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and Large Shocks ∗
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December 29, 2015

Abstract

The paper presents a computationally efficient method to solve overlapping gener-
ations models with asset choice. The method is used to study an OLG economy with
many cohorts, up to 3 different assets, stochastic volatility, short-sale constraints,
and subject to rather large technology shocks.

On the methodological side, the main findings are that global projection methods
with polynomial approximations of degree 3 are sufficient to provide a very precise
solution, even in the case of large shocks. Globally linear approximations, in contrast
to local linear approximations, are sufficient to capture the most important financial
statistics, including not only the average risk premium, but also the variation of the
risk premium over the cycle. However, global linear approximations are not sufficient
to reliably pin down asset choices.

With a risk aversion parameter of only 4, the model generates a price of risk,
measured as the Sharpe ratio, that is almost half of what it is for US stocks. However,
the asset price fluctuations and the equity premium are much smaller than in US data.
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1 Introduction

Overlapping generations models play a prominent role in economic policy analysis. They

are the central tool to evaluate social security systems and address questions of inter-

generational redistribution (some recent papers are Krueger and Kubler (2006), Ludwig

and Reiter (2010), Hasanhodzic and Kotlikoff (2013)). The quantitative analysis of de-

terministic models, even those with a large number of cohorts, has been possible since

Auerbach and Kotlikoff (1981) and Auerbach and Kotlikoff (1987). But the solution of

OLG models with aggregate risk and portfolio choice, like heterogeneous agents models

with aggregate risk in general, still poses difficult computational challenges. The number

of state variables increases with the number of cohorts, because the wealth of each cohort,

and potentially other cohort-specific variables, are state variables. The number of states is

a key determinant of the computational complexity of a model. Particularly hard to solve

are models which involve aggregate risk and portfolio choice, because portfolio choice is a

more subtle decision problem than, say, consumption versus saving, and therefore requires

high precision of the approximation.

In principle, methods to solve this kind of problems exist and are well known. First,

there are local perturbation methods. They provide insightful results for the case of small

shocks (Judd and Guu 2001), but they have problems dealing with large shocks. In partic-

ular, it is very difficult to handle inequality constraints, such as short-sale constraints. The

main alternative are global projection methods, pioneered in economics by Judd (1992)

which are very powerful and flexible. While these methods have been around for a long

time, their implementation tends to be complex, and often requires choices that are model-

specific.1 Furthermore, convergence of the algorithm is not guaranteed, and failure is more

likely the bigger are the shocks.

The aim of this paper is to provide an efficient implementation of global projection

methods, which is general, gives a high-precision solution, and is robust in the sense that

it is very likely to converge, even in the case of large shocks. The method is applied to

an OLG model with asset choice. I also solve examples including short-sale constraints.

Although computationally highly challenging, this model is simple and standard. Much

of the discussion in this paper is not specific to OLG models, but applies equally to other

1The Matlab software package that accompanies Miranda and Fackler (2002) provides very helpful tools

for projecton methods.
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heterogeneous agent models with a medium-dimensional state space.

The algorithm I will present allows to solve medium-sized OLG models with several

assets in a few minutes on a standard personal computer. It is based on the following key

elements:

1. Minimize the number of state variables by an appropriate choice of states.

2. Minimize the number of variables that have to be approximated by parameterized

functions.

3. Find the parameters by quasi-Newton methods. To compute Jacobians efficiently,

use automatic differentiation and the implicit function theorem.

4. To achieve fast convergence of the quasi-Newton algorithm, use continuation meth-

ods, starting from the linearized solution around the deterministic steady state, with

small shocks, and transform it continuously into the nonlinear solution with large

shocks.

5. Use simulation techniques to obtain a suitable grid on which the solution is approx-

imated.

Let me explain these points in more detail. Since the number of state variables is decisive

for the computational complexity of nonlinear algorithms, it is important to reduce it

whenever possible. In our specific model, apart from the exogenous states, this means

to use only the household net worth of each cohort at the beginning of the period, after

the realization of shocks, not the asset portfolio at the end of the last period. This is

possible in the absence of asset trading costs. Concerning the number of variables that are

parameterized, it turns out that we only need to parameterize the consumption of each

cohort and, depending on the asset structure, the prices of some long-lived assets. The

portfolio structure (asset choice) is not parameterized, but solved for at each grid point.

This has two advantages. First, it reduces the number of parameters needed for function

approximation. Second, in the case of short-sale constraints, one avoids approximating

functions that have kinks.

Using household net worth as state variables appears very natural. In a model without

trading frictions, what matters for the behavior of all economic agents is just the market

value of all assets, not the portfolio composition. The idea is not new (see, for example,
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Marcet and Singleton (1998)), but the implementation is not as straightforward as it seems.

If the net worth of households are the state variables, then we assume that all variables of

the solution, including asset prices, are a function of net worth. However, household net

worth itself is a function of current asset prices: what is predetermined is households’ asset

positions at the end of last period, but we need current asset prices to convert those into

current net worth. This means that we have to solve a nonlinear fixed point problem in

order to compute current states from past states and decisions.

This problem is reinforced by the decision not to parameterize asset choices. It implies

that asset choices have to be solved for at each grid point, and in each period of a model

simulation, conditional on the parameter vector that determines the consumption function.

In combination with the fixed point problem necessary to solve for market wealth of each

cohort, this amounts to a formidable equilibrium problem at each grid point. While this

is straightforward conceptually, it can be very time consuming. To make this problem

tractable, I resort to automatic differentiation and exploit the implicit function theorem.

The biggest challenge lies in finding the parameters that characterize the consumption

functions of all cohorts. Quasi-Newton methods are known to converge quickly if good

starting values are given. This is where continuation methods come into play. For a model

with small shocks, the linearized solution around the deterministic steady state provides

an excellent starting point. By increasing the shock variance step by step, the solution in

each step provides a starting point for the next step. Still, applying Newton-type methods

requires the handling of a very large Jacobian, since we have to solve for thousands of

parameters simultaneously. Computing the Jacobian can be done very efficiently using

automatic differentiation, explained in more detail in Section 3.4.2. Furthermore, it turns

out that we usually have to compute the Jacobian only once. In the course of the iterations,

it is then updated using Broyden’s low-rank updates, which is inexpensive. The details are

explained in Section 3.4.4.

Finally, it is essential to choose a suitable grid on which to compute the residuals of the

projection method. With a medium- or high-dimensional state space, it seems unavoidable

to use simulation techniques to obtain some information about the region of the state space

in which the solution lives, in the spirit of parameterized expectation methods (Marcet and

Lorenzoni 1998; Judd, Maliar, and Maliar 2012). I try to minimize the impact of simulation,

and use it only to obtain information about the first and second moments of the model

solution.
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While all these steps together are rather complicated, they can be mostly automatized

in a toolkit. The toolkit uses some relatively simple syntax, similar to Dynare, and then

generates C++-code which gets compiled and executed. The output is then later post-

processed by GNU Octave.2

The paper in the literature that is closest to mine is Hasanhodzic and Kotlikoff (2015),

who simulate an economy with capital and bonds and 80 cohorts. They also use the vector

of household net worth as state variables, and they approximate household consumption

functions by globally linear functions. In an earlier version (Hasanhodzic and Kotlikoff

2013), they used past savings as state vector, and solved the model with capital and bonds

for 40 cohorts. For the new version, they switched to household net worth as state vector,

which turned out to be more robust. Hasanhodzic and Kotlikoff (2015) and my paper were

written independently, and provide independent evidence that the vector of household net

worth is the most useful choice of state variables. In terms of methodology, the main

difference is that Hasanhodzic and Kotlikoff (2015) use a simulation approach in the spirit

of Judd, Maliar and Maliar (2011), while I exploit automatic differentiation to provide an

efficient implementation of quasi-Newton methods.

In order to keep the discussion focused, I sidestep an issue that is potentially very

important, but beyond the scope of this paper, namely state aggregation. In models with

many cohorts, it may not be computationally optimal to make the decisions of each cohort

a function of the full wealth distribution across cohorts, but rather find statistics of the

wealth distribution that comprise the most relevant information in a parsimonius way,

in the spirit of Krusell and Smith (1998). Krueger and Kubler (2004) show that state

aggregation does not work as easily in OLG models as in the model of Krusell and Smith

(1998). They show specifically that one statistic for the distribution is not enough (this has

been recently confirmed by Hasanhodzic and Kotlikoff (2013)). However, state aggregation

works probably well if enough states are used; for example, in a model with 20 cohorts,

one could group 4 adjacent cohorts together and take their joint wealth as state variable

(Reiter 2010). Exploring this is left for future work.

Having established a reliable solution algorithm, I am going to address some method-

ological as well as some economic questions. From a methodological point of view, an

interesting question is which polynomial order is necessary to obtain a precise approxima-

2Octave is an open-source mathematical language highly compatible with Matlab. I use Octave rather

than Matlab because it is very well integrated with the GNU C++-compiler.
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tion of the solution. I will measure precision in a variety of ways. First, I compute Euler

residuals on many points in the state space. Second, I document how relevant statistics

of the solution change with the order of approximation. I focus on aspects of the solution

that are related to asset choice. In particular, I look at asset positions, the equity premium

and the price of risk (the Sharpe ratio), both in terms of averages and in terms of cyclical

properties. From an economic point of view, I will focus on the determinants of the price

of risk. I also investigate how closely the solution comes to a complete markets allocation.

