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ABSTRACT

" The well-known difficulties with the treatment of illconditioned unconstrained

optimization problems can be explained by analogous difficulties'with stiff
differential equations. This observation provides the basis for an analysis
of optimization problems and reveals new classes of optimization methods. -
This paper is primarily theoretic, a subseqﬁent paper will be devoted to prac—,
tical aspects of the proposed methods.

1. INTRODUCTION

The efficiency of a method to locate an unconstrained minimum of a real-
valued function f(x) depends very much on individual properties of f as
well as on the initial point xo..concerning well-behaved functions and
starting points near the minimum one hardly will have difficulties. If
in the same situation only a poor initial estimate of the location of the
minimum is available, one is up against the same problem as that of solving
a system of nonlinear equations. Like in the latter case, imbedding me-
thods seem towbe convenient (see e.g. Section 7.5. in Ortega-Rheinboldt
[13]). This paper investigates the treatment of ill-conditioned optimiz-
ation problems with good as well as bad initial estimates. Such problems
correspond to functions with a minimum 1lying ina narrowvalley with steep
sides. Generally it is not very hard to get down to the bottomof the val-
ley, but severe problems arise whenfoilowingthe bottom towards the mini-.
mum. Because of the shape of the function many common methods lead toos-
cillating iteratives. This situation can be described and investigated in
terms of anaiogous phenomena which appear at the numerical integrationof
stiff ordinary differential equations by means of methods lacking certain
stability properties. A similar situation concerning  solution methods for
systems of nonlinear equations was described by Boggs [2]. As explicit
methods generally do not have the required stability properties, suita-
ble implicit methods are considered.

Section 2 investigates connections between conventicnal minimization me-
thods (or discrete methods, as we will call them) defined by a differen-
ce eguation, and continuousminimization methods, defined by differential
equations. In Section 3 continuous methods are analysed by means of
Ljapunov's stability theory. In Section 4 the results of the preceding
section are applied to discretizations and a class of suitable methods
is presented. As a special but very efficient technigue, the implicit

_ Euler method is studied in greater detail. It is shown to be a highly
stable method even in the case of poor initial estimates. The stabilty
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concepts employed for this purpose are defined and discussed in an appen;
dix.

Throughout this paper, the function to be minimized is denoted by

f: R® »I1R. It is assumed that f € C2. The gradient is denoted by g(x),

the Hessian matrix by g'(x). The term minimum is used to designate the

point x* €1Rn where £ (locally) takes on. its least value. (x,y) denotes
the usual inner product Ix,y, in R", and ||x|| stands for the norm

(x,x) 1/2.

LYAPUNOV'S METHOD FOR DISCRETE OPTIMIZATION

‘The determination of a stationary point (especially a minimum) via a

Quasi-Newton-method.
ka‘” = xk-hA(xk)g(xk) =3 G(xk)

is conceptually equivalent to the determination of a fixed point

x* = G(x*) of .the function G: R"» R® . Conditions for the convergence
of Quasi-Newton-methods can therefore be obtained on the basis of well-
known fixed point theorems for contracting mappings (cf. e.g. Krasno-
selskii [9]). If for example the following relation holds

fex -~ x¥] <||x - x*| vx €D~ {x*},

- where D denotes an open neighbourhood of x* such that X €D VkEIWN,

then the convergence 'xk - x¥ is guaranteed. In this case the existence

6f the distance function V(x) :=||x - x*| and the monotonicity V(Gx) < V(x)
imply the convergence X - x*, The following theorem, which is due to

W. Hahn, yields the same result for a generalized distance function:

Theorem 2.1

Assume that G: R-R" is continuous on an open neighbourhood D of a

fixed point x* and that V: Rr- IR1 is continuous on D and

a) V(x*) = 0; V(x) >0 Vx€D-={x*}
b) V(Gx) <V(x) whenever X,GX €D - {x*}.
Then there exists a § >0 such that whenever .
x € {x: I|x - x*|| <6} the sequence {x, } defined by X = Gxy_4, KEN

converges to x¥.

