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Abstract 

This paper discusses the theoretical and practical aspects of new methods for solving DEA 

problems under real-life geometrical uncertainty and probability uncertainty of sample data. 

The proposed minimax approach to solve problems with geometrical uncertainty of sample 

data involves an implementation of linear programming or minimax optimization, whereas the 

problems with probability uncertainty of sample data are solved through implementing of 

econometric and new stochastic optimization methods, using the stochastic frontier functions 

estimation. 

Zusammenfassung 

Diese Publikation behandelt die theoretischen und praktischen Aspekte der neuen Methoden 

zur Lösung von DEA-Problemen mit real-life geometrischer Unsicherheit und stochastischer 

Unsicherheit von Daten. Die vorgeschlagenen minimax-Methoden zur Lösung der geometri-

schen Unsicherheit von Daten beziehen die Implementierung der linearen Programmierung 

oder minimax-Optimierung mit ein, während die Probleme mit Unsicherheit der Wahrschein-

lichkeit von Daten durch Implementierung von ökonometrischen und neuen stochastischen 

Optimierungsmethoden zur Schätzung der stochastischen Grenzfunktionen gelöst werden.  
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1. Introduction 

This paper is concerned with new methods for measuring the performance of firms (or 

“decision making units” (DMUs) which convert inputs into outputs. The methods of 

performance measurement that are proposed here may be used in many areas, including 

applications to private sector firms producing goods as well as to different service industries 

(such as travel agencies or restaurants), or to non-profit organizations (such as schools or 

hospitals). The methods may be used by a particular firm to analyze the relative performance 

of units within the firm. 

These newly proposed methods differ according to the type of measures they produce, the 

data they require, and the assumptions they are based upon regarding the structure of 

production technology and the economic behavior of decision makers. 

Data Envelopment Analysis (DEA) is an efficient technique for deciding on the relative 

efficiency of a DMU by comparing it with other DMUs engaged in making the same outputs 

from the same inputs. The DEA model uses a mathematical programming technique to 

estimate the efficiency frontier. This contrasts with the traditional econometric approach, 

which estimates an “average“ relationship between inputs and outputs. As noted by Seiford 

and Thrall (1990), the econometric approach has a number of weaknesses. In order to 

estimate the coefficients of the production function, it requires the functional form to be pre-

specified. It is possible only one output variable to take into account. The functional form will 

not, in general, be known, however, and adopting an arbitrary functional form will produce 

misspecification errors. It does not readily yield a summary judgment of efficiency, as only 

residuals are produced. The ability of the econometric model to identify sources of 

inefficiency is weak and influenced by outliers. Finally, by estimating a function on the basis 

of average response, it ignores the important distinction between firms which optimize their 

selection of inputs and those which do not.  

By contrast, DEA is an extremal process, analyzes each firm separately and measures its 

relatively efficiency with respect to the entire set of DMUs being evaluated. It does not 

require any a priori assumption on the analytic form of production function. It is applicable to 

organizations characterized by multiple outputs and multiple inputs. The possibility to take 

into consideration multiple outputs is a special advantage of DEA compared to alternative 

methods, in particular to the traditional econometric approach. A DEA-based production 

model can also accommodate a variable that is neither an economic resource nor a product, 

such as attributes of the environment or the production process (e.g., Charnes et al., 1985). 

DEA provides solutions using standard techniques of linear programming, and thus provides 

the benefits of computational efficiency, dual variables and clear interpretations. The 

empirical orientation and absence of a priori assumptions have made it possible to measure 

efficiency from direct efficient frontier estimation in non-profit and regulated sectors as well 
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as in profit-maximizing organizations. DEA both evaluates and identifies inefficiencies of 

DMUs and provides targets for improvement for inefficient DMUs. It can therefore also serve 

as a planning aid to management.  

This efficiency question embraces both technical and scale efficiency. The former is 

concerned with efficiency in converting inputs to outputs (given the size of the DMU) and 

defined in terms of a production frontier as the ratio of potential and actual performance. 

