groundtraps, 58 days, leg. Endrödy-Younga/ groundtrap, with millipede bait (TMSA).

Discussion. This is species "A" in Irish (1996a).

Figures 32-35
M. bulla spec. nov. 32: Dorsal habitus; 33: frontal view of head; 34: dorsal pronotum; 35: lateral habitus. Scale bar: 0.5 mm

Meziomorphum cederbergensis spec. nov. (Figs 36-39, 31)

Diagnosis: This species has brown elytra and is one of two that possesses four rows of elytral spines on each elytron. It is most similar to M. endrödyi but the new species has a
small rounded dorsal projection centrally located adjacent to the posterior margin of the pronotum that is lacking in the former species.

Description: Length: $1.60 \pm 0.22 \mathrm{~mm}(n=3)$; elytra integument reddish-brown, pronotum pale tan to bronze, pubescence pale yellowish orange. Head: Antennae approximately half the length of body, antennomeres slightly longer than wide; appressed setae on clypeus, genae, and frons-vertex moderately obscuring surface, frons-vertex also with a single transverse row of erect, robust setae above antennal fossae decreasing in length laterally and a single clump directly below interantennal space at middle.

Pronotum: Setal covering divided into symmetric right and left portions by a medial longitudinally oriented ovoid cavity at posterior half, exposing cuticular surface at about middle $1 / 3$; one very small pointed projection at middle at posterior margin; each symmetric half with an acutely pointed dorsal projection on anterior half directed slightly posteriorly, a rounded low projection on posterior half, and a lateral projection at middle; each half with a large, deep ovoid cavity at middle extending to $1 / 3$ of total length; in frontal view an elongate narrower cavity oriented dorsoventrally in anterior declivous portion from peak to anterior margin with several long setae projecting out, and a small series of cavities on laterally-facing projection oriented dorsoventrally with a few setae projecting out. Elytra: On each elytron, nine aligned puncture rows, punctures elongate, at middle separated longitudinally by $2 x-3 x$ their length, separated transversely by $4 x-5 x$ their width; four inter-puncture rows of erect, spine-like setae present, greatest setal length at middle equal to 1.5 x the width of the transverse space between puncture rows at middle of elytron; first inter-puncture setal row between $2^{\text {nd }}$ and $3^{\text {rd }}$ puncture rows and running from near elytral base to about apical $1 / 3$, then with two distinct interruptions, one
posterior of middle and the other near the apex, second short setal row between the $4^{\text {th }}$ and $5^{\text {th }}$ puncture rows running from middle to about apical $1 / 4$, third setal row between $6^{\text {th }}$ and $7^{\text {th }}$ puncture rows from base to near apex; fourth setal row between $8^{\text {th }}$ and $9^{\text {th }}$ puncture rows from near base to apex; a similar very short transverse row of setae at apex.

Etymology. This species is named after the location where it was discovered; the beautiful Cederberg in the southwest region of South Africa.

Type Material. Holotype (sex unknown). South Africa: S. Afr., Cape-Cederbg, jeep track, $1130 \mathrm{~m}, 32.28$ S-19.14 E/ 7.11.1983; E-Y: 2055, sifted, marsh shore, leg. EndrödyYounga (TMSA). Two paratypes (one male, one unsexed) with the same data except "Cedarbg" (TKPC)

Discussion. This is species "C" in Irish (1996a).

Figures 36-39
M. cederbergensis spec. nov. 36: Dorsal habitus; 37: frontal view of head; 38: dorsal pronotum; 39: lateral habitus. Scale bar: 0.5 mm

Meziomorphum endrödyi spec. nov. (Figs 40-43, 31)
Diagnosis: This species with brown elytra is one of two that possesses four rows of elytral spines on each elytron. This species is most similar to M. cederbergensis but the
latter has a small rounded dorsal projection centrally located adjacent to the posterior margin of the pronotum, which is completely lacking in this new species.

Description: Length $1.51 \mathrm{~mm}(n=1)$; elytra integument light orange-brown; pronotum pale yellow-tan; pubescence light brown. Head: Antennae approximately $2 / 3$ the length of the body; antennomeres slightly longer than wide; appressed setae mostly obscuring surface on genae and clypeus, a few scattered on vertex; frons-vertex also with a single transverse row of erect, robust setae above antennal fossae with some in distinct pairs. Pronotum: Setal covering divided into symmetric right and left portions by medial longitudinally oriented ovoid cavity at posterior $2 / 3$, exposing cuticular surface; each symmetric half with a large, deep dorsolateral cavity at middle $1 / 3$ and narrowly exposing cuticular surface and a smaller cavity extending along majority of anterior declivous portion with extending setae; each anterior half with a projection pointed dorsally, a slightly lower, rounded dorsal and slightly lateral projection on posterior half, and a large, rounded lateral projection on anterior $2 / 5$; no medial projection at posterior margin. Elytra: On each elytron, nine aligned full puncture rows, punctures elongated, at middle separated longitudinally by $1 x-2 x$ their length, separated transversely by $5 x-6 x$ their width; four inter-puncture rows of erect, spine-like setae, all of roughly the same length, and equal to 1.5 x the width of the transverse space between puncture rows at middle of elytron; first inter-puncture setal row between $2^{\text {nd }}$ and $3^{\text {rd }}$ puncture rows and running from elytral base to a little over halfway down elytron length; second row between the $4^{\text {th }}$ and $5^{\text {th }}$ puncture rows short, from about middle of elytron to near apex, third row between $6^{\text {th }}$ and $7^{\text {th }}$ puncture row from base to apex, fourth row between $8^{\text {th }}$ and $9^{\text {th }}$ puncture row from base to apex, apex with row of small recumbent setae.

Etymology. This species is named after the late Sebastian Endrödy-Younga in recognition of his amazing efforts in sampling the obscure beetle fauna of South Africa including this and many other spider beetle taxa.

Type Material. Holotype (sex unknown). South Africa: S. Afr.; Richtersveld, Noemeesberg, 28.17 S-16.59E/ 4.9.1976; E-Y:1215, groundtraps, 30 day, leg. EndrödyYounga/ ground traps, with meat bait (TMSA).

Discussion. Based on the coordinates, the type locality is in the Noemeesberg, the southern end of which is approximately 3 km west of De Koei (28.2869, 17.0027). This is species " B " in Irish (1996a).

Figures 40-43
M. endrödyi spec. nov. 40: Dorsal habitus; 41: frontal view of head; 42: dorsal pronotum; 43: lateral habitus. Scale bar: 0.5 mm

Meziomorphum nama spec. nov. (Figs 44-47, 31)

Diagnosis: This species is one of three with black elytra. Meziomorphum ystervarkie possesses three full rows of spines on each elytron, in M. speldekussing this row is absent from the basal $1 / 2$, while in M. nama the middle row is absent from the basal $1 / 3$.

This species is closest to M. speldekussing but can also be distinguished by a cavity at the middle of the pronotum that does not extend to the cuticle surface as in the latter species. Additionally, M. nama is slightly more elongate overall compared to M. speldekussing.

Description: Length: $2.03 \mathrm{~mm}(n=1)$; elytra integument black; anterior half of pronotum dark brownish black, at posterior half with a short gradient to tan at middle to light tan at posterior margin; pubescence brown to dark brown. Head: Antennae as long or slightly longer than body, antennomeres slightly longer than wide; recumbent setae on clypeus and genae obscuring most of the surface, also a cluster of robust setae between antennal fossae and a transverse row of robust setae above antennae near anterior margin of pronotum. Pronotum: Setal covering divided into symmetric right and left portions by linear crevice; each symmetric half with tall lobe projecting dorsally and slightly posteriorly on anterior half, a small pointed lateral projection on anterior half, a short rounded projection on posterior half, and a distinct wide transverse ridge on posterior margin; each half also with a small laterally-facing cavity slightly above and posterior to lateral projection and halfway between black and tan portions of pronotum. Elytra: On each elytron, nine full puncture rows, punctures nearly round; three inter-puncture rows of erect, spine-like setae all of roughly the same length and equal to $1.5 \mathrm{x}-2 \mathrm{x}$ the width between puncture row at middle of elytron; first setal row between $2^{\text {nd }}$ and $3^{\text {rd }}$ puncture rows from base to about apical $1 / 4$; second setal row between $4^{\text {th }}$ and $5^{\text {th }}$ puncture row from about basal $1 / 4$ to before apical $1 / 4$; third setal row between $6^{\text {th }}$ and $7^{\text {th }}$ puncture row from base to near apex, extra setae near apex of elytra.

Etymology. This species is named in honor of the Nama people of South Africa who inhabit the area where this taxon is found.

Type Material. Holotype (sex unknown). South Africa: RSA, Northern Cape, S.
Eksteeinfontein [sic] 612 m , dir. Vioolsdrift 23.ix.2012, $28^{\circ} 51^{\prime} 957$ S, $17^{\circ} 21^{\prime} 503 \mathrm{E}, \mathrm{R}$. Borovec lgt (TMSA).

Figures 44-47
M. nama spec. nov. 44: Dorsal habitus; 45: frontal view of head; 46: dorsal pronotum; 47: lateral habitus. Scale bar: 0.5 mm

Discussion

Morphology
All known species in the genus Meziomorphum possess a bizarre and unique morphological synapomorphy within the ptinids: distinctive rows of long robust setal spines on the elytra and legs. Most if not all spider beetles typically use a defense of retracting their legs and antennae and playing dead when disturbed, a behavior known as thanatosis. This trait, together with the large spines, may be adequate protection against predators. The small size of these beetles (1.5-2.0 mm in length) suggests that their predators might also be relatively small-bodied and may include invertebrates such as ants. Vertebrate predators, including perhaps lizards, may also have provided selective pressure for the evolution of spines.