Proof

Hahn [8] or Ortega [12].
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A function V with such properties is called a Lyapunov-function. Ortega'
{12] p. 274 raised the question if the use of Lyapunov-functions leads to
convergence results, which may not be concluded from the contraction

principle. This gquestion can be answered in the negatiwe, because of the
following theorem. .

Theorem 2.2

Let G be a continuous operator, which maps a complete metric space R’'into
itself, the space having finite diameter with respecttozimetricob(x,y).
Assume that G has a unique fixed point in R, and that the successive ap-
proximations X, = ka_1 converge uniformly (in initial approximations

:%>€R) to this fixed point. Then one can define an equivalent metric

p(x,y) in R for which G is a contraction operator, i.e. p(Gx,Gy) <gp(X,¥).,
o0<g<i1.

Proof

Krasnoselskii [9], Theorem 3.5.

The investigation of the convergence of iterative methods with the help
of Lyapunov's stability theory for difference equations therefore does
not lead to an extension of the results which are obtainable on the basis
of the contraction principle. Concerning convergence results both ap-
proaches are equivalént. This raises the question if. one may take advan-
tage of the results of Lyapunov's stability theory for differential
equations, which are much sﬁronger than those for difference equations.
This is the case with continuous optimization methods which may consi-
dered as the result of a limiting process when the stepsize of a discrete
method tends to zero: e.g. in the "classgical" method of steepest des—
cent Kppq = xk-—hkg(xk) the direction dk :=-hkg(xk) is orthogonal to
the level-surface {x : £f(x) Ef(xk)}. For hk-+0 vk € N the points X tend
to the trajectory of steepest descent, which is everywhere orthogonal to
the level-surfaces. This trajectory is the solution of the initial value
problem: '

; ==-g(x), x(0) = X,

In the continuous method of steepest descent stationary points of the
above differential equation are calculated (without discretization e.g.
on an analog computer). Correspondingly a continuous Quasi-Newton-me-
thod is defined by the differential equation ; = =-A(x)g(x).

_ There are two ways to use Lyapunov-functions and Lyapunov's stability

theory in further analysis:



a) by direct application of Lyapunov's stability theory for difference

equations, and

b) by the analysis of the corresponding continuous methods and by apply-
ing the consequent results to the discretizations of the continuous

methods.

The first possibility has been discussed in detail by Ortega [12]. In this

paper the second alternative is studied.

LYAPUNOV'S METHOD FOR CONTINUOUS OPTIMIZATION

In this section we investigate the behaviour of solution-trajectories

x(t;xo) of continuous Quasi-Newton-methods

x =-A(x)g(x), x(0). = x, ) (3.1)

by using the very general theorems of Lyapunov's stability theory.

Throughout this section we will assume that:
(i) X5 lies in a bounded level set
L(z) := {x:£(x) €2}
(ii) A(x) is symmetric, positive definite Vx€L(z).
(iii) A and g are sufficiently smooth.

Under these assumptions the existence of a unique solution x(t;xo) which
satisfies x(O;xo) = Xg and is defined for all t €IR is guaranteed.

Since it will be clear from the context what the underlying differential
equation is, we do not refer to it explicitly in the discussion below.
As a notational simplification, but without loss of generality, we will

consider only a stationary point coinciding with the origin, i.e. x*¥=0.

Theorem 3.1

If a continuous Quasi-Newton-method converges towards a point Xy then

X. is a stationary point (i.e. g(xL) = 0).

L

Proof

Theorem II 2.8 of Bhatia, Szegd [1] impiies that X, satisfies x(t;xL)==xL
Vt.EJR+ if there exists a trajectory that converges to Xx;. Because of the
assumed positive definiteness of A(x) this means that g(xL) = 0.

A slightly more general concept results from the following definition:
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Definition

For any starting point Xyt the set

LIM(x,) := {x :3{t }alR, e x(tyix) 2%}
is called its (positive or omega) 1imit set.

The set E(M) := {x :LIM(X) # @ ALIM(x) <M} is called the region of at-
traction of the compact set M. E(M) of this definition is equivalent to

]

the "classical" region of attraction as the following theorem shows:

Theorem 3.2

z:belongs to E(M), iff distance(x(t;z),MY+0 for t -,

Proof:
Bhatia, Szegd [1], Proposition V 1.2.

