
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Jakub TARNAWSKI

Présentée le 28 juin 2019

Thèse N° 9622

New Graph Algorithms via Polyhedral Techniques

Prof. R. Urbanke, président du jury
Prof. O. N. A. Svensson, directeur de thèse
Prof. J. Håstad, rapporteur
Prof. A. Saberi, rapporteur
Prof. M. Kapralov, rapporteur

à la Faculté informatique et communications
Laboratoire de théorie du calcul 2
Programme doctoral en informatique et communications

to my family

iv

Acknowledgments

The five years I spent at EPFL have been a crucial time for me, and I have many people to thank
for making my Ph.D. both successful and enjoyable. The following is a certainly incomplete
attempt at this.

First, I would like to express my sincere gratitude to my advisor Ola. He resoundingly
qualifies as a role model of a researcher, with a great taste for problems and a winning strategy
for solving them powered by perseverance, excitement, intuition and brilliance. The working
environment Ola has created is top-notch, bringing out the best qualities in all of his students
and maintaining high standards and a strong drive for excellence without exerting undue stress.
I wish I could offer him some (unsolicited) constructive criticism, but nothing really comes to
my mind. His contagious enthusiasm and curiosity go beyond science, making him a singularly
fun person to be around.

I would like to thank the other members of my thesis committee: Johan Håstad, Michael
Kapralov, Amin Saberi, and Rüdiger Urbanke, for their careful reading of this work and the
engaging discussions we have had around the defense. I thank Simon Meinhard for his help with
the German version of the abstract.

I am also grateful to people who have guided me at various points of my career (at the Uni-
versity of Wrocław, EPFL, and Microsoft Research), from whom I have learned a lot: Nikhil De-
vanur, Janardhan Kulkarni, Krzysztof Loryś, Aleksander Mądry, and Nisheeth Vishnoi. I thank
all researchers and institutions who have invited me for visits for their kind hospitality.

It has been a true honor to meet, think, and write papers together with many amazing
co-authors and valued friends: Ilija Bogunović, Volkan Cevher, Pascal Fua, Christos Kalaitzis,
Silvio Lattanzi, Shi Li, Agata Mosińska-Domańska, Aida Mousavifar, Ashkan Norouzi-Fard,
László Végh, Morteza Zadimoghaddam, and Amir Zandieh. Apart from our collaborations,
special thanks go to Slobodan Mitrović also for being a natural (hike) group leader, and to
Damian Straszak for having shared his passion with me for 11 years now, during which we have
taken over 60 courses together and participated in countless programming competitions.

It has been an immense pleasure to be part of the Theory of Computation lab and to share
an office with many wonderful people. They are directly responsible for most of the fun times
I have had during my studies. I thank all my friends in Lausanne for their great company. Credit
is also due to administrative staff, especially Chantal, for keeping things in order in the most
cheerful way imaginable.

I fondly remember all the programming contests organized together with my friends in the
PolyProg association. It is through no coincidence that they were all so much fun and went
without any hiccups that I can recall.

I begrudgingly acknowledge the role of EPFL’s many cafeterias in making me appreciate that
good food is not always a given.

Finally, and most importantly, I want to express my boundless gratitude to my family, to
whom this thesis is dedicated, for their endless love, devotion and support. I thank my parents

v

vi Acknowledgments

Teresa and Dariusz for all their selfless care and giving me better conditions to develop than
anyone could ever ask for. I am grateful to my brother Krzysiek for being the best company to
grow up with and always having my back. Finally, I thank my lovely newlywed wife Maja for
coming with me on this journey, our many travels together, and all her love, understanding and
support throughout what will hopefully end up constituting a short prefix of our time together.

Abstract

In this thesis we give new algorithms for two fundamental graph problems. We develop novel
ways of using linear programming formulations, even exponential-sized ones, to extract structure
from problem instances and to guide algorithms in making progress. Somewhat surprisingly,
similar polyhedral techniques can be harnessed in the two seemingly disparate settings.

In the first part of the thesis we address a benchmark problem in combinatorial optimization:
the asymmetric traveling salesman problem (ATSP). It consists in finding the shortest tour that
visits all vertices of a given directed graph with weights on edges. Due to its NP-hardness, the
theoretical study of algorithms for ATSP has focused on approximation algorithms: ones that
are provably both efficient and give solutions competitive with the optimum. Specifically, a
ρ-approximation algorithm for ATSP is one that runs in polynomial time and always outputs
a tour that is at most ρ times longer than the shortest tour. Finding such an approximation
algorithm with ρ bounded (i.e., a constant factor) had been a long-standing open problem.

In this thesis, we give such an algorithm. Our approximation guarantee is analyzed with re-
spect to the standard linear programming relaxation, and thus our result also confirms the conjec-
tured constant integrality gap of that relaxation. Our techniques build upon the constant-factor
approximation algorithm for the special case of node-weighted metrics due to Svensson [Sve15].
In particular, we give a generic reduction to structured instances that resemble but are more
general than those arising from node-weighted metrics. This reduction takes advantage of a
laminar family of vertex sets that arises from the linear programming relaxation.

In the second part of the thesis we address the perfect matching problem. The first polynomial-
time algorithm for it, given by Edmonds in 1965 [Edm65b], is historically associated with the in-
troduction of the class P and our notion that “polynomial-time” means “efficient”. That algorithm
is sequential and deterministic. We have also known since the 1980s that the matching problem
has efficient parallel algorithms if the use of randomness is allowed [Lov79, KUW86, MVV87].
Formally, it is in the class RNC, i.e., it has randomized algorithms that use polynomially many
processors and run in polylogarithmic time. However, we do not know if randomness is necessary
– that is, whether the matching problem is in the class NC.

In this thesis we show that the matching problem is in quasi-NC. That is, we give a determinis-
tic parallel algorithm that runs in O(log3 n) time on nO(log2 n) processors. The result is obtained
by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in
the classic paper by Mulmuley, Vazirani and Vazirani [MVV87] to obtain an RNC algorithm.
Our proof extends the framework of Fenner, Gurjar and Thierauf [FGT16], who proved the
analogous result in the special case of bipartite graphs. Compared to that setting, several new
ingredients are needed due to the significantly more complex structure of perfect matchings in
general graphs. In particular, our proof heavily relies on the laminar structure of the faces of
the perfect matching polytope.

Keywords: graph algorithms, linear programming, traveling salesman problem, perfect

vii

viii Abstract

matching, derandomization, parallel algorithms, approximation algorithms, combinatorial op-
timization, discrete optimization, theoretical computer science

Zusammenfassung

In dieser Arbeit werden neue Algorithmen für zwei grundlegende Graphenprobleme vorgestellt.
Mit Hilfe von linearen Programmen – darunter auch Programme exponentieller Größe – werden
Struktureigenschaften ermittelt die vom Algorithmus verwendet werden. Etwas überraschend
können ähnliche polyedrische Methoden in beiden Graphenproblemen angewendet werden.

Der erste Teil der Dissertation widmet sich dem asymmetrischen Handlungsreisendenproblem
(Asymmetric Traveling Salesman Problem – ATSP), einem Benchmark-Problem der kombinato-
rischen Optimierung. Bei diesem Problem geht es darum, die kürzeste Tour für einen gerichteten
und kantengewichteten Graphen zu finden, die alle Knoten besucht. Aufgrund der NP-Schwere
des ATSP befasst sich die theoretische Forschung hauptsächlich mit Approximationsalgorithmen,
die nachweislich sowohl effizient sind und deren Lösung relativ nah an der optimalen Lösung liegt.
Ein Approximationsalgorithmus der Güte ρ für ATSP ist ein Algorithmus in Polynomialzeit der
eine Tour errechnet, die höchstens ρ mal länger ist als die kürzeste Tour. Seit langem galt es
als offen, ob es einen Approximationsalgorithmus für dieses Problem mit beschränktem ρ (einer
konstanten Güte) gibt.

Ein Ergebnis dieser Arbeit ist ein solcher Algorithmus. Die Güte des Approximationsalgo-
rithmus wird mit Hilfe der üblichen LP-Relaxation ermittelt. Somit wird auch die Vermutung
bestätigt, dass diese Relaxation eine konstante Integralitätslücke aufweist. Die Herangehenswei-
se basiert auf einem Approximationsalgorithmus von Svensson [Sve15] mit konstanter Güte für
den Fall knotengewichteter Metriken. Insbesondere wird eine Reduktion zu ähnlich strukturierten
Instanzen vorgestellt. Die Instanzen der Reduktion sind allgemeiner als die die sich aus knotenge-
wichteten Metriken ergeben. Dafür wird eine laminare knotenbasierte Mengenfamilie verwendet,
die sich aus der LP-Relaxation ergibt.

Der zweite Teil der Dissertation widmet sich dem perfekten Matching-Problem. Der ers-
te Algorithmus polynomieller Zeit wurde 1965 von Edmonds entdeckt [Edm65b]. Mit diesem
Algorithmus wird historisch auch die Einführung der Komplexitätsklasse P und der Auffas-
sung, dass “Polynomialzeit” “effizient” bedeutet, verbunden. Dieser Algorithmus ist sequentiell
und deterministisch. Zudem wurde in den Achtzigerjahren gezeigt, dass es effiziente parallele
Algorithmen für das Matching-Problem gibt, sofern die Verwendung von Zufälligkeit zulässig
ist [Lov79, KUW86, MVV87]. Formal betrachtet liegt dieses Problem in der Komplexitätsklas-
se RNC, es gibt dafür also einen randomisierten Algorithmus, der polynomial viele Prozessoren
verwendet und in polylogarithmischer Zeit läuft. Allerdings ist es noch offen ob das Matching-
Problem auch in der Komplexitätsklasse NC liegt, also ob Zufälligkeit notwending ist.

Diese Arbeit zeigt, dass das Matching-Problem in quasi-NC liegt. Um dies zu beweisen wird
ein deterministischer und paralleler Algorithmus vorgestellt, der auf nO(log2 n) Prozessoren in
Zeit O(log3 n) läuft. Dafür wird das von Mulmuley, Vazirani und Vazirani [MVV87] stammende
Isolations-Lemma für perfekte Matchings derandomisiert. Das Lemma wurde damals verwendet
um zu zeigen, dass das Matching-Problem in RNC liegt. Der Beweis erweitert die Arbeit von
Fenner, Gurjar und Thierauf [FGT16], die dieses Ergebnis für bipartite Graphen bewiesen haben.

ix

x Zusammenfassung

Aufgrund der wesentlich komplexeren Struktur perferkter Matchings in allgemeinen Graphen sind
zusätzliche Herangehensweisen erforderlich. Der Beweis beruht unter anderem auf der laminaren
Struktur der Flächen des Polytops für das perfekte Matching-Problem.

Schlüsselwörter: Graphenalgorithmen, lineare Programmierung, Handlungsreisendenpro-
blem, perfektes Matching, Derandomisierung, parallele Algorithmen, Approximationsalgorith-
men, kombinatorische Optimierung, diskrete Optimierung, theoretische Informatik

Contents

Acknowledgments iii

Abstract vii

Zusammenfassung ix

1 Introduction 1
1.1 Our contributions . 2
1.2 Outline . 3

2 Preliminaries and Linear Programming 5
2.1 Notation . 5
2.2 Approximation algorithms . 6
2.3 The traveling salesman problem . 6
2.4 The perfect matching problem . 7
2.5 Linear programming . 8
2.6 Laminarity and uncrossing . 13

I A Constant-Factor Approximation Algorithm for the Asymmetric
Traveling Salesman Problem 19

3 Asymmetric Traveling Salesman Problem 21
3.1 Our approach and outline of Part I . 22
3.2 Notation . 24
3.3 Laminarly-weighted ATSP and singleton instances 25

4 Reducing ATSP to Subtour Partition Cover 27
4.1 Subtour Partition Cover . 27
4.2 Subtour Partition Cover for singleton instances . 29
4.3 From local to global connectivity . 31

4.3.1 Existence of a good tour . 32
4.3.2 Polynomial-time algorithm . 38

5 Obtaining Structured Instances 45
5.1 Paths in tight sets . 45
5.2 Contracting and inducing on a tight set . 48

xi

xii Contents

5.2.1 Contracting a tight set . 48
5.2.2 Inducing on a tight set . 52

5.3 Reduction to irreducible instances . 55
5.4 Backbones and reduction to vertebrate pairs . 57

5.4.1 Finding a quasi-backbone . 57
5.4.2 Obtaining a vertebrate pair via recursive calls 60

6 Solving Subtour Partition Cover 65
6.1 Algorithm for vertebrate pairs . 65

6.1.1 Witness flows . 68
6.2 Completing the puzzle: proof of Theorem 3.1 . 76

II Matching is in Quasi-NC 79

7 Perfect Matching and Parallel Algorithms 81
7.1 Parallel complexity classes . 81
7.2 Linear-algebraic techniques for matchings . 82
7.3 Isolating weight functions . 83
7.4 Derandomizing the Isolation Lemma . 86
7.5 The weight function construction . 87

8 A Quasi-NC Algorithm for Perfect Matching 89
8.1 Introduction . 89

8.1.1 Isolation in bipartite graphs . 90
8.1.2 Challenges of non-bipartite graphs . 91
8.1.3 Our approach . 92
8.1.4 Outline . 96

8.2 Alternating circuits and respecting a face . 97
8.3 Contractible sets and λ-goodness . 100
8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 104

8.4.1 Removing alternating circuits . 105
8.4.2 The existence of a good weight function . 110
8.4.3 A maximal laminar family completes the proof 117

9 Conclusion 121

Curriculum Vitæ 131

Chapter 1

Introduction

The design and analysis of algorithms has always been at the core of computer science. As data
volumes grow, computational efficiency becomes more and more important. At the same time,
increasingly high-consequence decisions are being made either by algorithms or using algorithmic
outputs. This necessitates that the solutions produced by our algorithms be of high quality, and
that we have a strong understanding of their power and limitations. A rigorous, theoretical study
of efficient computation is thus becoming more relevant than ever. In this thesis we focus on the
design of algorithms with provable, worst-case guarantees on their performance.

The tasks that we can perform using a computer are limited by the computational resources
that we have at our disposal – the most important of them being time. In the classic com-
putational complexity perspective, an algorithm is considered to be efficient if the number of
operations it performs on any input can be bounded by a polynomial function of the size of
the input. The fundamental class P consists of problems having algorithms that are efficient in
the above sense (we call them polynomial-time) and always output the correct solution. These
problems are considered to be tractable. One example might be the shortest path problem: given
a graph with weights (distances) on its edges and two special vertices, what is the length of a
shortest path connecting them?

Unfortunately, a large and significant class of fundamental problems, called NP-hard problems,
are believed to not be tractable. A well-known example is the traveling salesman problem (TSP):
given a graph with weights (distances) on its edges, what is the length of a shortest tour that
visits every vertex of the graph?

Many approaches to dealing with NP-hardness have been developed. For instance, instead
of requiring that the algorithm output the shortest tour, we might be satisfied with a tour that
is not much longer than possible; however, we would like to have provable guarantees on how
long it can be. This brings us to the concept of approximation algorithms: for a minimization
problem such as the TSP, we say that an algorithm is an α-approximation algorithm if it runs in
polynomial time and the length of the returned tour is always at most a factor α times longer than
the optimal (shortest) tour. The quantity α is called an approximation ratio (or approximation
factor). Given an optimization problem, we ask the question: what is the best approximation
ratio possible?

A particular challenge in the analysis of approximation algorithms is to prove, for a given
algorithm, that every solution it returns has cost within some factor α of the optimal cost – even
though the latter is unknown, and possibly not efficiently computable or easy to reason about.

1

2 Introduction

For this reason, we seek strong lower bounds on the cost of any solution, which can be used in
lieu of the optimum values. To illustrate this, let us consider the traveling salesman problem on
undirected graphs (called symmetric TSP), and the following approximation algorithm: compute
the minimum spanning tree (MST) of the graph and take its every edge twice. It is easy to see
that this gives rise to a tour. Moreover, as the optimal tour spans the entire graph, it too contains
some spanning tree, which is at least as expensive as the MST – thus the MST cost is a lower
bound on the cost of the optimal tour. As our algorithm incurs twice the MST cost, it is a
fortiori a 2-approximation for the symmetric TSP.

A canonical way of obtaining powerful lower bounds is via the use of linear programming
relaxations. One begins from finding an equivalent formulation of the problem as an integer
program. The linear program (LP) is obtained by relaxing the integrality constraints on the
variables (hence the name). Crucially, the LP can be solved in polynomial time. The LP
solution can be used to guide the algorithm in making decisions, and its value constitutes a lower
bound that can be used to analyze the approximation guarantee. The quality (tightness) of this
lower bound is measured by a quantity called the integrality gap.

The utility of linear programming techniques is however not limited to approximation al-
gorithms for NP-hard problems. Indeed, employing a polyhedral perspective on the considered
problem allows an algorithm designer to tap into a deep vault of tools and results from the the-
ory of polyhedra, duality, and polyhedral combinatorics. These methods can be used in diverse
settings to better understand the structure of the problem at hand.

In this thesis we employ such techniques to make progress on two basic problems in opti-
mization: the asymmetric version of the traveling salesman problem, and the perfect matching
problem. These are both fundamental problems concerning graphs, which are perhaps the most
pervasive and important structures in computer science. However, in many other regards, these
two problems seem to be very different: while the asymmetric traveling salesman problem (ATSP)
is NP-hard, the perfect matching problem is in P, and we are interested in exact algorithms (albeit
in a parallel setting) rather than approximations. Somewhat surprisingly, we are able to employ
similar techniques to obtain crucial structural insights into both problems. Indeed, in both cases
our solution begins from considering an exponential-sized linear programming formulation that
exhibits a laminar structure.

1.1 Our contributions
In Part I of this thesis, we study the asymmetric traveling salesman problem (ATSP) in the
context of approximation algorithms and LP relaxations. Specifically, we give the first algorithm
for this problem whose approximation ratio is provably bounded by a constant, rather than an
unbounded function of the input size. The existence of such an algorithm has been the subject
of a long-standing conjecture, which we thus affirmatively resolve. Since the cost of the solutions
returned by our algorithm is analyzed with respect to the standard LP relaxation for ATSP, our
result also confirms the conjectured constant integrality gap of that relaxation.

Part I (Chapters 3 to 6) is based on a joint work with Ola Svensson and László A. Végh that
was published in STOC 2018 [STV18a]. We note that the contents of Chapter 4 are primarily
based on a previous work by Svensson [Sve15], but included here for completeness, as well as
integrated into the entire argument arc and tuned to optimize the approximation ratio.

Next, we turn to the perfect matching problem, which we study in the parallel setting.
Specifically, we consider NC: the class of problems having algorithms that can be executed in

1.2 Outline 3

parallel on a polynomial number of processors and in polylogarithmic time. The perfect matching
problem, which is to determine whether the vertices of a given graph can be paired up using
edges, is not known to be in NC, and it is a major open question to give such an algorithm. In
fact, it turns out to be an issue of derandomization, as such algorithms have been known for
40 years in the setting where randomization is allowed. The question of whether all efficient
computation can be performed deterministically is a fundamental one in computer science, and
computing matchings in parallel is one of several high-profile concrete problems for which we
know a (simple) randomized algorithm but no deterministic one.

In Part II of this thesis we make substantial progress towards resolving this question: we
give a deterministic algorithm for the perfect matching problem that uses quasi-polynomially
many processors (as opposed to polynomially many) and runs in polylogarithmic time. This
demonstrates that the matching problem is in the class quasi-NC.

Part II (Chapters 7 and 8) is based on a joint work with Ola Svensson that was published in
FOCS 2017 [ST17].

1.2 Outline
This thesis is organized as follows. In Chapter 2 we introduce basic notions related to linear
programming and the uncrossing technique. There we also formally define the two problems
that we study in this thesis, and discuss their standard linear programming formulations and
their properties. We highlight the common polyhedral techniques that will be utilized in both
parts of the thesis.

Part I (Chapters 3 to 6) is devoted to ATSP. We begin in Chapter 3 by motivating the problem
and discussing its background, as well as using the polyhedral properties of the standard LP
relaxation to focus our attention on structured (laminarly-weighted) instances. In Chapter 4 we
introduce a crucial auxiliary problem called Subtour Partition Cover, which is, roughly speaking,
a relaxed version of ATSP, and show that solving this problem is enough to give a constant-factor
approximation for ATSP. In Chapter 5 we show that, at the price of losing a constant factor
in our approximation guarantee, we can make further strong structural assumptions on ATSP
instances. Finally, in Chapter 6, we solve the Subtour Partition Cover problem on those highly
structured instances, which, by the results of the previous chapters, yields a constant-factor
approximation algorithm for general instances.

