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Atmospheric aerosols encapsulate a wide variety of particles with different compositions, 

sizes and sources of origin. They also directly and indirectly affect climate by their 

interactions with sunlight, clouds, atmospheric chemical species, and even other suspended 

particles. To understand the atmospheric aerosol processes and the effects they have in 

global and regional climate is of utmost importance for the future establishment of 

environmental regulations and emission policies that affect aerosol precursor compounds 

in an effective and beneficial manner. In particular, aerosols are known to be formed from 

emissions from human activities, such as fossil fuel burning, agriculture, or concentrated 

animal feeding operations (CAFOs). Secondary organic aerosols (SOA) constitute a type 

of atmospheric aerosols that are formed from the atmospheric oxidation of organic 

compounds that are released from various sources into the atmosphere. Due to the 

complexity of the atmosphere and variability of its conditions, the direct study of SOA 

formation is a challenging task, but the implementation of atmospheric chamber facilities 

to study aerosol formation and growth under controlled conditions has provided a way to 

study the formation and growth of SOA. However, chamber experiments cannot study 

specific reactions or individual compounds from the aerosol formation mechanisms in 

isolation, they can only provide insight on what is produced and what it is produced from, 

and under what conditions. Thus, kinetic modeling of the mechanisms of gas-phase 
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atmospheric oxidation of the compounds of interest is used to develop reliable and accurate 

chemical models that will help have precise estimations and determine the mechanisms by 

which volatile organic compounds interact to produce aerosol particles. Dimethyl sulfide 

(DMS), dimethyl disulfide (DMDS) and trimethylamine (TMA) are three relevant 

atmospheric compounds, due to their emissions from many natural and anthropogenic 

sources and recent studies on emissions of these compounds from animal waste from 

CAFOs has triggered the interests on the study of SOA formation from these and other 

similar compounds. In this study, kinetic modeling of the atmospheric oxidation 

mechanisms of DMDS, DMS and TMA is used to simulate atmospheric chamber studies 

of aerosol formation to develop accurate models and help determine the mechanisms of 

aerosol formation.  
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1 Description of Atmospheric Aerosols 

The atmosphere is composed mainly of a mixture of gases, including molecular 

nitrogen and oxygen, carbon dioxide, argon, and other trace gases. It also contains a wide 

variety of suspended particles that are ubiquitous in the air.1 These particles are collectively 

called atmospheric aerosols. Although the existence and plausible effects of atmospheric 

aerosols were recognized in the 1970s, it was not until the 1990s when studies on these 

particles became of focus for the scientific community.2 As more studies on atmospheric 

aerosols were performed, a greater awareness of the great impacts that green-house gas 

(GHG) emissions, especially of carbon dioxide, methane, nitrous oxide, 

chlorofluorocarbons, and ozone, have on the warming of the atmosphere and depletion of 

the ozone layer was attained. These examples led scientists at the time to look more closely 

at aerosols and provided context as to the impacts that human activities could produce on 

the Earth’s atmosphere and made it clear that understanding atmospheric chemical 

processes and the effects of human activities on the global climate was of utmost 

importance for the future establishment of better emission policies.3,4 Atmospheric aerosols 

can be solid, liquid or heterogenous mixtures, are suspended in the atmosphere, and vary 

greatly in their properties.1 Aerosols are considered to be part of a two phase system with 

one phase being the particle (solid or liquid) and the other phase being the air (gas), in 

which they are suspended.5 They originate from both natural and anthropogenic sources 

that can contribute directly to the total aerosol concentrations by direct emission of primary 

aerosols (PA)  into the atmosphere or indirectly by incorporating chemical species that 

contribute to the formation of particles through atmospheric chemical reactions.1,6,7 

Secondary aerosols that form through atmospheric chemical reactions are classified as 
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secondary organic aerosols (SOA) and are known to form from sulfur and nitrogen 

containing precursor compounds. This is one of the aspects that motivated the study of gas-

phase atmospheric oxidation of low volatility reduced organo-sulfur and aliphatic amine 

compounds. 

1.1 Climate and Health Effects 

In terms of their climate impacts, atmospheric aerosol particles play a role by 

scattering and absorbing solar radiation and by introducing cloud condensation nuclei 

(CCN), which affect the microphysical properties of clouds such as cloud albedo.8 The 

primary direct effect of aerosols is a brightening of the planet when viewed from space, 

while the primary indirect effects are observed on clouds and include an increase in cloud 

brightness, change in precipitation and possibly an increase in lifetime.9 Thus, the overall 

net impact of aerosols in climate is an enhancement of Earth’s reflectance (shortwave 

albedo). This reduces the sunlight reaching the surface of the Earth, producing a net 

climatic cooling, as well as a redistribution of the radiant and latent heat energy deposited 

in the atmosphere. By 2007, studies had indicated that on average, the sum of direct and 

indirect top-of-atmosphere (TOA) forcing by anthropogenic aerosols is negative (cooling) 

of about -1.3 W m-2 (-2.2 to -0.5 W m-2). This is significant compared to the positive forcing 

by anthropogenic GHGs (including ozone), about 2.9 ± 0.3 W m-2.10,11  

1.1.1 Direct Climate Effects  

In comparison, the effects of aerosols, unlike the effects of GHG emissions, are 

likely a somewhat regional and temporal effect, given their local origination and 

distribution, which occurs mainly near and downwind of the sources of emission, and their 

short lifetimes.8 These effects can alter atmospheric circulation and the water cycle, 
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including precipitation patterns, on a variety of length and time scales.12 Any change in 

number, concentration or hygroscopic properties of such particles has the potential to 

modify the physical and radiative properties of clouds, altering cloud brightness and the 

likelihood and intensity with which a cloud will precipitate. Collectively, changes in cloud 

processes due to anthropogenic aerosols are referred to as indirect aerosol effects.13 Figure 

1.1 offers a schematic overview of direct and indirect effects of aerosols on climate.  

 

In Figure 1.1, aerosols scatter and absorb sunlight, described as direct effects on 

shortwave (solar) radiation. The second illustration represents a cloud in an unperturbed 

atmospheric state. The rest illustrate the different kinds of indirect effects of atmospheric 

aerosols, such as, increased CCN, rainfall suppression, increased cloud lifetime and height, 

and cloud burn-off. Most types of aerosols scatter more than 90% of the visible light 

Figure 1.1. Direct and indirect effects of aerosol. Airborne particles can affect the heat 

balance of the atmosphere, directly, by scattering and absorbing sunlight, and 

indirectly, by altering cloud brightness and possibly lifetime. Small black dots 

represent aerosols, circles represent cloud droplets, straight lines represent short-wave 

radiation, and wavy lines represent long-wave radiation. Adapted from Ref. 13. 
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reaching them. This, leads to an increase in the amount of sunlight backscattering of the 

atmosphere, especially on regions of the atmosphere with highest concentrations of 

aerosols, which gives rise to an unbalance in the total radiative forcing of the Earth. 

1.1.2 Indirect Climate Effects  

Cloud microphysical and radiative properties such cloud lifetimes, droplet sizes and 

concentrations, volume and altitude are significantly affected by atmospheric aerosols. As 

observed in Figure 1.1, aerosols act as sites at which water vapor can accumulate during 

cloud droplet formation, serving as cloud condensation nuclei (CCN).1,10 Increasing 

aerosol concentrations increases CCN for a given liquid water content, which increases 

back-scattering of sunlight, causing an enhancement of cloud albedo effect.6,14 Studies have 

also related increased cloud lifetimes to indirect effects of aerosols. This consequence is 

linked to another one of those indirect effects of aerosols. Increased aerosols concentrations 

change the size of water droplets due to increased CCN concentrations, this is because 

cloud droplets need a threshold radius of approximately 14 µm for the formation of rain.15 

However, increased concentrations of CCN in clouds causes a decrease in droplet size and 

an increase in the number of droplets.16 As a consequence, the droplets are prevented from 

reaching the threshold radius, which increases cloud lifetime and suppresses the rainfall.6 

Finally, absorption of solar radiation by particles is thought to contribute to a reduction in 

cloudiness, a phenomenon referred to as the semi-direct effect.14 This occurs because 

aerosols warm up the space around them by absorbing sunlight, which changes the 

atmospheric stability, and reduces surface flux.10 Size and composition of aerosol particles 

also determine their ability to serve as CCN, upon which cloud droplets form, which 
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provides an indirect relationship between aerosol sources and the aerosols ability to 

modifying cloud properties of certain aerosol types.  

1.1.3 Health Effects  

The most important effects of atmospheric aerosols in human health are caused by 

inhalation of air polluted with high concentrations of aerosols. Deposition and 

accumulation of such particles in the lungs and other parts of the respiratory system causes 

airway resistance or various diseases depending on their chemical composition.6 The size 

of the particles plays a role in the impact that they can have on human health given that 

coarse particles, which have a diameter ranging from 2.5 µm to 10 µm are mainly removed 

in the upper respiratory track. However, particles with diameters less than 2.5 µm are 

deposited on the different parts of respiratory track all the way down to the bronchi walls.  

Particles smaller than 0.1 µm in diameter are collected in the bronchia through Brownian 

Motion. Particles with diameters between 0.1 -1 µm are deposited in the lungs as they are 

too large for Brownian Motion and too small to be trapped in the upper part of the trachea. 

Ultrafine particles (UFP) with sizes of <0.1 µm which are linked to increased risks of 

cardiovascular disease and pulmonary toxicity. 17–19 Thus, aerosols of smaller sizes likely 

represent a greater threat towards human health.  

1.2 Aerosol Properties and Measurements  

To study aerosols and their effect on global total radiative forcing and climate change 

in general, it is necessary to analyze certain properties of each type of aerosol individually 

as well as when heterogenous mixtures of them are present. Some of these properties relate 

to their interaction with solar and surface radiation, as well as their chemical composition 

and size. Some of the measurements that help scientists study aerosols include for example, 
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aerosol optical depth (AOD), single scattering albedo (SSA), surface albedo (SA), radiative 

forcing (RF) and the asymmetry parameter (g).  

Formally, AOD is the integral of the product of particle number concentration and 

particle extinction cross-section (which accounts for individual particle scattering and 

absorption), along a path length through the atmosphere, and is a dimensionless quantity. 

SSA describes the fraction of light interacting with the particle that is scattered, compared 

to the total scattered and absorbed light. Values for SSA range from 0 to 1, for totally 

absorbing (dark) particles such as black carbon aerosols and for purely scattering ones 

respectively.10 Surface albedo (A) is a measurement of reflectivity of the ground, ranges 

from 0 for purely absorbing to 1 for purely reflecting.10 The asymmetry parameter (g), 

helps describe the kind of light scattering each type of aerosol promotes.10 Radiative 

forcing (RF) is an important measurement that allows the quantification of the effects of 

aerosols on climate. RF is the net energy flux (downwelling minus upwelling) difference 

between an initial and a perturbed aerosol loading state, at a specified level in the 

atmosphere. This quantity depends on the specifications of the initial and perturbed aerosol 

states for which the radiative flux difference is calculated. Although there is still some 

uncertainty on current measurements, they have provided close estimates to what the 

effects of aerosols are on climate.   

Other important aspect to consider is the size and composition distributions that 

atmospheric aerosols present. The extensive list of the different compositions and wide 

particle size range that aerosol particles exhibit makes studying aerosol impacts on climate 

and health a challenging task.10 Aerosol particles show sizes that range from tenths of 

nanometers to tenths of micrometers, and are distributed spatially and temporally at 
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different concentrations. According to their size, aerosols are divided into two categories, 

fine mode and coarse mode, with diameters of less than 2.5 µm and greater than 2.5 µm 

respectively. Although this is the legal definition of fine and coarse mode, many scientists 

would argue the natural cutoff is ~1 µm. Two subcategories emerge from the fine mode 

aerosols, the Aitken nuclei mode ranging from 0.005 µm to 0.1 µm in diameter, and the 

accumulation mode, which has diameters between 0.1 µm to 2.5 µm. 6 In general, the mass 

to size distribution ratio of aerosols shows both fine and coarse mode aerosols resulting in 

a bimodal distribution, where particle number distributions peak at the fine mode, while 

particle mass distributions peak at the larger sizes (coarse mode). In remote areas with no 

anthropogenic sources near, coarse mode is dominant; while higher concentrations of fine 

mode aerosols are observed in areas with anthropogenic source dominance. The properties 

of size and composition are of special interest when studying the processes of aerosol 

formation and are properties used in this work to guide the development of the kinetic 

models. Particularly, the composition and concentration of sulfur and nitrogen compounds 

present in the aerosols are the focus of the kinetic modeling of dimethyl disulfide (DMDS), 

dimethyl sulfide (DMS) and trimethylamine (TMA).  

1.3 Atmospheric Aerosols Sources 

Because of the large number of sources, atmospheric aerosols exhibit a wide range 

of chemical compositions, which can include metals, salts, oxygenated organic 

compounds, and mixtures of these. Table 1.1 shows a list of some of the major sources of 

aerosols and their estimated yearly emission concentrations, lifetimes, and mass loading in 

the atmosphere.10 It has also been observed that aerosols that have emissions sources near 

the earth’s surface such as sea spray, biomass, particulate organic matter (POM), dust from 
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wind erosion, etc., usually show greater concentrations in the atmospheric boundary layer 

and decrease with altitude as they approach and go into the troposphere.10 

 

Table 1.1. Estimated yearly emission, lifetime and mass loadings of major Aerosol types 

from Aerosol Models. BC= black carbon; POM = particulate organic matter. Adapted from 

Ref. 10.  

Aerosol Type 
Total source

 

(Tg
1

/yr) 
Lifetime (day) 

Mass loading (Tg
1

) 
 

Median (range) Median (range) Median (range) 

Sulfate
2

 
190 (100-230) 4.1 (2.6-5.4) 2.0 (0.9-2.7) 

BC 11 (8-20) 6.5 (5.3-15) 0.2 (0.05-0.5) 

POM
2

 
100 (50-140) 6.2 (4.3-11) 1.8 (0.5-2.6) 

Dust 1600 (700-4000) 4.0 (1.3-7) 4.0 (1.3-7) 

Sea Salt 6000 (2000-120000) 0.4 (0.03-1.1) 0.4 (0.03-1.1) 

 

In a few cases, when the emissions occur above the boundary layer, aerosols can be 

lofted to higher elevations, which leads to increased atmospheric lifetimes, allowing the 

opportunity for a greater impact in climate. These occurrences include smoke from 

wildfires and volcanic effluent. Two notable examples are the eruption of Mt. St. Helen in 

1980 and its effect on the region’s climate afterwards,20 and the sulfuric acid formed by the 

1991 Pinatubo eruption, which exerted a measurable effect on the atmospheric heat budget 

for several years thereafter.10  

1.3.1 Natural Sources 

There is a wide variety of natural sources for aerosols.  Natural sources include any 

naturally occurring source of particulate matter and of VOC emissions, and, as seen in 

Table 1.1, dust and sea salt are the major contributors of total aerosols concentrations. 