Pronotal morphology is also very distinctive in this genus and appears similar to a dessert food composed largely of whipped egg whites known as a meringue that has a fluffy interior and a thin solid outer surface layer. In specimens with large openings on their pronotum or damage to the surface layer, the interior appears as an irregular skeletal scaffold and is mostly an air-

Figure 48 Broken pronotum of M. krimpvarkie showing the internal honeycomb structure of setae beneath the surface.
filled hollow space (Fig 48). This morphology may help in crypsis by appearing like a small lizard, or other vertebrate, dropping. The different and odd shapes seen among species may also be evolving via genetic drift; some populations appear to be very small
and random genetic changes are more likely to become fixed and affect morphological traits.

Biology

Although there are no rearing records for any species, like so many of the other spider beetles, they are almost certainly detritus feeders, particularly using older dried dung of various vertebrates, including that from various mammals such as bats (Trimboli and Philips 2011) as well as lizards, snakes, tortoises, and birds. Accumulations of plant detritus might also be used by some taxa, but this food source will need confirmation.

Relationships

Both parsimony and Bayesian analyses of CO1 data show Meziomorphum as sister to Mezium Curtis. Additionally, parsimony topologies show this clade as sister to Gibbium Scopoli + Lepimedozium Bellés. In contrast, morphological data place Meziomorphum as sister to the Gibbiinae, and has Mezium in a more derived position within this subfamily (Mynhardt, unpublished). The morphological study of Bellés (1985) also supports Meziomorphum as a sister clade to most of the Gibbiinae, and this larger clade as sister to Gibbium + Sulcatogibbium Bellés.

Distribution

All ten species are found from northwest South Africa down to the Cape Town and as far east as north of Port Elizabeth in the Eastern Cape (Fig 31). No records of any species are more than 100 km from the coast. Some species distributions on the west coast are similar to those found in other species of spider beetles, such as Cryptopeniculus nigrosetus Philips and Carinomezium namaquaensis Wood and Philips, perhaps indicating the same vicariant events resulted in cladogenesis in different lineages.

Four of the five new species are from Namaqualand and the other is from the Cederberg. Based on gaps in the distribution, we expect that additional populations representing new species will most likely be found from the Cederberg north up into northwest South Africa when more sampling is done. Species are typically found in dry environments, from the Richtersveld south through Namaqualand to the Cape Peninsula and east into the Karoo and near-coastal habitats in the Western Cape Province (Figs 49-52).

Revised Species Status

Borowski (2000) synonymized three species that Irish (1996a) described. After examination of these taxa we have concluded that they are all valid species. Therefore, M. krimpvarkie Irish, M. ystervarkie Irish, and M. speldekussing Irish are removed from synonymy with M. echinatum Péringuey, 1888 and re-established as valid species (stat. rev.).

Figures 49-52
49: Habitat of M. endrödyi in the Richtersveld (Photo by John Andersland); 50: Habitat of M. boroveci in the Ploeberg Mountains, Richtersveld; 51: Euphorbia mauritanica, where Meziomorphum may be found. 52: Potential habitat for M. cederbergensis in the Cederberg near Keurbosfontein (S $32^{\circ} 27^{\prime} 58^{\prime \prime}$ E $19^{\circ} 18^{\prime} 51^{\prime \prime}$).

New Records

Meziomorphum krimpvarkie Irish: South Africa, Western Cape, 33 m , Doring Bay, sifting, cliff, $32^{\circ} 48^{\prime} 591 \mathrm{~S} 18^{\circ} 14^{\prime} 102 \mathrm{E}$, 29.x.2011, R. Borovec lgt./sifting of detritus bellow [sic] different low plants and shrubs, cliff.

Meziomorphum speldekussing Irish: South Africa, Western Cape, nr Worcester, Karoo Botanical Gardens, $33^{\circ} 36^{\prime} 50.0^{\prime \prime} \mathrm{S} 19^{\circ} 27^{\prime} 01.2^{\prime \prime}$ E, 25.01.2017. coll. Y. M. Marusik

References

Akotsen-Mensah, C. and T. K. Philips. 2009. Description of a new genus and eight species of spider beetles (Coleoptera: Ptinidae) from South Africa. Zootaxa 2160: 51-67.

Bell, K. L. and T. K. Philips. 2008. A revision of the South African myrmecophile Diplocotidus (Coleoptera: Ptinidae). African Entomology 16: 33-40.

Bellés, X., 1985. Sistemática, filogenia y biogeografía de la subfamilia Gibbiinae (Coleoptera: Ptinidae). Treballs del Museum de Zoologia 3: 1-94.

Borowski, J., 2000. New synonyms and remarks on some spider beetles (Coleoptera, Ptinidae). Annals of Warsaw Agricultural University, Forestry and Wood Technology 50: 63-10.

Borowski, J., 2006a. Hieleptinus uhligi - a new genus and species from South Africa (Coleoptera, Ptinidae). Annals of Warsaw Agricultural University, Forestry and Wood Technology 60: 3-6.

Borowski, J., 2006b. Scaleptinus - a new genus for Ptinus sericans (Peringuey, 1888) and Ptinus squamulosus (Pic, 1908) and description of two new species belonging to the new genus (Coleoptera, Ptinidae). Annals of Warsaw Agricultural University, Forestry and Wood Technology 60: 17-23.

Borowski, J., 2009. The spider beetles of the continental Africa (Coleoptera: Ptinidae). Part III. Eutaphroptinus gen. n. from South Africa with description of two new species belonging to the new genus. Studies and Reports of the District Museum Prague-East. Taxonomical Series 5: 11-16.

Irish, J., 1996a. The southern African genera Stethomezium Hinton, Meziomorphum Pic and Lepidomezium Bellés (Coleoptera: Ptinidae, Gibbiinae). Navorsinge van die Nasionale Museum 12: 317-334.

Irish, J., 1996b. The species of Damarus Péringuey (Ptinidae: Coleoptera). African Entomology 4: 125-129.

Philips, T. K. and D. Foster. 2004. Cryptopeniculus nigrosetus n.g., n.sp. (Coleoptera: Ptinidae) from the Namaqualand region of South Africa. Zootaxa 577: 1-11.

Smiley, M. E. and T. K. Philips. 2011. Review of the South African spider beetle genus, Pseudomezium Pic, 1897 (Coleoptera: Ptinidae: Ptininae). African Entomology 19: 572-596.
Trimboli, S. R. and T. K. Philips. 2011. Description of a new species of Meziomorphum Pic (Coleoptera: Ptinidae) from the Western Cape region of South Africa. The Coleopterist's Bulletin 65: 109-114.

Wood, M. V. and T. K. Philips. 2013. Carinomezium (Coleoptera: Ptinidae): A new genus from the Namaqualand region of South Africa. Tijdschrift voor Entomologie 156: 11-19.

A REVISION OF THE SPIDER BEETLE GENUS EUTAPHROPTINUS BOROWSKI (COLEOPTERA: PTINIDAE)

Introduction

A new genus of spider beetle, Eutaphroptinus Borowski, was described in 2009 with two new species, E. natalensis and E. pseudonatalensis. While examining material currently in our possession, it became difficult to identify some of our specimens at species level. Hence, we became suspicious that this genus is represented by two species as first hypothesized. Examination of the holotypes of the two species of Eutaphroptinus supported our hypothesis of a single species and therefore and E. pseudonatalensis is in fact a junior synonym of E. natalensis. We take this opportunity to clarify the taxonomy, more thoroughly illustrate features of the genus, and report several new records for this species.

Materials and Methods

Examination of the type specimens took place during a visit to the Natural History Museum, London (BMNH). Photographs were used after to confirm some of the morphological variation of the type specimens and for comparison with material in our possession. Specimens from the following collections were also examined: Ditsong National Museum of Natural History (formerly Transvaal Museum), Pretoria (TMSA), National Collection of Insects, Pretoria (SANC), and the collection of T. Keith Philips, Western Kentucky University, Bowling Green (TKPC).

Label data for type specimens was recorded new records was recorded verbatim. Label data for all other materials was recorded as follows: COUNTRY; geographic locality; coordinates; altitude; date; collector; additional collecting data; specimen code.

Taxonomy

Eutaphroptinus natalensis Borowski, 2009:13
Eutaphroptinus pseudonatalensis Borowski, 2009: 14. Syn. Nov.

Discussion

E. natalensis and E. pseudonatalensis, were described from 14 and three specimens respectively (Borowski 2009). The characters used to differentiate the two species are based on a number of features, including some that are known to be highly variable within spider beetles.

For example, antennomere color is described in E. natalensis as "first two black, others bicolorous: basal halves red, apical (sic) black," while the antennomeres of E. pseudonatalensis are "first two black, others reddish-brown." However, among the specimens of Eutaphroptinus examined, the amount of red and black in the antennomeres is variable and not consistent with other differentiating characters. Excluding the basal antennomeres which are typically dark colored, the remaining antennomeres are typically a combination of colors or can be nearly entirely red or reddish- brown. Additionally, the holotype of E. pseudonatalensis does have some black coloration in the more distal antennomere apices similar to that seen in E. natalensis.

Elytral scales in E. natalensis are described only as "narrowly elliptical", while the elytral scales of E. pseudonatalensis are "short, wide, silvery-white or greyish-blue." Indeed, the holotypes do possess different scale color and morphology: dorsally E. natalensis has more elliptical "yellowish" (or pale tan colored) scales while E. pseudonatalensis has teardrop-shaped whitish colored scales. However, examination of other specimens of Eutaphroptinus reveal that some individuals possess both scale shapes or have intermediates of those shapes. Moreover, both scale morphologies can be either "yellowish", white, or tan colored, even within the same specimen (see Figs $1-3$ for examples of scale variation).