Part II (Chapters 7 and 8) is devoted to matching. In Chapter 7 we discuss the parallel
setting for the perfect matching problem, as well as introduce and motivate several ingredients
that will be needed throughout Part II. Next, in Chapter 8 we present our quasi-NC algorithm
for matching.

We conclude with future work directions in Chapter 9.

4 Introduction

Chapter 2

Preliminaries and Linear
Programming

In this chapter we cover the preliminaries necessary for both parts of the thesis and the common
techniques utilized by our approaches to the two (seemingly very different) problems. In partic-
ular, we discuss: our notation for graphs (Section 2.1), approximation algorithms (Section 2.2),
the definitions of the two problems that are the focal points of this thesis (Sections 2.3 and 2.4),
basics of linear programming and the standard formulations for the two problems (Section 2.5),
and laminarity and the uncrossing technique (Section 2.6).

2.1 Notation
We let R+ denote the set of nonnegative real numbers. We work on graphs G = (V,E), where
V is a finite nonempty set of n vertices and E is a set of edges, i.e., pairs of vertices. For the
matching problem we work with undirected graphs (the pairs are unordered), and for ATSP we
work with directed edges (the pairs are ordered). Graphs will often be weighted: there will be
an edge-weight function w : E → R+ associated with G. We will use the terms “weight”, “cost”,
“value”, and “length” interchangeably.

We use the following notation. For a subset S ⊆ V of the vertices, let δ(S) = {(u, v) ∈ E :
|{u, v} ∩ S| = 1} denote the edges crossing the cut (S, V \ S) and E(S) = {(u, v) ∈ E : u, v ∈ S}
denote the edges inside S. For directed graphs, we use δ+(S) = {(u, v) ∈ E : u ∈ S, v 6∈ S} for
the outgoing edges and δ−(S) = {(u, v) ∈ E : u 6∈ S, v ∈ S} for the incoming edges. We shorten
δ({v}) to δ(v) for v ∈ V , and similarly for δ+ and δ−. We let δ(S, T) = {(u, v) ∈ E : u ∈ S, v ∈ T}
for S, T ⊆ V .

For a vector x = (xe)e∈E ∈ RE (usually the solution of a linear program or a weight function)
and a subset F ⊆ E, we define x(F) =

∑
e∈F xe, as well as supp(x) = {e ∈ E : xe > 0}. We use

xe and x(e) interchangeably. For a subset F ⊆ E we define 1F to be the indicator vector with
1 on coordinates in F and 0 elsewhere. We shorten 1{e} to 1e for e ∈ E.

Some additional notation that is used only in Part I is introduced in Section 3.2.

5

6 Preliminaries and Linear Programming

2.2 Approximation algorithms
Let us consider minimization problems. We say that an algorithm is an α-approximation algo-
rithm if it runs in polynomial time and, for every instance of the problem, the cost of the solution
returned by the algorithm is at most α times the cost of an optimum solution. Here, the quantity
α is called an approximation ratio or approximation factor. It could be either a constant or a
function of the instance, usually of the size n of the instance.

For any minimization problem that is NP-hard (or at least not known to be in P), there arises
the natural question: what is the smallest achievable constant approximation ratio α (or, failing
that, the slowest-growing function α(n))?

Part I of this thesis is concerned with approximation algorithms for the asymmetric version
of the traveling salesman problem, which we introduce in the following section.

2.3 The traveling salesman problem
The traveling salesman problem (TSP) is a classic NP-hard optimization problem. Informally, it
is the task of finding the shortest tour visiting n given cities.

One popular formulation of the TSP is that we are given pairwise distances between the
cities that are arbitrary (think of an arbitrary complete weighted graph), and wish to find the
shortest tour that visits each city exactly once. Unfortunately, this formulation, apart from
being arguably unnatural, is also NP-hard to approximate within any reasonable ratio, as doing
so would essentially require solving the Hamiltonian cycle problem.
Fact 2.1

It is NP-hard to approximate the visit-exactly-once, arbitrary-weights version of the TSP
within a factor 2n5 .

Proof.
Let us think of undirected graphs. We will show a reduction from the Hamiltonian cycle problem,
which is NP-hard. Consider an instance G = (V,E); we should output YES if G contains a
Hamiltonian cycle, and NO otherwise. We build an instance G′ = (V,E′, w) of TSP as follows:
let E′ be such that (V,E′) forms a complete graph and set weights w(e) = 1 for e ∈ E and
w(e) = n · 2n5 for e ∈ E′ \ E. In the YES-case there is a tour of length n, and thus a 2n5 -
approximation algorithm would return a tour of length at most n · 2n5 , but in the NO-case every
tour has length at least n · 2n5 + n− 1. Therefore such an algorithm could differentiate between
the two cases. Moreover, it would run in polynomial time, as the size of G′ is bounded by a
polynomial in the size of G.

For this reason, we understand TSP to be the problem where every vertex should be visited
at least once. (We also need the assumption that the input graph is (strongly) connected.)
Equivalently, we can assume that the graph is complete and the weight function satisfies the
triangle inequality (w(v1, v3) ≤ w(v1, v2) + w(v2, v3) for all v1, v2, v3 ∈ V). In other words, w
gives rise to a metric (this setting is sometimes called metric TSP).

The above two problem formulations are equivalent. This is because, given an instance of
the at-least-once version, we can take the metric completion (that is, induce a complete graph
where pairwise distances correspond to shortest-path distances in the original graph). Every
tour in the original instance can be mapped to a tour of no larger cost in the metric completion

2.4 The perfect matching problem 7

by shortcutting: we retrace the tour, skipping any vertex that would be revisited, and instead
fast-forwarding to the first yet-unvisited vertex. Conversely, any tour in the metric completion
can be mapped to a tour of the same cost in the original instance by replacing every edge (u, v)
by a shortest path from u to v. Finally, if an instance already satisfies the triangle inequality,
then an at-least-once tour in it can be mapped to an exactly-once tour of no larger cost by
shortcutting.

We prefer the at-least-once formulation, as we find it more natural (for instance, we can
talk about the special case of unweighted graphs rather than shortest-path metrics arising from
unweighted graphs) and also because one of our reductions (Theorem 3.4) will yield a graph
where not all edges are retained.

Moreover, we think of a tour as a multiset of edges: that is, we disregard their (cyclic)
order in the tour. To be associated with an ordered tour, it is necessary and sufficient that an
edge multiset F be Eulerian and connected. In the symmetric setting, being Eulerian means
that the degree of every vertex (with respect to F) is even; in the asymmetric setting, the
indegree (number of incoming edges) should be equal to the outdegree (number of outgoing
edges). Here, by “connected” we mean that (V, F) is a connected graph (with no isolated
vertices). In general, given an Eulerian multiset F that is not necessarily connected, we will
call the edge sets of connected components of (V, F) subtours (see Definition 3.2). The set F
itself will often be referred to as a collection of subtours. Further, once we have a connected
Eulerian edge multiset F , we can turn it into an ordered tour using a simple linear-time algorithm.

As in this thesis we are interested in the asymmetric version of the problem, below we give
the definition in this setting.
Definition 2.2 (Asymmetric Traveling Salesman Problem – ATSP)

Given: an edge-weighted directed graph G = (V,E,w) that is strongly connected.
Output: a minimum-weight connected and Eulerian edge multiset F .

2.4 The perfect matching problem
Another classic task that this thesis is concerned with is the matching problem. Here, we are
given an undirected unweighted graph G = (V,E); a matching is a set M ⊆ E of edges such
that no two edges share an endpoint. Clearly we must have |M | ≤ n/2; if |M | = n/2, i.e., every
vertex is an endpoint of an edge in M , we say that M is a perfect matching.
Definition 2.3 (Perfect Matching Problem)

Given: an undirected graph G = (V,E).
Output: YES if G has a perfect matching, NO otherwise.

The perfect matching problem is a decision problem. It has an associated search version:
given a graph, find a perfect matching if one exists.

There are also several classic optimization versions of the problem: given a graph, what is
the largest matching it contains (maximum-cardinality matching)? If edges are assigned weights,
what is the minimum-weight perfect matching? For brevity, we do not address the optimization
versions in this thesis; however, our results in Part II extend to those settings rather easily (as
long as weights are polynomially bounded). Also, the approach of Part II will in fact heavily
rely on finding (unique) minimum-weight perfect matchings with respect to a carefully1 chosen

1Or, in fact, completely randomly!

8 Preliminaries and Linear Programming

edge-weight function.
The perfect matching problem is well-known to have efficient sequential algorithms. In this

context, the case of bipartite graphs is much easier. In fact, as we have learned in 2006, the first
polynomial-time algorithm for matching on bipartite graphs was given already in the 19th century
by Jacobi (and published posthumously in Latin [Jac90]). Indeed, in his works on differential
equations, he even gave an efficient algorithm for the weighted version of the problem (now
known as the Hungarian method). For general graphs, the first polynomial-time algorithm was
given by Edmonds [Edm65b]. This development is historically related to the idea that “efficient”
means “polynomial-time”, and the definition of the class P.

2.5 Linear programming
Linear programming is a mathematical optimization task where we seek to optimize a linear
objective function over a polyhedron – i.e., subject to linear inequality constraints. A general
form for a linear program can be given as

min{w>x : Ax ≤ b, x ≥ 0} .

Here x = (x1, ..., xn) ∈ Rn is a vector of variables, w ∈ Rn is an objective function, and
A ∈ Rm×n, b ∈ Rm describe the constraints, which are of the form aj1x1 + ... + ajnxn ≤ bj for
j = 1, ...,m. Throughout this section we focus on minimization problems.

The subset
P = {x ∈ Rn : Ax ≤ b, x ≥ 0}

is called the feasible region of the LP. It is a polyhedron; if it is also bounded as a subset of RE ,
we call it a polytope. We say that the LP is feasible if the polyhedron is nonempty; otherwise it
is infeasible. If the objective function attains arbitrarily small values over the polyhedron, then
we call it unbounded. If the LP is feasible but not unbounded, then it attains its minimum value.

Given a constraint of the form Aix ≤ bi, where Ai is the i-th row of A, if a point x ∈ P

satisfies Aix = bi, then we say that this constraint is tight for x.

Solving LPs One reason why LPs are so useful in the design of algorithms is that they can
be efficiently solved. From a theoretical perspective, the most helpful guarantees are given by
the ellipsoid method [Kha79], which yields a (weakly) polynomial-time algorithm for linear pro-
gramming. In fact, this algorithm can even be used to solve linear programs with an exponential
number of constraints (which could not be written down in polynomial time). It only requires
access to a separation oracle: a black-box routine that, given a point x ∈ Rn, answers YES if x
is in the feasible region of the LP, and otherwise returns a constraint that is violated by x.

Relaxations As mentioned in the introduction, the design of approximation algorithms requires
a good lower bound on the value of an optimal solution to the considered problem – usually
one that can be computed efficiently (such as a minimum spanning tree in the case of the 2-
approximation algorithm for symmetric TSP). The efficient solvability of LPs means that, since
1979, they have become a crucial source of such lower bounds. Namely, one formulates the
problem as an equivalent integer program (that is still NP-hard to solve), and then relaxes the
integrality constraints to obtain a linear program. This linear program is called a relaxation, and

2.5 Linear programming 9

the integer points in the associated polyhedron correspond exactly to feasible solutions of the
original problem.

Integrality gaps Of course, such a relaxation is not very useful if the lower bound that it
yields is too loose. This gives rise to the concept of integrality gap, which is defined as the
ratio between the values of the true integral optimum and of the relaxation, maximized over all
problem instances. The smaller the integrality gap, the tighter and more useful the lower bound
that it provides. The study of integrality gaps is worthwhile for two main reasons. First, if we
know that the integrality gap for an efficiently solvable (e.g., polynomial-size) relaxation is at
most ρ, then an algorithm that just solves this LP will return a value that is at most ρ times off
from the true optimum. Such an algorithm is sometimes called a ρ-estimation algorithm, as it
is non-constructive: it does not necessarily return an integral solution of value at most ρ times
the returned LP lower bound. Second, the knowledge that a relaxation has an integrality gap of
more than ρ rules out the possibility of obtaining a ρ-approximation algorithm whose guarantee
is provable by comparing the value of the returned solution to ρ times the LP lower-bound, as
there will exist an instance for which there is indeed no integral solution of such value.

The Held-Karp relaxation In this thesis we will prove a constant upper bound (Theorem 6.9)
on the integrality gap of the standard relaxation associated with the Asymmetric Traveling
Salesman Problem, which is called the Held-Karp relaxation. We discuss it below.

Recall from Section 2.3 that in ATSP we wish to find a minimum-weight connected and
Eulerian edge multiset F . It is therefore natural that the relaxation should use a variable xe
for the number of times an edge e ∈ E appears in this multiset (i.e., the tour). The Eulerian
constraint is easy to express: we should have x(δ−(v)) = x(δ+(v)) for every v ∈ V (recall that
δ−(v) and δ+(v) are the sets of incoming and outgoing edges of v). We will call a nonnegative
vector x satisfying these constraints a circulation.

Now, it would also make sense to require that x(δ+(v)) ≥ 1 for every vertex v ∈ V , but
this in itself would not be enough yet: namely, the resulting solution might consist of multiple
connected components, which we call subtours. If S were the vertex set of such a subtour, then
we would have x(δ+(S)) = 0. Therefore, to prevent the incidence of subtours, we introduce
subtour elimination constraints: x(δ+(S)) ≥ 1 for all proper subsets S (V . We prefer to
write these constraints in the equivalent, more symmetric form x(δ(S)) ≥ 2 (recall that δ(S) =
δ+(S) ∪ δ−(S)). The linear programming relaxation LP(G,w) is therefore defined as follows:

minimize
∑
e∈E

w(e)x(e)

subject to x(δ+(v)) = x(δ−(v)) for v ∈ V,
x(δ(S)) ≥ 2 for ∅ 6= S (V,

x ≥ 0.

(LP(G,w))

The optimum value of this LP is called the Held-Karp lower bound.
We remark that the Held-Karp relaxation has exponentially many constraints. Nevertheless,

we can solve it in polynomial time using the ellipsoid method with a separation oracle, which
needs to solve the following task: given a vector x ∈ RE , either state that x is feasible, or
return a constraint that x violates. The non-negativity constraints and Eulerian constraints
are easy to efficiently verify. For the subtour elimination constraints, the problem amounts to

10 Preliminaries and Linear Programming

finding a minimum-weight cut in the graph (where edge weights are given by x), which can be
done in polynomial time; cuts of weight less than 2 correspond to violated subtour elimination
constraints.

The perfect matching polytope In terms of describing solutions using LPs, an ideal scenario is
when the integrality gap is 1. In this case we say that the polyhedron is integral, and we usually
do not call it a relaxation, as it is indeed an exact formulation for the original problem. If such
an efficiently-solvable LP exists, then the problem is in P.

In this thesis we study the perfect matching problem, for which such an LP exists. Given
a graph, let us associate an indicator vector 1M ∈ {0, 1}E ⊆ RE with any perfect matching
M . (Sometimes for ease of notation we identify matchings M with their indicator vectors 1M .)
Then, the perfect matching polytope is defined as the convex hull of indicator vectors of all perfect
matchings in the graph.

Now let us try to describe this polytope using linear inequalities, i.e., as an intersection of
hyperplanes. Surely, a point x ∈ RE in the polytope must satisfy that the degree of every vertex
in the matching is 1: x(δ(v)) = 1 for all v ∈ V . It turns out that this is already enough to
describe the perfect matching polytope in the case of bipartite graphs. However, in general
graphs, odd cycles pose an issue. Indeed, consider a triangle graph; it clearly does not have a
perfect matching (since the number of vertices is odd), so its perfect matching polytope is empty,
yet the above formulation would allow a point x with xe = 1/2 for every e ∈ E. Therefore it is
natural to add the following constraints: for any odd set S of vertices we should have x(δ(S)) ≥ 1.
These constraints are clearly satisfied by the indicator vector of any perfect matching.

x(δ(v)) = 1 for v ∈ V ,
x(δ(S)) ≥ 1 for S ⊆ V with |S| odd,

xe ≥ 0 for e ∈ E.
(PM(G))

It turns out that this is enough:
Theorem 2.4 (Edmonds [Edm65a])

The set of constraints PM(G) describes the perfect matching polytope.

Note that the constraints imply that xe ≤ 1 for any e ∈ E. We refer to the perfect matching
polytope of the graph G by PM(G) or simply by PM when the graph is clear from the context.

To obtain a linear program, we minimize a linear objective function
∑
e∈E w(e)xe over this

polytope. We denote this LP by PM(G,w). Like the Held-Karp relaxation, it has an exponential
number of constraints. However, one can optimize over PM in polynomial time. The first
reason for this is simply the existence of a polynomial-time algorithm for minimum-weight perfect
matching [Edm65a]. Alternatively, one can also solve the LP using the ellipsoid method. Then,
the task of the separation oracle can be reduced to finding a minimum-weight odd cut in a graph.
This can be accomplished using Gomory-Hu trees [PR82].

Interestingly, there is in fact no polynomial-sized formulation for the perfect matching poly-
tope, even in the extension complexity model, where extra variables are allowed in the formula-
tion [Rot17].

Duality Duality is a foundational concept in the theory of linear programming. For us, it will
be instrumental in extracting structure from the LP solution of the Held-Karp relaxation for
ATSP.

2.5 Linear programming 11

Consider a linear program of the form

min{w>x : x ∈ RE , x ≥ 0, Ax ≥ b}

with A ∈ Rm×E and b ∈ Rm. Suppose we wanted to provide a lower bound on the optimum
value. What we could do is add several constraints Aix ≥ bi (where Ai is the i-th row of A),
perhaps multiplied by coefficients yi ≥ 0, in such a way that we obtain a left-hand side

∑
i yiAix

where every variable xe appears with coefficient at most we, i.e.,
∑
i yiAie ≤ we. Then the

right-hand side
∑
i yibi would constitute a lower bound on the optimum value, since∑

e

wexe ≥
∑
e

∑
i

yiAiexe =
∑
i

yiAix ≥
∑
i

yibi . (2.1)

The task of finding the best such lower bound is called the dual linear program, and can be
expressed as

max{b>y : y ∈ Rm, y ≥ 0, A>y ≤ w} .

Crucially, it turns out that adding constraints multiplied by coefficients yi in this way is the
only necessary way of obtaining such lower bounds, in the sense that some setting of the y’s will
always yield the best possible lower bound. This statement is known as strong LP duality:
Theorem 2.5 (see e.g. [Sch03, Theorem 5.4])

Either both the primal and the dual program are infeasible, or one is feasible and unbounded
and the other is infeasible, or both are feasible. In the last case, their values are equal.

Note that, given optimal solutions x and y to the primal and the dual, there must be equalities
everywhere in (2.1). This implies that whenever xe > 0, the corresponding dual constraint is
tight:

∑
i yiAie = we, and likewise whenever yi > 0, the corresponding primal constraint is tight:

Aix = bi. The converse is also true. More precisely, we have the following useful fact:
Fact 2.6 (complementarity slackness)

Let x and y be feasible solutions to the primal and the dual. Then x and y are both optimal
if and only if, whenever xe > 0 or yi > 0, the corresponding constraints (as above) are tight.

Let us now write the dual program DUAL(G,w) and the complementarity slackness conditions
for the Held-Karp relaxation LP(G,w) for ATSP. We associate variables (αv)v∈V and (yS)∅6=S(V
with the first and second set of constraints of LP(G,w), respectively:

maximize
∑
∅6=S(V

2 · yS

subject to
∑

S: (u,v)∈δ(S)

yS + αu − αv ≤ w(u, v) for (u, v) ∈ E,

y ≥ 0.

(DUAL(G,w))

By Fact 2.6 we get the following:

12 Preliminaries and Linear Programming

Fact 2.7
If x and (α, y) are feasible solutions to LP(G,w) and DUAL(G,w) respectively, then they
are both optimal if and only if we have∑

S: (u,v)∈δ(S)

yS + αu − αv = w(u, v) whenever x(u,v) > 0

and
x(δ(S)) = 2 whenever yS > 0 .

Definition 2.8 (tight sets, ATSP)
We say that a set S ⊆ V is tight if x(δ(S)) = 2 (that is, x(δ+(S)) = x(δ−(S)) = 1).

