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Abstract 

Nonparametric unit-root tests are a useful addendum to the tool-box of time-series analysis. 
They tend to trade off power for enhanced robustness features. We consider combinations of 
the RURS (seasonal range unit roots) test statistic and a variant of the level-crossings count. 
This combination exploits two main characteristics of seasonal unit-root models, the range 
expansion typical of integrated processes and the low frequency of changes among main 
seasonal shapes. The combination succeeds in achieving power gains over the component 
tests. Simulations explore the finite-sample behavior relative to traditional parametric tests. 
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1 Introduction

The current literature on seasonal time series (see Ghysels and

Osborn, 2001, or Caporale et al. 2012, for example) ascribes

the origin of the basic discrimination problem among conflicting

paradigms for the generation of seasonal features to Hylleberg

(1986).

The three main model worlds of concern are: (a) determin-

istic seasonal variation, as customarily expressed via seasonal

dummy variables; (b) seasonal unit roots and seasonal integra-

tion; (c) stochastic stationary cyclical variation. A distinctive

feature among these concepts is their implication with regard to

forecasts of seasonal patterns. Deterministic seasonal patterns in

an otherwise stationary environment entail that the sample aver-

age of seasonal shapes is the best predictor for future shapes at

longer horizons. Seasonal integration emphasizes the importance

of the most recent pattern as a shape predictor, even though

this prediction will face increasing uncertainty at increasing hori-

zon and persistent shape changes are to be expected. Stationary

cyclical variation permits some short-run extrapolation of pat-

terns but it will imply trivial predictions at longer horizons.

The most important statistical tools for discriminating among

these main concepts of seasonal time-series generators were cre-

ated in the 1990s: the HEGY test by Hylleberg et al. (1990),

the test by Canova and Hansen (1995), and some further con-

tributions that are conveniently summarized by Ghysels and

Osborn (2001). These tests are parametric tests that build on

Gaussian likelihoods and optimize power properties for specific
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designs. By contrast, nonparametric tests aim at increased ro-

bustness at the price of reduced power.

Variance-ratio tests for seasonal unit roots were considered

by Taylor (2005) who generalized the testing concept by Bre-

itung (2002) to the seasonal case. Whereas these tests achieve

additional robustness, they cannot be viewed as narrow-sense

nonparametric. Kunst and Franses (2011) extended the non-

parametric RUR (range unit-root) test by Aparicio et al. (2006)

to the seasonal case. The test suggested here combines their

RURS (RUR seasonal) test with another nonparametric unit-root

testing idea that was investigated by Burridge and Guerre

(1996). Their test relies on counting zero crossings and was mod-

ified by Garćıa and Sansó (2006).

We provide an additional motivation for our selection of com-

ponent tests in our new test by first presenting the idea of jit-

tered seasonal phase plots. These plots are constructed as fol-

lows. First, the information on seasonal shapes is condensed into

classes, and then the transition patterns between these classes are

recorded.

The paper is organized as follows. Section 2 introduces the

jittered seasonal phase plots as a visualization tool. Section 3

reviews the typical patterns created by classes of seasonal gener-

ators. Section 4 considers the nonparametric combination test.

Section 5 applies the methods to exemplary time series. Section

6 concludes.
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2 Jittered seasonal phase plots

2.1 The quarterly case

Figure 1 shows the typical visualization of a seasonal time series

as a time plot: the partial realization, an element of the space Rn

with sample size n, is drawn as a curve in R2. The generating

model is a quarterly Gaussian seasonal random walk xt = xt−4+εt

for t ≥ 0 with xt = 0,−3 ≤ t ≤ 0 as starting conditions. The

experienced user is likely to decide for a seasonal unit-root model

on the basis of Figure 1.

0 20 40 60 80 100
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Figure 1: Time plot of a realization of a seasonal random walk.

A characteristic feature of seasonal unit-root processes are the

infrequent but persistent changes in the rank position of quarters

(in the case of quarterly data). These are emphasized visually

if the series is represented by four quarterly series: the spring

series, the summer series etc. For the example of Figure 1, Figure

2 provides this representation.
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Figure 2: Time plot by seasons of a realization of a seasonal random walk.

