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ABSTRACT 
International Journal of Exercise Science 11(4): 585-597, 2018. There are conflicting suggestions 
regarding the most valid resistance (3-5% of body weight) to use for the critical power (CP) 3-min all-out (CP3min) 
test to estimate CP and anaerobic work capacity (AWC). The purpose of this study was to determine if the CP and 
AWC estimates from the CP3min test were affected by the percentage of body weight used to set the resistance on a 
Monark cycle ergometer. Ten recreationally trained participants (mean ± SD: Age: 22.2 ± 2.2 yrs.) completed the 
CP3min test at resistances of 4.5% (CP4.5%) and 3% (CP3%) of body weight to determine the CP and AWC. There 
were no significant differences between the CP4.5% (167 ± 34 W) and CP3% (156 ± 36 W) estimates. The AWC3% (5.6 
± 2.5 kJ) estimates were significantly lower than the AWC4.5% (9.0 ± 4.0 kJ). The CP and AWC estimates from the 
CP4.5% were consistent with values reported in the literature, however, the AWC estimate from the CP3% was 
lower than typically reported. These findings suggested that a resistance set at 3% of body weight for the CP3min 
test may be too low to accurately estimate AWC, but 3% and 4.5% resulted in the same estimation of CP. Thus, 
the principal finding of this study was that a resistance of 4.5% of body weight for CP3-min in recreationally trained 
participants resulted in more accurate estimates of AWC, compared to a resistance of 3%, and supports the use of 
4.5% body weight resistance to measure both CP and AWC.  
 
KEY WORDS: Aerobic exercise, anaerobic exercise, bicycling, exercise evaluation  
 
INTRODUCTION 
 
The critical power (CP) concept developed (16) for a single muscle or muscle group and 
applied to whole-body cycle ergometry exercise (17), provides estimates of two separate 
parameters, CP and the anaerobic work capacity (AWC). The critical power represents the 
highest sustainable power output and AWC the total amount of work that can be performance 
above CP using only energy sources stored within the working muscle (phosphocreatine, 
adenosine triphosphate, glycogen, and the oxygen bound to myoglobin) (17). Theoretically, CP 
demarcates the heavy and severe exercise intensity domains (3,12) and reflects the highest 
power output where 𝑉O2 and blood lactate reach steady state values (12). Critical power is a 
more important predictor of endurance performance than the gas exchange threshold (GET) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TopSCHOLAR

https://core.ac.uk/display/212127344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Int J Exerc Sci 11(4): 585-597, 2018 

International Journal of Exercise Science                                                          http://www.intjexersci.com 
586 

and 𝑉O2peak (11). The AWC has been shown (18) to be highly related to the total work 
completed during the Wingate 30 s all-out test and useful in the prediction of endurance 
performance (6). Specifically, the inclusion of AWC, in addition to aerobic parameters, 
significantly improved endurance performance predictions in an otherwise homogenous 
aerobically trained population. Thus, previous studies (6,11,18) have shown the CP and AWC 
parameters from the CP test are valid estimations of aerobic and anaerobic capabilities, 
respectively, and have practical implications in the prediction of performance.  
 
One of the primary applications the CP parameter is the demarcation of the exercise intensity 
domains (12,21). Gaesser and Poole (12) described three distinct exercise intensity domains; 
moderate, heavy, and severe. The moderate domain includes exercise intensities that result in 
𝑉O2 and blood lactate response that reach steady state values within 2-3 min and exercise can 
be maintained for at least 60 min (12,21). The gas exchange threshold (GET) demarcates the 
moderate from heavy domains (12). Continuous exercise performed above the GET, within the 
heavy domain, results in a gradual rise in 𝑉O2 and blood lactate beyond the third min, but 
eventually reach a delayed steady-state and exercise can typically be maintained beyond 20 to 
30 min (12,21). Exercise intensities performed within the severe domain result in continuous 
increases in 𝑉O2 and blood lactate until exhaustion is reached, typically within 20 min (14,21). 
Poole et al. (21) suggested that CP demarcates the heavy from the severe exercise intensity 
domains. Specifically, the authors (21) showed that subjects could complete a 24 min constant 
power output ride at CP, but 7 of 8 subjects could not complete a 24 min ride at CP + 5% of the 
maximal power. In addition, the blood lactate and 𝑉O2 responses stabilized during the ride at 
CP, but continued to rise during the ride at CP + 5%. Recently, it has been suggested (3) that 
the respiratory compensation point (RCP), measured during an incremental test, may 
represent a similar intensity as CP. Therefore, taken together, previous studies (3,21) indicated 
CP and the RCP may reflect a similar exercise intensity and demarcate the heavy and severe 
exercise intensity domains.  
 
