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TEMPORAL CHANGES IN THE OMMATIDIAL STRUCTURE

OF THE COCKROACH, LEUCOPHAEA MADERAE

Becky G. Reitcheck July, 1990 33 pages

Directed by: Drs. Blaine R. Ferrell, Rudolph Prins and Kenneth Balak

Department of Biology Western Kentucky University

A circadian rhythm in eye sensitivity to light has been previously reported

for Leucophaea maderae. Temporal changes in eye cell morphology that could

be correlated with those changes in eye sensitivity to light were examined.

Rhabdom area, screening pigment organization and palisade layer area about

the rhabdom were the parameters measured to detect structural change

through time. Measurements of those parameters from tissue samples

obtained from the anterior one-third of compound eyes surgically removed at

midday, light offset, midnight and light onset from roaches entrained to a 12-h

light / 12-h dark photoperiodic cycle were used to assess the daily pattern of

morphological changes. Eyes were removed at subjective midday and

subjective midnight from roaches free-running under constant conditions of

temperature and darkness to detect circadian changes. All roaches received

food and water ad libitum. Tissue samples were fixed, embedded, sectioned

and the sections were examined and photographed using a Zeiss transmission

electron microscope to test for time-related morphological differences. The

extent of pigment organization was determined by counting the number of

pigment granules found within a 104m diameter circle centered about the

rhabdom. The rhabdom area and the palisade layer area were determined by

the Jandel PC3-D computer program. The rhabdom area did not vary

throughout the day. The organization of screening pigment granules and the

viii



palisade layer area did vary on a daily basis. In animals maintained under

constant environmental conditions the rhythm of the organization of the

pigment granules did not persist. In contrast, temporal changes in the

palisade layer area did persist for three cycles with a pattern similar to that in

roaches held under LD12:12 and thus could be considered a circadian rhythm

controlled by a pacemaker.
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INTRODUCTION

Circadian rhythms in behavior (e.g. locomotor activity) and physiology

(e.g. metabolism) are present in unicellular to complex multicellular

organisms. To be considered circadian a rhythm must have a period length of

approximately 24 h and be repeated at least two times in the absence of

external timing cues, such as photoperiod and temperature cycles. The

persistence of such a rhythm in the absence of environmental entrainment is

indicative of internal regulation by an endogenous timer, the pacemaker.

Locomotor activity is an easily monitored event that recurs on a circadian

basis and as such has been used to assess the operation of such a pacemaker.

Evidence from studies of circadian locomotor activity in the cockroach,

Periplaneta americana, has indicated that an efferent output from the brain

imposes a circadian rhythmicity on the activity of the thoracic ganglia which

control walking (Roberts 1974). When the optic lobes of the brain are

removed, the animals express total arrhythmicity of locomotor activity,

indicating that the pacemaker that drives this rhythm is located in the optic

lobes and is connected via a neural pathway (Nishiitsutsuji-Uwo and

Pittendrigh 1968). Transplantation experiments involving the removal of the

optic lobes from a donor organism and placement of these optic lobes into a

host organism of the cockroach species Leucophaea made rue have confirmed

that the pacemaker is located in the optic lobes. Although the host animal

will express arrhythmicity for a few weeks until the neural connections are

regenerated, the host animal expresses the periodicity of the rhythm of the

donor animal (Page 1982, 1983).
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Another rhythm expressed in L. maderae, as in other arthropod species

studied (Barlow et al. 1980), that recurs on a circadian basis is a rhythm of

eye sensitivity to light (Wills et al. 1985). Eye sensitivity to light was

measured by determining the change in an electrical potential in response to

a flash of light, an electroretinogram (ERG). The amplitude of the potential

changes in response to a brief pulse of light in L. maderae, tethered under

constant dark conditions, changed on a circadian basis. Furthermore, the

pacemaker that controls the expression of this rhythm in L. maderae has

been located in the same general area as the one that regulates the

expression of the locomotor activity rhythm. There appears to be a neural

connection between the pacemaker in the brain and the eye that regulates

the expression of this light sensitivity rhythm similar to the condition

described for other arthropods (Barlow et al. 1980). A series of lesion studies

were done in the optic lobes of L. maderae to determine what part of the brain

was generating the rhythm leading to eye sensitivity (Wills et al. 1985).