The plan of the paper is as follows. Section 2 describes the model, Section 3 describes

the algorithm, and Section 4 contains the numerical results. Section 5 concludes.

2 An OLG Model With Portfolio Choice

2.1 Household structure

Time is discrete. The economy is populated by J overlapping cohorts of equal size. It

is subject to aggregate technology shocks, but no idio-syncratic or cohort specific shocks.

Each cohort (household) lives for J periods, indexed by i = 1, . . . , J . Households born in

t maximize

Et

J∑
i=1

βi−1
c1−γ
i,t+i−1

1− γ
(1)

Labor supply is assumed to be fixed. In the first two thirds of their life (periods 1 to 2J/3,

where J is a multiple of 3) workers supply their labor endowment, which is denoted by ζj

for the cohort of age j. In the remaining periods, they are retired and do not work. The

decision problem of the household is described in more detail in Section 2.4.

2.2 Final good technology

Final output is used for investment and consumption, so that the aggregate resource con-

straint is

yt = It + Ct (2)

Final output is the numeraire, so (2) implies that the price of consumption and of invest-

ment is 1. Output is produced by competitive firms using capital and labor, with the
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constant returns to production function

yt = ztF (Kt−1, Lt) (3)

Total factor productivity zt is a nonstationary process whose growth rate is denoted by g:

zt = (1 + gt)zt−1 (4)

This growth rate has mean ḡ, and is subject to time-varying volatility:

gt = ḡ + ρg(gt−1 − ḡ) + (1 + σt−1)εg,t (5)

Volatility σ itself follows an AR(1) process:

σt = ρsσt−1 + εs,t (6)

Notice from (5) that a shock to σt affects growth only in period t+ 1.

Factor markets are competitive. The wage wt and the rental rate of capital rKt equal

marginal productivities in equilibrium:

rKt = Fk(Kt−1, Lt)) (7)

wt = FL(Kt−1, Lt) (8)

2.3 Capital Adjustment Costs

We assume that capital is produced in a perfectly competitive capital sector, which trans-

forms old capital Kt−1 and investment It into new capital Kt according to

Kt = Ψ(Kt−1, It) (9)

where Ψ(K, I) has constant returns to scale, and satisfies Ψ(K, δK) = K, ΨI(K, δK) = 1

and ΨII(K, δK) < 0. In period t, a capital producing firm maximizes current profits

QtΨ(Kt−1, It)− Q̃tKt−1 − It (10)

where Qt denotes the price of a unit of new capital in period t, Q̃t denotes the price of a

unit of capital that was produced in period t− 1 and has already been used for production

in t. Profit maximization gives the first order conditions

QtΨK(Kt−1, It) = Q̃t (11)

QtΨI(Kt−1, It) = 1 (12)
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We assume that capital produced in period t−1 is used in period t first for the production of

the final good according to the production function (3), and afterwards for the production

of new capital according to (9). Therefore, buying a unit of capital in period t costs Qt

and will yield rKt+1 + Q̃t+1 in the next period. Notice that a final good firm rents capital at

the price rKt , while a capital producing firm buys old capital at the price Q̃t.

2.4 Households decisions

Since labor supply is exogenous, household decisions can be described by its asset demand

functions, which then determine consumption through the household budget constraint.

There is a maximum of three assets in the economy that can be traded:

1. Physical capital. As explained above, it has price Qt and yields rKt+1 + Q̃t+1 in the

next period.

2. The safe asset. It costs QS
t and yields one unit of the output good in the next period.

3. A second financial asset. Its cost is denoted by QC
t , and its yield in the next period

equals (1 + (gt+1 − ḡ)2) units of the output good. This asset is useful for insuring

against large (in absolute terms) technology shocks. Since I will allow for a large

negative shock (crisis), but not a large positive shock, it can serve primarily as an

insurance against crises. So the “C” in the price of the shock is a memo for “crisis”.

Denote by ki,t the holdings of the physical asset at the end of period t by cohort i, where

i = 1, . . . , J . Similarly, ASi,t and ACi,t denote the holdings of the first (safe) and the second

financial asset. Let Wi,t denote market wealth of cohort i at the beginning of perid t. End

of period capital holdings then satisfy

ki,t = (Wi,t + wtζi − ci,t −QS
t A

S
i,t −QC

t A
C
i,t)/Qt (13)

Market wealth follows

Wi,t = (rKt + Q̃t)ki−1,t−1 + ASi−1,t−1 +
(
1 + (gt − ḡ)2

)
ACi−1,t−1 (14)

for i = 2, . . . , J , and W1,t = 0, because a household is born without assets. Households

have no bequest motive and therefore do not accumulate assets in the last period of their

life, kJ,t = ASJ,t = ACJ,t = 0. The budget constraint in the last period is then given by

cJ,t = WJ,t + wtζJ = WJ,t (15)
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because their labor endowment in the last period of life is zero.

With asset returns defined as above, the household Euler equations are

Uc(ci,t)Qt = β Et

[
(rKt+1 + Q̃t+1)Uc(ci+1,t+1)

]
(16)

Uc(ci,t)Q
S
t = β Et [Uc(ci+1,t+1)] (17)

Uc(ci,t)Q
C
t = β Et

[(
1 + (gt+1 − ḡ)2

)
Uc(ci+1,t+1)

]
(18)

Next to the model with three assets, I also consider the model with only one or two assets.

With two assets, the Euler equation (18) is replaced by ACi,t = 0. In the case of only one

asset, the Euler equation (17) is replaced by ASi,t = 0.

2.5 Aggregation

Aggregate variables are defined as the means of cohort specific variables:

Lt =
1

J

J∑
i=1

ζi

Kt =
1

J

J∑
i=1

ki,t

Waggrt =
1

J

J∑
i=1

Wi,t

Ct =
1

J

J∑
i=1

ci,t

The financial assets are in zero net supply:

1

J

J∑
i=1

ASi,t = 0 (20)

1

J

J∑
i=1

ACi,t = 0 (21)

2.6 Short-scale constraints and government debt

In the version of the model with two assets, I also consider a short-sale constraint on the

riskless asset.

ASi ≥ 0 (22)
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However, households can only save in this asset if there is an aggent that is allowed to hold a

short position. I therefore introduce riskless government debt. The amount of outstanding

debt is constant over time. The interest on the debt is financed by lump sum taxes on all

generations. Denote by DG the amount of debt per cohort. Then the household budget

constraints (13) and (15) are replaced by

ki,t = (Wi,t + wtζi +DG(QS
t − 1)− ci,t −QS

t A
S
i,t −QC

t A
C
i,t)/Qt (23)

and

cJ,t = WJ,t +DG(QS
t − 1) (24)

The asset market clearing condition (20) is replaced by

1

J

J∑
i=1

ASi,t = DG (25)

3 Algorithm

I describe the algorithm in several steps. In Section 3.1, I describe the basic aspects of the

method, such as the choice of approximating functions and the choice of a discrete grid.

Section 3.2 provides the outer loop, where the model is solved several times, starting with

small shock variances, and increasing the variance to its required level. Section 3.3 gives

the exact definition of the residual that has to be set to zero in the solution. Section 3.4

provides some more details. For convenience of exposition, I first describe the algorithm

for the case without short-sale constraints. Section 3.5 explains the modifications that are

necessary to handle those constraints.

3.1 Setting up the algorithm

1. Choose a set of variables as state variables. We will use the exogenous states σ and

g,3 as well as cohort wealth at the beginning of period, Wi for i = 2, . . . , J . Collect

the state variables into the vector X.

2. Choose variables to be approximated. We wil use consumption ci for cohorts i =

1, . . . , J − 1 as well as the price of the safe asset, QS.

3Notice that g could be dropped from the list of state variables in the uncorrelated case ρg = 0, because

of scale invariance of the economy. Nevertheless, in the computations below I keep g as state in all cases.
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3. Choose a set of nb basis functions Bl(X) of the vector of states X, l = 1, . . . , nb. We

approximate the consumption functions and the asset price as linear combinations of

the basis functions, with parameter vector θ:

cj = P (X; θj) ≡
nb∑
l=1

θj,lBl(X), j = 1, . . . , J − 1 (26)

and

QS(X) = P (X; θJ) ≡
nb∑
l=1

θJ,lBl(X) (27)

Stack the θj into the big parameter vector Θ. The number of elements of Θ is nb · J .

4. Choose a set of grid points X◦i for i = 1, . . . , ng with ng ≥ nb. These points should

cover the ng-dimensional unit ball more or less uniformly. The details on how to

choose this grid are discussed in Section 3.4.1).

5. Choose a long sequence of uniformly distributed random numbers εt, for t = 1, . . . , T .

Choose a Tskip < T ; this will be the number of initial observations in the model

simulations that will be skipped for the computation of averages.

6. For each variable, a residual equation is needed that is supposed to be (close to) zero

in equilibrium. We choose household Euler equations and an asset market clearing

conditions. For details, cf. Section 3.3. We denote the j-th residual at point X, given

parameter vector Θ, by Res(X, j; Θ).