If a given method can be linearized
x =-A(x)g(x) = Bx+ol{||x]|) for ||x]||-0
then the eigenvalues of B can be used to characterize the region of at-

traction according to the following theorem:

Theorem 3.3

For x =-A(x)g(x) = Bx+r(x) with r(x) = o(|[x|]) for
l|x]| »0, where Ay €... €A <O<A o € ... €2 are the (ordered) eigenvalues
of B, the region of attraction E({0}) is an m-parametric manifold in the

m".

" Proof:

r(x) = o(llx|) for |[|x|[-0 implies 3r(x)/3x; -0 for l|x]|»Q. Therefore all
assumptions of Theorem IV 1.41 of Nemytskii, Stepanov [11] .are satisfied.

One of the consequences of this theorem is for instance that the region
of attraction of a saddle point is non-empty (but m<n).

Definition

A compact set M is said to be

(i) invariant iff.xo€M=sx(t;xo) €M, th?O
(ii) attractive iff E(M) is a neighbourhood of M

(iii) stable iff every neighbourhood of M contains an invariant neigh-
bourhood of M

(iv) asymptotically stable iff M is attractive and stable..
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If the set M = {x*} is asymptotically stable with respecﬁ to
X =-A(x)g(x) it shows all desirable properties (stability and convergence

x(t;xo) +x* for xer(M)).

The asymptotic stability of a compact set M implies some remarkable facts:

Theorem 3.4

An asymptotically stable set M has only a finite number of components,
each of which is asymptotically stable itself.

Proof:

Bhatia, - Szegd [1] Theorem V 1.21 and V 1.22. -

Theorem 3.5

If x* is an asymptotically stable stationary point the set E({x*}) is
homeomorphic to the whole space r",

Proof:

Bhatia, Szegd [1] Theorem V 3.4.

This theorem'implies for ihstance that E({x*}) is connected. A similar
result holds for a discrete optimization method only under very severe
restrictions.

The following result due to A. Lyapunov is the central theorem of this

section:

Theorem 3.6

Let v: R® - R : vV EC1 be defined in an open neighbourhood G of a compact,
connected, invariant set M. Assume that

1) Vix) = 0, VX EM, V(x) >0 VX EG-M

2) V = (grad V(x), £(x)) <O VX€G-M
where f(x) :=-A(x)g(x).

Then M is asymptotically stable.

Proof:

see e.g., Bhatia, Szegd [1] Corollary VIII 3.10.

We have now derived conditions, which ensure asymptotic stability (espe-
cially convergence of the continuous Quasi-Newton-methods), that are ba-
sed on the monotonic decline of a "generalized distance function" V



(Lyapunov-function) along solution trajectories. We will now point out
some possibilities to define Lyapunov-functions for continuous Quasi-New-
ton-methods:

a) v(x) = Hx-—x*”2
V= (x -x*)T(x - x*) obviously satisfies condition 1) of Theorem 3.6 and
from grad V = 2(x-x*) it follows that
V = (grad v(x), - A(x)g(x)) = =2(x-x*)TA(x)g(x)

Condition 2) of Theorem 3.6 is therefore satisfied if we canshowthat
the following relation holds A
((x=-x*), A(x)g(x)) >0.
Asymptotic stability (i.e. convergence) of the continuous Quasi-Newton-
method is therefore guaranteed if the direction
d(x) = A(x)g(x) ,
of the "solution-trajectory" always has a component pointing towards
x*, -

b) V(x) = F(x) - F(x*)
Here we use the residual as a measure of the aistancelbetween x angd x*.
Condition 1) of Theorem 3.6 is trivially satisfied in a neighbourhood
of x*, if x*¥ is a local minimum. Because of
V = (gradVv,-Ag) = (g,-Ag) = g Ag
the second condition of Theorem 3.6 is satisfied, as we assuméd'A(x)
to be positive definite on the region G.

c) V(x) = ”g(x)ll2
\'4 = g(x)Tg(x) satisfies condition 1) of Theorem 3.6, and
grad V = 2(qg') g implies

V = (grad v, ~ag) = (2(g")7g, ~ag) =-24" (g'A)q.