The pattern on the elytra formed by the scales was also used to differentiate the species. E. natalensis was described as possessing "two transverse bands" of elytral scales in the anterior and posterior portions of the elytra, while E. pseudonatalensis has scales "dispersed all-over elytral surface sometimes with tendency to gather into transverse bands." In fact, although less distinct, the scales on the E. pseudonatalensis holotype tend toward transverse bands in the same location as the bands in E. natalensis. The only noticeable difference in the scale patterns seen in the holotypes is that E. pseudonatalensis has more scattered scales present between the two bands. Other specimens examined possess varying numbers of scales, all tending toward the transverse band pattern and sometimes with additional scales located between the bands. Further, the transverse band near the elytral apex typically consists of two more patches with occasionally a smaller one between these on each elytron. One should note that scale patterns in spider beetles can be quite variable within a species (e.g. see Philips, 1998 for variability in Niptinus niveus (Gorham)) and can sometimes simply be due to the loss of
scales from abrasion that in some cases can cause some difficulty in species differentiation.

Figures 1-4
1-3: Dorsal habitus of three different specimens of Eutaphroptinus natalensis from 1: Mbotje Forest, Eastern Cape, 2: Lajuma Nature Reserve, Limpopo Province, and 3: Kosibay, Manguzi Forest, Kwazulu-Natal; 4: lateral habitus of E. natalensis from DeHoop, Western Cape.

Elytral setae orientation in each species is reported as slightly different. In E. natalensis, setae "on first 4 intervals, hairs point in part obliquely towards sides and apex." In E. pseudonatalensis, they are described as "directed somewhat obliquely lateroposteral on first two intervals, towards elytral apex otherwise." Although the elytral
setae were not carefully examined during the visit to the NHM, they are visible in photographs taken of the type specimens. We conclude that these are minor differences and importantly are variable depending upon which specimen is studied.

Notably, there are up to four types of elytral setae in many spider beetles. One minute type is found within the punctures, a second is located between the puncture rows, while a third is along the puncture row. The fourth are composed of fine recumbent setae or scales that are distributed in patterns that are species specific.

In all of the other specimens examined, the hairs on the intervals were directed posteriorly as in a typical ptinid spider beetle pattern. The puncture row setae in this species that are angled obliquely posteriorly appear to be another variable characteristic due to individual differences or even in some cases movement of individual hairs during the processing of the specimens.

Leg coloration for E. pseudonatalensis was described as yellowish-red, while E. natalensis was described as possessing reddish brown tarsi and tibia, with the "femora darkened apically or blackish brown." However, additional specimens examined reveal a continuum of leg coloration from yellowish-red to dark reddish-brown. Additionally, none of the characters used to differentiate the two species (leg and antennal coloration, elytral scales and setae, etc.) correlate with each other in the specimens that were examined. Instead, specimens possessed characteristics of both species or characteristics intermediate of the two species described.

Although the genitalia, as illustrated, show slight differences between the two species; these differences are similar to what has been documented elsewhere within
various species (e.g., see Bellés 1985; Philips and Smith 2016; Philips and Dickmann 2018) and are hypothesized to represent only intraspecific variation.

Finally, in Figure 2 of Borowski (2009), the punctures are illustrated in a northeast to southwest direction. However, among specimens examined, the punctures are actually oriented on the opposite diagonal (refer to Fig 7).

Figures 5-7
Eutaphroptinus natalensis. 5: ventral; 6: frontal; 7: close up of elytral punctures

Notes on the Genus

This genus is distinct from all others known in particular by a deep and transverse pronotal groove near the base of the pronotum (see Figs 8-10), a feature found in other spider beetle taxa. Other genera known to possess a similar groove include Eutaphrimorphus Pic (1898), Dignomus Wollaston (1862), Silisoptinus Pic (1917), and Trymolophus Bellés (1990). Eutaphroptinus can be distinguished from Eutaphrimorphus (another similar South African taxa) by the structure of the pronotum and the groove. Eutaphroptinus possesses three dorsally projecting knobs on the disc of the pronotum (one larger one medially and two slightly smaller ones laterally (Fig 6)), compared to four shorter knobs in Eutaphrimorphus (all on either side of the midline). Additionally, the medial portion of the pronotal groove is much larger in Eutaphrimorphus than in Eutaphroptinus. Dignomus, another genus which can be found in southern Africa, possesses only two projections on the pronotum which are often more setose than in Eutaphroptinus. Dignomus also possesses lateral cavities on the pronotum, which are lacking in Eutaphroptinus.

Silisoptinus, known from Zanzibar (Tanzania) and the Socotra Island (Yemen), also has a much larger medial depression in the transverse pronotal groove than in Eutaphroptinus. Silisoptinus can be further differentiated from Eutaphroptinus by a very characteristic anteriorly widened prosternum in the latter genus. Trymolophus can be differentiated from Eutaphroptinus by a lack of a medial depression in the transverse groove which is present in Eutaphroptinus. A transverse pronotal groove can also be found in Ptinus espanyoli Bellés (1997), Ptinus augustithorax Bellés (1986), and in the
genus Tropicoptinus Bellés (1998). However, these taxa are all neotropical and are easily distinguishable from Eutaphroptinus.

Figures 8-10.
Eutaphroptinus natalensis. 8: dorsal habitus; 9: dorsal pronotum; 10: lateral pronotum and head.

Type Material Examined

Eutaphroptinus natalensis. Holotype. "Natal: Kloof. 1500 ft. Aug. 1926, S. Africa, R. E. Turner, Brit. Mus. 1926-350" (BMNH).

Eutaphroptinus pseudonatalensis. Holotype. "Port St. John, Pondoland, July 10-31.1923, S. Africa, R.E. Turner, Brit. Museum. 1923-398" (BMNH).

Additional Material Examined/New Records:

SOUTH AFRICA; Eastern Cape, Mbotjie forest; 31.27 S - 29.43 E; 30 Nov. 2003; leg. M. Burger, R. Müller; forest litter \& bark; E-Y:3580 (TMSA)

SOUTH AFRICA; Limpopo Province, Lajuma National Reserve, 23.02 S-29.26 E; 12 Dec. 2017; leg. Ruth Müller; sifting canopy forest; E-Y:4012 (2 spec.) (TMSA)

SOUTH AFRICA; KwaZulu-Natal, KosiBay, Manguzi Forest; 26.59 S-32.44 E; 15 Nov 2002; leg. Burger, Harrison, Müller; sifting; E-Y:3537 (TMSA)

SOUTH AFRICA; KwaZulu-Natal, KosiBay, Manguzi Forest; 26.59 S-32.44 E; 15 Nov. 2002; leg. Burger, Harrison, Müller; general collecting; E-Y:3538 (TMSA)

SOUTH AFRICA; Cape Province, The Claims' Farm, nr. Komga Kubusi R. Valley; 32.29S 27.53E; 01 Dec. 1992; leg. R. Oberprieler (SANC)
 leg. T. K. Philips (2 spec.) (TKPC)

References

Bellés, X. 1998. El género Tropicoptinus nov. (Coleoptera: Ptinidae) de la región neotropical. Elytron 12: 85-96.

Borowski, J. 2009. The spider beetles of the continental Africa (Coleoptera: Ptinidae). Part III. Eutaphroptinus gen. n. from South Africa with description of two new species belonging to the new genus. Studies and Reports of District Prague-East, Taxonomic Series 5: 11-16.

Pic, M. 1898. Diagnoses de deux Ptinus de l'Afrique austral et sousgenre Eutaphrimorphus. Miscellanea Entomologica 6: 54-55.

Pic, M. 1917. Descriptions abrégées diverses. Mélanges Exotico-Entomologiques 24: 224.

Philips, T. K., and R.L. Dickmann. 2018. A new species of Mezium Curtis (Coleoptera: Ptinidae) from South Africa, with notes on the genus and species limits. The Coleopterists Bulletin 72: 317-330.

Philips, T. K., M. A. Ivie, and L. L. Ivie. 1998. Leaf-mining and grazing in spider beetles (Coleoptera: Anobiidae: Ptininae): an unreported mode of larval and adult feeding in the Bostrichidae. Proceedings of the Entomological Society of Washington 100: 147-153.

Philips, T. K., and A. L. Smith. 2016. New records for Ptinus peringueyi Pic (Coleoptera: Ptinidae) and a discussion of morphological variation in this species. The Coleopterists Bulletin 70: 403-406.

Appendix A

List of taxa used in this study, their localities, and Genbank accession numbers for DNA sequences.

Taxon	Location Sampled	CO1	28 S	16 S

Ptinidae s. l.