Following Farrell (1957), the comparison of efficiency performance is made with the best of 

an industry, i.e. the observed industry standard. The efficiency frontier is constituted of those 

units, which are efficient relative to other units under evaluation. Efficiency computations are 

made relative to this frontier. The scale efficiency is concerned with whether the investigated 

DMU is operating at its optimal size (in comparison with other observed DMUs). This 

efficiency can be measured, when one believes that the technology is VRS (variable returns 

to scale). VRS occurs when a proportional increase in all inputs does not result in the same 

proportional increase in output. To obtain a scale efficiency measure for each firm, one can 

conduct both a CRS (constant return to scale) DEA and a VRS DEA. If there is a difference 

in the CRS and VRS technical efficiency scores for a particular firm, then this indicates that 

the firm has scale inefficiency.  

In general, for DEA analysis one does not need weights of input and output variables (for 

example, price information). But if one is willing to consider a behavioral objective, such as 

cost minimization or revenue maximization, one can measure both technical and allocative 

efficiencies.  

Usually, any estimation of an unknown production function of fully efficient firms with the use 

of sample data is based on the implementation of either a non-parametric piece-wise-linear 

DEA technology or a parametric function, such as the Cobb-Douglas form. Thus, any noise 

presented (e.g., due to measurement error, not accounting for environmental differences 

such as strikes, weather, etc.) may influence the shape and position of the piece-wise linear 

DEA frontier more than would be the case with the stochastic frontier approach. It means 

that stochastic frontiers are likely to be more appropriate than the piece-wise linear DEA 

frontier in the applications, where the sample data are heavily influenced by measurement 

errors, outliers, and environmental differences. However, in the non-profit service sector, 

where multiple-output production is important, random influences are less of an issue and 

prices are difficult to define, the DEA approach may often be the optimal choice. In this paper 

we will investigate this very important case of uncertainty. 

Now we provide an outline of the contests of the subsequent four chapters in this paper. As 

noted above, we consider three different methodologies: DEA, stochastic frontiers and the 

Malmquist index. Each of these methods has one chapter devoted to it. For each method we 

first describe the basic methodology and provide a description of new investigations for DEA 

and stochastic frontiers. We will develop new DEA minimax methods for measuring DMU 
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production efficiencies in cases of geometrically uncertain sample data and new stochastic 

frontier methods for measuring DMU production efficiencies in cases of geometrically 

uncertain sample data. In the last chapter we give details on the computer software used for 

efficiency estimation. 

2. New DEA Minimax Methods  

In this section we introduce and show the algorithms of applications of new DEA minimax 

methods under real-life uncertainties in input and/or output variables. 

For DMUj nj ,...,2,1, =  we use the notation ,,...,2,1, kqxqj =  (or as vector jx ) for 

observation data on k inputs and ,,...,2,1, mryrj =  (or as vector jy ) for observation data 

on k  outputs. The purpose of DEA is to construct a non-parametric envelope (or efficiency 

frontier) over the data points such that all observed points lie on or below the production 

frontier. In this paper we provide three models that are not yet investigated in the literature. 

The first model corresponds to the real-life output data inequality-type uncertainties: 

njmryyy rjrjrj ,...,2,1,,...,2,1,maxmin ==≤≤                                     (1) 

The second model is related to the input-output uncertainties of the simple inequality-type: 

njmrkq

yyyxxx rjrjrjqjqjqj

,...,2,1,,...,2,1,,...,2,1

,, maxminmaxmin

===

≤≤≤≤
                                              (2) 

The third model matches to the input-output uncertainties of the general type given by the 

inclusions  

,,...,2,1,),( njxy jjj =Ω∈                                                         (3) 

for certain sets jΩ  of input and output vectors ).,...,,,,...,,(),( 21,21 kjjjjmjjjj xxxyyyxy =  

For simplicity's sake, let us designate the production data of the decision making unit 

).,( ii xy  by DMUi   

For each DMUi ni ,...,2,1, = , one would like to obtain a measure of the ratio of all outputs 

over all inputs, such as i
T

i xyu ν/T , where u  is a vector of output weights and ν is a vector 

of input weights. The optimal weights are calculated as the solution of the following 

mathematical programming problem:  
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One knows that this problem has an infinite number of solutions. Indeed, if *)*,( νu  is a 

solution, then 0*),*,( >cccu ν  is another solution. To avoid this, one can impose the 

constraint 1=i
T xν , which provides: 

0,
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Using the duality in linear programming, one can derive an equivalent input-orientated 

envelopment form of this problem: 

,0

,0

,0

,min

1

1

,

≥

≥−

≥−

∑

∑

=

=

λ

λ

λθ

θ
λθ

n

j
ijj

n

j
jji

yy

xx
 (6) 

where θ  is scalar and λ  is a 1×n  vector of constants. 