Conditioﬁ 2) of Theorem 3.6 is therefore satisfied if g'A(x) is posi-
tive definite, e.g. if g'(x) and A(X) are both positive definite. As
an example of a convergence-result, which may be deduced from the
above stability considerations, we state the following theorem:

Theorem 3.7
If the function F: R" -»IR satisfies the assumptions:

1 on the whole space R

1) FEC
2) F is bounded below
3) Every level-set of F is bounded

4) F has exactly one stationary point x*

then  the convergence of the continuous method

=~-A(x)g(x), x(0) = x

is guaranteed from any starting point xo enf’, if A(x) is positive defi-
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nite on the whole space r".

Proof:

see Ueberhuber [15].

Note, that P is not assumed to be convex. For the continous method of
steepest descent the matrix A(k) reduces to the unit-matrix I, which en-
sures convergence under very general conditions.

A more detailed discussion of convergence results obtained via Lyapunov-
functions for other continuous methods (e.g. for the continuous Newton-
method or for the Levenberg-Marquardt-stabilized Newton-method) may be
found in Ueberhuber [15].

So far we have shown that under rather weak assumptions convergence of a
continuous method towards a stationary point may be expected. We will now
give some results concerning the manner in which x(t;xo)vtends to x*.
Theorem 3.8
For the continuous method )

x =-A(x)g(x) = Bx+r(x) with r(x) = o(]|x|) for ||x||-0
with the (ordered) eigenvalues of B

11 €. sxn<o,
the subset E_ of E({0}) whose pdints z are characterized by

| x{%;2)]| €cexp((a+e(t))t) with e(t) >0 as t-+e and cER

where m is defined ri:y 11 €... € Amga < )‘m+1 € .00 € )‘n <O,. is an m-parame=-
tric manifold of IR .

Proof:

This theorem is an immediate consequence of Theorem IV 1.45 in Nemytskii,

Stepanov [11].

Ea has, according to this theorem, maximum dimension only for An £a<o.
For a starting point X, lying in a set Ea with a <Agr only the exact
solution x(t;xo) shows the postulated behavior; numerical solutions
x(t;xo), however, soon leave the m-dimensional manifold (when m <n) be-
cause of roundoff- and discretization-errors. The rate of convergence
for §(t;xo)-¥x* is therefore determined mainly by the size of the eigen-

value An with smallest modulus.

An even more precise specification of the asymptotic behaviour of x(t;xo)

is given in the following theorems:
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Theorem 3.9

For t@e continuous method

X =-A(x)g(x) = Bx+r(x) with r(x) = o(|x|) for ||x]|»0
with the ‘(ordered) eigenvalues of B

A1 €aae sxn‘<o it holds that

1') 3i: £ 1n (Hx(t;xo)H) ;Ai as t »o
2) HP*x(t;xo)H =-o(”Pg(t;xo)H) as t o

where P_ denotes the projection onto the eigenspace with respect to
x1‘r...i,xi_1 and P, P, are the respective projections onto the eigen-

spaces belonging to Ai and Ai+1 roeeo ,An.

Proof:

Coppel [4]. Theorem IV.5.

According to this theorem all trajectories x(t;xo) are tangential to some

" eigenspace of B. Combined with the result of Theorem 3.8, it follows that

every numerical solution g(t;xo) approaches x* in a subs;:aceof]:R;1 which
is the eigenspace of B belonging to An.