Originally, the CP test required the measurement of the amount of work (Wlim) completed 
during a series of 3 to 4 exhaustive, constant power outputs and the time to exhaustion (Tlim) 
(16,17). The multiple, exhaustive work bouts required for the CP test may limit the application 
of the model. Therefore, several studies (4,13) have examined different methodological 
variations of the number of work bouts required to determine CP. Housh et al. (13) showed 
that both CP and AWC could be estimated from two constant power output rides to 
exhaustion using the linear, total work versus Tlim model. More recently, a methodological 
change to the CP test was developed utilizing a single, 3-min all-out test (CP3min) (7,22). The 3-
min duration was selected because it allowed enough time to yield a stable power output 
during the last 30 s of the test, termed the end test power (EP), and hypothesized to reflect CP. 
In addition, the work performed above the EP (W’ which is analogous to AWC) could be 
calculated. Vanhatalo et al. (22) reported no difference between the EP estimated from the 
CP3min test and CP estimated from the original multiple work bout model or between W’ and 
AWC. Thus, the authors (22) concluded that CP and AWC could be accurately estimated from 
a 3-min all-out test. 
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The CP3min test of Burnley et al. (7) and Vanhatalo et al. (22) provided a less physically 
demanding protocol compared with the traditional multiple workbout model. The authors 
(7,22) methodology, however, required an incremental test to exhaustion prior to the CP3min 
test to determine the 𝑉O2 peak and GET. These parameters were used determine the resistance 
setting for the 3-min all-out test. Thus, the CP3min test proposed by Burnley et al. (7) and 
Vanhatalo et al. (22) was not truly a single workbout test. In an attempt to improve the 
applicability of the CP3min test, Bergstrom et al. (2) hypothesized that a single 3-min all-out test 
with resistance set as a percentage of body weight could be used to estimate CP and AWC. The 
authors (2) reported the CP and AWC estimates from the CP3min test, with the resistance set at 
4.5% body weight, were not significantly different from CP and AWC estimates from the 
multiple workbout total work versus Tlim model. These findings (2) indicated that CP and 
AWC could be determined from a single work bout, with the resistance set based on body 
weight, without the need to measure gas exchange parameters during an incremental exercise 
test to exhaustion.  
 