Ptinidae s. s.
Ptininae
Gibbiini

Gibbium aequinoctiale	Kentucky, USA	JN097703	JN097666	JN097763
Gibbium psylloides		DQ221970		DQ202568
Meziini				
Damarus sp		Current study	Current study	
Lepimedozium natalense		Current study	Current study	
Meziomorphum montagu		Current study		
Meziomorphum speldekussing		Current study	Current study	
Mezium affine	Laboratory culture	JN097707	JN097663	JN097759
Mezium gigantium		Current study	Current study	
Mezium glabrum	Obib, Namibia	JN097707	JN097662	JN097758
Pseudomezium polyomorphus		Current study	Current study	
Stethomezium sp		Current study	Current study	
Ptinini				
Acanthaptinus triplehorni	Madagascar		JN097680	
"Australptinus" new genus	Australia	JN097715	JN097678	
"Australniptus" new genus	Australia		JN097682	
Casapus sp	Canary Islands	Current study	Current study	
Dignomus kukalovae	Soutpan Dunes, South Africa	Current study	Current study	
Dignomus maira	Grootkraal, South Africa	Current study	Current study	
Dignomus tengzu	Ghana		Current study	
Dignomus varius	Richtersveld, South Africa	Current study	Current study	
Diplocotes foveatus	Queensland, Australia	JN097714	JN097659	JN097762
Diplocotes similis	South Australia		JN097681	
Fabrasia sp		Current study		
Gnostus floridanus	Florida, USA	JN097702	JN097658	JN097760
Kedirinus subviolaceus	Australia	JN097701	JN097696	
Lachnoniptus lindae	Virgin Islands	JN097706		
Nicobium castaneum	Germany	KU494146		
Niptinus ovipennis	Texas	JN097712	JN097690	

Niptinus sp	Guatemala	Current study	Current study	
Niptus arcanus		Current study		
Niptus guliani			Current study	
Niptus hololeucus		KX087321		
Paulianoptinus n sp	Madagascar		JN097688	
Paulianoptinus sp	Madagascar		JN097689	
Pitnus antillanus		JN097716	JN097698	
Pocapharaptinus mulleri		Current study	Current study	
Polyplocotes sp			Current study	
Ptinus bimaculatus	Texas, USA	JN097708	JN097664	JN097764
Ptinus concurrens	Georgia, USA	Current study	JN097675	
Ptinus dubius	Germany	KM444597		
Ptinus fallax	British Columbia, CA	MG058738		
Ptinus fur	Europe: Germany	KM451550		
Ptinus fur	North America	Current study	Current study	
Ptinus interruptus	Texas, USA	JN097717	JN097665	JN097765
Ptinus italicus	France	KM285868		
Ptinus raptor	Manitoba, CA	MG053947		
Ptinus rufipes	Germany	KM451624		
Ptinus sexpunctatus	France	KM285914		
Ptinus sp	Guatemala	Current study	Current study	
Ptinus sp	Madagascar		JN097679	
Ptinus sp	Nova Scotia, CA	MG055377		
Ptinus sp	Ontario, CA	KR131178		
Ptinus sp	Ontario, CA	KR482683		
Ptinus subpilosus	Germany	KM449099		
Ptinus tectus	New Zealand	JN097713	JN097660	JN097761
Ptinus texanus	Texas, USA	JN097709	JN097674	
Ptinus villiger	Europe	KR487437		
Ptinus villiger	North America	Current study		
Ptinus wagneri		Current study	Current study	
Scaleptinus squamulosus 1		Current study		
Scaleptinus squamulosus 2		Current study	Current study	
Singularivultus decellei		Current study	Current study	
Sphaericus sp	Canary Islands		Current study	
Sulcinota new genus	Angola	Current study	Current study	
Sundaptinus sp 1		EF213939		
Sundaptinus sp 2		EF213944		
Sundaptinus sp 3		EF213949		
Xylodes sp		Current study		
Sphaericini				

Sphaericus gibboides

Current study
Anobiidae s.s
Unplaced

Anobiidae sp 1a	Malaysia	KF946234		
Anobiidae sp 1b	Malaysia	KF946216		
Anobiidae sp 2	Malaysia	KF946322		
Anobiidae sp	Australia		JN097700	
Anobiinae				
Anobiopsis sp	Bolivia	JN097735	JN097649	JN097753
Anobium hederae	France	KM285941		
Anobium inexspectatum	France	KM286383		
Anobium punctatum		Current study	Current study	
Cacotemnus rufipes (=Hemicoelus?)	Finland	KJ961900		
Gastrallus immarginatus	Germany	KM452193		
Gastrallus laevigatus	France	KM286251		
Hadrobregmus denticollis	France	KM286298		
Hadrobregmus notatus	Ontario, CA	MG054940		
Hadrobregmus pertinax	France	KM286260		
Hemicoelus carinatus	Ontario, CA	KR485810		
Hemicoelus costatus	Germany	KM448655		
Hemicoelus fluvicornis	France	KM285854		
Hemicoelus nitidus	France	KM286179		
Hemicoelus sp	Bolivia	JN097734	JN097651	JN097745
Hemicoelus sp	Ontario, CA		Current study	
Hemicoelus umbrosus	Ontario, CA	MG057455		
Microbregma emarginatum	Yukon, CA	MG062271		
Nicobium castaneum	Germany	KU494146		
Oligomerus obtusus	Tennesee, USA	JN097724	JN197644	JN097747
Oligomerus ptilinoides	France	KU494191		
Oligomerus brunneus	France	KM285893		
Oligomerus sericans	Tennesee, USA	JN097725	JN097643	JN097748
Priobium carpini	France	KU494210		
Priobium sericeum	Tennesee, USA		JN097683	
Stegobium paniceum 1	Laboratory culture	JN097737	JN097646	JN097752
Stegobium paniceum 2	Laboratory culture		JN097668	JN097769
Trichodesma klagesi	Tennesee, USA	JN097720	JN097677	
Trichodesma sp	Bolivia	JN097705	JN097652	JN097756
Dorcatominae				
Byrrhodes sp	Bolivia	JN097719	JN097695	
Byrrhodes intermedius		Current study	Current study	
Caenocara scymnoides	Yukon, CA	MG062126		

Caenocara sp	Bolivia	JN097718	JN097650	
Caenocara sp 1	Ontario, CA	MG058671		
Caenocara sp 2	Ontario, CA	MG061158		
Caenocara oculatum	Ontario, CA	MG061776		
Calymmaderus nitidus	Tennessee, USA	JN097739	JN097645	JN097744
Calymmaderus sp	Texas, USA		JN097669	
Cryptoramorphus sp 1		Current study		
Cryptoramorphus sp 2		Current study		
Dorcatoma chrysomelina	Germany	KM452163		
Dorcatoma dresdensis	Germany	KM450153		
Dorcatoma flavicornis		HQ164974		
Dorcatoma minor	Germany	KM447525		
Dorcatoma pallicornis	Prince Edward Island, CA	KR128050		
Dorcatoma punctulata	Germany	KM442894		
Dorcatoma robusta	Germany	KM452348		
Dorcatoma setulosa	Tennessee, USA	Current study	JN097694	JN097776
Dorcatoma substriata	Germany	KM443200		
Methemus cf javanus		EF213937		
Petalium bistriatum	Tennessee, USA	JN097726	JN097655	JN097751
Petalium incisum	Ontario, CA	MG054493		
Petalium seriatum 1	Tennessee, USA	JN097727	JN097672	
Petalium seriatum 4	Tennessee, USA	JN097729	JN097654	JN097750
Petalium seriatum 6	Tennessee, USA	JN097728	JN097653	JN097749
Petalium sp	Bolivia		JN097676	
Protheca sp	Bolivia	JN097738	JN097691	
Sculptotheca puberula	Ontario, CA	MG054316		
Stagetus borealis	Finland	KJ962117		
Stagetus sp	Nova Scotia, CA	KR490600		
Striatheca cf	South Africa	Current study	Current study	
Striatheca sp	Bolivia	JN097731		
Dryophilinae				
Dryophilus anobioides	Germany	KM451570		
Dryophilus pusillus	Germany	KM448413		
Grynobius planus		KM286036	Current study	
Grynobius sp		Current study		
Homophthalmus rugicollis	Germany	KM446864		
Ptilineurus cf		Current study	Current study	
Ernobiinae				

Episernus granulatus		KM451410	JN121118	
Episernus trapizoideus	New Mexico?	Current study		
Ernobius abietinus	Germany	KM452233		
Ernobius abietis	Germany	KM441562		
Ernobius angusticollis	Germany	KM441156		
Ernobius explanatus	Finland	KJ967342		
Ernobius mollis		Current study	Current study	
Ernobius pini	Germany	KM451756		
Ernobius punctulatus	British Columbia, CA	MG054129		
Hyperisus sp (=Xestobium?)		Current study	Current study	
Ochina latrelli	France	KM286326		
Ochina ptinoides	France	KM286161		
Utobium elegans	California, USA	Current study	Current study	
Xestobium affine	British Columbia, CA	MG058143		
Xestobium declive	France	KM286164		
Xestobium marginicolle	British Columbia, CA	KM842291		
Xestobium plumbeum	France	KM286116		
Xestobium rufovillosum	France	KM286197		
Xestobium sp		Current study		
Eucradinae				
Hedobia pubescens	France	KM285833		
Ptinomorphus imperialis	France	KM285895		
Ptinomorphus regalis	France	KM286002		
Mesocoelopodinae				
Mesocoelopus cf		EF213955		
Mesocoelopus niger	Germany	KM452504		
Tricorynus dichrous	Tennesee, USA		JN097684	
Tricorynus punctatus	Tennesee, USA		JN097687	
Tricorynus similis	Tennesee, USA	JN097733	JN097755	JN097755
Tricorynus sp	Tennesee, USA		JN097686	
Tricorynus sp	Texas, USA	JN097736	JN097685	
Ptilininae				
Ptilinus basalis	British Columbia, CA	KM850880		
Ptilinus pectinicornis 1		Current study	Current study	
Ptilinus pectinicornis 2		Current study		
Ptilinus fuscus	France	KM285986		EF213870
Ptilinus ruficornis	Tennessee, USA	Current study	Current study	
Ptilinus sp	Ontario, CA	MG061663		
Xyletininae				
Euvrilletta peltata	Tennessee, USA	JN097732	JN097746	JN097648

