Validity and Reliability of Wahoo KICKR Cycle Ergometer

ZACHARY M. GIN, JONUS RODRIGUEZ, and DUSTIN P. JOUBERT

Human Performance Lab; Department of Kinesiology and Health Science; Stephen F. Austin State University; Nacogdoches, TX

Category: Undergraduate

Advisor / Mentor: Joubert, Dustin (joubertd@sfasu.edu)

ABSTRACT

Cycle ergometers (CE) allow for the measurement of work and power during exercise. The Wahoo KICKR is an electronically-braked CE commonly used by coaches and athletes for exercise testing and training. PURPOSE: The purpose of this study was to determine the validity and reliability of the Wahoo KICKR CE for the measurement of power. METHODS: 12 recreationally active college students completed 3 separate workout sessions with 2 sessions on the Wahoo CE and 1 session on a mechanically-braked Monark CE. The order of sessions was randomized and counter-balanced. Seat height, handlebar height, and handlebar reach were also matched across trials. During the exercise sessions oxygen consumption (VO₂) and heart rate (HR) were continuously measured. Following a 10-minute warmup, subjects completed an incremental exercise test consisting of 4, 5-minute stages starting at a work rate of 50 watts (W) and increasing by 50 W with each stage up to 200 W. Cadence was held at 71.5 revolutions per minute for all stages and trials. Validity was assessed by a dependent sample T-test comparing the first Wahoo session to the Monark trial. Reliability was assessed by a dependent sample T-test comparing the two Wahoo trials. **RESULTS**: HR and VO2 data across all trials and stages are displayed in the table. Both VO2 and HR were slightly lower when comparing the Wahoo to the Monark, but VO₂ and HR were consistent when comparing the two Wahoo trials. CONCLUSION: This study showed that the Wahoo KICKR may slightly overestimate the work rate, particularly at higher workloads, but it is a consistent and reliable device. Based on these findings, coaches and athletes can have confidence incorporating the Wahoo CE into training programs and fitness testing.

~	50 W (n=12)		100 W	100 W (n=12)		150 W (n=12)		200 W (n=7)	
	VO ₂	HR	VO ₂	HR	VO ₂	HR	VO ₂	HR	
Wahoo 1	12.3	101	17.6	118	24.6	145	34.2	160	
	± 1.4	± 17	± 2.3	±17	± 3.5	± 18	± 5.2	± 11	
Monark	13.7	102	19.5	122.8	27.1	152	38.1	167	
	±1.6	±14	± 2.0	±18	± 3.4	± 20	± 6.9	± 14	
Wahoo 2	12.3	98	17.6	118	24.3	144	34.5	161	
	±1.5	±9	± 2.6	±11	± 3.4	± 12	± 4.6	± 10	
Validity P-value	0.004*	0.605	<0.001*	0.009*	<0.001*	0.028*	0.011*	0.140	
Reliability P-value	0.886	0.848	0.990	0.131	0.434	0.317	0.472	0.886	

*p < 0.05

All values represent mean \pm SD

International Journal of Exercise Science