Recently, Clark et al. (8) further examined the CP3min test protocol. The authors (8) developed 
criteria for setting the resistance for the CP3min based on a percentage of body weight that was 
dependent upon an individuals’ activity level; 3% for recreationally trained individuals, 4% for 
anaerobic/aerobic sport athletes, and 5% for endurance athletes. The authors (8) reported no 
difference between the CP estimates from the test with a resistance set based on body weight 
and activity level, and the CP estimates from a CP3min test of Burnley et al. (7) and Vanhatalo et 
al. (22). Thus, currently there are 3 separate recommendations (2,9,10,31) for estimating CP and 
AWC from a CP3min test for recreationally trained participants. The actively level dependent 
resistance setting recommendation for recreationally trained participants (3%), however, was 
made in a small sample (n = 3) and no comparison was made between parameter (CP and 
AWC) estimates from the CP3min test completed at other percentages of body weight resistance 
(8). Previous evidence (2) examining the CP3min test with the resistance set at 3.5% and 4.5% 
percentage of body weight indicated no significant difference between parameter estimates 
(CP or AWC) in recreationally trained participants. The 3.5% resistance setting, however, 
resulted in an AWC estimate that was significantly lower than the original multiple work bout 
model (24), but no differences were reported among the CP values from the weight resistance 
protocols (3.5 and 4.5%) and original multiple work bout model (17). No previous studies, 
however, have compared estimates of CP and AWC from the 3-min all-out test with the 
resistance set at 4.5% of body weight, as recommended by Bergstrom et al. (2) and the 
resistance set as a percent of body weight dependent upon activity level (3% for recreationally 
trained participants), as recommended by Clark et al. (8). Thus, it is still unclear if separate 
recommendations that are dependent upon activity level are necessary for setting the body 
weight resistance for the CP3min test in recreationally trained participants. Therefore, the 
purpose of this study was to determine if the CP and AWC estimates from a single, 3-min all-
out test are affected by the percentage of body weight used to set the resistance on a 
mechanically braked cycle ergometer in recreationally trained individuals. Based on previous 
studies (2,7,8,22), we hypothesized that the resistance setting (3% or 4.5%) for the CP3min test 
would have no effect on the CP estimates, but a resistance of 3% would result in significantly 
lower AWC estimates than 4.5%. 
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METHODS 
 
Participants 
Ten recreationally trained participants (6 women, 4 men; mean ± SD age: 22.2 ± 2.2 yrs; body 
mass: 71.9 ± 19.3 kg) were recruited for this study (Table 1). Recreationally trained was defined 
according to the American College of Sports Medicine, as an individual who engages in 150 
min·wk-1 of moderate intensity exercise (19). Specifically, the participants’ reported 
participation in physical activities that included running (n = 4), cycling (n =4), weightlifting 
(n= 3), kickboxing (n = 2), swimming (n = 1), and recreational sports (e.g., soccer, rugby, 
basketball etc.) (n = 6). The participants had no known cardiovascular, pulmonary, metabolic, 
muscular and/or coronary heart disease. This study was approved by the University 
Institutional Review Board for Human Participants. All participants completed a health 
history questionnaire and signed a written informed consent document before testing. The 
participants were asked to refrain from strenuous exercise and caffeine consumption for at 
least 24 hours prior to testing. The testing was conducted at the same time of day for each 
participant.    
 
Table 1.  Mean ± SD for the participant demographics. 
Age Height BM BF LBM 𝑽O2 Peak 
(years) (cm) (kg) (%) (kg) (mL·kg-1·min-1) 

22.1± 
2.5 

170.6± 
8.7 

70.8± 
18.5 25.0±9.9 50.7± 

15.0 
46.5± 
7.3 

BM = body mass; BF = body fat; LBM = total lean body mass 
 
Protocol 
The participants visited the laboratory on three occasions. During the first visit, resting heart 
rate and blood pressure were taken manually prior to resting electrocardiogram (ECG) (Nihon 
Kohden, ECG-1550A) to ensure participants were free from cardiovascular disease risk factors. 
Following the ECG, the participants performed an incremental cycle ergometer test to 
exhaustion for the determination of GET, RCP, and 𝑉O2 peak. Before either the second or third 
visit all participants completed a total body dual-energy X-ray absorptiometry (DXA) scan for 
the determination of body composition parameters. During visits two and three, the 
participants performed one of two, randomly ordered, CP3min tests to estimate CP and AWC. 
The resistance for the CP3min was set at 3% body weight (CP3%) or at 4.5% body weight (CP4.5%). 
 
