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One of the most important decisions to make when performing an exploratory 

factor or principal component analysis regards the number of factors to retain. Parallel 

analysis is considered to be the best course of action in these circumstances as it 

consistently outperforms other factor extraction methods (Zwick & Velicer, 1986). Even 

so, parallel analysis could benefit from further research and refinement to improve its 

accuracy. Characteristics such as factor loadings, correlations between factors, and 

number of variables per factor all have been shown to adversely impact the effectiveness 

of parallel analysis as a means of identifying the number of factors (Pearson, Mundfrom, 

& Piccone, 2013). Critically, even the choice of criteria on which to evaluate factors 

(such as the eigenvalue at the 50th or 95th percentile) can have deleterious effects on the 

number of factors extracted (Peres-Neto, Jackson, & Somers, 2004). One area of parallel 

analysis yet to be researched is the magnitude of the difference between the actual 

eigenvalue and the random data-based eigenvalue. Currently, even if the margin between 

the actual eigenvalue and the random data-based eigenvalue is nominal, the factor is 

considered to be meaningful. As such, it may behoove researchers to enforce a higher 

standard, such as a greater margin between the two eigenvalues than just a simple 

difference. Accordingly, the purpose of this study was to evaluate the efficacy of a 10% 

margin criterion as compared to an absolute margin. These margins were evaluated in 
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conjunction with the 50th, 90th, 95th, and 99th percentile eigenvalue criteria on a 

population correlation matrix designed to engender underextraction. Previous research 

(Matsumoto & Brown, 2017) explored the same conditions on a population correlation 

matrix designed to elicit overextraction. They found that the most stringent standard (99th 

percentile eigenvalue plus a 10% margin) was the most accurate. For the present study 

however, it was hypothesized that the most accurate results would be obtained from a 

standard less stringent than the 99th percentile eigenvalue plus a 10% margin. The results 

suggest that when a correlation matrix has properties which may illicit underextraction, 

the use of less stringent criteria may lead to greater accuracy in identifying the number of 

factors and that the incorporation of an additional margin criterion may not improve the 

accuracy of the analysis.    
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Introduction 

 Being able to accurately and reliably determine the dimensionality of data is of 

great importance to researchers and practitioners alike. By identifying the dimensionality 

of a dataset, one is able to parsimoniously explain vast amounts of data using a relatively 

small number of factors or components without significant loss of information (Hoyle & 

Duvall, 2004). The most common statistical procedures to perform this kind of dimension 

reduction are factor analysis (common factor model) and principal component analysis 

(PCA). While functionally similar, PCA and factor analysis are based on different 

assumptions of measurement. As a result, each method is situated to answer a 

categorically different set of questions. Fortunately, this means that PCA and factor 

analysis are widely applicable as data reduction techniques across a variety of disciplines 

such as psychology, education, sociology, public health, management, economics, 

finance, ecology, chemistry, and even genomics (Dobriban, 2017).       

Principal Component Analysis 

 Although many erroneously consider PCA a method of factor analysis, PCA is 

actually a data reduction technique (Gorsuch, 1990). PCA differs from genuine factor 

analysis in a number of important ways. The first difference is a conceptual one. In the 

common factor model of factor analysis, it is assumed that scores on the variables are 

caused by the latent constructs and error (Conway & Huffcutt, 2003). This relationship is 

what allows for the results to be interpreted in a causal manner and for inferences to be 

made about the function of the latent constructs. PCA however, defines factors, called 

components, based on scores on the manifest variables. With this measurement model 
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there is no identified cause of the scores and, therefore, the scores cannot provide any 

information regarding the latent constructs (Ford, MacCallum, & Tait, 1986).   

 Another important difference between the common factor model and PCA is that 

the common factor model factors the reduced correlation matrix which contains 

communalities along the diagonal. These communalities are the amount of variance 

which is shared amongst the variables, with the unique variance removed (Costello & 

Osborne, 2005). Conceptually, this means that the common factor model assumes that 

variables are measured with error. In contrast, PCA factors all of the variance, meaning 

that the communalities among factors are 1.0. The significance is that PCA assumes that 

all variance is common and that there is no error variance (Velicer & Jackson, 1990). As 

such, the interpretations that can be made about the results of a PCA are limited. Simply 

put, PCA can be seen as a method of identifying orthogonal axes which explain as much 

of the variance in the data as possible, using the least number of axes in order to do so.  

Factor Analysis 

 Factor analysis is a family of multivariate statistical analyses which aim to reduce 

the number of variables while still retaining as much of the original variance accounted 

for by those variables as possible (Cokluk & Kocak, 2016). Broadly, factor analysis 

consists of two types of analyses: exploratory and confirmatory. Exploratory factor 

analysis is used when trying to identify the latent factor structure of a correlation matrix 

for which there is no theory or hypotheses on the number of factors which are present 

(Conway & Huffcutt, 2003). Confirmatory factor analysis however, is used on correlation 

matrices for which there is previous theory or the number of factors has been previously 

identified (Costello & Osborne, 2005). For this reason, confirmatory factor analysis is 
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best used to provide evidence for a theorized relationship amongst variables (Hurley et 

al., 1997).  

Exploratory Factor Analysis 

 As mentioned, the purpose of exploratory factor analysis is to reduce a set of 

variables while also identifying the latent factor structure. Exploratory factor analysis is 

most commonly used to test construct validity, evaluate measures, and conduct 

hypothesis testing (Conway & Huffcutt, 2003). The most prevalent form of exploratory 

factor analysis is the common factor model. In the common factor model, variance is 

broken down into two parts: common variance, variance shared among the variables, and 

unique variance, variance not shared among the variables. Unique variance is further 

decomposed into systematic variance and random error (Costello & Osborne, 2005). 

Random error is unique variance in that it does not correlate with other variables and thus 

is specific to the variable. Systematic variance occurs when a variable measures a 

construct or variable which the other variables do not (Conway & Huffcutt, 2003). The 

most important kind of variance for the common factor model is common variance.   