The idea of counting the intersections of quarterly plots in or-

der to obtain a non-parametric statistic for discriminating among

the main seasonal generating models was pursued by Kunst

(2009). Each of these crossings represents a change of the qual-

itative seasonal pattern, in the sense that, for example, stronger

sales of a product during the spring season give way to higher

sales in summer. For the following, we convene that changes in

the seasonal pattern are reflected in a reversal of ranking between

two successive quarters.

Figure 3 reproduces the eight possible qualitative seasonal pat-

terns that we use here. The cases have been coded conveniently as

triples of binary numbers, using ‘1’ for an increase between quar-

ters and ‘0’ for a decrease. Several alternative discretizations are

conceivable. Even in the 101 pattern, for example, it may make

sense to separate cases with a spring peak from those with a fall

peak, and with a summer trough from a winter trough. This,
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however, would increase the number of classes to 24. Note that

the direction from the last quarter of a year to the first quarter of

the following year has also been excluded from the classification.

This follows the idea that seasonality should be viewed indepen-

dently from the year-to-year trend. Thus, the 111 pattern should

not be subdivided into cases with a strong slump at the beginning

of the year and cases with a persistent upward movement. Again,

the increase in the number of classes to 16 would be inconvenient.

000 001 010

011 100 101

110 111

Figure 3: The eight qualitative seasonal patterns for quarterly data.

5



Discretization of the sample space into 8 classes, of course, en-

tails a considerable loss in information and can only be justified

if the result assists in the discrimination problem of concern. It

is fairly simple to simulate some basic time-series models and to

generate connected phase plots from the trajectories. Unfortu-

nately, even when large samples are generated, the usefulness of

such graphs is limited. Basic properties that would be important

for a reliable classification are not easily recognized. As a visual

tool, these graphs do not convince.

A main problem in the simple phase plot is that it does not

show the population within the classes. One suggestion would

be to simply randomize the observations in an interval such as

[m − 0.4, m + 0.4], which would correspond to the technique of

jittering that is widespread. A more sophisticated visualization is

to distribute the observations that belong to class m according to

their ‘depth’ within the class. Given that an observation is classi-

fied to m according to increases or decreases in specific quarters,

it can be said to be ‘deep’ in the class when these increases or

decreases are large, while almost constant patterns can be seen

as ‘shallow’. There are three quarter-to-quarter movements, and

an observation may be deep regarding quarter 1-2 and shallow in

other quarters. Several solutions may be considered.

We decided for a distribution according to maximum relative

depth, calculated from maximum absolute inter-quarter increases

or decreases. We experimented with shallow points in the center

of the interval and deep points at the boundaries as well as with

the reverse convention, and finally decided for the former, as it

6



tends to convey a slightly clearer picture. Thus, points in the

center are the shallowest class members, and after an extended

period in the class they tend to attain the boundaries.

There is no coercive convention for the left and right parts of

the interval, [m− 0.4, m) and (m,m+ 0.4]. These could be used

for observations that are deep regarding the first movement on

the left and those deep in the second movement on the right, but

this still would leave the third one undecided. We decided for

uniform randomization, i.e. jittering in the literal sense. For sea-

sonal unit-root processes, deep observations tend to be followed

by deep ones, and this randomization tends to generate a St. An-

drew’s cross or saltire, a pattern that sends a clear message to

the observer. The result of this procedure is shown in Figure 4.

0 2 4 6
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6

Figure 4: Jittered phase diagram for pattern classes. Generating model is a

quarterly Gaussian seasonal random walk with 40,000 observations.
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2.2 The monthly case

In principle, the monthly case can be handled in analogy to the

quarterly case. The main difficulty in visualizing the phase plots

is the large number of shape classes that is 2S−1 if S denotes the

seasonal periodicity. For quarters, 23 = 8 is a conveniently small

number, while for months 211 = 2048 is quite impressive. Because

of the limited resolution of the graphs, the cross shape within the

bins is no longer recognizable and visual evaluation must rely on

the patterns of transition among shapes exclusively.

Accordingly, we experimented with jittered plots for the monthly

seasonal random walk. It appears that observations tend to clus-

ter in specific areas close to the diagonal and that transitions

across shapes are recognizeably rare. Such plots can be con-

fronted with control plots that are generated from Gaussian white

noise. Then, shape transitions become frequent, and all classes

are represented, although not uniformly. In another control ex-

periment, realizations of Gaussian random walks without any

seasonal features tend to generate homogeneously filled squares.