Lasioderma bubalus			Current study	
Lasioderma kiesenwetteri	Slovenia	KM442426		
Lasioderma redtenbacheri	Germany	KM440778		
Lasioderma serricorne	Laboratory culture	JN097730	JN097656	JN097754
Megorama simplex	Tennessee, USA		JN097693	
Paraxyletinus sp		Current study	Current study	
Xyletinus ater	Germany	KM447403		
Xyletinus confusus	Alberta, CA	KM847860		
Xyletinus longitarsis	Germany	KM451626		
Xyletinus planicollis	Finland	KJ963076		
Dermestidae				
Anthrenocerus sp a	Australia	HQ419106		
Anthrenus scrophulariae		EF213950		
Anthrenus sp	Kentucky, USA	JN097704	JN097657	JN097742
Anthrenus verbasci	Australia	HQ419076		
Attagenus pello	Germany	KM452310		
Attagenus unicolor		KJ001639		
Dermestes ater		KP331472		
Dermestes laniarius		EF213947		
Dermestes lardarius		AY165734		
Dermestes maculatus		KJ001640		
Dermestes sp	Kentucky, USA		JN097697	
Dermestes tessellatocollis		KJ001641		
Megatoma sp	Tennesee, USA		JN097692	
Reesa vespulae	South Korea	KJ909793		
Trinodes rufescens		EF213946		
Trogoderma anthrenoides		KP331485		
Trogoderma glabrum		FJ589737		
Trogoderma granarium	Australia	HQ419105		
Trogoderma variabile	Australia	HQ419111		
Bostrichidae				
Unplaced				
Bostrichidae sp 1	Ontario, CA	KM845859		
Bostrichidae sp 2	Ontario, CA	KJ092549		
Bostrichidae sp	Tennesee, USA	JN097740	JN097641	JN097767
Dicraeopsis bacillus		EF213936	EF213906	EF213836
Bostrichinae				
Apatides fortis			KP419358	
Bostrichus capucinus		Current study	EF213916	
Bostrychopsis parallela		HM002623		
Heterobostrychus aequalis		HM002620		
Heterobostrychus brunneus		HM002625		

Heterobostrychus hamatipennis		HM002631		
Scobicia chevrieri	Slovenia	KM440069		
Scobicia pustulata		KM286368	Current study	
Sinoxylon anale		HM002618		
Sinoxylon conigerum		HM002628	LC072658	
Sinoxylon ruficorne		HM002624	DQ202653	
Sinoxylon senegalenese		HM002622		
Xylobiops basilaris	Ontario, CA	MG058307	MG058307	DQ202589
Xylopertha pacusta		Current study	Current study	
Xyloprista hexacantha			FJ000411	
Xylothrips flavipes		HM002630	HM002630	
Xylotilus sp	Australia	KF801915	KF802081	
Dinoderinae				KF801752
Dinoderus sp		EF213938	EF213911	
Prostephanus sp		Current study		
Prostephanus sp	Tennesee, USA	JN097722	JN097667	EF213842
Prostephanus truncatus	Tennesee, USA	JN097721	JN097699	
Rhyzopertha dominica		KY440163	KP419625	JN097768
Rhyzopertha sp	Bolivia	JN097741	JN097642	
Stephanopachys linearis	Finland	KJ964646		HG810040
Stephanopachys substriatus	Finland	KJ963477		JN097766
Stephanopachys rugosus		KJ909900		
Endecatomidae				
Endecatomus rugosus		Current study	Current study	
Euderiinae				
Euderia squamosa			KP419455	
Lyctinae				
Lyctodon sp	Australia	KF801958	KF802122	
Lyctoxylon dentatum		JX424279		
Lyctus africanus	Japan	LC072651	LC072657	KF801794
Lyctus brunneus	Japan	LC072650	LC072656	
Lyctus cavicollis	Germany	KM439664		
Lyctus sp	South Africa	Current study	Current study	
Minthea rugicollis		KM652634		
Tristaria sp	Australia	KF801929	KF802095	
Trogoxylon sp	Australia	KF801957	KF802121	
Polycaoninae				KF801793
Polycaon sp		DQ222009		

Appendix B

List of studies from which Genbank sequences were obtained.

Accession code	Study
AY	Yang et al. 2016
DQ	Hunt, Papadopoulou and Vogler; Unpublished
EF	Hunt et al. 2007
FJ	Ma; Unpublished
HG	Hsieh, Huang, Wang, and Wu; Unpublished
HM	Wang and Yu; Unpublished
HQ	Barton and Vogler; Unpublished
JN	Bell and Philips 2012
JX	An, Chang, Hao, Liu, Qian, and Yang; Unpublished
KF	Crampton-Platt, Timmermans, Gimmel, Kutty, Cockerill, Chey and
	Vogler; Unpublished
KJ	Pentinsaari et al. 2014
KM	Hendrich et al. 2015
KP	Li, Zheng, Zhan, Gao, and Fan; Unpublished
KR	Hebert et al. 2016
KU	Fohrer and Meusnier; Unpublished
KX	Hunter, Moriniere, Tang, Linard, Crampton-Platt, and Vogler;
	Unpublished
KY	Chandel, Dwivedi, Srivastava, Khurana, and Subramanian;
LC	Unpublished
MG	Ide et al. 2016
Dewaard; Unpublished	

Appendix C

List of currently known spider beetle genera not included in this study.
Africogenius
Bellesus = Arachnomimus
Carinomezium
Cayoptinus
Chilenogenius
Costatomezium
Cryptopeniculus
Cylindroptinus
Cyphoniptus
Diegous
Dignomorphus
Ectrephes
Enasiba
Epauloecus
Eurostodes
Eurostoptinus
Eutaphrimorphus
Eutaphroptinus
Hanumanus
Hiekeptinus
Lapidoniptus
Luzonoptinus
Maheoptinus
Mezioniptus
Myrmecoptinus
Niptodes
Piarus
Prosternoptinus
Pseudeurostus
Silisoptinus
Stereocaulophilus
Sulcatogibbium
Sulcoptinus
Trigonogenioptinus
Trigonogenius
Tropicoptinus
Trymolophus

Appendix D

Log file for the Bayesian analysis of the 3 gene dataset
MrBayes >
Defining charset called '16S'
Expecting command
MrBayes >
Defining charset called ' $28 \mathrm{~S}^{\prime}$
Expecting command
MrBayes >
Defining charset called 'CO1'
Expecting command
MrBayes >
Defining partition called 'favored'
Expecting command
MrBayes >
Setting favored as the partition, dividing characters into 3 parts.
Setting model defaults
Seed (for generating default start values) $=118943888$
Expecting command
MrBayes >
Setting Nst to 6 for partition 3
Setting Rates to Gamma for partition 3
Successfully set likelihood model parameters to partition 3 (if applicable)

MrBayes >
Setting Nst to 2 for partition 2
Setting Rates to Invgamma for partition 2
Successfully set likelihood model parameters to partition 2 (if applicable)

MrBayes >
Setting Nst to 6 for partition 1
Setting Rates to Gamma for partition 1
Successfully set likelihood model parameters to partition 1 (if applicable)

Setting number of generations to 100000
Running Markov chain
MCMC stamp $=2577801277$

Seed $=730034476$
Swapseed = 1550179765
Model settings:

```
Settings for partition 1 --
    Datatype = DNA
    Nucmodel = 4by4
    Nst \(=6\)
        Substitution rates, expressed as proportions
        of the rate sum, have a Dirichlet prior
        (1.00,1.00,1.00,1.00,1.00,1.00)
    Covarion \(=\) No
    \# States \(=4\)
        State frequencies have a Dirichlet prior
        (1.00,1.00,1.00,1.00)
Rates = Gamma
    The distribution is approximated using 4 categories.
    Likelihood summarized over all rate categories in each generation.
    Shape parameter is exponentially
    distributed with parameter (1.00).
```

Settings for partition 2 --
Datatype = DNA
Nucmodel $=4 \mathrm{by} 4$
Nst $=2$
Transition and transversion rates, expressed
as proportions of the rate sum, have a
Beta(1.00,1.00) prior
Covarion $=$ No
\# States $=4$
State frequencies have a Dirichlet prior
(1.00,1.00,1.00, 1.00)
Rates = Invgamma
The distribution is approximated using 4 categories.
Likelihood summarized over all rate categories in each generation.
Shape parameter is exponentially
distributed with parameter (1.00).
Proportion of invariable sites is uniformly dist-
ributed on the interval $(0.00,1.00)$.
Settings for partition 3 --
Datatype = DNA
Nucmodel $=4 \mathrm{by} 4$
Nst $=6$
Substitution rates, expressed as proportions
of the rate sum, have a Dirichlet prior
(1.00,1.00,1.00,1.00,1.00,1.00)

Covarion $=$ No
\# States $=4$
State frequencies have a Dirichlet prior
(1.00,1.00,1.00, 1.00)

Rates = Gamma
The distribution is approximated using 4 categories.
Likelihood summarized over all rate categories in each generation.
Shape parameter is exponentially
distributed with parameter (1.00).
Active parameters:

Parameters	Partition(s)
	123
Tratio	1
Revmat	2.2
Statefreq	333
Shape	444
Pinvar	5
Ratemultiplier	666
Topology	777
Brlens	888

Parameters can be linked or unlinked across partitions using 'link' and 'unlink'
1 -- Parameter $=$ Tratio $\{2\}$
Type $\quad=$ Transition and transversion rates
Prior $=\operatorname{Beta}(1.00,1.00)$
Partition $=2$

2 -- Parameter $=\operatorname{Revmat}\{1,3\}$
Type = Rates of reversible rate matrix
Prior $=\operatorname{Dirichlet}(1.00,1.00,1.00,1.00,1.00,1.00)$
Partitions $=1$ and 3