However, other sources, such as sulfates and black carbon are estimated to have more 
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impactful effects of the total change on Earth’s reflectivity. The oxidation of atmospheric 

VOCs from biogenic emissions also referred to as biogenic volatile organic compounds 

(BVOCs), which include isoprene (2-methyl-1,3-butadiene) and monoterpenes, 

significantly contribute to the global SOA budget.21 Those BVOCs have high reactivity 

with atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3), and nitrate radicals 

(NO3), and their large global emission rates makes their contribution towards SOA 

formation essential.22 Among the different types of natural sources of atmospheric aerosols 

are biogenic aerosols, which consist of plant debris, humic matter and microbial particles, 

such as bacteria, fungi, viruses, spores, pollen, etc. This category of natural sources 

includes naturally occurring emissions from forested areas, which release aromatic 

compounds or BVOCs, contributing in this way to the concentration of atmospheric 

aerosols.5 Dust from soil is another important natural source. It is emitted mainly from arid 

regions such as deserts, dry lake beds, and semi-arid desert fringes, as well as regions where 

vegetation has been reduced or soil surfaces have been disrupted by human activities. Dust 

is a major contributor to aerosol leading mass and optical thickness, particularly in tropical 

and sub-tropical regions.5 However, as seen from Table 1.2, aerosols also form from 

various physical processes occurring near and at the marine surface, especially from the 

bursting of air bubbles during whitecap formation, which frees fine particulates of sea salt 

or organic matter.23 

The largest contributions to natural aerosols are estimated to come from marine 

emissions; as shown in Table 1.2, sea salt and mineral dust are the most abundant of the 

natural emissions.23 Volcanic emissions, although they are not constant, can also play a 

significant role in climate change.24 Emissions from volcanic activity include volcanic dust 
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(ashes) and gaseous sulfur compounds such as dimethyl sulfide (DMS) and sulfur dioxide 

are released from volcanic emissions.5 

 

 

 

  

 

 

 

 

 

1.3.2 Anthropogenic Sources 

In 2006 it was estimated that about 10% of global atmospheric aerosol mass was 

generated by human activity.10 More recent studies have shown that the effects of 

atmospheric aerosols are only temporary and somewhat regional, meaning they are 

contained in the immediate vicinity and downwind of the source’s origin.8,10 

Anthropogenic aerosols originate from urban and industrial emissions, domestic fire and 

other combustion products, smoke from agricultural burning, and soil dust created by 

overgrazing, deforestation, draining of inland water bodies, some farming practices, animal 

feeding operations, and generally, land management activities that destabilize the surface, 

Table 1.2. Emissions of atmospheric aerosols and their aerosol 

precursors from natural sources. Reproduced from Ref. 10. 

Natural sources of 

aerosols 
Global Natural Emissions (Tg yr–1) 

Marine primary organic 

aerosols (POA) 
2-20 

Dimethyl sulfide (DMS) 10-40 

Spores 28 

Monoterpenes 30-120 

SOA production BVOCs 20-380 

Isoprene 410-600 

Terrestrial bioaerosols 50-1000 

Mineral dust 1000-4000 

Sea spray 1400-6800 
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facilitating wind erosion of soils.10,25 Some of the major species of anthropogenic aerosols 

include black carbon (BC), sulfate aerosols and  organic carbon (OC).  

1.3.2.1 Black Carbon 

Black carbon is a type of primary aerosol that is directly emitted from incomplete 

combustion processes such as fossil fuel and biomass burnings, which are anthropogenic 

processes. These processes are also related to the emission of reduced sulfur organic 

compounds and SO2. Global emissions of BC during the period from 1950 to 1090s 

estimated about 8.0 TgC yr–1 with contributions of 4.6 Tg yr–1 and 3.3 TgC yr–1 from fossil 

fuels and biomass respectively.10,26 However, further emission controls from after this 

period have proved to help reduce the emissions of BC aerosols. This kind of aerosol 

strongly absorbs direct sunlight radiation, and studies have shown that BC has significantly 

absorbs surface radiation, while absorbing much less direct radiation; showing a local 

surface forcing of -23 W m–2, which is significantly stronger than the -7 W m–2 for the local 

RF at the top of the atmosphere (TOA). Another characteristic of BC emissions is the 

complex chain structures in which it is emitted, those structures are known to break down 

after time with exposure to radiation and other atmospheric processes.5 The interactions 

between black carbon, which are incompletely combusted organic compounds, and sulfate 

aerosols is also a possible source of SOA, as they interact in the atmosphere and undergo 

new particle formation processes.  

1.3.2.2 Sulfate and Reduced Sulfur  

Atmospheric sulfate aerosols are a secondary type of aerosol and are formed by 

aqueous phase reactions of SO4
2- with cloud droplets. They may be considered as consisting 

of sulfuric acid particles that are partly or totally neutralized by ammonia and that are 
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present as liquid droplets. Like BC aerosols, fossil fuel burning is the main source of its 

kind, and it accounts for over 72% of the global emissions.11 The process of formation 

begins by the oxidation of gaseous SO2 into sulfate ions via gas-phase reactions with 

atmospheric species such as OH, NOx, and O3. Other emission sources of SO2 include 

biofuel burning, biomass burning, marine phytoplankton emissions, and volcanic 

emissions. Volatile organosulfur compounds such as DMS and DMDS also contribute to 

the formation of these aerosols through atmospheric oxidation into SO2, through similar 

atmospheric processes as the oxidation of SO2 into sulfate ions. Studies have estimated  a 

reduction of global anthropogenic emissions of sulfur from 73 to about 54 TgS yr-1 from 

1980s to 2000s.27 However, sulfate aerosols are still a concern to public health in some 

areas of the world with high industrial activities. For example, some regions of China 

where SO4
2– is one of the dominant chemical components of particles with diameters of ≥ 

2.5 μm. Cities like Shanghai, Beijing and Hong Kong typically exceed the World Health 

Organization (WHO) annual air quality guideline of 10 μg m–3 for PM2.5.
28–31 The 

emissions from concentrated animal feeding operations (CAFOs) have also become of 

great concern as a source of reduced sulfur compounds (RSCs) and therefore of SOA 

sources in the last decades due to the increase in livestock production and changes in the 

production methods.32 Early estimations from the 1980s estimated an annual emission of 

16100 MT of sulfur compounds including dimethyl sulfide (DMS), carbonyl sulfide 

(COS), hydrogen sulfide (H2S), carbon disulfide (CS2), and dimethyl disulfide (DMDS).33  

Recent studies on the emission of RSCs from swine farms have shown that emissions from 

these operations are in great part H2S, CH3SH, DMDS and DMS. With concentrations 
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ranging from 30–200 ppb for H2S, 2.5–20 ppb for CH3SH, 1.5–12 ppb for DMS and 0.5–

7 ppb for DMDS.34 

Because of the importance of sulfur containing compounds in the generation of 

SOA, it is critical to continue the study of sulfate aerosol formation processes as well as 

the formation of SOA from heterogenous gas mixtures, specifically from reduced sulfur 

compounds which are emitted from CAFOs, such as DMS and DMDS.  

1.3.2.3 Organic Carbon 

Organic aerosols consist of complex mixtures of organic compounds containing C–

C bonds produced from fossil fuel and biofuel burning as well natural biogenic emissions. 

They can be directly emitted as primary organic aerosol (POA) or form secondary organic 

aerosol (SOA) particles from condensation of organic gases considered semi-volatile or 

having low volatility. Hundreds of different atmospheric organic compounds have been 

detected in the atmosphere, which makes definitive modelling of the direct and indirect 

effects extremely challenging. Recent studies suggested that emissions of OC from 

anthropogenic sources range from 5 to 17 TgC yr–1, with fossil fuel contributing only 2.4 

TgC yr–1. In contrasts to BC, the total radiative forcing of organic carbon aerosols from 

fossil fuel burning is estimated to be about –0.10 W m–2. A difference in absorptivity is 

also observed between particles originated from fossil fuel burning and from biomass 

burning, with the OC from open biomass burning absorb more readily.11 The burning of 

fossil and bio-fuels contribute greatly to the total aerosols loading. These activities 

contribute towards OC, BC, and sulfate aerosol formation.  

These contributions are particularly impactful towards the formation of secondary 

organic aerosols and some warming of the atmosphere in regions near these sources due to 
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the absorptivity properties of BC and Organic aerosols.11 As shown in Table 1.3, fossil 

fuels are responsible for most of the sulfur aerosols, producing an estimated 98.9 Tg yr-1, 

which accounts for over half of the total estimated sulfur aerosol loading (Table 1.1), while 

biomass burning produces significantly larger emissions of POM. Another important 

anthropogenic source are the emissions from agricultural and animal waste, which contain 

high concentrations of OC, as well as reduced sulfur and nitrogen containing compounds.35 

DMDS, DMS and TMA are specifically some of these compounds generated from these 

emissions, and studying the mechanisms of atmospheric oxidation and aerosol particles.  

Table 1.3 Anthropogenic emissions of aerosols and precursors for 

2000. BC= black carbon; POM = particulate organic matter; S= 

sulfate. Adapted from Ref. 6. 

Source Speciesa Emissionb 2000 

(Tg/yr) 

Biomass burning BC 

POM 

S 

3.1 

34.7 

4.1 

Biofuel BC 

POM 

S 

1.6 

9.1 

9.6 

Fossil fuel BC 

POM 

S 

3.0 

3.2 

98.9 

 

1.3.3 Mechanisms of Aerosol Removal  

Aerosols are removed from the atmosphere primarily through cloud processing and 

wet deposition in precipitation, a mechanism that establishes average tropospheric aerosol 

atmospheric lifetimes at a week or less as can be observed in Table 1.1. Aerosols are also 

removed by dry deposition processes: gravitational settling tends to eliminate larger 

particles, impaction typically favors intermediate-sized particles. A third mechanism for 
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aerosol deposition consist of aerosol coagulation, where smaller particles can aggregate 

with larger ones, leading to their eventual deposition by wet or dry processes.8,10  

The wet removal rate coefficients generally increase with the solubility and uptake 

by rain droplets and transfer to cloud droplets depend also on aerosol size. The solubility 

of aerosol types increases as follow: 

Dust < BC < POM < Sulfate < Sea Salt 

Dry deposition pathways increase with the particle sizes for particles larger than a 

few tens of microns, but sedimentation becomes increasingly faster than other dry 

deposition processes for larger particles of diameters larger than 5 microns.8 

1.4 Climate Models and Aerosol Estimation Methods 

The possible effects of aerosols have been recognized and studied for over four 

decades, however, due to their complex interactions with changes in their environment, 

including different compositions, years of preliminary studies and efforts to understand the 

aerosols properties and effects had to be made.4,36 Today, POA and SOA still cannot be 

directly measured by chemical analysis methods, but they can be estimated by indirect 

approaches and by the advances in the techniques of measurements. The improvements in 

POA/SOA understanding of their origin, properties and concentrations have allowed global 

climate models to successfully incorporate effects of atmospheric aerosols into their 

parameters. Common methods include the EC tracer method, chemical mass balance 

(CMB) model, and chemical transportation model (CTM).10,37,38  The EC tracer method is 

the simplest one which is often used. In this method, the ratio of OC/EC for POA is 

assumed to be a relatively stable representative value. The ambient ratio of OC/EC 
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exceeding the representative value is attributed to SOA. However, the ratio of OC/EC 

varies among the emission sources. Consequently, it was temporally and spatially unique 

and influenced by the meteorological and temporal fluctuation, which would lead to the 

large uncertainty for SOA estimation.37 The CMB model requires the primary source 

profile as input for apportioning, so the unresolved OM is considered to be SOA. In this 

approach, the accuracy and integrity of sources profile influences the SOA estimation.37 A 

more complete approach to the simulation of SOA is done with CTM, this model requires 

the detailed emission inventories of VOCs and formation mechanism of SOA. This method 

is limited by the current unclear knowledge of SOA formation and the uncertainty of the 

emission inventories.37 In this area is where the studying of SOA formation processes using 

kinetic modeling and atmospheric chamber experiments can greatly contribute towards 

developing more accurate climate models that will reproduce and predict the impacts of 

atmospheric SOA on the earth’s climate and atmosphere. 

1.5 Secondary Organic Aerosols  

Secondary organic aerosols are a special type of atmospheric aerosol that is formed 

from the atmospheric oxidation of volatile organic compounds.39 The oxidation of these 

compounds leads to secondary organic aerosol (SOA) formation through low-volatility 

products that partition into the aerosol phase. Known SOA precursors include volatile 

organic sulfur and nitrogen containing compounds as well as volatile organic compounds 

such as terpenes, monoterpenes, etc.40 A schematic representation for the formation of SOA 

is presented on Figure 1.2, where the  volatile organic compounds are oxidized photolyzed 

by sunlight radiation (hν) and oxidized by atmospheric oxidizers (OH, NOx, O3) which lead 

to formation of other high volatility and semi-volatile products. Those semi-volatile 
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products, then either interact between them and undergo nucleation, or are partitioned 

further and form nuclei when they come in contact with cloud droplets. For example, the 

generation of organosulfates in laboratory generated SOA produced from the oxidation of 

BVOC’s in the presence of an acidic sulfate seed aerosol, promote the formation of larger 

aerosol particles, which are more likely to undergo deposition processes.29  

 

1.5.1 Organosulfate Precursors  

Organosulfur compounds that are emitted from different anthropogenic and natural 

sources such as DMS and DMDS are oxidized in the atmosphere and produce SO2 along 

with other compounds such as dimethyl sulfoxide (DMSO) and methanesulfonic acid 

(MSA).  DMDS and DMS are the focus of this work, as they are known lead to the 

formation of SO2, which is further oxidized into sulfate ions through interactions with 

Figure 1.2 Route of formation of secondary organic aerosols. Products of 

sufficiently low volatility or “semi-volatile”, are oxidized in the atmosphere, then 

some of the oxidized products stay in the gas-phase (high volatility products) 

while others may condense on pre-existing particles or nucleate homogeneously to 

form new particles. Reproduced from Ref. 17.  
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cloud droplets in the aqueous phase, which produces a phase change from gas to aqueous. 

The sulfate ions then interact with these droplets and other charged or polar compounds 

that might already be at or near the surface of the droplet. These interactions are still not 

well understood and are cause of some uncertainty and inaccuracy that current aerosol 

models face today. Chart 1.1 shows chemical structures of relevant organosulfur 

compounds.  

 

1.5.2 Nitrogen Precursors  

Until recently, sulfate was the only species known to contribute to particle growth. 