Eyeballing is sure to discriminate such non-seasonal benchmarks

from the seasonal random walk.
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3 Various models of seasonality and

their phase plots

3.1 Deterministic seasonality

Whereas unit-root seasonality generates the hitherto highlighted

features, i.e. rare transitions between bins and persistence within

some bins, many seasonal cycles observed in the real world appar-

ently support deterministic models with different characteristic

features.

For example, temperature is unlikely to ever transit from a

pattern with a summer peak and a winter trough to a reversal

of extrema, at least in many moderate climates. Data are then

likely to be classified into the ‘110’ pattern exclusively. Similarly,

tourism data for a mountainous region may display twin-peak

patterns with a preference for summer and winter tourism, al-

though with low activity in early spring or in fall. This may

correspond to the pattern coded as ‘101’.

A simple generating model for such deterministic seasonal

variation is a stable ARMA model superseded with a repetitive

cycle expressed via seasonal dummy variables. For exposition, we

consider the generating model

xt = 0.4xt−4 +

4
∑

j=1

djδj,t + εt,

with standard Gaussian errors and δj,t denoting the customary

seasonal dummy constants. For the deterministic pattern, we

impose the sequence (d1, . . . , d4) = (0, 8, 3, 10). Figure 5 provides

a time-series plot.
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Figure 5: Time series plot for 400 observations generated from a deterministic

seasonal process.

The corresponding plot by quarters is given in Figure 6. While

the two peaking quarters 2 and 4 show some tendency to change

their rankings, the low-activity quarter 1 remains at the bottom

during the entire sampling interval.

The impression is confirmed in a jittered phase plot shown in

Figure 7. There is a strong preference for one class, and occasional

visits to other classes remain episodic.

3.2 Periodic models

If the generating law of the process varies with the season, the

process is called periodic. For details, seeGhysels and Osborn

(2001, Ch. 6) or Franses (1996). The simplest model of this type
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Figure 6: Time plot by seasons of a realization of a process with deterministic

seasonality.
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Figure 7: Jittered phase diagram for pattern classes. Generating model is a

process with deterministic seasonal variation and 40,000 observations.
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is the periodic AR(1) model:

xt = φsxt−1 + εt,

with s = t mod S + 1. Whereas the model is not so often used

on economic time series, a specific type of periodic process, the

periodically integrated process, is of interest as it bridges the gap

between seasonal integration and purely deterministic seasonality.

The periodic AR(1) process can be shown to be periodically

integrated iff
S
∏

s=1

φs = 1,

in which case xt displays some typical features of a seasonally

integrated process, whereas the separate seasons are now cointe-

grated, which they are not in the seasonal random walk model.

Because of this property, periodically integrated variables are usu-

ally difficult to distinguish from seasonally integrated variables

by typical statistical tests for seasonal integration, such as the

HEGY test due to Hylleberg et al. (1990).

In an exemplary experiment, we generated 40,000 observa-

tions from a periodically integrated process with S = 4 and

(φ1, . . . , φ4) = (1, 0.25, 1, 4). The concomitant jitter plot is not

shown here because of its high bit size at an acceptable resolu-

tion. This jitter plot reflects the construction principle. If the

variable has a positive value at the end of a year, it tends to fall

from the first to the second quarter and to rise from the third to

the fourth quarter, with the movement in between undetermined.

Thus, the jittered phase plot shows a clear emphasis on the bins

# 4 and # 6, with frequent transitions between these two. The

12



bins # 1 and # 3 constitute a similar pattern for negative values.

Thus, the bin pair #1 and #3, and the bin pair #4 and #6 form

two loosely related subsystems. Within all bins, the jittered plot

displays blotches rather than saltires and thus does not support

seasonal unit roots visually. The graphical procedure clearly dis-

criminates the periodic model from the seasonally integrated one.

Comparable patterns are also found with different designs for the

coefficient sequence.