An incremental test to exhaustion was performed on a calibrated Lode electronically-braked 
cycle ergometer (Corival, Groningen, The Netherlands) for the determination of 𝑉O2peak, 
GET, and RCP. Prior to testing, the seat height of the ergometer was adjusted so that the 
participant’s legs were near full extension at the bottom of the pedal revolution. The test was 
completed at a pedal cadence of 70 rev·min-1 and toe cages were used to maintain pedal 
contact throughout the test. The participants were fitted with a nose clip and breathed through 
a two-way valve (Hans Rudolph 2700 breathing valve, Kansas City, MO). A calibrated 
TrueMax 2400 metabolic cart (ParvoMedics, Sandy, UT) was used to collect and analyze the 
expired gas samples. The gas analyzers were calibrated with room air and gases of known 
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concentration prior to all testing sessions. The O2, CO2, and ventilatory parameters were 
expressed as 30 s averages. In addition, the heart rate was recorded with a Polar Heart Rate 
Monitor (Polar Electro Inc., Lake Success, NY) that was synchronized with the metabolic cart. 
The test began at 50 W and the power output increased by 30 W every 2 min until voluntary 
exhaustion or the participant’s pedal rate decreased below 70 rev·min-1 for more than 10 s, 
despite verbal encouragement. Verbal encouragement was provided throughout the test. This 
protocol was selected so that subjects would exhaust within 8 to 12 min (20). The 𝑉O2peak was 
defined as the highest 30 s average 𝑉O2 value recorded during the test. The power output 
associated with 𝑉O2peak (P𝑉O2peak) was determined from the regression equation developed 
from the power output versus 𝑉O2 relationship. 
 
The GET was determined from the 𝑉CO2 versus 𝑉O2 relationship using the V-slope method 
described by Beaver et al. (1). The RCP was determined using the 𝑉E versus 𝑉CO2 relationship 
described by Beaver et al. (1). The power outputs at the GET and RCP were determined from a 
regression equation derived from the power output versus 𝑉O2 relationship during the 
incremental test. 
 
The CP3min test was performed on the Monark 894E cycle ergometer (Monark Exercise AB, 
Vansbro, Sweden).  The cycle ergometer was calibrated according to the manufacturers 
instructions prior to testing. A 5 min warm-up at ~50 W, followed by 5 min of rest was 
provided prior to the test. The participants then completed 3 min of unload cycling. In the last 
5 s of the unloaded phase, the participants were instructed to reach a cadence as high as 
possible. The resistance was applied to the flywheel when the cadence was > 110 rev⋅min-1.  
The resistances were randomized between CP3% and CP4.5% of body weight. The participants 
were instructed to maintain their cadence as high as possible for 3 min. Verbal encouragement 
was provided to the participants, but they were not aware of the elapsed time, cadence, power 
output, or heart rate. The power output during the test was recorded with the Monark ATS 
Software (Monark Exercise AB, Vansbro, Sweden). The CP and AWC parameters from the 
CP3min tests were estimated from the power versus time relationships (Figure 1). The CP was 
the average power output over the final 30 s of the test and the AWC was calculated as the 
work done above CP using the following equation (8): AWC = 150 s (P150 – CP), where AWC is 
expressed in joules and P150 is the mean power output for the first 150 s of the test, and P150 and 
CP are expressed in watts. The test-retest reliability for the CP and AWC parameters from our 
laboratory indicated the ICC values were R = 0.91 and R = 0.79, respectively, with no 
significant mean differences between test and retest.  
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Figure 1.  Schematic representation of the 3-min all-out critical power (CP3min) test response to estimate the critical 
power (CP) and anaerobic work capacity (AWC). The gray area under the curve represents the AWC and was 
estimated from the equation AWC = ([mean power (MP) (average power during first 150 seconds) – CP] x 150) / 
100. The black vertical lines represent CP, which was the average power during the last 30 sec of the test. 
 
Each participant underwent a single total body DXA scan to provide measures of body 
composition for the descriptive characteristics of the subjects. Total body DXA scans were 
performed using a Lunar Prodigy iDXA (Lunar Inc., Madison, WI) bone densitometer. A urine 
pregnancy test was administered immediately prior to the DXA scan to ensure the female 
participants were not pregnant. The participants were instructed to remove all objects such as 
jewelry or eyeglasses and wore t-shirt and shorts containing no metal during the scanning 
procedure. All scans were analyzed by a single trained investigator using the Lunar software 
version 13.10. DXA fat mass (kg), DXA mineral-free lean mass (LBM; kg), and DXA percent fat 
(%Fat) were assessed (23). Prior to each visit, the participants were weighed on a stadiometer 
scale (Detecto®- 439-Physician Scale, Webb City, MO). The participants’ body weight was used 
to set the resistance for the CP3min tests (3% and 4.5% of body weight).  
 