From the inequality 1+<+ nmk  follows that the envelopment form (6) involves fewer 

constraints than the multiplier form (5), and generally is the preferred form to solve the 

problem. But the u  and ν  weights can be interpreted as normalized shadow prices. For this 

purpose the multiplier form (5) is estimated in a number of studies. The obtained value of θ  

satisfy .1* ≤θ  It is considered as the efficiency score for the DMUi .The value 1* =θ  

indicates the point ),( ii yx  on the frontier and hence a technically efficient DMUi . 

However, the piece-wise linear form of the non-parametric frontier in DEA can cause 

difficulties in efficiency measurement because of the sections of the piece-wise linear frontier 

that may run parallel to the axes. In this case, one could reduce the amount of input used 

and still produce the same output (this is known as input slack in the literature), or one could 

increase the amount of output produced and still use the same input (this is known as output 
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slack). Thus it could be argued that both the measure of technical efficiency *θ  and any non-

zero input or output slacks should be reported to provide an accurate indication of the 

technical efficiency of a DMU in a DEA analysis. Taking into account that for the i-th DMU the 

output slacks will be equal to zero only if 0
1

=−∑
=

ij

n

j
j yy λ  and, as well, the input slacks will 

be equal to zero only if  0
1

* =− ∑
=

j

n

j
ji xx λθ  (for the given optimal values of *θ  and λ ), it 

was suggested (e.g. Coelli, 1996b) to consider a second-stage linear programming problem 

(7) in order to move to an efficient frontier point by maximizing the sum of slacks required to 

move from an inefficient frontier point to an efficient frontier point: 

,0,0,

,

,

),(max

1

1

*

,,

≥≥

=−

=+

+

−+

=

−

=

+

−−++

∑

∑

−+

λ

λ

θλ

λ

ss

ysy

xsx

sese

n

j
ijj

n

j
ijj

TT

ss

 (7) 

where +e  and −e  are 1×k  and 1×m  vectors of ones, respectively, +s  is a 1×k  vector of 

input slacks, and −s  is a 1×m  vector of output slacks. It should be taken into account that 

in this second-stage linear programming problem (7), the *θ  is not a variable. Its value is 

taken from the first-stage results. This second-stage linear program must be solved for each 

DMUi of the n  DMUs involved. The second major problem associated with the above 

second-stage approach is that it is not invariant to units of measurement. Thus, the alteration 

of the units of measurement (say for a fertilizer input from kilograms to tons, while leaving 

other units of measurement unchanged) could result in the identification of different efficient 

boundary points and could hence result in different +s , −s  and λ . As a result of this 

problem, many studies simply solve the first-stage problem (3) to calculate the efficiency 

score *θ  for each DMU and ignore the slacks completely, or they report both the efficiency 

score *θ  and the residual slacks  ∑∑
==

−+ +−=−=
n

j
jji

n

j
jji yysxxs

11

* ., λλθ Because of 

this, there are three main choices regarding the treatment of slacks:  

1. One-stage DEA, in which the problem (6) is solved to calculate the efficiency score 
*θ  for each DMU and to calculate slacks residually,  

;,
11

* ∑∑
==

−+ +−=−=
n

j
jji

n

j
jji yysxxs λλθ  
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2. Two-stage DEA, in which the first-stage problem (6) is solved to calculate the 

efficiency score *θ  for each DMU, and the second-stage problem (7) is solved with 

given *θ  to move from an inefficient frontier point to an efficient frontier point; 

3. Multi-stage DEA, where one conducts a sequence of radial LP's to identify the 

efficient projected points. 