However, parallel measurements of nanoparticle growth rates and H2SO4 show that sulfate 

typically accounts for only 5% to 50% of the observed growth.41 This suggests that other 

species are contributing to post-nucleation growth. An extensive laboratory study of 

aliphatic amines focused on the roles of both salt formation and oxidation chemistry in gas-

particle partitioning confirmed that gas-phase oxidation of the amine alkyl groups can lead 

to low-volatility oxidation products that can physically partition into particles.42 Recent 

Chart 1.1. Chemical structures of relevant atmospheric organosulfur compounds. 
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field measurements of sites downwind of bovine sources in Riverside, and in the Central 

Valley region of California have shown that aminium salt formation occurs in aged organic 

carbon particles. 43,44 A variety of amines are emitted into the atmosphere from natural as 

well as anthropogenic sources. These compounds are emitted from oceans, biomass 

burning, vegetation, geologic activities and many current large scale industrial processes, 

which likely have fugitive emissions. Some examples of the use of amines in industry 

include their large use in the pharmaceutical industry. They are also widely used for crop 

protection, medication, and water purification. Amines are also used in a diverse array of 

end-use applications such as personal care products, cleaning products, gas treatment, 

petroleum and food processing.10,37 Amine compounds are also used extensively in the 

foundry industry whereby their first use dates to the 1960s with the introduction of the 

phenolic urethane cold box process (PUCB). Trimethylamine (TMA),  dimethylethylamine 

(DMEA) and dimethylisopropylamine (DMIPA) are commonly used in these processes.45 

The large use of amines results in direct and indirect emissions to the atmosphere and water 

supplies, making them have an important impact on aerosol formation. According to recent 

studies, approximately 150 amines have been identified in the atmosphere, and aliphatic 

amines of low molecular weight, containing within 1 to 6 carbons, have been found to me 

the most abundantly present. The emissions of aliphatic amines and NH3 produced from 

animal waste, mainly from livestock and CAFOs also constitute a relevant source of 

nitrogen precursors that contribute to the formation of atmospheric aerosols.35 Studies of 

emissions from animal husbandry showed that a global estimate of 0.15 ± 0.06 Tg y-1 of 

N-methylamine compounds such as methylamine (MA), dimethylamine (DMA) and TMA, 

were emitted strictly from agricultural sources, with TMA accounting for ~75% of these 
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emissions.26 These emissions of amines and NH3 undergo heterogenous uptake which 

allows for NPF processes or are atmospherically oxidized through photooxidative 

pathways or by reactions with OH radicals, and other oxidizers such as O3 or NOx 

species.45,47–49 TMA and its gas-phase oxidation is one of the emphasis of this thesis. 

1.5.3 Sulfur and Nitrogen Mixtures 

Interactions between sulfur containing compounds and aliphatic ammines produced 

from animal waste and AFOs is a not a well understood area of aerosol formation. From 

previous studies of these interactions, it is suggested that heterogenous uptake  of aliphatic 

amines by other particles is a likely pathway that enhances the formation of SOA.45,48–50 

However, because of the presence of many other species in the atmosphere and in these 

cloud droplets, the direct study of secondary organic aerosols from heterogenous mixtures 

of atmospheric emissions is particularly challenging. As a result, the use of atmospheric 

chamber experiments and kinetic modeling of gas-phase atmospheric oxidation of sulfur 

and nitrogen compounds such as DMDS, DMS and TMA has become an avenue by which 

the study of these heterogenous SOA formation processes can be done in a molecular level.  

An example of this is the use of chamber experiments to observe how the formation of 

aerosol particles is enhanced when MSA, an amine, and water are present in a heterogenous 

mixture.47,51 These chamber studies found that the concentrations of particles formed from 

the mixing of MSA+TMA+H2O increased by two orders of magnitude, from around 1.0 

×104 for mixtures of only MSA+H2O and MSA+TMA to around 1.25×106 for mixtures of 

MSA+TMA+H2O. Studies with NH3, trimethylamine (TMA), dimethylamine (DMA), 

diethylamine (DEA), methylamine (MA), as well as other relevant amines have been done 

in this area as well.27,45,48–51  
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1.6 Study of Secondary Organic Aerosols  

The complexity of the atmosphere, including wind directionality, humidity, and 

temperature changes, and the non-uniform distribution of aerosol concentrations make the 

direct studying of SOA formation processes especially challenging.10,38,52 Thus, field 

observations are used to learn what is relevant on particle growth and laboratory 

experiments to better understand those processes. For this reason, using experimental 

instruments to closely resemble atmospheric conditions while allowing control and 

uniformity is essential to accurately study those processes. One experimental instrument 

that allows to study the formation of aerosol particles offering control over temperature, 

humidity, and other fluctuating atmospheric conditions is an atmospheric chamber facility.  

1.6.1 Atmospheric Chamber Studies 

Atmospheric chamber experiments provide the opportunity to study aerosol 

formation and growth under controlled experimental conditions. These experiments 

combine the challenges of both gas-phase chemistry and aerosol formation.6 One of the 

principal goals of chamber-based atmospheric aerosol research is to understand the 

fundamental mechanisms by which gas-phase atmospheric chemistry leads to aerosol 

formation. Measurements required in such experiments include gas-phase species 

concentrations and aerosol size distribution and composition. Other aerosol microphysical 

properties measurements, such as hygroscopic water uptake, are also useful.24 Atmospheric 

chamber experiments have shown to be useful in the study of SOA formation from relevant 

organic compounds. However, recent studies involving the formation of SOA from several 

low-volatility amine compounds has shown that these compounds adsorb onto the walls of 

the chamber facility. This leads to interferences with the experiment’s results.53,54 
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However, these experiments allow studies to be performed at controlled temperatures, 

controlled relative humidities, and with a uniform and unvarying photolysis source. This 

photolysis rate consists of black-light lamps that provide light in wavelengths similar to 

sunlight.52,55  As shown in Figure 1.3, the chamber allows the collection of real-time 

samples from inside the Teflon®  walls through an outlet located on one of the walls to be 

analyzed by the instruments. The chamber also allows the injection of gases of interest, 

such as DMDS, DMS, and TMA, into the chamber through an inlet. Because the chamber 

is in a room with temperature controls, the temperature around and inside the chamber is 

kept relatively unchanged throughout the process of the experiments. This eliminates the 

varying temperatures, as well as the fluctuations of winds and humidity, which are 

challenges conveyed by direct studying of aerosols in the atmosphere. However, 

atmospheric chamber experiments only help eliminate some of the challenges that come 

with studying the mechanisms for aerosol formation. Even with chamber experiments it is 

still not possible to study specific reactions that might possibly be part of this mechanism 

in isolation. They can only provide with insight on what is produced and what it is produced 

from, and under what conditions. In other words, atmospheric chamber experiments can 

only tell what amounts and contents of aerosol particles are produced from a given initial 

gas-phase compound(s). They cannot tell much about the how these particles are formed, 

or the steps it takes to create them. An accurate predictive capability based on molecular-

level understanding is critical for projecting the impacts of particles and developing 

optimal control strategies for future environmental regulations.47 For this reason, it is key 

to understand how gas phase precursors leads to the formation and growth of new particles. 

Current models for one of the most studied systems, the conversion of gas-phase SO2 to 
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sulfuric acid and sulfate particles, still typically underestimates particle formation by an 

order of magnitude or more.  

 

 

Thus, kinetic modeling of the mechanisms of atmospheric photooxidation of the 

gas-phase compounds being studied in the chamber experiments is used to develop reliable 

and accurate chemical models. These models will help have precise estimations and 

quantification of the impacts that aerosols can have in the atmosphere. They will help 

decipher the mechanisms by which different gas-phase volatile organic compounds interact 

to produce the wide range of aerosol particles observed in the atmosphere.56 In this work, 

kinetic models for the atmospheric photooxidation mechanisms of DMDS, DMS and TMA 

Figure 1.3. Diagram representation of an indoor atmospheric chamber facility. 

Used to study aerosol formation and gas-to-particle kinetics. Gas analytes and 

oxidizers go into inlet and gas/particle mixture is collected for analysis through 

the outlet into the instruments.  UV lights for photolysis, aerosol and gas-phase 

instrumentation, temperature and humidity control. Adapted from Ref. 52. 
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were developed and benchmarked against experimental data obtained from atmospheric 

chamber experiments of those compounds.  
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2 Instrumentation and Methods 

Chamber experiments done by collaborators at UC Riverside to study the 

atmospheric photooxidation of sulfur and nitrogen containing compounds provided 

experimental data to guide the development and optimization of the kinetic models of the 

gas-phase atmospheric oxidation of DMDS, DMS and TMA presented here.  

2.1 Atmospheric Chamber Facility 

 The atmospheric chamber facility in which the experiments were performed has a 

total volume of 37.5 m-3 and it is housed in an enclosed room with the following 

dimensions: 297.5in x 141.5in x 98.25in (LxWxH). The chamber is filled only with filtered 

air, which can be dry or with a certain level of relative humidity, but all the experiments 

presented use only dry air. 192 UV lamps induce photooxidation. Teflon® walls are used 

because it does not have significant absorbance in the wavelength range used to promote 

the photolytic reactions. This allows the light within the wavelength range needed for 

photooxidation of the organic compounds of interest through. Teflon® also has low 

absorptivity towards organic compounds used in these experiments, which helps minimize 

the loss of gas molecules due to condensation against the walls of the chamber. The 

instruments used to analyze the samples from the chamber include NOx analyzer, CO 

analyzer, O3 analyzer, selected ion flow tube mass spectroscopy (SIFT-MS), proton 

transfer reaction mass spectroscopy (PTR-MS), high resolution time of flight aerosol mass 

spectroscopy (HR-ToF-MS), scanning mobility particle analyzer (SMPS), hygroscopicity 

tandem differential mobility analyzer (TDMA), volatility TDMA, aerosol particle mass 

analyzer-SMPS, and an injection oven. Data from the SIFT-MS and gas-chromatography 
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instruments was used to develop and benchmark the kinetic models of DMDS, DMS and 

TMA.  

2.1.1 Collection of Experimental Data   

Due to the different rates at which the compounds being studied in the chamber 

experiments are photooxidized, the duration of the experiments differed from one to 

another. For the chamber experiment of DMDS for example, the data used to benchmark 

the model had 140 minutes of collected data with data points collected every 10 minutes 

with a Medor GC. This instrument uses a redox reaction with chromate as the oxidant, so 

it will not detect sulfur compounds in the 6+ oxidation state. The DMS experimental data 

was collected with the SIFT-MS and had 440 minutes. The SIFT-MS is a chemical 

ionization mass spectrometer that uses water as the reacting gas, so it detects compounds 

that will react with H3O
+ to take a proton. The data for this experiment was collected in 

intervals of 10 minutes, with only 1 second in between each interval, and in each 10-minute 

interval data points collected every second within the 10 minutes.  Lastly, the TMA 

experimental data counted with 453 minutes, and data points collected every 3 minutes 

from the SIFT-MS. The difference in duration and intervals between data points collected 

was selected depending on the photooxidation rates of the parent compounds, which vary 

due to their chemical properties and the sensitivity towards the black light emitted by the 

chamber’s light sources. The experimental data collected using the SIFT-MS instrument 

expresses the number of ion counts for a given m/z peak of interest. Thus, to obtain 

quantitative data, a calibration through a SIM scan is necessary, this calibration was done 

for the DMS experimental data. However, for the experimental data used for the TMA 

kinetic modeling the SIFT-MS data is not calibrated, thus this data only shows quantitative 
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trends of an increase or decrease in the number of counts of any given m/z peak. In this 

data, if an increase or decrease of the number of counts by 20% is observed, it does 

correlate to an increase or decrease in concentration of the corresponding compound by 

20%. However, this correlation applies to individual peaks, thus, a 20% decrease of one 

compound’s peak is not necessarily a 20% decrease compared to another compound’s 

concentration.  

2.2 Kinetic Modeling  

Kinetic modeling is a tool that allows to mathematically simulate the 

experimentally observed process of aerosol formation. This method allows to study the 

mechanisms in a more confined way by minimizing the uncertainties about the kinetics 

behind these processes due to the inability to isolate individual steps of the mechanisms 

during the experimental procedures. This method utilizes available information from 

experiments, such as mass to charge ratios and concentrations from mass spectroscopy 

analysis of gas-phase and aerosol species inside the chamber walls during the duration of 

the experiment. To produce a model that allows this data to be reproduced and give insights 

into the plausible mechanism that aerosol formation follows.56 In this work, the kinetic 

models of atmospheric photooxidation of DMDS, DMS and TMA were benchmarked 

using the least squares method to compare the models’ concentrations of the compounds 

of interest with data obtained from chamber experiments.  

2.2.1 General Description and Previous Studies 

The work previously done by Yin et al.57 on developing mechanism for the 

atmospheric gas-phase oxidation of DMDS and DMS was used as the initial stage for 

developing the kinetic models of those two compounds. A scheme of the mechanistic 
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model for atmospheric oxidation of DMDS proposed by Yin et al. is shown in Scheme 2.1, 

where the most relevant products expected to be produced and the parent compound are 

shown in a box. 

  

The models gave satisfactory results for the gas-phase products of these processes, 

among which are SO2, HCHO, H2SO4 and CH3SO3H. As can be observed from Scheme 

2.1 the most relevant reactants considered by the model are the photooxidation of the parent 

compound, the addition of OH radical onto the parent compound, and then reactions and 

oxidation due to atmospheric species such as HO2, O2, and NOx species.  

Those same atmospheric oxidizers were considered to develop the kinetic model of 

DMDS and DMS here presented. Scheme 2.1 illustrates the two main pathways by which 

DMDS gets oxidized in atmosphere, which are photooxidation and OH-addition. Those 

two possible initial pathways might vary in relevance depending on the conditions of the 

atmosphere at a given time. From Scheme 2.1 it can be observed how with variations on  

Scheme 2.1 DMDS Atmospheric Photooxidation Mechanism proposed by Yin 

et al. used to develop the kinetic model of DMDS being benchmarked in this 

work. Adapted from Ref. 57 
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the amounts of sunlight and OH radicals available in the atmosphere nearby any given 

DMDS source origin can dictate what would be more likely the preferred pathway by 

which DMDS gas molecules can be oxidized in the atmosphere. The same can be said for 

the atmospheric oxidation of DMS, as Scheme 2.2 also shows two possible pathways that 

the atmospheric oxidation of DMS can follow, depending on the concentrations of OH and 

NOx species that are available near a DMS source. Although both mechanisms (DMDS 

and DMS) show most of the same compounds produced, Scheme 2.2, which represents the 

model for DMS, includes the formation of DMSO as one of the main products for this 

mechanism. Another difference between these two mechanisms is that one of the initial 

pathways by which the parent compound DMDS is oxidized is by direct photooxidation 

due to light (hʋ), while neither one of the two initial oxidative pathways suggested for DMS 

in Scheme 2.2 are dependent on the presence of oxidizer species OH and NOx. This 

Scheme 2.2 DMS atmospheric photooxidation mechanism used to develop the DMS 

kinetic model being benchmarked in this work. Adapted from Ref. 57 
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suggests that for DMS, the photooxidative pathway is not dominant in atmospheric 

conditions, rather the OH-addition pathway is favored. Another commonality between the 

models for DMDS and DMS includes the formation and dissociation of CH3SNO, which 

was considered to be a plausible trap towards the further oxidation of the gas-phase sulfur 

that could prevent or hindrance the formation of SO2. This trap is potentially important for 

experiments in which amines are oxidized as that would provide higher concentrations of 

NOx. The kinetic model for the atmospheric oxidation of TMA was guided by previous 

studies of different amines. The starting baseline for the development of a model for this 

compound can be seen in Scheme 2.3. The model, proposed by Nielsen et al.49, propositions 

(CH3)2NCHO, CH3NCH2, (CH3)2NNO2, HCHO, and (CH3)2NNO as the major products 

for the atmospheric oxidation of TMA. This mechanism, like the one for DMS, only 

considers the oxidation of the parent compound through interactions with radical species 

present in the atmosphere, specifically OH radicals.  These three initial models were used 

to build the kinetic models presented in this work. Additional reactions and optimizations 

Scheme 2.3. TMA atmospheric photooxidation mechanism. Scheme of reaction 

mechanism used to develop the TMA kinetic model benchmarked being benchmarked in 

this work. Adapted from Ref. 49   
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of some of the proposed rate constants were performed to obtain better agreement to the 

experimental data produced by collaborator 

2.2.2 Inclusion of Varying Concentrations of Oxidizers 

One of the first additions made to the kinetic models was to introduce a variable 

term for the initial concentrations of the oxidizer species. Then reactions that those oxidizer 

sources follow in the atmosphere to produce compounds were included. This was 

implemented because the atmospheric chamber experiments utilized H2O2 and N2O5 as the 

initial sources for OH and NOx species to promote oxidation of the parent compounds. 