3 -- Parameter $=\operatorname{Pi}\{$ all $\}$
Type = Stationary state frequencies
Prior = Dirichlet
Partitions $=$ All

4 -- Parameter = Alpha $\{$ all $\}$
Type = Shape of scaled gamma distribution of site rates
Prior = Exponential(1.00)

```
    Partitions = All
5-- Parameter = Pinvar{2}
    Type = Proportion of invariable sites
    Prior = Uniform(0.00,1.00)
    Partition = 2
6 -- Parameter = Ratemultiplier{all}
    Type = Partition-specific rate multiplier
    Prior = Fixed(1.0)
    Partitions = All
7 -- Parameter = Tau{all}
    Type = Topology
    Prior = All topologies equally probable a priori
    Partitions = All
    Subparam. = V {all}
8 -- Parameter = V{all }
    Type = Branch lengths
    Prior = Unconstrained:GammaDir(1.0,0.1000,1.0,1.0)
    Partitions = All
```

The MCMC sampler will use the following moves:
With prob. Chain will use move
1.82% Dirichlet(Tratio $\{2\}$)
0.91 \% Dirichlet(Revmat $\{1,3\}$)
0.91 \% Slider(Revmat\{1,3\})
0.91 \% Dirichlet(Pi\{all\})
$0.91 \% \operatorname{Slider}(\operatorname{Pi}\{a l l\})$
1.82 \% Multiplier(Alpha $\{$ all $\}$)
1.82 \% Slider(Pinvar\{2\})
9.09 \% ExtSPR(Tau\{all\},V\{all\})
9.09 \% ExtTBR(Tau\{all\},V\{all\})
9.09 \% $\operatorname{NNI(Tau\{ all\} ,V\{ all\})~}$
9.09 \% ParsSPR(Tau\{all\},V $\{\operatorname{all}\})$
36.36 \% Multiplier(V \{all\})
12.73 \% Nodeslider(V\{all\})
5.45 \% TLMultiplier(V $\{$ all $\}$)

Division 1 has 844 unique site patterns
Division 2 has 615 unique site patterns
Division 3 has 607 unique site patterns
Initializing conditional likelihoods

Using standard SSE likelihood calculator for division 1 (single-precision) Using standard SSE likelihood calculator for division 2 (single-precision) Using standard SSE likelihood calculator for division 3 (single-precision) Initializing invariable-site conditional likelihoods

Initial \log likelihoods and \log prior probs for run 1:
Chain 1 -- -57236.709262 -- 90.094022
Chain 2 -- -58737.696397-- 90.094022
Chain 3 -- -59382.554150 -- 90.094022
Chain 4 -- -59336.670095 -- 90.094022
Initial log likelihoods and log prior probs for run 2:
Chain 1-- $58856.899639-20.094022$
Chain 2 -- -57166.455499 -- 90.094022
Chain 3 -- -58429.323817-- 90.094022
Chain 4 -- -59162.405895 -- 90.094022

Using a relative burnin of 25.0% for diagnostics
NOTE: Chain results removed for space
Average standard deviation of split frequencies: 0.003916
Continue with analysis? (yes/no): Enter yes or no:
Analysis completed in 15 hours 18 mins 6 seconds
Analysis used 55085.99 seconds of CPU time
Likelihood of best state for "cold" chain of run 1 was -36706.96
Likelihood of best state for "cold" chain of run 2 was -36707.81

Acceptance rates for the moves in the "cold" chain of run 1:
With prob. (last 100) chain accepted proposals by move
$25.2 \% \quad(20 \%) \quad \operatorname{Dirichlet}(\operatorname{Tratio}\{2\})$
20.1 \% (30 \%) $\quad \operatorname{Dirichlet(Revmat~}\{1,3\})$
26.5 \% (28 \%) $\quad \operatorname{Slider}(\operatorname{Revmat}\{1,3\})$
12.6 \% (20 \%) $\quad \operatorname{Dirichlet(Pi\{ all\})~}$
22.6 \% (31%) $\operatorname{Slider(Pi\{ all\})~}$
$24.5 \% \quad(27 \%) \quad$ Multiplier(Alpha $\{$ all $\})$
25.0 \% (25 \%) $\quad \operatorname{Slider}(\operatorname{Pinvar}\{2\})$
$4.7 \% \quad(2 \%) \quad \operatorname{ExtSPR}(T a u\{a l l\}, \mathrm{V}\{a l l\})$
$4.1 \% \quad(7 \%) \quad \operatorname{ExtTBR}(T a u\{a l l\}, \mathrm{V}\{\mathrm{all}\})$
$7.0 \% \quad(6 \%) \quad \operatorname{NNI}(T a u\{a l l\}, \mathrm{V}\{\mathrm{all}\})$
$1.6 \% \quad(1 \%) \quad \operatorname{ParsSPR}(T a u\{a l l\}, V\{a l l\})$
25.7 \% (21 \%) Multiplier(V\{all\})
18.3 \% (20 \%) Nodeslider(V \{all $\}$)
$24.4 \% \quad(30 \%) \quad$ TLMultiplier(V $\{$ all $\})$

Acceptance rates for the moves in the "cold" chain of run 2:
With prob. (last 100) chain accepted proposals by move $24.8 \% \quad(23 \%) \quad \operatorname{Dirichlet}(T r a t i o\{2\})$
20.3 \% (19 \%) $\quad \operatorname{Dirichlet}(\operatorname{Revmat}\{1,3\})$
26.4 \% (18 \%) $\quad \operatorname{Slider}(\operatorname{Revmat}\{1,3\})$
12.3 \% (22 \%) $\quad \operatorname{Dirichlet(Pi\{ all\})~}$
22.4 \% (23 \%) $\quad \operatorname{Slider(Pi\{ all\})~}$
$24.5 \% \quad(27 \%) \quad$ Multiplier(Alpha \{all\})
25.0 \% (19 \%) \quad Slider(Pinvar $\{2\}$)
$4.7 \% \quad(8 \%) \quad \operatorname{ExtSPR}(T a u\{a l l\}, \mathrm{V}\{a l l\})$
$4.1 \% \quad(1 \%) \quad \operatorname{ExtTBR}(T a u\{a l l\}, \mathrm{V}\{\mathrm{all}\})$
$7.0 \% \quad(5 \%) \quad \mathrm{NNI}(\mathrm{Tau}\{a l l\}, \mathrm{V}\{\mathrm{all}\})$
$1.6 \% \quad(3 \%) \quad \operatorname{ParsSPR}(T a u\{a l l\}, V\{$ all $\})$
25.6 \% (23 \%) Multiplier(V $\{$ all $\}$)
18.1 \% (19%) Nodeslider(V $\{$ all $\}$)
24.6 \% (30%) TLMultiplier(V \{all\})

Chain swap information for run 1:
$\left.\begin{array}{lcccc} & & 1 & 2 & 3\end{array}\right) 4$

Chain swap information for run 2:
$\left.\begin{array}{lcccc} & & 1 & 2 & 3\end{array}\right)$

Upper diagonal: Proportion of successful state exchanges between chains Lower diagonal: Number of attempted state exchanges between chains

Chain information:
ID -- Heat
1 -- 1.00 (cold chain)
2 -- 0.91
3-- 0.83

Heat $=1 /\left(1+\mathrm{T}^{*}(\mathrm{ID}-1)\right)$
(where $\mathrm{T}=0.10$ is the temperature and ID is the chain number)

MrBayes >

Summarizing trees in files "bost3gene.nex.txt.run1.t" and "bost3gene.nex.txt.run2.t" Using relative burnin ('relburnin=yes'), discarding the first 25% of sampled trees Writing statistics to files bost3gene.nex.txt.<parts|tstat|vstat|trprobs|con> Examining first file ...
Found one tree block in file "bost3gene.nex.txt.run1.t" with 6007 trees in last block Expecting the same number of trees in the last tree block of all files

Tree reading status:

**

Read a total of 12014 trees in 2 files (sampling 9012 of them)
(Each file contained 6007 trees of which 4506 were sampled)
General explanation:
In an unrooted tree, a taxon bipartition (split) is specified by removing a branch, thereby dividing the species into those to the left and those to the right of the branch. Here, taxa to one side of the removed branch are denoted '.' and those to the other side are denoted '*'. Specifically, the '.' symbol is used for the taxa on the same side as the outgroup.

In a rooted or clock tree, the tree is rooted using the model and not by reference to an outgroup. Each bipartition therefore corresponds to a clade, that is, a group that includes all the descendants of a particular branch in the tree. Taxa that are included in each clade are denoted using '*', and taxa that are not included are denoted using the '.' symbol.

The output first includes a key to all the bipartitions with frequency larger or equual to (Minpartfreq) in at least one run. Minpartfreq is a parameter to sumt command and currently it is set to 0.10 . This is followed by a table with statistics for the informative bipartitions (those including at least two taxa), sorted from highest to lowest probability. For each bipartition, the table gives the number of times the partition or split was observed in all runs (\#obs) and the posterior probability of the bipartition (Probab.), which is the same as the split frequency. If several runs are summarized, this is
followed by the minimum split frequency $(\operatorname{Min}(\mathrm{s}))$, the maximum frequency ($\operatorname{Max}(\mathrm{s})$), and the standard deviation of frequencies ($\operatorname{Stddev}(\mathrm{s})$) across runs. The latter value should approach 0 for all bipartitions as MCMC runs converge.