3.3 An experiment with a structural break

Balcombe (1999) pointed at the low power of seasonal unit-

root tests in the presence of structural breaks. Just as in the

case of unit-root tests for the traditional root at one, it should

be noted that data-generating processes with breaks are neither

in the null nor in the alternative of the original unit-root tests,

thus it is uncertain whether the outlined property can really be

regarded as a problem of low power. Rather, the issue appears

to be a robustness problem. If the original classes of processes

are perturbed, the tests that are designed for these classes fail to

classify correctly.

In detail, Balcombe perturbs a random walk with added

deterministic variation by a change in the seasonal pattern in the

middle of the sample, with the strength of perturbation indicated

by a parameter α:

∆xt =
4

∑

j=1

(1− αDt)djδj,t + εt,

with (d1, . . . , d4) = (0, 1, 1,−2) and Dt = 0 for t < T/2 and
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Dt = 1 for t ≥ T/2. The perturbation parameter is varied over

the set {0, 1, 2}. α = 0 represents the undisturbed case, for α =

1 seasonality disappears after the break, while for α = 2 the

seasonal pattern is reversed after the break.

Because of the excessive size of the plot files, the seasonal jitter

plots for this generating process cannot be shown here. By con-

struction, the method is unaffected by any time reversal, and thus

it cannot distinguish whether variation diminishes or increases.

The case α = 0 is clearly reflected by deterministic spots at the

dominant bins # 4 and # 6, which often alternate as the second

and third quarter have identical means. The case α = 2 reflects

the bins # 4 and # 6 that dominate for small t as well as the

bins # 1 and # 3 that dominate at large t. The intermediate case

α = 1 shows non-seasonal blotches, as the non-seasonal second

half dilutes the patterns in the first half. In none of the three

cases, graphs would seriously indicate seasonal unit roots. Thus,

in a sense, the visualization is unaffected by the discrimination

problem of the parametric test.

4 A nonparametric test for seasonal

unit roots

We first note that the classification decision based on the jittered

plots mainly depends on two features: (i) the transition frequency

across shape classes and (ii) the precision of the saltire shapes.

Whereas the following presentation is restricted to the quarterly

case, it is straight forward to generalize toward other frequencies.
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In particular, we note that the fact that the visualization in the

phase plot cannot show the within-bin patterns does not preclude

the numerical value of the corresponding test statistic from being

calculated.

Concerning the transition frequency, it is convenient to start

from the case that the data-generating process is a seasonal ran-

dom walk. The event of a shape transition, for example

x1,t > x2,t, x1,t−1 < x2,t−1,

with xi,j denoting the quarter i in year j, clearly is equivalent to

x1,t − x2,t > 0, x1,t−1 − x2,t−1 < 0.

In a seasonal random walk, the quarters represent independent

random walks. The difference between quarters is then a random

walk itself, so the above event is a zero crossing for the random

walk x1,t − x2,t.

Some facts on the distribution of zero crossings in random

walks are known from the literature (Burridge and Guerre,

1996, Garćıa and Sansó, 2006). In particular, Burridge and

Guerre (1996) showed that the modified crossings count

K∗

T (0) =
σ̂

M̂AD
T−0.5

T
∑

t=1

I(Xt−1 ≤ x,Xt > x)+I(Xt−1 > x,Xt ≤ x)

is asymptotically distributed as |N(0, 1)|. Here, σ̂ denotes an

estimate of the standard error of the increments ∆Xt, whereas

M̂AD is an estimate of their absolute first moments. These two

15



correction factors are suggested to be formed empirically as

σ̂ =

√

√

√

√T−1

T
∑

t=1

(∆Xt)2, (1)

M̂AD = T−1

T
∑

t=1

|∆Xt|. (2)

Garćıa and Sansó (2006, GS) then generalized this result to

trend-corrected random walks, for which the modified crossings

statistic converges to a Rayleigh distribution. In particular, how-

ever, GS showed that replacing the sample variance in formula

(1) by a long-range variance in the vein of variance-ratio tests

or the popular unit-root test by Phillips and Perron (1988)

succeeds in making the test robust to autocorrelation in the in-

crements under the null of a unit root. The main argument in

their proof relies on a result by Akonom (1993). In other words,

the test that was strictly valid only for random walks in the ver-

sion of Burridge and Guerre (1996) now becomes a test for

the null of a first-order integrated process, in symbols I(1). In

the following, we refer to the modified statistic as ζ̃1 and to the

original statistic as ζ1.