For singleton sets {u}, we will use the notation yu = y{u}.
Finally, let us remark that DUAL(G,w) can also be solved in polynomial time, despite having

an exponential number of variables. To see this, note that if we solve LP(G,w) using the ellipsoid
method, then the separation oracle is going to return a polynomial number of violated constraints
(cutting planes) during its execution. Thus, LP(G,w) with only those constraints has the same
optimum value, and in DUAL(G,w) we only need to use the dual variables corresponding to those
constraints; more precisely, we obtain a polynomial-size family S ⊆ 2V such that DUAL(G,w)
has an optimal solution (α, y) with support {S ⊆ V : yS > 0} contained in S. In the subsequent
Section 2.6 we will show that we can efficiently obtain a dual optimal solution with a very
structured support. Later, in Theorem 3.4 we show that we can also dispose of the variables αv.

Faces For our result on matchings, we will crucially use the structure of faces of the perfect
matching polytope. Let us define this notion.
Definition 2.9

A subset F of a polyhedron P = {x ∈ RE : Ax ≤ b} is called a face of P if it is the set of
optimum solutions of min{w>x : x ∈ P} for some w ∈ RE .

We will also need the following equivalent characterization:
Fact 2.10 (see [KV12, Proposition 3.3])

A nonempty subset F of a polyhedron P = {x ∈ RE : Ax ≤ b} is a face of P if F = {x ∈
P : A′x = b′} for some subsystem A′x ≤ b′ of Ax ≤ b.

That is, a face can be obtained either by minimizing an objective function over the polyhedron,
or by setting some of the inequality constraints in the polyhedral description to equality. Note
that a face is always nonempty.

We say that a constraint is tight for a face F if it is tight (i.e., holds with equality) for every
point x ∈ F . If a constraint x(δ(S)) = 1 is tight, then we say that S is tight (it is a tight odd
set). Notice that if a set is tight for a face, then it is also tight for any of its subfaces.

Recall PM – the formulation of the perfect matching polytope. In fact, all faces considered
in this thesis will be faces of PM. By Fact 2.10, any face F ⊆ PM can be described using a set
of inequality constraints that are tight for F . In the case of PM, such constraints correspond to
edges or to odd sets of vertices. We use the following notation:

2.6 Laminarity and uncrossing 13

Definition 2.11
For a face F ⊆ PM we define

E(F) = {e ∈ E : (∃x ∈ F) xe > 0}

and
S(F) = {S ⊆ V : |S| odd and (∀x ∈ F) x(δ(S)) = 1} .

In other words, E(F) contains the edges that appear in a perfect matching in F and S(F)
contains the tight cut constraints of F .

For a face F ⊆ PM, by Fact 2.10 we have

F = {x ∈ PM : xe = 0 for all e ∈ E \ E(F) and x(δ(S)) = 1 for all S ∈ S(F)} .

See also Lemma 2.16.
We remark that any face of an integral polytope such as PM is again an integral polytope.

2.6 Laminarity and uncrossing
In both of our results we crucially utilize a laminar structure that arises from the LP formulations.
In this section we explain the notion of laminarity and discuss how to obtain this structure.
Definition 2.12

Consider subsets A, B of a universe V . We say that A and B cross if all of A \ B, B \ A,
A ∩B are nonempty.

Note that for crossing A, B it might be the case that A ∪B = V .
Definition 2.13

A family L ⊆ 2V of subsets of V is called laminar if no two sets A,B ∈ L cross.

In other words, for any A,B ∈ L we have either A ⊆ B, B ⊆ A, or A ∩ B = ∅. Thus a laminar
family is a tree-like structure of sets. See Figure 8.4 on page 95 for an example.

Uncrossing is a general technique of obtaining laminar families from arbitrary set families
in certain scenarios. This is done by repeatedly taking crossing sets A, B and replacing one of
them2 with two new sets: either A ∪ B, A ∩ B or A \ B, B \ A. Note that the obtained three
sets are not crossing.

The following basic fact helps explain why such a replacement might be desirable:
Fact 2.14 (submodularity of the cut function)

Let A,B ⊆ V . We have

1δ(A) + 1δ(B) = 1δ(A∩B) + 1δ(A∪B) + 2 · 1δ(A\B,B\A)

= 1δ(A\B) + 1δ(B\A) + 2 · 1δ(A∩B,V \(A∪B)) .

2We generally do not have control over which one is replaced.

14 Preliminaries and Linear Programming

A B

A \B A ∩B B \A

Figure 2.1: Illustration of the proof of Fact 2.14.

Proof.
Consider the following six disjoint sets of edges: δ(A ∩ B, V \ (A ∪ B)), δ(A \ B, V \ (A ∪ B)),
δ(B \A, V \ (A∪B)), δ(A \B,A∩B), δ(B \A,A∩B), δ(A \B,B \A). Entries corresponding to
edges that are not in any of these sets are zero on all three sides of the equation. One can verify
that entries corresponding to δ(A ∩ B, V \ (A ∪ B)) and δ(A \ B,B \ A) are 2 on all sides, and
those corresponding to any of the other four sets are 1. See Figure 2.1 for an illustration.

We demonstrate the power and utility of uncrossing on two examples, which pertain to the
two parts of this thesis.

Matching For the perfect matching problem, we consider any face F of the primal polytope
PM. As remarked above (see Definition 2.11), F can be described using a subset of edges and a
family of tight odd sets. We show that this family can be chosen to be laminar. More precisely,
we want to prove the following lemma.
Lemma 2.15

Consider a face F . For any maximal laminar subset L of S(F) we have

span(L) = span(S(F)) ,

where for a subset T ⊆ S(F), span(T) denotes the linear subspace of RE spanned by the
boundaries of sets in T , i.e., span(T) = span{1δ(S) : S ∈ T }.

We say that L is a maximal laminar subset of a family S if no set in S \ L can be added to L
while maintaining laminarity. Lemma 2.15 implies that a maximal laminar subfamily L ⊆ S(F)
is enough to describe a face F (together with the edge set E(F)):
Lemma 2.16

Let F be a face of PM and L be a maximal laminar subset of S(F). Then

F = {x ∈ PM : xe = 0 for all e ∈ E \ E(F) and x(δ(S)) = 1 for all S ∈ L} .

Proof.
The direction ⊆ is clear since L ⊆ S(F). Now consider any S ∈ S(F). By Lemma 2.15, we can
write 1δ(S) =

∑
L∈L µL1δ(L) for some coefficients µ ∈ RL. Moreover, we have

∑
L∈L µL = 1,

2.6 Laminarity and uncrossing 15

since, taking an arbitrary y ∈ F , we can write

1 =
〈
y,1δ(S)

〉
=
〈
y,
∑
L∈L

µLδ1(L)

〉
=
∑
L∈L

µL .

For the direction ⊇, we have that for any x from the right-hand side and for any S ∈ S(F),

〈
x,1δ(S)

〉
=
〈
x,
∑
L∈L

µL1δ(L)

〉
=
∑
L∈L

µL · x(δ(L)) = 1 .

Note that any single-vertex set is tight for any face (due to the constraints x(δ(v)) = 1 for all
v ∈ V), and therefore a maximal laminar family contains all singletons. In Part II, all considered
laminar families will always contain all singletons. Furthermore, given a subface F ′ ⊆ F , we can
extend L to a larger laminar family L′ ⊇ L that describes F ′.

The following proof of Lemma 2.15 is adapted from [LRS11]. Assume without loss of gener-
ality that E = E(F). We can do this since including the constraint xe = 0 yields the same face
as removing the edge e from G.

Since we rely on the structure of odd sets, the new sets that we add must also be odd. Thus
the choice of A∪B, A∩B or A\B, B \A simply depends on the parity of |A∩B|. The following
fact shows that the new sets are still tight for the considered face.
Lemma 2.17

Let A,B ∈ S(F) be two tight sets that are crossing. Then:

• if |A ∩B| is odd: then A ∩B,A ∪B ∈ S(F) and 1δ(A) + 1δ(B) = 1δ(A∩B) + 1δ(A∪B),

• otherwise: A \B,B \A ∈ S(F) and 1δ(A) + 1δ(B) = 1δ(A\B) + 1δ(B\A).

Proof.
Case |A ∩ B| odd: Take any x ∈ F . Consider the first equality in Fact 2.14, and take the dot
product of both sides with x. Since A,B ∈ S(F) and because A∩B, A∪B are nonempty (being
odd), we have

1 + 1 = x(δ(A)) + x(δ(B)) = x(δ(A ∩B)) + x(δ(A ∪B)) + 2 · x(δ(A \B,B \A)) ≥ 1 + 1 + 2 · 0

where the inequality must be an equality, and thus x(δ(A ∩B)) = 1, x(δ(A ∪B)) = 1 (implying
A ∩ B,A ∪ B ∈ S(F)) and x(δ(A \ B,B \ A)) = 0 for all x ∈ F (which, given that E = E(F),
implies that δ(A \B,B \A) = ∅ and thus 1δ(A\B,B\A) = 0).
Case |A ∩B| even: analogous.

Proof of Lemma 2.15.
We wish to show that span(L) = span(S(F)), i.e., that for all A ∈ S(F) we have 1δ(A) ∈ span(L).
We prove this by induction on the number of sets in L that cross A. Let us call this quantity
crossL(A).

16 Preliminaries and Linear Programming

The case crossL(A) = 0 is easy: we must have A ∈ L (then clearly 1δ(A) ∈ span(L)), or else
L∪{A} would be a larger laminar family, contradicting the maximality of L. So let crossL(A) ≥ 1,
A 6∈ L, and let B ∈ L be some set crossing A.
Claim 1

All four numbers crossL(A∩B), crossL(A∪B), crossL(A \B) and crossL(B \A) are smaller
than crossL(A).

Proof.
Let X ∈ {A ∩ B,A ∪ B,A \ B,B \ A}. It is easy to check that if S ∈ L is a set that crosses X,
then S also crosses A. For the strict inequality, note that B ∈ L itself is a set that crosses A,
but does not cross X.

Assume that |A∩B| is odd; the other case is analogous. Then by Lemma 2.17, A∩B,A∪B ∈
S(F) and

1δ(A) + 1δ(B) = 1δ(A∩B) + 1δ(A∪B). (2.2)

By Claim 1 and the inductive hypothesis we have 1δ(A∩B),1δ(A∪B) ∈ span(L), and of course also
1δ(B) ∈ span(L). This and (2.2) implies that 1δ(A) ∈ span(L).

Note that here, uncrossing was performed only as an argument inside the proof (indeed, our
algorithm in Part II is quite simple and the difficulty lies in its analysis).

Traveling salesman problem For ATSP, we consider optimal dual solutions. We show that
we can obtain such a solution y whose support {S ⊆ V : yS > 0} is laminar. Apart from
uncrossing the dual rather than the primal program, here the operation is also being performed
algorithmically.
Lemma 2.18

For every edge-weighted directed graph (G,w) there exists an optimal solution (α, y) to
DUAL(G,w) such that the support of y is a laminar family of vertex sets. Moreover, such a
solution can be computed in polynomial time.

Proof.
We start by showing the existence of a laminar optimal solution. Select (α, y) to be an optimal
solution to DUAL(G,w) minimizing

∑
S |S|yS . That is, among all dual solutions that maximize

the dual objective 2
∑
S yS , we select one that minimizes

∑
S |S|yS . We claim that the support

L = {S : yS > 0} is a laminar family. Suppose not, i.e., that there are crossing sets A,B ∈ L.
Then we can obtain a new dual solution (α, ŷ), where ŷ is defined, for ε = min(yA, yB) > 0, as

ŷS =


yS − ε if S = A or S = B,
yS + ε if S = A \B or S = B \A,
yS otherwise.

Note that this has the effect of removing A or B from the support, while adding both A \B and
B \A (if they were not already present).

2.6 Laminarity and uncrossing 17

Let us verify that (α, ŷ) remains a feasible solution. Clearly ŷ remains nonnegative by the
selection of ε. Now consider any constraint

∑
S: e∈δ(S) yS ≤ w(e) − αu + αv for e = (u, v) ∈ E.

We have ∑
S: e∈δ(S)

ŷS =
∑

S: e∈δ(S)

yS − ε ·
(
1δ(A)(e) + 1δ(B)(e)− 1δ(A\B)(e)− 1δ(B\A)(e)

)︸ ︷︷ ︸
≥0 by Fact 2.14

and thus the constraint remains satisfied for ŷ. Further, we clearly have 2
∑
S ŷS = 2

∑
S yS . In

other words, (α, ŷ) is an optimal dual solution. However,∑
S

|S|(yS − ŷS) = ε · (|A|+ |B| − |A \B| − |B \A|) > 0 ,

which contradicts the choice of (α, y) as an optimal dual solution minimizing
∑
S |S|yS . There-

fore, there can be no such sets A and B in L, and so it is a laminar family.
To find a laminar optimal solution in polynomial time, we start with an arbitrary dual optimal

solution. As noted above, one can be computed in polynomial time. Now we repeatedly apply the
above uncrossing operation to obtain a laminar optimal solution. A result by Karzanov [Kar96,
Theorem 2] shows that if we carefully select the sequence of pairs A, B to uncross, this can be
performed in polynomial time (although for an arbitrary sequence, the number of uncrossing steps
may not be polynomially bounded). Alternatively, one could add the constraint 2

∑
S yS = OPT

to the dual, where OPT is the primal-dual optimum value, and replace the objective function by
minimizing

∑
S |S|yS and solve the obtained dual program.

We remark that for TSP, uncrossing was first used for a variant of the symmetric setting by
Cornuejols et al. [CFN85]. Further, Vempala and Yannakakis [VY99] prove that any so-called
basic solution to the Held-Karp relaxation for ATSP is sparse: it uses at most 3n−2 edges. They
use uncrossing to argue about the span of tight constraints in a manner similar to Lemma 2.15.

18 Preliminaries and Linear Programming

Part I

A Constant-Factor Approximation
Algorithm for the Asymmetric
Traveling Salesman Problem

19

Chapter 3

Asymmetric Traveling Salesman
Problem

The traveling salesman problem (TSP) is one of the best-known NP-hard optimization problems.
Recall from Section 2.3 that we are given an edge-weighted graph and wish to find the shortest
tour, which we define as an Eulerian multiset of edges that connects the graph by visiting every
vertex at least once.

For the symmetric TSP, where the graph is undirected, recall that in Chapter 1 we gave a
2-approximation algorithm: simply compute a minimum-cost spanning tree and take every edge
two times. It is possible to do better: Christofides’ classic algorithm [Chr76], also discovered
independently by Serdyukov [Ser78], transforms the spanning tree into a tour more judiciously
(by adding a minimum-cost matching) and yields a 3/2-approximation. Improving this guarantee
is a notorious open question in combinatorial optimization. There has been recent progress in the
graph-TSP case, where the input graph is unweighted [GSS11, MS16, Muc12], and the current
best approximation is 1.4 [SV14]. The integrality gap of the symmetric Held-Karp relaxation is
known to be between 4/3 and 3/2 (the latter due to Wolsey’s analysis [Wol80] of the Christofides-
Serdyukov algorithm) and conjectured to be 4/3.

Our understanding is much more limited in the asymmetric case (ATSP), where the graph is
directed. No constant-factor approximation algorithm was known prior to the work described in
this part of thesis. This is despite the integrality gap of the asymmetric Held-Karp relaxation (see
Section 2.5) being conjectured to be close to the best known lower bound, which is 2 [CGK06].
In terms of hardness of approximation, it is NP-hard to do better than 75/74 [KLS13].

The first approximation algorithm for ATSP was due to Frieze, Galbiati and Maffioli [FGM82]
and achieves a factor of log2 n using a repeated cycle cover approach. Their approach was further
refined over the years [Blä08, KLSS05, FS07]; all these algorithms have approximation ratios of
the form c log2 n for some 0 < c < 1. The first asymptotic improvement was given by Asadpour
et al. [AGM+10], who introduced a novel connection between ATSP and the concept of thin
spanning trees. This connection was subsequently used to obtain a constant-factor approxima-
tion algorithm for planar (and more generally bounded-genus) graphs [GS11] and to prove a
poly log logn upper bound on the integrality gap of the Held-Karp relaxation for ATSP [AG15].

In 2015, Svensson [Sve15] gave a constant-factor approximation algorithm for the case of
unweighted graphs. More generally, this result holds for node-weighted graphs, i.e., graphs whose

21

22 Asymmetric Traveling Salesman Problem

weight function can be written as w(u, v) = f(u) + f(v) for some f : E → R+.3
In 2016, in joint work with Svensson and Végh, we generalized this result to graphs that have

two different edge weights [STV18b]. In this part of the thesis, we build upon and generalize both
of these results to give a constant-factor approximation algorithm for arbitrary weight functions.

Theorem 3.1
There is a polynomial-time algorithm for ATSP that returns a tour of value at most 506 times
the Held-Karp lower bound.

This result is also joint work with Svensson and Végh and was first published in STOC 2018
with an approximation ratio of 5500 [STV18a]. In this thesis we present a subsequent, more
optimized version.

We remark that we can obtain a tighter upper bound of 319 for the integrality gap of the
Held-Karp relaxation, and that our results also imply a constant-factor approximation algorithm
for the Asymmetric Traveling Salesman Path Problem via black-box reductions [FS07, KTV18]
– see Section 6.2.

3.1 Our approach and outline of Part I
Svensson’s result for node-weighted graphs [Sve15] was obtained via a new, relaxed variant of
ATSP called Local-Connectivity ATSP. As all components of that result are useful for this thesis,
we reprise and adapt them in Chapter 4. In particular, the Local-Connectivity ATSP problem
has been adjusted to our setting to optimize the approximation guarantee and renamed Subtour
Partition Cover – see Section 4.1. This relaxed problem is easily seen to be no harder than ATSP;
the crux of Svensson’s result is a reduction which shows that if one can solve Local-Connectivity
ATSP on some class of graphs, then one can obtain a constant-factor approximation for ATSP
on that class of graphs (cf. Theorem 4.3). Further, it turns out that it is rather straightfor-
ward to solve Local-Connectivity ATSP on node-weighted graphs (cf. Theorem 4.2). Via the
aforementioned reduction, this yields a constant-factor approximation algorithm for ATSP on
node-weighted graphs. With much additional work, one can also solve Local-Connectivity ATSP
on graphs with two different edge weights [STV18b].

Still, it does not seem easy to solve Local-Connectivity ATSP / Subtour Partition Cover on
graphs with general weights. Therefore we take a different approach. Before applying Svensson’s
reduction (Theorem 4.3), we remain in the realm of ATSP and use a series of natural reductions to
gradually simplify the structure of instances that we are dealing with. The first of these reductions
(in Section 3.3) crucially uses the laminar structure arising from the Held-Karp relaxation and its
dual linear program (see Lemma 2.18 and Theorem 3.4). All further reductions are described in
Chapter 5. The most structured instances, for which we apply the reduction to Subtour Partition
Cover and on which we then solve Subtour Partition Cover, are called vertebrate pairs.

An outline of this part of the thesis is as follows. In Section 3.2 we introduce new notation
relevant to Part I. Section 3.3 is devoted to our first reduction. There, we show that we can
focus on laminarly-weighted ATSP instances: there is a laminar family L of vertex sets and a
nonnegative vector (yS)S∈L such that any edge e has w(e) =

∑
S∈L: e∈δ(S) yS . See the left part

3In [Sve15], the definition is slightly different: w(u, v) = f(u) for every (u, v) ∈ E for a function f : V → R+.
The two definitions are equivalent: by assigning f(u) = 2h(u), the weight of any tour is equal for the weights
w(u, v) = f(u) and for the weights w(u, v) = h(u) + h(v).

3.1 Our approach and outline of Part I 23

e

Figure 3.1: On the left we give an example of a laminarly-weighted ATSP instance. The sets
of the laminar family are shown in gray. We depict a single edge e that crosses three sets in the
laminar family, say S1, S2, S3, and so w(e) = yS1 + yS2 + yS3 . On the right, we give an example
of a vertebrate pair. Notice that the backbone (depicted as the cycle) crosses all non-singleton
sets of the laminar family, though it may not visit all the vertices.

of Figure 3.1 for an example. Note that the special case when the laminar family consists only
of singletons roughly corresponds to node-weighted instances. We call laminarly-weighted ATSP
instances where L ⊆ {{v} : v ∈ V } singleton instances.4

Next, in Chapter 4 we define the Subtour Partition Cover problem and reduce the task of
solving ATSP (with a constant-factor approximation) to that problem. We also solve Subtour
Partition Cover on singleton instances (Theorem 4.2), thus illustrating the power of the reduction
as well as developing a tool necessary later in Chapter 5.

In Chapter 5 we turn our attention back to ATSP and, starting from laminarly-weighted
instances, show that we can obtain very structured ATSP instances called vertebrate pairs by
only increasing the approximation guarantee by a constant factor. Let us now discuss the main
ideas of this chapter.