DISCRETIZATION

The application of a numerical method to integfaﬁe (3.1) obviously yields
an optimization method. Considef an ill-conditioned problem, i.e. a func-
tion f(x) with a minimum x* lying in a narrow valley with steep sides.
Without loss of generality assume x* = 0. If £(x) is approximated by a
quadratic c-+% (x, Ox), ill-conditioned problems correspond to matrices
having widely separated eigenvalues A1 ?Az Z ... 21n1>0, the condition
measure cond Q := 11/)n (see Rhginboldt {14]) being very large. In this
case the differential equation x =-g(x) =-0x corresponding to the qua-
dratic approximation is said to be stiff (Dahlquist {5]), and the condi-
tion measure cond Q is called stiffness. Stiff problems characteristic-
ally have solutions with time constants that differ greatly in magnitude.
To understahd the difficulties arising in such a situation consider the
simple model problem '

v ==y -F(t)) +F'(¢), \ » 0,

where F(t) is a well behaved, smooth function (Gear [7]), with solution
y(t) = F(t) +c¢ e—lt which rapidly tends to F(t) (large time constant
A » 0, see Fig. 1).
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Given the initial value v(0) = F(0) the solution is the stationary tra=-
jectory F(t) (small time constant). Truncation- and roundoff-errors in
the numerical computation will induce a perturbation term ce_Xt. This
perturbation satisfies the differential equation

= 4
e = 3t

If Euler's method Y41 = yk-l-hyk is applied, the pertufbatibn'term at

(y-F) ==-A(y -F) =-1e

successive steps is

es1 = S Theg = (1-hd)ey.

If hir> 2, the perturbation term is unstable (Fig. 1). Despite the fact
that the solution F(t) we are interested in is slowly varying (the inte-
gration of F'(t) would allow comparatively large step sizes), we must

+ he

use very small step sizes h because A is very large.

This is exactly the situation which is encountered when following the
bottom of a steep-sided valley (Fig. 2). Here F(t) corresponds to the so-
lution lying in the_eigenspace En belonging to the smallest eigenvalue

An.
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Fig. 2

The integration of ; =-Qx by means of the Euler method is equivalent to
the application of the steepest descent method to the original optimiza-
tion probiem. As A1 is comparatively large, one can only use small stepsizes.
Moreover, the solution F(t) very slowly approaches the origin (because
A

T2
This conflict (small step sizes to guarantee stability together with

is comparatively small), so there is a need to use large step sizes.

large integration intervals) is characteristic of many common explicit
integration methods when applied to stiff differential equations. To
overcome this dilemma one can consider the following alternatives

(i) choose an appropriate matrix-valued function A(x) and thus reduce
the stiffness of x =-A(x)g(x) = Bx+r(x), cf. Section 4.1. Optimal
stiffness implies cond B = 1.

(1) choose A(x) =I and an integration method which is suitable for stiff
differential equations, cf. Section 4.2.

4.1. Choice of the differential equation

Theorem 4.1

Newton's method is essentially the only optimal continuous Quasi-Newton-
method, i.e. if

x ==A(x)g(x) = Bx+r(x), z(x) =olx|P,
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B symmetric, cond B = 1, theh there exists a scalar u >0, such, that

Ax)g(x) - ug' " (x)g(x) = o(|x|P)

_Proof:

Because of g'—1(x)g(x) = x-+ri(x), r,(x) = O(Hxlﬁ),.Newton's method is
optimal (cond I = 1). Conversely, a symmetric matrix B with cond B = 1
must be of the form pI.

The result of the choice A(x) = ug'—1(x) is a differential equation with-
out disadvantages caused by stiffness. ’

Theorem 4.2

A(x)g(x) is assumed to be Lipschitz-continuous. Then there exists ho:>0
such that the exponential stability of the solution x(t) = 0 of

x =-A(x)g(x) implies the exponential stability of the solution X =0
of the di;cretization Xetq = ¥ “hA(x )g(x), h $h,.

Proof:

See Falb, Groome [6]

Therefore, provided that sufficiently small stepsizes‘and sufficiently
accurate initial values are used,discrete Newton's method converges.

4.2. Choice of the discretization

Integration methods applicable to stiff differential equations must yield
stable solution sequences even if they are used with large step sizes. A
common class possessing appropriate stability properties are A-stable
resp. A(a)-stable methods (cf. appendix). As the eigenvalues of the ma-
trix B in (3.2) are real, we can restrict attention to A(Q)-stability.
Since we expect the function value to decrease with increasing step size
{(at least in fhe quadratic case), we demand strong A(0)-stability.

