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IETRODUCTICN

A very small percentage of all the classes of ordinary and

partial differential equations can be solved by simple or elemen-

tary methos, comparr'd rith the lsrge number of classes. Many,

In fact, most of the differential equations of major importance

to scientists and mathemsticians in the study of applied science

can not be solved completely by the general methods or by the

many special methods of solution of ordinary and partial differen-

tial'equations.

It is possible, however, that the solutions of these equa-

tions nay be found and expressed in the form of infinite series.

The power series is used in many cases in finding numerical ap-

proximations to solutions. Some common examples of series which

take special forms are Legendre's Coefficients, or Zonal Harmon-

ics; Laplace's Coefficients, or Spherical Harmonics; Bessel's

Functions, or Cylindrical Harmonics; Lam(ls Functions, or Lllip-

soidal Harmonics, etc? These functions are named after the men

rho have st”died them exl-.austively. Pcurier, Riccati, Gauss,

Cauchy, and others have also done pioneer work in the study of

solutions in the form of series.

The purpose of this thesis is to compile and discuss some of

the methods of solution of both ordinary and partial differential

eclonFl, \--hose solutions are expressible in the form of a

series. An exhaustive study is not attempted.. A fer of the

rretlicc:s of Tost con-ion occurrence for finding solutions in series

Byerly, An L:lementary Tz.eatise on Pourier's Series andSpherical, Cyliical, Harnorics '.17or1-7,Ginn and Co., p.



are discussed and exanr,les illustrating these methods aro pre-

sented.
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PART I

ORDINARV DIFThREI:TIAL EQULTIOVS

1. The development of a series.- A differential equation

expresses a relation between the dependent variaele, 7, and all

successive derivatives, included in the equation. If we consider

the equation solved for the derivative of hiehest order, we may

ccrsider that one of the highest order as being expressed in

terms of those of lower orders. That is, an equation of the sec-

ond order would give !!! in terms of__e--454' and y. If we dif-Ae-„,_ oc2e
ferentiate once we get °;_Z.'i .1.1 terms of p and y; but

sinee is given in terms of 01: and y we can find 3 also

in terms of these two. In like manner each of the differential

coefficients of higher order can be expressed in terms of
=;r

and y; but no relation between f-1% and y is given by the differ-

ential equation. Suppose that when x takes the value x0, = A

and B, where A and B are arbitrary constants; then the

successive derivatives when x will be in terms of A and B.

Let these be represented by C, D, E, . . . If y= f(x), and we

assume this function expansible by Taylor's theorem in a converg-

ine series of escendinq norers of (x-x0), then when expanded in

the nc -lehborhood of x0, we have

if(x) ).1

/(xj-i-rz-x000 .(2i=f,)&i'c,_() 1- (4-xi' (43) ifretx 

where (1-4-'?" renresents the value of after the different4a-c4x 0

tion and the substitution of x = x,. Substituting for the differ-

ential coeflicients their values ES determined above, we get
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A -1-13(X-X0) C (x-x0) L)  

Thls series is a solution of the riven differential equation.

Since all of the coefficients are determined in terms of A
and B in the above solution of a second order equation, we have
only two arbitrary constants. If our equation had been of the
first order, the differential coefficients would have been deter-
mined in terms of the one arbitrary constant substituted for y.
In a differential equation of the third order three arbitrary
constants enter the solution, and in an equation of the order n
we find n arbitrary constants in the complete solution.

As an illustration of this rethod let 1m solve the second
order equation

,x

Ar2 04-x

The successive derivatives are:

442e2-

0.!
3

If, when x = o, y takes the value co, the expansion of
r- f(7.) b7 maylorts theeron becomes
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ty-= C0 * ci x Z2
•••

From our differential equation each differential coefficient of

order two or higher can be determined in terms of y and
047c

which in this case are co and cf. Substituting co and c, re-

spectively when x = o, we get

Hence

or

=cz
d7 2

-=2C,,

.5 )

Po t-- C, + c. x34_ 3C `/ re 5-.1 
Ii

9Cie ( • * -

is the complete solution.

(2( Xr_÷ . - -
b_J

2. Ecuations of the first order.- The theorem of the exist-

ence of an integral for a differential equation of the first

order f(x,v, 9 ) o cr = I(x,y) is: 1or--x
1
A. Cohen, An -Eleriert!irv T7-ertl_se on Differential Equrtions 

Yor, j. C. 1.ecith 7: Co., 1906), p. 165.
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If F(x,y) is finite, continuous, and single valued, and has

a finite .partial derivative with respect to y, as long as x and y

are restricted to certain regions, then if xo and yo are a pair

of values lying In t, ,Pse regions, there is one integral y, and

only one, v.hich will tale the value yd wLen x takes the value xe

The solution of the equation is expressed, in the proof of

the existence tneorem, in the form of an infinite series

3K. = --t- 01 0 e 3 5   -X.7+ —

One arbitrary constant enters in the solution of a first order

equation since yo is chosen arbitrarily in certain regions.

If the equation

(1)

sr_ltisfies the conditions of the existence theorem, i.e., f(x,y)

is finite, continuous, and single valued, and has a finite par-

tial derivative with respect to 7, its solution may be expressed

in the form of the above power series. From the series, an ap-

proximation to a sol,..Ition,can often be obtained when it is impos-

sible to obtain a solution by more elementary methods.

The general method of solution is to substitute

( 2 ) + .c.X • - -f- • - - 'o

In the differential eqa tion (1), cquate coefficients of like

powers of x, and calculate the value of as many c's in (2) as

necessary. Three cases may arise:

1. A rcnoral law of the cceff5cients in (2) apPers: and
2
For a proof of the existence theorem see F. S. Woods, AdvancedCalculus (Yev! Yo, Ginn & Co., ]926), D. Eli.
1). Ai. &arrays ILLrod,:ctor,r Gonne° in Differential ..touol)s(Few Yerlr, Tonrran!-i, G.z..een Z- Co., -.191.): p. 11.W.
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many terns as desired may be written, since the general term is

known.