We begin by exploring the structure of sets in the laminar family L: in Section 5.1 we study
paths inside sets S ∈ L and, in Section 5.2, we introduce analogues of the classic graph-theoretic
operations of contracting and inducing on such a set. These operations naturally give rise to a
recursive algorithm that, intuitively, works as long as the contraction of some set S ∈ L results
in a significant decrease in the value of the LP relaxation. In Section 5.3 we formally analyze
this recursive algorithm and reduce the task of approximating ATSP to that of approximating
ATSP on irreducible instances: those where no set S ∈ L brings about a significant decrease of
the LP value if contracted.

Informally, every set S ∈ L in an irreducible instance has two vertices u, v ∈ S such that the
shortest path from u to v crosses a large (weighted) fraction of the sets R ∈ L : R (S (otherwise
contracting S into a single vertex, endowed with a node-weight equal to the weight of the shortest
path, would lead to a decrease in the LP value). This insight, together with the approximation
algorithm for singleton instances in Chapter 4 (Corollary 4.4), allows us to construct a low-weight
subtour B that does not necessarily visit every vertex, but crosses every non-singleton set of L.
See the right part of Figure 3.1 for an example. We refer to B as a backbone, and to the ATSP
instance and the backbone together as a vertebrate pair. This reduction allows us to further
assume that our input is such a vertebrate pair; it is presented in Section 5.4.

In each of the above stages, we prove a theorem of the form: if there is a constant-factor
approximation for ATSP on more structured instances, then there is a constant-factor approxi-

4For an explanation of the difference between node-weighted and singleton instances see the discussion following
Definition 3.5.

24 Asymmetric Traveling Salesman Problem

mation for ATSP on less structured instances. For example, an algorithm for irreducible instances
implies an algorithm for laminarly-weighted instances. One can also think of making a stronger
and stronger assumption on the instance without loss of generality, making it increasingly re-
semble a singleton instance. The reduction to vertebrate pairs concludes Chapter 5.

Finally, in Chapter 6 we give an algorithm for Subtour Partition Cover on such instances. The
main technical concept in the argument is that of witness flows. On a high level, we want every
subtour T in our solution to Subtour Partition Cover to be forced to intersect the backbone B if
T crosses a non-singleton set in the laminar family L. Every subtour that does not cross any such
set behaves exactly as in a singleton instance with regard to its cost, and it is easy to account for
those subtours. On the other hand, we are able to take care of the cost of all subtours that do
cross some such set (and thus also intersect B), together with B, using a global cost argument.
The witness flow is a tool that allows us to enforce this crucial property in our solution to Subtour
Partition Cover. It is inspired by a general method of ensuring connectivity in integer/linear
programming formulations for graph problems, which requires the existence of a flow (supported
on the LP solution) between the pairs of vertices that should be connected. The same role was
played in our previous work on ATSP on graphs with two different edge weights [STV18b] and
in our conference paper on the general ATSP result [STV18a] by a concept called the split graph.

By the reductions in Chapters 4 and 5, solving Subtour Partition Cover for vertebrate pairs,
which we do in Chapter 6, is sufficient for obtaining a constant-factor approximation algorithm
for general ATSP. We combine all the ingredients and calculate the obtained ratio in Section 6.2.

See the conclusions (Chapter 9) for a discussion of future research directions.

3.2 Notation
Recall the notation introduced in Section 2.1. In this section we introduce further notions that
are needed for ATSP.

Throughout Part I, the subsets F ⊆ E of edges we refer to will be multisets – that is, they
may contain multiple copies of the same edge. Standard set operations are defined appropriately
(for instance, union ∪ sums the multiplicities of every edge). The indicator vector 1F may take
values larger than one.

For a vertex set U (V , we let G[U] denote the subgraph induced by U . That is, G[U] =
(U,E(U)). We also let G/U denote the graph obtained by contracting the vertex set U , i.e., by
replacing the vertices in U by a single new vertex u and redirecting every edge with one endpoint
in U to the new vertex u. This may create parallel edges in G/U . We keep all parallel copies;
thus, every edge in G/U will have a unique preimage in G.

For a set S (V we let Sin and Sout be those vertices of S that have an incoming edge from
outside of S and those that have an outgoing edge to outside of S, respectively. That is,

Sin = {v ∈ S : δ−(S) ∩ δ−(v) 6= ∅} and Sout = {v ∈ S : δ+(S) ∩ δ+(v) 6= ∅} .

For S, T ⊆ V and F ⊆ E, we use the shorthand notation δ+
F (S) = F ∩ δ+(S), δ−F (S) =

F ∩ δ−(S), and δF (S, T) = F ∩ δ(S, T).
For F ⊆ E, we let V (F) denote the set of vertices incident to at least one edge in F .
Finally, a closed walk will be called a subtour:

3.3 Laminarly-weighted ATSP and singleton instances 25

Definition 3.2
We call F ⊆ E a subtour if F is Eulerian (we have |δ+

F (v)| = |δ−F (v)| for every v ∈ V) and
the graph (V (F), F) is connected. By convention, F = ∅ is a subtour.

Therefore a subtour is an Eulerian multiset of edges that form a single connected component
(or an empty set). A subtour F is a tour if it visits every vertex at least once, i.e., V (F) = V .
In other words, a tour is an Eulerian multiset of edges that connects the graph.

For any Eulerian multiset F of edges, we refer to the connected components of (V (F), F) as
subtours in F . We often refer to F as a collection of subtours. Note that if T is a subtour in F ,
then T 6= ∅.

We say that a subtour T intersects another subtour T ′ if we have V (T) ∩ V (T ′) 6= ∅.

3.3 Laminarly-weighted ATSP and singleton instances
In this section we show that without loss of generality (i.e., without any loss in the approximation
factor) we can focus on instances whose weights come from a sparse and highly structured family
of sets. Below we define the crucial notion of laminarly-weighted instances that we will work
with throughout Part I.
Definition 3.3

A tuple I = (G,L, x, y) is called a laminarly-weighted ATSP instance if G is a strongly
connected directed graph, L is a laminar family of vertex subsets, x is a feasible solution to
the Held-Karp relaxation for G, and y : L → R+. We further require that xe > 0 for every
e ∈ E and that every set S ∈ L be tight with respect to x, i.e., that x(δ+(S)) = x(δ−(S)) = 1.
We define the induced weight function wI : E → R+ as

wI(e) =
∑

S∈L: e∈δ(S)

yS for every e ∈ E. (3.1)

Given an instance I as in the definition, the vectors x and y have the following important
property. Define a dual solution (ᾱ, ȳ) by setting ᾱu = 0 for all u ∈ V , and ȳS = yS if S ∈ L and
ȳS = 0 otherwise. Then complementarity slackness (see Fact 2.7) implies that for the induced
weight function wI , the vector x is an optimal solution to LP(G,wI) and (ᾱ, ȳ) is an optimal
solution to DUAL(G,wI).

Now we prove the main insight of this section: that ATSP with arbitrary weights can be
reduced to the laminarly-weighted ATSP problem. In fact, we have already done most of the
work in Section 2.6 (see Lemma 2.18): the support of the dual solution can be assumed to be
laminar. If we disregard edges e with xe = 0, then complementarity slackness (Fact 2.7) almost
implies the crucial property (3.1) of the weights that we want – it would do so if we had α = 0.
The extra step we need here (in the proof of Theorem 3.4) is to dispose of the vertex potential
variables αv from the dual. This is done by replacing the weight function with an equivalent one.
Theorem 3.4

Assume we have a polynomial-time algorithm that finds a solution of weight at most α times
the Held-Karp lower bound for every laminarly-weighted ATSP instance. Then there is a
polynomial-time algorithm for the general ATSP problem that finds a solution of weight at
most α times the Held-Karp lower bound.

26 Asymmetric Traveling Salesman Problem

Proof.
Consider an arbitrary edge-weighted strongly connected directed graph (G,w). Let x be an
optimal solution to LP(G,w) and let (α, y) be an optimal solution to DUAL(G,w) as guaranteed
by Lemma 2.18, that is, y has laminar support L. We now define a pair (G′, w′) as

V (G′) = V (G) , E(G′) = {e ∈ E(G) : x(e) > 0} , and w′(u, v) = w(u, v)− αu + αv .

We claim that I = (G′,L, x, y) is a laminarly-weighted ATSP instance whose induced weight
function wI equals w′. To see this, recall that x is a primal optimal solution and that (α, y)
is a dual optimal solution (for (G,w)). Therefore complementarity slackness implies that every
set in L is tight with respect to x and that for every edge (u, v) ∈ E(G′), the weight w′(u, v) =
w(u, v)− αu + αv equals the sum of yS-values for the sets S crossed by (u, v). Finally, we have
xe > 0 for every e ∈ E(G′) by definition. So I satisfies all the properties of Definition 3.3, i.e.,
it is a laminarly-weighted instance.

We now argue that an α-approximate solution for I with respect to the Held-Karp relaxation
LP(G′, w′) implies an α-approximate solution for the original instance (G,w) with respect to
LP(G,w). To this end, we make the following observation:

Claim. For any circulation x ∈ RE(G′)
+ , we have

∑
e∈E(G′) w(e)x(e) =

∑
e∈E(G′) w

′(e)x(e).

Therefore the Held-Karp lower bound is the same for (G,w) and for (G′, w′), and any solution
(integral or fractional) for (G′, w′) is a solution of the same weight for (G,w).

In the rest of Part I we work exclusively with laminarly-weighted ATSP instances I =
(G,L, x, y). We will refer to them as simply instances.
Definition 3.5

We say that an instance I = (G,L, x, y) is a singleton instance if all sets in L are singletons.

Such instances will play an important role in our algorithm. In particular, note that for singleton
instances, the weight function wI is induced by nodes (w(u, v) = yu + yv for all (u, v) ∈ E) just
like in a node-weighted instance. The difference between singleton and node-weighted instances is
that singleton instances are those laminarly-weighted instances whose weight function is induced
by nodes after having performed the reduction of Theorem 3.4. A node-weighted instance does
not necessarily give rise to a singleton instance.

Recall that wI(F) is the induced weight of an edge multiset F ⊆ E in the instance I. We
will omit the subscript and use simply w(F) whenever I is clear from the context.
Definition 3.6

For an instance I = (G,L, x, y) and a set S ⊆ V we define

valueI(S) = 2 ·
∑

R∈L: R(S
yR

to be the fractional dual value associated with the sets strictly inside S.

Again, we will omit the subscript whenever clear from the context. We also use value(I) =
valueI(V); note that this equals the Held-Karp lower bound of the instance. Indeed, as noted
above, y can be extended to an optimal dual solution to DUAL(G,w), and hence the opti-
mum value for DUAL(G,w) equals 2 ·

∑
S∈L yS , which is equal to the primal optimum value∑

e∈E w(e)x(e) for LP(G,w) by strong duality (Theorem 2.5).

Chapter 4

Reducing ATSP to Subtour Partition
Cover

In this chapter we define the Subtour Partition Cover problem and reduce the task of solving
ATSP to that problem. This reduction will be used to solve general instances in Chapter 6.
Here, we illustrate its power by giving a constant-factor approximation algorithm for singleton
instances.

4.1 Subtour Partition Cover
In this section we define the Subtour Partition Cover problem that is obtained from ATSP by re-
laxing the connectivity requirements. A variant of this problem, called Local-Connectivity ATSP,
was the key tool in [Sve15] for obtaining a constant-factor approximation for node-weighted in-
stances. We now introduce a different variant that is more adapted to our approach for the
general case.

Consider a laminarly-weighted instance I = (G,L, x, y). For notational convenience we ex-
tend the vector y to all singletons so that yv = 0 if {v} 6∈ L. Let lbI : V → R be the lower bound
function defined by lbI(v) = 2yv. We simplify notation and write lb instead of lbI if I is clear
from the context. Note that lb(V) is at most the Held-Karp lower bound value(I), with equality
only for singleton instances. For an edge set F , we use the simplified notation lb(F) = lb(V (F))
to denote the total lower bound of the vertices incident to F .

Perhaps the main difficulty of ATSP is to satisfy the connectivity requirement, i.e., to select a
Eulerian subset F of edges that satisfies all subtour elimination constraints. In Subtour Partition
Cover, this condition is relaxed and we only require that the subtour elimination constraints be
satisfied for some disjoint sets.

Subtour Partition Cover

Given: An instance I = (G,L, x, y), a subtour B in G, and a partition (V1, V2, . . . , Vk) of
V \ V (B) such that the graph induced by Vi is strongly connected for i = 1, . . . , k.

Find: A collection F of subtours of E such that |δ+
F (Vi)| ≥ 1 for i = 1, 2, . . . , k.

27

28 Reducing ATSP to Subtour Partition Cover

Definition 4.1
We say that an algorithm for Subtour Partition Cover is (α, β)-light for an instance I and
subtour B if, for any input partition of strongly connected subsets, the collection F of subtours
satisfies

• wI(T) ≤ α lb(T) for every subtour T in F with V (T) ∩ V (B) = ∅, and

• wI(FB) ≤ β, where FB ⊆ F is the collection of subtours in F that intersect B.5

We use the (α, β)-light terminology to avoid any ambiguities with the concept of approxima-
tion algorithms.

If we let c be the scaling factor such that c lb(V) = value(I), then an α-approximation algo-
rithm for ATSP with respect to the Held-Karp relaxation is trivially an (α · c, 0)-light algorithm
for Subtour Partition Cover with B = ∅: output the same tour F as the algorithm for ATSP.
However, Subtour Partition Cover seems like a significantly easier problem than ATSP, as the
set of subtours F only needs to cross k cuts formed by a partitioning of the vertices V \ V (B).
We substantiate this intuition by proving, in Section 4.2, that there exists a simple (2, 0)-light
algorithm for Subtour Partition Cover on singleton instances with B = ∅. Perhaps more sur-
prisingly, in Section 4.3 we show that an (α, β)-light algorithm for Subtour Partition Cover for
an instance I with subtour B can be turned into an approximation algorithm for ATSP with an
approximation guarantee of (9 + ε)α lb(V \ V (B)) + β + w(B) for any ε > 0.

The main difference between the Subtour Partition Cover problem and the Local-Connectivity
ATSP problem introduced in [Sve15] is the introduction of the subtour B and the more general
definition of lightness. While this flexibility is unnecessary for singleton instances with B = ∅
(which are closely related to the node-weighted instances considered in that paper), it will be
useful in the general case: in Section 6.1 we give an algorithm for Subtour Partition Cover that,
in turn, implies the constant-factor approximation algorithm for general instances.

We remark that our generic reduction from ATSP to Subtour Partition Cover (Theorem 4.3) is
robust with respect to the definition of lb and there are many possibilities to define such a lower
bound. Another natural example is lb(v) =

∑
e∈δ+(v) x

∗
ew(e). In [Sve15], Local-Connectivity

ATSP was defined with this lb function, and with B = ∅; in this case we can set β = 0. In fact,
in order to get a constant bound on the integrality gap of the Held-Karp relaxation, our results
say that it is enough to find an (O(1), 0)-light algorithm for Subtour Partition Cover with respect
to some nonnegative lb that only needs to satisfy that lb(V) is at most the value value(I) of the
optimal solution to the LP. Even more generally, if lb(V) is at most the value of an optimal tour
(rather than the LP value) then our methods would give a similar approximation guarantee (but
not with respect to the Held-Karp relaxation).

A variant of Subtour Partition Cover was used in [STV18b] to obtain a constant factor
approximation guarantee for ATSP with two different edge weights; a key idea of that paper is
the careful choice of the lb function.

5Recall that we say that a subtour T intersects another subtour B if they visit a common vertex, i.e., V (T) ∩
V (B) 6= ∅. Hence, FB = {T subtour in F : V (T) ∩ V (B) 6= ∅}.

4.2 Subtour Partition Cover for singleton instances 29

4.2 Subtour Partition Cover for singleton instances
We give a simple (2, 0)-light algorithm for Subtour Partition Cover for the special case of singleton
instances, that is, when L is a singleton family, and for B = ∅.

The proof is based on finding an integral circulation that sends flow across the cuts {(Vi, V̄i) :
i = 1, 2, . . . , k} and, in addition, satisfies that the outgoing flow of each vertex v ∈ V with yv > 0
is at most 2, which in turn, by the assumptions on the metric, implies a (2, 0)-light algorithm.
Theorem 4.2

There exists a polynomial-time algorithm for Subtour Partition Cover that is (2, 0)-light for
singleton instances with B = ∅.

Proof.
Let I = (G,L, x, y), B, (V1, V2, . . . , Vk) be an instance of Subtour Partition Cover where I is a
singleton instance and B = ∅. Let also w = wI denote the induced weight function. We prove the
theorem by giving a polynomial-time algorithm that finds a collection F of subtours satisfying

|δ+
F (Vi)| ≥ 1 for i = 1, . . . , k and |δ+

F (v)| ≤ 2 for v ∈ V with yv > 0. (4.1)

The first condition means that F crosses every cut (Vi, V̄i), thus the algorithm indeed solves the
Subtour Partition Cover problem. We show that the second condition implies (2, 0)-lightness.
Since B = ∅, we need to show that w(T) ≤ 2 lb(T) for every subtour T in F . Since I is a
singleton instance, w(u, v) = yu + yv for all (u, v) ∈ E (recall the convention yu = 0 if {u} /∈ L).
Consider now any subtour T in F . We have

w(T) =
∑
e∈T

w(e) =
∑

v∈V (T)

|δF (v)|yv = 2
∑

v∈V (T)

|δ+
F (v)|yv ≤ 4

∑
v∈V (T)

yv = 2 lb(T).

We proceed by describing a polynomial-time algorithm for finding an Eulerian set F sat-
isfying (4.1). The set F will be obtained by rounding the circulation x to integrality while
maintaining that it crosses each cut (Vi, V̄i). For each cut (Vi, V̄i) we introduce a new auxiliary
vertex ai to represent it. In lieu of requiring a flow of at least 1 through Vi, we will require such
a flow through ai. To show that such a (fractional) circulation exists, we modify x by redirecting
an arbitrary flow of value 1 that passes through Vi to instead pass through ai.

First, we transform G into a new graph G′ and x into a new circulation x′ by performing the
following for each i = 1, . . . , k (see also Figure 4.1):

• Select a subset of incoming edges X−i ⊆ δ−(Vi) with x(X−i) = 1. This is possible since
x(δ−(Vi)) ≥ 1.6

• Consider a cycle decomposition of x and follow the incoming edges in X−i in the decom-
position. Select a subset of outgoing edges X+

i ⊆ δ+(Vi) to be the set of edges on which
these cycles first leave Vi after entering on an edge in X−i . We define a flow xi to be the
x-flow on these cycle segments connecting the heads of edges in X−i and the tails of edges
in X+

i .
6To obtain exactly 1, we might need to break an edge up into two copies, dividing its x-value between them

appropriately, and include one copy in X−i but not the other; we omit this for simplicity of notation, and assume
there is such an edge set with exactly x(X−i) = 1.

30 Reducing ATSP to Subtour Partition Cover

Vie12 e23

e31

e−1
e−2 e−3

e+1 e+2 e+3

(a) x: x(e) = 1/2 for all e

Vi

ai

(b) x′: x′(e) = 1/2 for all e

Vi

ai

(c) z′ (integral)

Vi

(d) F

Figure 4.1: A depiction of the proof of Theorem 4.2. The neighborhood of a component Vi is
shown.
(a) shows x, with x(e) = 1/2 on every shown edge. We select X−i = {e−2 , e

−
3 } (thick incoming

edges). Suppose that the cycle decomposition of x has a cycle containing e−1 , e12, e23, e+
3 , a

cycle containing e−2 , e
+
2 , and a cycle containing e−3 , e31, e+

1 . Thus we have X
+
i = {e+

1 , e
+
2 } (thick

outgoing edges), and the flow xi (wiggly) puts value 1/2 on e31.
(b) shows x′, with x′(e) = 1/2 on every shown edge. We redirect e−2 , e

−
3 to point to ai and e+

1 ,
e+

2 to point from ai. (Note that the non-Vi endpoints of all the boundary edges of Vi might now
also become aj for some j 6= i.) We also subtract xi, removing e31.
(c) shows z′, which is integral. Note that z′(δ−(ai)) = z′(δ+(ai)) = 1.
(d) shows the final solution F . The thick edges, which are redirected from the edges incident to
ai in z′, guarantee that F crosses Vi. The path Pi is dashed.

• We introduce a new auxiliary vertex ai and redirect all edges in X−i to point to ai, and
those in X+

i to point from ai. We subtract the flow xi from x.