These studies determined that an efferent pathway from the brain to the eye

is involved in generating the rhythm of eye sensitivity and that the

pacemaker for this and the rhythm of locomotor activity lie in close proximity

to one another. Circadian rhythms of locomotor activity and photoreceptivity

have been studied in organisms ranging from Paramecium (Nakajima and

Nakoaka 1989) to Limulus (Chamberlain and Barlow 1979), Bulla (Block and

Davenport 1982) and Leucophaea (Nishiitsutsuji-Uwo and Pittendrigh 1968).

Anatomical changes in ommatidia may be responsible for changes in eye

sensitivity to light. Temporal morphological changes have been described for

ommatidia in another cockroach species, P. americana (Butler 1973), which

include the movement of screening pigment granules within retinula cells

about the rhabdom and the presence of a palisade layer about the rhabdom.
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Three hypotheses have been advanced to explain how an anatomical change

could have an influence on eye sensitivity to light. The first proposes that

there may be changes in the number of photoreceptor molecules in the

rhabdom available to catch photons (Colwell and Page 1989). The second

proposes that changes in the organization of screening pigment granules

about the rhabdom in the retinula cells could lead to a change in the

probability that a photon would reach the photoreceptor (i.e. rhabdom) (Wills

et al. 1985). A third hypothesis is that the strength of the signal in response

to each photon is altered through a process of amplification. The possibility

exists that the palisade layer, which is more prevalent at night, contains a

regulatory ion that amplifies the photoreceptor response to each photon

(Baumann and Walz 1989). This study was carried out to determine

anatomical changes consistent with these hypotheses that account for

changes observed in eye sensitivity to light.

In terms of its anatomical and physiological properties, the cockroach is

one of the best understood in terms of circadian organization, which makes it

a good choice as a model organism in which to study circadian systems. The

general location of a pair of mutually-coupled pacemakers within the brain of

L. maderae has been determined through a series of studies (Page et al. 1977

and Page 1978). Additional studies have employed brain lesions (Wills et al.

1985) or measurements of the rate of metabolic activity (Lavialle et al. 1989)

to isolate regions of the optic lobes involved. For example, lesions made

proximal to the distal edge of the lobula neuropil of the optic lobes did not

affect the rhythm of ERG amplitude, whereas, bisection of the optic lobes

distal to the lobula abolished this rhythm (Wills et al. 1985). Evidence from

studies carried out in L. maderae in which circadian rhythms of cytochrome

oxidase activity in various optic lobe structures indicates the site of the clock
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is in the lobula plate of the lobula neuropil in the optic lobes of the brain

(Lavialle et al. 1989). A pacemaker or pacemakers within this same area of

the brain controls the circadian rhythms of locomotor activity, eye sensitivity

to light and metabolism described earlier. However, whether one clock

controls all three rhythms or that each rhythm is controlled by a separate

clock can not be established until the cells of the clock(s) have been located.

Determining which of these conditions is in operation is important to

understanding circadian organization in this model system. If some

anatomical change within a single cell could be determined to occur on a

circadian basis, then it should be possible to establish the exact location of

the cells comprising the pacemaker by tracing the efferent pathway from its

connection with this anatomical unit back to its origin in the pacemaker.

Anatomical changes in ommatidia structure do occur on a daily basis in

another cockroach species P. americana that may have an effect on eye

sensitivity (Butler 1973). These changes include the movement of screening

pigment granules and palisade layer formation within anatomical units,

retinula cells. Because temporal changes in eye sensitivity to light recur on a

circadian basis, morphological changes correlated with changes in light

sensitivity should also occur on a circadian basis. Therefore, another aim of

this study was to determine if these temporal changes in the anatomy of

retinula cells within the cockroach, L. nzaderae, compound eye persist on a

circadian basis.



MATERIALS AND METHODS

•
Cockroaches, L. maderae, were reared in a colony maintained under a

light/dark cycle of 12 hours of light and 12 hours of dark (LD12:12) and

provided with food (i.e. Puppy Chow) and water ad libitum. Only male

cockroaches were used for the experiments in order to ensure uniformity.

Prior to each experiment, the animals were placed in environmental

chambers set at the same photoperiodic schedule as the parent colony and a

constant temperature of 25 ± 2 °C. Six animals in each environmental

chamber were each placed in one of six running wheels equipped with

magnetic reed switches wired to an Esterline Angus event recorder.

Magnets mounted on the wheel closed the switch with each revolution of the

wheel and a dash mark was made on a paper strip chart moving at a constant

rate. Using this set-up, the locomotor activity was continuously recorded and

the activity patterns of representative cockroaches were determined. Food

was p:aced on a hook attached to a rubber stopper in the center of the

stationary face plate of each running wheel. Water was provided via a

stoppered tube fitted with a cotton wick that ran through the stationary face

plate of the running wheel. Additional animals were kept in small plastic

cages.

