TACSM Abstract

Circulating Inflammatory and Oxidative Stress Responses to Steady-State Moderate-Intensity and High-Intensity Interval Exercise in Mid-Spectrum Chronic Kidney Disease

MATTHEW N. PETERSON¹, JEFFREY S. FORSSE¹, J. KYLE TAYLOR⁴, ZACHARIAS PAPADAKIS¹, NICHOLAS SCHWEDOCK², BURRITT W. HESS², JACKSON O. GRIGGS², D. CRAWFORD ALLISON³, RON L. WILSON³, KATHRYN DUGAN⁴, KATHY W. JONES⁴ KATHLEEN ADAIR¹, MITCHELL C. CHOLEWINSKI¹ and PETER W. GRANDJEAN (FACSM)¹

¹Baylor Laboratories for Exercise Science and Technology, Department of Health, Human Performance, and Recreation, Baylor University; Waco, TX; ²Family Health Center, Waco, TX ³Baylor Scott & White Health, Waco, TX; ⁴Medical & Clinical Laboratory Sciences, Auburn University-Montgomery, Montgomery, AL 36124

Category: Doctoral

Advisor / Mentor: Grandjean, Peter (peter_grandjean@baylor.edu)

ABSTRACT

Inflammation and oxidative stress can be potent modulators of vascular function. These factors may transiently respond to moderate-intensity steady state exercise (SSE) in a manner that improves postexercise vascular function in healthy adults. Whether exercise imparts similar effects in adults with Stage 3 or 4 chronic kidney disease (CKD) remains understudied. Moreover, a comparison of SSE and highintensity interval exercise (HIIE) may add to clinically-relevant findings for improving vascular function in mid-spectrum CKD. **PURPOSE:** To determine the influence of SSE and a comparable amount of HIIE on post-exercise inflammation and oxidative stress in patients diagnosed with secondary Stage 3 or 4 CKD. **METHODS:** Twenty participants (n = 6 men; n = 14 women; age 62.0 + 9.9 yr; weight 80.9 + 16.2 kg; body fat 37.3 ± 8.5% of weight; VO₂max 19.4 ± 4.7 ml/kg/min) completed 30 min of SSE at 65% VO₂reserve or HIIE by treadmill walking (90% and 20% of VO₂reserve in 3:2 min ratio) in a randomized crossover design. Both exercise conditions averaged ~ 65% VO₂reserve. Blood samples were obtained by the same technician under standardized conditions just before, 1hr and 24hrs after exercise. Total antioxidant capacity (TAC), paraoxonase1 (PON1), asymmetric dimethylarginine (ADMA), ³nitrotyrosine (³NT) and interleukin-6 (IL6) responses were analyzed using 2 (condition) by 3 (sample point) repeated measures ANOVAs. RESULTS: Relative to pre-exercise measures: TAC increased by 4.3% 24hr after exercise (p = 0.012). PON1 was maintained 1hr and elevated by 6.1% 24hr after SSE, but not HIIE (p = 0.035). When corrected for plasma volume shifts, ADMA increased 30 ng/ml at 1hr but was 58 ng/ml lower 24hrs after exercise (p = 0.0006). 3 NT and IL6 remained stable in the hours after exercise (p > 0.05). CONCLUSION: Modest inflammatory and oxidative stress marker responses to either SSE and HIIE may contribute to improved vascular function in mid-spectrum CKD.