This is followed by a table summarizing branch lengths, node heights (if a clock model was used) and relaxed clock parameters (if a relaxed clock model was used). The mean, variance, and 95% credible interval are given for each of these parameters. If several runs are summarized, the potential scale reduction factor (PSRF) is also given; it should approach 1 as runs converge. Node heights will take calibration points into account, if such points were used in the analysis.

Note that Stddev may be unreliable if the partition is not present in all runs (the last column indicates the number of runs that sampled the partition if more than one run is summarized). The PSRF is not calculated at all if the partition is not present in all runs. The PSRF is also sensitive to small sample sizes and it should only be considered a rough guide to convergence since some of the assumptions allowing one to interpret it as a true potential scale reduction factor are violated in MrBayes.

List of taxa in bipartitions:
1 -- Lyctodon_sp
2 -- Tristaria_sp
3 -- Trogoxylon_sp
4 -- Xylotillus_sp_Australia
5 -- Dicraeopsis_bacillus
6 -- Dinoderus_sp
7 -- Ptilinus_pectinicornis
8 -- Bostrichidae_sp_TN
9 -- Prostephanus_sp_TN
10 -- Sinoxylon_ruficorne
11 -- Dorcatoma_setulosa
12 -- Gibbium_psylloides
13 -- Diplocotes_foveatus
14 -- Ptinus_bimaculatus
15 -- Mezium_affine
16 -- Mezium_glabrum
17 -- Ptinus_tectus
18 -- Gnostus_floridanus
19 -- Gibbium_aequinoctiale
20 -- Anthrenus_sp_KY
21 -- Stegobium_paniceum
22 -- Anobiopsis_sp
23 -- Lasioderma_serricorne
24 -- Oligomerus_obtusus

25 -- Oligomerus_sericans
26 -- Calymmaderus_nitidus
27 -- Petalium_seriatum
28 -- Petalium_bistriatum
29 -- Hemicoelus_sp_Bolivia
30 -- Ptinus_interruptus
31 -- Trichodesma_sp_Bolivia
32 -- Tricorynus_similis
33 -- Rhyzopertha_sp_Bolivia
34 -- Rhyzopertha_dominica
Summary statistics for informative taxon bipartitions (saved to file "bost3gene.nex.txt.tstat"):

ID \#obs Probab. $\operatorname{Sd}(\mathrm{s})+\quad \operatorname{Min}(\mathrm{s}) \quad \operatorname{Max}(\mathrm{s})$ Nruns

--						
35	9012	1.000000	0.000000	1.000000	1.000000	2
36	9012	1.000000	0.000000	1.000000	1.000000	2
37	9012	1.000000	0.000000	1.000000	1.000000	2
38	9012	1.000000	0.000000	1.000000	1.000000	2
39	9012	1.000000	0.000000	1.000000	1.000000	2
40	9012	1.000000	0.000000	1.000000	1.000000	2
41	9012	1.000000	0.000000	1.000000	1.000000	2
42	9012	1.000000	0.000000	1.000000	1.000000	2
43	9012	1.000000	0.000000	1.000000	1.000000	2
44	9012	1.000000	0.000000	1.000000	1.000000	2
45	9012	1.000000	0.000000	1.000000	1.000000	2
46	9012	1.000000	0.000000	1.000000	1.000000	2
47	9012	1.000000	0.000000	1.000000	1.000000	2
48	9011	0.999889	0.000157	0.999778	1.000000	2
49	9011	0.999889	0.000157	0.999778	1.000000	2
50	9010	0.999778	0.000000	0.999778	0.999778	2
51	9010	0.999778	0.000314	0.999556	1.000000	2
52	9009	0.999667	0.000157	0.999556	0.999778	2
53	9006	0.999334	0.000000	0.999334	0.999334	2
54	8954	0.993564	0.000314	0.993342	0.993786	2
55	8950	0.993120	0.001569	0.992011	0.994230	2
56	8576	0.951620	0.007846	0.946072	0.957168	2
57	8434	0.935863	0.005649	0.931869	0.939858	2
58	8337	0.925100	0.008317	0.919219	0.930981	2
59	7577	0.840768	0.007689	0.835331	0.846205	2
60	6573	0.729361	0.005492	0.725477	0.733245	2
61	6191	0.686973	0.012397	0.678207	0.695739	2
62	5522	0.612739	0.000942	0.612073	0.613404	2
63	5405	0.599756	0.026834	0.580781	0.618731	2
64	4838	0.536840	0.000942	0.536174	0.537506	2

65	3651	0.405126	0.006434	0.400577	0.409676	2
66	3363	0.373169	0.023696	0.356414	0.389925	2
67	3087	0.342543	0.007689	0.337106	0.347980	2
68	3021	0.335220	0.002040	0.333777	0.336662	2
69	2798	0.310475	0.013809	0.300710	0.320240	2
70	2434	0.270084	0.005649	0.266090	0.274079	2
71	1898	0.210608	0.007532	0.205282	0.215934	2
72	1548	0.171771	0.000942	0.171105	0.172437	2
73	1429	0.158566	0.008003	0.152907	0.164225	2
74	1184	0.131380	0.002511	0.129605	0.133156	2

+ Convergence diagnostic (standard deviation of split frequencies) should approach 0.0 as runs converge.

Summary statistics for branch and node parameters (saved to file "bost3gene.nex.txt.vstat"):

Parameter	95\% HPD Interval						
	Me	Varianc	Lower U	Upper M	Median	Nruns	
length $\{$ all $\}[1]$	0.046561	0.000038	0.034947	0.058928	0.046280	1.000	2
length $\{$ all $\}[2]$	0.045052	0.000029	0.034673	0.055308	0.044888	1.000	2
length $\{$ all $\}[3]$	0.056637	0.000034	0.045266	0.067980	0.056415	1.000	2
length $\{$ all $\}$ [4]	0.145942	0.000206	0.117807	0.174126	0.145922	1.001	2
length $\{$ all $\}$ [5]	0.115903	0.000222	0.085499	0.143941	0.115970	1.000	2
length $\{$ all $\}[6]$	0.080376	0.000276	0.049494	0.114126	0.079652	1.000	2
length $\{$ all $\}$ [7]	0.340361	0.000844	0.285314	0.399153	0.339226	1.000	2
length $\{$ all $\}[8]$	0.122132	0.000145	0.098935	0.145540	0.121892	1.000	2
length $\{$ all $\}[9]$	0.213951	0.000310	0.178505	0.247561	0.213224	1.001	2
length $\{$ all $\}[10]$	0.143182	0.000327	0.107880	0.177679	0.142792	1.000	2
length $\{$ all $\}[11]$	0.172114	0.000276	0.141418	0.206364	0.171402	1.000	2
length $\{$ all $\}[12]$	0.022815	0.000093	0.004461	0.041269	0.021918	1.000	2
length $\{$ all $\}[13]$	0.133630	0.000146	0.109690	0.156256	0.133117	1.001	2
length $\{$ all $\}[14]$	0.116126	0.000125	0.094738	0.138820	0.115720	1.000	2
length $\{$ all $\}$ [15]	0.086699	0.000109	0.066506	0.107093	0.086359	1.000	2
length $\{$ all $\}[16]$	0.077958	0.000123	0.057546	0.100355	0.077377	1.000	2
length $\{$ all $\}[17]$	0.073026	0.000081	0.056605	0.091613	0.072606	1.000	2
length $\{$ all $\}[18]$	0.156721	0.000170	0.131222	0.181841	0.156555	1.000	2
length $\{$ all $\}[19]$	0.027683	0.000101	0.009139	0.047693	0.027152	1.000	2
length $\{$ all $\}[20]$	0.249225	0.000354	0.212862	0.285584	0.248837	1.000	2
length $\{$ all $\}[21]$	0.167729	0.000207	0.140332	0.197078	0.167216	1.000	2
length $\{$ all $\}$ [22]	0.134990	0.000181	0.108151	0.160838	0.134607	1.000	2
length $\{$ all $\}$ [23]	0.165322	0.000185	0.138693	0.192202	0.164820	1.000	2
length $\{$ all $\}[24]$	0.129112	0.000137	0.106485	0.152440	0.128842	1.000	