 Common variance, henceforth referred to as communality, is the percent of 

variance a given variable shares with the other variables (Fabrigar, Wegener, MacCallum, 

& Strahan, 1999). However, this variance cannot be calculated and must be estimated 

(Hoyle & Duvall, 2004). The most common method to estimate communality is to 

compute the squared multiple correlation between a given variable and the other variables 

(Humphreys & Ilgen, 1969). Each variable is regressed on every other variable and an R2 

value is determined. These communality estimates are then placed on the diagonal of 

what is called the reduced correlation matrix. When the factor analysis is performed, the 
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communality estimates are further broken down into factor loadings. The factor loadings 

are estimated by optimally distributing the estimated communality from each variable to 

the factors based on the strength of their relationship (Hogarty, Hines, Kromrey, Ferron, 

& Mumford, 2005). Thus, the factor loadings indicate how much variance in the given 

variable is accounted for by a given factor. The factor loadings from all of the variables 

are then used to determine eigenvalues.  

 Eigenvalues represent the amount of variance a factor accounts for in the dataset. 

As such, stronger factors will have larger eigenvalues while weaker factors will have 

smaller eigenvalues respectively. Strong factors are generally those which have multiple 

variables which load strongly on them (Hayton, Allen, & Scarpello, 2004). The purpose 

of exploratory factor analysis then, is to create a model consisting of meaningful factors 

while excluding trivial, or noise, factors. In other terms, the goal is to identify factors 

which account for a significant amount of variance in the dataset such that the factor 

structure will be sufficiently explanatory but also replicable across various datasets.  

Issues with Factor Analysis 

 Using the correct method of analysis. For measure development, identifying 

latent factor structure, and other situations where error of measurement naturally occurs, 

factor analysis should be used instead of PCA as PCA extracts irrelevant variance from 

the items (Steger, 2010). For example, if the true data has low communalities, the PCA 

model will still assume communalities are 1.0. This would lead to great disparity between 

results of a PCA and the common factor model. Alternatively, if the communality 

between variables is high, the results of the two methods would likely be very similar 

(Ford et al., 1986).  
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 Rotation. An important decision to be made when performing a factor analysis is 

what kind of rotation to use. Factor rotation is a procedure which adjusts the factor 

loadings in order to reveal simple structure (Conway & Huffcutt, 2003). Simple structure 

is when variables load highly on one factor and have low loadings on all other factors 

(Fabrigar et al., 1999). This structure is preferred because it makes the factors readily 

identifiable, and demonstrates the clarity of the factor solution. Unfortunately, there is not 

one form of factor rotation, nor is there only one rotated solution. In fact, there are an 

infinite number of ways which the factor solution can be represented in multi-

dimensional space (Fabrigar et al., 1999). The method of rotation simply chooses the 

optimal solution based on the specified parameters.   

 There are two general categories of rotations: orthogonal and oblique. Orthogonal 

rotations maintain the uncorrelated factor structure that exists in an unrotated solution. 

Although orthogonal rotations provide solutions which are easy to interpret, an issue that 

arises is that generally factors are correlated to some degree. Thus, forcing factors which 

are correlated to be uncorrelated negatively influences the solution (Wood, Tataryn, & 

Gorsuch, 1996). Alternatively, oblique rotations allow factors to correlate. The issue with 

oblique rotations, however, is that the results are difficult to interpret and it is 

computationally more intensive (Wood et al., 1996). When deciding on what factor 

rotation to use, the main consideration should be the natural correlation between the 

factors. Unless there is reason to believe that the factors are uncorrelated, an oblique 

rotation should be used (Ford et al., 1986). While determining the method of analysis to 

use and type of rotation is important, arguably the most important decision that must be 

made is how to determine the correct number of factors.   
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 Identifying the correct number of factors. Identifying the correct number of 

factors is more important than one may think. There are numerous consequences 

associated with overextraction (identifying too many factors) and underextraction 

(identifying too few factors) (Wood et al., 1996). For example, underextraction can lead 

to leaving important factors out of a model and the inclusion of significantly more error 

in the model (Wood et al., 1996), and can even lead to the accidental combination of 

distinct factors (Hayton et al., 2004). Importantly, if the number of factors is 

underidentified then variables which load on factors that have been left outside of the 

model will falsely load on factors included in the model, resulting in distorted factor 

loadings (Hayton et al., 2004). Although generally not considered as severe, 

overextraction also has negative consequences. For example, overextraction can lead to 

the retention of minor factors in the model of little or no significance (Fabrigar et al., 

1999). These additional factors can then reduce the amount of variance available for 

variables to load on the legitimate factors. Over factoring can even result in factors that 

have no variables which load on them, or a singular large loading, leading to overly 

complex solutions and theories (Fava & Velicer, 2010). More generally, the impact of not 

determining the right number of factors is that the results will not replicate, making it 

difficult to establish claims of construct or structural validity (Steger, 2010). Therefore, 

determining the correct number of factors is of the utmost importance to someone 

conducting a factor analysis. There are numerous techniques which are used to determine 

the number of factors such as scree plot, eigenvalue-greater-than-one rule, parallel 

analysis, minimum average partial correlation and Bartlett’s test.  
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 Scree plot. One of the most common methods of determining the number of 

factors to retain is the scree plot. In order to determine the number of factors using a scree 

plot, first a graph is formed by plotting the eigenvalues of all of the factors. The slope 

between the eigenvalues is then examined. Where there is significant slope, is where 

there are factors which explain significant amounts of the available variance. The 

nominal factors are located where the slope is not as strong. As such, when examining a 

scree plot, one can determine the number of factors by determining the point where the 

slope flattens out and counting the number of factors to the left of that point (Costello & 

Osborne, 2005). One glaring issue with the scree plot method however, is that 

determining the number of factors requires a subjective opinion (Hayton et al., 2004). As 

a result, two researchers could view the same scree plot and determine two different 

factor solutions. Corrections to this issue have been postulated, such as having multiple 

raters evaluate the scree plot and calculating interrater agreement, however the 

subjectivity of the analysis is still an issue (Hayton et al., 2004). Another related issue 

with the scree plot approach is that sometimes there are no obvious changes in slope, or 

there are multiple drastic changes in slope, making it difficult to identify the number of 

factors (Turner, 1998). In these circumstances, the scree plot can be highly inaccurate and 

trivial. For these reasons, the scree plot is recommended for use only as a method for 

validating a factor solution which has been identified using a more accurate method 

(Fabrigar et al., 1999).   