 

From the given DEA data, one can derive four different production possibility sets  









Γ∈≥≤= ∑ ∑
= =

n

j

n

j
jjjj yyxxyxT

1 1

,,:),( λλλ  

under four different sets Γ: 

{ },0: ≥=Γ λλCRS  

 

,0,1:
1 








≥==Γ ∑
=

λλλ
n

j
jVRS  

 

,0,1:
1 








≥≤=Γ ∑
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λλλ
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







≥≥=Γ ∑
=

0,1:
1

λλλ
n

j
jNDRS  

 

Thus, one obtains four production possibility sets: CRST  is T  with CRSΓ , VRST  is T  with 

VRSΓ , NIRST  is T  with NIRSΓ , NDRST  is T  with NDRSΓ . The DMUi efficiencies θ  may be 

evaluated as solutions of the following four input-oriented LP models (in all four LPs we 

minimize the multiple θ  of DMUi's inputs required to produce at least DMUi's outputs, minus 

a small multiple ε  of the sum of slacks on each input and output (e.g. Ali and Seiford, 1993): 
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Here +e  and −e  are 1×k  and 1×m  vectors of 1’s, respectively, and Γ  is one of the four 

different sets: CRSΓ , VRSΓ , NIRSΓ  or NDRSΓ . 

In the cases of the uncertainties (1) and (2), the LP (8) take a form of the following four 

optimization problems (9), (10), (11) and (12): 
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Let 321 ,, θθθ  and 4θ  be the solutions of (9), (10), (11), and (12). Then 1θ  and 3θ  are the 

greatest lower and upper boundaries of the DMUi's efficiency θ  under uncertainties (1), i.e.  

[ ]31 ,θθθ ∈ , and 2θ  and 4θ  are the greatest lower and upper boundaries of the DMUi's 

efficiency θ  under uncertainties (2), [ ]42 ,θθθ ∈ . Thus, a measure 1m  of the DMUi's 

efficiency uncertainty in relation to the uncertainty (1) is evaluated by the difference 13 θθ − , 

and a measure 2m  of the DMUi's efficiency uncertainty in relation to the uncertainty (2) is 

evaluated by the difference 24 θθ − .  

In order to evaluate the greatest lower boundary 5θ , the upper boundary 6θ   and the 

measure 56
3 θθ −=m  of the DMUi's efficiency uncertainty in relation to the uncertainty (3), 

we will consider the following three types of the uncertainty set jΩ :  

(i) a finite set { },),(),...,,(),,( 2211 jj n
j
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jjjjjj xyxyxy=Ω  
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(iii) a polytope { },:),( jjjjjjjj bxByAxy ≤+=Ω  

      with some given mp ×  matrix jA , given kp ×  matrix jB  and given 1×p  vector jb . 
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To evaluate 5θ  and 6θ  in the cases (i) and (ii) one has to do the following: 

1) replace all the products jjx λ  and jjy λ  in the model (8) by l
j

n

l

l
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2) calculate solutions lθ  of the augmented model (8) for each ;,...,1),,( i
l
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l
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3) evaluate 
i

i nl
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,...,1
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To estimate 5θ  in the general case (iii), one has to solve the following optimization problem: 
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And to evaluate 6θ  in the case (iii), one has to solve the following optimization problem: 
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3. New Stochastic Frontier Methods 

As noted by Yunos and Hawdon (1997), the major limitations of the DEA methods relate to 

the treatment of uncertainty. To the extent that there are errors of measurement, there will be 

uncertainty surrounding the efficiency calculations. Some progress has been made towards 

introducing uncertainty into DEA models, but as yet no generally agreed methods exist 

regarding its treatment.  

In this section we will propose new stochastic frontier methods for estimating frontier 

functions and also for measuring the efficiency of production in cases of probability 

uncertainties.  

3.1. Stochastic Frontier Production Functions 

The stochastic frontier production function was independently proposed by Aigner, Lovell and 

Schmidt (1977) and Meeusen and van den Broeck (1977). The original specification involves 

a production function specified for cross-sectional data, which had a two-component error 

term, one to account for random effects and another to account for technical inefficiency. 