The modified statistic K∗

T (0) constitutes our first nonpara-

metric test statistic ζ1 or ζ2. Its asymptotic distribution under

the null of a seasonal random walk is known, though we will not

exploit this property explicitly.

Concerning the precision of the saltire, we form a second non-

parametric test statistic ζ2 from the median distance between

observations in the (i, j) bin and the saltire form. Clearly, this

distance can be envisaged as the distance of the absolute point
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(|x̃t−1|, |x̃t|) from the 45 degree line, if x̃ denotes a properly nor-

malized observation relative to the center of the corresponding

bin. This distance, in turn, equals 2−0.5∆|x̃t| in the diagonal (i, i)

bins, and its average should converge to an absolute moment of

a distribution of increments.

We note, however, that the bins have been scaled to minima

and maxima. Such maxima are known to expand at the rate

of T 0.5 for random walks and at a much slower rate of log T for

stationary Gaussian variables. Thus, the average of the incre-

ments in a scaled world approaches zero at a rate of T−0.5 for

random walks, while its properties depend on characteristics of

the data-generation process including error distributions for sta-

tionary variables. Accordingly, the nonparametric test statistic

ζ2 is defined as T 0.5 multiplied by the medium distance of ob-

servations and the saltire. We opt for the median rather than

the mean for the sake of distributional robustness. A compara-

ble nonparametric test statistic based on a similar principle was

suggested by Aparicio et al. (2006, AES).

It is unfortunate that a robustification step comparable to the

correction by GS for the original suggestion by Burridge and

Guerre (1996) is not available for the AES test. This property

is rooted deeply in the construction principle of the tests. The

level-crossings count is sensitive to moments of the generating

distribution, which are then adjusted for by a correction factor,

and this factor is in turn robustified in the GS version. In the

AES test, by contrast, the adjustment term cancels out, and the

distribution of the test statistic is independent of the moment

17



properties of the generating law for pure random walks.

It pays to reconsider the shapes that we encountered by sim-

ulation in Section 2 in the light of this discussion. For a seasonal

random walk, the saltire shape is approximated as the sample

size increases, with the average distance from the saltire decreas-

ing. For a non-seasonal random walk, both the horizontal and

vertical directions of the bins expand at the rate T 0.5, and the

bins are densely filled. For white noise, both directions expand

slowly, and the bins are filled in a circular fashion, with points in

the corners remaining rare.

A crude demonstration of the power of this test is provided in

Figure 8. 1000 replications of Gaussian random walks, Gaussian

seasonal random walks, and Gaussian white noise were gener-

ated, and all realizations of both test components were plotted.

It appears that even at the smallest sample size of 25 years does

the test show some power. For the larger samples, discrimination

between the pattern persistence of the seasonal unit-root process

and the other generating laws become almost perfect. Instruc-

tive visualizations of this type are routinely used in discriminant

analysis (see, for example, James et al., 2013), where a linear

decision boundary is determined. Similarly, we shall introduce a

combination test that corresponds to such a boundary line.

A convenient visualization of the workings of the two test

statistics is provided in Figure 9. The occasions where the cross-

ings count increases are marked as well as the points where new

maxima or minima occur. The plot may insinuate that random-

walk realizations with many crossings and thus a large value of ζ1

18
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Figure 8: Scatter plots of realizations of the two test statistics ζ1 and ζ2

derived from the jittered phase plots. Generating laws are the seasonal ran-

dom walk (magenta), the random walk (green), and white noise (blue). Left

graph T = 100, central graph T = 400, right graph T = 4000.

have a smaller expansion rate and thus lower ζ2. For very small

samples, the two test statistics are thus negatively correlated by

construction. It appears, however, that this strong negative de-

pendence soon disappears as the sample size increases.

The statistics ζ1 and ζ2 process different information. Whereas

good or even optimal combinations of individual tests can be

constructed by the Bonferroni principle, we here insist on the

convenient simplicity of a combination that is evaluated quickly.