  Eigenvalue greater than one. The eigenvalue greater than one rule, also referred 

to as the Kieser rule, Kieser’s greater than one rule, or K > 1, is another relatively easy to 

implement rule for determining the number of factors to retain from a factor analysis or 
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PCA. The theoretical basis for the eigenvalue greater than one rule is that in a population 

matrix of uncorrelated data, the eigenvalues of components in a PCA are expected to 

equal one (Dinno, 2009b). This is because in PCA the components are standardized, 

which means that each variable accounts for exactly one unit of variance (Zwick & 

Velicer, 1986). Therefore, an eigenvalue of 1.0 functions as the lower bound of possible 

values that a component may take (Dinno, 2009b). As such, the eigenvalue greater than 

one rule states that if a component has an eigenvalue greater than 1.0 then it must be 

meaningful because it is, ostensibly, accounting for variance from other variables (Cliff, 

1988). It is important to note that this rule may also be used to determine the number of 

factors when performing a factor analysis, but instead of a lower bound of 1.0, which 

represents the standardized variance of a component, the lower bound of uncorrelated 

factors is zero. 

 The eigenvalue greater than one rule may be the most popular method of 

determining the number of factors to retain. This, however, is troublesome because of its 

numerous limitations. First, almost all factor or principal component analyses are 

conducted on sample matrices. These sample matrices may have initial factors or 

components with eigenvalues greater than the lower bound solely due to sampling error 

and capitalization of chance (Cliff, 1988). Second, this method raises the question of 

what is to be made of marginal differences. For instance, in a PCA, is a component with 

an eigenvalue of .99 less significant than a component with an eigenvalue of 1.01?  

 Minimum average partial correlation. Minimum Average Partial Correlation 

(MAP) is a method of identifying the correct number of factors by analyzing the partial 

correlations within the reduced correlation matrix (Ruscio & Roche, 2012). The process 
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consists of first partialing out a factor from the matrix and then recalculating the average 

partial correlation between the remaining factors. Factors continue to be partialed out 

sequentially and average partial correlations are calculated after each factor is partialed 

out. This process continues as long as the average partial correlation continues to 

decrease. When the average partial correlation reaches its minimum, the number of 

factors that have been partialed out at that point are retained (Ruscio & Roche, 2012).  

 The rationale behind this method is that as common variance is removed from the 

model, the MAP criterion will decrease. However, once there is only unique variance left 

in the model, the MAP criterion will begin to increase. If one examines the equation for 

calculating a partial correlation, this relationship may be observed. In particular, the only 

circumstance where the partial correlation may increase is when the denominator 

decreases faster than the numerator. Such an event would occur, in these circumstances, 

only if a component or factor had a strong correlation with one variable and a weak 

correlation with all other variables, signifying a unique component or factor (Velicer, 

Eaton, & Fava, 2000). Significantly, the MAP method of identifying the correct number 

of factors to retain has been shown to be generally accurate, and applicable to any kind of 

covariance matrix (Zwick & Velicer, 1986). Zwick and Velicer found, in a test of five 

different methods of determining the number of factors to retain, that MAP was the 

second most accurate method. Their conclusions about MAP were that although it is 

accurate, it has a tendency to underestimate and may ignore smaller major components 

(Zwick & Velicer, 1986). Other studies have suggested that MAP is negatively biased 

and significantly influenced by correlations between factors (Pearson et al., 2013), and is 

most effective for small sample sizes (Zorić & Opačić, 2013). 
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 Bartlett’s Test. Unlike the other methods of determining the correct number of 

factors to extract from a factor analysis, Bartlett’s test is a hypothesis test (Zwick & 

Velicer, 1986). Bartlett’s test evaluates the null-hypothesis that all of the remaining 

eigenvalues in the model are equal starting with the first factor. If the null is rejected the 

eigenvalue of the next factor is tested. This continues until the test fails to reject the null. 

Then, all of the factors that were tested before the failure to reject the null are retained in 

the model (Hayton et al., 2004). Critically, it has been found that the accuracy of 

Bartlett’s test is highly variable. For example, Zwick and Velicer (1986) found that 

factors such as sample size, alpha level, and the presence of unique variables, all had a 

significant impact on the accuracy of Bartlett’s test.  

 Having reviewed many of the most common methods for determining the number 

of factors, it should be clear that there has been a need for an accurate and reliable 

method. Many factor identification methods are either subjective, inaccurate, or greatly 

influenced by fluctuations in the parameters of data such as factor loadings, sample size, 

number of variables and number of factors. Thus, it is suggested to use different methods 

in different scenarios, and to use multiple methods in order to verify solutions. While this 

kind of strategy may be effective, it adds even more decisions to an already very complex 

statistical analysis. Further, the decisions made during a factor analysis ultimately can 

influence the final outcome (Fabrigar et al., 1999). Adding even more decisions can 

negatively impact accuracy and replicability of factor solutions. In order to address many 

of these concerns, Horn (1965) developed a procedure called parallel analysis, which has 

shown great promise in the field of psychometrics.  
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Parallel Analysis 

 Parallel analysis has been shown repeatedly to be the most accurate method for 

correctly identifying the number of factors in a dataset (Velicer et al., 2000). Moreover, 

parallel analysis outperforms other methods across variations in sample size (Green, 

Thompson, Levy, & Lo, 2015), factor loadings (Buja & Eyuboglu, 1992), number of 

variables per factor (Crawford et al., 2010), and even distributional forms of data (Dinno, 

2009a). Parallel analysis originated from Horn (1965), who developed the procedure as 

an improvement upon the eigenvalue greater than one rule. Horn argued that, although a 

population matrix of uncorrelated data will have eigenvalues of 1.0 (in a principal 

components analysis), a sample of data taken from that population will have eigenvalues 

greater than 1.0 for at least one factor simply due to chance. As such, it is a mistake to 

assume, as the eigenvalue greater than one rule suggests, that any eigenvalue which is 

greater than one represents a legitimate component (Franklin, Gibson, Robertson, 

Pohlman, & Fralish, 1995). Horn suggested that modeling the influence of sampling error 

on the size of eigenvalues could prove to be a more rational approach to factor 

identification. Thus, parallel analysis was developed with the intention of taking 

sampling error into account in order to more accurately identify legitimate factors (Horn, 

1965).   