This model can be expressed in the following form. Assume that the production function of 

fully efficient DMUs is known in Cobb-Douglas form  

,,...,2,1,)ln( niUxy iii =−= β  

where )ln( iy  is the logarithm of the (scalar) output for the DMUi; ix  is a )1(1 +× k  input 

vector, whose first elements is “1” and the remaining elements are the logarithms of the k -

input quantities used by the DMUi ;  β  is a 1)1( ×+k  vector of unknown parameters to be 

estimated, and iU  is a non-negative random variable, associated with technical inefficiency 

in the production of DMUs in the industry involved. In this case, the technical efficiency iTE  

of the DMUi  firm may be evaluated as 

i

i

ii

i

U
x

Ux

x
i

i e
e

e

e

y
TE −

−

=== β

β

β  

In case of probability uncertainties, the value iy  is obtained with a random error iV , i.e., one 

has the stochastic frontier production function 

,,...,2,1,)ln( niVUxy iiii =+−= β  
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Assume that iV s are i.i.d. truncations at zero of a ),( 2σµN  random variable, i.e., its 

distribution )(xp +  is defined as )(2)( xpxp =+  for ,0≥x  and 0)( =+ xp  for ,0<x  

where  

2

2

2

)(

2

1
)( σ

µ

σπ

−
−

=
x

exp  

is the normal distribution. Then, in the case of the iV s being i.i.d. ),0( 2
vN σ , Battese and 

Corra (1977) showed that the log-likelihood function )ln(L  is evaluated as  

∑
∑

=

=

−
−Φ−+−−=
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where ,,,
))(ln(

1
222

2

2

νσσσ
σ
σ

γ
σ

β
γ

γ
+==

−
−

= s
ss

ii
i

xy
z  and )(⋅Φ  is the cumulative  

distribution function of the standard normal random variable. The maximum-likelihood 

estimates of 2, sσβ  and γ  can be obtained by finding the maximum of the )ln(L . And the 

mathematical expectation (mean) of the technical efficiency can be calculated as  

2

2

))(1(2)(
s

i eeE s
U

γσ

σγ
−− Φ−=  

The best predictor for iU  is the conditional expectation of iU , given the value 

.)ln( βiiiii xyUVe −=−=  It was obtained by Jondrow, Lowell, Materov and Schmidt 

(1982) as  

))(1(

)(

)(

A

i

A

i

Aiii e

e

eeUE

σ
γ

σ
γ

φ
σγ

Φ−
+−= ,  

where sA σγγσ )1( −= and φ  is the density function of a standard normal random 

variable. Battese and Coelli (1988) point out that the best predictor of )exp( iU−  is obtained 

by using  
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)
2

exp(
)/(1

)/(1
)(

2
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Ai

AiA
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U e
e

e
eeE i

σ
γ

σγ
σγσ

+
Φ−

+Φ−
=−  

This stochastic model has been used in a vast number of empirical applications over the 

past two decades. The model specification has also been altered and extended in a number 

of ways to cover more general distributional assumptions for the iU  and, furthermore, the 

consideration of panel data and time-varying technical efficiencies.   

3.2. Panel Data Models and Time-varying Technical Efficiencies 

If a number of DMUs are observed over a number of time periods Tt ,...,2,1= , the data 

obtained are known as panel data. Battese and Coelli (1992) propose a stochastic frontier 

production function for panel data which has firm effects, assumed to be distributed as 

truncated normal random variables that may vary systematically with time. The model may 

be expressed as: 

,,...,1,,...,2,1),( TtniUVxY itititit ==−+= β                                (15) 

where itY  is (the logarithm of) the production of the DMUi  in the t -th time period; itx  is a 

)1(1 +× k  vector, whose first element is “1” and the remaining elements are the logarithms 

of the k -input quantities used by the DMUi in the t -th time period;  β  is a 1)1( ×+k  vector 

of unknown parameters to be estimated; itV  are random variables, assumed to be i.i.d. 

),0( 2
vN σ  and independent of the )).(exp( TtUU iit −−= η  iU  are non-negative random 

variables associated with technical inefficiency in production. They are assumed to be i.i.d. 

truncated at zero of the ),( 2
UN σµ  distribution. η  is the parameter to be estimated, and the 

panel of data need not be complete (i.e. unbalanced panel data). 