7. Solving the model means to find a parameter vector Θ by setting weighted sums of

residuals equal to zero.4 We denote the ng × nb-matrix of weights by Ω. If we write

the residuals for parameter vector θ as the ng × nb-matrix Res(., .; Θ), the objective

is to find Θ such that Ω′Res(., .; Θ) = 0. We choose Ω as matrix of basis functions

the the grid points, that means, Ωi,l = Bl(X̄i). Since Ω′Res(., .; Θ) = 0 is equivalent

to (Ω′Ω)−1 Ω′Res(., .; Θ) = 0, we effectively set the projection of the residuals into

the space spanned by our basis functions equal to zero.

4If ng = nb, one can set the residuals at all grid points equal to zero: Res(X̄i, j; Θ) = 0 for all

i = 1, . . . , ng and all j. I will always use ng > nb.
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3.2 The outer loop of the algorithm

The grand scheme of the algorithm is the following. First, we solve for the deterministic

steady state of the model. Then we solve the stochastic model several times. We start

with a very small variance of the shock, such that the linearized solution around the

deterministic steady state provides an excellent starting point. Then we increase the shock

variance slowly until we reach the desired variance. A problem with this procedure is

that portfolio choice is a numericall ill-conditioned problem when shocks are small (in the

limit of no shocks, the portfolio problem is undetermined). We overcome this problem by

introducing asset holding costs into the model, parameterized by a parameter κ, which will

be gradually reduced towards zero over the course of the solution. This will be explained

in detail in the next section.

The whole procedure is an application of the continuation method (Judd 1998, Sec-

tion 5.7). We denote the number of steps on the continuation path by nH and the iteration

count by k, where k = 1, . . . , nH . The outer loop then goes as follows.

1. Solve the model with only one asset (physical capital) by linearization around the

deterministic steady state. Notice that this model has the same states as the model

with several assets.

The linearized solution can be written in the form

Xt = µ∗X + A(Xt−1 − µ∗X) +Bεt

Yt = µ∗Y + C(Xt − µ∗X) (28)

where X is the state vector and Y is the vector of decision variables, namely con-

sumption levels of cohorts j = 1, . . . , J − 1.

The linear solution implies a covariance matrix for the state vector, Σlin
X , which

satisfies

Σlin
X = AΣlin

X A′ +BΣεB
′ (29)

where Σε denotes the covariance matrix of the exogenous shock vector ε.

2. Set the iteration count to k = 1.

3. At any iteration k, choose a variance scaling parameter λk. The sequence of variance

scaling parameters should satisfy λk > 0, λk ≤ λk+1 and λnH = 1.

12



4. Choose an asset holding cost parameter κk. The sequence of asset holding cost

parameters should satisfy κk ≥ κk+1 ≥ 0. The role of these parameters is explained

in more detail in Section 3.3. κnH should equal zero or be very close to zero, cf.

Step 9 below.

5. Estimate the mean µX,k and the covariance matrix ΣX,k of the states.

• In the first iteration (k = 1), set

µX,k = µ∗X

ΣX,k = λ2
1Σlin

X (30)

• In later iterations (k > 1), use the parameter vector θk−1 and the sequence of

exogenous shocks εt, t = 1, . . . , T , to simulate a series of state variables, denoted

by Xk,+ε
t for t = 1, . . . , T . Simulate a second series of state variables, denoted

by Xk,−ε
t with t = 1, . . . , T , by using the negative of these shocks, −εt with

t = 1, . . . , T . Then set

µX,k =
1

2(T − Tskip)

T∑
t=Tskip+1

(
Xk−1,+ε
t +Xk−1,−ε

t

)

ΣX,k =

(
λk
λk−1

)2
1

2(T − Tskip)− 1

T∑
t=Tskip+1

[
(Xk−1,+ε

t − µX,k)(Xk−1,+ε
t − µX,k)′

+ (Xk−1,−ε
t − µX,k)(Xk−1,−ε

t − µX,k)′
]

(31)

6. Set the grid of state vectors X̄i to

X̄i = µX,k + ψΓkX
◦
i , i = 1, 2, . . . , ng (32)

where Γk is such that diag(ΓkΓ
′
k) = diag(ΣX,k), and ψ > 0 is a factor that scales the

size of the state space. These grid points should cover, at least, the part of the state

space in which the economy lives most of the time. Choosing high enough ψ (I use

ψ = 6) allows the grid to occupy a rather large part of the state space, which turned

out to be useful for accuracy. For a detailed description of this step, see Section 3.4.1.

7. Choose an initial guess of the parameter vector Θ, denoted by Θinit
k .

13



• In the first iteration (k = 1), set Θinit
k as the parameter vector that conforms

to the linear approximation of the cj with respect to X which comes out of the

linearized model solution. The linear approximation should of course be nested

in the family of approximation functions (26).

• For k > 1, set Θinit
k = Θk−1, i.e., the vector obtained as the solution of the last

iteration step (k − 1), as described in Step 8.

8. Starting from the initial guess Θinit
k , we find a parameter vector Θ so as to set the nb

sums of weighted residuals, defined in Step 7 of Section 3.1, equal to zero. Written

more extensively, we have

ng∑
i=1

Ωi,lRes(X̄i, j; Θ) = 0, j = 1 . . . J − 1, l = 1, . . . , nb (33)

To find Θ, I use a quasi-Newton method; for details, see Section 3.4.4.

9. If k < nH , increment k by one and go to Step 5.

At the final parameter vector θ = θnH , all of the following should be satisfied: First,

λnH = 1. Second, |ΘnH −ΘnH−1|∞ should be smaller than a suitable convergence criterion,

which I have chosen to be 10−6. Third, κnH should be zero or very close to zero, such that

reducing κ does not significantly change the portfolio allocation. I have used κnH ≤ 10−7.

For further discussion of κ, see Section 3.3.

3.3 Defining the residual

For a given vector of parameters Θ, at any given state X = (W2, . . . ,WJ , z, σ), we have to

define the vector of residuals Res(X, j; Θ), which we have introduced in Section 3.1. For

each variable to be approximated by polynomials, we need a residual equation that should

be set to zero by appropriate choice of Θ. For consumption, we take the Euler residual of

capital holdings:

Res(X, j; Θ) =
β
∑nε

ξ=1 πξ

[
(rK,ξ + Q̃ξ)Uc

(
P
(
Xξ; θj+1

))]
Uc (P (X; θj))

−Q, j = 1, . . . , J − 1 (34)

For the price of the safe asset, we choose the corresponding market clearing condition:

Res(X, J ; Θ) =
J−1∑
j=1

ASj (X) (35)
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As explained in the introduction, we have to solve an equilibrium problem at each point

of the state space, in order to compute these residuals. In particular, we have to find the

2J +nε variables QC , RK , Rξ
K for ξ = 1, . . . , nε, and ACj , ASj for j = 1, . . . , J −1, such that

1

J

J−1∑
j=1

ACj,t = 0 (36)

RK = Q̃ΨK(K−1, I) + rK (37)

Rξ
K = Q̃ξΨK(K, Iξ) + rK,ξ, ξ = 1, . . . , nε (38)

β
∑nε

ξ=1 πξ
[
Uc
(
P
(
Xξ; θj+1

))]
Uc (P (X; θj))

=
(
1− κASj,t

)
QS
t , j = 1, . . . , J − 1

(39)

β
∑nε

ξ=1 πξ
[
(1 + (gξ − ḡ)2)Uc

(
P
(
Xξ; θj+1

))]
Uc (P (X; θj))

=
(
1− κASj,t

)
QC
t , j = 1, . . . , J − 1

(40)

where we define

K−1 ≡
1

RK

J∑
j=2

Wj (X)

w ≡ zFL(K−1, L)

rK ≡ zFK(K−1, L)

I ≡ F (K−1, L)−
J−1∑
j=1

P (X; θj)− (WJ + wζJ)

Q ≡ 1

ΨI(K−1, I)

Q̃ ≡ ΨK(K−1, I)

ΨI(K−1, I)

kj ≡ (Wj + wζj − P (X; θj)− P (X; θJ)ASj −QCACj )/Q, j = 1, . . . , J − 1

W ξ
j ≡ Rξ

Kkj−1 + ASj−1 +
(
1 + (g − ḡ)2

)
ACj−1, j = 1, . . . , J − 1, ξ = 1, . . . , nε

K ≡
J−1∑
j=1

kj
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and the following equations all hold for ξ = 1, . . . , nε:

wξ ≡ zξFL(K,L)

rK,ξ ≡ zξFK(K,L)

Iξ ≡ F (K,L)−
J−1∑
j=1

P
(
Xξ; θj

)
− (W ξ

J + wξζJ)

Qξ ≡ 1

ΨI(K, Iξ)

Q̃ξ ≡ ΨK(K, Iξ)

ΨI(K, Iξ)

This completes the definition of the residual. To solve this equilibrium problem, I use

Powell’s method, as described in Nocedal and Wright (2006, Chapter 11). The Jacobian

is computed using automatic differentiation, cf. Section 3.4.2.