 Parallel analysis addresses the issue of sampling error by comparing the 

eigenvalues obtained from an analysis of real data to eigenvalues obtained from an 

analysis of simulated data. To conduct a parallel analysis, a population matrix is 

generated with the same parameters as the correlation matrix under analysis. Specifically, 

the simulated matrix has the same sample size and number of variables. A certain number 
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of sample matrices are then generated from this population matrix and are subsequently 

factor analyzed. The eigenvalues taken from the random sample matrices are then turned 

into a frequency distribution of eigenvalues for each factor. Simultaneously, the real 

correlation matrix is subjected to a factor analysis. The eigenvalues for each factor from 

the real data are then compared to the median (50th percentile) eigenvalue from the 

respective random data eigenvalue frequency distribution. If the eigenvalue of the real 

factor is greater than the 50th percentile eigenvalue of the random data, then the factor is 

retained. If the eigenvalue of the real factor is less than the 50th percentile eigenvalue of 

the random data, then the factor is not retained, and no more factors are extracted (Ford et 

al., 1986).   

Issues with Parallel Analysis  

 Even though parallel analysis is suggested to be the most accurate method of 

identifying the correct number of factors from a factor analysis (Hayton et al., 2004; 

Weng, 2005; Zwick & Velicer, 1986), there are still numerous variables which can 

influence its accuracy. Some of the most important of these influences are sample size, 

the number of factors, factor loadings, the number of variables, correlations between 

factors, and the interdependence of eigenvalues. 

 Sample size. The first issue with parallel analysis is that of sample size. Although 

sample size is a factor analysis issue, it also impacts the accuracy of parallel analysis. The 

accuracy of parallel analysis has been shown in various situations to decrease as sample 

size decreases (Crawford et al., 2010; Green et al., 2015). Zwick and Velicer (1986) 

found that, regardless of the number of variables, as sample size decreased the accuracy 

of parallel analysis also decreased. Zorić and Opačić (2013) found similar results in a 
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study comparing five component retention criteria, including parallel analysis, across 

variations in sample size, the number of variables, the number of components, and the 

percentage of error variance. The authors found that, all else being equal, at small sample 

sizes (i.e., N = 50) parallel analysis was less accurate than other methods such as MAP. 

Much of this variability in performance due to sample size can be attributed to sampling 

theory; as sample sizes increase the standard deviation of the sampling distributions 

decrease. As sample size increases, there is inherently less variation in the sampling 

distribution which allows for more accurate comparisons between the simulated 

eigenvalues and the real data eigenvalues.  

 Sample size also influences parallel analysis accuracy through its effects on 

eigenvalue size. For example, Turner (1998) found that sample size may significantly 

influence the size of noise eigenvalues following the identification of a real factor. In a 

study of the size of noise eigenvalues across variations in sample size and percent of 

common variance, Turner found that at low sample sizes (i.e., N = 100), as the amount of 

common variance increased the size of subsequent eigenvalues decreased sharply. 

However, for large sample sizes (i.e., N = 1000), as the amount of common variance 

increased the subsequent eigenvalues decreased only slightly (1998). Importantly, 

traditional parallel analysis does not control for the amount of variance accounted for by 

the preceding factors. Considering this fact within the context of the Turner (1998) study, 

traditional parallel analysis may be prone to underextraction especially at small sample 

sizes.  

 Number of variables. Parallel analysis has also been suggested to be influenced 

by the number of variables. For example, Green, Thompson, Levy, and Lo (2012) 
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performed a Monte Carlo study of parallel analysis accuracy under various conditions. 

The authors were able to demonstrate that as the number of variables per factor increased 

from four to eight, the accuracy of parallel analysis decreased. Crawford et al. (2010) 

found similar results in their Monte Carlo study of different parallel analysis criteria. In 

the Crawford et al. study, the authors demonstrated that when comparing three different 

eigenvalue criteria, the conventional 50th percentile criterion became less accurate as the 

number of variables per factor increased from three variables per factor to six. Further, in 

a study investigating the accuracy of five different factor retention criteria across 

variations in sample size (i.e., 50, 100, 200, 300, or 600), number of factors (i.e., 1, 2, 3, 

5, 8, or 10), number of variables (i.e., 9, 15, 22, 35, or 40), and amount of error variance 

(i.e., 30, 40, 50, 60, 70, or 80), Zorić and Opačić (2013) found that as the number of 

variables increased, the propensity for parallel analysis to underextract increased. The 

results of their study also suggested that as the factor to variable ratio increases, accuracy 

of parallel analysis decreases. One possible explanation for such behavior is that well 

defined factors usually consist of a relatively small number of variables with high 

loadings on their respective factor and low loadings on the other factors (Zwick & 

Velicer, 1986). Having a large number of variables per factor leads to poorly defined 

factors which are harder to identify through parallel analysis.  

 Number of factors. Another influence on the accuracy of parallel analysis is the 

number of factors present. Although in reality a scientist or practitioner will not know 

how many factors are present, especially when performing an exploratory factor analysis, 

research has studied matrices of known factor structure. In these studies, such as that by 

Crawford et al. (2010), the authors have suggested that the accuracy of parallel analysis is 
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negatively influenced by the number of factors present such that parallel analysis will be 

less accurate in identifying the correct number of factors when there are more factors in 

the dataset. For example, in a study by Beauducel (2001) which investigated the accuracy 

of parallel analysis on orthogonal and oblique solutions, it was found that although 

increasing the number of factors had no impact on the accuracy of parallel analysis on 

orthogonal solutions, increasing the number of factors within oblique solutions was 

coupled with noticeable decreases in accuracy. 

 Factor loadings. The factor loadings, or how much variance in a variable is 

accounted for by a specific factor, may also influence the accuracy of parallel analysis 

(Crawford et al., 2010). Under ideal circumstances, the factors in a factor analysis are 

well defined. This means that there are relatively few variables defining each factor; these 

variables have strong loadings on the factor and have weak loadings on the other factors 

(Zwick & Velicer, 1986). In a study by Zwick and Velicer (1986), the authors evaluated 

the accuracy of numerous criteria for identifying the number of factors under different 

sample sizes (i.e., twice or five times the number of variables), factor loadings (i.e., .50 or 

.80), and numbers of variables (i.e., 36 or 72). Critically, their study suggested that the 

ability of parallel analysis to identify the correct number of factors increased as factor 

loadings increased. Crawford et al. (2010) also found evidence suggesting that the 

accuracy of parallel analysis may increase as factor loadings increase. However, it is not 

uncommon for variables to load moderately on numerous factors. These cross loaded 

variables make it notably more difficult to identify the correct number of factors.  