Statistical Analysis 
The mean differences between CP and AWC estimates from the CP4.5% and the CP3% were 
examined using separate paired samples t-tests. In addition, the mean differences between the 
peak power output (highest five s average power output during the test) from the CP4.5% and 
the CP3% were examined using separate paired samples t-tests. The relationship between the 
two estimates of CP and AWC (from the CP4.5% and CP3% tests) were described using separate 
Pearson product-moment correlation coefficients. Separate Bland and Altman analyses (5) 
were used to assess the agreement between the CP3% and CP4.5% as well as the AWC3% and 
AWC4.5%. The 95% limits of agreement (LOA) were calculated. Mean differences among the 
CP3%, CP4.5%, GET, and RCP were examined using separate, one-way repeated measures 
ANOVAs with Bonferroni corrected pairwise comparisons. A zero order correlation matrix 
was used to examine the relationship among CP3%, CP4.5%, GET, RCP, AWC3%, and AWC4.5%. 
An Alpha level of p < 0.05 was considered statistically significant for all statistical analyses. All 



Int J Exerc Sci 11(4): 585-597, 2018 

International Journal of Exercise Science                                                          http://www.intjexersci.com 
591 

statistical analyses were performed with Statistical Package for the Social Sciences software 
(v.23.0 IBM SPSS Inc., Chicago, Illinois, USA). 
 
RESULTS 
 
Table 2 displays individual participant values for CP3%, CP4.5%, AWC3%, and AWC4.5% as well 
as the mean (± SD) for the groups. There was no statistically significant difference (t(9) = 1.793, 
p = 0.106) between CP3% (156 ± 36 W; 76 ± 16% P𝑉O2peak) and CP4.5% (167 ± 34 W; 81 ± 14% 
P𝑉O2peak) and there was a high correlation between the two variables (r = 0.866, p = .001). 
There was, however, a statistically significant difference (t(9) = 5.712, p < .001) between AWC3% 

(5.6 ± 2.5 kJ) and AWC4.5% (9.0 ± 4.0 kJ), but a high correlation between the two variables (r = 
0.924, p < 0.001). The 95% LOA for the CP3% and CP4.5% estimates ranged from -25.45 to 50.88 
W, and there was a moderately high, but not statistically significant relationship (r = 0.105, p = 
0.773) between the difference (CP4.5%-CP3%) and the mean of the two measures (Figure 2). The 
95% LOA for the AWC3% and AWC4.5% estimates ranged from -0.35 to 7.30 kJ. There was a 
statistically significant, moderately high correlation (r = 0.764, p = 0.010) between the mean 
difference (AWC4.5% - AWC3%) and the mean of the two measures (Figure 3). The patterns of 
responses for the CP3% and CP4.5% tests are presented in Figure 4. There was a statistically 
significant difference (t(9) = 3.857; p = 0.004) between the CP3% peak power (455 ± 162 W) and 
CP4.5% peak power (531 ± 161 W). 
 