Note that x′ is a circulation, and that it satisfies the following conditions:

• x′(δ+(v)) ≤ 1 for all v ∈ V with yv > 0,

• x′(δ+(ai)) = 1 for all i = 1, . . . , k.

Here, the first condition holds since all sets in L are tight and thus x(δ+(v)) = 1 whenever
yv > 0; the rest is by construction. As the vertex-degree bounds are integral, we can also,

4.3 From local to global connectivity 31

in polynomial time, find an integral circulation z′ that satisfies these two conditions (see e.g.
Chapter 11 in [Sch03]).

Next, we map z′ from G′ to a flow z in G in the natural way: by reversing the redirection
of the edges incident to the auxiliary vertices ai while retaining their flow. Now, the flow z so
obtained may not be a circulation. Specifically, since the in- and out-degree of ai were exactly 1
in z′, in each component Vi there is a pair of vertices ui, vi that are the head and tail, respectively,
of the mapped-back edges adjacent to ai. These are the only vertices whose in-degree in z may
differ from their out-degree. (They differ unless ui = vi.) To repair this, for each i = 1, . . . , k
we route a walk Pi from ui to vi in Vi; this is always possible as we assumed that Vi is strongly
connected (by the definition of Subtour Partition Cover).

We obtain our final solution F from z by taking every edge e ∈ E with multiplicity ze
and adding the paths Pi. Note that F is Eulerian, i.e, a collection of subtours. To see that
F satisfies (4.1), note that F crosses every cut (Vi, V̄i) (since the edges redirected from ai are
boundary edges of Vi). Moreover, by the first property above and the fact that paths Pi are
vertex-disjoint (being inside disjoint subsets Vi), we have |δ+

F (v)| ≤ 2 for each v ∈ V with yv > 0.
This concludes the proof of Theorem 4.2.

4.3 From local to global connectivity
In this section, we reduce the task of approximating ATSP to that of solving Subtour Partition
Cover. To simplify the notation, for a subtour B, we let

lbI(B̄) = lbI(V \ V (B)) = 2
∑

v∈V \V (B)

yv. (4.2)

The main theorem can be stated as follows.
Theorem 4.3

Let A be an algorithm for Subtour Partition Cover. For any instance I = (G,L, x, y) and
subtour B, if A is (α, β)-light for I and B, then there exists a tour of G of weight at most
5α lbI(B̄) +β+wI(B). Moreover, for any ε > 0, a tour of weight at most 9(1 + ε)α lbI(B̄) +
β+wI(B) can be found in time polynomial in the number n = |V | of vertices, in 1/ε, and in
the running time of A.

Using Theorem 4.2, we immediately obtain a constant-factor approximation for ATSP on single-
ton instances.
Corollary 4.4

For any ε > 0, there exists a polynomial-time (18 + ε)-approximation algorithm for ATSP
on singleton instances.

In the sequel, we will use αS = 18+ε for the approximation ratio for ATSP on singleton instances
to make the dependence on this factor transparent.

Throughout this section we let I = (G,L, x, y), B and A be fixed as in the statement of
the theorem; we let w = wI throughout. The proof of the theorem is by giving an algorithm
that uses A as a subroutine. We first give the non-polynomial-time algorithm (with the better
guarantee) in Section 4.3.1, followed by Section 4.3.2 where we modify the arguments so that we
also efficiently find a tour (with a slightly worse guarantee).

32 Reducing ATSP to Subtour Partition Cover

4.3.1 Existence of a good tour
The idea of the algorithm is to start with a collection of subtours and then iteratively merge/connect
them into a single tour that visits all vertices by adding additional (cheap) subtours. We remark
that since we will only add Eulerian subsets of edges, the algorithm always maintains a collection
of subtours. So the state of the algorithm is described by a collection of subtours T ∗.

Initialization For the rest of the section, we assume that V (B) 6= V . Otherwise, B itself is a
tour and the algorithm simply returns B. The algorithm starts by selecting nonempty subtours
T ∗1 , T

∗
2 , . . . , T

∗
k such that

I1: B, T ∗1 , T ∗2 , . . . , T ∗k are disjoint subtours;

I2: w(T ∗i) ≤ 2α lb(T ∗i) for i = 1, 2, . . . , k;

I3: the lexicographic order of 〈lb(T ∗1), lb(T ∗2), . . . , lb(T ∗k)〉 is maximized.

As the lexicographic order is maximized, the subtours are ordered so that lb(T ∗1) ≥ lb(T ∗2) ≥
· · · ≥ lb(T ∗k). The set T ∗ is initialized as T ∗ = T ∗0 ∪ T ∗1 ∪ T ∗2 ∪ · · · ∪ T ∗k , where we let T ∗0 = B.

During the execution of the algorithm we will also use the following concept. For a subtour
T of G, let ind(T) be the smallest index of a subtour in T ∗0 , . . . , T ∗k that it intersects (or ∞ if it
intersects none). That is,

ind(T) = min{i : V (T ∗i) ∩ V (T) 6= ∅}.

Moreover, an important quantity will be lb(T ∗ind(T)), with the convention that lb(T ∗∞) = 0.

Remark 4.5
The main difference in the polynomial-time algorithm is the initialization, as we do not know
how to find an initialization satisfying I1-I3 in polynomial time. Indeed, it is consistent with
our knowledge that 2α (even 2) is an upper bound on the integrality gap and, in that case,
such an algorithm would always find a tour for singleton instances with B = ∅.

Remark 4.6
For intuition, let us mention that the reason to maximize the lexicographic order (subject to
I1-I2) is that we will use the following properties to bound the weight of the final tour:

1. Let T be a subtour with ind(T) = i > 0 and w(T) ≤ 2α lb(T). Then lb(T) ≤ lb(T ∗i).

2. For any disjoint subtours T1, T2, . . . , T` with ind(Tj) = i > 0 and w(Tj) ≤ α lb(Tj) for
j = 1, . . . , `, we have

∑̀
j=1

lb(Tj) ≤ 2 lb(T ∗i).

These claims will be used to bound the weight of the subtours added in the merge procedure
(see below). Their proofs are easy and can be found in the analysis (see the proofs of Claim 3
and Claim 4).

4.3 From local to global connectivity 33

Merge procedure After the initialization, T ∗ contains a collection of subtours that do not
necessarily form a tour. The goal of the “merge procedure” is to form a tour of the entire
graph, connecting these subtours by adding additional (cheap) subtours. We will do so while
maintaining the invariant that T ∗0 = B is a disjoint subtour in T ∗ until the very last step when
a tour is formed.

Specifically, the procedure repeats the following until T ∗ contains a tour that visits all the
vertices. Let T ∗0 , T1, . . . , T` be the collection of subtours in T ∗ (recall that T ∗0 = B). As they are
disjoint, T1, T2, . . . , T` naturally partition the vertex set V \ V (B) into V (T1), V (T2), . . . , V (T`)
plus singleton sets for the remaining vertices in V \ (V (B) ∪ V (T1) ∪ . . . ∪ V (T`)). Let C be this
partitioning of V \ V (B). By construction, each nonsingleton set in C corresponds to a subtour
and thus, for each V ′ ∈ C, the subgraph induced by V ′ is strongly connected. We can therefore
use A to find a collection F of subtours such that

(i) |δ+
F (V ′)| ≥ 1 for all V ′ ∈ C,

(ii) wI(T) ≤ α lb(T) for every subtour T in F disjoint from B, and

(iii) w(FB) ≤ β, where FB ⊆ F is the collection of subtours in F that intersect B.

Note that A is guaranteed to find such a collection F since it is assumed to be an (α, β)-light
algorithm for Subtour Partition Cover on (I, B). Furthermore, we may assume that a subtour
T in F does not only visit a subset V (T) of the vertices V (T ′) visited by a subtour T ′ in T ∗.
Indeed, such a subtour can safely be removed from F , yielding a new (smaller) collection of
subtours that satisfies the above conditions. Having selected F , we now proceed to explain the
“update phase”.

U1: Let X = ∅.

U2: Select a subtour T in T ∗ ∪ F ∪X that maximizes ind(T). Let j = ind(T).

U3: If there exists a cycle C of weight w(C) ≤ α lb(T ∗j) that connects T to other vertices, i.e.,
V (T) ∩ V (C) 6= ∅ and V (C) 6⊆ V (T), then add C to X and repeat from Step U2.

U4: Otherwise, update T ∗ by adding the “new” edges in T , i.e., T ∗ ← T ∗ ∪ (T ∩ F)∪ (T ∩X).

Some comments about the update of T ∗ are in order. We emphasize that we do not add
all edges of F ∪X to T ∗. Instead, we only add those new edges that belong to the component
T selected in the final iteration of the update phase. Among other things, this ensures the
invariant that B is a subtour in T ∗ until the very end. Indeed, the iteration where we add a
subtour intersecting B = T ∗0 must be the last iteration. This is because, in that case, the selected
T that maximizes ind(T) must satisfy ind(T) = 0, which in turn implies that T ∗ ∪ F ∪ X is a
single tour T that visits all vertices.

Finally, let us remark that the update maintains that T ∗ is a collection of subtours (i.e., an
Eulerian multiset of edges). As T is a subtour in T ∗ ∪ F ∪ X, and F and X themselves are
collections of subtours, we have that T ∗ remains a collection of subtours after the update. This
finishes the description of the merging procedure and the algorithm (see also the example below).

34 Reducing ATSP to Subtour Partition Cover

T ∗
10

T ∗
9

T ∗
7

T ∗
6 T ∗

3
T ∗
8

T ∗
5

T ∗
4 T ∗

2
T ∗
1

T ∗
0 = B

Figure 4.2: An illustration of the merge procedure. The gray areas depict the subtours in
T ∗. Blue (solid) cycles depict F and the red (dashed) cycle depicts X after one iteration of the
update phase. The thick cycle represents the edges that this merge procedure would add to T ∗.

Example 4.7
In Figure 4.2, we have that, at the start of a merging step, T ∗ consists of 7 subtours containing
{T ∗6 , T ∗7 , T ∗9 , T ∗10}, {T ∗3 }, {T ∗5 , T ∗8 }, {T ∗4 }, {T ∗2 }, and {T ∗1 }. The blue (solid) cycles depict the
subtours of F . First, we set X = ∅ and the algorithm selects the subtour T in T ∗∪F ∪X that
maximizes ind(T). In this example, it would be the leftmost of the three subtours in T ∗ ∪F ,
with ind(T) = 4. The algorithm now tries to connect this component to another component
by adding a cycle with weight at most α lb(T ∗4). The red (dashed) cycle corresponds to such
a cycle and its edge set is added to X. In the next iteration, the algorithm considers the
two subtours in T ∗ ∪ F ∪X. The one that maximizes ind(T) contains T ∗3 , T ∗5 , and T ∗8 . Now
suppose that there is no cycle of weight at most α lb(T ∗3) that connects this component to
another component. Then the set T ∗ is updated by adding those subtours (edges) of F ∪X
that belong to this component (depicted by the thick cycle).

Analysis
Termination We show that the algorithm terminates by arguing that the update phase decreases
the number of connected components and the merge procedure is therefore repeated at most
k ≤ n times.
Lemma 4.8

The update phase terminates in polynomial time and decreases the number of connected
components in (V, T ∗).

Proof.
First, observe that each single step of the update phase can be implemented in polynomial
time. The only nontrivial part is Step U3, which can be implemented as follows: for each
edge (u, v) ∈ δ+(V (T)) consider the cycle consisting of (u, v) and a shortest path from v to
u. Moreover, the entire update phase terminates in polynomial time, because each time the

4.3 From local to global connectivity 35

if-condition of Step U3 is satisfied, we add a cycle to X that decreases the number of connected
components in (V, T ∗ ∪ F ∪X). The if-condition of Step U3 can therefore be satisfied at most
k ≤ n times.

We proceed by proving that, at termination, the update phase decreases the number of
connected components in (V, T ∗). Recall that, once the algorithm reaches Step U4, it has selected
a subtour T in T ∗∪F ∪X. We claim that T visits vertices in at least two components of (V, T ∗).
This is because the subtours in F satisfy |δ+

F (V ′)| ≥ 1 for all V ′ ∈ C, where C denotes the
connected components of (V \ V (B), T ∗ \ B). Moreover, as already noted, T intersects B only
in the last iteration, when T forms a tour. Therefore, when the algorithm updates T ∗ by adding
the edges (F ∪X) ∩ T , it decreases the number of components in (V, T ∗) by at least one.

Performance Guarantee We split our analysis of the performance guarantee into two parts.
Note that when one execution of the merge procedure terminates (Step U4), we add the edge
set (F ∩ T)∪ (X ∩ T) to our solution. We will analyze the contribution of these two sets (F ∩ T
and X ∩ T) separately. More formally, suppose that the algorithm performs R repetitions of
the merge procedure. Let T1, T2, . . . , TR, F1, F2, . . . , FR, and X1, X2, . . . , XR denote the selected
subtour T , the edge set F , and the edge set X, respectively, at the end of each repetition. To
simplify notation, we denote the edges added to T ∗ in the r-th repetition by F̃r = Fr ∩ Tr and
X̃r = Xr ∩ Tr.

With this notation, we proceed to bound the total weight of the solution by

w

(
R⋃
r=1

F̃r

)
︸ ︷︷ ︸

≤2α lb(B̄)+β by Lemma 4.10

+ w

(
R⋃
r=1

X̃r

)
︸ ︷︷ ︸

≤α lb(B̄) by Lemma 4.9

+ w(B) +
k∑
i=1

w(T ∗i)

≤ 5α lb(B̄) + β + w(B),

as claimed in Theorem 4.3. Here we used that
∑k
i=1 w(T ∗i) ≤ 2α lb(B̄), which is implied by the

selection of T ∗1 , T ∗2 , . . . , T ∗k (I1-I2). It remains to prove Lemmas 4.9 and 4.10.
Lemma 4.9

We have w
(⋃R

r=1 X̃r

)
≤ α lb(B̄).

Proof.
Note that X̃r consists of a subset of the cycles added to Xr in Step U3 of the update phase:
specifically, of those cycles that were contained in the subtour Tr selected in Step U2 in the
last iteration of the update phase during the r-th repetition of the merge procedure. We can
therefore decompose

⋃R
r=1 X̃r into cycles C1, C2, . . . , Cc, indexed in the order they were added by

the algorithm. We assume that all these cycles have strictly positive weight, as 0-weight cycles
do not affect w

(⋃R
r=1 X̃r

)
. At the time a cycle Ci (with w(Ci) > 0) was selected in Step U3 of

the update phase, it satisfied the following two properties:

(i) it connected the subtour T with ind(T) = j > 0 selected in Step U2 with at least one other
subtour T ′ such that ind(T ′) < ind(T); and

(ii) it had weight w(Ci) ≤ α lb(T ∗j).

36 Reducing ATSP to Subtour Partition Cover

In this case, we say that Ci is marked by j. Note that 1 ≤ j ≤ k, since α lb(T ∗j) ≥ w(Ci) > 0
and by convention lb(T ∗∞) = 0.

We claim that at most one cycle in C1, C2, . . . , Cc is marked by each of the numbers {1, 2, . . . , k}.
To see this, consider the first cycle Ci marked by j (if any). By (i) above, when Ci was added,
it connected two subtours T and T ′ such that ind(T ′) < ind(T) = j. As the algorithm only adds
edges, T and T ′ will remain connected throughout the execution of the algorithm. Therefore, by
the definition of ind and by the fact that ind(T ′) < ind(T), we have that a subtour T ′′ selected
in Step U2 later in the algorithm always has ind(T ′′) 6= j. Hence, no other cycle will be marked
by j.

The bound now follows since at most one cycle with positive weight is marked by j, and such
a cycle has weight at most α lb(T ∗j). Moreover, we have

∑k
j=1 α lb(T ∗j) ≤ α lb(B̄), which is again

implied by the selection of T ∗1 , T ∗2 , . . . , T ∗k (I1-I2).

We complete the analysis of the performance guarantee with the following lemma. We remark
that this is the only part of the proof that relies on the initial subtours T ∗1 , . . . , T ∗k maximizing
the lexicographic order (I3).
Lemma 4.10

We have w
(⋃R

r=1 F̃r

)
≤ 2α lb(B̄) + β.

Proof.
Consider the r-th repetition of the merge procedure. Partition the collection of subtours F̃r into

F̃ ir = {T subtour in F̃r : ind(T) = i} for i ∈ {0, 1 . . . , k,∞}.

That is, F̃ ir contains those subtours in F̃r that intersect T ∗i and do not intersect any of the
subtours T ∗0 = B, T ∗1 , T

∗
2 , . . . , T

∗
i−1 (or intersect none if i = ∞). The total weight w(F̃r) of F̃r

thus equals

w(F̃ 0
r) + w(F̃∞r) +

k∑
i=1

w(F̃ ir) .

We bound the weight of F̃r by considering these terms separately. Let us start with F̃ 0
r .

Claim 2
The set F̃ 0

r can be nonempty only for r = R, and w(F̃ 0
R) ≤ β.

Proof.
The first claim follows by the invariant that B is a subtour in T ∗ until the very last iteration
of the merge procedure. Indeed, if F̃ 0

r 6= ∅, then the algorithm must terminate after the r-th
merge procedure: the subtour T selected in Step U2 must visit all vertices. For the second part,
we have that every T ∈ F̃ 0

R must intersect T ∗0 = B. Therefore, property (iii) of the edge set F̃R
returned by A asserts that w(F̃ 0

R) ≤ β.

For i > 0, we start by two simple claims that follow since each subtour T in F̃r satisfies
w(T) ≤ α lb(T) (by property (ii) of A) and the choice of T ∗1 , . . . , T ∗k to maximize the lexicographic
order I3 subject to I1-I2.

4.3 From local to global connectivity 37

Claim 3
For i > 0 and T ∈ F̃ ir we have lb(T) ≤ lb(T ∗i).

Proof.
The inequality lb(T) > lb(T ∗i) together with the fact that w(T) ≤ α lb(T) ≤ 2α lb(T) would
contradict that T ∗1 , . . . , T ∗k was chosen to maximize the lexicographic order I3. Indeed, in that
case, a an initialization satisfying I1-I2 of higher lexicographic order would be T ∗1 , . . . , T ∗i−1, T .

The above claim already implies that w(F̃∞r) ≤ α lb(F̃∞r) ≤ α lb(T ∗∞) = 0. We now present
a more general claim that also applies to F̃ ir with 1 ≤ i ≤ k.
Claim 4

If i > 0, then we have lb(F̃ ir) ≤ 2 lb(T ∗i).

Proof.
Suppose towards a contradiction that lb(F̃ ir) > 2 lb(T ∗i). Let T1, T2, . . . , T` be the subtours
in F̃ ir and define T to be the subtour obtained by taking the union of the subtours T ∗i and
T1, . . . , T`. Consider the initialization T ∗1 , . . . , T ∗i−1, T . By construction these subtours are disjoint
and disjoint from B since i > 0. Thus I1 is satisfied. Moreover, we have lb(T) > lb(T ∗i) and
therefore the lexicographic value of this initialization is larger than the lexicographic value of
T ∗1 , . . . , T

∗
k . This is a contradiction if T also satisfies I2, i.e., if w(T) ≤ 2α lb(T).

Therefore, we must have w(T) > 2α lb(T). By the facts that w(Tj) ≤ α lb(Tj) (by prop-
erty (ii) of A) and that w(T ∗i) ≤ 2α lb(T ∗i) (by I2),

w(T) = w(T ∗i) +
∑̀
j=1

w(Tj) ≤ 2α lb(T ∗i) +
∑̀
j=1

α lb(Tj) and lb(T) ≥
∑̀
j=1

lb(Tj).

These inequalities together with w(T) > 2α lb(T) imply lb(F̃ ir) =
∑`
j=1 lb(Tj) ≤ 2 lb(T ∗i).

Using the above claims, we can write w
(⋃R

r=1 F̃r

)
as

R∑
r=1

(
w(F̃ 0

r) + w(F̃∞r) +
k∑
i=1

w(F̃ ir)
)
≤ β +

R∑
r=1

k∑
i=1

w(F̃ ir)

≤ β + α

R∑
r=1

k∑
i=1

lb(F̃ ir)

= β + α

k∑
i=1

∑
r: F̃ i

r 6=∅

lb(F̃ ir)

≤ β + 2α
k∑
i=1

∑
r: F̃ i

r 6=∅

lb(T ∗i).