Inclusion of these reactions in the mechanism allows to more accurately monitor the 

formation of those compounds and their consumption as they partake in the oxidation of 

gas-phase molecules and the formation of aerosol particles.  Table 2.1 shows the reactions 

that were included in the mechanisms for this purpose, along with the rate constants used 

for each reaction.  

 

 

 

 

 

2.2.3 Inclusion of Photolysis and Wall Loss Rates  

Because the facility in which chamber experiments are performed can affect the 

observed results by providing the contents inside the chamber’s walls with different light 

flux or wavelengths. A term for the specific photolysis rate that is specific to the conditions 

Table 2.1 N2O5 and H2O2 Dissociation Reactions and Respective 

Rate Constants Included in Kinetic Models. 

𝑵𝟐𝑶𝟓  → 𝑵𝑶𝟐 +𝑵𝑶𝟑 𝑘 = 5.2𝑥10−2 

𝑵𝑶𝟐 +𝑵𝑶𝟑→𝑵𝟐𝑶𝟓 𝑘 = 1.2𝑥10−12 

𝑵𝑶𝟑  
𝑴
→𝑵𝑶 +𝑶𝟐 𝑘 = 3.0𝑥10−3 

𝑵𝑶𝟑  
𝑴
→ 𝟎. 𝟑𝑵𝑶 + 𝟎. 𝟕𝑵𝑶𝟐 + 𝟎. 𝟕𝑶(

𝟑𝑷) 𝑘 = 1.55𝑥101 𝑘𝑁𝑂2 

𝑯𝟐𝑶𝟐
𝒉𝒗
→  𝟐𝑶𝑯 𝑘 = 7.1𝑥10−4𝑘𝑁𝑂2 
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of the chamber facility where the experiments were performed was included in the kinetic 

models. This is advantageous because it allows the model to simulate experimental data 

under different photolytic conditions, and it because several of the reactions included in 

the mechanisms are dependent on the photolysis rates, it allows to more accurately 

represent the oxidation process. The chamber’s NO2 photolysis rate as reported by Cocker 

et al.52 of 0.025 s-1 was used for the kinetic models.  Another way that atmospheric 

chambers might influence the results of an experiment is due to the adsorption of gas-phase 

molecules onto the surface of the Teflon®  walls of the chamber.57 However, no evidence 

of any amine or reduced sulfur gas phase losses to the Teflon®  wall surface has been seen 

on the collection of the experimental data. This occurrence leads to the addition of gas-to-

wall reaction rates with values of 0 s-2 for the parent compounds DMDS and DMS, as well 

as the product of SO2.  

2.2.4 Kinetic Modeling Configurations  

The code for the kinetic models was developed using Mathematica 11 software 

from Wolfram.58 This platform offers a practical interface that utilizes the Wolfram 

Language’s wide variety of tools. The Wolfram language provides special functions and 

algorithms to find numerical or symbolic solutions for different kinds of differential 

equations, such as those describing the change in concentration over time of the compounds 

included in the kinetic models. This feature allows interpretation of functions to represent 

solutions in forms that can be immediately manipulated or visualized. An example of a 

differential equation 1, 𝒅[𝑵𝟐𝑶𝟓] = −𝒌𝑵𝟏[𝑵𝟐𝑶𝟓 ] + 𝒌𝑵𝟐[𝑵𝑶𝟑][𝑵𝑶𝟑]𝒅𝒕 shows one of the 

equations utilized in the models to evaluate the change in concentration of N2O5 as it breaks 

down into other NOx species. From this equation, it can be observed that the [N2O5] 
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concentration term depends on the reaction rates kN1 and kN2, and by the [NO3] 

concentration term over the independent variable time (t). As the example from Eq.1 

shows, the concentrations of N2O5 and NO3 are dependent on each other, but it is possible 

to write a system of equations which would describe the change in concentration over time 

of both compounds to evaluate them. For this, a second equation describing the change of 

[NO3] over dt would be necessary, and like this example, the same principle was used to 

develop the kinetic models presented in this work. The models are composed of a system 

of differential equations which ties together the interconnections of the changing 

concentrations of each of the compounds involved in the model.  

2.2.4.1 System of Differential Equations Solver  

The systems of differential equations representing each of the kinetic models 

represented here were evaluated using the NDSolve function from the Wolfram 

Mathematica Software.58 NDSolve is a built-in function of the software that allows to solve 

for many types of differential equations, such as ordinary or partial differential equations.  

The method used by NDSolve depends on the type of the equation(s) being solved. The 

available methods NDSolve can use include the explicit and implicit Euler and explicit and 

implicit Midpoint methods. NDsolve gives the results for the equations in term of 

‘Interpolating function’ objects, which represent a function whose values are found by 

interpolation, and these functions represent the solutions to each equation of the system.  

Although there are many possible configurations available to use with the NDSolve 

function, in this work, the format used for this work had the form NDSolve[{eqn1, 

eqn2,…}, {y1, y2, …}, {x, xmin , xmax }] which finds numerical solutions for each ‘eqn’, 

while each eqn represent a y term with the independent variable x in the range  xmin to  xmax. 
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In this set-up, each of the y’s represent a dependent variable, which in this case would be 

the concentration of each the chemical compounds involved in the model, where x 

represents the independent variable time, in the range from the starting experimental time, 

xmin, (taken to be 0 min) and the end experimental time xmax.  With this setup the NDSolve 

function gives solutions for the derivatives of y with respect to x, or y[x] rather than for the 

function itself. This allows evaluation and monitoring of the changes in concentration over 

time based on the model’s system of equations, allowing one to optimize the parameters of 

the mechanisms.  

2.2.4.2 Step Size and Number of Steps  

The Mathematica software allows varying the configurations of the NDSolve 

function, and among these configurations are the maximum number of steps that the 

evaluation of the kinetic model’s system of differential equations is to take to reach a 

solution. This was configured for the evaluation of the kinetic models presented in this 

work using the command “MaxSteps”. This command of “MaxSteps” allows the option of 

having an unlimited number of steps to complete an evaluation by using the command 

‘MaxSteps → infinity’, which ensures the calculation for a solution is not terminated before 

reaching a solution.58 This configuration was used in every evaluation of the kinetic models 

to ensure the best solutions to the equations were found without truncating the evaluations 

of the model. The size of the steps, or the size of the time lapse, “dt”, of each step was kept 

constant throughout all the evaluations at 1. Thus, the step size of the evaluations was kept 

at a maximum of 1 minute.   
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2.2.4.3 Parameter Optimization  

After the script and system of ordinary differential equations of the kinetic model 

was in place and the initial values for the concentrations of the compounds in the model 

agree with experimental initial concentrations, the values of several rate constants needed 

to be optimized to ensure the best fit possible to the experimental data available. The 

optimization of parameters like rate constants and initial concentrations was done utilizing 

Mathematica’s built-in symbol “For” in combination with the least squares method.58 The 

“For” symbol has the form “For[start, test, incr, body]” and it evaluates its arguments in 

a non-standard way by repeatedly evaluating the “body”, which is the argument of interest 

for the optimization of a given term, from the starting condition “start”, and increasing that 

initial condition in increments by “incr” until “test” fails to be true. In this work the “For” 

function was used to systematically evaluate multiple sets of values for the rate coefficients 

that needed to be optimized in each of the kinetic models.  

Then, to evaluate the accuracy with which a given set of values represented the 

experimental data against which the kinetic model was being benchmarked, the least 

squares method was used to compare the modeled and experimental data. The least squares 

method is described by the equation 𝑺 = ∑ (𝒓𝒊)
𝟐𝒏

𝒊=𝟏 , where the sum of all the individual 𝑟𝑖 

is squared to give the total least squares value, “S”. From the least squares equation, each 

individual 𝑟𝑖 term represents a compound that is being compared to experimental data, and 

the 𝑟𝑖 term is defined as 𝒓𝒊 = 𝒚𝒊 − 𝒇(𝒙𝒊, 𝜷). Where 𝑦𝑖 is the experimental data points at 

their specific times and the 𝑓(𝑥𝑖, 𝛽) represents the modeled data points according to the 

function describing the model at the same specific times as those of the experimental data. 

Thus, the total least squares residual would be from all the compounds of which 
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experimental data is available to benchmark. Then, the lower the “S” value, the closer fit 

to the experimental data the model reaches. 
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3 Kinetic Models and Benchmarking  

The DMDS, DMS and TMA kinetic models were benchmarked against the 

compounds with experimental data available to ensure the models could replicate the 

results from atmospheric chamber experiments. This process was done by individually 

comparing the concentrations of the experimental and the modeled data at the specific 

times at which the experimental data were collected for each of the compounds that 

experimental data was available, which includes DMDS and SO2 for the DMDS model. 

Only experimental data for the gas-phase photooxidation of DMS was benchmarked for 

the DMS model, while for the TMA model the compounds with experimental data 

available were trimethylamine, N-dimethylformamide, N-methylmethanimine, 

formaldehyde, and nitromethane. The experimental and modeled data were compared to 

one another using least squares method to evaluate which values of the incorporated rate 

constants would better satisfy the observed experimental data. Among those values are gas-

to-aerosol rates for DMDS and DMS models and the rate constants of 6 of the reactions 

included in TMA model. 

3.1 DMDS Kinetic Model  

The kinetic model for the atmospheric oxidation of DMDS developed for this work counts 

with 46 reactions. Table 3.1 shows the reactions that were included in this model and the 

rate constants correspondent to each reaction of the mechanism including those accounting 

for gas-to-wall effects for SO2 and DMDS in Reactions 27 and 28 and the dissociation 

reaction of H2O2 into OH radicals in Reaction 23. The reactions for the dissociation of N2O5 

and formation of NOx species were also included in the model but are not counted as part 

of the DMDS atmospheric oxidation mechanism, and thus they are not explicitly included 
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in Table 3.1 or any of the tables including the reactions of each of the kinetic models 

(Tables 3.1 – 3.3). The reactions included in this model are for the gas-phase mechanism 

of atmospheric oxidation of DMDS, and with exception of the reactions that account for 

the wall effects of the chamber, they do not explicitly account for the formation of aerosol 

particles under atmospheric conditions such as the ones under which the chamber 

experiments were performed. The mechanism represented by these reactions show two 

pathways of parent compound oxidation. The first is in reaction 1, which shows the OH-

addition pathway. The second is in Reaction 21 which shows the photooxidative splitting 

of the disulfide bond (S-S) of DMDS. The photooxidative splitting of the S-S bond results 

into two equal radical molecules of CH3S, which can undergo a reverse reaction to form 

again the parent compound, as shown in Reaction 22, however this reverse reaction occurs 

at a much slower rate at the partial pressures in the chamber. 

Table 3.1 Reactions in DMDS Model and respective rate constants. Adapted 

from Ref 29. 57
 

Reaction Rate Constant, 𝑘a 
1. 𝐶𝐻3𝑆𝑆𝐶𝐻3 + 𝑂𝐻 → 𝐶𝐻3𝑆𝑂𝐻 + 𝐶𝐻3𝑆 𝑘 = 2.41𝑥10−10 

2. 𝐶𝐻3𝑆𝑂𝐻 + 𝑂𝐻 → 𝐶𝐻3𝑆𝑂 + 𝐻2𝑂 𝑘 = 1.1𝑥10−10 

3. 𝐶𝐻3𝑆 + 𝑂2 → 𝐶𝐻3𝑆𝑂𝑂 𝑘 = 5.8𝑥10−17 

4. 𝐶𝐻3𝑆 + 𝑂2 → 𝐶𝐻3 + 𝑆𝑂2 𝑘 = 5.94𝑥10−17 

5. 𝐶𝐻3𝑆 + 𝑂3 → 𝐶𝐻3𝑆𝑂 + 𝑂2 𝑘 = 6.0𝑥10−12 

6. 𝐶𝐻3𝑆 + 𝐶𝐻3𝑆𝑂𝑂 → 2 𝐶𝐻3𝑆𝑂 𝑘 = 8.0𝑥10−11 

7. 𝐶𝐻3𝑆𝑂 → 𝐶𝐻3 + 𝑆𝑂 𝑘 = 5.0𝑥10−5 

8. 𝐶𝐻3𝑆𝑂 + 𝑂2 → 𝐶𝐻3𝑆𝑂𝑂𝑂 𝑘 = 7.7𝑥10−18 

9. 𝑆𝑂 + 𝑂𝐻
𝑂2
→  𝑆𝑂2 +𝐻𝑂2 𝑘 = 1.1𝑥10−10 

10. 𝑆𝑂 + 𝑂3 → 𝑆𝑂2 + 𝑂2 𝑘 = 8.9𝑥10−14 

11. 𝑆𝑂 + 𝑂2 → 𝑆𝑂2 + 𝑂
. 𝑘 = 6.7𝑥10−17 

12. 𝐶𝐻3𝑆𝑂 + 𝑂3 → 𝐶𝐻3𝑆𝑂𝑂 + 𝑂2 𝑘 = 2.0𝑥10−12 

13. 𝐶𝐻3𝑆𝑂𝐻 + 𝐶𝐻3𝑆𝑂3 →  𝐶𝐻3𝑆𝑂3𝐻 + 𝐶𝐻3𝑆𝑂 𝑘 = 3.4𝑥10−12 

14. 𝐶𝐻3𝑆𝑂𝑂𝑂 + 𝐶𝐻3𝑆 →  𝐶𝐻3𝑆𝑂𝑂 + 𝐶𝐻3𝑆𝑂 𝑘 = 7.0𝑥10−11 

15. 𝐶𝐻3𝑆𝑂𝑂 → 𝐶𝐻3 + 𝑆𝑂2 𝑘 = 1.1𝑥101 
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Table 3.1 Continued - Reactions in DMDS model and respective rate 