 Correlations between factors. One of the greatest influences on the accuracy of 

parallel analysis for determining the number of factors from a factor analysis is the 
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correlation between factors. In the broadest sense, factors correlate when variables in the 

dataset are correlated with other variables. Several studies have shown that high 

correlations among factors leads to inaccuracies (Crawford et al., 2010; Green et al., 

2015). For example, in the Crawford et al. (2010) study of parallel analysis methods for 

determining the number of factors, the authors found that both PCA and principal axis 

factoring performed worse when there were high (i.e., .7) correlations among factors as 

well as small (i.e., .4) factor loadings. They also found that criteria, such as the 95th 

percentile eigenvalue criterion, had increased levels of underextraction as the correlations 

between factors increased (Crawford et al., 2010). It is suggested that the correlation 

between factors leads to underextraction because eigenvalues are interdependent (Hayton 

et al., 2004). Specifically, the size of an eigenvalue is determined by the size of other 

eigenvalues. Thus, if factors are highly correlated, the size of the eigenvalues will be 

limited, increasing the likelihood of underextraction (Turner, 1998).  

 Joint distributions. Another issue which has recently received increased 

attention is determining the correct reference distribution to be used for parallel analysis. 

Many argue that the size of the initial eigenvalue in traditional parallel analysis 

influences the size of subsequent eigenvalues (Buja & Eyuboglu, 1992; Green, Xu, & 

Thompson, 2017; Turner, 1998). This arises from the fact that each variable contributes a 

specific amount of variance. As such, the sum of the contributed variance from all 

variables is equal to the total variance which is analyzed. When one factor accounts for a 

significant proportion of this total variance, the eigenvalues of the subsequent factors will 

naturally decrease due to the limited amount of variance left to account for (Turner, 

1998). Traditional parallel analysis treats each factor’s eigenvalue distribution as a 
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completely separate analysis, without accounting for any influence that the previous 

factor may have had. Importantly, this can lead to underextraction as the random sample 

distribution will most likely have larger values than the eigenvalues of factors from real 

data which follow a large factor (Turner, 1998). While this assumption is appropriate for 

the first eigenvalue, for subsequent eigenvalues the traditional method which assumes 

that there are no factors present is inappropriate.  

 In order to correct for this, revised forms of parallel analysis have been suggested 

(Green et al., 2015; Green et al., 2017). These forms of parallel analysis operate under the 

assumption that all of the eigenvalues are interdependent. Thus, once the first factor has 

been identified, the subsequent eigenvalue distribution takes into account this factors 

presence, reducing the amount of variance available to provide a more accurate 

estimation for comparison (Green et al., 2015). These methods have been found to be 

somewhat more accurate than the traditional method under certain conditions. For 

example, Green et al. (2015) found that revised parallel analysis performed better than 

traditional parallel analysis when there were highly correlated factors, weak factor 

loadings, or a high number of variables per factor. Significantly, they also found that 

while the accuracy of traditional parallel analysis decreased with increases in sample size, 

the accuracy of revised parallel analysis increased. 

 Criteria used for factor identification in parallel analysis. The final issue 

related to parallel analysis to be discussed is that of the eigenvalue criteria that are used. 

In Horn’s (1965) seminal article he proposed that the eigenvalue from the real data be 

compared to the median (i.e., 50th percentile) eigenvalue of the random data. It has been 

suggested, however, that this criterion can lead to overextraction, particularly through the 
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retention of minor components (Buja & Eyuboglu, 1992). In response, more stringent 

criteria have been proposed such as the use of the 95th or 99th percentile eigenvalue. The 

95th percentile criterion was first suggested by Glorfeld (1995) who reasoned that Horn’s 

(1965) parallel analysis tended to extract too many or poorly defined factors. He 

postulated that implementation of a more stringent criterion could correct for this 

tendency for parallel analysis to overextract. 

  In many ways, the 95th percentile criterion emulates hypothesis testing (Weng, 

2005). As such, the 95th percentile criterion has been regarded as an effective heuristic, 

though not a statistically rigorous model (Saccenti & Timmerman, 2017). For example, 

an eigenvalue is compared to a frequency distribution and if this eigenvalue is greater 

than the 95th percentile eigenvalue then the factor is retained. In this instance we accept 

that there is a 5% chance that the factor is actually the result of sampling error. With this 

logic, it is clear as to why the 95th percentile criterion might be preferred. Using the same 

logic, when considering the 50th percentile eigenvalue we are accepting that there is a 

50% chance that the factor is due to sampling error. Fundamentally this means that the 

median eigenvalue criterion makes it more likely that factors which are due to sampling 

error are retained (Green et al., 2015).   

 There have been a number of studies which have compared the median eigenvalue 

criterion to the 95th and even 99th percentile eigenvalue criteria. For example, Glorfeld 

(1995) was able to demonstrate in his seminal study that, when factors were poorly 

defined, the median eigenvalue led to overextraction, while this was not so when using 

the 95th or 99th percentile criteria. Crawford et al. (2010) compared the median and 95th 

percentile eigenvalue criteria, as well as principal axis factoring and PCA, across various 
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factor loadings, numbers of factors, and sample sizes. The authors found that the 95th 

percentile criterion outperformed the median criterion as sample size and items per factor 

increased, as well as when the factor loadings were medium to low. However, when there 

were small sample sizes, high correlations between factors, or few variables per factor, 

the median eigenvalue criterion performed better than the 95th percentile eigenvalue 

criterion (Crawford et al., 2010). Green et al. (2015) also compared the 95th percentile 

criterion against the median eigenvalue criterion by testing them on different sample 

sizes, numbers of factors, factor loadings, and factor correlations. The authors found that 

the 95th percentile criterion was generally most effective across all conditions; however, 

accuracy was impacted by the definition of the factors. Further, in a test of parallel 

analysis on unidimensional binary data, Weng (2005) found that the 95th, and even more 

stringent 99th percentile eigenvalue criteria, were almost always 100% accurate and 

greatly outperformed the median eigenvalue criterion.  