Notice that (39) and (40) each contain a term in the parameter κ, which can be inter-

preted as an asset holding cost parameter, creating a wedge in the Euler equation, such

that the asset holding choice is determined even in the limit of no aggregate shocks. This

makes the problems numerically well-behaved in intermediate steps of the solution; in the

end, we will have κ ≤ 10−7, so that there is at most a tiny distortion of asset holdings. To

illustrate the effect of asset holding costs, write (39) as

Uc(ci,t)(1− κASi,t)QS
t = β Et [Uc(ci+1,t+1)] (41)

Dividing (16) by Uc(ci,t)Qt, (41) by Uc(ci,t)Q
S
t , and subtracting we get

κASi,tQ
S
t = β Et

[
Uc(ci+1,t+1)

Uc(ci,t)

(
rKt+1 + Q̃t+1

Qt

− 1

QS
t

)]
(42)

We see that κASi,tQ
S
t is like a wedge on the risk premium for capital, the rhs of (42). By

choosing κ ≤ 10−7, we make sure that this wedge is several orders of magnitude smaller

than the risk premium in the model solution.

3.4 Details

3.4.1 The choice of a discrete grid

Global methods require the researcher to fix a region of the state space as the domain of

the approximating functions (cf. Step 4 in Section 3.1). On the one hand, this region
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should be as small as possible, since the approximating functions have a limited number of

degrees of freedom. On the other hand, the approximation only makes sense if the dynamic

system spends most of the time in this region. Since it is not known a priori in which part

of the state space the economy lives, one has to resort to simulation techniques, to find

this out iteratively.

Two methods to choose grid points have been prominent in the recent literature. The

first ones are sparse grid methods (Malin, Krueger, and Kubler 2007; Judd, Maliar, Maliar,

and Valero 2014). The algorithm presented below is compatible with sparse grid techniques.

Whether these are useful in the present context is left for future research. The second

method uses ε-distinguishable sets obtained from simulations (Judd, Maliar, and Maliar

2012). I have used those as well, but I found the method that I present below to be slightly

superior in my numerical experiments. This might differ from one application to the next.

I do not follow this up here, because the choice of grid is not the main focus of this paper.

The method that I use has the following steps:

1. Choose a set of points X̂i, i = 1, . . . , ng which fill the d-dimensional unit cube ap-

proximately equally. For the results reported below, I simply use a set of uniformly

distributed random numbers, with 3 times as many grid points as there are basis func-

tions. Of those, half are uniformly distributed on [−1, 1]nx , and half are uniformly

distributed on [−0.5, 0.5]nx . There are more sophisticated alternatives to this simple

approach.5 I have tried several alternatives and found no significant improvement

over the simple approach.

2. Transform the grid points X̂i into grid points X◦i , i = 1, . . . , ng, which fill the d-

dimensional unit ball rather than the unit cube. This is done in the following way.

(a) Find a sequence X̄i, i = 1, . . . , ng that fills the d-dimensional hypercube approx-

imately equally (for details, see Section 3.4.1).

(b) Denote by F−1
n (x) : [0, 1] → [−∞,∞] the inverse of the cumulative normal

distribution function. Then define a new set of points Yi by transforming each

5For example, one can use low-discrepancy sequences, such as Sobol or Faure points. Although these

sequences are designed to fill the hypercube approximately equally, practical experience shows that this is

still done very imperfectly, in the sense that there are still many points that are close to each other. One

can improve on this by eliminating points that are too close, using the idea of ε-distinguishable sets as in

Judd et al. (2012).
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element of each X̂i:

Yi,j = F−1
n (X̂i,j), i = 1, . . . , ng, j = 1, . . . , d (43)

(c) Set X◦i = 1
‖Yi‖2 [Fχ2;d (‖Yi‖2)]1/d where Fχ2;d(.) denotes the χ2 distribution func-

tion with d degrees of freedom, and ‖Yi‖2 denotes the sum of squares of the

vector Yi.

3. Finally, we choose an augmentation factor ψ and a matrix Γk to transform the X◦i

into the grid points X̄i (Step 6 in Section 3.2). Γk should be such that diag(ΓkΓ
′
k) =

diag(ΣX,k). I have chosen Γk as the diagonal matrix with the square root of diag(ΣX,k)

as entries. This means, I stretch the domain to account for the standard deviation

of states, but do not rotate it.

I have also used more general Γk which rotate the domain so as to account for the

correlations between states. Since correlations are very high, this yields a narrow

stretch, and turned out to be unstable. I have also tried intermediate cases; they

sometimes gave higher accuracy, but not consistently so, and therefore I decided to

stick with the simpler choice of a diagonal matrix Γk.

I have chosen ψ = 6. This means that the domain covers about ±6 estimated

standard deviations of the state variables. This may appear rather large, but in my

applications this has given higher accuracy (measured by the Euler residuals at the

simulated points) than an approximation on a narrower grid.

3.4.2 The use of automatic differentiation

“Automatic differentiation” means the numerical computation of derivatives for a given

value of the independent variables, by using the exact differentiation rules rather than

finite-difference approximations. A simple form of automatic differentiation (called the

forward mode) can be easily implemented in object-oriented programming languages such

as C++. The forward mode, combined with the technique described in Appendix A.1,

is sufficient for our purpose. For a general description of automatic differentiation, see

Griewank and Walther (2008).

To see how automatic differentiation is useful in our setup, write the problem in general

terms as searching for a parameter vector Θ and a set of endogenous variables w so as to
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solve the following nonlinear system of equations:

R(y(Θ), w) = 0 (44)

H(y(Θ), w) = 0 (45)

In the outer loop (Section 3.2), we use an iterative method to find the Θ that satisfies (44).

For any guess Θ in the iterative process, we solve an inner loop problem (Section 3.3) at

each grid point, where we choose w so as to satisfy (45).

Automatic differentiation is useful in two ways. First, to solve the inner-loop problem

efficiently by quasi-Newton methods based on the exact Jacobian. The second way is more

interesting. If we solve for Θ in the outer loop by a quasi-Newton method, we need to

compute the derivative of R with respect to Θ. Applying the implicit function theorem on

(45), we get

∂R

∂Θ
= Ry

∂y

∂Θ
+Rw

∂w

∂y

∂y

∂Θ

=
(
Ry −RwH

−1
w Hy

) ∂y
∂Θ

(46)

The important lesson from (46) is that, once we have found an w that satisfies (45), no

further search over w is necessary to compute the Jacobian ∂R
∂Θ

. If solving for w is a non-

trivial task, as it is in our model, computing the whole Jacobian of R is not much more

costly, and may even be cheaper than evaluating R. This gives a big advantage to Newton-

type methods, which exploit the Jacobian, over alternative methods such as fixed point

iteration.

3.4.3 Time iteration vs. quasi-Newton algorithms

There are several ways to solve the fixed point problem for the parameter vector Θ in the

outer loop of the algorithm. I have stressed the use of automatic differentiation, to make

quasi-Newton algorithms competitive. However, in a model with few cohorts, the discount

factor β of each cohort is so low that time-iteration methods converge rather quickly.

The trade-off between time iteration vs. quasi-Newton algorithms depends mainly on two

parameters:

1. The number of cohorts: more cohorts means higher frequency, higher β, and more

time steps for time iteration to converge.
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2. The approximation order: higher order implies higher dimension of the parameter

vector Θ. Quasi-Newton methods involve the solution of a dense linear equation

system of the same dimension as Θ. The computational complexity of this problem

is cubic in the dimension.

I have found time iteration to be only competitive in the model with 6 cohorts. With 12

cohorts or more, quasi-Newton methods turned out to be clearly superior.

In terms of reliability, I found no difference between the two methods. If one of them

converges, so does the other one. Non-convergence of either algorithm seems to indicate

a problem with the equation system: there is no guarantee that the nonlinear fixed point

problem has a solution. And if a solution exists, but is too far away from the starting

point, then it may be impossible to find it.

3.4.4 Implementation of the quasi-Newton algorithm

In the outer loop of the algorithm (Step 8 in Section 3.2), we use a quasi-Newton method

to find the parameter vector Θ. For the results below, I have used Broyden’s algorithm.

For a general description, see Press et al. (1986, Section 9.7). The key elements of the

algorithm are the following.

1. At the initial guess x0, the equation system is linearized, either by finite differencing,

or in our case, by automatic differentiation. Denote the Jacobian by J0.

2. After each iteration, having found a new point xk, the Jacobian is changed by a

rank-one update: Jk = Jk−1 + ukv
′
k where uk and vk are column vectors.

3. In iteration k, the search direction is determined by the Newton step

dxk = −J−1
k F (xk) (47)

4. If the search direction computed by Jk does not lead to an improvement, the Jacobian

is computed again by automatic differentiation.

Since we deal with a very big equation system (close to 7000 parameters in one case),

solving the linear system in (47) is computationally expensive, and it becomes important

to use an efficient method. The following approach has turned out to work very well.

First, we compute an LU-decomposition of J0 (or any Jk where the Jacobian has been
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newly computed, not just updated). In the steps where the Jacobian gets updated, we

exploit that Jk = Jm + UV ′ where U = [um+1, um+2, . . . , uk] and V = [vm+1, vm+2, . . . , vk],

if Jk was the last computation of the Jacobian J . Then we can use the Sherman-Morrison-

Woodbury formula (Higham 2002, p. 258)

(A+ UCV ′)
−1

= A−1 − A−1U
(
C−1 + V ′A−1U

)−1
V ′A−1 (48)

and the LU-decomposition of Jm to solve (47) very fast. Usually it turns out that the LU

decomposition has to be computed only once for the solution of the model with a given

degree of approximation.