constants   

Reaction Rate Constant, 𝑘a 

16. 𝐶𝐻3𝑆𝑂3 +𝐻
+→ 𝐶𝐻3𝑆𝑂3𝐻 𝑘 = 1.1𝑥10−4 

17. 𝐶𝐻3𝑆𝑂𝑂 + 𝑂3 → 𝐶𝐻3𝑆𝑂3 + 𝑂2 𝑘 = 5.0𝑥10−15 

18. 𝐶𝐻3𝑆𝑂𝑂 + 𝑂2 → 𝐶𝐻3𝑆𝑂4 𝑘 = 2.6𝑥10−18 

19. 𝐶𝐻3𝑆𝑂𝑂 → 𝑂2 + 𝐶𝐻3𝑆 𝑘 = 6.0𝑥102 

20. 𝐶𝐻3𝑆𝑂𝑂 + 𝑂𝐻 → 𝐶𝐻3𝑆𝑂3𝐻 𝑘 = 5.0𝑥10−11 

21. 𝐶𝐻3𝑆𝑆𝐶𝐻3
ℎ𝑣
→  𝐶𝐻3𝑆 + 𝐶𝐻3𝑆 𝑘 = 5.0𝑥10−3𝑘𝑁𝑂2 

22. 𝐶𝐻3𝑆 + 𝐶𝐻3𝑆 → 𝐶𝐻3𝑆𝑆𝐶𝐻3 𝑘 = 4.15𝑥10−11 

23. 𝐻2𝑂2
ℎ𝑣
→  2 𝑂𝐻 𝑘 = 7.1𝑥10−4𝑘𝑁𝑂2 

24. 𝑆𝑂2 + 𝑂𝐻
𝑀
→  𝐻𝑂𝑆𝑂2 𝑘 = 1.1𝑥10−12 

25. 𝐻𝑂𝑆𝑂2 + 𝑂2 →  𝐻𝑂2 + 𝑆𝑂3 𝑘 = 4.0𝑥10−13 

26. 𝐻𝑂𝑆𝑂2 + 𝑂𝐻 → 𝐻2𝑆𝑂4 𝑘 = 1.0𝑥10−11 

27. 𝐶𝐻3𝑆𝑆𝐶𝐻3 →  𝑊𝑎𝑙𝑙 𝑘 = 0.0 

28. 𝑆𝑂2 →  𝑊𝑎𝑙𝑙 𝑘 = 0.0 

31. 𝐶𝐻3𝑆𝑂𝑂𝑂 + 𝐶𝐻3𝑆𝑂 → 𝐶𝐻3𝑆𝑂2 + 𝐶𝐻3𝑆𝑂2  𝑘 = 8.1𝑥10−12 

32. 𝐶𝐻3𝑆𝑂3 +𝐻2𝑂2 → 𝐶𝐻3𝑆𝑂3𝐻 + 𝐻𝑂2  𝑘 = 3.0𝑥10−16 

33. 𝐶𝐻3𝑆𝑂𝑂𝑂 + 𝐶𝐻3𝑆𝑂𝑂𝑂 → 2 𝐶𝐻3𝑆𝑂2 + 𝑂2  𝑘 = 6.0𝑥10−12 

34. 𝐶𝐻3𝑆𝑂𝑂𝑂 →  𝐶𝐻3𝑆𝑂 +𝑂2  𝑘 = 1.7𝑥102 

35. 𝐶𝐻3𝑆𝑂 + 𝑂𝐻
𝑀
→  𝐶𝐻3𝑆𝑂2𝐻  𝑘 = 5.0𝑥10−11 

36. 𝐶𝐻3𝑆𝑂𝐻 + 𝑂𝐻 →  𝐶𝐻3𝑆𝑂2 +𝐻2𝑂  𝑘 = 1.6𝑥10−11 

37. 𝐶𝐻3𝑆𝑂3 → 𝐶𝐻3 + 𝑆𝑂3 𝑘 = 1.6𝑥10−1 

38. 𝐶𝐻3𝑆 + 𝑁𝑂2 → 𝐶𝐻3𝑆𝑂 + 𝑁𝑂 𝑘 = 6.1𝑥10−11 

39. 𝐶𝐻3𝑆𝑂𝑂 +𝑁𝑂 → 𝐶𝐻3𝑆𝑂 + 𝑁𝑂2 𝑘 = 1.4𝑥10−11 

40. 𝐶𝐻3𝑆𝑂 +𝑁𝑂2 → 𝐶𝐻3𝑆𝑂2 +𝑁𝑂 𝑘 = 3.0𝑥10−12 

41. 𝐶𝐻3𝑆𝑂𝑂𝑂 +𝑁𝑂 → 𝐶𝐻3𝑆𝑂2 +𝑁𝑂2 𝑘 = 8.0𝑥10−12 

42. 𝐶𝐻3𝑆𝑂2 +𝑁𝑂2 → 𝐶𝐻3𝑆𝑂3 +𝑁𝑂 𝑘 = 1.0𝑥10−14 

43. 𝐶𝐻3𝑆𝑂4 +𝑁𝑂 → 𝐶𝐻3𝑆𝑂3 +𝑁𝑂2 𝑘 = 1.0𝑥10−11 

44. 𝑆𝑂 + 𝑁𝑂2 → 𝑆𝑂2 +𝑁𝑂 𝑘 = 1.4𝑥10−11 

45. 𝐶𝐻3𝑆 + 𝑁𝑂 → 𝐶𝐻3𝑆𝑁𝑂 𝑘 = 2.87𝑥10−11 

46. 𝐶𝐻3𝑆𝑁𝑂
ℎ𝑣
→  𝐶𝐻3𝑆 + 𝑁𝑂 𝑘 = 0.5 𝑘𝑁𝑂2 

47. 𝐶𝐻3𝑆𝑆𝐶𝐻3 →  𝐴𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 0.58𝑥10−4 𝑠−1* 

48. 𝑆𝑂2 →𝐴𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 1.81𝑥10−4 𝑠−1* 

 *Rates that were optimized in this work.  aRate constants are in units of molecules, cm3 and sec. 
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3.1.1 DMDS Benchmarking 

The gas-phase experimental data of a chamber experiment of DMDS reacted with 

H2O2 and UV lights on collected using Medor GC was used to benchmark the DMDS 

kinetic model. The data includes three calibrated sets of data points corresponding to a 

different compound each: one data set for the decreasing concentration of the parent 

compound DMDS, another one for the concentration of SO2 being formed over time, and 

the third one for a compound of unknown identity. The third set was thought to be a 

possible precursor of methanesulfonic acid (MSA) from chamber experiment analysis. 

Because the identity of the third compound was uncertain, the model was only 

benchmarked using the experimental data for DMDS and SO2.  As shown in Figure 3.1, 

the experimental data had an initial concentration of 42.6 ppb of DMDS and about 1.93 

ppb for SO2. These initial concentrations were used for the kinetic model optimization. In 

Figure 3.1 an increase in concentration of SO2 from 1.93 to 22.3 ppb can be observed, 

Figure 3.1 Concentration as a function of time of DMDS, SO2, and unknown obtained 

from GC-MS from atmospheric chamber experiment. This is the set of experimental 

data used to benchmark the kinetic model for atmospheric oxidation of DMDS 

developed in this work. 
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while the concentration of DMDS decreases from its initial of 42.6 to 1.33 ppb; and the 

third set of data points also shows an increase in concentration, from 0 to 5.3 ppb. This 

means that roughly half of the starting gas-phase DMDS is photooxidized and forms SO2 

in the gas-phase, while the other half of its initial concentrations either goes into forming 

other gas-phase products, such as MSA, or it goes into forming aerosol particles, which are 

not detected by the gas-phase instrumentation. Thus, for this kinetic model it was important 

to address how much of the gaseous sulfur was contributing towards the formation of 

aerosol particles and what effects that might have on the overall gas-phase atmospheric 

photooxidation mechanism of DMDS. The focus on the first stage of this study was to 

compare the previously proposed reaction rates from the work by Yin et al. for the 

atmospheric photooxidation of DMDS to gas-phase experiments from the atmospheric 

chamber to observe the accuracy with which this kinetic model represented the 

experimental data. At this stage, the emphasis was on the oxidation of DMDS and the 

production of SO2 due to its known readily atmospheric oxidation into aqueous sulfate ions 

and role as SOA seed.  

3.1.2 Formation of SO2 and Oxidation DMDS 

First, the kinetic model described by the reactions in Table 3.1 was evaluated using 

the same initial concentrations for DMDS and oxidizers as the experimental data obtained 

from chamber experiments described in Section 3.1. The data from the evaluation of the 

kinetic model compared to the experimental data from chamber experiments is shown in 

Figure 3.2. From this experiment, the objective was to look at the kinetic model’s ability 

to simulate the oxidation of DMDS and formation of SO2 without optimization of the 

reaction rates or adding any gas-to-aerosol reactions to the model from Table 3.1. Figure 
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3.2 shows the change in concentrations over time of the compounds DMDS and SO2 from 

both experimental and kinetic model are compared. The DMDS and SO2 kinetic model 

data is presented with black and red solid lines respectively and experimental data is 

presented in black and red markers. The model as well as the experimental data show a 

decay of the parent compound (DMDS) and the production of oxidation products. The most 

abundant product formed from DMDS oxidation is SO2, this compound is formed in a 

concentration of more than 40 ppb according to the modeled data, as seen in Figure 3.2.  

Without the addition of gas-to-aerosol rates to the model, the comparison of data from the 

DMDS kinetic model and the experimental data showed a large discrepancy on the 

concentrations of SO2 and DMDS due to fact that the model only accounts for gas-phase 

oxidation reactions. Not accounting for the formation of aerosol particles in the kinetic 

model led to the model to predict an excess of 20 ppb of SO2 and 13 ppb of DMDS, due 

to the uptake of gas-phase molecules into aerosols not being modeled in the mechanism.  

Figure 3.2. Comparison of  DMDS and SO2 concentrations as a function of time of 

modeled and experimental data. Aerosol formation rates for both species are set to 

zero, and the solid lines represent the data from the model while the markers show the 

experimental data.  
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This observation is in agreement with atmospheric chamber experiments where the 

oxidation of the initial parent species by chemical and photolytic induced pathways leads 

to the formation of aerosol particles. The particles encapsulate a percentage of the oxidized 

gas-phase products and takes them out of the gas-phase and into the aerosol phase. The 

aerosol particles also prevent some of the oxidized gas species from being perceived by the 

instrument and thus leads to a discrepancy observed between the experimental and modeled 

data in Figure 3.2. 

3.1.3 Gas-to-aerosol Optimized Rates of SO2 and DMDS  

After comparing the initially proposed model in the first stage of the study, the 

second stage required to make the model more accurately represent the gas-phase 

experimental data. For this, a rate of gas-to-aerosol formation for each DMDS and SO2 was 

included into the model and optimized to achieve the best possible fit whilst keeping the 

rest of the rates the same. In doing this, the concentrations of the gas-phase species DMDS 

and SO2 became a drastically better fit to the experimentally observed concentrations, as 

observed in Figure 3.3. The optimized values for the gas-to-aerosol rates are 0.58×10-4 s-1 

for DMDS-to-aerosol and 1.81×10-4 s-1 for SO2-to-aerosol, these rates gave the lowest 

possible least squares values (S), which were 207.521 and 57.4076 for DMDS and SO2 

respectively. The optimized gas-to-aerosol rates are pseudo-first order and were 

incorporated to analyze the amounts of sulfur that ought to be found in the aerosol particles 

that are formed during the chamber experiments. The optimized gas-to-aerosol rates are 

likely to reduce the error from estimations of sulfur content in aerosols. In Figure 3.3, the 

production of SO2 from the model is in agreement with experimental data, and the 

implementation of the gas-to-aerosol rates gives a more reliable way for modeling 
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concentrations of atmospheric chamber experiments and with more studies may lead to 

more accurate global chemical transport models that will be able to better simulate climate.  

 

 

However, the formation of other by-products from the oxidation of DMDS is of relevance 

as well. Thus after benchmarking the SO2 and DMDS concentrations of the model, looking 

into what other chemical species might be produced in high concetrations or might be of 

relevance to aerosol formation was the next step.   

3.1.4 Modeled Concentrations of MSA, CH3S, and CH3SO  

Apart from SO2 , other radicals and by-products such as methanesulfonic acid are 

also expected to be produced from the oxidative mechansim in Scheme 2.1. Although, no 

experimental data from the atmospheric chamber was available for these compounds, to 

look at their concentrations according to the kinetic model is insightful to provide 

Figure 3.3. Comparison of DMDS and SO2 concentrations as a function time of 

modeled and GC-MS data with the optimized gas-to-aerosol rates. Aerosol formation 

rates for both species were optimized. Solid lines represent the data from the model 

and the markers show the GC-MS data. 
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qualitative undestanding of the atmospheric oxidation process of DMDS. Figure 3.4 shows 

the change in concentration over time of the chemical species that were included in the 

model and were simulated to have the highest concentraions including DMDS and SO2. In 

 Figure 3.4 the concentration of the CH3SO radical increases until 3400 s then plateaus and 

decreases.  

 

At 3400 s, the concentrations of SO2 and CH3SO are the same and then SO2 

concentration continues to increase while at that point the CH3SO concentration starts to 

decrease, which might indicate a correlation as CH3SO is oxidized and SO2 is being formed. 

Although SO2 is of great enviromental concern when it comes to organosulfur compouds, 

other sulfur containing compounds might have the opportunity to become of greater impact 

as measures are taken to supress the emissions of SO2.
3 For this reason,  MSA is also a 

compound of interest when studying the atmospheric oxidation of DMDS, as it has been 

Figure 3.4. Concentration as a function of time of compounds from DMDS 

atmospheric oxidation model. of DMDS, SO2 and CH3S
. and CH3SO. radical 

species; by-products of higher concentrations. 
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observed by other research groups during laboratory experiments that MSA contributes 

greatly towards the formation of aerosol particles when water and low-volatility amine 

comounds are present.48 Although MSA has been shown to enhance the formation of 

aerosols under these conditions, the concentrations at which it is produced in these chamber 

experiments might not be of great concern.  

Figure 3.5 shows the modeled concentrations from the atmospheric oxidation of 

DMDS model of MSA and of the radical species CH3SO3.  The modeled highest 

concentration of MSA from the atmospheric photooxidation of 42.6 ppb of DMDS is 

merely 0.79×10-11 ppb, which is negligible compared the near to the 21 ppb of SO2 

produced. By comparison, the concentration of MSA is irrelevant according to the modeled 

data. However, it is not consistent with experimental findings of other research groups, as 

field observations and well as atmospheric chamber experiments have found levels of 

atmospheric gas-phase MSA concentrations are typically in the range of ∼105−107 

Figure 3.5. Concentration as a function of time of methanesulfonic acid 

(MSA) and CH3SO3 radical. Obtained from the DMDS atmospheric 

oxidation model. 
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molecules cm−3, about ∼10−100% of those of H2SO4.
51 Based on this range, the model 

predicts merely ∼3.6×10-11 % of that of the SO2 concentration. Thus, the model achieves a 

great agreement with the simulation of SO2 and DMDS concentrations. However, more 

experimental data of MSA to compare to the modeled concentrations and further 

investigate the rates of formation of this compound is needed.  