This model formulation includes a number of the special cases that have appeared in the 
literature. Setting η  to be zero provides the time-invariant model set out in Battese, Coelli 

and Colby (1989). The additional restriction of µ  equal to zero reduces the model to Model 

One in Pitt and Lee (1981). Setting 1=T , one returns to the original cross-sectional, half-

normal formulation of Aigner, Lovell and Schmidt (1977). If the cost function estimation is 

selected, one can estimate the model specification in Hughes (1988) and the Schmidt and 

Lovell (1979) specification, which assumed allocative efficiency. The latter two specifications 

are the cost function analogues of the production functions in Battese and Coelli (1988) and 

Aigner, Lovell and Schmidt (1977), respectively. A number of empirical studies (Pitt and Lee, 

1981) estimate stochastic frontiers and predict firm-level efficiencies by using these 

estimated functions. Then they regressed the predicted efficiencies upon firm-specific 

variables (such as managerial experience, ownership characteristics, etc.) in an attempt to 

identify some of the reasons for differences in predicted efficiencies between firms in an 
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industry. Kumbhakar, Ghosh and McGukin (1991) and Reifschneider and Stevenson (1991) 

proposed stochastic frontier models in which the inefficiency effects iU  are expressed as an 

explicit function of a vector of firm-specific variables and a random error. Battese and Coelli 

(1995) develop the Kumbhakar, Ghosh and McGukin (1991) model specification to be 

expressed as: 

,,...,1,,...,2,1),( TtniUVxY itititit ==−+= β                                (16) 

where itit xY ,  and β  are as defined earlier; the itV  are random variables, assumed to be 

i.i.d. ),0( 2
vN σ , and independent of the non-negative random variables itU , associated with 

technical inefficiency in production. itU  are assumed to be independently distributed as 

truncations at zero of the ),( 2
UitmN σ  distribution, where: 

,δitit zm =                                                                         (17) 

itz  is a 1×p  vector of variables which may influence the efficiency of a firm and δ  is an 

p×1  vector of the parameters to be estimated. 

If 1=T and itz  contains the value one, then this model is reduced to the truncated normal 

specification (Stevenson, 1980), with δ  having the same interpretation as the parameter µ  

has. The log-likelihood function of this model is presented in the appendix of the paper of 

Battese and Coelli (1993).  

3.3 New Non-linear Model of the Stochastic Frontier Production 
Function 

We propose a new general non-linear model specification to be expressed as: 

,,...,1,,...,1,0),(,),(),( 221 TtnizgVzgxfY ititititit ==≥+−= βββ                (18) 

itY  and itx  were defined earlier. itz  is a 1×p  vector of variables which may influence the 

efficiency of a firm. ),( 2βitzg  is a function which is assumed to account for technical 

inefficiency in production. itV  are random variables with parametric distribution functions 

),( 3βvpit ; and ),,( 321 ββββ =  is a vector of parameters to be estimated.  

The maximum-likelihood estimates of β  are obtained by finding the maximum of the 

likelihood function ),(βL  under restrictions  

,,...,1,,...,1,0),( 2 Ttnizg it ==≥β                                                      (19) 
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where )(βL  is defined as 

∏∏
= =

+−=
n

i

T

t
ititijij zgxfYpL

1 1
321 ),),,(),(()( ββββ                            (20) 

To calculate the optimal solution *β , 

,,...,1,,...,1,0),(:)(maxarg 2
* TtnizgL it ==≥= βββ

β
 

we solve the following simpler optimization problem  

,,...,1,,..,1,0),(

:)),,(),((lnmaxarg

2

321
1 1

*

Ttnizg

zgxfYp

it

ititijij

n

i

T

t

==≥

+−= ∑∑
= =

β

ββββ
β  

using numerical optimization algorithms of the [sub]gradient type (e.g. Beyko et al., 1983): 

,0lim,,0

,

1

1

=∞=>

+=

∞→

∞

=

+

∑ k
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k
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kk w

λλλ

λββ
 

where  

)( k
k Lw ββ∇=  in case of ),(min)(,0)( 222 βββ itit

zgFF =≥ , 

and  

)( k
k Fw ββ∇=  in case of 0)( 2 <βF . 