2. All the coefficients after a certain one become zero, and

we have a finite series.

3. No general law of coefficients is apparent, and the solu-

tion can only be approximated. This is the case of most common

occurrence.

As an illustration of the first case, we shall solve the

first order equation

(3)

Here f(x,y) is finite, continuous, and single valued for all

values of x and y, andthe partial derivative with respect to 7

exists; therefore re can write the solution in the form of a

power series. Let the series

( 4 ) = l'el i(71q2)(14-

represent the form of the solution. Since the equation (3) is of

the first order, one arbitrary constant will appear. Our solu-

tion is complete if we are able to determine all the coefficients

In terms of some one of them.

Replacing y in (3) by the series (4), we rust have

e X •

C -1- 2 C 3 C
3 
X ----- - • - • "

= ,7c ea x.31- • e

Since the two Ecries are to be identically equal, the coeffi-
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•`•

cients of the corresponding terms must be equal.3

Equating coefficients, re have

r

lc /74%f ,

0 =-

C 14-2C0
2 -

C = z1 I e C 3 = 0 •, 3 3  .

_

6 C6 -7' I e4. , C - 2-• e C4& - 3 44 / . -
2- a -

3
7 Cl ":: 2 C 5_ , C ,----

i S•s--7 ' i

. • . cgs  re„ -7-- .2 C4 ) C = 'Cr iti• )

_2.

When n is even

and when n is odd

C„ 
I 2e. /

2- 
1

2-  et •

Here the coefficients of the terms involving even powers of

x can he determined in terms of ce p and the coefficients of the

terms involving odd powers of x can be determined in terms of c, .

7e notice f_t sirce c i is a factor of the coefficients of the

odd powers of x and is also equal to zero, the terms involving

odd powers of x vanish. Ve ct,_n calculate each silccessive term

and write the generl terri, therefore the whole series is known.

3
Eocher, Tntrrdrction to Hird-3e1-. :.1crebl-a (rel: York, 11.1-e Mac-r.1-111En Co., 1930j, Theorem 5, p.

..""'"109411".•
..01^

"."0.!1" •Pt
• .•••••

t
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Substitutinp for the c's in (4) their equivalents in terns

of co and o, .

e,z 1L ez -f • •
becomes

CO
2 71

/ /+2C.C • X . -f-

A simplerform of solution may be obtLined by replacing co

by its equal

e - _1- .4_ 14-.2c,o '

an6 factorinF out  

-

We get

-+ C., (1 x x
 +- • -).4.

The series in rnrentl,esis is ex developed es a

end our solution ma7 exrressed as

where

A

...•••16
1mm

?— + A il-X)

--/- 2C0

1.

power Sel 1ES,

Since co is arbitrary, A is artitriiTy.

hquation (3) is of the first order, therefore only ore

bitrary constant appears in the general solutIon.

The solution of the equation

(5)

411ustrates the case in which the series is finite. SubstitutilT
the series (4) fnr y in this equation, we ret

•••

7
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';•-.0. •
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4C, 1.re.X 4(2c, 5e3) X 2-1--(Altea -f-174C-y) X 3--1-(4e3 -fse,-)X -i-

ec,

Equating coefficients,

0,

C,-= 44d,

37(73

A(cz

403

z
e I

C -, 5- 3 J C 0

Each succeeding coefficient is zero, since it has a factor
equal to zero. Replacing the C I E in (4) by their evivelents in
terns of c0 ard o, tIle solution of (5) is found to be

e
when co is the arbitrary constant.

As an illustration of the case in which no general law of
coefficients appears, we shall solve the equation

( 6 )

This is a special case of Riccatits equation

64-7 - =7: e

whore b -1, c = 1, a:,(1 m I.

The rIt hand r.en'oc-,r of (6) , ÷ 72-s ELtizfit,,s the restrlc-
tions on f(x,y) in tf_o czirtence t!--orem; thel-elcre the rclution
of (6) can be rrit'-en In the fern of a set!c;s. As in 1:!sc- crec04-



9inr il)ustations we replace y in (6) by the series (4). We
:Alct ave

+ 2 e zx . x.2-1- • - • x 0 c
7,quatinr coefficients, Y:e have

,

e - - e 2- C 7... Li

7Z C
2 = 2 e 6C , ± / i e

2
43'3 ..7 .:Ze e2 + i i e- = 1

• • e3

"A c -= 2 co e 3 --t-.2e,e2 j C = e. * •/2-

Each coefficient can be determined in ters of the one next
p7:.eceding it, and therefore all can be found An terms of the
first. Vo general law for finding the coefficients is elldent
and we can only write the result to include as many terns as may
be desired. The solution is

e (
3
) 2( e -

1 
 O 

17 0

This solution contains one arbitrary constant c o

3. Equations of hirher orCe-r  then the first.- Te can solve
n differential equations of the first order in n dependent vari-
ables for the derivatives of these variables. Cur result T7!-. y he
written in the form

(1)
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oz..= 
(7c/7/7 \4_Otle

The general existence theorem for n equations of the above
form is:

If f, . . f can each be expanded by Taylor's theo-
rem in a power series rhich converges in certain regions, then
if . . w, are in these regions, one and only one set
of functions yoz, • • • w can be found to satisfy the system of
equations and to take the values yo, z0, . . . wo respectively
when x takes the value xo.

In tlie nnoof of t.1.-.1s existonce theorem the solutions of
the equations are expressed in the form

(2) V
7
-1- • • - ' • • • -

Z = Z, -4- fX x'7,• - • - -
••••--

\V = \v. 4-A ,x + -t- • •

A differential equation of the nth

ed into n equations of t)ae first order.
rivative of highest order, we have

7.'e ray put

• - -

order may be transform-

If re solve for the de-

  )
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4

when y, • Y1 P 2 • • •

Then

(3) •

y are to be regarded as new variables.