3.5 Short-sale constraints

Introducing short-sale constraints as described in Section 2.6 requires first some changes

in the formulas. The market clearing condition (35) is replaced by

Res(X, J ; Θ) =
J−1∑
j=1

ASj −DG (49)

and the household budget constraint (13) is replaced by

kj = (Wj + wζj +DG(QS − 1)− P (X; θj)− P (X; θJ)ASj −QCACj )/Q (50)

More importantly, the Euler equations (39) and (40) must be replaced by inequalities. Oc-

casionally binding inequality constraints mean that standard nonlinear root finders cannot

be applied. Therefore, in solving for the residuals as described in Section 3.3, I adapt Pow-

ell’s method such that the search directions are chosen by Lemke’s algorithm (Murty 1988).

Simply speaking, we solve the problem iteratively by piecewise linearization, and treat each

linearized problem by a standard method (Lemke’s algorithm) for linear complementarity

problems. It turns out that this procedure slows down the computation compared to the

case without inequality constraints (cf. Section 4.6), but is very reliable.

4 Numerical Results

4.1 Parameter values

Since the focus of this paper is on the computational method, I do not aim for the most

realistic calibration of the model, in particular not for a realistic size of the shocks. Shock
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variances are chosen to be rather high, to demonstrate the ability of the method to han-

dle large shocks. All shocks are approximated by finite distributions. The i.i.d. shock

to technology growth, εg, takes the values (−Φ,−0.05, 0, 0.05 + Φ/3) with probabilities

(0.1, 0.3, 0.3, 0.3), respectively. The volatility shock εs takes the values (−Ψ, 0,Ψ) with

probabilities (0.3, 0.4, 0.3), respectively. I consider the following parameter constellations.

In most cases, Ψ is set to 0.5. Then I let Φ vary between 0.05 (no crisis state) and 0.12.

In the latter case, the maximum negative shock to growth, when volatility is high, equals

−1.5 × 0.12 = −0.18. This means an 18 percent permanent reduction in the level of

technology.

The other parameters are mostly set to standard values from the literature. The length

of the working plus the retirement life is thought to be 60 years. The length of one model

period is then given by ny = 60/J years, where J denotes the number of cohorts. I choose

as time discount factor β = 0.98ny . Household labor endowment increases linearly from 0.5

in the first period to 1 in the last period before retirement. The risk aversion parameter

in (1) is varied between γ = 2 and γ = 6.

On the production side, I use a Cobb-Douglas production function

F (k, l) = kαl(1−α) (51)

with the output share of capital set to α = 0.4. The depreciation rate for capital is set to

δ = 1− 0.9ny . For the capital accumulation function, I use

Ψ(K, I) = (1− δ)K + I − 1

ηI

(I − δK)2

K
(52)

with ηI = 3.

4.2 Accuracy

Table 1 reports results for the model with 6 cohorts, 2 assets and large shocks (Φ = 0.12).

The first part of the table shows accuracy results, for different degrees of approximation

order. Notice that 6 functions need to be approximated: the consumption functions of

cohort 1–5 (the last cohort simply consumes all its wealth), as well as the price of the safe

asset. I approximate them as complete polynomials of the 7 state variables (the exogenous

states gt, σt and market wealth of cohorts 1–5). In the table, degree 1 means linear approx-

imation, and results are shown up to degree 4. The parameters are chosen so as to satisfy 6
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equations: the Euler equations for cohorts 1–5, as well as the market clearing condition for

the safe asset. As explained in Section 3, all the other variables, in particular asset choices,

are not approximated as functions of the state, but their equilibrium values are computed

at each point in the aggregate grid. Their first order condition is therefore satisfied almost

exactly, and not reported here. The results indicate that a linear approximation does not

yet give a very precise approximation: both mean and max absolute errors are in the range

of 10−3, rather uniformly for all the residuals. Notice that Euler residuals in Euq. (34) are

written as fractions of marginal utilities, so they should be interpreted as relative errors.

Increasing the degree of approximation to 4 reduces the mean absolute errors to about 10−7

and the max absolute errors to about 10−6. Do these differences in accuracy matter for the

economic results? The second part of the table reports mean values, standard deviations

and correlation with outpout for 7 different variables: the holdings of the safe asset for

cohorts 1–5, the excess return of capital relative to the safe asset, and the risk premium,

defined as the expected value of the excess return. Both risk premium and excess return

are in annualized terms. I will give a precise definition of these terms, and discuss in more

detail the quantitative significance, in Section 4.3. For the moment, the focus is on how

precisely these statistics are computed by approximations of varying degree.

We see that asset holdings are difficult to pin down accurately: the results for the lin-

ear approximation are quite different from the more precise results that are obtained with

degrees 3 or 4. This is true for mean values, standard deviations and also the correlation

with output. Perhaps surprisingly, both the mean and the standard deviation of the risk

premium, as well as its correlation with output, are captured well by the linear approxima-

tion. This shows that a global linear approximation is very different from the local linear

approximations that arise from linearization about the deterministic steady state. Local

linearizations give certainty equivalence results, and local second order perturbations give

a local approximation to the mean, but not the variance of the risk premium. To capture

the second moments of the risk premium, one needs at least a third-order perturbation

around the steady state.6 It is worth noting that degree 3 and 4 lead to practically iden-

tical results. This is important, because degree 4 cannot be easily achieved for the case of

a larger number of cohorts.

Table 2 provides the same information for the model with 3 assets. Asset holdings

are now reported for the third asset, which is thought to protect against the crisis state.

6For a perturbation analysis of a portfolio choice model, see Judd and Guu (2001).
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Degree Mean absolute error

Euler1 Euler2 Euler3 Euler4 Euler5

∑
iA

S
i

1 9.77e-4 1.05e-3 1.07e-3 1.31e-3 1.03e-3 1.77e-3

2 3.48e-5 3.66e-5 4.42e-5 2.67e-5 3.03e-5 1.26e-4

3 7.46e-6 7.90e-6 7.96e-6 7.61e-6 3.27e-6 3.78e-5

4 2.12e-7 2.25e-7 2.22e-7 2.12e-7 1.05e-7 1.23e-6

Max absolute error

1 2.84e-3 3.34e-3 3.23e-3 3.63e-3 2.83e-3 5.98e-3

2 3.26e-4 3.80e-4 4.24e-4 3.08e-4 2.86e-4 8.59e-4

3 4.84e-5 5.94e-5 6.89e-5 6.78e-5 2.74e-5 2.88e-4

4 2.62e-6 3.80e-6 4.88e-6 7.43e-6 3.96e-6 2.50e-5

AS1 AS2 AS3 AS4 AS5 RiskPr ExcRet

100× Means

1 -0.456 3.509 4.680 -2.469 -5.265 0.098 0.084

2 -0.633 3.640 4.816 -2.416 -5.407 0.099 0.100

3 -0.659 3.614 4.816 -2.381 -5.389 0.099 0.100

4 -0.659 3.612 4.814 -2.380 -5.387 0.099 0.100

100× Standard deviations

1 0.040 0.091 0.120 0.089 0.144 0.068 0.540

2 0.112 0.244 0.165 0.256 0.263 0.068 0.547

3 0.121 0.248 0.162 0.250 0.278 0.068 0.547

4 0.122 0.251 0.163 0.252 0.280 0.068 0.547

Correlation with output

1 -0.952 -0.473 -0.230 0.492 0.447 -0.006 -0.601

2 0.945 0.946 0.903 -0.951 -0.923 -0.012 -0.601

3 0.946 0.954 0.907 -0.954 -0.935 -0.012 -0.601

4 0.948 0.954 0.907 -0.954 -0.935 -0.012 -0.601

Table 1: Model with 6 cohorts and 2 assets, Φ = 0.12
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The risk premium and excess return still refer to the excess return of capital. The table

confirms the earlier results. For given order of approximation, the solution has about

the same accuracy as in the model with 2 assets. Again, the linear approximation does

not accurately pin down asset holdings. Perhaps surprisingly, introduction of the third

asset has no significant effect on the risk premium. This reflects the fact that the safe

asset already provides most of the insurance that can be achieved by asset trade, so that

the third asset does not change the allocation much. We will see this in more detail in

Section 4.5.

Table 3 provides summary results for the model with two assets and large shocks, with

a widely varying number of cohorts. The information provided are the mean and max

(over all the residuals reported in the earlier tables) of the errors, the mean and standard

deviation of the risk premium, as well as the correlation of risk premium and excess return

with output. In addition, a measure of the price of risk, namely the Sharpe ratio, is reported

(cf. Section 4.3 for a definition). I have computed the model for up to 60 cohorts, such

that the model period can be interpreted as one year. The larger the number of cohorts,

the smaller is the degree of approximation that is feasible on a personal computer. For 12

cohorts, I have computed the solution up to degree 3. This involves solving simultaneously

for 6720 parameters, the fourth-degree approximation would require 28560 parameters,

which needs more memory than what a personal computer currently has. For the model

with 20 cohorts I compute a quadratic approximation. The model with 60 cohorts I can only

compute with a linear approximation. We see that, for a given degree of approximation,

the accuracy goes down slightly in the number of cohorts, but for J = 60 errors are still

of the same order of magnitude as for J = 6. Furthermore, the equity premium and the

price of risk increase in the number of cohorts. This is because, with more cohorts, the

same shock in growth happens with higher frequency. What is perhaps most important,

we can confirm the result that the global linear approximation gives good approximations

to aggregate statistics, including financial statistics.