 Although there have been several findings in support of using more stringent 

criteria (Cokluk & Kocak, 2016; Horn, 1965; Peres-Neto et al., 2004), troublesome issues 

remain with using criteria such as the 95th percentile eigenvalue. For example, Turner 

(1998) cautions that using this criterion may lead to overestimation of the size of noise 

eigenvalues. Noise eigenvalues correspond with factors which are analyzed after a real 

factor has been identified. Turner argues that this is especially true for traditional parallel 

analysis which does not treat the eigenvalues as interrelated. Also, studies such as that by 

Steger (2010), have shown that the 95th percentile eigenvalue criterion still is influenced 

by factors such as high commonalities and correlations between factors. In summation, 

even though parallel analysis combined with the 95th percentile eigenvalue criterion 
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seems to be the most accurate method of identifying the correct number of factors to date, 

ways to make this method more robust while also increasing its accuracy are needed.  

The Present Study 

 The present study investigated the efficacy of an additional criterion to be used in 

conjunction with eigenvalue percentile criteria. This additional criterion demands that an 

eigenvalue from the true data be greater than the specified percentile eigenvalue from the 

random distribution by a certain margin. For this study, the performance of a 10% margin 

was compared against the traditional simple difference standard of parallel analysis. 

Further, these standards (any difference vs 10% difference) were combined with four 

different eigenvalue criteria (50th, 90th, 95th, 99th), yielding eight different standards for 

determining the number of factors with a parallel analysis. Previous research (Matsumoto 

& Brown, 2017) investigated the efficacy of a margin criterion in conjunction with 

eigenvalue criteria on a correlation matrix designed to engender overextraction. The 

authors found that the most stringent criteria (i.e., 99th percentile eigenvalue combined 

with 10% margin) was more accurate in identifying the number of factors in comparison 

to all other criteria. However, this rule will not likely be the most effective standard in 

correlation matrices designed to engender underextraction.  

 In correlation matrices which engender underextraction, generally, there is a 

strong correlation among factors. This reduces the probability of large eigenvalues as 

variance is distributed from the variables across the factors. Peres-Neto et al. (2004) 

demonstrated this phenomenon in an investigation of 10 stopping rules on principal 

component analysis. Of the methods tested, the authors examined the accuracy of parallel 

analysis in conjunction with the 95th percentile criterion and 50th percentile criterion. The 
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authors found that, when the components were highly correlated, the median eigenvalue 

outperformed the 95th percentile criterion. The authors suggested that a criterion which 

was greater than the median, but less than the 95th percentile would maximize the 

probability of identifying the correct number of non-trivial factors when correlations 

between components were present while subsequently reducing the number of trivial 

components retained in the presence of uncorrelated variance (Peres-Neto et al., 2004). 

Therefore, it is hypothesized that less stringent criteria than those used by Matsumoto and 

Brown (2017) will be the most accurate. In particular, it is postulated that a slightly less 

stringent percentile criterion (i.e., 90th percentile) with an absolute margin criterion will 

yield the correct number of factors more often than will other standards. The reason for 

this hypothesis is that the correlation between factors should reduce the size of the 

eigenvalues in the real data, necessitating less stringent criteria to prevent underfactoring.  

Hypothesis: A 90th percentile eigenvalue criterion in addition to an absolute margin 

criterion will identify the correct number of factors at a higher rate than will any other 

combination of criteria. 

 The study consisted of a 3 (Sample Size) x 2 (Number of Iterations) factorial 

design with 2 (Margin Criteria) x 4 (Eigenvalue Criteria) decision rules investigated for 

each condition. The accuracy of these decision rules was tested using a Monte Carlo 

simulation. This simulation tested the various criteria using a population correlation 

matrix which was designed to elicit underextraction. In order to facilitate underextraction, 

the population correlation matrix was created to have a high correlation between factors. 

This effect was further tested upon variations in sample size and number of iterations of 
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the parallel analysis. The accuracy of the various criteria, determined by their ability to 

identify the predefined factor structure, was then compared.  

Method 

Population Generation  

 A dataset, consisting of 1,000,000 cases with scores on 12 variables was 

generated in order to create a population correlation matrix (Table 1) designed to 

engender underextraction in samples. The correlation matrix consisted of a two factor 

structure. Within this matrix, each of the factors was defined by five variables. The 

correlation between factors was .45. The remaining two variables were uncorrelated with 

all variables.  

Table 1. 

Population Correlation Matrix 

 

 

 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0 .35 .35 .35 .35 .25 .25 .25 .25 .25 .00 .00 

2  1.0 .35 .35 .35 .25 .25 .25 .25 .25 .00 .00 

3   1.0 .35 .35 .25 .25 .25 .25 .25 .00 .00 

4    1.0 .35 .25 .25 .25 .25 .25 .00 .00 

5     1.0 .25 .25 .25 .25 .25 .00 .00 

6      1.0 .35 .35 .35 .35 .00 .00 

7       1.0 .35 .35 .35 .00 .00 

8        1.0 .35 .35 .00 .00 

9         1.0 .35 .00 .00 

10          1.0 .00 .00 

11           1.0 .00 

12            1.0 
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Procedure  

The experiment adhered to the following procedure: 

1. A sample of 120, 240, or 480 cases was randomly drawn from the population. 

2. An exploratory factor analysis (common factor model) was performed on the 

sample data.  

3. A parallel analysis of 200 or 500 replications was conducted on a sample of 

random data of the same size and with the same number of variables as the 

sample data.  

4. The eigenvalues from the 50th, 90th, 95th, or 99th percentile from the parallel 

analysis were compared to the eigenvalues obtained from the factor analysis of 

the sample data. 

5. The number of factors was then determined by applying a margin criterion (e.g., 

simple absolute difference or 10%). The number of factors was defined as the 

highest factor in the sample data which had a positive eigenvalue greater than the 

corresponding random parallel analysis eigenvalue. In the event that the 

eigenvalue of a lower factor from the sample data was not greater than the 

eigenvalue from the random parallel analysis data, but the next sample factor was, 

then all factors after the factor which was not greater than the random parallel 

analysis eigenvalue were ignored.  