A linear combination such as ζ1+cζ2 may have higher power than

individual tests. Whereas relative scales would suggest c = 7,

the comparative power simulations favored a larger value around

c = 17. From the various power simulations at varying sample

sizes, we show two exemplary plots in Figure 10. Test power is

seen to increase rapidly as c approaches values around c = 17

from below and to decrease slowly as c increases further. The

power maxima appear as a nearly straight line and recommend
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Figure 9: Exemplary realization of a random walk, with new extrema (for

ζ2) marked as well as zero passages (for ζ1).

a constant value of c. It is of some interest, however, that lower

values of c sometimes occur very close to the null. Low optimal c

is also typical at a large distance from the null, where the ζ2 test

is often unable to achieve power close to one.

In the following, the statistic

ζ =
ζ1 + 17 ζ2

18

will be in focus. For the highly non-standard null distribution of

these statistics, Table 1 provides some quantiles.

Based on the simulated quantiles, Table 2 adds some sim-

ple power simulations. Test power is investigated along the ray

through the alternative

xt = φxt−4 + εt,

with φ varying over 0.9 + j ∗ 0.01 with j = 0, . . . , 10, such that

j = 10 represents the null and j = 0 implies φ = 0.9. This rather

20
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Figure 10: Ratios of test power along generated models xt = φxt−1 + εt,

for φ = 1 − φ̃ and φ̃ on the y–axis. Tests are based on linear combinations

ζ1+cζ2, with c on the x–axis. For given φ̃, power is divided by the maximum,

such that a value of 1 on the z–axis indicates maximum power. Left graph

for T = 100, right graph for T = 400.

Table 1: Significance points for the nonparametric tests.

T = 100 T = 400 T = 4000

1% 5% 10% 1% 5% 10% 1% 5% 10%

ζ1 2.10 1.53 1.27 2.12 1.55 1.29 2.15 1.58 1.29

ζ2 0.25 0.20 0.17 0.23 0.19 0.17 0.22 0.18 0.16

ζ1+17ζ2
18

0.32 0.25 0.22 0.31 0.25 0.22 0.31 0.24 0.21

ζ̃1 1.66 1.18 0.94 1.93 1.37 1.11 2.06 1.49 1.20

ζ̃1+17ζ2
18

0.29 0.22 0.19 0.30 0.22 0.19 0.29 0.23 0.19
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crude simulation design corresponds to the very basic seasonal

unit-root test that was suggested originally by Dickey et al.

(1984), which is rarely used nowadays. Nonetheless, power turns

out to be surprisingly good, although lower than for the para-

metric HEGY test or the test by Dickey et al. (1984), which

was constructed particularly along the same ray and has the best

power here. The combined version ζ = ζ1+17ζ2
18

dominates the

single tests convincingly, sometimes excepting an area close to

the null, where ζ2 alone shows a slight advantage. On the other

hand, ζ2 shows unsatisfactory performance in small samples at

comparatively large distance from the null. Also Kunst (2009)

and Kunst and Franses (2011) report low power in many di-

rections for a non-parametric test that relies on a principle similar

to ζ2.

We note that Table 2 indeed evaluates the power for the un-

corrected original statistics ζ1 and ζ and not for the adjusted

statistics ζ̃1 and ζ̃. Not much is lost, however, in this simple

design if the adjustment is applied here. The situation changes

when autocorrelation is present under the null.

A known problem with both original nonparametric unit-root

tests ζ1 and ζ2 and thus also with the combined ζ is that the

statistical properties are sensitive to deviations from the pure

seasonal random walk model under the null. In other words, the

test becomes non-similar. The experiments reported in Table

3 confirm this problem. If the SRW generating mechanism is

replaced by xt = xt−4 + ut with ut stable autoregressive, the

test becomes undersized for negative and positive autocorrelation,
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Table 2: Power properties of the nonparametric tests.

T = 100 T = 400

φ ζ1 ζ2 ζ ζ1 ζ2 ζ

1.00 0.050 0.050 0.050 0.050 0.050 0.050

0.99 0.074 0.083 0.086 0.184 0.268 0.267

0.98 0.102 0.121 0.131 0.367 0.575 0.577

0.97 0.140 0.171 0.188 0.548 0.798 0.806

0.96 0.183 0.229 0.253 0.712 0.914 0.927

0.95 0.229 0.283 0.319 0.825 0.965 0.978

0.94 0.279 0.339 0.388 0.895 0.986 0.993

0.93 0.326 0.394 0.452 0.940 0.995 0.998

0.92 0.377 0.446 0.520 0.967 0.997 0.999

0.91 0.427 0.497 0.585 0.984 0.999 1.000

0.90 0.473 0.544 0.643 0.992 1.000 1.000

Generating model is xt = φxt−4 + εt. Significance level is 5%. φ = 1 is the

null.
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Table 3: Power properties for the nonparametric tests for autocorrelated

increments in the versions without long-run variance adjustment.