Table 4 provides some more checks on these results. The first part of the table refers

to the model with constant volatility. This is interesting, because in the benchmark cali-

bration, the variation in the risk premium is largely driven by changes in volatility, while

growth is driven by the technology shock. Therefore, the risk premium had very little corre-

lation with output growth. With constant volatility, the risk premium is almost perfectly

negatively correlated with output growth. It is still true that the linear approximation
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Degree Mean absolute error

Euler1 Euler2 Euler3 Euler4 Euler5

∑
iA

C
i

1 9.77e-4 1.05e-3 1.07e-3 1.31e-3 1.03e-3 1.77e-3

2 1.22e-4 1.31e-4 1.27e-4 1.74e-4 9.71e-5 1.40e-4

3 7.46e-6 7.90e-6 7.96e-6 7.61e-6 3.27e-6 3.78e-5

4 2.12e-7 2.26e-7 2.22e-7 2.12e-7 1.05e-7 1.23e-6

Max absolute error

1 2.84e-3 3.34e-3 3.23e-3 3.63e-3 2.83e-3 5.99e-3

2 1.48e-3 1.71e-3 1.71e-3 2.46e-3 1.25e-3 6.76e-4

3 4.83e-5 5.92e-5 6.88e-5 6.78e-5 2.73e-5 2.87e-4

4 2.61e-6 3.83e-6 4.88e-6 7.45e-6 3.95e-6 2.52e-5

AC1 AC2 AC3 AC4 AC5 RiskPr ExcRet

100× Means

1 -0.580 4.205 5.693 -2.952 -6.367 0.098 0.084

2 -1.080 3.493 4.812 -1.977 -5.247 0.099 0.099

3 -1.077 3.647 5.331 -2.178 -5.723 0.099 0.100

4 -1.080 3.640 5.326 -2.172 -5.715 0.099 0.100

100× Standard deviations

1 0.049 0.231 0.330 0.220 0.371 0.068 0.540

2 0.138 0.333 0.354 0.341 0.478 0.068 0.547

3 0.097 0.296 0.262 0.278 0.369 0.068 0.547

4 0.105 0.304 0.266 0.288 0.379 0.068 0.547

Correlation with output

1 -0.859 -0.239 -0.108 0.234 0.220 -0.006 -0.600

2 0.948 0.841 0.806 -0.873 -0.833 -0.012 -0.600

3 0.916 0.836 0.691 -0.843 -0.766 -0.012 -0.601

4 0.925 0.845 0.704 -0.854 -0.779 -0.012 -0.601

Table 2: Model with 6 cohorts and 3 assets, Φ = 0.12
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Degree Error RiskPr Sharpe Corr. with Y

Mean Max Mean StdDev RiskPr ExcRet

2 assets, 6 cohorts, γ = 4, Φ = 12

1 1.20e-3 5.98e-3 0.098 0.0677 0.058 -0.0061 -0.6005

2 4.97e-5 8.59e-4 0.099 0.0679 0.057 -0.0119 -0.6012

3 1.20e-5 2.88e-4 0.099 0.0679 0.057 -0.0122 -0.6013

4 3.68e-7 2.50e-5 0.099 0.0679 0.057 -0.0123 -0.6013

2 assets, 12 cohorts, γ = 4, Φ = 12

1 9.51e-4 1.38e-2 0.129 0.0930 0.085 -0.0271 -0.5375

2 7.24e-5 2.63e-3 0.129 0.0932 0.086 -0.0244 -0.5354

3 1.23e-5 7.05e-4 0.129 0.0932 0.086 -0.0251 -0.5369

2 assets, 20 cohorts, γ = 4, Φ = 12

1 1.17e-3 2.42e-2 0.146 0.1150 0.114 -0.0449 -0.4715

2 1.28e-4 6.27e-3 0.146 0.1150 0.114 -0.0349 -0.4612

2 assets, 60 cohorts, γ = 4, Φ = 12

1 2.08e-3 3.24e-2 0.179 0.1913 0.197 -0.1044 -0.3273

Table 3: Different cohort sizes
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Degree Error RiskPr Sharpe Corr. with Y

Mean Max Mean StdDev RiskPr ExcRet

6 cohorts, constant shock variance

1 3.75e-4 3.22e-3 0.095 0.0031 0.052 -0.9988 -0.5913

2 7.91e-6 2.37e-4 0.095 0.0032 0.052 -0.9982 -0.5906

3 3.43e-7 1.70e-5 0.095 0.0032 0.052 -0.9982 -0.5907

4 2.60e-8 1.79e-6 0.095 0.0032 0.052 -0.9982 -0.5907

12 cohorts, ρg = 0.2

1 1.52e-3 2.22e-2 0.128 0.0924 0.095 -0.0143 -0.4213

2 1.22e-4 5.87e-3 0.128 0.0926 0.097 -0.0252 -0.4070

3 1.39e-5 1.48e-3 0.128 0.0927 0.096 -0.0249 -0.4077

12 cohorts, ρg = −0.5

1 7.63e-4 1.57e-2 0.127 0.0922 0.068 -0.0568 -0.7681

2 9.00e-5 3.44e-3 0.127 0.0923 0.068 -0.0515 -0.7696

3 9.08e-6 4.26e-4 0.127 0.0922 0.068 -0.0524 -0.7706

Table 4: Various results, γ = 4, Φ = 12

gives a very good approximation for these statistics. Positive or negative correlation in

technology growth, for which results are reported in the second and third part of the table,

substantially affect the correlation of excess returns with output growth. Still, the linear

approximation gets it approximately right in all cases.

4.3 The price of risk

Table 5 provides summary information for various degrees of risk aversion and shock size.

Our focus here is on the price of risk. We measure the risk premium as the expected value

of the excess return of capital versus the riskless bond, expressed in annualized percentage

points. The excess return is defined as

ExcRett+1 ≡
100

ny
·

(
Et

rKt+1 + Q̃t+1

Qt

− 1

QS
t

)
(53)

The risk premium is the expected excess return:

RiskPrt ≡ EtExcRett+1 (54)
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Degree Error RiskPr Sharpe Corr. with Y

Mean Max Mean StdDev RiskPr ExcRet

2 assets, 12 cohorts, γ = 2, Φ = 12:

3 3.34e-6 2.19e-4 0.066 0.0475 0.039 -0.0242 -0.6427

2 assets, 12 cohorts, γ = 4, Φ = 12:

3 1.23e-5 7.05e-4 0.129 0.0932 0.086 -0.0251 -0.5369

2 assets, 12 cohorts, γ = 6, Φ = 12:

3 2.25e-5 8.41e-4 0.182 0.1315 0.134 -0.0224 -0.4767

2 assets, 12 cohorts, γ = 4, Φ = 8:

3 1.34e-5 1.34e-4 0.085 0.0605 0.068 -0.0175 -0.5388

3 assets, 12 cohorts, γ = 4, Φ = 12:

3 1.22e-5 6.85e-4 0.129 0.0932 0.086 -0.0251 -0.5370

Table 5: Different risk aversion

For the Sharpe ratio, I report the ratio of the unconditional mean and unconditional

standard deviation of the excess return:

Sharpe ≡ 1
√
ny
· E [ExcRett]√

Var [ExcRett]
(55)

It is annualized by dividing by the square root of the time period, since the risk premium

increases linearly in the time period, and the standard deviation only with the square root

of time. As expected, we see that the risk premium increases in the degree of risk aversion.

With γ = 6, it is 0.182 annualized percentage points. While not trivial this is still an order

of magnitude below what is observed in the data for stocks. This is mainly due to the fact

that the price of capital varies much less than the price of stocks in the data. Looking at

the price of risk, as measured by the annualized Sharpe ratio, the value reaches 0.134. This

is about half the observed value for the US stock market, which is roughly 0.25. This can

be considered a success, given that a risk aversion parameter of γ = 6 is rather moderate

by the standards of the finance literature on the equity premium (see for example Bansal

and Yaron (2004)). The Sharpe ratio increases somewhat more than linearly in the risk

aversion parameter γ.
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Degree Error RiskPr Sharpe Corr. with Y

Mean Max Mean StdDev RiskPr ExcRet

12 cohorts, short-sale constraints

1 9.33e-4 1.26e-2 0.146 0.1055 0.092 -0.0250 -0.5606

2 7.35e-5 1.86e-3 0.146 0.1054 0.092 -0.0139 -0.5587

3 1.17e-5 6.39e-4 0.146 0.1053 0.092 -0.0159 -0.5599

Table 6: Model with short-sale constraints

4.4 Results with short-sale constraints

Table 6 provides summary information on the model with 12 cohorts, two assets, and

a lower bound on asset holdings. The level of government debt was chosen to be 0.1,

which means that the outstanding sum of safe assets is only about 3 percent of total

wealth. Comparing Table 6 with the corresponding part of Table 3, we see that the

degree of accuracy is very similar. The risk premium and the Sharpe ratio have increased,

but not dramatically. Figure 1 displays the minimum and the maximum (over a long

simulation) of safe asset holdings, both for the linear approximation (dashed line) and

the cubic approximation (solid line). We see that the constraint is binding always for the

young and the old cohorts, never binding for cohorts 4 and 5, and occasionally binding for

cohorts 3 and 6. Even with short-selling constraints, the linear approximation does not

give accurate results for asset holdings.