•o12 7l4-1

celc

are n equations of the first order involving n dependent varia-

bles. Since the existence theorem is applicable to the n equa-

tions of the first order, it will also be applicable to the e-

quivalent equation of the nth order.

Since the solution of the system of n ecuations (1) in n

dependent variables, which is a system of the same form as equa-

tions (3), involve n arbitrary constants, and since we have

jut seen that an ecration of the nth order can be replaced by

n equations of the first order, it follors thst the general

ce,W,:ion of a differential equation of the nt1-1 order involves n

arbitrary ccnstants.

The same general prrcedure 1o7 lored in Eelving differential

collations of the fIrct mder r.ay t.c applied in finding the solu-



•44:••

tions of equations of higher order. However, the series

2

is a general form of solution only when all ezponents in the
series are positive. For example, the solution of the equation

111

7= )4 (/ ;(1' ) 13 - 7 -2 -/

FO 
-tiox

12

but if the above series is substituted for y in the differential
equation, only the first integral appears. A more general series
for substitution is of the form

( 4 )

If this series is used, both integrals can be found.
As an illustration of this substitution of the general

series, we shall solve the equation

ae-X

Solving this for 26; we get immediatelyeeir'

(5)

( 3 )

_

Upon replacin y by the series (4) equation (5) becomes

- if ,vm. et. X """ :2:74 t /10
-

1 2) tc

--/-(--. -112.4C-fr-rt. -i- 5)a, x ""i• * 3 -f 44 X

czo z 1.74_ q, 4- 2. z .+. •
-7-pc 4 

Thr-se tto series are identically equal, therefore; the coeffi-
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cients of like Dowers of x aro equal and we get

-=. a,

4 2Xer" -341) a. 3 -= a ,

ftia a ,

If t're '„errn x"appears In (4), a076 0; but from (7), (m —1)ma.= 0,

therf ore

arid = / .

7e obtain a sollition for each value of in. rhen m =1, we get

from (8), (9)s . . .

—

a =

a =
3 ta 3.) 4° 3. el/ 40

( .#

a _   a

0

LI 0

2-3-- a
a -=  

6) 3 (' • 7 3 —



(12)

. . .
Therefore

14

g.5-- • 4 

. . -f(13) =_ tio x *al -aox -f- a'„x 4 
1..

is a solution. Here n is a multiple of three, since all the
other terms, whose power in x is different from one plus a mul-
tiple of three, have either an a, or az factor, both of which
are zero. Let us call (13)

where A is an arbitrary constant.

When m= o, from (8), (9), . . we get

a = 4

a

a 
3 ,

a •2...x.vriv- 3) -

a

a _ -z.

( 4 4/
a, 0

LI

/ • Li  C = a
LL. °

nj mlrht not 1).. ':111 to zero and another integ.rt.1 could bc ob-taircd but; thf.a .1:-.;:t7ra3 is included in thc general solution ob-tained by ocnrlderinr a l equal to zero.
it 4



(•-•m• X:".‘ -O.

Here we have two distinct powers of x which differ by 3, and
(m-2) is the smiler exponert. 1:e shall assume

Therefore

(11)

is a solution. Let us call it

15

J•11-•7- • •("-- -2)
aa,

•••••• 

•

/-q•7'

where B is an arbitrary constant. The complete solution

is obtained by adding the two solutions.

The labor of computing coefficients which will be zero may
be eliminated by using a special form of series in the assumed
solution when the substitution of x"-for y reduces the differen-
tial eq...1tior to an evation ha7inr only two powers of x.

If we again take the equation

(15) 
—

and substitute y x--in the left-hand member, we get

(16)

•

4

• tit, ( 7 ) 
e.„ -fr .14 34.. 67,

to be a solution and find the conditions under which it will be a
solution. If we replace y in the differential ecuation by this
series term by term, we get

(18)

L";11..1 1) Co X '1".. - C ""'""' 1



1)(-7.,., 4. 2.) el ei x *

C .1' e2 X .74 e 2 41 71

1-- • •

x
."..'‘• 1•4•• .51]

0

16

It will be noticed that since the exponents of (16) differ by 3
and the exponent of each successive term of (17) is 3 greater
than the last, the last term in each of the expressions in brack-
ets in (18) will be of the sane degree in x as the first term in
the following expression. Eence if

(19)
— C O =

this being the .----eert of the only term in x
-%

"-, and if

(20)

•

-74 X -,"").-)1. 2) C, —

e••"?-r%- -.4: X C 2 _e,

i.e., the coerfL:fents of 11.1:-e powers of x cancel each other in
pairs, the 1eft-nt of (1S) ':ill be identically zero and
(17) will be a

an(7, in order _ -.J-

(1 1.). Jf (17) has a term in x"*Ico- o

zero

PT.om th(; cener.1 __-__ (2f' )

(21) C, Cr
.1<-71.%1A- 3w. - - 1
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Valero n = 3r equation (21) is identicAl with (12); for m= o

solution (17) becomes (14) above and for m.-=-• 1 solution (17 be-
comes (13). Yence, our solution

If the rir:ht-haid nember of the differential equation is not
zero, the particular integral can be found by a method similar to
the above. Suppose the equation had been

(22) x xo
Since the result of putting y = co x"*.in the left-hand member

Is

(23) e - x"t- z co
)

we shall assume as a particular integral

(24) ;2r -,_ 0 0 x" 4 310. e 4 10. .

As in the finding of the complementary function above, if
the series (24) be substituted for y in (22) the resulting equa-
tion of the form (18) must be an identity and

while the coefficients of like powers of x, as in (20), cancel
each other in pairs.

If (25) is to be satisfied, both the exponents and the coef-
ficients of x raist be equal respectively. Hence

— 2. 2 
44.