3.2 DMS Kinetic Model 

After benchmarking of the kinetic model of DMDS the next stage of this study was 

to analyze the gas-phase atmospheric oxidation mechanism of DMS. DMS is a reduced-

sulfur compound that is readily released into the atmosphere from marine phytoplankton 

and other sources such as farm waste. The reactions that were included in the kinetic model 

for DMS are presented in Table 3.2, including the gas-to-wall interactions in Reactions 52 

and 53 and the dissociation reaction of H2O2 into OH radicals in Reaction 54. Although the 

reactions for the dissociation of N2O5 and formation of NOx species were also included in 

the model they are not explicitly included in Table 3.2, instead they are shown in Table 

2.1. The reactions included in this model are for the gas-phase mechanism of atmospheric 

oxidation of DMS and they do not explicitly account for the formation of aerosol particles 

from the chamber experiments. Reactions that account for the wall effects of the chamber 

are also included. The mechanism shows two main pathways of parent compound 

oxidation, the first one shown in Reactions 1 and 3 consisting on OH-addition followed by 

CH3-dissociation. The second is shown in Reaction 2, consisting on H-abstraction from 

one of the CH3 groups of DMS (CH3SCH3) by an OH radical. Both of these initial pathways 

of oxidation of DMS are mainly dependent on the amount of OH radicals present, thus the 

photooxidative pathway observed in DMDS is not as prominent for DMS. 
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Table 3.2. Reactions in DMS Model and respective rate constants. Adapted from 

Ref 57. 57 

Reaction Rate Constant, 𝑘a 
1. 𝐶𝐻3𝑆𝐶𝐻3 + 𝑂𝐻 → 𝐶𝐻3𝑆(𝑂𝐻)𝐶𝐻3 𝑘 = 1.7𝑥10−12 

2. 𝐶𝐻3𝑆𝐶𝐻3 + 𝑂𝐻 → 𝐶𝐻3𝑆𝐶𝐻2 +𝐻2𝑂 𝑘 = 4.4𝑥10−12 

3. 𝐶𝐻3𝑆(𝑂𝐻)𝐶𝐻3→𝐶𝐻3𝑆𝑂𝐻 + 𝐶𝐻3 𝑘 = 5.0𝑥103 

4. 𝐶𝐻3𝑆(𝑂𝐻)𝐶𝐻3 +𝑂2 → 𝐶𝐻3𝑆(𝑂)𝐶𝐻3 + 𝐻𝑂2 𝑘 = 2.0𝑥10−12 

5. 𝐶𝐻3𝑆(𝑂)𝐶𝐻3 + 𝑂𝐻 → 𝐶𝐻3𝑆(𝑂)(𝑂𝐻)𝐶𝐻3 𝑘 = 5.8𝑥10−11 

6. 𝐶𝐻3𝑆𝐶𝐻2 + 𝑂2 → 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂 𝑘 = 7.3𝑥10−13 

7. 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂 + 𝑁𝑂 → 𝐶𝐻3𝑆𝐶𝐻2𝑂 + 𝑁𝑂2 𝑘 = 8.0𝑥10−12 

8. 𝐶𝐻3𝑆𝐶𝐻2𝑂→ 𝐶𝐻3𝑆 + 𝐻𝐶𝐻𝑂 𝑘 = 1.0𝑥101 

9. 𝐶𝐻3𝑆 + 𝑂2 → 𝐶𝐻3𝑆𝑂𝑂 𝑘 = 5.8𝑥10−17 

10. 𝐶𝐻3𝑆𝑂𝑂 → 𝐶𝐻3𝑆 + 𝑂2 𝑘 = 6.0𝑥102 

11. 𝐶𝐻3𝑆 + 𝑂3 → 𝐶𝐻3𝑆𝑂 + 𝑂2 𝑘 = 6.0𝑥10−12 

12. 𝐶𝐻3𝑆 + 𝑂𝐻 → 𝐶𝐻3𝑆𝑂𝐻 𝑘 = 5.0𝑥10−11 

13. 𝐶𝐻3 + 𝑆𝑂2 → 𝐶𝐻3𝑆𝑂2 𝑘 = 2.9𝑥10−13 

14. 𝐶𝐻3𝑆𝑂 → 𝐶𝐻3 + 𝑆𝑂  𝑘 = 5.0𝑥10−5 

15. 𝐶𝐻3𝑆𝑂2 → 𝐶𝐻3 + 𝑆𝑂2 𝑘 = 1.1𝑥101 

16. 𝐶𝐻3𝑆𝑂𝑂 + 𝐶𝐻3𝑆 → 𝐶𝐻3𝑆𝑂 + 𝐶𝐻3𝑆𝑂 𝑘 = 8.0𝑥10−11 

17. 𝐶𝐻3𝑆𝑂𝑂 + 𝑁𝑂 → 𝐶𝐻3𝑆𝑂 + 𝑁𝑂2 𝑘 = 1.4𝑥10−11 

18. 𝐶𝐻3𝑆 + 𝑁𝑂2 → 𝐶𝐻3𝑆𝑂 + 𝑁𝑂 𝑘 = 6.1𝑥10−11 

19. 𝐶𝐻3𝑆 + 𝐻𝑂2 → 𝐶𝐻3𝑆𝑂 + 𝐻𝑂 𝑘 = 3.0𝑥10−16 

20. 𝐶𝐻3𝑆𝑂 + 𝑂2 → 𝐶𝐻3𝑆(𝑂)𝑂𝑂 𝑘 = 7.7𝑥10−18 

21. 𝐶𝐻3𝑆(𝑂)𝑂𝑂→𝐶𝐻3𝑆𝑂 + 𝑂2 𝑘 = 1.4𝑥10−2 

22. 𝑆𝑂 +𝑁𝑂2 → 𝑆𝑂2 +𝑁𝑂 𝑘 = 1.4𝑥10−11 

23. 𝑆𝑂 + 𝑂2 → 𝑆𝑂2 + 𝑂
. 𝑘 = 6.7𝑥10−17 

24. 𝑆𝑂 + 𝑂3 → 𝑆𝑂2 + 𝑂2 𝑘 = 8.9𝑥10−14 

25. 𝐶𝐻3𝑆𝑂2 + 𝑁𝑂2 → 𝐶𝐻3𝑆𝑂3 +𝑁𝑂 𝑘 = 1.0𝑥10−14 

26. 𝐶𝐻3𝑆𝑂2 + 𝑂3 → 𝐶𝐻3𝑆𝑂3 + 𝑂2 𝑘 = 5.0𝑥10−15 

27. 𝐶𝐻3𝑆𝑂2 + 𝐻𝑂2 → 𝐶𝐻3𝑆𝑂3 + 𝑂𝐻 𝑘 = 2.5𝑥10−13 

28. 𝐶𝐻3𝑆𝑂2 + 𝐶𝐻3𝑆𝑂2 → 𝐶𝐻3𝑆𝑂3 + 𝐶𝐻3𝑆𝑂 𝑘 = 7.5𝑥10−12 

29. 𝐶𝐻3𝑆𝑂3 → 𝐶𝐻3 + 𝑆𝑂3 𝑘 = 1.6𝑥10−1 

30. 𝐶𝐻3𝑆𝑂 + 𝑁𝑂2 → 𝐶𝐻3𝑆𝑂2 +𝑁𝑂 𝑘 = 3.0𝑥10−12 

31. 𝐶𝐻3𝑆𝑂 + 𝑂3 → 𝐶𝐻3𝑆𝑂2 + 𝑂2 𝑘 = 2.0𝑥10−12 
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Table 3.2. Continued - Reactions in DMS Model and respective rate constants  

Reaction Rate Constant, 𝑘a 

32. 𝐶𝐻3𝑆𝑂 + 𝐻𝑂2 → 𝐶𝐻3𝑆𝑂2 + 𝑂𝐻 𝑘 = 1.5𝑥10−12 

33. 𝐶𝐻3𝑆𝑂 + 𝐶𝐻3𝑆𝑂 → 𝐶𝐻3𝑆𝑂2 + 𝐶𝐻3𝑆 𝑘 = 7.5𝑥10−12 

34. 𝐶𝐻3𝑆𝑂3 + 𝐶𝐻2𝑂 → 𝐶𝐻3𝑆𝑂3𝐻 + 𝐶𝐻𝑂 𝑘 = 1.6𝑥10−15 

35. 𝐶𝐻3𝑆(𝑂)(𝑂𝐻)𝐶𝐻3 + 𝑂2 → 𝐶𝐻3𝑆(𝑂)𝐶𝐻3 +𝐻𝑂2 𝑘 = 1.2𝑥10−12 

36. 𝐶𝐻3𝑆𝑂𝐻 + 𝑂𝐻 → 𝐶𝐻3𝑆𝑂 +𝐻2𝑂 𝑘 = 1.1𝑥10−10 

37. 𝑆𝑂2 +𝑂𝐻 →𝐻𝑂𝑆𝑂2 𝑘 = 1.1𝑥10−12 

38. 𝐻𝑂𝑆𝑂2 + 𝑂2→𝑆𝑂3 +𝐻𝑂2 𝑘 = 4.0𝑥10−13 

39. 𝐻𝑂𝑆𝑂2 + 𝑂𝐻→𝐻2𝑆𝑂4 𝑘 = 1.0𝑥10−11 

40. 𝑆𝑂3 +𝐻2𝑂 →𝐻2𝑆𝑂4 𝑘 = 9.1𝑥10−13 

41. 𝐶𝐻3𝑆𝑂3 + 𝐻𝑂2 → 𝐶𝐻3𝑆𝑂3𝐻 + 𝑂2 𝑘 = 5.0𝑥10−11 

42. 𝐶𝐻3𝑆𝑂𝐻 + 𝐶𝐻3𝑆𝑂3 → 𝐶𝐻3𝑆𝑂3𝐻 + 𝐶𝐻3𝑆𝑂 𝑘 = 3.4𝑥10−12 

43. 𝐶𝐻3𝑆𝑂𝑂𝑂 → 𝐶𝐻3𝑆𝑂 + 𝑂2 𝑘 = 1.7𝑥102 

44. 𝐶𝐻3𝑆𝑂𝑂𝑂 + 𝐶𝐻3𝑆 → 𝐶𝐻3𝑆𝑂 + 𝐶𝐻3𝑆𝑂2 𝑘 = 7.0𝑥10−11 

45. 𝐶𝐻3𝑆𝑂𝑂𝑂 + 𝑁𝑂 → 𝐶𝐻3𝑆𝑂2 +𝑁𝑂2 𝑘 = 8.0𝑥10−12 

46. 𝐶𝐻3𝑆𝑂2 + 𝑂2 → 𝐶𝐻3𝑆(𝑂)2𝑂𝑂 𝑘 = 2.6𝑥10−18 

47. 𝐶𝐻3𝑆(𝑂)2𝑂𝑂 → 𝐶𝐻3𝑆𝑂2 + 𝑂2 𝑘 = 3.3𝑥106 

48. 𝐶𝐻3𝑆(𝑂)2𝑂𝑂 +𝑁𝑂 → 𝐶𝐻3𝑆𝑂3 +𝑁𝑂2 𝑘 = 1.0𝑥10−11 

49. 𝐶𝐻3𝑆(𝑂)2𝑂𝑂 + 𝐶𝐻3𝑆 → 𝐶𝐻3𝑆𝑂3 + 𝐶𝐻3𝑆𝑂 𝑘 = 6.0𝑥10−11 

50. 𝐶𝐻3𝑆 + 𝑁𝑂 → 𝐶𝐻3𝑆𝑁𝑂 𝑘 = 2.87𝑥10−11 

51. 𝐶𝐻3𝑆𝑁𝑂
ℎ𝑣
→ 𝐶𝐻3𝑆 + 𝑁𝑂 𝑘 = 0.5𝑘𝑁𝑂2 

52. 𝐶𝐻3𝑆𝑆𝐶𝐻3 →  𝑊𝑎𝑙𝑙 𝑘 = 0.0 

53. 𝑆𝑂2 →  𝑊𝑎𝑙𝑙 𝑘 = 0.0 

54. 𝐻2𝑂2
ℎ𝑣
→  2 𝑂𝐻 𝑘 = 7.1𝑥10−4𝑘𝑁𝑂2 

55. 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂 + 𝐶𝐻3𝑆 → 𝐶𝐻3𝑆𝐶𝐻2𝑂 + 𝐶𝐻3𝑆𝑂 𝑘 = 6.1𝑥10−11 

56. 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂 + 𝐶𝐻3𝑆𝑂 → 𝐶𝐻3𝑆𝐶𝐻2𝑂 + 𝐶𝐻3𝑆𝑂2 𝑘 = 4.0𝑥10−12 

57. 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂 + 𝐶𝐻3𝑆𝑂2 → 𝐶𝐻3𝑆𝐶𝐻2𝑂 + 𝐶𝐻3𝑆𝑂3 𝑘 = 2.5𝑥10−13 

58. 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂 + 𝐶𝐻3𝑆𝐶𝐻2𝑂𝑂→ 𝐶𝐻3𝑆𝐶𝐻2𝑂 + 𝑂2 𝑘 = 8.6𝑥10−14 

59. 𝐶𝐻3𝑆𝐶𝐻3 +𝑁𝐻3 → 𝐶𝐻3𝑆(𝑁𝑂3)𝐶𝐻3 𝑘 = 7.5𝑥10−13 

60. 𝐶𝐻3𝑆(𝑁𝑂3)𝐶𝐻3 → 𝐶𝐻3𝑆𝐶𝐻2 +𝐻𝑂𝑁𝑂2 𝑘 = 1.2𝑥102 
61. 𝐶𝐻3𝑆𝐶𝐻3 + 𝑁𝑂2 → 𝐶𝐻3𝑆(𝑂)𝐶𝐻3 +𝑁𝑂 𝑘 = 9.0𝑥10−21 
62. 𝐶𝐻3𝑆𝐶𝐻3 →  𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 3.73𝑥10−6* 

63. 𝑆𝑂2 →𝐴𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 1.81𝑥10−4 𝑠−1* 

*Rates that were optimized in this work.     aRate constants are in units of molecules, cm3 and sec. 
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3.2.1 DMS Benchmarking 

For the DMS kinetic model’s benchmarking only one set of SIFT-MS data was 

available to benchmark against. This data was from chamber gas-phase experiment of DMS 

reacting with H2O2 with UV lamps on. The ion counts from the SIFT-MS are calibrated. 

Since it is calibrated, a 20% decrease on the SIFT ion count data means a 20% decrease in 

concentration, so this quantitative data allows for estimations of DMS, but cannot be used 

to compare relative amounts of different compounds. As shown in Figure 3.6 only the 

oxidation of DMS was used. In this figure the modeled concentration of DMS is 

represented by the solid black line and the SIFT-MS ion counts obtained from chamber 

experiments by the blue points. The modeled concentrations of DMS in Figure 3.6 are the 

concentrations obtained by the kinetic model only accounting for gas-phase reactions and 

not aerosol formation. For this reason, the concentration of DMS that is oxidized according 

to the kinetic model is much lower compared to what it is observed from the experimental 

data. Also, the rate of DMS loss is considerably slower than what is observed for DMDS, 

in fact, about 3.5 times slower the rate at which the concentration of DMS in Figure 3.1 

decreases. The experimental data used to benchmark the kinetic model for DMS is the 

average of the data collected from the chamber experiment. The experimental data was 

collected in intervals of 5 min, so that the average concentration of each 5 min interval was 

used to benchmark the DMS kinetic model against. This was done because the intervals 

had scattered data points across the duration of each interval collected throughout the 

experiment due to instrumentation issues with the equipment used in the chamber 

experiments. Thus, the averages of this data were used to better represent the  
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concentration of DMS in each of the data intervals.  From Figure 3.6 a clear pattern of 

decreasing concentration of DMS is observed. In the experimental gas-phase data it 

decreases from its initial concentration of 110.5 to 97 ppb, which is a decrease of 11.82% 

from the initial concentration. Figure 3.6 also shows the model concentration of DMS 

decrease from 110.5 to 105 ppb, this difference in concentration from experimental to 

modeled DMS oxidation can be due to aerosol formation. 