Results of Dahlguist [5] and Widlund [16] show that explicit Runge-Kutta-
or linear multistep methods cannot be A- or A(O)-stable, thus not strongly
A(0O)-stable, too. From this point of view it is clear that the steepest
descent method which results from the application of the explixit Euler-
method cannot be an efficient technique for ill-conditioned problems.
The following theorem shows_ the utility of strongly A(O)-stable methods.

Theorem 4.3

" Let a well-defined strongly A(O)-stable Runge-Kutta method be applied

with arbitrary, but constant step size h>0 to
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positive semidefinite in L(z) -}%>€L(z) arbitrary, g(xo) 0 + .

x =-A(x)g(x) = Bx+x(x), r(x) =o(xl|f),
B having only real, negative eigenvalueé. Then for the resulting dis-
cretization X, it holds that

lim X, = o}
n-

provided that X, was chosen sufficiently close to the stationary point
x*¥ = 0.

Proof:

See Chipman [3] Theorem 4.2.

It should be noted that we are not interested in high order (i.e. high
accuracy) methods. Accuracy is just needed in so far as the solution se-
sequence must remain in the domain of attraction of x*. But high accuracy
of strongly A(0O)-stable methods generally implies expensive calculations,
and moreover it may impede fast convergence to x*, because the numerical
solution is kept near the slowly convergent solution x(t) of the contin-
uous problem. The simplest method due to these restrictions, the implicit
Euler method, is therefore studied in greater detail. Applied to diffe-
rential equation (3.1) with A(x) =I, it yields a sequence'{xk} defined
implicitly by

Xe1 = X TR 90,) (4.1)

Theorem 4.4

£f: R®-> R is assumed to have a bounded, nbnempty level set L(z) and to
be €C2 in a neighbourhood U of L{z). The matrix g'(x) is assumed to be

)

Then it holds that

(1) thé equation y = xo=-h . g(y) has a solution Yh for all:h 20
(ii) O sh1 <h2=of(yh2) <f(yh1)

(1ii) O <hy <h, = 'Ilfg(yhz)l[ < ||g(yh1) i

(iv) 1lim Hg(yh)H =0

hoe
Proof:

See Mitter [10}

+) 1f g(xo) = O we already are on a stationary point.
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Remark

Theorem 4.4 holds under weaker conditions, too. It suffices that £ is

‘twice continuously differentiable in a neighbourhood of {yhlh.zo}. More-

over, g'(yh) need not be positive semidefinite, it must merely lack ne-
gative eigenvalues of too large a modulus (Mitter [10]).

The problem of finding Yy, now requires the solution of the system of

{(generally) nonlinear equations
Yh = xo-hg(yh)o . (4.2)

To‘esﬁimate the minimum x* with a given tolerance, one single step with
a sufficiently large step size h would suffice. Unfortunately, the con-
dition number of equation (4.2) when solved numerically is increasing
with the step size. Thus we would replace an ill-conditioned problem
(the original optimization problem) by another one. By the choice of

" appropriate step sizes, however, we can replace the ill-conditioned op-

timization problem by a sequence of well-conditioned systems of nonlinear
equations X1 = xk--hk+1 g(kk+1). From Theorem 4.4 it follows that the
sequences f(xk) and Hg(xk)H are monotonely decreasing, thus xk_ELJz) for
all k. As L(z) was assumed to be bounded, the sequence X must have at

least one cluster point.

Theorem 4.5
Assume the conditions of Theorem 4.4 to be valid and let the sequence

» k21 be defined by (4.1), using a convergent sequence of step sizes

with limit ho > 0. Then

3
k .
(i) all cluster points of the sequence x, are stationary points

(ii) at all cluster points the function f takes on the same values,
therefore £(X) = inf £(x,) for all cluster points .
k20 ’
Proof:

(ii) follows from the monotonicity of f(xk), (i) is then proved by con-
tradiction. If there is a cluster point X such that g(§)=¢0, then the
application of Theorem 4.4 with X instead of Xq and the limit ho:>0'in—
stead of h yields a solution Yh with f(yh ) < £(X) . The application of
the implicit function theorem . shows . © that for some k with X and
hk sufficiently close to §"and‘ho, resp., X .4 is close enough to yho

such that f(xk+1) < £(x) which contradicts (i).