The other terms- will cancel each other in pairs of like norers of
x if, as in (20),
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- == 0

When m = 4 and c4 = 1

Li:6' 7•G

c
C. 7

• • 
!, • 'IIv• iz 
e 

LL.1_

(A. #.43-t-t 3)
1.2-4•11• (3A-1-2)

• - (Vt. -t

Hence, the particular integral of equation (22) is

-
-f 
is7 

.9 / 2.11
X 
3

Ff. * 
 LII 
----- X *   • • LC %VII • • ( 7,%•• oa)..,3•1.1-41

LL2 1122,±2.42 
•-f• • •

The above methods vaggest a more general method for finding
both the complementary function and the particular integral.

If the substitution of y _,.x--reduces the differential equa-
tion to an equation of the form

(---)-74 X.4t •-/-• de•-•
1 4 1

where 1 is a positive integer, the complementary function may be
found in the following manner:

If we let

0

e, ezz---?-2 '7* • • - "4:1
aud substitute this selaies in the differential eouation, the
equation becomes

.4etv. 
A/14-1(C 0 ir, et,

(27)

Qq,-).„ #4 x44 -7' 21
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e z I X11‘21:f ez 74 0 f) X A -f 3-1

--1- i -t-
14A 1C„, ) )

•

If the coefficients are so determined as to make the coef-

ficients of like powers of x cancel each other, and if the coef-

ficient of the single term cof(m)xit is equal to zero, (27) is an

identity and (26) is a solution of the original equation. If

f(m) is of degree n in in, f(in) := o has n roots, m me • •

each of which will, in general, give a solution.

a0 760 .% f(m) =.7 .0 and m = in, ma s • • • in •

If the coefficients are to cancel each other in pairs, we must

have

Then

..Itt‘ot I APL1 it= I Z•- .00(
c_, 1Pssq- -f- f-,- I. 7 ..tW

lin-. :: 'rt. •- man.a i .....

- i) 

(-ijW-5-, - -0 - - a)(-)7.1_ 41(-,„) e
4 2 0.)(

,•ft /4) 
0.

If any c all thr. folloing ones do, and our series
Is finite. For each value of m, in general, we get a particular
solution, and cum of all these particular solutions gives the



0general solution. If two of the mis are equal, only one particu-lar integral is cbtained for both of them. If two of the rootsdiffer by an integral multiple of 1, one of the coefficients inthe particular integral corresponding to one of these roots willbecome infinite, unless the nunerator also has a zero factor,
i.e., if m2 = gl, where g is an integer, the coefficient ofc will be infinite since the denominator has the factor
f(m) == f(1 -1:y 71) == o. :Men, in F..eneral, we pet only as many
particular solutions as we ha,:e distinct values of m, no two of
which differ 17 a multinle of 1.

If f(m) is of degree less than n in m and(m) is of degree
n, the general nethod must be altered slightly since that methodwill give less than n particular solutiens in this case, while
the general solution must have n particular solutions. tPCm) owill be satisfied by n values of m; we shall call them m

If we substitute the series

(28) eci _a_ 0 - , e - .2* 4:74_-r _ z - ÷-..
in the differential equation, V:e get, corresnondinr to (27),

(29) CO

Xj

±

I
A -L- 

-44 
2-11 n -11

,/(- X-^1 -/
) A -r,(!--r, 9- IX C _ --A1)x
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0

Exactly as in (27) this will be zero if the left-hand member

vanislles, i.e., if, since we assume c to be different from zero,

o(„,t)= e),
(30)

. • „..11.11.1. = z - • • • %/is.%

a 1
= /WV, ../.10.1.

g .•11

=7- Il l,,,, - - - • • •••••:=,

  e0
21) *

Our particular solution for each value of m will take the

form of the series (28).

The general method for finding the particular integral when

the right-hand member is a power of x, consider it Axs, follows.

If f(m) is of degree n in ms we must have, from (27)

Co pyt)Ai e 0 ei-k-)7 4- e, A

-X z
eGvi ?..A) f” 

Equating the first term of the left-hand member to the right-hand

member gives

Co /(-A,-11XA

The equation,

Ax5

determines one value of Ea, say me sirce, from (26), the exponent

of was a linear function of m and differentiatien rould merely

make it a new linear function.

We rust also have Co 
c(-A-715)---= A
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The remaining coeficients are determined exactly as in the
first general method above. This method will not give a particu-
lar integral if f(ms) = op since then every term rould be zero.

If 4;(m) is of degree n we follow the second general method
above. Then

-4-A9 ----

A x3

determines m =m1

= A

The rest of the coefficients are determined as in (3O)above using
miA for m.
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PART II

PARTIAL DIFFERLUTIAL EQUATIONS. YUYAERICAL APPROXIKATIONS

4.  The expansion of Emxpl in series.- Partial differential
equations that have been solved by integration in series have re-
quired individual methods applicable only to particular equations.
Individual methods of solution have been applied to many equa-
tions in mathematical physics.

In the Analytic Theory of Heat we have, for the change of
temperature of a slab of infinite length with parallel plane
faces, where the terrerature car be rerarded as a function of one
coordinate,

3e4..

Before attempting a solution let us examine a simpler equa-
tion for a solution. The equation

(1) Ck:a
DAC

is also an equation in the field of heat. It is seen by actual
substitution that

Is a solution of (1). If f(x+at) is ey.paneed into a Taylor
Eerl.es, the soLitior takes the form

( 2 ) 2? = /(z)-1-• czeli(x) cL2Y2 1<x)-t- • • +

_.xpressIng tiie rivht-hand mcrbor as a cyr:Lolic operator omratinz
on f(x) equation (2) becomes



4 =-- a_ D ± 
a 

S9-2- ...t -
/7

and by analogy of form with the expansion into a Kaelaurents
series of er we may represent the operator by

D

Then 1

2.1

is a solution of (1),

In arder to verify this result we shall replace u in equa-
tion (1) by the series (2). Differentiating (2) with respect to
t, we get

613-'
DifferentiatinF (2) with respect to x and multiplying by a, we
get

a = / i(z) 22(///(7f) + • - -x
Upon substituting the values of • anda.L11- from (4) and (5) in
(1) we get two series that are identically equal, since the coef-
ficients of like terms are eci7ial, and our soluticn (2) is veri-
fled, provided the series converge.