We complete the proof of the lemma by using Claim 3 to prove that F̃ ir is nonempty for at
most one repetition r of the merge procedure. Suppose towards a contradiction that there exist
1 ≤ r0 < r1 ≤ R such that both F̃ ir0

6= ∅ and F̃ ir1
6= ∅. In the r0-th repetition of the merge

38 Reducing ATSP to Subtour Partition Cover

procedure, T ∗i was contained in the subtour Tr0 (selected in Step U2) since otherwise no edges
incident to T ∗i would have been added to T ∗. Therefore j = ind(Tr0) ≤ i. Now consider a
subtour T in F̃ ir1

. First, recall that we have assumed that T , being a subtour in Fr1 , does not
only visit a subset V (T) of vertices V (T ′) visited by a subtour T ′ in T ∗. In particular, since
Tr0 is a subset of some subtour T ′ in T ∗ during the r1-th repetition, we have V (T) 6⊆ V (Tr0).
Second, by Claim 3, we have w(T) ≤ α lb(T) ≤ α lb(T ∗i).

In short, T is a subtour that connects Tr0 to another component and it has weight at most
α lb(T ∗i) ≤ α lb(T ∗j), where j = ind(Tr0) ≤ i. As T is Eulerian, it can be decomposed into cycles.
One of these cycles, say C, connects Tr0 to another component and

w(C) ≤ w(T) ≤ α lb(T ∗j). (4.3)

In other words, there exists a cycle C that, in the r0-th repetition of the merge procedure,
satisfied the if-condition of Step U3, which contradicts the fact that C was not added during the
r0-th repetition.

4.3.2 Polynomial-time algorithm
In this section we describe how to modify the arguments in Section 4.3.1 to obtain an algorithm
that runs in time polynomial in the number n of vertices, in 1/ε, and in the running time of A.

By Lemma 4.8, the update phase can be implemented in time polynomial in n. Therefore,
the merge procedure described in Section 4.3.1 runs in time polynomial in n and in the running
time of A. The problem is the initialization: as mentioned in Remark 4.5, it seems difficult to
give a polynomial-time algorithm for finding subtours T ∗1 , . . . , T ∗k that satisfy I1 and I2 together
with the third condition I3 that we should maximize the lexicographic order of

〈lb(T ∗1), lb(T ∗2), . . . , lb(T ∗k)〉.

We overcome this obstacle by first identifying the properties that we actually use from se-
lecting the subtours as above. We then show that we can obtain an initialization that satisfies
these properties in polynomial time. Our initialization will still satisfy I1 and a relaxed variant
of I2 that we now describe. To simplify notation, define

lb(T) = lb(T) + ε · |V (T)|
n

· lb(B̄)

for a subtour T . Note that lb(T) is a slightly increased version of lb(T). This increase is used to
lower-bound the progress in Lemma 4.12. Also note that lb, like lb, is additive over vertex-disjoint
subtours. Finally, we reprise the convention that lb(T ∗∞) = lb(T ∗∞) = 0.

Our initializations will be collections T ∗1 , . . . , T ∗k of subtours satisfying

I1: B, T ∗1 , T ∗2 , . . . , T ∗k are disjoint subtours;

I2’: w(T ∗i) ≤ 3α lb(T ∗i) for i = 1, 2, . . . , k.

While we do not maximize the lexicographic order, we assume that the subtours are indexed so
that lb(T ∗1) ≥ lb(T ∗2) ≥ . . . ≥ lb(T ∗k). Note that the difference between I2’ and I2 is that here
we require w(T ∗i) ≤ 3α lb(T ∗i) instead of w(T ∗i) ≤ 2α lb(T ∗i). The reason why we use a factor
of 3 instead of 2 is that it leads to a better constant when balancing the parameters and, as
previously mentioned, we use lb instead of lb to lower-bound the progress in Lemma 4.12.

4.3 From local to global connectivity 39

The main change to our initialization to achieve polynomial running time is that we do not
maximize the lexicographic order (I3). As mentioned in the analysis in Section 4.3.1, the only way
we use that the initialization maximizes the lexicographic order is for the proof of Lemma 4.10.
In particular, this is used in the proofs of Claims 3 and 4. Instead of maximizing the lexicographic
order, our polynomial-time algorithm will ensure a relaxed variant of those claims (formalized in
the lemma below: see Condition (4.4)). The claimed polynomial-time algorithm is then obtained
by first proving that a slight modification of the merge procedure returns a tour of value at most
9(1 + ε)α lb(B̄) + β + w(B) if Condition (4.4) holds, and then showing that an initialization
satisfying this condition (and I1,I2’) can be found in time polynomial in n and in the running
time of A. We start by describing the modification to the merge procedure.

Modified merge procedure The only modification to the merge procedure in Section 4.3.1 is
that we change the update phase by relaxing the condition of the if-statement in Step U3 from
w(C) ≤ α lb(T ∗j) to w(C) ≤ 3α lb(T ∗j), where j = ind(T) and T is the subtour selected in
Step U2. In other words, Step U3 is replaced by:

U3’: If there exists a cycle C of weight w(C) ≤ 3α lb(T ∗j) that connects T to other vertices, i.e.,
V (T) ∩ V (C) 6= ∅ and V (C) 6⊆ V (T), then add C to X and repeat from Step U2.

Clearly the modified merge procedure still runs in time polynomial in n and in the running time
of A. Moreover, we show that if Condition (4.4) holds then the returned tour will have the desired
weight. Recall from Section 4.3.1 that F̃r denotes the subset of F and X̃r denotes the subset of
X that were added in the r-th repetition of the (modified) merge procedure. Furthermore, we
define (as in the previous section) F̃ ir = {T subtour in F̃r : ind(T) = i}.
Lemma 4.11

Suppose that the algorithm is initialized with subtours T ∗1 , T ∗2 , . . . , T ∗k satisfying I1 and I2’.
If in each repetition r of the modified merge procedure we add a subset F̃r such that

lb(F̃ ir) ≤ 3 lb(T ∗i) for all i ∈ {1, 2, . . . , k,∞} , (4.4)

then the returned tour has weight at most 9(1 + ε)α lb(B̄) + β + w(B).

Let us comment on the above statement before giving its proof. The bound (4.4) is a relaxation
of the bound of Claim 4 from lb(F̃ ir) ≤ 2 lb(T ∗i) to lb(F̃ ir) ≤ 3 lb(T ∗i); and it also implies a relaxed
version of Claim 3: from lb(T) ≤ lb(T ∗i) to lb(T) ≤ 3 lb(T ∗i) (for every T in F̃ ir). It is because of
this relaxed bound that we modified the if-condition of the update phase (by relaxing it by the
same amount); this will be apparent in the proof.

Proof.

As in the analysis of the performance guarantee in Section 4.3.1, we can write the weight of
the returned tour as

w

(
R⋃
r=1

F̃r

)
+ w

(
R⋃
r=1

X̃r

)
+ w(B) +

k∑
i=1

w(T ∗i).

To bound w
(⋃R

r=1 X̃r

)
, we observe that the proof of Lemma 4.9 generalizes verbatim except

that the weight of a cycle marked by i is now bounded by 3α lb(T ∗i) instead of by α lb(T ∗i)

40 Reducing ATSP to Subtour Partition Cover

(because of the relaxation of the bound in the if-condition in Step U3’). Hence

w

(
R⋃
r=1

X̃r

)
≤

k∑
i=1

3α lb(T ∗i) .

We proceed to bound w
(⋃R

r=1 F̃r

)
. Using the same arguments as in the proof of Lemma 4.10,

we get

w

(
R⋃
r=1

F̃r

)
=

R∑
r=1

(
w(F̃ 0

r) + w(F̃∞r) +
k∑
i=1

w(F̃ ir)
)
≤ β +

R∑
r=1

k∑
i=1

w(F̃ ir)

≤ β + α

k∑
i=1

∑
r: F̃ i

r 6=∅

lb(F̃ ir) ≤ β + α

k∑
i=1

∑
r: F̃ i

r 6=∅

3 lb(T ∗i)

where, for the first inequality, we used that Claim 2:
∑R
r=1 w(F̃ 0

r) ≤ β generalizes verbatim
from the non-constructive analysis and we have w(F̃∞r) ≤ α lb(F̃∞r) ≤ 3α lb(T ∗∞) = 0 by the
assumption of the lemma; similarly, the last inequality is by the assumption of the lemma.

Now using that the subtours are indexed so that lb(T ∗1) ≥ lb(T ∗2) ≥ . . . ≥ lb(T ∗k) we apply
exactly the same arguments as in the end of the proof of Lemma 4.10 to prove that F̃ ir is non-
empty for at most one repetition r of the merge procedure. The only difference is that (4.3)
becomes

w(C) ≤ w(T) ≤ 3α lb(T ∗j)

(because (4.4) can be seen as a relaxed version of Claim 3). However, as we also updated the
bound in the if-condition, the argument that C would satisfy the if-condition of Step U3’ is still
valid. Hence, we conclude that F̃ ir is nonempty in at most one repetition and therefore

w

(
R⋃
r=1

F̃r

)
≤ β + α

k∑
i=1

∑
r: F̃ i

r 6=∅

3 lb(T ∗i) ≤ β +
k∑
i=1

3α lb(T ∗i) .

By the above bounds and since the initialization T ∗1 , T ∗2 , . . . , T ∗k satisfies I1 and I2’, the weight
of the returned tour is

w

(
R⋃
r=1

F̃r

)
+ w

(
R⋃
r=1

X̃r

)
+ w(B) +

k∑
i=1

w(T ∗i)

≤ β +
k∑
i=1

3α lb(T ∗i) +
k∑
i=1

3α lb(T ∗i) + w(B) +
k∑
i=1

w(T ∗i)

≤ 9α
k∑
i=1

lb(T ∗i) + β + w(B)

≤ 9(1 + ε)α lb(B̄) + β + w(B).

4.3 From local to global connectivity 41

Finding a good initialization in polynomial time By the above Lemma 4.11, it is sufficient to
find an initialization such that I1, I2’ are satisfied and Condition (4.4) holds during the execution
of the modified merge procedure. However, how can we do it in polynomial time? We proceed as
follows. First, we select the trivial empty initialization that consists of no subtours. Then we run
the modified merge procedure and, in each repetition, we verify that Condition (4.4) holds. Note
that this condition is easy to verify in time polynomial in n. If it holds until we return a tour,
then we know by Lemma 4.11 that the tour has weight at most 9(1 + ε)α lb(B̄) +β+w(B). If it
does not hold during some repetition, then we will restart the algorithm with a new initialization
that we find using the following lemma. We continue in this manner until the merge procedure
executes without violating Condition (4.4) and therefore returns a tour of weight at most 9(1 +
ε)α lb(B̄) + β + w(B).
Lemma 4.12

Suppose that some repetition of the (modified) merge procedure violates Condition (4.4)
when run starting from an initialization T ∗1 , T ∗2 , . . . , T ∗k satisfying I1 and I2’. Then we can,
in time polynomial in n, find a new initialization T ′1, T ′2, . . . , T ′k′ such that I1, I2’ are satisfied
and

k′∑
j=1

lb(T ′j)2 −
k∑
j=1

lb(T ∗j)2 ≥ ε2

3n2 lb(B̄)2. (4.5)

Note that the above lemma implies that we will reinitialize (in polynomial time) at most 3n2(1+
ε)2/ε2 times, because any initialization T ∗1 , . . . , T ∗k has

∑k
i=1 lb(T ∗i)2 ≤

(
(1 + ε) lb(B̄)

)2. As each
execution of the merge procedure takes time polynomial in n and in the running time of A, we
can therefore find a tour of weight at most 9(1 + ε)α lb(B̄) + β + w(B) in the time claimed in
Theorem 4.3, i.e., polynomial in n, 1/ε, and the running time of A. It remains to prove the
lemma.

Proof.
Suppose the r-th repetition of the merge procedure violates Condition (4.4), that is, there is an
i ∈ {1, 2, . . . , k,∞} such that

lb(F̃ ir) > 3 lb(T ∗i) .

Suppose first i = ∞. Then F̃∞r 6= ∅. Let T be a subtour in F̃∞r . We have w(T) ≤ α lb(T) ≤
α lb(T) by property (ii) of A and T is disjoint from T ∗1 , . . . , T

∗
k and B by the definition of F̃∞r .

We can therefore compute (in polynomial time) a new initialization T ′1 = T ∗1 , T
′
2 = T ∗2 , . . . , T

′
k =

T ∗k , T
′
k+1 = T with k′ = k + 1 such that I1, I2’ are satisfied and

k′∑
j=1

lb(T ′j)2 −
k∑
j=1

lb(T ∗j)2 = lb(T ′k+1)2 = lb(T)2 ≥ ε2

n2 lb(B̄)2 ,

where the last inequality is by the definition of lb and |V (T)| ≥ 1.
We now consider the case when lb(F̃ ir) > 3 lb(T ∗i) for an i ∈ {1, . . . , k}. Let I ⊆ {1, 2, . . . , k}

be the indices of those subtours of T ∗1 , T ∗2 , . . . , T ∗k that intersect subtours in F̃ ir . Note that, by
definition, we have i ∈ I and j ≥ i for all j ∈ I. We construct a new initialization as follows:

42 Reducing ATSP to Subtour Partition Cover

• Sort I \ {i} = {t1, . . . , t|I|−1} so that

lb(T ∗tj \ F̃
i
r)

lb(T ∗tj ∩ F̃ ir)
≥

lb(T ∗tj+1
\ F̃ ir)

lb(T ∗tj+1
∩ F̃ ir)

,

where for a subtour T we simplify notation by writing lb(T \ F̃ ir) and lb(T ∩ F̃ ir) for
lb(V (T) \ V (F̃ ir)) and lb(V (T) ∩ V (F̃ ir)), respectively.

• Let S be the minimal (possibly empty) prefix of indices t1, t2, . . . , ts such that∑
j∈S

lb(T ∗j \ F̃ ir) ≥
1
3
∑

j∈I\{i}

lb(T ∗j \ F̃ ir)− lb(T ∗i) .

• Define T ∗ to be the subtour obtained by taking T ∗i , the union of all the subtours in F̃ ir , and
all the subtours {T ∗j }j∈S . Note that this is a single (i.e., connected) subtour since every
subtour in F̃ ir intersects T ∗i , and every subtour T ∗j with j ∈ S ⊆ I intersects a subtour in
F̃ ir .

• Reinitialize with subtours T ∗ and {T ∗j }j 6∈I .

All the above steps can be computed in polynomial time. Moreover, the new initialization still
satisfies I1 by the definition of I and since T ∗ does not intersect B. We now use the way S was
selected to prove that I2’ still holds and that the “potential” function has increased as stated
in (4.5). As we will calculate below, the increase of the potential function is simply because
we required that

∑
j∈S lb(T ∗j \ F̃ ir) ≥ 1

3
∑
j∈I\{i} lb(T ∗j \ F̃ ir) − lb(T ∗i). That I2’ holds, i.e.,

that w(T ∗) ≤ 3α lb(T ∗), follows since we selected S to be the minimal prefix with respect to
the prescribed ordering, which prefers subtours that have small overlap with F̃ ir and therefore
contribute significantly to lb(T ∗). We now formalize this intuition.
Claim 5

We have w(T ∗) ≤ 3α lb(T ∗).

Proof.
As S is selected to be a minimal prefix and every j ∈ I satisfies lb(T ∗j) ≤ lb(T ∗i), we claim that

∑
j∈S

lb(T ∗j \ F̃ ir) ≤
1
3
∑

j∈I\{i}

lb(T ∗j \ F̃ ir) . (4.6)

This is trivially true if S = ∅; otherwise, since the prefix S \ {ts} was not chosen, we had∑
j∈S\{ts}

lb(T ∗j \ F̃ ir) <
1
3
∑

j∈I\{i}

lb(T ∗j \ F̃ ir)− lb(T ∗i)

and thus indeed∑
j∈S

lb(T ∗j \ F̃ ir) <
1
3
∑

j∈I\{i}

lb(T ∗j \ F̃ ir)− lb(T ∗i) + lb(T ∗ts \ F̃
i
r)︸ ︷︷ ︸

≤0

.

4.3 From local to global connectivity 43

Moreover, by the sorting of the indices in I \ {i} we must then also have∑
j∈S

lb(T ∗j ∩ F̃ ir) ≤
1
3
∑

j∈I\{i}

lb(T ∗j ∩ F̃ ir) , (4.7)

which is again trivially true if S = ∅; otherwise we write

2
3
∑
j∈S

lb(T ∗j ∩ F̃ ir) ·
lb(T ∗ts \ F̃

i
r)

lb(T ∗ts ∩ F̃ ir)
≤ 2

3
∑
j∈S

lb(T ∗j ∩ F̃ ir) ·
lb(T ∗j \ F̃ ir)
lb(T ∗j ∩ F̃ ir)

= 2
3
∑
j∈S

lb(T ∗j \ F̃ ir)

≤ 1
3

∑
j∈I\{i}\S

lb(T ∗j \ F̃ ir) = 1
3

∑
j∈I\{i}\S

lb(T ∗j ∩ F̃ ir) ·
lb(T ∗j \ F̃ ir)
lb(T ∗j ∩ F̃ ir)

≤ 1
3

∑
j∈I\{i}\S

lb(T ∗j ∩ F̃ ir) ·
lb(T ∗ts \ F̃

i
r)

lb(T ∗ts ∩ F̃ ir)
,

where the middle inequality is by subtracting 1
3
∑
j∈S lb(T ∗j \ F̃ ir) from both sides of (4.6), and

the remaining two are due to our sorting of indices. Next, we divide both sides by lb(T∗ts
\F̃ i

r)
lb(T∗ts

∩F̃ i
r)

(which is nonzero by minimality of S) and add 1
3
∑
j∈S lb(T ∗j ∩ F̃ ir) to both sides to obtain (4.7).

By (4.7) we have∑
j∈S

w(T ∗j) ≤ 3α
∑
j∈S

lb(T ∗j) = 3α
∑
j∈S

lb(T ∗j \ F̃ ir) + 3α
∑
j∈S

lb(T ∗j ∩ F̃ ir)

≤ 3α
∑
j∈S

lb(T ∗j \ F̃ ir) + α
∑

j∈I\{i}

lb(T ∗j ∩ F̃ ir)

≤ 3α
∑
j∈S

lb(T ∗j \ F̃ ir) + α lb(F̃ ir) ,

where the first inequality holds because T ∗1 , . . . , T ∗k satisfy I2’ and the last inequality holds because
they are disjoint (I1). By property (ii) of A and by the assumption that lb(F̃ ir) > 3 lb(T ∗i) we
also have respectively that

w(F̃ ir) ≤ α lb(F̃ ir) ≤ α lb(F̃ ir) and w(T ∗i) ≤ 3α lb(T ∗i) < α lb(F̃ ir) .

These inequalities imply the claim since

w(T ∗) = w(F̃ ir) + w(T ∗i) +
∑
j∈S

w(T ∗j)

< α lb(F̃ ir) + α lb(F̃ ir) + 3α
∑
j∈S

lb(T ∗j \ F̃ ir) + α lb(F̃ ir)

= 3α lb(F̃ ir) + 3α
∑
j∈S

lb(T ∗j \ F̃ ir)

≤ 3α lb(F̃ ir) + 3α
∑
j∈S

lb(T ∗j \ F̃ ir) + 3α lb(T ∗i \ F̃ ir)

= 3α lb(T ∗) .

44 Reducing ATSP to Subtour Partition Cover

It remains to verify the increase of the “potential” function as stated in (4.5). By the definition
of the new initialization, the increase is

lb(T ∗)2 −
∑
j∈I

lb(T ∗j)2 .

Let us concentrate on the first term:

lb(T ∗)2 =

lb(F̃ ir) + lb(T ∗i \ F̃ ir) +
∑
j∈S

lb(T ∗j \ F̃ ir)

2

≥ lb(F̃ ir)

lb(F̃ ir) + lb(T ∗i \ F̃ ir) +
∑
j∈S

lb(T ∗j \ F̃ ir)

 .

By the selection of S, the expression inside the parenthesis is at least

lb(F̃ ir) + lb(T ∗i \ F̃ ir) + 1
3
∑

j∈I\{i}

lb(T ∗j \ F̃ ir)− lb(T ∗i)

≥ lb(F̃ ir) + 1
3
∑
j∈I

lb(T ∗j \ F̃ ir)− lb(T ∗i).

Using lb(T ∗i) < lb(F̃ ir)/3, we can further lower-bound this expression by

1
3 lb(F̃ ir) + 1

3

lb(F̃ ir) +
∑
j∈I

lb(T ∗j \ F̃ ir)

 ≥ 1
3 lb(F̃ ir) + 1

3
∑
j∈I

lb(T ∗j).