4.5 Intergenerational Insurance

Recently, Hasanhodzic and Kotlikoff (2013) have argued that ingerentional insurance is not

an issue of primary importance. I briefly look at this issue in the context of my model. My

results do not contradict Hasanhodzic and Kotlikoff (2013), but show a somewhat more

detailed picture, since we now have an additional type of shock, namely to volatility.

Figure 2 displays impulse responses to two different shocks, for the model with one,

two and with 3 assets. The first shock is a technology shock of size Φ = −0.12, the crisis

shock. The second shock is a volatility shock, an increase of 50% in next period’s volatility.

Results are shown for the model with 6 cohorts, for better readability of the graphs. With

12 cohorts, the same qualitative conclusions hold.

In the graphs, each line follows a specific cohort. The single point refers to the cohort
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that is in the last period of life when the shock hits. The line with two points refers to the

cohort that has two periods to live when the shock hits, etc. In a model of sequentially

complete markets, cohorts that could trade assets with each other in the period before the

shock (cohorts 2 to J) use this to insure each other against aggregate shocks. With iso-

elastic utility, all of these cohorts then face the same percentage reduction in consumption.

In the graph, these lines would be on top of each other. However, for new cohorts, i.e., those

born at the time of the shock or later, the change in consumption can be very different.

The picture shows that markets are not complete. In response to a technology shock,

the departure from perfect insurance is clearly visibile in the case of one asset. In particular,

the oldest cohort (j = 6) is less affected by the negative shock. With two assets, the lines

for cohorts 2 to 6 are almost on top of each other. With three assets, this is true to higher

precision. The generations born at the time of the shock or later also face a reduction in

consumption, which is not much affected by the number of assets.

Against the volatility shock, however, the three assets provide little insurance, as can

be seen from the graphs in the right part of the figure. This is because none of the three

assets is particularly suitable as an insurance against a volatility shock. Furthermore, the

welfare effect of this shock is rather small compared to the technology shock, as can be

seen from the small change in consumption. Thus there is little incentive to utilize any of

the few available assets to hedge against this shock.

The results show that it is not easy to come close to market completeness when the

economy is subject to several shocks. Further results (not reported here) show that the

allocation is very close to the complete markets allocation when the economy is only subject

to a stationary neutral technology shock, even if physical capital is the only asset. This

result is similar to Rios-Rull (1994), and more recently Hasanhodzic and Kotlikoff (2013).

But things are different when shocks are non-neutral, if they affect the productivity of some

cohorts more than others. For questions of inter-generational insurance, it is therefore

essential to know the exact nature of the shocks.

4.6 Computing times

Below, I report computation times for an Intel i5-4690 CPU at 3.50GHz. I do not deal

with parallelization here, and report computing times using only one core. Since most

calculations are done separately for each point on a grid, parallelization is rather straight-
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forward, using tools such as MPI. Some computations, for example LU decomposition on a

big Jacobian matrix, could benefit from a linear algebra library using a graphics processor.

I think it is more transparent if I report computing times on a single processor.

In the model with 12 cohorts and two assets, computation time was 69 seconds for the

global linear approximation (168 parameters in the outer loop), 16 seconds for the quadratic

(1272 parameters), and 208 seconds for the cubic approximation (6720 parameters). This

includes the time for the accuracy checks. Notice that the linear approximation needs more

time than the quadratic approximation, because the model was solved 40 times in the linear

case (the continuation method described in Section 3.2). The quadratic approximation

starts from the results in the linear case; parameters and the size of the state space are

updated only a few times.

In the same model with three assets, which has the same number of parameters in the

outer loop, but requires to solve for more parameters in the equilibrium step, computation

time was 100 seconds for the global linear approximation, 24 seconds for the quadratic,

and 234 seconds for the cubic approximation. In the model with 12 cohorts, two assets

and short-sale constraints, computation time was 275 seconds for the global linear approx-

imation, 54 seconds for the quadratic, and 301 seconds for the cubic approximation.

For the global linear approximation with 60 cohorts (3720 parameters in the outer loop),

total computing time was 86 minutes. This model requires to solve for a large number of

asset values in the equilibrium step. Again, computing time is high because the model is

solved 40 times.

The importance of reducing the number of states and approximated functions can be

illustrated with the example of 12 cohorts and three assets. In the reduced state space, we

approximate 12 functions (cubic approximation of 11 consumption functions and the price

of the safe asset) in 13 states (z, g and 11 wealth levels). A cubic function in 13 states has

1 + 13 + 13 · 14/2 + 13 · 14 · 15/6 = 560 basis functions. This makes a total 560 · 12 = 6720

parameters. If we took the predetermined portfolios as states, we would have 2 + 33 state

variables. A cubic function in 35 states has 1 + 35 + 35 · 36/2 + 35 · 36 · 37/6 = 8436 basis

functions. If we approximate portfolio choices, we would approximately have 34 functions

to approximate, which requires to solve nonlinearly for almost 286824 parameters.
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5 Conclusions

The paper has shown that it is possible to compute OLG models with a medium number of

cohorts, several assets and sort-selling constraints with high precision. Computing times

range from several minutes (6 or 12 cohorts) to more than an hour (60 cohorts) on a

regular personal computer. Increasing the degree of the approximating polynomials by

one brings an increase in accuracy, measured by Euler residuals, of almost one order of

magnitude. Global linear approximations are not precise enough to pin down asset choices.

However, their business cycle predictions about aggregate statistics, including financial

statistics such as the Sharpe ratio, turn out to be very close to the results from higher-

order approximations.
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A Details of automatic differentiation

The purpose of this Appendix is to show how automatic differentiation can be efficiently

implemented in the context of our model. I do this in two steps. Section A.1 describes

how to differentiate the outer-loop part of the algorithm, by breaking it into suitable

subproblems. Section A.2 deals with the implicit differentiation of the equilibrium problem

in the inner loop.

A.1 Breaking the problem into parts

The theory of automatic differentiation has established that the computation of the gra-

dient of a function requires not more than five times the number of operations needed for

function evaluation, irrespective of the number of independent variables (Griewank and

Walther 2008, p.85). However, this can be achieved only in the socalled “reverse mode”,

which is often difficult to implement. In our application, similar efficiency can be achieved

in a much simpler way. The general idea is the following. We are given a function R(Θ)

and want to compute the gradient ∂R
∂Θ

, where Θ is a high-dimensional vector of parame-

ters. Assume that R(Θ) can be written as R(x(Θ)), where x is a vector of much lower

dimension than Θ. While R can be a complicated function of x, we require that x is

an easy-to-compute function of Θ. Then the gradient ∂R
∂Θ

can be efficiently computed as
∂R
∂x
· ∂x
∂Θ

. This is exactly the case in our model. The residuals are complicated functions of

the states and of the approximated functions, but the number of states and approximated

functions is small, compared to the number of parameters. The approximated functions

depend on the parameters in a very simple way, namely aj =
∑

lBl(x)Θlj. Since the ba-

sis functions Bl(x) are already computed for function evaluation, they do not impose any

additional burden for the gradient evaluation.

In the following, denote by x the vector of states, with dimension nx, by a the vector

of approximated variables, with dimension na, and by e a vector of endogenous variables,

with dimension ne, which is related to x and a by

ej = φj(x, a), j = 1, . . . , ne (56)

where φj is a known function. The role of e will become clear in the next subsection. We

further assume that the exogenous shock ε can only take a finite number of realizations,
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εξ, where ξ = 1, . . . , nε. Next period’s states x̂ are assumed to follow

x̂ξj = χj(x, a, ε
ξ), j = 1, . . . , nx (57)

where again the χj are are known functions. For any variable y, we adopt the notation yξ

for the value of y in the next period, conditional on the shock being εξ.

At a given point in the state space, x, written as a column vector, any equation of the

model can be written as
nε∑
ξ=1

πξR
(
x, a, e, x̂ξ, âξ

)
= 0 (58)

where aj =
∑nb

l=1Bl(x)Θlj and nb is the number of basis functions. Next period’s decision

function are then given by âξj =
∑nb

l=1 Bl(x̂
ξ)Θlj.

Understanding that R is always evaluated at
(
x, a, e, x̂ξ, âξ

)
, and χ is always evaluated

at (x, a, ε̂), we drop arguments in the following formulas. Differentiating the lhs of (58)

w.r.t Θi,k then gives

nε∑
ξ=1

πξ

[(
∂R

∂ak
+

ne∑
j=1

∂R

∂φj

∂φj
∂ak

+
nx∑
j=1

∂R

∂x̂ξj

∂χj
∂ak

)
Bi(x) +

na∑
j=1

∂R

∂âξj

dâξj
dΘik

]
(59)

and
dâξj
dΘik

=

nb∑
l=1

d
[
Bl(x̂

ξ)Θlj

]
dΘik

= Bi(x̂
ξ)δj,k +

nb∑
l=1

nx∑
m=1

Θlj
∂Bl(x̂

ξ)

∂xm

∂χm
∂ak

Bi(x) (60)

The gradient w.r.t. the column vector Θ:,k therefore has two components:

1. The scalar

nε∑
ξ=1

πξ

[
∂R

∂ak
+

ne∑
j=1

∂R

∂φj

∂φj
∂ak

+
nx∑
j=1

∂R

∂x̂ξj

∂χj
∂ak

+
na∑
j=1

nb∑
l=1

nx∑
m=1

∂R

∂âξj
Θlj

∂Bl(x̂
ξ)

∂xm

∂χm
∂ak

]
(61)

multiplied with the vector of basis functions at x, denoted by B(x).