6. The process was repeated 1000 times at which point the results were compared 

against the known population value of two factors. 

 

.  
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Results  

The purpose of the current study was to investigate the accuracy of various 

eigenvalue percentile criteria when used in conjunction with a margin criterion on a 

population matrix designed to engender underextraction in samples. In order to evaluate 

the accuracy of the decision rules, a frequency analysis was performed to determine the 

percentage of iterations where the criteria correctly identified, over-identified, or under-

identified, the predefined factor structure (i.e., two factors). These percentages, across 

variations in sample size and number of iterations, are presented below (Table 2 displays 

the results of the percentile criteria in conjunction with an absolute margin; Table 3 

presents the accuracy of the percentile criteria in conjunction with a 10% margin). Due to 

the number of comparisons in the present study, only the most relevant results will be 

discussed. 

 Sample Size Comparisons  

 At the smallest sample size (N = 120), all criteria performed relatively poorly, 

with the best results identifying the correct number of factors in approximately 50% of 

the cases. The sample of (N = 120) also led to significant amounts of underextraction for 

any standard greater than the 50th percentile. Less stringent criteria seemed to be the most 

accurate under these conditions, with the 50th percentile criterion being generally more 

accurate at small sample sizes regardless of margin. Given the generally poor accuracy of 

any standard at this sample size, no further attention will be given to the results of this 

condition. 

 With a sample size of (N = 240), there was a noticeable increase in the accuracy 

of all criteria. Interestingly, at this sample size, there was still a substantial amount of 
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underextraction across the various decision rules. The best results were found with the 

90th and 95th percentile criteria, with the 90th percentile performing only marginally better 

than the 95th. Even so, the highest level of accuracy was only 83%.  

 At the largest sample size (N = 480), there was again a noticeable increase in the 

accuracy of the criteria. Notably, the 99th, 95th, and 90th percentile criteria yielded very 

accurate results (correct factor identification rates greater than 95%), with the 95th and 

99th slightly outperforming the 90th with an absolute margin, and the 95th and 90th 

performing slightly more accurately with a 10% margin. With a sample size of (N = 480) 

there was very little, if any, underextraction. Generally, the results show that larger 

sample size is better regardless of standard used with excellent success rates (> 90%) for 

any percentile in the 90s (i.e., 99th, 95th, 90th) with or without a 10% margin 

Iteration Comparisons  

 Regardless of condition, the impact of the number of iterations on the accuracy of 

the various decision rules was trivial. As such, it is safe to conclude that no more than 

200 iterations are necessary for parallel analyses matching the conditions of this study.   

Percentile Criteria Comparisons  

 Across all conditions of the study, less stringent criteria (50th, 90th) generally 

outperformed the most stringent (95th, 99th) criteria regardless of margin both in terms of 

accuracy and percentage of underextraction. Only at large sample sizes (N = 480) did the 

most stringent criteria perform similar to, or better than, the less stringent criteria. In all 

but the largest sample size (N = 480), the 99th percentile was the least accurate at 

identifying the number of factors. Further, in every condition the 99th percentile led to the 

highest rates of underextraction.  
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Margin Criteria Comparisons  

 For the (N = 240) sample size, the absolute margin criterion in combination with 

the 99th, 95th, and 90th percentile criteria was the most accurate. The only percentile 

criterion used in conjunction with a 10% margin criterion to perform similarly to, or 

better than, the criteria with an absolute margin at this sample size was the 50th percentile 

rule. At the largest sample size (N = 480), the 10% margin in combination with the 

percentile criteria was as accurate as the absolute margin for the 90th, 95th, and 99th 

percentiles and was more accurate at the 50th percentile. A notable pattern here was that 

as sample size increased the difference in performance between the two margin criteria 

decreased significantly. At the largest sample size (N = 480), this effect was manifested 

through nominal differences in performance between the two margin criteria across all of 

the percentile criteria.  
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Table 2.  

Accuracy Percentages of Percentile Criteria in Conjunction with an Absolute Margin 

Note: Percentages reflect the number of iterations out of 1000 where the specified rule identified the same number of factors as in the 

population matrix (correct), fewer factors than in the population matrix (under), or more factors than were present in the 

population matrix (over). 

   
Absolute Margin 

Iterations 
Sample 

Size 
 

99th 
 

95th 
 

90th  50th  

Under Correct Over 
 

Under Correct Over 
 

Under Correct Over 
 

Under Correct Over 

200 120  69.6% 30.2% 0.2%  53.8% 44.4% 1.8%  45.2% 50.2% 4.6%  18.6% 56.3% 25.1% 

500 120  73.5% 25.9% 0.6%  57.4% 40.2% 2.4%  50.1% 45.6% 4.3%  20.6% 54.4% 25.0% 

                  

200 240  29.7% 69.2% 1.1%  17.1% 80.3% 2.6%  12.3% 83.3% 4.4%  2.6% 75.8% 21.6% 

500 240  29.0% 70.2% 0.8%  17.1% 80.6% 2.3%  11.7% 83.5% 4.8%  2.2% 72.4% 25.4% 

                  

200 480  1.3% 98.2% 0.5%  0.3% 98.3% 1.4%  0.2% 96.6% 3.2%  0.0% 83.6% 16.4% 

500 480  0.7% 98.8% 0.5%  0.1% 98.2% 1.7%  0.0% 96.7% 3.3%  0.0% 84.9% 15.1% 
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Table 3.  

Accuracy Percentages of Percentile Criteria in Conjunction with a 10% Margin 

Note: Percentages reflect the number of iterations out of 1000 where the specified rule identified the same number of factors as in the 

population matrix (correct), fewer factors than in the population matrix (under), or more factors than were present in the 

population matrix (over). 