Finally, as lb(T ∗j) ≤ lb(T ∗i) for all j ∈ I, we have

lb(T ∗)2 −
∑
j∈I

lb(T ∗j)2 ≥ lb(T ∗)2 − lb(T ∗i)
∑
j∈I

lb(T ∗j)

≥ lb(F̃ ir)

1
3 lb(F̃ ir) + 1

3
∑
j∈I

lb(T ∗j)

− lb(T ∗i)
∑
j∈I

lb(T ∗j)

= 1
3 lb(F̃ ir)2 +

(
lb(F̃ ir)

3 − lb(T ∗i)
)

︸ ︷︷ ︸
>0

∑
j∈I

lb(T ∗j)

≥ 1
3

(
ε

lb(B̄)
n

)2

= ε2

3n2 lb(B̄)2 ,

which completes the proof of Lemma 4.12.

Chapter 5

Obtaining Structured Instances

In Chapter 4 we have reduced the problem of approximating ATSP to that of designing algorithms
for Subtour Partition Cover. Our approach for dealing with general instances is to first simplify
their structure and then to solve Subtour Partition Cover on the resulting structured instances.
In this chapter, we show that we can obtain very structured instances by only increasing the
approximation guarantee by a constant factor. In Chapter 6 we will then solve Subtour Partition
Cover on those instances.

5.1 Paths in tight sets
An instance I = (G,L, x?, y) will be fixed throughout this section. We say that a path P

traverses a set S if both endpoints of P are in V \S and P contains at least one vertex in S. We
now exhibit properties of paths traversing tight sets. In particular, we show that the strongly
connected components of a tight set S enjoy a nice path-like structure as depicted in Figure 5.1.

Recall from Section 3.2 that a set S of vertices is tight if x(δ(S)) = 2. Moreover, Sin and Sout
denote those vertices of S that have an incoming edge from outside of S and those that have an
outgoing edge to outside of S, respectively.
Lemma 5.1

For a tight set S (V we have the following properties:

(a) Every path from a vertex u ∈ Sin to a vertex v ∈ Sout (and thus every path traversing
S) visits every strongly connected component of S.

(b) For every u ∈ Sin and v ∈ S there is a path from u to v inside S. The same holds for
every u ∈ S and v ∈ Sout.

Proof.
We remark that (a) can also be seen to follow from the “τ -narrow cut” structure as introduced
in [AKS15] by setting τ = 0. We give a different proof that we find simpler for our setting.

Let S1, S2, . . . , S` be the vertex sets of the strongly connected components of S, indexed using
a topological ordering. We thus have that each subgraph G[Si] is strongly connected and that
there is no edge from a vertex in Si to a vertex in Sj if i > j.

45

46 Obtaining Structured Instances

S1 S2 S`. . .

(a)

u
v

(b)

Figure 5.1: (a) The structure of a tight set S with strongly connected components S1, . . . , S`.
Every path traversing S enters at a vertex in Sin ⊆ S1, then visits all strongly connected com-
ponents, which form a “path” structure, before it exits from a vertex in Sout ⊆ S`.
(b) The structure of the path P from u ∈ Sin to v ∈ Sout for a tight set S as given by Lemma 5.2.
The path crosses the set that contains u but not v once and it crosses the sets of L that are
disjoint from {u, v} at most twice.

By the above, we must have δ−(S1) ⊆ δ−(S). Moreover, since x?(δ−(S1)) ≥ 1 = x?(δ−(S)),
we can further conclude that δ−(S1) = δ−(S) (recall that all edges have positive x?-value) and
x?(δ−(S1)) = x?(δ+(S1)) = 1 (i.e., S1 is a tight set).

Similarly, we can show by induction on k ≥ 2 that

δ−(Sk) = δ+(Sk−1) and x?(δ−(Sk)) = x?(δ+(Sk)) = 1.

To see this, note that δ−(Sk) ⊆ δ−(S)∪
⋃
i<k δ

+(Si). However, δ−(S) = δ−(S1) (which is disjoint
from δ−(Sk)), and for i < k−1, the induction hypothesis gives that δ+(Si) = δ−(Si+1) (which is
also disjoint from δ−(Sk)). The only term left in the union is i = k−1 and so δ−(Sk) ⊆ δ+(Sk−1).
Moreover, 1 ≤ x?(δ−(Sk)) ≤ x?(δ+(Sk−1)) = 1, which implies the statement for k.

Finally, we have that δ+(S`) = δ+(S). To recap, all incoming edges of S are into S1, the
set of outgoing edges of every component is the set of incoming edges of the next one, and all
outgoing edges of S are from S`. This shows (a), i.e., that every path traversing S needs to enter
through S1, exit through S`, and pass through every component on the way.

Finally, (b) follows because Sin ⊆ S1 (similarly Sout ⊆ S`), each two consecutive components
are connected by an edge, and each component is strongly connected.

Lemma 5.2
Let S (V be a nonempty set such that L ∪ {S} is a laminar family. Suppose u, v ∈ S are
two vertices such that there is a path from u to v inside S. Then we can in polynomial time
find a path P from u to v inside S that crosses every set in L at most twice. Thus, the path
satisfies w(P) ≤

∑
R∈L: R(S 2 · yR = value(S).

In addition, if u ∈ Sin or v ∈ Sout, then P crosses every tight set R ∈ L, R (S at most
2− |R ∩ {u, v}| times. Thus, it satisfies w(P) ≤

∑
R∈L: R(S (2− |R ∩ {u, v}|) · yR.

Proof.
Since L ∪ {S} is a laminar family, any path inside S only crosses those sets R ∈ L that have
R (S. Now, to prove both statements, it is enough to find, in polynomial time, a path P inside

5.1 Paths in tight sets 47

S that for each R ∈ L with R (S satisfies

|P ∩ δ(R)| ≤


2 if |R ∩ {u, v}| = 0,
1 if |R ∩ {u, v}| = 1,
2 if |R ∩ {u, v}| = 2,
0 if |R ∩ {u, v}| = 2 and u ∈ Sin or v ∈ Sout.

The algorithm for finding P starts with any path P from u to v inside S. Such a path is
guaranteed to exist by the assumptions of the lemma and can be easily found in polynomial time.
Now, while P does not satisfy the above conditions, select a set R ∈ L of maximum cardinality
that violates one of the above conditions. We remark that the selected set R is tight since R ∈ L.
Therefore Lemma 5.1(b) implies that there is a path from any u′ ∈ R to any v′ ∈ R inside R
if u′ ∈ Rin or v′ ∈ Rout. Using this, the algorithm now modifies P depending on which of the
above conditions is violated:

Case 1: |R ∩ {u, v}| = 0. Let u′ be the first vertex visited by P in R and let v′ be the last.
Then u′ ∈ Rin and v′ ∈ Rout, which implies by Lemma 5.1(b) that there is a path Q from
u′ to v′ inside R. We update P by letting Q replace the segment of P from u′ to v′. This
ensures that the set R is no longer violated, since the path P now only enters and exits R
once.

Case 2: |R ∩ {u, v}| = 1. This case is similar to the previous one. Suppose that u ∈ R and
v 6∈ R (the other case is analogous). Let v′ be the last vertex visited by P in R. Then
v′ ∈ Rout, and again by Lemma 5.1(b) there is a path Q from u to v′ inside R. We update
P by letting Q replace the segment of P from u to v′. This ensures that the set R is no
longer violated, since the path P now only exits R once.

Case 3: |R ∩ {u, v}| = 2. Let u′ be the first vertex visited by P in Rin. By Lemma 5.1(b), there
is a path Q from u′ to v inside R. We modify P by letting Q replace the segment of P
from u′ to v. This ensures that the set R is no longer violated, since the path P now only
enters and exits R at most once.

Case 4: |R ∩ {u, v}| = 2 and u ∈ Sin or v ∈ Sout. Suppose that u ∈ Sin (the case v ∈ Sout is
analogous). Then, as R ⊆ S, R ∩ Sin ⊆ Rin. So, by Lemma 5.1(b), there is a path Q from
u to v inside R. We replace P by Q and the set R is no longer violated.

At termination, the above algorithm returns a path satisfying all the desired conditions and
thus the lemma. It remains to argue that the algorithm terminates in polynomial time. A
laminar family contains at most 2n − 1 sets, so it is easy to efficiently identify a violated set R
of maximum cardinality. The algorithm then, in polynomial time, modifies P by simple path
computations so that the set R is no longer violated. Moreover, since the modifications are such
that new edges are only added within the set R, they may only introduce new violations to sets
contained in R – sets of smaller cardinality. It follows, since we always select a violated set
of maximum cardinality, that any set R in L is selected in at most one iteration. Hence, the
algorithm runs for at most |L| ≤ 2n− 1 iterations (and so it terminates in polynomial time).

48 Obtaining Structured Instances

Instance I

S
5

2
4

3

1

2

A tour of the instance I/S

s
(u1

in, s)

(u2
in, s)

(s, v2
out)

(s, v1
out)

The lift of the tour to a subtour of I

S
5

2
4

3

1

2

(u1
in, v

1
in)

(u2
in, v

2
in)

(u2
out, v

2
out)

(u1
out, v

1
out)

Figure 5.2: An example of the contraction of a tight set S and the lift of a tour. Only y-values
of the sets R ∈ L : R ⊆ S are depicted. On the left, only edges that have one endpoint in S
are shown. These are exactly the edges that are incident to s in the contracted instance. In the
center, a tour of I/S is illustrated, and on the right we depict the lift of that tour.

5.2 Contracting and inducing on a tight set
In this section we generalize two natural graph-theoretic constructions that allow one to decom-
pose the problem of finding a tour with respect to a vertex set S. The first relies on contracting
S (see Definition 5.4 in Section 5.2.1) and the second relies on inducing on S (see Definition 5.8
in Section 5.2.2).

5.2.1 Contracting a tight set
Consider an instance I = (G,L, x?, y). Before defining the contraction of a set S ∈ L, we need
to define the “distance” functions dS and DS . For S ∈ L and u, v ∈ S, define dS(u, v) to be the
minimum weight of a path inside S from u to v (if no such path exists, dS(u, v) =∞). We also
let

DS(u, v) =
∑

R∈L: u∈R(S
yR + dS(u, v) +

∑
R∈L: v∈R(S

yR ,

which equals dS(u, v) +
∑
R∈L: R(S |R ∩ {u, v}| · yR. We remark that DS(u, u) might be strictly

positive.
The intuition of the definition of DS is as follows. After contracting S, all sets of the laminar

family are still present in the contracted instance, except for the sets strictly contained in S.
Now, after finding a tour in the contracted instance, we need to lift it back to a subtour in the
original instance. This is done as depicted in Figure 5.2: for each visit of the tour to s (the
vertex corresponding to the contraction of S) on the edges (uiin, s), (s, viout), we obtain a subtour
of the original instance by replacing (uiin, s), (s, viout) by the corresponding edges (i.e., by their
preimages) (uiin, viin), (uiout, v

i
out) of G together with the minimum-weight path inside S from viin

to uiout. The value DS(viin, uiout) is the weight increase incurred by this operation. For example,

5.2 Contracting and inducing on a tight set 49

in Figure 5.2 we have

DS(v1
in, u

1
out)︸ ︷︷ ︸

=22

=
∑

R∈L: v1
in∈R(S

yR

︸ ︷︷ ︸
=2

+ dS(v1
in, u

1
out)︸ ︷︷ ︸

=2+2·2+4+3

+
∑

R∈L: u1
out∈R(S

yR

︸ ︷︷ ︸
=3+4

.

Before formally defining the notions of contraction and lift, we state the following useful
bound on DS(u, v).
Fact 5.3

For any u, v ∈ S with u ∈ Sin or v ∈ Sout we have

DS(u, v) ≤ value(S).

Proof.
Lemma 5.1(b) says that there is a path from u to v inside S. Select P to be the path from u to
v as guaranteed by Lemma 5.2. Since u ∈ Sin or v ∈ Sout, we have

dS(u, v) ≤ w(P) ≤
∑

R∈L: R(S
(2− |R ∩ {u, v}|) · yR

and thus

DS(u, v) = dS(u, v) +
∑

R∈L:R(S
|R ∩ {u, v}| · yR ≤

∑
R∈L: R(S

2 · yR = value(S) .

We now define the notion of contracting a tight set for an ATSP instance. In short, the
contraction is the instance obtained by performing the classic graph contraction of S, modifying
L to remove the sets contained in S, and increasing the y-value of the new singleton {s} corre-
sponding to S so as to become yS + 1/2 maxu∈Sin,v∈Sout DS(u, v). This increase is done in order
to pay for the maximum possible weight increase incurred when lifting a tour in the contraction
back to a subtour in the original instance (as depicted in Figure 5.2, defined in Definition 5.6,
and analyzed in Lemma 5.7).

50 Obtaining Structured Instances

Definition 5.4 (Contracting a tight set)
The instance (G′,L′, x′, y′) obtained from I = (G,L, x?, y) by contracting S ∈ L, denoted
by I/S, is defined as follows:

• The graph G′ equals G/S, i.e., the graph obtained from G by contracting S. Let s
denote the new vertex of G′ that corresponds to the set S.

• For each edge e′ ∈ E(G′), x′(e′) equals x?(e), where e ∈ E(G) is the preimage of e′ in
G.7

• The laminar family L′ contains all remaining sets of L:

L′ = {R \ S ∪ {s} : R ∈ L, S ⊆ R} ∪ {R : R ∈ L, S ∩R = ∅} .

• The vector y′ equals y (via the natural mapping) on all sets but {s}. For {s} we define

y′s = yS + 1
2 max
u∈Sin,v∈Sout

DS(u, v) .

We remark that I/S as defined above is indeed an instance: L′ is a laminar family of tight sets
(since for each R ∈ L′ we have x′(δ(R′)) = x(δ(R)), where R is the preimage of R′ in L via
the natural mapping), y′R ≥ 0 is defined only for R ∈ L′, and x′ is a feasible solution to the
Held-Karp relaxation for G′ that is strictly positive on all edges.

The way we defined the new dual weight y′s implies the natural property that the value of
the linear programming solution does not increase after contracting a tight set:
Fact 5.5

value(I/S) = value(I)− (valueI(S)−maxu∈Sin,v∈Sout DS(u, v)) ≤ value(I).

Proof.
By definition,

value(I/S) = 2 ·
∑
R∈L′

y′R = 2 · y′s + 2 ·
∑

R∈L: R 6⊆S
yR

= max
u∈Sin,v∈Sout

DS(u, v) + 2 · yS + 2 ·
∑

R∈L: R 6⊆S
yR

= max
u∈Sin,v∈Sout

DS(u, v) + 2 ·
∑
R∈L

yR − 2 ·
∑

R∈L: R(S
yR

= max
u∈Sin,v∈Sout

DS(u, v) + value(I)− valueI(S)

and so the equality of the statement holds. Finally, the inequality of the statement follows from
Fact 5.3, which implies that maxu∈Sin,v∈Sout DS(u, v) ≤ valueI(S).

Having defined the contraction of a tight set S ∈ L, we define the aforementioned operation
of lifting a tour of the contracted instance I/S to a subtour in the original instance I. When

7Recall that for notational convenience we allow parallel edges in G/S and therefore the preimage is uniquely
defined.

5.2 Contracting and inducing on a tight set 51

considering a tour (or a subtour), we order the edges according to an arbitrary but fixed Eulerian
walk. This allows us to talk about consecutive edges.
Definition 5.6

For a tour T of I/S, we define its lift to be the subtour of I obtained from T by replacing
each consecutive pair (uin, s), (s, vout) of incoming and outgoing edges incident to s by their
preimages (uin, vin) and (uout, vout) in G, together with a minimum-weight path from vin to
uout inside S.8

See Figure 5.2 for an illustration. It follows that the lift is a subtour (i.e., an Eulerian multiset
of edges that forms a single component), because we added paths between consecutive edges in
the tour of I/S. However, the lift is usually not a tour of the instance I, as it is not guaranteed
to visit all the vertices in S. To extend the lift to a tour, we use the concept of inducing on the
tight set S, which we introduce in Section 5.2.2.

We complete this section by bounding the weight of the lift of T .
Lemma 5.7

Let T be a tour of the instance I/S. Then the lift F of T satisfies wI(F) ≤ wI/S(T).

Proof.
Consider the tour T and let (u(1)

in , s), (s, v
(1)
out), . . . , (u

(k)
in , s), (s, v(k)

out) be the edges that T uses to
visit the vertex s (which corresponds to the contracted set S). That is, (u(i)

in , s) and (s, v(i)
out) are

the incoming and outgoing edge of the i-th visit of T to s. By the definition of contraction, we
can write the weight of T as

wI/S(T) =
∑

R∈L: R 6⊆S
αRyR + 2k · y′s

=
∑

R∈L: R 6⊆S
αRyR + k ·

(
2 · yS + max

u∈Sin,v∈Sout
DS(u, v)

)
,

where αR = |δ(R) ∩ T |. We now compare this weight to that of the lift F . Let (u(i)
in , v

(i)
in) and

(u(i)
out, v

(i)
out) be the edges of G that are the preimages of (u(i)

in , s) and (s, v(i)
out). The lift F is

obtained from T by replacing (u(i)
in , s), (s, v

(i)
out) by (u(i)

in , v
(i)
in), (u(i)

out, v
(i)
out) and adding a minimum-

weight path inside S from v
(i)
in to u(i)

out. So F crosses every R ∈ L : R 6⊆ S the same number of
times αR as T . To bound the weight incurred by crossing the tight sets “inside” S, note that the
i-th visit to the set S incurs a weight from crossing sets R ∈ L : R ⊆ S that equals

2yS +
∑

R∈L: v(i)
in ∈R(S

yR + dS(v(i)
in , u

(i)
out) +

∑
R∈L: u(i)

out∈R(S

yR = 2yS +DS(v(i)
in , u

(i)
out) .

8We remark that it is not crucial that the minimum-weight path from vin to uout be selected to be inside S; a
minimum-weight path without this restriction would also work. We have chosen this definition as we find it more
intuitive and it simplifies some arguments.

52 Obtaining Structured Instances

Hence

wI(F) =
∑

R∈L: R 6⊆S
αRyR +

k∑
i=1

(
2 · yS +DS(v(i)

in , u
(i)
out)

)

≤
∑

R∈L: R 6⊆S
αRyR +

k∑
i=1

(
2 · yS + max

u∈Sin,v∈Sout
DS(u, v)

)
= wI/S(T) .

5.2.2 Inducing on a tight set
In this section we introduce our notion of induced instances. This concept will be used for
completing a lift of a tour of a contracted instance into a tour of the original instance (see
Definition 5.10 of “contractible” below). Inducing on a tight set S is similar to contracting its
complement V \S into a single vertex s̄ (see Definition 5.4), though the resulting laminar family
and dual values are somewhat different: namely, we let y′s̄ = value(S)/2 and we remove S (as
well as all supersets of S) from L′. The intuitive reason for the setting of y′s̄ is that each visit to
s̄ should pay for the most expensive shortest paths in the strongly connected components of S
(see Figure 5.3 and the proof of Lemma 5.11).

We remark that the notion of inducing on S for ATSP instances differs compared to the graph
obtained by inducing on S (in the usual graph-theoretic sense), as here we also have the vertex
s̄ corresponding to the contraction of the vertices not in S. This is needed to make sure that
we obtain an ATSP instance (in particular, that we obtain a feasible solution x′ to the linear
programming relaxation).
Definition 5.8

The instance (G′,L′, x′, y′) obtained from I = (G,L, x?, y) by inducing on a tight set S ∈ L,
denoted by I[S], is defined as follows:

• The graph G′ equals G/S̄, i.e., the graph obtained from G by contracting S̄ = V \ S.
Let s̄ denote the new vertex of G′ that corresponds to the set S̄.

• For each edge e′ ∈ E(G′), x′(e′) equals x?(e), where e ∈ E(G) is the preimage of e′ in
G.9

• The laminar family L′ contains {s̄} and all sets that are strict subsets of S:

L′ = {R ∈ L : R (S} ∪ {{s̄}} .

• The vector y′ equals y on the sets common to L′ and L. For the new set {s̄} we define
y′s̄ = value(S)/2.

We remark that I[S] in an instance: L′ is a laminar family of tight sets, y′R ≥ 0 is defined only
for R ∈ L′, and x′ is a feasible solution to the Held-Karp relaxation for G′ that is strictly positive
on all edges.

9We again recall that parallel edges are allowed in G/S̄, and thus the preimage of an edge is uniquely defined.