One should note that the general model (19), (20) includes the Battese and Coelli (1995) 

model 

,,...,1,,...,2,1,1 TtniVUxY itititit ==+−= β                              (21) 

where itV  are random variables, assumed to be i.i.d. ),0( 2
vN σ ; itU  are non-negative 

random variables, independently distributed as truncations at zero of the ),( 2
2 UitzN σβ  

distribution; and ),( 21 βββ =  is a vector of the parameters to be estimated.  
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3.4. Cost Functions 

All of the above specifications have been expressed in terms of a production function, with 

the iU  interpreted as technical inefficiency effects which cause the firm to operate below the 

stochastic production frontier. To specify a stochastic frontier cost function, we simply alter 

the error term specification from ii UV −  to ii UV + . This substitution would transform the 

production function  

,,...,2,1,)ln( niUxy iii =−= β  

into the Schmidt and Lovell (1979) cost function: 

,,...,2,1),( niUVxY iiii =++= β                                             (22) 

where iY  is the (logarithm of the) cost of production of the DMUi ; ix is a 1×k  vector of 

(transformations of the) input prices and output of the i -th firm; β is an vector of unknown 

parameters; the iV  are random variables, assumed to be i.i.d. ),0( 2
vN σ  and independent 

of the non-negative random i.i.d. ),0( 2
UN σ  variables iU . The variables iU  account for the 

cost of inefficiency in production. 

In this cost function, iU  now defines how far the firm operates above the cost frontier. If 

allocative efficiency is assumed, iU  is closely related to the cost of technical inefficiency. If 

this assumption is not made, the interpretation of iU  in a cost function is less clear, with 

both technical and allocative inefficiencies possibly involved. The exact interpretation of 

these cost efficiencies will depend upon the particular application. The log-likelihood function 

of this model presented in the appendix of the paper of Schmidt and Lovell (1979) is the 

same as that of the production frontier, except for a few sign changes. 
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4. Efficiency Predictions under Uncertainties 

In this section we will represent some new methods of efficiency predictions. 

4.1. The Malmquist Total Factor Productivity (TFP) Index 

The Malmquist index is defined through input distance functions and output distance 

functions that allow us to describe a multi-input, multi-output production technology without 

the need to specify a behavioral objective (such as cost minimization or profit maximization). 
The output distance function is defined on the input set ),(xP  

{ xyxP :)( =  can produce },y  

as  

                  { })()/(:min),(0 xPyyxd ∈= δδ                                    (23) 

The Malmquist TFP index ),,,(0 ttss xyxym  measures the TFP change between period s  

(the base period) and period t  (Färe et al. (1994)) by 
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where the notation ),(0 tt
s xyd  represents the distance from the period t  observation to the 

period s  technology. Thus, ),,,(0 ttss xyxym  measures the TFP change between two data 

points by calculating the ratio of the distances of each data point relative to a common 

technology. 

An equivalent way of writing this productivity index is  
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That is, the efficiency change is equivalent to the ratio of the Farrell technical efficiency in 

period t  to the Farrell technical efficiency in period s . The remaining part of the index in 

equation (25) is a measure of technical change. Thus the two terms in equation (25) are:  

Efficiency change 
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xyd

xyd
=   
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and 

Technical change =  

2/1
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To date, the most popular method to measure the distance functions 

),(0 tt
t xyd , ),(0 ss

s xyd , ),(0 ss
t xyd  and ),(0 tt

s xyd , which make up Malmquist TFP index 

for linear models, has been the DEA-like linear programming methods suggested by Färe et 

al. (1994). Assuming a constant returns-to-scale (CRS) technology, this requires the solving 

of the following four linear programming problems: 
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and 
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The technical efficiency change may be decomposed into scale efficiency and "pure" 

technical efficiency components. To compare two production points, this requires the solution 

of two additional linear programmings (26) and (27), with convexity restriction ∑
=

=
n

i
i

1

)1( λ  

added to each. For the case of n  firms and T  time periods, this would increase the number 

of LPs from )22( −Tn  to )24( −Tn  (Färe et al. (1994)). 