The results of the one-way repeated measures ANOVA for the fatigue thresholds (CP4.5%, 
CP3%, GET, and RCP) indicated there were statistically significant differences among the 
power outputs (F (3, 27) = 20.12, p < 0.001, partial h2 = 0.691). The follow-up pairwise 
comparisons indicated a statistically significant lower power output at the GET (104 ± 24 W) 
compared to the CP3% (156 ± 36 W; t = 5.150; d = 1.29), CP4.5% (167 ± 34 W; t = 4.087; d = 1.63), 
and the RCP (165 ± 32 W; t = 6.134; d = 1.940). There were, however, no statistically significant 
differences among power outputs for CP3%, CP4.5%, and RCP (Table 2). Table 3 displays the 
zero-order correlation matrix for CP3%, CP4.5%, GET, RCP, AWC3%, and AWC4.5%. There was a 
statistically significant, moderately high correlation between the RCP and CP3% (r = 0.782) and 
a high correlation between RCP and CP4.5% (r = 0.860). There were no statistically significant 
correlations between the GET and any of the CP test parameters or RCP and the correlation 
coefficients (r = 0.118 – 0.377). 
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Table 2. Individual participant values (mean ± SD) for critical power (CP) and anaerobic work capacity (AWC) 
from the 3-min all-out CP test with the resistance set at 3% (CP3%) or 4.5% (CP4.5%) of body weight. 

*Significantly lower (p < 0.05) than the AWC from the CP4.5% test. 
 
 
 
Table 3.  Correlations among parameters of the 3-min all-out critical power (CP) test (CP and anaerobic work 
capacity [AWC]) with the resistance set at 4.5% (CP4.5%) and 3% (CP3%) of body weight, gas exchange threshold 
(GET), and respiratory compensation point (RCP) for this sample of recreationally trained participants. 

*Significant correlation at p ≤ 0.05 
 
 
 

 
CP3% CP4.5% AWC3% AWC4.5% GET RCP 

Participant (W) (W) (kJ) (kJ) (W) (W) 

1 137 154 4.1 5.0 84 130 

2 133 125 4.1 9.8 75 122 

3 131 146 4.1 5.9 88 127 

4 158 154 5.9 9.9 82 168 

5 209 213 11.9 18.0 124 191 

6 147 161 6.9 10.1 143 171 

7 107 158 4.5 7.1 110 163 

8 220 241 6.0 11.6 85 226 

9 181 167 6.2 8.3 125 181 

10 141 149 2.7 4.5 121 174 

Mean 156 166 5.6* 9.0 104 165 

SD 36 34 2.5 4.0 24 32 

 
CP4.5% CP3% GET RCP AWC4.5% 

CP3% 0.866* 
    

GET 0.143 0.118    
RCP 0.860* 0.782* 0.377   
AWC4.5% 0.631 0.711* 0.199 0.506  
AWC3% 0.620 0.678* 0.415 0.490 0.924* 
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Figure 2.  Bland Altman analysis of agreement between the critical power (CP) estimates from the 3-min all-out 
critical power (CP3min) test with resistance set at 4.5% and 3% for recreationally trained subjects. The middle solid 
line represents the mean of the difference between the CP estimates from the two methods (p = 0.106). The upper 
and lower dotted lines represent the bias ±1.96 SD (95% Limits of Agreement). The r2 = 0.011, p = 0.773. 
 
 
 
 

 
Figure 3.  Bland Altman analysis of agreement between anaerobic work capacity (AWC) estimates from the 
critical power (CP) test with resistance set at 4.5% and 3% for recreationally trained subjects. The middle solid line 
represents the mean of the difference between the AWC estimates from the two methods (p < 0.001). The upper 
and lower dotted lines represent the bias ±1.96 SD (95% Limits of Agreement). The r2 = 0.584, p = 0.010. 
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Figure 4.  The mean ± SD pattern of response for the 3-min all-out critical power (CP3min) test with the resistance 
set at 4.5% (solid line) and 3% (dashed line) of body weight.  
 