 

   
10% Margin 

Iterations 
Sample 

Size 
 

99th 
 

95th 
 

90th  50th  

Under Correct Over 
 

Under Correct Over 
 

Under Correct Over 
 

Under Correct Over 

200 120  84.5% 15.4% 0.1%  72.7% 27.1% 0.2%  63.0% 36.1% 0.9%  32.4% 55.4% 12.2% 

500 120  85.6% 14.4% 0.0%  73.9% 25.6% 0.5%  66.7% 31.8% 1.5%  35.3% 52.1% 15.6% 

                  

200 240  48.5% 51.2% 0.3%  31.3% 67.5% 1.2%  22.7% 75.6% 1.7%  5.8% 83.6% 10.6% 

500 240  47.0% 53.0% 0.0%  30.4% 68.7% 0.9%  22.0% 76.6% 1.4%  5.6% 81.9% 12.5% 

                  

200 480  2.8% 97.1% 0.1%  1.4% 98.2% 0.4%  0.7% 98.6% 0.7%  0.1% 92.1% 7.8% 

500 480  3.1% 96.8% 0.1%  0.8% 98.9% 0.3%  0.4% 98.7% 0.9%  0.0% 92.7% 7.3% 
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Discussion 

 This study investigated the influence of a correlation matrix designed to elicit 

underextraction on the accuracy of various parallel analysis eigenvalue decision rules 

when used in conjunction with a margin criterion. It was hypothesized that because the 

correlation matrix was designed to elicit underextraction, a less stringent criterion (i.e., 

90th percentile criterion with absolute margin) would be the most accurate across 

conditions. Our results partially support this hypothesis. Although the 90th percentile 

criterion with an absolute margin was not the most accurate decision rule across all 

conditions, less stringent criteria (i.e., 90th, 50th) were generally more accurate. In 

Matsumoto and Brown’s (2017) study on the accuracy of parallel analysis criteria on a 

matrix designed to elicit overextraction, they found the most stringent criterion (i.e., 99th 

percentile with a 10% margin) to be the most accurate. The results of our study support 

our hypothesis that an alternative, less stringent criterion would be most accurate in 

identifying the number of factors in a correlation matrix engendering underextraction. 

Importantly, this demonstrates that the most effective decision rule for data which 

engender overextraction is not necessarily the most accurate for data which engender 

underextraction. Such findings emphasize the fact that there is not a singular universal 

decision rule to be used in all scenarios. More specifically, it seems imperative for those 

performing parallel analyses to determine the number of factors to take the intricacies of 

their dataset into consideration when deciding on a criterion to use. 

 Our results support the findings of previous research on a number of different 

aspects. In particular, we were able to demonstrate, much like Glorfeld (1995) that, in 

general, a more stringent criterion than Horn’s original 50th percentile rule is needed to 
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improve the accuracy of factor identification. Further, these results reiterate the findings 

of Peres-Neto et al. (2004) and Crawford et al. (2010), who found that less stringent 

criteria were more accurate in the presence of correlated factors. Peres-Neto et al. (2004) 

suggested that a criterion that was more stringent than the 50th percentile yet less 

stringent than the 95th percentile (such as the 80th percentile) would be the most effective 

in the presence of highly correlated variance. Our results lend support to this suggestion. 

Our findings also coincide with those of Green et al. (2012) who found that less stringent 

criteria are more accurate at low sample sizes (i.e., N = 100) and, in particular, when 

there are two highly correlated factors or low factor loadings.  

Limitations  

 The main limitation of the present study was that traditional parallel analysis was 

used. As mentioned by Turner (1998), a significant issue with traditional parallel analysis 

is that the distributions of eigenvalues following a legitimate factor are not adjusted 

according to the variance accounted for by that factor. In other words, a previously 

identified factor will account for a significant amount of the available variance thus 

reducing the amount of variance that can be assigned to subsequent factors. That being 

said, traditional parallel analysis treats the test of each factor as unrelated. Critically, this 

effect can lead to underextraction under certain circumstances (Buja & Eyuboglu, 1992). 

There are revised forms of parallel analysis available which use the appropriate reference 

distribution, and studies have been conducted demonstrating the efficacy of these 

methods (Green et al., 2012; Green et al., 2017); however, they are still relatively nascent 

and computationally intensive. In spite of this theoretical limitation, the results in some 

conditions indicated factor identification levels so high (correct number of factors 
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identified over 95% of the time) that any improvement offered by modified parallel 

analysis would be minimal in those situations.  

 Another potential limitation is that only one population matrix was studied. It is 

very possible that with matrices containing different numbers of factors or different 

correlations between factors, outcomes could have been substantially different. To 

partially address this limitation, the population matrix used for the study was designed to 

model many of the common issues faced when performing parallel analyses. Other 

matrices should be subsequently explored. 

Future Research 

 Reflecting on the current findings, there are a number of areas that future research 

should investigate. One such area is the accuracy of margin criterion in conjunction with 

the various percentile criteria under different conditions such as number of factors, 

correlations between factors, and numbers of variables per factor. Such research could 

further support the results of this study, or identify boundary conditions which explain the 

behavior of these decision rules. Future research should also seek to investigate the 

accuracy of these rules using the revised method of parallel analysis. Very little research 

has investigated these relatively novel methods, so developing a greater understanding of 

their behavior and or influences is of great importance. Finally, the results suggest that in 

conditions engendering underextraction, a criterion which is greater than the 50th 

percentile but less than the 90th percentile might be the most effective. Future research 

should investigate other percentile standards which may be used in order to maximize 

accuracy in identifying the number of factors under these conditions.  
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Conclusion 

 Through a Monte Carlo study, we were able to demonstrate that, under conditions 

which illicit underextraction, a less stringent criterion is generally more accurate for 

identifying the number of factors when performing a parallel analysis. The present study 

also adds to the body of research demonstrating that there is not one universal decision 

rule which can be used in all situations. Rather, our results suggest that one should be 

cognizant of the intricacies of their dataset when deciding on the decision rule to use 

when performing a parallel analysis. Finally, the results of our study suggest that parallel 

analysis performs poorly at small sample sizes (10:1 subjects to variables ratio), with 

large amounts of underextraction, regardless of criteria. Alternatively, at large sample 

sizes (40:1 subjects to variables ratio), all factor identification criteria achieved optimal 

performance (i.e., > 90% factor identification), except for the 50th percentile criterion. 

Furthermore, the additional use of a 10% margin does not seem to influence the accuracy 

of the percentile criteria at large sample sizes. Similarly, at medium sample sizes (20:1 

subjects to variables ratio), our results suggest that moderate percentile criteria (i.e., 90th 

and 95th) without the use of a 10% margin are the most accurate. Overall, these results 

indicate that in conditions which engender underextraction, an additional 10% margin 

criterion does not seem to provide any additional utility.  
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