3.2.2 Gas-to-aerosol Optimized Rate for DMS 

The initial proposed model in the first stage of the DMS kinetic model study showed 

a difference in DMS concentration. To proceed on making the model more accurately 

represent the gas-phase experimental data a rate of gas-to-aerosol formation for DMS was  

Figure 3.6 Comparison of modeled concentration and calibrated SIFT-MS ion counts as 

a function of time of DMS. No aerosol formation rates. Black solid line represents the 

concentration from the kinetic model while the blue markers show the SIFT-MS ion 

counts. 
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included into the model. This gas-to-aerosol rate was then optimized to achieve the best 

possible fit to the DMS experimental concentrations while keeping the rest of the rates 

constant. This allowed the concentrations of the gas-phase DMS have a better fit to the 

experimentally observed concentrations, as observed in Figure 3.7. 

The gas-to-aerosol rate optimized previously in the DMDS model for SO2 was also 

included in this model. The optimized value for the DMS gas-to-aerosol rate is 3.73×10-6 

s-1 for DMS and gave the lowest possible least squares value (S) of 1173.03. This optimized 

gas-to-aerosol is pseudo-first order and was incorporated to better estimate the amounts of 

sulfur that would be expected to be found in the aerosol particles and to reduce the error 

from sulfur content estimations in aerosols.  In Figure 3.7, the oxidation of DMS from the 

kinetic model is in closer agreement with the experimental concentations, as the modeled 

Figure 3.7. Comparison of DMS concentration as a function of time of modeled data 

and SIFT-MS ion counts with optimized of gas-to-aerosol rate. Aerosol formation rate 

for DMS was optimized, and the black solid line represent the data from the model 

while the blue markers show the SIFT-MS data.  
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DMS concentration decreases from 110 ppb to around 97 ppb. Thus, the implementation 

of the gas-to-aerosol rate gives a more accurate simulation of the aerosol formation 

chamber experiments. After benchmarking the DMS concentrations of the kinetic model 

against the experimental data, the next step was to look at the formation of SO2, DMSO, 

and other by-products from the oxidation of DMS.  

3.2.3 Modeled Concentrations of SO2, DMSO, MSA, and CH3SOH 

Although no experimental data from the atmospheric chamber was available for 

other compounds apart from DMS, the next step on the study was to look at their 

concentrations according to the kinetic model to seek insight on qualitative undestanding 

of the atmospheric oxidation process of DMS. Apart from the formation of SO2 and MSA, 

one of the most important features that were relevant on this DMS model was the formation 

of DMSO, which branches off from the formation of CH3S(OH)CH3 from the OH-addition 

pathway shown in Scheme 2.2.  The formation of DMSO in this mechanism would readily 

Figure 3.8. Concentration as a function of time from DMS atmospheric oxidation 

model of SO2.  
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diminish the amount of SO2, as the chemical stability of DMSO would prevent the further 

oxidation of the reduced sulfur species into SO2. Because of this, comparing the amounts 

of DMSO and SO2 being formed according to the kinetic model would help deteming 

which initial oxidative pathway is favored in the mechanism.  Figure 3.8 shows the change 

in concentration over time of SO2 according to the DMS kinetic model, where SO2 

concentration increases from 0 to 1.44×10-6 ppb.    

Then, Figure 3.9 shows the concentration of the DMSO, its concentration increases 

from 0 to 6.9×10-5 ppb. These seem to be much lower than that of the concentrations 

observed in atmospheric chamber experiments as concentrations in the range of 6-10 ppb 

of SO2 have been observed. Compared to SO2, the formation of DMSO is favored, with 

concentrations of one order of magnitud higher.  Because SO2 is of great enviromental 

concern due to being a known precursor of sulfate aerosols. The favored formation of 

Figure 3.9. Concentration as a function of time from DMS atmospheric oxidation 

model of DMSO. 
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DMSO from the atmospheric oxidation of DMS might be of consideration towards the 

study and development of particle formation mechanisms.  

Other organosulfur compouds worth studying from this kinetic model of DMS 

include MSA and CH3SOH. MSA has been observed by other research groups during 

laboratory experiments. They contribute towards the formation of aerosol particles in the 

presence of  water and low-volatility amine mixtures. Aerosol nucleation is enhanced under 

these conditions.48 Figure 3.10 shows the modeled concentrations of MSA from the kinetic 

model of the atmospheric oxidation of DMS.  The modeled highest concentration of MSA 

from the oxidation of 110.5 ppb of DMS is merely 1.28×10-36 ppb, which would be much 

lower than the detection limits of the chamber facility instrumentation. MSA might not be 

even detected in the chamber experiments if concentrations this low are persistent 

throughout these experiments. The GC from the chamber can detect DMSO, but it has 

Figure 3.10. Concentration as a function of time of MSA from DMS atmospheric 

oxidation kinetic model. 
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never been formed in any of the smog chamber experiments from collaborators to date. 

However, DMSO has been seen in ambient experiments, especially in the presence of fog, 

which might suggest the aqueous pathways to be relevant on the formation of DMSO. 

In contrast with the low concentrations of MSA and SO2 predicted by the DMS 

kinetic model, the modeled concentrations of CH3SOH are significantly higher than the 

other species presented here in this work for this specific model. Figure 3.11 shows the 

increasing concentration of CH3SOH from the DMS model, this compound is formed in 

the highest concentrations from this model. This supports the theory that the OH-addition 

pathway is favored. The CH3SOH concentration increases from 0 to 6.8×10-3 ppb 

throughout the 530-min duration of the experiment.  This concentration is around 2 orders 

of magnitude higher than that of DMSO, which is the compound with the second highest 

concentration from the DMS model.  

 

Figure 3.11. Concentration as a function of time from DMS atmospheric oxidation 

model of CH3SOH. 
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As seen in Figure 3.7 the DMS kinetic model as well as the chamber experimental 

concentrations, shows a loss ~13 ppb of the parent compounds DMS.  However, the 

concentrations of sulfur containing products estimated by the kinetic model of the gas-

phase oxidation of DMS only account for ~0.007 ppb in total. Representing a great 

discrepancy in concentrations from the amount of lost DMS and product formations. This 

could be attributed to aerosol formation from one or several compounds from the kinetic 

model. Determining which compound(s) must be priority for future research. 

3.3 TMA Kinetic Model  

Sulfur- and nitrogen-containing compounds are both known to be produced from 

agricultural, industrial and natural sources, and interactions between S and N have shown 

to enhance the formation of aerosols. Thus, low-volatility amines are also of interest from 

the aerosol particle formation perspective. 32,34,46,59 After the kinetic modeling of DMDS 

and DMS which are two of the most atmospherically relevant reduced sulfur species, the 

study and development of kinetic models for relevant atmospheric nitrogen containing 

compounds became the next step of this research. This led to the development of a kinetic 

model for trimethylamine (TMA), a low-volatility amine compound which has been 

observed in atmospheric aerosol studies.  The reactions included in the TMA model are 

shown in Table 3.3, where the rate constants for some of these reactions had to be optimized 

due to lack of previous publications on the literature about the rate constants for reactions. 

The model includes a total of 15 reactions, however, the reactions for the dissociation of 

N2O5 and formation of NOx species were also included in the model but are not explicitly 

included in Table 3.3. 43  From this model the rate constants for Reactions 1, 3, 4, 5, 10, 16, 

17, 18, 19 and 20 were optimized in order to find the values that best represented the 
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experimental data that was used to benchmark the gas-phase oxidation mechanism against. 

From this mechanism there are three oxidative pathways that affect TMA, the first one is 

photooxidative cleavage of one of the methyl groups shown in Reaction 10. The second 

pathway is H- abstraction, which occurs in two ways, either photolytic H- abstraction, 

shown in Reaction 1, or H-atom abstraction via an OH radical, shown in Reaction 2.  

 

Table 3.3. Reactions included in TMA Model with their respective rate constants. 

Adapted from Ref 43. 49 

Reaction Rate Constant, 𝑘a 

1. (𝐶𝐻3)3𝑁
ℎ𝑣
→  (𝐶𝐻3)2𝑁𝐶𝐻2 𝑘 = 4.30𝑥10−3* 

2. (𝐶𝐻3)3𝑁 + 𝑂𝐻 → (𝐶𝐻3)2𝑁𝐶𝐻2 +𝐻2𝑂 𝑘 = 6.11𝑥10−11 

3. (𝐶𝐻3)2𝑁𝐶𝐻2
𝑂2/𝑁𝑂
↔    (𝐶𝐻3)2𝑁𝐶𝐻2𝑂 𝑘 = 1.0𝑥10−1 * 

4. (𝐶𝐻3)2𝑁𝐶𝐻2𝑂 + 𝑂2→(𝐶𝐻3)2𝑁𝐶𝐻𝑂 + 𝐻𝑂2 𝑘 = 8.0𝑥10−18* 

5. (𝐶𝐻3)2𝑁𝐶𝐻2𝑂→(𝐶𝐻3)2𝑁 +𝐻𝐶𝐻𝑂 𝑘 = 7.0𝑥10−5* 

6. (𝐶𝐻3)2𝑁 +𝑁𝑂2→(𝐶𝐻3)2𝑁𝑁𝑂2 𝑘 = 3.17𝑥10−13 

7. (𝐶𝐻3)2𝑁 + 𝑂2 + 𝑁𝑂2→𝐶𝐻3𝑁𝐶𝐻2 𝑘 = 1.48𝑥10−6 

8. (𝐶𝐻3)2𝑁 +𝑁𝑂→(𝐶𝐻3)2𝑁𝑁𝑂 𝑘 = 8.54𝑥10−14 

9. (𝐶𝐻3)2𝑁𝑁𝑂
ℎ𝑣
→ (𝐶𝐻3)2𝑁 +𝑁𝑂 𝑘 = 1.0𝑥10−3 

10. (𝐶𝐻3)3𝑁
ℎ𝑣
→  (𝐶𝐻3)2𝑁 + 𝐶𝐻3 𝑘 = 1.0𝑥10−6 * 

11. 𝐶𝐻3 +𝑁𝑂2 → 𝐶𝐻3𝑂𝑁𝑂 𝑘 = 1.26𝑥10−3 

12. (𝐶𝐻3)2𝑁 +𝑁𝑂2→𝐶𝐻3𝑁𝐶𝐻2 𝑘 = 22.0 

13. 𝐶𝐻3 +𝑂𝐻 →𝐻𝐶𝐻𝑂 + 𝐻2 𝑘 = 4.17𝑥10−5 

14. 𝐶𝐻3 +𝑁𝑂2 →𝐻𝐶𝐻𝑂 + 𝐻𝑁𝑂 𝑘 = 46.50 

15. 𝐶𝐻3 +𝑂2 →𝐻𝐶𝐻𝑂 + 𝑂𝐻 𝑘 = 1.01𝑥10−14  

16. (𝐶𝐻3)2𝑁𝐶𝐻𝑂
𝑂𝐻
→ 0.35𝐶𝐻3𝑁(𝐶𝐻𝑂)2 + 0.65(𝐶𝐻3)2𝑁 𝑘 = 14.4𝑥10−8* 

17. 𝐶𝐻3𝑁𝐶𝐻2 → 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 1.0𝑥10−4* 

18. 𝐻𝐶𝐻𝑂 → 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 4.0𝑥10−5* 

19. (𝐶𝐻3)2𝑁𝐶𝐻𝑂 → 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 1.7𝑥10−5* 

20. 𝐶𝐻3𝑁(𝐶𝐻𝑂)2 → 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑘 = 8.5𝑥10−5* 

*Rates that were optimized in this work.  aRate constants are in units of molecules, cm3 and sec. 
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Then, a branching occurs after the formation of (𝐶𝐻3)2𝑁𝐶𝐻2𝑂, as shown in 

Reaction 4 and 5, this compound leads to the formation of (𝐶𝐻3)2𝑁𝐶𝐻𝑂 and (𝐶𝐻3)2𝑁 

radical. From (𝐶𝐻3)2𝑁 there is a branching to produce 𝐶𝐻3𝑁𝐶𝐻2, (𝐶𝐻3)2𝑁𝑁𝑂, and 

(𝐶𝐻3)2𝑁𝑁𝑂2, which are shown in Reactions 6, 7, 8, 9, and 12. To reduce the number of 

parameters that needed optimization, three reactions corresponding to three of these rate 

constants that needed to be optimized were simplified into Reaction 3. Because of this, 

Reaction 3 represents the sum of an equilibrium and a forward reaction steps that 

incorporates three rate constants that needed to be optimized into one rate constant value 

for simplicity purposes. Table 3.4 shows the three different reactions that Reaction 3 from 

Table 3.3 encapsulates.  

 

 

 

 

3.3.1 TMA Benchmarking 

The experimental data from TMA reacting with H2O2 with UV lamps on and only 

background NOx from chamber experiment used to benchmark the TMA kinetic model is 

presented in Figure 3.12. This data includes six sets ion counts data from the SIFT-MS 

corresponding to the parent compound, in this case TMA, and the gas-phase products 

formed during the experiment. The ion counts are not calibrated, so this SIFT data only 

allows for estimations of individual compounds patterns. Thus, an increase on one of the 

peaks does indicate an increase on the concentration of that assigned compound, but it does 

not allow for relative amounts of different compounds to be known. From the products, 

Table 3.4 Reactions Incorporated into reaction 3 from Table 3.3.  

1. (𝐶𝐻3)2𝑁𝐶𝐻2 + 𝑂2 → (𝐶𝐻3)2𝑁𝐶𝐻2𝑂𝑂 

2. (𝐶𝐻3)2𝑁𝐶𝐻2𝑂𝑂→ (𝐶𝐻3)2𝑁𝐶𝐻2 + 𝑂2 

3. (𝐶𝐻3)2𝑁𝐶𝐻2𝑂𝑂 + 𝑁𝑂 → (𝐶𝐻3)2𝑁𝐶𝐻2𝑂 + 𝑁𝑂2 
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one of the sets of data had an unknown chemical composition, which seemed to match 

closely to the concentration of N-formyl-N-methylformamide after benchmarking of the 

kinetic model. However, the experimental data included ion counts data of N-

dimethylformamide, N-methylmethanimine, formaldehyde, and nitromethane, the 

chemical structures of these compounds are presented in Chart 3.1 

 

 

As seen in Figure 3.12, the photooxidation of TMA leads to the formation of several 

nitrogen containing compounds as well as formaldehyde and decrease in the initial 

concentration of TMA from 53.56 to 7.50 counts is observed. The product formed in most 

abundance is dimethylformamide, with a final of 10 counts. Then formaldehyde and 

methylmethanimine are second and third on abundance, with final concentrations of 7.5 

and 5.5 counts respectively. At last, the compound with lowest concentration product being 

nitromethane, with 4.9 counts, followed by the unknown compound. 