DISCUSSION 
 
The mean (± SD) P𝑉O2peak from the incremental test to exhaustion (212 ± 49 W) and 𝑉O2 peak 
(46.5 ± 7.3 mL·kg-¹·min-¹; men = 49.8 ± 9.9 mL·kg-¹·min-¹; women = 44.4 ± 4.7 mL·kg-¹·min-¹) for 
the participants in the present study were similar to the mean P𝑉O2peak (225 ± 58 W) and 𝑉O2 
peak values (43.0 ± 7.4 mL·kg-¹·min-¹) previously reported for recreationally trained 
participants (2). The mean 𝑉O2 peak values for the men and women in this study resulted in 
classifications of “good“ and “excellent“, respectively (19). The GET occurred at 53 ± 9% of 
𝑉O2 peak, and was similar to the range of GET values previously reported (54 – 75% 𝑉O2 peak) 
for recreationally trained individuals (2,9,10). The RCP occurred at 79 ± 11% (165 ± 32 W) of 
peak power, which was within the range (70 – 84% peak power) previously reported for 
healthy participants (10). Thus, the P𝑉O2peak, the	𝑉O2 peak, GET, and RCP values for the 
participants in this present study were consistent with recreationally trained participants 
(2,4,9,10). Furthermore, the power output at the RCP was not different from CP4.5% or CP3% (81 
± 15% and 76 ± 16% peak power, respectively), but the RCP and CP (4.5% and 3%) were 
greater than the GET. Previous studies (3,21) have suggested that the CP and RCP represent a 
similar intensity, that is greater than the GET, and demarcate the heavy from severe exercise-
intensity domains. Thus, the current findings were consistent with the findings of others (3,21), 
and indicated that the CP and RCP may reflect similar exercise intensities.  
 
In the present study, the CP4.5% and CP3% tests resulted in patterns of responses (Figure 4) for 
the power output versus time relationships that were consistent with the patterns of responses 
previously reported (2) for the CP3min test with the resistance set at 4.5% of body weight. The 
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patterns for power output versus time relationships for the CP3% and CP4.5% displayed initial 
increases in power output during the first 5 to 10 s, followed by steep declines during the first 
two min of the tests. The final min of the tests resulted in gradual decreases and plateaued 
during the final 30 s. A qualitative analysis of the patterns of responses for the two separate 
intensities in Figure 4 demonstrated a lower initial power output and more rapid initial 
decline in power output for the CP3% test compared to the CP4.5% test. In addition, the initial 5-s 
peak power output was significantly greater for the CP4.5% (531 ± 161 W) than the CP3% (455 ± 
162 W) tests. The participants reported post-CP3% that the resistance felt too light and resulted 
in a sensation of their momentum or inertia getting ahead of them causing them to slow their 
cadence to meet the resistance on the flywheel. Thus, the results of the present study indicated 
the CP3% and CP4.5% tests resulted in a pattern of response for the power output versus time 
relationship that were consistent with the patterns previously reported (2,8,31), but the CP3% 

test resulted in a lower 5-s peak power output which suggested the resistance may be too low 
for participants to reach and maintain a maximal cadence throughout the test.  
 
It has been suggested (8) that the percentage of body weight resistance for the CP3min test 
should differ, depending on the training status of the participant. Specifically, resistances of 3, 
4, and 5% were recommended for recreationally trained participants, anaerobic athletes, and 
endurance athletes, respectively (8). The recommendation for recreationally trained 
participants, however, was made in a small sample (n = 3) comparing the parameter estimates 
from the CP3min test with a resistance set at 3% body weight to those from the CP3min test on an 
electronically braked cycle ergometer using the linear factor (GET + 50% ∆/[70 rev·min-1]2) to 
set the resistance (7). Previous evidence (2) examining the CP3min test with the resistance set at 
3.5% and 4.5% percentage of body weight indicated no significant difference between 
parameter estimates (CP or AWC) in recreationally trained participants, although the CP and 
AWC estimates from the CP3.5% test were 7 and 15% lower than the CP and AWC, respectively, 
from the CP4.5% test. In addition, the authors reported (2) the mean CP from the body weight 
resistance protocols (3.5 and 4.5%) were not different from the original multiple work bout 
model (17), but the AWC from the CP3.5% test was significantly lower. Therefore, we 
hypothesized that the resistance setting on the cycle ergometer would have no effect on the 
CP, but the 3% resistance setting would underestimate the AWC. The current findings 
indicated that the CP3% (156.4 ± 36.1 W; 76 ± 16% peak power) was ~7% lower than the CP4.5% 

(166.8 ± 34.3 W; 81 ± 15 % peak power), but the mean difference between the two estimates 
was not statistically significant (Figure 4). These findings, were consistent with those of 
Bergstrom et al. (2) who reported an ~7% lower estimate of CP from the CP3min test with the 
resistance set at 3.5% compared to 4.5%, but no statistically significant mean difference 
between the two estimates. Thus, the results of this study supported our hypothesis, and 
indicated that the resistance setting (3% or 4.5%) had no significant effect on the estimates of 
CP from the CP3min test.  
 