Solution (3) ma 7 te 'tten in a nanner analor7ous to trip
folicrircs

Tne solution of

( 6 ) ) = o

wherect is independer.t of t,-is

(DI'
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,t A 5
A also being independent of t. This solution is readily verified
by substituting the value of u in the differential equation (6).

Trancrosir the ri711t-hard Trerlber in equation (1), the equa-
tion becomes

Replacing by D" and 2 by Ds'we have757c

(D"—aoJu= 0
In the same way that we wrote the solution of (6), we may write,
for p solution of this,

(x).
a..127/

This is the same as (3) and has been verified as a solution.
Uow to solve our original heat equation

(7)

transpose the right hand meMber, replace by D" and by D,a'r 'exand express as an operator on

( Do" — et:2. 02- ) -= 0 -
Using the method of the preceding discussion, we shall assume our
solution to be

(3)

This solution may be verifled in the following manner:
Reple.etng tl-e operator by its expansion corresponding to the

ccpansion of e, vie get tl;e series

5
A. R. Forsyth, A Trust-Ice  en Differcal 1.:cuations (London, TheWacmills.n Company, 17:21), p. C12



= (1 al",tpa tx.*AiLt,

14 ±

4 3D 
-t- • 171(x).
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Indicating the operations on f(x), term by term, we get

(9) -z1(Xj 2.7( D1160 + CC." fi(X) a 4.'4 31) )4: • • • •
This is the solution in the form of a series in powers of t.

Differentiating (9) with respect to t, we get

(10 a q
= o4 (A-) '-̀ A  ̀D(./(4.4. - -)t-

Differentiating (9) with respect to x, we get

- D j(x) a1.7t v31 (xi eCitt 21;1 i(XJ-1- •1_41
Differentiating again with respect to x, we have

fiLif(x)-1- a.-14-121(x)-#

Substituting (10) and (11). in the original equation (7) we have

arzozi(z) e D'i(x)

The two series are ieentically equal, since the coefficients of
t're terms cre eq1.11, and our solution (9) and therefore (8) is

proIdee the series convergent. This solution con-
tans only one arbitrar7 function and is not the most general

Trigonometric series.- Many partial differential eqlla-
ticns have solutions that may be exprcesed in the form of tric



27onometric series. We may assure

(3 X

where a and $ are constants. This assumption is only tentative
and rust be verified by substitutin7 in the equation. It ciln
accepted only if it leads to a solution.

As an illustration of the development of a series let us
take a problem of the permanent state of temperatures in a thin
1.ectanaular slab of infinite length and breadth /f whose long
edges are qt a constant temperature of zero, an one of the short
edges, taken as a base, is held at a temperature of 100 degrees.
V:e assume that the temperature decreases as it recedes from the
base.

If we place the base alon7 the x axis with the left corner
at the origin, then the left side will 1.1e along the positive y
axis. Our solution must be in a form that will enable us to find
the temperature at any point in the plate. The equation of the
temperature in a rectangular plate is

(1) Dlt Dfc{
x-

The followir conditions must be sat!cfied:

(1)

"2-f_ = 0

-=- 0

(4) it -_:/00

As surto

v:hen

X --- Tr

?le 7:: •- •e"-7



Substituting in equation (1), we get

g et _ IL 617 iver X ___ a

Dividing by e"7"."1°, we get

When =

Hence

e ay txtx

(2) CA.y 6L--16

fi :t

is a solution.

is a solution for all values of a.

If we add the two solutions

= and = ".„2

and divide by 2, we got

= a
2

(3) if. == a-

- cr.

28

We have thus eliminated the imaginary unit from our solution of

(1). If we subtract the solutions (2) and divide by 21, the re-

t is

or

a y aoc

2. -4-

- etz.4

t 41. .
It is nov: necesscry to build from one of these c solution

that till satisfy conditions (1), (2), (7), en6 (Y1).

The value of u in the equation
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where A is any constLnt, is zero for x ==o for all values of a,
since sin c == o. Hence the first condition is satisfied. It iszero for x 7r since sin-Fr -= o. The second condition
fled. If a is negative, 11= o when y-.7.= . Therefore

 , A A_ ct

s satis-

is a solution satisfying the first three conditions. This may be
written

(5) -= A, 4 - A z 2x --t- - • --
1There A I, 1.2, fr 31 . . . are undeterined constants.

If y == o (5) becomes

(6)
A, ± A a 0-x -t- A3 • 3 X -I- • - •

If we c.F.n write a series similar to (6) and equal to 100
when o 4x ,(77 our four conditions are satisfied and the solutIonis complete rhen the coefficients of the series equal to 100 aresubstituted in (5) for the constants. It is known that

/ 14- ( 3 X. -0" • - -)
-rr 3

f'or all vales cf x between o and 77- . Therefore, the solutionis

(7) U *4" •

Ls an --If.atler. of the above problem 1-.:e shall corpute thetemperature a: tlIc Toint (fr , correct to the nearest decree.
Substit for x and 1 for y in equation (7) and calcu-



30late three terms. (This will be sufficient to make our result ac-
curate to the nearest degree, since each succeeding term is rapid-
ly approaching zero as a limit.) Eduation (7) becomes

g"00 -g -3
'Tr 3

#.00 I 
÷ I 1 

• 1÷ -(2.7/4'

it=25.63 c)r 26 degrees to the nearest degree, the temperature at
the point (T,/).