The resulting expressions for efficiency measures iEFF  all rely upon the value of the 

unobservable iU , obtained as the conditional expectation of iU  upon the observed value of 

ii UV − . Thus, the measure of technical efficiency relative to the stochastic production 

frontier is defined as: 

),,0(/),( **
iiiiiii XUYEXUYEEFF ==                                            (30) 

where *
iY  is the production (or cost) of the i -th firm. The value of *

iY  is taken to be equal to 

iY when the dependent variable is in the original units and will be equal to )exp( iY  when 

the dependent variable is in logs. Moreover, the measure of cost efficiency relative to the 

cost frontier is also defined by (30). In the case of a production frontier, iEFF will take a 

value between zero and one. In the case of a cost function, iEFF  will take a value between 

one and infinity. The resulting expressions for efficiency measures iEFF  (Jondrow et al. 

(1982) and Battese and Coelli (1988)) all rely upon the value of the unobservable iU  being 

predicted. The value is obtained by deriving expressions for the conditional expectation of 

these functions of the iU , conditional upon the observed value of ii UV −  The relevant 

expressions for the production function case are provided in Battese and Coelli (1992, 1993, 

1995), and the expressions for the cost efficiencies relative to a cost frontier have been 

obtained by minor alterations of the technical efficiency expressions in these papers.  
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5. Computer Software 

To solve general problems of the least-squares estimation of econometric models and to 

solve problems in the calculation of price and quantity index numbers, the general-purpose 

econometrics package SHAZAM (White, 1993) is used. To conduct data envelopment 

analyses, (DEA) the Data Envelopment Analyses Program (DEAP Version 2.1) was 

developed (Coelli, 1996b). The principal options of the DEAP include: CRS and VRS DEA 

models that involve the calculation of technical and scale efficiencies, cost and allocative 

efficiencies; the Malmquist DEA methods for panel data to calculate indices of total factor 

productivity (TFP) change, technological change, technical efficiency change and scale 

efficiency change.  

A computer program for stochastic frontier estimation, FRONTIER Version 4.1 (Coelli, 

1996a) provides maximum-likelihood estimates of the parameters of a number of stochastic 

frontier production and cost functions. The models considered could accommodate panel 

data and assume firm effects that are distributed as truncated normal random variables. 

Estimates of standard errors are calculated along with individual and mean efficiency 

estimates. The FRONTIER Version 4.1 assumes a linear functional form. If one wants to 

estimate the most often-used non-linear Cobb-Douglas production function, one must log all 

o input and output data in order to convert the non-linear functional form to the linear. The 

FRONTIER Program can accommodate cross-sectional and panel data, time-varying and 

time-invariant inefficiency effects, cost and production functions, half-normal and truncated 

normal distributions, and functional forms with a dependent variable in logged or original 

units. Therefore, the FRONTIER Program may be used to estimate:  

– a Cobb-Douglas production frontier using cross-sectional data and assuming a half-

normal distribution;  

– a translog production frontier using cross-sectional data and assuming a truncated 

normal distribution;  

– a Cobb-Douglas cost frontier using cross-sectional data and assuming a half-normal 

distribution, and others.  

Examples of the often-used Cobb-Douglas production functions are:   

(i) The Cobb-Douglas production frontier: 

),()ln()ln()ln( 210 iiiii UVLKQ −+++= βββ                                                   (31) 
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where ii KQ ,  and iL  are output, capital and labor, respectively, and iV  and iU  are 

assumed to be normally and half-normally distributed, respectively; 

(ii) The Translog production frontier: 

),()ln()ln(

)ln()ln()ln()ln()ln(

5

2
4

2
3210

iiii

iiiii

UVLK

LKLKQ

−++

+++++=

β
βββββ

                     (32) 

where iii LKQ ,,  and iV  are as defined earlier, and iU  has truncated normal 

distribution; 

(iii) the Cobb-Douglas cost frontier: 

),()/ln()ln()/ln( 210 iiiiiii UVWRQWC ++++= βββ                                     (33) 

where iii RQC ,,  and iW  are cost, output, capital price and labor price, respectively, 

and iV  and iU  are assumed to be normally and half-normally distributed, 

respectively.  
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