θ = −0.5 θ = 0 θ = 0.5

φ ζ1 ζ2 ζ ζ1 ζ2 ζ ζ1 ζ2 ζ

1.0 0.041 0.042 0.043 0.050 0.050 0.050 0.044 0.035 0.036

0.98 0.084 0.099 0.101 0.102 0.121 0.131 0.083 0.096 0.094

0.96 0.137 0.185 0.190 0.183 0.229 0.253 0.143 0.195 0.193

0.94 0.204 0.288 0.296 0.279 0.339 0.388 0.227 0.314 0.324

0.92 0.283 0.390 0.406 0.377 0.446 0.520 0.325 0.444 0.467

0.9 0.364 0.485 0.510 0.473 0.544 0.643 0.431 0.555 0.600

Generating model is xt = φxt−4+ut, ut = θut−1+εt. Significance level is 5%.

φ = 1 is the null. Sample size T = 100.

with the size bias persisting at slightly larger samples. The size

bias is reflected in somewhat lower power under the alternative.

By contrast, if the long-run variance correction is implemented,

the distortion problems mostly disappear. We note that the com-

ponent test based on ζ2 cannot be adjusted and that thus the com-

bined test inherits problems from its typically strongly weighted

component. The adjusted portion ζ̃1, however, succeeds in re-

moving a good part of the distortion. Another feature, however,

makes Figure 11 even more interesting. In these simulations,

we ran control simulations based on the traditional parametric

HEGY test. Actually, we considered two versions of the HEGY

test: first, an F test for the seasonal unit roots at −1 and at ±i;

second, an F test for the same seasonal unit roots, although under
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Figure 11: Power function for T = 100 and T = 400. Black: ζ̃1; red:

ζ2; green: ζ∗. Light blue dashes: a HEGY variant. Generating model is

xt = φxt−4 + ut, ut = θut−1 + εt, θ = 0.25j, j = −3, . . . , 3.

the incorrect assumption of a unit root at +1. The power perfor-

mance of both HEGY versions is very similar. The HEGY test is

clearly beaten by the nonparametric tests under investigation.

We note that the power performance of the HEGY test agrees

quite well with literature sources, thus the difference between the

tests is not due to specific problems of the parametric tests but

rather to the effect of additional power of range expansion tests

that was also emphasized by AES. We note that the dominance

of the test ζ̃ shrinks as T increases, and the HEGY test actually

dominates at larger distance from the null. The effect appears

to be at odds with the usual statistical test construction that

is based on asymptotic optimization, and it is difficult to inter-

pret. A tentative reason may be that the nonparametric tests

concentrate on the true classification features of interest, such as

zero crossings and range expansion, while the parametric tests
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are limited by the precision of the regression estimates.

5 Empirical applications

Whereas the simulated charts are mostly based on relatively large

samples, empirical data sets typically are much shorter, whether

they are taken from economics or from other disciplines.

Austrian industrial production is a quarterly variable that

is available from 1957. The left panel of Figure 12 shows the

seasonal jitter plot for the years 1957–2011. The seasonal pat-

tern shows some variation, but it usually returns to its basic

shape quickly. A blurred saltire forms in bin # 5, which rep-

resents the activity troughs during summer vacation and in the

cold start of the year, with rising activity during the second and

fourth quarters. The values of the test statistics are (ζ̃1, ζ2, ζ̃) =

(0.27, 0.17, 0.17). These values are in the non-rejection region,

maybe excepting ζ2 which provides weak evidence for rejection,

as it is close to the 10% quantile.

TheAustrian unemployment rate according to national definition—

the international or OECD definition yields a different rate that

is available for a much shorter time span only—is a variable that

has been compiled monthly since January 1950. Because of em-

ployees in tourism, agriculture, and construction, this variable

has quite strong seasonality. The right panel of Figure 12 shows

the jitter chart of quarterly averages over the original months.