The series in equation (6) is known as Fourier's half-range
series. Fourier made an extensive study of the theory of heat.
Equation (1) is very important to that study. Fourier's complete
series takes the form

Z X -74 3 X -
The solution in the form of a trigonometric series lends it-self readily to some problems restricted to certain definite

regions.

In acoustics the equation

(1) ID‘ty 2.1
z) t 49x:a-

is of value in studyirg the transmission of plane sound raves
thz'owll the air, or t7-, transverse vibratIons of a stretched eirs-
tic string fasteped at both ends.

As an illustration of this ye shall consider the tl.aneverse
vlbrations of an elactIc strIng of length 1. We shall take the



31position of equilibrium of the string as the x axis with one end
of the string at the origin and the other at the point (110), and
we shall also assume the string to be initially distorted into a
curve whose equation y := f(x) is given.

To must find an expression for y which will be a solution of
(1) and also satisfy the conditions

(a) 
---- D when 2C = VI

(b) 
L-- 6' 

n

(c) , = yerX) n

(d) --' -=_- 0 
n

it- --:- e ,

the last condition meaning that the string starts from rest, since
ot', when t==o, is the initial velocity.

As in the problem on heat, we shall assume

( 2 ) et 4 

and substitute this in equation (1). This gives us

z, txX-tv
= a a

Divide by e c"c#'5A-and we get

Z 2.(34„ ,

Then when 13 ± act ( ) is a solution and becomes

(3)

TIe tr:Irnnonet:7f.c ser: is prft:=rred to either the exponen.
tlal or the hyperlxlic series, and we can derive one by tal:inz an
inar,irary value for cx in (3). Lquation (3) beccmes



(4) =
If we reiJace et in (3) by a negative, imaginary value —0(.: we

cet

(5)
=

— ( a.2 Jot
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If we add (4) and (5) and divide by 2, we get Cos ax(xteit).

If we subtract (4) and (5) and divide by 21, we get sincat(x-1--a*).
Then

•9 (,'-a-&),  

oc ( — et ,,e"

417 
( X 61-

0( ( X ••-• • • ,76 )

are solutions of col:at -Ion (1). If lve write y equal to half the
SUM of the first two, half their difference, half' the sum of the
last two, and half their difference, respectively, we get four
new solutions:

of.x Ok.

ol )C GK. at_

= 7( X

If re tal-e the t1-.11'0. form

Tlf

cc_ ea- -ot

it viii! Eat] Ff'j conditions (a) arZ. (d) for all wallet; of ot , and

(b) v.e assn to a value thich 17i1l make
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o(X, a multiple of 71 when x := 1. This value of 0% is

where m is an integer. If we essirn successive positive integral
values to m and introduce the undetermined constants A,, AL, • •
we build up a solution in the form of the following series:

(6) jp-=Ar,e,;,,,,ric„..,..eiret.-t_i_ A -,e --r- dor ,e
This series satisfies the first, second, and fourth conditions.
11lien t = 0 (6) becomes, since cos 0 = 1,

(7) =A,5A 777—X

If we can now expand f(x) into a series of the form (7),
(6) will be a soluLion satisfying ell four conditions when the
, A2., • • . are replaced by the coefficients of the new series.

Since f(x) is a known function, this expansion is the Fourier
sine series.

6. Numerical arTroximations to solutions.- In most of the
practical applications of differential equations, the solutions
are required to abide by certain, previously fixed conditions
such as passing through a fixed point, being confined to a defi-
nitely bounded region or havinr a particular slope at a given
point. As an e;:ample, let us find a particular solution of

passing threur:h the point (xe,y0). If the solution is found in
the for: of an infinite series only an apprcxiration of the re-
sult can be obtained. We shall illustrate two of these methods
of approximnt:Ion here.



34If the successive derivatives with respect to the indenenclent
variable can be readily determined for a fixed point, use may be
made of the Taylor expansion as discussed in Section I to find a
particular solution meeting the required conditions.
trate this case, let us find the solutIon of

To illus-

passing through the point (o,1). We shall find the successive
derivatives at the point (9,1) and substitute the value of x at
the point.

X i i

----- 2 — 2 7 et' -=

6

=7. -

-31.7. Taylor's Theorem, i.e.,

—/0,

= 41-1 / •z atx-

- (x—"--x- 0 of-3- o
where x. 0, 1, 02:211 -=-- -1, (1 etc., we getair 0

•->
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— j7LX"--- /  34_ AP/-X 5/  4/X 5--

) 3 L91- 
•

as a solution satisf7inrr the riven condition.

The second method of approximating the result that we shall

consider here is the one derived by Picard and bearing his name.

Let us consider the equation

(1)

We shall assume

'(Z)

to be the solution which passes through the point (x0,Y0). If we

replace y in the differential equation by this function of x, we

have

/(z) ([x' 9(x27

Integrating between the limits x a and x, we get

(x)J4-

fx, f(x)],-. ,
01"

(c)
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The last equation gives the exact value of y for any point on the

curve v:hen the exact values of x and 0(x) are used, but if we

tae only an apnroximte value of 92(x), the corresponding value

of y will be an approxin-ation, the accuracy of which depends upon

the accuracy of the approximte value taken for 40 (x). Since the

solution is to pass throu7..h the point (x0py0), we shall start by

assigning to 0(x) the value r (x0) or yo, then (2) becomes

(3)
19

4jx. (X, y. ) d.

Since yo is only an approximate value of y for any other point in

the reig:hborhood of (xo,y0), yi is not equal to y, but it is a

closer apprdimation than yo is. Ncr, re-nlacinf; yo in (3) by the

new approxi=ation yi we get

p X /

— ± j7co ) 41-/

Proceeding as before, we find

1 ,d 47(X/72-)4V4.1

± Xif(..x.,

1-Fem'e, we Get the n functfons of x: yo • y yzjo • • • y • all of

take the value yo when x xo, since a definite integ,n.1

nishes then its limits are equnl. These yts are not e.%-act so-

lutions of eql.r.tion (1) but merely approximatfcns, and the far-

ther alcnn in the sequence the y s taken, the nearer the tpprox-



imation approaches the exact value of y.