The daily rhythm of representative morphological changes of ommatidia

from L. maderae was determined first. Only after the animals in running

wheels had become entrained to LD12:12, as determined by analysis of

activity recordings, were the eyes surgically removed for analysis. Eyes were

5
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removed from different cockroaches at four times of day: midday, lights offset,

midnight and light onset. At midday the eyes were removed under white

light but at midnight the eyes were removed under red light with a

wavelength >630 nm. In order to surgically remove eyes, each animal was

transferred from a running wheel or plastic cage to a large plastic Petri dish

with two small holes cut in the lid. A tube leading from a water trap hooked

to a CO2 cylinder provided the CO2 anesthesia via one of these holes

throughout the surgical procedure. After the animal was anesthesized, the

head of the animal was placed through the other triangular shaped hole. A

piece of tape was placed under the head to keep it from falling through the

hole, and another piece of tape was placed over the body to secure the animal.

The anterior one-third of the compound eye was removed using a fractured

razor blade scalpel, scissors and a pair of forceps. Small strips of eye tissue

were removed from the eye and immediately placed in 4% glutaraldehyde in

a microvial for 2.5 h. The tissue samples were then rinsed twice for 15 min.

each time in Sorensen's phosphate buffer, pH 7.2. The solution was changed

to a 1% osmium tetroxide solution for 1.5 h. After rinsing twice with buffer

for 15 min. each time, the tissue samples were subjected to a series of alcohol

dehydrations: 20%, 35%, 50%, and 70%. The samples remained in 70%

alcohol until all samples were ready for embedding. The eye tissue removed

at midnight remained in the dark until the first phosphate buffer rinse. After

all samples were ready for embedding, the series of alcohol dehydrations was

continued: 85%, 95%, and 100% ethyl alcohol twice. Each alcohol

dehydration step was for 10 min. The tissue samples were then subjected to

3 parts 100% alcohol to 1 part Spurr's resin. Spurr's resin was used for

embedding the samples for transmission electron microscope evaluation. The

eyes were subjected to equal parts of Spurr's resin and alcohol, followed by 3



parts Spurr's resin to 1 part alcohol. The final step was 100% Spurr's resin.

Each of the last steps was for 0.5 h. The samples were placed in the bottom

of Beem capsules with the convex side facing down. Spurr's resin was placed

into the Beem capsule along with the appropriate labels. Care was taken to

ensure that no air bubbles were present in the tip of the Beem capsule. The

capsules were placed in capsule holders which in turn were placed in an oven

set at 60 °C for approximately 11.5 h. not to exceed 12 h. The cured resin was

allowed to cool for about 24 h. The Beem capsule was removed from the

hardened resin by using a razor blade.

A Reichert OM U2 ultramicrotome was used to cut tissue sample sections

using a glass knife. The sections were collected on copper grids that were 200

or 300 mesh. The samples on the grids were then examined using a Zeiss 9S2

transmission electron microscope. All examinations were at a magnification

of 1950 times. Photomicrographs were made of ommatidial cross sections

taken immediately proximal to the crystalline cone. The electron

micrographs were printed at an enlargement of 3.4 (i.e. total magnification of

6630) to ensure that all data were uniform.

The same procedure was used to detect the presence of a circadian

rhythm, except that the lights in the environmental chambers were turned off

following at least one week of acclimation to chamber conditions of LD12:12

and 25 ± 2 °C. The activity recordings were necessary to determine the

roach s subjective midday and subjective midnight, times when the eyes were

removed to make possible comparisons with the conditions observed at these

times of day in entrained animals. All dissections were made under red light.

For statistical purposes all samples included nine ommatidia, three

ornmatidia from each of three separate animals.
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Micrographs of cross sections immediately proximal to the crystalline cone

were analyzed for three morphological features: 1) organization of pigment

granules, 2) rhabdom area and 3) palisade layer area. The organization of

pigment granules was determined by centering a 10 gm circle around the

rhabdom and counting the number if pigment granules present within the

circle. The areas of the rhabdom and palisade layer were determined using a

Jandel 3-D computer program. The micrographs were traced into the

computer and the computer determined the area of these structures

automatically. One-way analysis of variance and Tukey's range test were

used to determine significant differences at the 95% confidence level.