2. The vector
nε∑
ξ=1

πξ
∂R

∂âξk
B(x̂ξ) (62)

Given x, a, x̂ξ, âξ, the vectors ∂R
∂a

, ∂R
∂x̂ξ

, ∂R
∂â

and ∂χ
∂a

are small and relatively cheap to

compute (in particular, independent of the dimension of Θ). The triple sum in (61) can be

written as (∆RΘT )(∆B∆χk), where the matrix ∆R is 1×na, Θ is nb×na, ∆B is nb×nx,
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and ∆χk is nx × 1. The triple sum can be done with nb(na + nx + 1) multiplications. It is

linear in nb with a small multiple.

The basis function vectors B(x) and B(x̂ξ) are big, but they are already needed for the

evaluation of R. The extra cost for the evaluation of the gradient therefore comes mainly

from the term ∂B
∂x

(x̂ξ) and from the multiplications involved in the last term on the rhs of

(60). Computing ∂B
∂x

(x̂ξ) costs a small multiple of the cost of B(x̂ξ).

A.2 Implicit differentiation of the inner loop problem

We now consider the case that the state transition function χ and the function φ are not

known, but are given implicitly by systems of nonlinear equations. In particular, we assume

that next periods state satisfies

T (x, a, e, x̂ξ, âξ, ε̂ξ) = 0, ξ = 1, . . . , nε (63)

and the endogenous variables e satisfy
nε∑
ξ=1

πξH(x, a, e, x̂ξ, âξ) = 0 (64)

To apply the formulas of Section A.1, we have to compute the derivatives
∂φj
∂ak

and
∂χj
∂ak

.

Given x and a = B(x)Θ, and using âξ = B(x̂ξ)Θ, the endogenous variables e and next

period’s states can be solved for simultaneously using (63) and (64). This is a big nonlinear

system of equations, solving simultaneously for nb + nεnx variables. The problem could

become intractable (in particular if there are many possible realizations of shocks) if it

didn’t have a sparsity structure: each x̂ξ depends on a, e and εξ, but not on the ε̂ζ , x̂ζ with

ξ 6= ζ.

To make this explicit, write(63) and (64) as a stacked vector of equations:
∑nε

ξ=1 πξH(x, a, e, x̂ξ,B(x̂ξ)Θ)

T (x, a, e, x̂1,B(x̂1)Θ, ε1)
...

T (x, a, e, x̂nε ,B(x̂nε)Θ, εnε)

 = 0 (65)

The Jacobian of this system, w.r.t to the stacked vector of variables [e, x̂1, . . . , x̂nε ], can be

written in partitioned form as

J =

[
A B

C D

]
(66)
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where A, B and C have dimensions na × na, na × nεnx and nεnx × na, respectively. The

nεnx×nεnx matrix D is block-diagonal, having nε blocks of size nx×nx along the diagional.

The matrix J is used for two purposes:

1. to solve for the [e, x̂1, . . . , x̂nε ] by quasi-Newton methods;

2. to compute the derivative of the equilibrium [e, x̂1, . . . , x̂nε ] by the implicit function

theorem:
∂[e, x̂1, . . . , x̂nε ]

∂a
= −J−1Ja (67)

where Ja denotes the Jacobian of (65) w.r.t a, and both J−1 and Ja are evaluated at

the solution point [e, x̂1, . . . , x̂nε ].

To solve a linear system Jx = b efficiently, we first use the partitioned-inversion formula

(Press, Flannery, Teukolsky, and Vetterling 1986, p. 77)[
A B

C D

]−1

=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
, (68)

Notice that A is of the small dimension na × na, but D − CA−1B is of the possibly

large dimension nεnx × nεnx. To invert the latter matrix, notice that D is block-diagonal,

therefore easy to invert, and CA−1B is of small rank. Then we can use again the Sherman-

Morrison-Woodbury formula (48) to obtain7

(
D − CA−1B

)−1
= D−1 +D−1C

(
A−BD−1C

)−1
BD−1 (69)

Equation system (64) is formulated in terms of the full state vectors x̂ξ. Notice that it

will typically be possible to reduce the dimension of the numerical root finding problem

by expressing the future states x̂ξ as a function of past states, decisions and and a small

number of current prices. For an example, see Section 3.3 where x̂ξ is computed using only

Rξ
K . This can be exploited for the efficient solution of the equilibrium problem.

7Notice that D−1 is sparse, while D−1C
(
A−BD−1C

)−1
BD−1 is in general not, therefore one should

not compute this matrix, but compute D−1C
(
A−BD−1C

)−1
BD−1X, for any X, from right to left. I

describe the computations in terms of matrix inversion for notational simplicity. The computationally

efficient way to solve the system is to use LU-decompositions rather than inverses.

39



References

Auerbach, A. and L. Kotlikoff (1987). Dynamic Fiscal Policy. Cambridge University

Press.

Auerbach, A. J. and L. J. Kotlikoff (1981). National Savings, Economic Welfare, and the

Structure of Taxation. NBER Working Papers 0729, National Bureau of Economic

Research, Inc.

Bansal, R. and A. Yaron (2004, 08). Risks for the Long Run: A Potential Resolution of

Asset Pricing Puzzles. Journal of Finance 59 (4), 1481–1509.

Griewank, A. and A. Walther (2008). Evaluating Derivatives: Principles and Techniques

of Algorithmic Differentiation, Second Edition. SIAM e-books. Society for Industrial

and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA

19104).

Hasanhodzic, J. and L. J. Kotlikoff (2013). Generational Risk Is It a Big Deal?: Sim-

ulating an 80-Period OLG Model with Aggregate Shocks. NBER Working Papers

19179, National Bureau of Economic Research, Inc.

Hasanhodzic, J. and L. J. Kotlikoff (2015). Generational Risk Is It a Big Deal?: Simu-

lating an 80-Period OLG Model with Aggregate Shocks. Manuscript.

Higham, N. (2002). Accuracy and Stability of Numerical Algorithms (2nd ed.). SIAM.

Judd, K. L. (1992). Projection methods for solving aggregate growth models. Journal of

Economic Theory 58 (2), 410–52.

Judd, K. L. (1998). Numerical Methods in Economics. Cambridge and London: MIT

Press.

Judd, K. L. and S.-M. Guu (2001). Asymptotic methods for asset market equilibrium

analysis. Economic Theory 18 (127-57), 127–157.

Judd, K. L., L. Maliar, and S. Maliar (2012). Merging simulation and projection

aproaches to solve high-dimensional problems. NBER Working Papers 18501, Na-

tional Bureau of Economic Research, Inc.

Judd, K. L., L. Maliar, S. Maliar, and R. Valero (2014). Smolyak method for solving

dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive

domain. Journal of Economic Dynamics and Control 44, 92–123.

40



Krueger, D. and F. Kubler (2004). Computing equilibrium in olg models with stochastic

production. Journal of Economic Dynamics and Control 28 (7), 1411–1436.

Krueger, D. and F. Kubler (2006). Pareto improving social security reform when financial

markets are incomplete!? American Economic Review, forthcoming 96 (3), 737–755.

Krusell, P. and A. A. Smith (1998). Income and wealth heterogeneity in the macroecon-

omy. Journal of Political Economy 106 (5), 867–96.

Ludwig, A. and M. Reiter (2010). Sharing demographic risk – who is afraid of the baby

bust? American Economic Journal: Economic Policy 2, 83–118.

Malin, B., D. Krueger, and F. Kubler (2007). Computing stochastic dynamic economic

models with a large number of state variables: A description and application of a

smolyak-collocation method. Manuscript.

Marcet, A. and G. Lorenzoni (1998). Parametrized expectations approach; some practi-

cal issues. In R. Marimon and A. Scott (Eds.), Computational Methods for the Study

of Dynamic Economies. Oxford University Press.

Marcet, A. and K. J. Singleton (1998). Equilibrium asset prices and savings of heteroge-

neous agents in the presence of incomplete markets and portfolio constraints. UPF

Working Paper 319.

Miranda, M. J. and P. L. Fackler (2002). Applied Computational Economics and Finance.

MIT Press.

Murty, K. G. (1988). Linear Complementarity, Linear and Nonlinear Programming.

Helderman-Verlag.

Nocedal, J. and S. J. Wright (2006). Numerical Optimization, second edition. World

Scientific.

Press, W., B. Flannery, S. Teukolsky, and W. Vetterling (1986). Numerical Recipes.

Cambridge University Press.

Reiter, M. (2010). Approximate and almost-exact aggregation in dynamic stochastic

heterogeneous-agent models. IHS Working Paper 258.

Rios-Rull, J.-V. (1994). On the quantitative importance of market completeness. Journal

of Monetary Economics 34 (3), 463–496.

41