Furthermore, since

f(x)eve-x =
v,e have

(5)

= 1(x, 7, )
d--x-

/(z, 7, )otx • (4-) _
-

= /(X0
We see from (5) that, just as Was the case of the ordinates in(4), the slopes of the tangents to the curve are found approxi-mately at all the points except at (xo,yo), vrinBre the slope takeson its exact values

We shall illustrate Picardie method with the solution of the
eouatIon

)

(6)

42.1- — /(x,k

= 2 - ---11)-4

;passing through the origin.
17e see irrediate/y that

(7)

Then trot: (7) ail,. (3),

°!Aqf

37
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%
= 0 -t j 0 

0 
2 X 014, ----- X.2 ,

= J (2.x --f x' > 04 - XL0 -f-y- z )0 5-

73 0 --/-) (ZX 2)411X X -t"0 
5" 0 2

11=O +j  32 ),45' 40 Z75

7X S'7X
,7 

Xv
0 3= —r- ------ 

-r-
5- AO 6-3-0 lergo. 37,1,000 55 #S i73y,7S.

When x 1, we find from yii. that y = 1.2649258 arproximately.
Picard' t method may prove to be =satisfactory in actual

practice, mainly because of the difficulty encountered in per-
forming the successive integrations.
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PART III

SPLCIAL APPLICATIONS

7. Lerendrels equation.- The solution of the problem of po-

tential &ue to a wire ring is based on Laplace's equation ex-

pressed in spl,erical coordinates. Two transfornations6 of that

equation changed it into

(1) (I --)C-)01,c

where n is a constant.

This equation is commonly known as Legendrels equation, and it is

its solution in which we are now interested.

The substitution of the series

(2) = atl x-"t• -f - z -f- a z_z-'--*2 • - • •

for y in the equation will give a solution of equation (1) if we

can determine in and evaluate the coefficients in terms of any two

of them. (The complete solution will have two arbitrary con-

ctfInts, since equatl.on (1) is of the second order.)

Cornutinr 'ror (2) and forming the terms of

(1),

(3)

we get

rt-x
L_ , c 1-'1-Pi ( ,1- .1- -x

-f x" -P . •

— )

. E. Byer/7, Lri  Treatisc on ._,o.1crls Scrles apd
  CvlIr. _:_.1".Lin5:oir-. 1 -:-.arica (New -lork,
Ginn and Co., 3.031-, P. P.
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—f dy a 6 x
-

TheThe sum of the right hand members must be identically zero,
since the substitution of (2) in (1) is to give an identity.
Therefore, the coefficients of like powers of x in the sum of the
right hand members rust vanish.

- ao ==

( ii a, -:=0,

---t- ) z (0'7.14- — )(7•1 4-'14. +/Me

Equation (4) gives us m =1 or 0, assuming from (2) that
a4 0. If we take m= Op from equation (5) we get a, arbitrary
and from equation (6) we get

Ctz
'

The successive coeff!clents may be obtained by taking more
tc2_s of (3). Let us find the general law of coefficients. If
the general term of (2) is amx--"-, v:e have

- x e4-=

...P.,- — 2.

-f 010 ••••

- -;

Ai



f —/kt- -1-• Os, := • • * /7-7. ) _ L X --1- • • •
and since the coefficient of' x'• in the sum of these terms
also must vanish, we have, after factoring

/2-14.--Az 2X-rt -f /PP.I. 4. /4 )4, ..2.1—= 0.
Since m 0,

,L
— -IL AZ W.-Yu — 

z

From this general term we are able to determine any coefficient
from the second term preceding it. Hence, a0 and a l being the
two arbitrary constants, the general solution of (1) is

(7)

41

— a 0 -/-/) z ix-fr--+3)xt ..)
L9._

If we take the value m = 1, we get from (5) that a l is zero
and from (6) that

_ 4.0 ) et,
L2

If ::roceed to find more terms, we see that they form the second
series in our solution (7).

17hen either a0 or ai is zero, the solution (7) reduces to a
sinf-le series. If n is a .Jositive even integer, the first series
reduces to a polync:7171, the degree of c.se hist tern is equal
tc this particular value of n. This is true since the following
term has a f Letor in numerytor becones zero. In like
n.ariner, if n is a positive oc7.3 integer, the second series reduces



42to a polynomial whose numbcr of terns is determined in the sarLe
way. If we assiEn to ao or al, depending on which series we are
using, a value which makes the polynomial take the value unity
when x is unity, we obtain a s7ster:i of polynomials known as the
Legendre polynomials. Denoting the value of n by the subscript
of the polynomial' a few of these polynomials are:

e z) 1

P. (x) =I x3-17C.,

eic (X) = 
y4- 4-2

(x)

4- 4.g. 41-2.

The symbol Pm(x) for the particular solution when n m re-
presents what is also known as Legendrels Coefficient, or as a
Surface Zonal Harmonic and is of grent value in the solution of
many innortant applications.

8. Bessel functions.- The Bessel equation

°
G6Xa atX

wher.c n is a convtant, can be solved by the sane nrocedure used
in finding the solution of Legendrels equation. We again assume
the series



(2)

=a 7 g
o 

1"4-t
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If this series (2) is substituted in (1), the terms of (1) become

- /)/,"".a, Z 1") ""t # Ltd.. octz

il-eso.Is
X (n.s.- 1. •

.101,1. #1 ...v.%-,-12 7 •ta - a_ X

ao --PfetA

Since the sum of the left-hand members is zero, the sum of the
right-hand members must be identically zero. Equating to zero
the coefficients of like powers of x, we get

C( 4 2f - a

In order to find the general expression of relation between co-
effl cients, we take

'Z. 2-
• et X 12. • -i

"



44Equating to zero the coefficient of X.".."."‘, we get

Therefore

(6) a
(err.. n. )31 —
  a " - 7-

Assuming that (2 ) has a term in x-, a040; then from (3)

mj-- e-== 0, and lia= ± n. When in = ns (4), (5), and (6) give

=

a,

a(
12 

#/t.