RESULTS

Ommatidia of light-adapted eyes (Figure 1) were characterized by

rhabdoms with an average area of 23.6 ± 8.8 µm2 (mean ± standard

deviation), an average of 99 ± 21 screening pigment granules clustered about

the rhabdom and an average palisade layer area of 2.1 ± 2.0 µm2. Ommatidia

of dark-adapted eyes (Figure 2) were characterized by a rhabdom area of 32.4

± 20.3 µm2 (Figure 3), significantly fewer (mean of 29± 16, P<.05) screening

pigment granules about the rhabdom (Figure 4) and a significantly greater

mean palisade layer area of 26.8 ± 14.3 µm2 (Figure 5, Table 1) than in light-

adapted ommatidia. Rhabdom areas between the two times of day were not

significantly different. Measurements of these anatomical parameters at

transition times of light offset (Figure 6) and light onset (Figure 7) were not

significantly different with the average rhabdom area of 31.3 ± 12.9 µm2 for

light offset and 31.0 ± 6.4 µm2 for light onset. The organization of screening

pigment granules was also not significantly different at transition times with

an average of 91 ± 21 for light offset and 73 ± 26 for light onset. The mean

palisade layer areas at these two times were significantly different with 5.5 ±

3.5 µm2 in ommatidia removed at light offset and 22.4 ± 8.3 pxn2 in

ornmatidia at light onset. Recordings of locomotor activity of representative

animals indicated that the animals were entrained to the photoperiodic

conditions of LD12:12 (Figure 8).

The same morphological parameters were measured in ommatidia

removed at subjective midday (Figure 9) and subjective midnight (Figure 10)

over a three day time period in roaches freerunning under constant

9
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conditions of darkness and temperature in order to detect the expression of

these changes on a circadian basis. Consistent with data from entrained

roaches, rhabdom area did not vary temporally (Figure 11). The average area

varied between 32± 11 p.m2 and 45± 15 pin2 (Table 2). Unlike animals held

under LD12:12, the daily rhythm in pigment granule organization did not

continue to vary temporally within the defined area about the rhabdom

(Figure 12). The palisade layer area of ommatidia removed on the third

subjective midnight was significantly greater than the area of ommatidia

removed on all three consecutive subjective middays and the first subjective

midnight. The palisade layer area in ommatidia removed at the first

subjective midday was significantly lower than that of the second and third

subjective midnights (Figure 13). Thus, it appeared that the palisade layer

area varied on a circadian basis. However, palisade layer areas determined

at subjective middays were greater than during midday in animals entrained

to LD12:12. Locomotor activity recordings of representative animals in

constant darkness indicated that they were free of entrainment, (i.e.

freerunning) (Figure 14).
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Figure 1. Electron micrograph of an ommatidial cross-section obtained at
midday from a cockroach maintained under LD12:12 and 25 ± 2

°C (R=rhabdom, Pi=pigment granules).
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Figure 2. Electron micrograph of an ommatidial cross-section obtained at
midnight from a cockroach maintained under LD12:12 and 25 ± 2
°C (R=rhabdom, Pa=palisade layer, Pi=pigment granules).
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Figure 3. Mean rhabdom area of ommatidia determined at four times of
day (midday, light offset, midnight, light onset) in cockroaches
maintained under LD12:12 and 25 ± 2 °C (SD=standard deviation).

•
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Figure 4. Mean number of screening pigment granules clustered within a
10 gm diameter circle centered about rhabdoms of ommatidia
determined at four times of day (midday, light offset, midnight,
light onset) in cockroaches maintained under LD12:12 and 25 ± 2
°C (SD=standard variation).
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Figure 5. Mean palisade layer area of ommatidia measured at four times of
day (midday, light offset, midnight, light onset) in cockroaches

maintained under LD12:12 and 25 ± 2 °C (SD=standard deviation).
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Figure 6. Electron micrograph of an ommatidial cross-section obtained at
light offset from a cockroach maintained under LD12:12 and 25 ±

2 °C (R=rhabdom, Pa=palisade layer, Pi=pigment granules).