 

 

Chart 3.1 Chemical structures of compounds included in the experimental 

data used to benchmark the TMA kinetic model. 
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3.3.2 TMA Oxidation Rates 

Due to the large number of rate constant values that needed to be optimized from 

the TMA kinetic model presented in Table 3.3, the optimization of the reaction rates for 

the oxidation of TMA were optimized first.  This was done by giving arbitrary initial rate 

constant values to Reactions 1, and 10, which are the reactions affecting the oxidation of 

the parent compound TMA. Then those values were optimized until the lowest least 

squares value for the compared TMA experimental and kinetic model concentrations was 

obtained. Figure 3.13 shows the compared TMA concentrations from the kinetic model 

and the ion counts from chamber experiments. As seen from Figure 3.12, the model has a 

great agreement of the experimental data from 0 min until 320 min, at which point the 

experimental ion counts of TMA plateau around 8 ppb until the end of the experiment while 

the TMA concentration from the kinetic model continues to decrease until it reaches end 

of the experiment with 4 counts. The lowest least squares value (S) obtained for TMA 

Figure 3.12 Ion counts from SIFT-MS as a function of time of TMA, HCHO, 

(CH3)2NCHO, CH3N=CH2, CH3NO2 and unknown species compared to modeled 

kinetic data. 
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concentration was 7.4903×106 after the optimization of the rate constants of Reactions 1, 

2, and 10.  Consecutively, the rate constants of Reactions 3, 4, 5, and 9 were optimized in 

order to achieve the best possible fit to the experimental concentration. of the products 

expected to be generated from the oxidation of TMA, as shown in Figure 3.12. 

 

3.3.3 Products Rate Optimization  

After optimizing the rate constants of the oxidation reactions of TMA, the rates of 

formation of the products were the next step on the optimization of the kinetic model. For 

this part of the study experimental data from the chamber experiments was available for 

four of the expected products to form from the gas-phase oxidation of TMA, which are 

shown in Chart 3.1. The optimization of the rate constants of reactions 3, 4, 5, 10, and 16 

was necessary, and was done using the least squares methods as well. The optimized values 

for these rates are shown in Table 3.3. The modeled concentrations from the TMA kinetic 

Figure 3.13 Ion counts from SIFT-MS as a function of time of the TMA compared to 

concentrations from the TMA kinetic model. Oxidation rates for TMA were 

optimized. Blue solid line represents the data from the model while the blue markers 

show the experimental data. 
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model and the experimental ion counts from the chamber experiments of the products is 

compared in Figure 3.14, where the solid colored lines represent the concentrations 

obtained from the kinetic model and the markers represent the experimental ion counts. As 

can be seen from Figure 3.14, the kinetic model achieves good agreement with only the 

first 100 min of the experimental data being benchmarked except for the compounds 

CH3N=CH2 and CH3NO2. As the model was first optimized to fit the initial rapid formation 

rates of the products, however, fails to replicate the decrease in counts that experimental 

data show for HCHO, (CH3)2NCHO, and CH3N(CHO)2 during the final 250 min of the 

experiment.   

In the case of CH3NO2, the concentration estimated by the kinetic model shows to 

be much lower compared to the experimentally observed ion counts, and almost non-

increasing. For (CH3)2NCHO the kinetic model estimates an excess of ~2 counts from the 

Figure 3.14 Ion counts from SIFT-MS as a function of time of the oxidation 

products compared to concentrations from the TMA kinetic model. Compounds 

HCHO, (CH3)2NCHO, CH3N=CH2, CH3NO2 and CH3N(CHO)2. No Gas-to-

aerosol rates included. 
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observed experimental final concentration, but it fails to simulate the plateau 

concentrations observed from the 200-min mark and onwards. For the compounds HCHO, 

(CH3)2NCHO, and CH3N(CHO)2 a similar trend is observed, as the initial rates of 

formation of the products, up to the 100-min mark, present good agreement to the 

experimental data, however the late decrease and plateau of the concentrations of these 

products is not achieved by the kinetic model. The kinetic model shows an excess in the 

final concentrations of HCHO, CH3N=CH2, and CH3N(CHO)2, which corresponds of 7 

counts for HCHO, 25 counts for CH3N=CH2, and 7 counts for CH3N(CHO)2.  

As discussed with the previous model, this excess in concentration that the kinetic 

model estimates, could be attributed to the absence of aerosol formation rates, the absence 

of other oxidation or reverse reactions that have not been considered, or wall adsorption of 

the nitrogen compounds. Thus, to obtain better agreement with the experimental data, 

especially on the last 300 minutes of the experiment, rates of compound loss or gas-to-

aerosol rates were included and optimized to the kinetic model. Four of these gas-to-aerosol 

rates were incorporated, one for each of the compounds (CH3)2NCHO, HCHO, 

CH3N=CH2, and CH3N(CHO)2. The values of the optimized gas-to-aerosol ratios are 

presented in Table 3.3 reactions 16 – 20. Figure 3.15 shows the concentrations of the 

products from the oxidation of TMA from the kinetic model with the optimized gas-to-

aerosol rates compared to the experimental concentrations from the chamber experiments. 
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As shown in Figure 3.15, the optimized gas-to-aerosol loss rates give the model a 

closer fit to the experimental concentrations of the products and give lower least squares 

values (S) for each compound being benchmarked. The least squares values (S) after the 

optimization of the rate constants for each of the compounds being benchmarked from this 

model are 1.6169×106 for HCHO, 1.0377×107 for (CH3)2NCHO, 1.8072×107 for CH3NO2, 

and 1.1394×107 for CH3N=CH2. The modeled concentration of CH3NO2 remains much 

lower than the experimental data for this compound, even after the optimization of the rate 

constants. However, the modeled concentrations of HCHO, (CH3)2NCHO, and 

CH3N(CHO)2 show a much better agreement to the experimental data. Even while this is 

true, the CH3N=CH2 concentration does not accurately represent the experimental data 

until after 250-min mark of the experiment.  

 

 

Figure 3.15 Ion counts from SIFT-MS as a function of time of the oxidation products 

compared to concentrations from the TMA kinetic model. Compounds HCHO, 

(CH3)2NCHO, CH3N(CHO)2, CH3N=CH2, CH3NO2. Gas-to-aerosol rates are included. 
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4 Summary and Conclusions 

The goals of this project were (1) to compare and optimize the previously reported 

kinetic mechanisms for the gas-phase atmospheric oxidation mechanisms of DMDS and 

DMS; (2) to optimizing reaction rates and (3) to develope a kinetic model of the gas-phase 

photooxidation mechanism of TMA to gain insight into the process of aerosol particle 

formation from the gas-phase oxidation of these compounds. This lays fundation for 

developing kinetic models for the heterogenous mixtures of atmospherically relevant sulfur 

and nitrogen containing compounds. 

4.1 Incorporation of Gas-to-Aerosol Rates 

Comparing the mechanisms of DMDS and DMS to experimental concentrations 

from atmospheric chamber experiments without adding and optimizing gas-to-aerosol 

reactions showed a consistent overestimation on the concentrations obtained from the 

kinetic models for DMDS and SO2 from the DMDS kinetic model and for DMS from the 

DMS kinetic model. This led to the inclusion of gas-to-aerosol pseudo first order reactions 

to procure the most accurate reproduction of the atmospheric chamber experimental data.  

The incorporation of gas-to-aerosol reactions into kinetic models for the gas-phase 

photooxidation of DMDS and DMS allowed for the optimzation of rate contants that 

represent the formation of SOA particles. The optimized gas-to-aerosol rate values for the 

DMDS and SO2 that were incorporated into the DMDS kinetic model, which have the 

values of 0.58×10-4 s-1 for DMDS and 1.81×10-4 s-1 for SO2, were able to bring the model 

to have better agreement with the experimental data to which it was benchmark against as 

shown in Figure 3.3.  A similar approach was  used to obtain a better agreement with the 

DMS kinetic model where a gas-to-aerosol was incorporated into the kinetic model and 
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optimized to a value of 3.73×10-6 s-1. These gas-to-aerosol rates can be crucial in future 

work when comparing the effects of other compounds in the gas mixtures of chamber 

experiments, by giving a reference as to how much sulfur would be expected to be present 

in the aerosol particles when the only analyte in the chamber in DMDS or DMS compared 

to when two or more analytes are present in the gas mixture.  

4.2 Differences in oxidative pathways between DMDS and DMS  

As the outcome of the development and optimization of each kinetic model was 

studied, some observations regarding the mechanisms and by-products of each model were 

made. One of these obsevations was the fundamental differences on the chemical structures 

of DMDS and DMS leading to very different outcomes in terms of products forming in 

different concentrations and favoring different oxidative pathways. The difference in 

oxidative pathways affect the two reduced-sulfur compounds DMDS and DMS in their rate 

of atmospheric oxidation due to DMDS favoring the photolitic oxidation poathway. As can 

be seen from the kinetic models in Tables 3.1 and 3.2, the photooxidative pathway 

described in reaction 21 from Table 3.1 plays a relevant role in the oxidation of DMDS 

that leads to the splitting of the parent compound into two CH3S˙ molecules, while the 

same is not applicable to DMS. This charachteristic photooxidative pathway is most 

favored  due to the S-S bond of DMDS (CH3SSCH3) as data from this kinetic model 

suggests, from the rapid cleavage of the S-S bond from DMDS. This can be observed in 

Figure 3.5, where the formation of the radical species CH3S and CH3SO in high 

concentrations that are near the concentration of SO2 is indicative of the hypothesis that 

the S-S bond dissociation is favored over the OH-addition pathway under these 

experimental conditions. It is worth noting that higher concentrations of OH in the 
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experimental conditions may act in favor of OH-addition, however, the rate constant for 

the photooxidation pathway is seven orders of magnitude larger than that of the OH-

addition pathway, thus the fovorability of photooxidation might not be overcome simply 

by an increase on OH concentration.  

The favorable formation of DMSO over SO2 from the kinetic modeling of the 

oxidation mechanism of DMS (CH3SCH3), it can be attributable to the absence of a S-S 

bond. Since the photolytic dissociation of the S-C bond, which would be the mechanism 

that the dissociation of DMS would have to follow to generate CH3S˙ in a way similar to 

DMDS, is not energetically favorable, then the addition of OH is then the most favorable 

oxidative pathway for DMS. Thus, as Scheme 2.2 shows, the formation of CH3S(OH)CH3 

followed by the branching from this compound into CH3SOH or DMSO becomes they key 

step limiting the further oxidation of the sulfur compounds into SO2.  This can be seen from 

reactions 3 and 4 from Table 3.3, where the branching ratio of the intermediate compound 

CH3S(OH)CH3 is determined in favor to DMSO formation due to the inherently high 

concentrations of O2 in the air.  

4.3 Formation of MSA and CH3SNO  

One of the initial interests of this project was to evaluate if the formation of CH3SNO 

could act as a kinetic trap that could prevent or at least to diminish the amount of SO2 that 

was to be produced from the oxidation of either DMDS or DMS. For this reason, the 

reactions of formation and dissociation of CH3SNO were incorporated into the kinetic 

models. The results shown from the kinetic models for DMDS and DMS after they were 

optimized estimated concentrations of 8.0×10-10 ppb and 6.0×10-20 ppb respectively of 

CH3SNO. The low concentrations of this compound estimated by the models, the high 
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concentrations of SO2 and DMSO formed from the kinetic model, and the rapid rate of 

photodissociation of the compound CH3SNO itself invalidated the hypothesis that 

CH3SNO could be a kinetic trap for the gaseous sulfur produced from the oxidation of 

DMDS and DMS.  

Another interesting observation noticed from the kinetic models of DMDS and DMS 

is the low concentrations at which MSA was estimated to be formed from the oxidation of 

those compounds. The amount of MSA from experimental chamber experiments as well 

as other studies done my multiple research groups were found to be significantly higher 

compared to what the kinetic modeling predicts from the DMDS and DMS gas-phase 

oxidation models. For example, observations from field studies for example, have found 

that typical levels of atmospheric MSA are typically in the range of  ~105-107 molecules 

cm-3, which translates to a range of ~10% - 100% of that of typical atmospheric sulfate 

concentrations. In comparison, the kinetic model for DMDS predicted only a 3.6×10-11 % 

of that of the SO2 concentration from chamber experiments, and the kinetic model for DMS 

shows an even more negligible amount of MSA is predicted. The discrepancy between the 

concentrations of the models and observed experimentally observed concentrations of 

atmospheric MSA might be further explained in furutre research when gas-phase 

experimental data from atmospheric chamber experiments of MSA concentration is 

available to compare with those predicted by the DMDS and DMS kinetic models and 

benchmark against. Conversely, if no detection of MSA is obtained in future atmospheric 

chamber experiments, it might be an indication that the amount of MSA being produced 

from the oxidation of DMDS and DMS in the experimental concentrations used in this 
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study  are under the lower limits of detection of the instrumentation used in the chamber 

facility as suggested by the kinetic models.  

4.4 TMA Products Fitting  

The fitting of the products from the oxidation of TMA was challenging due to the 

number of rate constants that required to be optimized. As seen from Figure 3.15, the 

optimization of the kinetic model of gas-phase oxidation of TMA generated good 

agreement with only the initial 100 min of the experimental concentrations against which 

it was being benchmarked for all the products with exception of the compound CH3NO2. 

Although better agreement in the final stage of the experiment was achieved by the 

incorporation of optimized gas-to-aerosol rates, this kinetic model fails to replicate the 

rapid increase in concentration that experimental data for CH3N=CH2 show during the 

initial 225 min of the experiment.  In the case of CH3NO2 the concentration estimated by 

the kinetic model is much lower than the experimentally observed concentrations. The 

incorporation of other reactions that provide a faster formation of the products CH3N=CH2 

and CH3NO2 is a plausible direction for future work towards betterment of this kinetic 

model and obtaining a more accurate simulation of the experimental concentrations as 

observed from the chamber experiment. Another approach to the discrepancy in the 

products concentrations might be studying and quantifying the effects that the Teflon® 

walls of the chamber have on each of the products as well as the parent compound, since 

reported adsorption onto the walls has been reported in past experiments for amine 

compounds. Chamber experiments and kinetic modeling of these gas-to-wall effects would 

likely lead to better reproducibility of chamber experiments data from the kinetic model. 

This will lead to optimization of rate constants for the formation of aerosol particles from 
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TMA gas-phase oxidation as well as more accurate optimization of rate constants of the 

reactions already included in this model. Doing so will help develop kinetic models for 

other atmospherically relevant amine and nitrogen containing species, such as DEA and 

NH3.  This will also help in the study of atmospheric oxidation of mixtures of amine and 

sulfur containing compounds, which will lead to better understanding of the complex 

mechanisms of SOA formation from gas-phase compounds that are prominent in some 

farm and animal waste.   
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