Thus determining our coefficients, the solution (2) becomes,
after factoring out ax')

==& e70
2(2en+2) 2-14 (2.-m -o-2)(2-.-- -4-q-)

2 • If • 6 4-4) -1-- • • -)

In like nanner, eplacing m by -n, Le re' the 1:o1ution

(3) "2. aio --f- 2(2- 
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. .
2 • 4- 4. (2, -.2)(2--...—YXZ— -4)

In case n== 0 solutions (7) and (8) are identical. If n i3
a positivr: integer, the second solutio_ is meaningless, Circe a

factor in the denominator of each term after a certain one is

zero, making the series infinite. If n is a negative integer,

solution (7) is meaningless for the sane reason. Hence, if n is

zero or an integer, we get only one solution of our equation. If

n is neiter zero nor an integer, we get two particular solutions

each containing one arbitrary constant. Therefore

/13,

is n coL:plete solution, and it contains two arbitrary con-tnnts.

If we place

a,
z

where n is an integer, we get the Bessel function of the first
kind and of order n. This is denoted by the symbol J,(z), and we
have, when n is positive,

2-
(x) 2C-17- (/ -1-

z 2 (' -f-  g /A(,_ z)
-

+2-

r" ILL"- 7
72-• 

÷ O-a



A0,1- 6

t. 12.  3

The general term is

(-0 4
4-2-4

2424

-#  -
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If we taire k = 0 we shculd g-et first term of the expansion of
J (x). We get

!-v% )(1.  

This will equal the first term if

1.-L) /

This islustified by the general relation

When ri= 1 this equation reduces to

L22. /.

The entire series J (x) is

J (•)(1 f:11
--4 2-4 /

Le.:1
A

Thlr holCs for all posit:.re, inteE2.pl ves of n and for n=-- 0.

. 
x x 24itej (X) =-- /— 

• - •0 
2-4 2 4 (1)1. 

4"T-A
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9. Gauss's eauation and the hypergeonetric series.- Gauss's

equation is of the form

(1)
z2"- --1--froc-t4+0x -ri 019, —

Ve shall solve this by the short method suggested in Section 3.

Upon substituting y=r-- x"%in the left-hand member, we get

(2)

This is of the form

where

and

i'lv1
-/- 14-ottprt-14-0)X.."= a.

--t

1()

02 (P71) (r-frt 01)()-kt. --1/6) .

We shall assume

eo e,

If we replree y in the differential equation (1) by this series,

v.c) r_et

(o)

c6 + Co )
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( 4)
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- -f /)(eir. f Y--„Z) X:1". e

- ft- ( 4 /2-)(,)-", x— ' ot)(-,..at /5Y-vg.1

(lo —1+ y)

it being the only term in , and if

( 5 )

Co(-7,pt at,-71 M t/X-r" -t-x)

-t"-/-/3 7/-1) 0,
i.e., if the coefficients of like powers of x cancel each other
in pairs, the left-hand member of (3) will be Identically zero.
Assuming co if), we get, from (4)

— / y = a.
Then

/—

From (5) we find

I-, 
= 

-/-•^. - -,Lez i)
-/ •

For LI= 0, we gct
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az = (0( 0(04 ,) cx(0( -to co217-4,) 
_ 

_ occa-f-11. • • (01.-tew^-1)6(i3f/).-03
/ •Z •3 - • ',rt. • nr-/-0 • • (7<-0-rri

If these values of the cis are substituted for the els in

we get, as a solution

tegral

OX-*"--f C/Zsrt41-/- x44—#A

a -0 (ot-t0a(3-1-0coe+
(71) e°X 1*Z-nY-1•/)

in the Epec5r3.1 case where co -_-_1, we set the particular in-

/ -L ciaqa+1)4(e-1-1)x2.4_
•X 

1'2 ')(Y--1••/)

• . a (a 1) • • • iot -t--)t - Afr3 i) - -
/-2 3  --,-L.-nr-f-/). • - - ( Y-fr

This intecral is known as the hypergeometric series, and is
usually represented by

For m 1- ele Ect

e 0 t   I
/ ---2-")



2 
(z + 0( - 

e 
_

— 
a )2-• ( 3 r) 

i — 
• 2- -(,2- y/3- ).')

4! _ (140,_y)..
/ •,2 • 3 (z - Y) • •

Then OUT solution is

C r

e 0-/- - YX2 d1/4-4(/ 48- )/„., 20._t_j5--r
X
2

• ( g -2/) 
/ ( g -),/4.3-Y)

. . ( 14 x) • -(-'4 - r)( -x) - -   0"0 •
-t ---2 - • • • • (2-y)(3-x)- -

_ Coz i-x. (1-/-.4_/, /1-73-7,7-y,x).
The complete solution of the original equation is

A z)-+ B FYI ta—e 1+73 z),
where A and B are the arbitrary constants.

Some well-known nn e Imnortant functions my he represerted
by the hypergeometric series. Let us examine

g

-::ritten in the form of the series, we have

1 • z - I • -3 (c3
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Limit
--)--›0

0.0•"

This nay be written

Lin5t43.4„07 e . 2!3k_z + -

The right hand member is the expansion of e.g by Iaclaurenfs
theorem; therefore

Limit

"Now let

z
-P(,,311,

then from the definition of the hypergeometric series, re have

— 27 745.24-4)1- oc(0(1-04(60)% /e."
/..z, .MA21- fcit3 1

•
7. 7-

This may be written

= 2f — Z
3

_i_

LI / • Z • -13- - 5- _14

..3
4

Z ----

%
L.2 L.1_5--- 12

ThIs series is the expansion of sin x; therefore

Limit
ot

00
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