18

Figure 7. Electron micrograph of an ommatidial cross-section obtained at
light onset from a cockroach maintained under LD12:12 and 25 ±
2 °C (R=rhabdom, Pa=palisade layer, Pi=pigment granules).
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Figure 8. Locomotor activity recordings of two cockroaches, designated by
A and B, entrained to LD12:12 and 25 ± 2°C. Light onset was at
0600 h and light offset at 1800 h.
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Figure 9. Electron microgrlph of an ommatidial cross-section obtained at
subjective midday on day three in a cockroach held under

constant darkness and 25 ±2 °C (R=rhabdom, Pa=palisade layer,

Pi=pigment granules).
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Figure 10. Electron micrograph of an ommatidial cross-section of a
cockroach obtained at subjective midnight on day three from a
cockroach held under constant darkness and 25 ± 2 °C
(R=rhabdom, Pa=palisade layer, Pi=pigment granules).
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Figure 11. Mean rhabdom area of ommatidia determined at two subjective

times of day (midday, midnight) over a three day period (1=day 1,

2=day 2, 3=day 2) in cockroaches maintained under constant

darkness and 25 ± 2 °C (SD=standard deviation).
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Figure 12. Mean number of screening pigment granules clustered within a
10 gm diameter circle centered about rhabdoms of ommatidia
determined at two subjective times of day (midday, midnight)
over a three day period (1=day 1, 2=day 2, 3=day 3) in cockroaches
maintained under constant darkness and 25 ± 2 °C
(SD=standard deviation).
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Figure 13. Mean palisade layer area of ommatidia determined at two

subjective times of day (midday, midnight) over a three day

period (1=day 1, 2=day 2, 3=day 3) in cockroaches maintained

under constant darkness and 25 ± 2 °C (SD=standard deviation).
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Figure 14. Locomotor activity recording of two cockroaches maintained

under LD12:12 and 25± 2 °C and subsequently placed under

constant darkness (DD) on the day indicated by <. Light onset
was at 0600 h and light offset was at 1800 h.
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DISCUSSION

Rhabdom cross-section area did not appear to change with time of day in

Leucophaea maderae, unlike in other arthropods such as Limulus, in which

changes in the length and the thickness of the rhabdom occurred on a daily

basis (Barlow et al. 1980) and the grapsid crab, Hemigrapsus sanguineus,

which had a rhabdom volume greater at night than during the day (Arikawa

et al. 1988). Due to dramatic differences in rhabdom structure among these

arthropods, direct comparisons among anatomical features could not be

made. The number of screening pigment granules clustered within a 101..tm

diameter circle centered about the rhabdom changed temporally in roaches

held under LD12:12 conditions. In the light-adapted state, screening pigment

granules clustered about the rhabdom, whereas in the dark-adapted state,

screening pigment granules dispersed into the cytoplasm of the retinula cells

and became separated from the rhabdom by a palisade layer. These changes

are similar to those described for another cockroach species, Periplaneta

americana (Butler 1973) and for other arthropods such as the crayfish

Procambarus (Olivo and Larsen 1978) and the horseshoe crab, Limulus

(Miller and Cawthon 1974). Daily changes in rhabdom area and screening

pigment organization did not continue on a circadian basis. Therefore, it

seems unlikely that the expression of daily differences observed in these

parameters are regulated endogenously by a pacemaker.

Temporal changes in the area of the palisade layer that occurred on a

daily basis continued to be partially expressed on a circadian basis. The

temporal pattern of these changes in entrained animals (i.e. under LD12:12)

27
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was similar to that described for P. americana in which the palisade layer

increased in the dark-adapted eye and diminished in the light adapted eye

(Butler 1973). In L. maderae removed from entrainment (i.e., held under

DD), the palisade layer reached the dark-adapted state but returned only

partially to the light-adapted state. It seems likely that the palisade layer

increased as a result of efferent output from a pacemaker and diminished

slowly in the absence of efferent output toward the day-adapted state. These

results are consistent with a hypothesis involving a push-pull mechanism

that has been proposed to explain a similar circadian rhythm in

morphological changes in the eye ofLimulus (Barlow 1990). According to

this hypothesis, the push toward the nighttime state is produced by a signal

from a pacemaker within the brain via an efferent neural pathway. The

neurotransmitter octopamine released from neurons of this pathway push the

retina toward the nighttime state (Barlow 1983) . A circulating hormone that

reduces sensitivity of the eye to light may pull the retina back to the daytime

state in order to anticipate the coming dawn (Barlow 1990). In L. maderae it

appears that the push toward the nighttime state results from efferent

output originating from a pacemaker. In contrast the eye passively changes

toward the daytime state. The presence of light may be necessary to

accelerate this process and produce the daytime condition observed in roaches

held under LD12:12..

The temporal change in the palisade layer area observed in this study

might partially account for the temporal changes in eye sensitivity to light

measured by electroretinograms (ERG) in L. maderae (Wills et al. 1985).