The rather clear saltire may be in accordance with seasonal unit

roots, although all observations are in the same shape class. The
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values of the test statistics are here (ζ̃1, ζ2, ζ̃) = (0, 0.16, 0.15),

again indicating the non-rejection region.
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Figure 12: Jittered phase plot for Austrian industrial production 1957–2011

and for the Austrian unemployment rate 1950–2011, quarterly observations.

The left panel of Figure 13 provides an example for a variable

with weak seasonality. Rainfall (precipitation) measurements at

the location of Heathrow in the United Kingdom are expected to

reflect some degree of seasonality, as rainfall maxima and minima

are often concentrated in specific months or quarters. For the

graph, the original monthly series was aggregated into quarters,

but the monthly version can also be inspected and gives a similar

impression. The values of the test statistics are now (ζ̃1, ζ2, ζ̃) =

(2.60, 0.49, 0.60), and the test safely rejects seasonal unit roots.

By contrast, the right panel of Figure 13 shows the jitter plot

for the air temperature at the same location. This variable pro-

vides an example for purely deterministic seasonality with almost

negligible dependence among seasonal pattern in adjacent years.

Four symmetric spots in the bin # 6 represent the repetitive cy-

cle of rise-rise-fall that is observed annually with no exception.
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Even for monthly data, the regularity remains striking, though

changes in rank are slightly more common. Here, the values of

the test statistics are (ζ̃1, ζ2, ζ̃) = (0, 0.21, 0.20), with ζ2 playing

a key role in rejecting seasonal unit roots.
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Figure 13: Jittered phase plots for precipitation and for temperature at

Heathrow, 1948–2011.

Core macroeconomic time series, such as gross domestic prod-

uct (GDP) are sometimes even shorter than unemployment and

industrial production, because of slight changes in definition, even

when longer series are available in principle. The two GDP series

analyzed in Figure 14 were naively concatenated from shorter ho-

mogeneous segments. The values of the test statistics (ζ̃1, ζ2, ζ̃)

are (0.35, 0.16, 0.17) for the Austrian case and (0.25, 0.19, 0.19)

for the British data. The Austrian sample, although short, is

well in line with the idea of seasonal unit roots, as the strong

temperature cycle with harsh winters affects the dynamics of the

economy. Correspondingly, the test fails to reject. By contrast,

ζ2 rejects for the U.K., where a milder climate enables spreading

most economic activities over the whole year.
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Figure 14: Jittered phase plots for Austrian (left, 1964:1–1987:4, T = 96)

and U.K. (right, 1957:1–2011:4, T = 220) GDP

.

It is of some interest to compare these test results to the outcome of tra-

ditional parametric tests for seasonal unit roots. For example, the most

straightforward test of that type is the HEGY test due to Hylleberg et al.

(1990), which rejects the unit root null for all variables considered in this sec-

tion, excepting the GDP series that are rather short. It should be conceded,

however, that HEGY results vary somewhat across lag-order specifications

for augmenting terms.
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6 Summary and conclusion

We demonstrate that the suggested nonparametric combination

test tends to dominate its constituent component tests, and the

suggested weight appears to be well chosen. It is surprising that

in some designs the test even clearly dominates parametric tests

for seasonal unit roots. Our results are in line with those of AES,

whose simulations are quite supportive for their idea in traditional

unit-root situations, as their RUR test often outperforms stan-

dard tests, such as the Dickey-Fuller test. Our results are less in

line with the simulations of Burridge and Guerre (1996) who

delineate a gloomy picture for the power of their nonparametric

tests, even if combined with traditional tests.

We are also able to demonstrate that the visualization by jit-

tered phase plots is an appealing and potentially helpful tool in

the investigation of the nature of seasonality in subannual time

series. This tool unfolds its discriminatory power best when it is

used together with traditional hypothesis tests. The slanted cross

or saltire appears to be a well recognizable shape, and deviations

from the pure form are easily spotted by the human eye.

A main problem with seasonality remains: good discrimina-

tion requires samples that are slightly larger than those that are

typically available. Really long time series are needed in order to

discriminate safely the case of pattern reversion from the case of

episodic pattern change. Applications to various data sets, how-

ever, insinuate that good seasonal unit-root processes are rare in

practice.
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