length\{all $\}$ [25]	0.0	0.000094	0.0	0.1	0.0	00	
length $\{$ all $\}$ [26]	0.15	0.000176	0.131051	0.182715	0.156202	1.000	2
length $\{$ all $\}$ [27]	0.044412	0.000043	0.031913	0.057188	0.044091	1.000	2
noth \{all\} [28]	0.041917	0.000042	0.029550	0.05478	0.041633	1.000	2
length $\{$ all $\}$ [29]	0.136832	0.000159	0.112463	0.161716	0.136657	1.001	2
length $\{$ all $\}$ [30]	0.197642	0.000256	0.167399	0.229481	0.197004	1.000	2
ngth\{all\}[31]	0.1	. 000225	0.153668	0.211795	0.181756	. 000	2
gth $\{$ all $\}$ [32]	0.164262	0.000206	0.137469	0.19289	0.163627	1.000	2
ength $\{$ all\} [33]	0.114587	0.000144	0.093143	0.139904	0.114181	1.000	2
ength $\{$ all\} $[34]$	0.325707	0.001255	0.254	0.391901	0.324207	1.000	2
ength $\{$ all\} [35]	0.2691	0.000589	0.221812	0.315609	0.268402	1.000	2
length $\{$ all $\}$ [36]	0.121255	0.000330	0.085457	0.156178	0.120842	1.000	2
length $\{$ all $\}$ [37]	0.034724	0.000060	0.020543	0.050636	0.034438	1.000	2
length $\{$ all $\}$ [38]	10405	. 00028	0.07	0.137329	0.103522	. 000	2
length $\{$ all $\}$ [39]	0.056932	0.000137	0.035043	0.08042	0.056489	1.000	2
length $\{$ all $\}$ [40]	0.094530	0.000210	0.067507	0.123710	0.094437	1.000	2
ngth $\{$ all\} [41]	,045724	. 000140	0.022946	0.068527	0.044812	1.000	2
length $\{$ all $\}[42]$	0.047426	0.000101	0.027676	. 06700	0.046899	1.000	2
length $\{$ all $\}$ [43]	0.066070	0.000105	0.046639	0.086581	0.065665	1.000	2
length $\{$ all $\}$ [44]	0.405941	0.000941	0.348115	0.466662	0.405299	1.000	2
length $\{$ all $\}$ [45]	0.02681	. 000028	0.016386	0.03708	0.026608	. 000	2
length $\{$ all $\}$ [46]	0.445316	0.001462	0.371457	0.5203	0.443905	1.000	2
length $\{$ all $\}$ [47]	0.071975	0.000085	0.054173	0.089969	0.071742	1.000	2
length $\{$ all $\}$ [48]	0.03797	0.000057	0.023575	0.0526	0.037621	1.000	2
length $\{$ all $\}$ [49]	. 026704	0.000058	0.012576	0.04161	0.026392	1.000	2
length $\{$ all $\}$ [50]	0.045176	0.000168	0.020389	0.070643	0.044444	1.000	2
ngth $\{$ all\} [51]	0.037611	0.000095	0.020358	0.058298	0.037052	1.000	2
length $\{$ all $\}$ [52]	0.018543	0.000038	0.007270	0.03099	0.018094	1.000	2
length $\{$ all $\}$ [53]	0.019894	0.000039	0.008540	0.032744	0.019525	1.000	2
ngth $\{$ all $\}$ [54]	0.030316	0.000094	0.012142	0.04966	0.029864	1.000	2
ngth $\{$ all\} [55]	0.030294	0.000065	0.014797	0.04602	0.029803	1.000	2
length $\{$ all $\}$ [56]	0.029278	0.000072	0.012656	0.04585	0.028804	1.000	2
ngth $\{$ all\}[57]	0.014700	0.000036	0.003680	0.026617	0.014183	1.000	2
length $\{$ all\} $[58]$	0.018780	0.000038	0.006946	0.03085	0.018354	1.000	2
length $\{$ all $\}$ [59]	0.015508	0.000033	0.005266	0.02707	0.015089	1.000	2
length $\{$ all $\}$ [60]	0.021713	0.000055	0.006874	0.035497	0.021404	1.000	2
ngth $\{$ all\} [61]	0.027640	0.000197	0.001183	0.05339	0.026659	. 00	2
length $\{$ all $\}[62]$	0.017122	0.000053	0.003102	0.031278	0.016646	1.001	2
length $\{$ all $\}$ [63]	0.013633	0.000040	0.001517	0.025431	0.013070	1.000	2
ength $\{$ all $\}[64]$	0.011965	0.000034	0.001124	0.022915	0.011594	1.000	2
length $\{$ all $\}$ [65]	0.009891	0.000024	0.001047	0.019175	0.009455	1.000	2
length $\{$ all $\}$ [66]	0.016545	0.000063	0.001736	0.031462	0.015928	1.000	2
length $\{$ all $\}$ [67]	0.014568	0.000089	0.000022	0.031577	0.013170	1.000	2
length $\{$ all $\}$ [68]	0.013090	0.000036	0.001648	0.024347	0.012637	1.000	2
length $\{$ all $\}$ [69]	0.016639	0.000137	0.000006	0.038314	0.014529	1.000	2
length $\{$ all $\}$ [70]	0.022733	0.000063	0.008270	0.039129	0.022310	1.000	2

length $\{a l l\}[71]$	0.016416	0.000060	0.003001	0.032390	0.015730	1.001	2
length\{all\}[72]	0.007313	0.000044	0.000003	0.021041	0.005515	0.999	2
length\{all\}[73]	0.020135	0.000047	0.006942	0.033115	0.019558	1.001	2
length\{all\}[74]	0.009526	0.000055	0.000004	0.023919	0.007853	1.000	2

+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge. NA is reported when deviation of parameter values within all runs is 0 or when a parameter value (a branch length, for instance) is not sampled in all runs.

Summary statistics for partitions with frequency $>=0.10$ in at least one run:
Average standard deviation of split frequencies $=0.003927$
Maximum standard deviation of split frequencies $=0.026834$
Average PSRF for parameter values (excluding NA and >10.0) $=1.000$
Maximum PSRF for parameter values $=1.001$

Clade credibility values:
Subtree rooted at node 59:

Root part of tree:

Phylogram (based on average branch lengths):

|-----------------| 0.500 expected changes per site
Calculating tree probabilities...
Credible sets of trees (1332 trees sampled):
50% credible set contains 53 trees
90% credible set contains 540 trees
95% credible set contains 882 trees
99% credible set contains 1242 trees

MrBayes >
Summarizing parameters in files bost3gene.nex.txt.run1.p and bost3gene.nex.txt.run2.p Writing summary statistics to file bost3gene.nex.txt.pstat Using relative burnin ('relburnin=yes'), discarding the first 25% of samples

Below are rough plots of the generation (x-axis) versus the log probability of observing the data (y -axis). You can use these
graphs to determine what the burn in for your analysis should be. When the \log probability starts to plateau you may be at stationarity. Sample trees and parameters after the \log probability plateaus. Of course, this is not a guarantee that you are at stationarity. Also examine the convergence diagnostics provided by the 'sump' and 'sumt' commands for all the parameters in your model. Remember that the burn in is the number of samples to discard. There are a total of ngen / samplefreq samples taken during a MCMC analysis.

Overlay plot for both runs:
($1=$ Run number $1 ; 2=$ Run number $2 ; *=$ Both runs $)$

Estimated marginal likelihoods for runs sampled in files "bost3gene.nex.txt.run1.p" and "bost3gene.nex.txt.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)
(Values are saved to the file bost3gene.nex.txt.lstat)
Run Arithmetic mean Harmonic mean

1	-36717.11	-36748.17
2	-36716.82	-36746.11

TOTAL -36716.95 -36747.60

Model parameter summaries over the runs sampled in files
"bost3gene.nex.txt.run1.p" and "bost3gene.nex.txt.run2.p":
Summaries are based on a total of 9012 samples from 2 runs.
Each run produced 6007 samples of which 4506 samples were included.
Parameter summaries saved to file "bost3gene.nex.txt.pstat".

Parameter	Mean	Variance	Lower Upp	Upper M	Median min	ESS** avg		
ESS PSRF+								
$\mathrm{TL}\{\mathrm{all}\} \quad 6$			6.685164	0.031663	6.325343	$7.022255 \quad 6$	6.6834053	3446.37
3701.491 .000								
kappa \{2 \}	2.271882	0.013257	2.036423	2.490640	2.269723	4185.60		
4219.861 .000								
$\mathrm{r}(\mathrm{A}<->\mathrm{C})\{1,3\}$	\} 0.069945	50.000036	$6 \quad 0.058567$	$7 \quad 0.082049$	0.069864	1962.44		
2331.331 .000								
$\mathrm{r}(\mathrm{A}<->\mathrm{G})\{1,3\}$) 0.256124	$4 \quad 0.000113$	3.236055	$5 \quad 0.276845$	5 0.256025	25 1679.65		
1785.271 .000								
$\mathrm{r}(\mathrm{A}<->\mathrm{T})\{1,3\}$	\} 0.218055	50.000057	$7 \quad 0.202733$	-0.232023	30.217964	2064.99		
2255.291 .000								
$\mathrm{r}(\mathrm{C}<->\mathrm{G})\{1,3\}$	\} 0.052042	20.000038	$8 \quad 0.040369$	90.064395	50.051922	22580.12		
2675.411 .000								
$\mathrm{r}(\mathrm{C}<->\mathrm{T})\{1,3\}$	\} 0.345942	20.000142	20.323572	20.369978	- 0.345827	71646.63		
1709.901 .000								
$\mathrm{r}(\mathrm{G}<->\mathrm{T})\{1,3\}$	\} 0.057892	20.000023	30.048726	$6 \quad 0.067267$	7 0.057800	02168.36		
2200.011 .000								
$\mathrm{pi}(\mathrm{A})\{\mathrm{all}\} \quad 0$	0.284613	0.000027	0.274514	0.294870	0.284569	2190.75		
2514.421 .000								
$\mathrm{pi}(\mathrm{C})\{\mathrm{all}\} \quad 0$	0.177229	0.000023	0.167664	0.186431	0.177192	1832.59		
1958.381 .000								
$\mathrm{pi}(\mathrm{G})\{\mathrm{all}\} \quad 0$	0.189059	0.000026	0.179080	0.198962	0.189049	1972.52		
$2021.20 \quad 1.000$								
$\mathrm{pi}(\mathrm{T})\{\mathrm{all}\} \quad 0$	0.349099	0.000030	0.338223	0.359506	0.3491142	2387.76		
2505.451 .000								
alpha \{all\} 0	0.796580	0.000716	0.744003	0.847921	0.7960993	3585.15		
4022.621 .000								
pinvar $\{2\}$	0.004139	0.000015	0.000000	0.012120	0.002985	3820.15		
4069.521 .000								

[^0]+ Convergence diagnostic (PSRF = Potential Scale Reduction Factor; Gelman and Rubin, 1992) should approach 1.0 as runs converge.

[^0]: * Convergence diagnostic (ESS = Estimated Sample Size); min and avg values correspond to minimal and average ESS among runs.
 ESS value below 100 may indicate that the parameter is undersampled.