The ERG amplitude changes temporally on a circadian basis in L. maderae

(Wills et al. 1985). Since the ERG is a measure of the sensitivity of the eye

to light, then some morphological changes might be expected to take place
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correlated with changes in retinal sensitivity. The pattern of changes in ERG

amplitude parallel temporal changes in palisade layer morphology. The

palisade layer increased at a time when ERG amplitude was highest and

decreased at a time when ERG amplitude was lowest.

Three hypotheses have been advanced to account for temporal changes in

eye sensitivity to light that could involve anatomical changes. The first

hypothesis is that there could be changes which would increase the number of

photoreceptor molecules in the rhabdom available to catch photons (Colwell

and Page 1989), perhaps resulting from a change in the number of microvilli

in the rhabdom between night and day. The fact that the rhabdom area did

not change with time of day in L. maderae does not support this concept.

However, it is still possible that the number of microvilli changed without

producing changes in the rhabdom diameter. Changes in microvilli length

and packing have been observed in other arthropods (Waterman 1982). This

possibility could not be addressed in this study because of resolution

limitations. The second hypothesis involves a change in the organization of

screening pigments within retinula cells that could be expected to lead to a

change in the probability that a photon would effectively reach the

photoreceptive region, the rhabdom (Wills et al. 1985). The fact that the

organization of screening pigments about the rhabdom did not vary on a

circadian basis indicates that their light screening function is not a major

factor in producing changes in eye sensitivity observed on a circadian basis

(Wills et al. 1985). The third hypothesis is that the strength of the signal in

response to each photon is altered through a process of amplification. The

change in the palisade layer area between subjective day and subjective night

observed in this study is correlated with the change in eye sensitivity to light.

Perhaps a regulatory ion that enhances the signal's response to light could be
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sequestered within the palisade layer in close proximity to the microvilli at

night, when the eye is most sensitive to light. An increased calcium pool is

maintained within the palisade layer adjacent to the microvilli during the

dark-adapted state in another arthropod, the honeybee drone (Baumann and

Walz 1989). When the photoreceptor was subjected to light, Ca ++ is released

in close proximity to the microvilli and may have enhanced the response to

light. In the presence of increased light intensity, Ca ++ within the palisade

layer was released into the cytoplasm and may have helped facilitate the

changes in screening pigment organization that take place when the eye goes

from a dark-adapted state to a light-adapted state (Baumann and Walz

1989). The mechanism whereby the screening pigment granules are

distributed into the cytoplasm of the retinula cells is not known. It has been

hypothesized that a transport mechanism involving a microtubule system

that may be activated by an increase in cytoplasmic calcium ions results in

the movement of screening pigment granules, such as in the arthropod

Procambarus (Olivo and Larsen 1978). Increased light could cause Ca++

stored in the palisade layer to be released into the cytoplasm by diffusion.

This would diminish photoreceptor sensitivity and move screening pigment

granules closer to the rhabdom.

The exact location(s) of the cells that make up the circadian pacemaker(s)

in the brain of L. maderae is not known. Many studies have been performed

to identify the general location of this pacemaker (Nishiitsutsuji-Uwo and

Pitt,endrigh 1968, Page 1983, Wills et al. 1985 and Lavialle et al. 1989). The

circadian clock that controls the circadian rhythmicity of the ERG is in the

same area of the brain as the clock controlling the locomotor activity rhythm

(Roberts 1974 and Page 1983). The location of a pacemaker has already been

narrowed to the lobula plate of the lobula neuropil in the optic lobes through
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studies of metabolic activity rhythms (Lavialle et al. 1989). Whether these

biological clocks are anatomically close or identical to one another (Colwell

and Page 1989) can only be established by determining the exact anatomical

location(s) of cells that regulate the expression of these rhythms. Circadian

changes observed in the palisade layer area within a single retinula cell can

be used to assay for the location of the pacemaker that regulates this rhythm

through lesion studies similar to those used to determine the location of the

pacemaker controlling the ERG rhythm (Colwell and Page 1989). If the

pacemaker that regulates the expression of the rhythm of the palisade layer

area can be localized, it should be possible to trace efferent pathways from

their connection with retinula cells back toward the pacemaker. Thus, it

should be possible to identify the individual cells of the pacemaker. If the

location of cells of the pacemaker can be determined, then neural pathways

between pacemakers and the behavioral and physiological rhythms they

regulate can be mapped. This should lead to an understanding of circadian

organization with multicellular organisms.
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