The results of this study indicated the CP3% (5.6 ± 2.5 kJ) test significantly underestimated the 
AWC from the CP4.5% (9.0 ± 4.0 kJ) test by ~38% (Table 2). These findings were similar to those 
of Bergstrom et al. (2) who reported that, although not significantly different, the AWC was 
15% lower when the resistance was set at 3.5%, compared to 4.5%. In addition, it was 
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previously reported (2) that the AWC from the test with the resistance set at 3.5% was 
significantly lower (~38%) than the original multiple work bout model (17), but the AWC from 
the test with resistance set at 4.5% was not. Based on their findings, the authors (2) suggested, 
“Even though there were no significant mean differences between the CP and AWC values 
from the CP3.5% and CP4.5% tests, the CP4.5% test is recommended because of its similarities to 
the [original, multiple workbout model]…” (p. 662). In this study, the mean AWC estimate 
from the test with the resistance set at 4.5% (9.0 ± 4.0 kJ) was similar to the mean AWC 
previously reported (9.84 ± 4.39 kJ and 10.4 ± 2.6 kJ) for recreationally trained participants, but 
the mean AWC estimate from the test with the resistance set at 3% (5.6 ± 2.5 kJ) was not (2,4). 
Therefore, these findings indicated that the CP and AWC estimates from the CP4.5% were 
consistent with values previously reported for recreationally trained participants (2,4), but the 
AWC estimate from the CP3% was lower than previously reported. The significantly lower 
AWC values for the CP3% test were likely related to the ~14% lower peak power output and 
more rapid decline in power output, when compared the CP4.5% test (Figure 4). Thus, the 
current findings supported our hypothesis and indicated that the resistance set at 3% of body 
weight resulted in an estimate of AWC that was significantly less than the AWC with the 
resistance set at 4.5%.  
 
In conclusion, the results of the present study for both CP and AWC suggested that a 
resistance set at 3% of body weight for the CP3min test may be too low to accurately estimate 
AWC, but 3% and 4.5% resulted in the same estimation of CP. Thus, the principal finding of 
this study was that a resistance of 4.5% of body weight for the CP3-min test in recreationally 
trained participants resulted in more accurate estimates of both CP and AWC, than using a 
resistance of 3%, when compared to the parameters of the CP tests previously reported 
(2,7,22).  
 
Currently, there are conflicting suggestions regarding the most valid resistance setting (3-5% 
of body weight) (2,7,8,22) for estimating CP and AWC from a CP3min test for recreationally 
trained participants. This study determined if the CP and AWC estimates from a single 3-min 
all-out test were affected by the percentage of body weight used to set the resistance on a 
Monark cycle ergometer. There was no difference between the CP estimates from the test 
performed at a resistance of 3% or 4.5% of body weight, however, the AWC values from the 
CP3% test were significantly lower than the AWC values from the CP4.5% test and were not 
consistent with AWC values previously reported (2) in recreationally trained participants. 
These findings indicated that a resistance set at 3% of body weight for the CP3min test may be 
too low to accurately estimate AWC, but 3% and 4.5% resulted in the same estimation of CP. 
Therefore, the principal finding of this study was that a resistance of 4.5% of body weight for 
CP3min test may be more accurate to estimate AWC than using a resistance of 3% of body 
weight. These findings support the use of a common percentage of body weight to set the 
resistance (4.5% of body weight) for the CP3min test protocol in recreationally trained 
participants. 
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