4.3; A Numerical example

Consider Rosenbrock's function
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2
N+ (1-x)

- 2 _
f(x1,x2) = jOO (x1 X

with starting point X, = {(-1.2, 1.0) and the global minimum x* = (1,1).

The corresponding initial value problem is given by

2
~ 400 (x1 —xz) X, +2(1 -x1)

"
]

2
Xy 200 (x1'-x2)
x1(0) ==1.2
xz(o) = 1.0 ‘
The stiffness of this differential equation (at the point x*) is

Ay {x*)

The method of steepest descent (equivalent to the expliciﬁ Euler methed
with a special stepsize control) requires stepsizes h~0.001 to ensure

' convergence to x* and is therefore extremely inefficient. The implicit

Euler scheme on the other hand needs only a few steps to reach a close
neighbourhood of x. Note, however, that additional gradient evaluations
are needed to solve the implicit equation (4.1) at every step. The over-
all number of 36 gradient evaluations (including 24 gradient evaluations
needed to approximate the Hessian numerically) which were necessary to
obtain the approximate result (0.99998, 0.99996) in 5 implicit steps
appears to be an encouraging practical result, '

APPENDIX:
L - - . ]

A-, A(a)=-,A(0)-Stability

Consider a single autonomous differential equation (or a system of such
equations) y = F(y) which is to be solved by a Runge-Kutta method

m
Ky = Flyy+h I 8,,K;)
i=1
(a.1) .
° m
Kn = F(Yn'F;; BmiKi)'
i=1
m
y =y +h I ¢,k
n+i n j=q 11

For O<a <%~let W, be the complex cone

{z€C|z+0, -a<m—-arg z <a}
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Fig. A.1

" Definition

. A Runge-Kutta method is A(a)-stable, O<a € %‘, if, when applied with arbitrary,

but fixed h>0 to the single equation y = q-y, g EW“:, for all initial

- values Yor the corresponding solution sequence Y, converges to O with

n -,

Instead of A(%)-stable one usually says A-stable. The method is called
A(O)-stable, if the statement is fulfilled for q€R, g<O.

Although the definition is concerned with scalar equations y = q -y onlj,
these_concepts are valid for systems of linear equations, too. For example,
take y = Ay ﬁith a diagonalizable matrix A. Then after transformation
one has a set of decoupled scalar equations ;i = lixi’ Xi being the eigen=
values of A. If all eigenvalues lie-in W,r we again have the situation

concerning A(a)-stability.

In the case of a quadratic optimization problem f£(x) = c-+%(x,Ax) with a
symmetric, positive definite matrix A we obtain a differential equation
% =~ Ax. Thus A(O)-stable methods seem to be convenient.

Definition

A Runge~Kutta method is called strongly A(&)—stable (strongly A-stable,
strongly A(O)-stable, resp.), iff

(i) it is A(e)-stable (A-stable, A(O)-stable, resp.)

(ii) when applied to y. = qy, q(EWd, for all initial values Yo it holds

y1;+0 with h »e and q fixed or, equivalently
y, =0 with |g| 2= and h fixed



The second condition excludes methods with undesirable properties, e.gq.

the trapezoidal rule which produces oscillating andvery slowly decreasing

approximations:

_ 1+hq/2
Y9 = 7=hq/2 " Yo

-

when applied to y = qy with (hg) » O. In the case of a quadratic optimi-
zation problem, condition (ii) guarantees that ¥4 tend towards the mini-

mum with h -,

Definition
An A(d)-stable Runge-Kutta method is called Well;defined, if the matrix

B = (Bij) of the method (see (A.1)) has no eigenvalue in Wd.

If a well-defined A(a)-stable Runge-Kutta method is applied to y = Ay
whereby all eigenvalues of the matrix A lie in Wm, then the vectors Ki

" are uniquely given by eguation (A.1).

The most common well-defined strongly A(0O)-stable Runge-Kutta method is
the implicit Euler method. For other methods of that type see e.g. Chipman

[31..
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