5.2 Contracting and inducing on a tight set 53

Tight set S = S1 ∪ S2

1000

S1 S2

5

6 3

2

9

7

4

A tour F ′ of the instance I′

s̄ 36

5

6 3

2

9

7

4

e2

e5

e1
e4

e3

e6

Collection F of subtours

S1 S2

5

6 3

2

9

7

4

Figure 5.3: In the left figure we depict a tight set S ∈ L with two strongly connected components
S1 and S2. The induced instance (center figure) is obtained by contracting S̄ = V \ S into a
vertex s̄ and removing the tight set S from L. The solid edges are paths and edges of a tour in the
induced instance. In Lemma 5.11 we obtain a collection of subtours in the original instance (right
figure) by adding the dashed paths, resulting in a tour of each strongly connected component.

As for the value of I[S], it is comprised of the y-values of sets strictly inside S, which
contribute value(S), and that of {s̄}, which also contributes 2y′{s̄} = value(S). Thus we have

Fact 5.9
value(I[S]) = 2 value(S).

As alluded to above, we will use the instance I[S] to find a collection F of subtours in the
original instance I such that F plus a lift of a tour in I/S form a tour of the instance I. We
say that such a set F makes S contractible:
Definition 5.10

We say that S ∈ L is contractible with respect to a collection F ⊆ E of subtours (i.e., F is
an Eulerian multiset of edges) if the lift of any tour of I/S plus the edge set F is a tour of
I.

As an example, if F were a subtour visiting every vertex of S, then S would be contractible
with respect to F . (Of course, such a subtour F can only exist if S is strongly connected.) The
following lemma shows that, in general, it is sufficient to find a tour of I[S] in order to make S
contractible (see also Figure 5.3).
Lemma 5.11

Given a tour T of I[S], we can in polynomial time find a collection F ⊆ E of subtours such
that S is contractible with respect to F and wI(F) ≤ wI[S](T).

Proof.
Let S1, . . . , S` be the strongly connected components of S indexed using a topological ordering.
We will use T to obtain a low-weight tour Fi inside each Si, and define F to be the union of these
tours. Then S is contractible with respect to F . Indeed, the lift of any tour of I/S must contain
a path traversing S, and any such path visits every connected component by Lemma 5.1(a).

Let us fix one component Si. We obtain the tour Fi of Si by reproducing the movements of
T inside Si (recall that we think of T as a cyclically ordered Eulerian walk). More precisely, we
retain those edges of T that are inside Si and, every time T exits Si on an edge (uout, vout) ∈

54 Obtaining Structured Instances

δ+(Si) and then returns to Si on an edge (uin, vin) ∈ δ−(Si), we also insert a minimum-weight
path from uout to vin inside Si. Such a path exists because Si is strongly connected. (This step
corresponds to adding the dashed paths in Figure 5.3.) Then we set F = F1 ∪ . . . ∪ F`.

It remains to show that F has low weight, i.e., that wI(F) ≤ wI[S](T). For this, let k be the
number of times the tour T visits the auxiliary vertex s̄. The weight incurred by every such visit
is at least 2y′s̄ = value(S) (since the set {s̄} is crossed twice in each visit). Thus we have

wI[S](T) ≥ k · value(S) +
∑̀
i=1

wI[S](T ∩ E(Si)) = k · value(S) +
∑̀
i=1

wI(T ∩ E(Si)) .

On the other hand, each tour Fi consists of all those edges of T that are inside Si, as well as k
shortest paths between some pairs of vertices in Si. Indeed, if T makes k visits to the auxiliary
vertex s̄, then we add exactly k paths inside Si due to the path-like structure of the strongly
connected components of a tight set S (Lemma 5.1). We now have the following claim, which
allows us to bound the length of these paths by applying Lemma 5.2.

Claim. For each i = 1, . . . , `, L ∪ {Si} is a laminar family.

Proof.
Suppose toward a contradiction that L∪ {Si} is not a laminar family. Then there must be a set
R ∈ L such that R \ Si, Si \ R, and S ∩ R are all nonempty. Furthermore, since L is a laminar
family and Si ⊆ S ∈ L, we must have R (S. We can thus partition R into the three sets

R<i = R ∩ (S1 ∪ · · · ∪ Si−1), Ri = R ∩ Si, R>i = R ∩ (Si+1 ∪ · · · ∪ S`) .

In words, R<i is the part of R that intersects vertices of the strongly connected components that
are ordered topologically before Si. Similarly, R>i is the part of R that intersects vertices of the
strongly connected components that are ordered topologically after Si. Note that since R is not
contained in Si, we have that either R<i or R>i is nonempty. We suppose R<i 6= ∅ (the case
R>i 6= ∅ is analogous).

As x is a feasible solution to the Held-Karp relaxation for G, we have x(δ−(R<i)) ≥ 1.
Moreover, since δ(Ri ∪R>i, R<i) = ∅ due to the topological ordering, we have δ−(R<i) ⊆ δ−(R)
and thus

1 = x(δ−(R)) ≥ x(δ−(R<i)) + x(δ(Si \Ri, Ri)) ≥ 1 + x(δ(Si \Ri, Ri)) ,

where the first equality follows since R ∈ L is a tight set. However, this is a contradiction because
x(δ(Si \Ri, Ri)) > 0; that holds since Si \Ri = Si \R 6= ∅ and Ri 6= ∅, Si is a strongly connected
component, and G only contains edges with strictly positive x-value. �

By the above claim, we can apply Lemma 5.2 to obtain that a shortest path between two
vertices inside Si has weight at most value(Si). Recall that Fi consists of all those edges of T
that are inside Si, as well as k shortest paths between some pairs of vertices in Si. Therefore,

5.3 Reduction to irreducible instances 55

the weight of F is

wI(F) =
∑̀
i=1

wI(Fi)

≤
∑̀
i=1

[k · value(Si) + wI(T ∩ E(Si))]

≤ k · value(S) +
∑̀
i=1

wI(T ∩ E(Si))

≤ wI[S](T) ,

as required.

5.3 Reduction to irreducible instances
In this section we reduce the problem of approximating ATSP on general (laminarly-weighted)
instances to that of approximating ATSP on irreducible instances. Specifically, Theorem 5.14
says that any approximation algorithm for irreducible instances can be turned into an algorithm
for general instances while losing only a constant factor in the approximation guarantee.

We now define the notions of reducible sets and irreducible instances. The intuition behind
them is as follows. The operations of contracting and inducing on a tight set S introduced in
the last section naturally lead to the following recursive algorithm:

1. Select a tight set S ∈ L.

2. Find a tour TS in the induced instance I[S]. Via Lemma 5.11, TS yields a set FS that
makes S contractible.

3. Recursively find a tour T in the contraction I/S.

4. Output FS plus the lift of T .

For this scheme to yield a good approximation guarantee, we need to ensure that we can find
a good approximate tour TS in I[S] and that contracting the set S results in a “significant”
decrease in the value of the LP solution. If it does, we refer to the set S as reducible:
Definition 5.12

We say that a set S ∈ L is reducible if

max
u∈Sin,v∈Sout

DS(u, v) < δ · value(S) ,

otherwise we say that S is irreducible. We also say that the instance I is irreducible if no set
S ∈ L is reducible.

We will use the value δ = 0.78; however, we keep it as a parameter to exhibit the dependence of
the approximation ratio on this value.

Note that singleton sets are never reducible. Moreover, we have the following observation:

56 Obtaining Structured Instances

Fact 5.13
Consider an instance I = (G,L, x?, y) and a set S ∈ L. If every set R ∈ L : R (S is
irreducible, then I[S] is irreducible. In particular, if I is an irreducible instance, then I[S] is
irreducible for every S ∈ L.

Proof.
Let I[S] = (G′,L′, x′, y′). By definition, L′ = {R ∈ L : R (S} ∪ {{s̄}}. Clearly, the singleton
set {s̄} is irreducible. Now consider a set R ∈ L : R (S; we need to show that R is irreducible in
I[S]. Note that R is also present in I and that the sets {Q ∈ L : Q (R} and {Q ∈ L′ : Q (R}
are identical. This implies that the distance function DR is identical in the instances I and
I[S]. Moreover, the sets Rin and Rout are also the same in the two instances. Therefore, as R is
irreducible in I by assumption, we have that R is also irreducible in I[S].

The above fact implies that if we select S ∈ L to be a minimal reducible set, then the instance
I[S] is irreducible. Hence, we only need to be able to find an approximate tour TS for irreducible
instances (in Step 2 of the above recursive algorithm). This is the idea behind the following
theorem, and its proof is based on formally analyzing the aforementioned approach.
Theorem 5.14

Let A be a polynomial-time ρ-approximation algorithm for irreducible instances. Then there
is a polynomial-time 2ρ

1−δ -approximation algorithm for general instances.

Proof.
Consider a general instance I = (G,L, x?, y). If it is irreducible, we can simply return the result
of a single call to A. So assume that I is not irreducible, i.e., that L contains a reducible set. Let
S ∈ L be a minimal (inclusion-wise) reducible set, i.e., one such that all subsets R ∈ L : R (S

are irreducible.
We will work with the induced instance I[S]. Recall that value(I[S]) = 2 value(S) (Fact 5.9).

Moreover, I[S] is irreducible by Fact 5.13. We can therefore use A to find a tour TS of I[S].
Since A is a ρ-approximation algorithm, we have

wI[S](TS) ≤ ρ · value(I[S]) = 2ρ value(S) .

Next, we invoke the algorithm of Lemma 5.11 to obtain a collection FS ⊆ E of subtours such
that S is contractible with respect to FS and

wI(FS) ≤ wI[S](TS) ≤ 2ρ value(S) . (5.1)

Now we recursively solve the contraction I/S. (This is a smaller instance than I, because
|I/S| = |I| − |S|+ 1 and |S| ≥ 2 since a singleton set S would not have been reducible.) Let T
be the tour obtained from the recursive call, and let F be the lift of T to I. We finally return
FS ∪ F . This is a tour of I, as S is contractible with respect to FS .

The running time of this algorithm is polynomial since each recursive call consists at most
of: one call to A, the algorithm of Lemma 5.11, simple graph operations and one recursive call
(for a smaller instance).

5.4 Backbones and reduction to vertebrate pairs 57

Finally, let us show that this is a 2ρ
1−δ -approximation algorithm by induction on the instance

size. We have

wI(F ∪ FS) = wI(F) + wI(FS)
≤ wI/S(T) + wI(FS)

≤ 2ρ
1− δ value(I/S) + 2ρ value(S)

<
2ρ

1− δ [value(I)− (1− δ) value(S)] + 2ρ value(S)

= 2ρ
1− δ value(I),

where the first inequality is by Lemma 5.7, the second follows since T is a 2ρ
1−δ -approximate

solution for I/S and by (5.1), and the strict inequality is by Fact 5.5 and the reducibility of S.
This shows that F ∪ FS is a 2ρ

1−δ -approximate solution for I.

5.4 Backbones and reduction to vertebrate pairs
In this section we further reduce the task of approximating ATSP to that of finding a tour in
instances with a backbone. For an example of such an instance see the right part of Figure 3.1
on page 23.
Definition 5.15

We say that an instance I = (G,L, x?, y) and a subtour B form a vertebrate pair if every
S ∈ L with |S| ≥ 2 is visited by B, i.e., S ∩ V (B) 6= ∅. The set B is referred to as the
backbone of the instance.

Specifically, the main result of this section, Theorem 5.18, says that an algorithm for verte-
brate pairs can be turned into an approximation algorithm for irreducible instances while losing
only a constant factor in the guarantee. Combining this with Theorem 5.14 allows us to reduce
the problem of approximating ATSP on general instances to that of approximating ATSP on
vertebrate pairs.

The proof of Theorem 5.18 is done in two steps. First, in Section 5.4.1, we give an efficient
algorithm for finding a quasi-backbone B of an irreducible instance – a subtour that visits a large
(weighted) fraction of the sets in L. We use the term quasi-backbone as B might not visit all
non-singleton sets, as would be required for a backbone. Then, in Section 5.4.2, we give the
reduction to vertebrate pairs via a recursive algorithm (similar to the proof of Theorem 5.14 in
the previous section).

5.4.1 Finding a quasi-backbone
We give an efficient algorithm for calculating a low-weight quasi-backbone of an irreducible in-
stance.

58 Obtaining Structured Instances

The rerouting inside S when obtain-
ing the quasi-backbone B from a lift
B′ of a tour T of the instance I′ ob-
tained by contracting maximal sets
in L.

R2

uS
max

uS R1

vS
max

vS

The lift F of the tour T ′ found in the
vertebrate pair (I′, B), where I′ was
obtained by contracting R1 and R2.

R2

R1

The final tour T obtained by
adding results of recursive calls
on R1 and R2 (i.e., on I[R1] and
I[R2]).

R2

R1

Figure 5.4: An illustration of the steps in the proofs of Lemma 5.17 (left) and Theorem 5.18
(center and right). Only one maximal set S ∈ L is shown.

Definition 5.16
For an instance I = (G,L, x?, y), we call a subtour B a quasi-backbone if

2
∑
S∈L∗

yS ≤ (1− δ) value(I) ,

where L∗ = {S ∈ L : S ∩ V (B) = ∅} contains those laminar sets that B does not visit.

Recall that δ = 0.78 is the parameter in Definition 5.12 (of irreducible instances). Also note
that a backbone is not necessarily a quasi-backbone, as it may not satisfy the above inequality if
much y-value is on singleton sets. Recall that αS = 18 + ε denotes the approximation guarantee
for singleton instances as in Corollary 4.4.
Lemma 5.17

There is a polynomial-time algorithm that, given an irreducible instance I = (G,L, x?, y),
constructs a quasi-backbone B such that w(B) ≤ (αS + 3) value(I) and S ∩ V (B) 6= ∅ for
every maximal non-singleton set S ∈ L.

Proof.
Let Lmax be the family of all maximal sets in L. We define I ′ to be the instance obtained
from I by contracting all sets in Lmax. By Fact 5.5, the LP value does not increase, i.e.,
value(I ′) ≤ value(I). In I ′, all laminar tight sets are singletons, therefore the new instance is a
singleton instance and we can use the αS-approximation algorithm (Corollary 4.4) to find a tour
T in I ′ with wI′(T) ≤ αS value(I ′) ≤ αS value(I).

Now, to obtain a subtourB of the original instance I, we consider the liftB′ of T back to I (see
Definition 5.6). The lift B′ is a subtour of low weight. Indeed, wI(B′) ≤ wI′(T) ≤ αS value(I)
by Lemma 5.7. It also visits every maximal set S ∈ Lmax. However, it might not yet satisfy the
inequality of Definition 5.16. We therefore slightly modify the subtour B′ to obtain B as follows.
For each set S ∈ Lmax:

1. Suppose the first visit10 to S in the subtour B′ arrives at a vertex uS ∈ Sin and departs
10Recall that the edges of the subtour B′ are ordered by an Eulerian walk.

5.4 Backbones and reduction to vertebrate pairs 59

from a vertex vS ∈ Sout.

2. Replace the segment of B′ from uS to vS by the union of:

• a shortest path from uS to uSmax,
• a path from uSmax to vSmax inside S as given by Lemma 5.2,
• and a shortest path from vSmax to vS ,

where uSmax ∈ Sin and vSmax ∈ Sout are selected to maximize DS(uSmax, v
S
max).

See the left part of Figure 5.4 for an illustration. The existence of the second path above is
guaranteed by Lemma 5.1(b) since uSmax ∈ Sin. It is clear that the obtained multiset B is a
subtour (since B′ is a subtour), that it visits every set in Lmax, and that the algorithm for
finding B runs in polynomial time. It remains to bound the weight of B and to show that B
satisfies the property of a quasi-backbone, i.e., the inequality of Definition 5.16.

For the former, note that the weight of B is at most the weight of the lift B′ plus the weight
of the three paths added for each set S ∈ Lmax. For such a set S ∈ Lmax, the weight of the path
from uS to uSmax is at most value(S) since there is a path from uS ∈ Sin to uSmax inside S by
Lemma 5.1(b) and such a path can be selected to have weight at most value(S) by Lemma 5.2.
By the same argument, we have that the weight of the path from vSmax to vS ∈ Sout is at most
value(S). Finally, by applying Lemma 5.2 again, we have that the path added from uSmax to vSmax
is also bounded by value(S). It follows that

w(B) ≤ w(B′) + 3 ·
∑

S∈Lmax

value(S) ≤ w(B′) + 3 value(I) ≤ (αS + 3) value(I) ,

as required. (In the second inequality we used that the sets S ∈ Lmax are disjoint.)
We proceed to prove that B satisfies the inequality of Definition 5.16. Recall that L∗ = {S ∈

L : S ∩V (B) = ∅} contains those laminar sets that B does not visit. As B visits every S ∈ Lmax
(i.e., Lmax ∩ L∗ = ∅), it is enough to show the following:

Claim. For every S ∈ Lmax we have∑
R∈L∗: R(S

2yR ≤ (1− δ) value(S) .

Once we have this claim, the property of a quasi-backbone indeed follows:

2
∑
R∈L∗

yR =
∑

S∈Lmax

∑
R∈L∗: R(S

2yR ≤
∑

S∈Lmax

(1− δ) value(S) ≤ (1− δ) value(I) .

Proof of Claim.
The intuition behind the claim is that, when forming B, we have added a path P from uSmax
to vSmax. Since S is irreducible, this path P has a large weight. However, it is chosen so that
it crosses each set in L at most twice. Thus it must cross most (weighted by value) sets of L
contained in S.

Now we proceed with the formal proof. As uSmax ∈ Sin, the path P inside S from uSmax to vSmax
that we have obtained from Lemma 5.2 crosses every tight set R ∈ L at most 2−|R∩{uSmax, v

S
max}|

60 Obtaining Structured Instances

times. Moreover, P (a subset of B) does not cross any set R ∈ L∗. Therefore

dS(uSmax, v
S
max) ≤ w(P) ≤

∑
R∈L\L∗: R(S

(
2− |R ∩ {uSmax, v

S
max}|

)
· yR .

Furthermore, we have that the quasi-backbone B visits all sets in Lmax and visits both vertices
uSmax and vSmax. Therefore it must visit all sets R ∈ L for which R ∩ {uSmax, v

S
max} is nonempty;

i.e., for all R ∈ L∗ we have |R∩{uSmax, v
S
max}| = 0. It follows that that the quasi-backbone visits

most (weighted by value) laminar sets:∑
R∈L\L∗: R(S

2yR =
∑

R∈L\L∗: R(S

(2− |R ∩ {uSmax, v
S
max}|) · yR +

∑
R∈L\L∗: R(S

|R ∩ {uSmax, v
S
max}| · yR

≥ dS(uSmax, v
S
max) +

∑
R∈L: R(S

|R ∩ {uSmax, v
S
max}| · yR

= DS(uSmax, v
S
max)

≥ δ value(S) ,

where the last inequality is by the choice of uSmax, v
S
max and by the irreducibility of S. The claim

now follows:∑
R∈L∗: R(S

2yR = value(S)−
∑

R∈L\L∗: R(S

2yR ≤ value(S)− δ value(S) = (1− δ) value(S) .

�

The proof of the above claim completes the proof of Lemma 5.17.

5.4.2 Obtaining a vertebrate pair via recursive calls
We now prove the main result of Section 5.4. Recall the notation lbI(B̄) introduced in (4.2) on
page 31.
Theorem 5.18

Let A be a polynomial-time algorithm that, given a vertebrate pair (I ′, B) on vertex set V ′,
returns a tour of I ′ with weight at most

κ value(I ′) + η lbI′(B̄) + wI′(B)

for some κ, η ≥ 0. Then there is a polynomial-time ρ-approximation algorithm for ATSP for
irreducible instances, where

ρ = αS
κ+ η(1− δ) + αS + 3

2δ − 1 .

The essence of the theorem is that if we have an algorithm for vertebrate pairs where the ap-
proximation factor is bounded by a constant factor of the value of the instance and the weight
of the backbone, then this translates to a constant-factor approximation for ATSP in arbitrary

5.4 Backbones and reduction to vertebrate pairs 61

irreducible instances (with no backbone given). The proof of this theorem is somewhat simi-
lar to that of Theorem 5.14, in that the algorithm presented here will call itself recursively on
smaller instances, as well as invoking the black-box algorithm A (once per recursive call). The
complicated dependence on the parameters is due to the recursive arguments. We will optimize
the parameters κ and η in Section 6.2.

Proof.
We briefly discuss the intuition first. Consider an irreducible instance I = (G,L, x?, y). By
Lemma 5.17, we can find a quasi-backbone B – a subtour such that 2

∑
S∈L∗ yS ≤ (1−δ) value(I),

where as before L∗ = {S ∈ L : S ∩V (B) = ∅} contains the laminar sets that the quasi-backbone
does not visit. This is a small fraction of the entire optimum value(I), so we can afford to run
an expensive procedure (say, a 2ρ-approximation) on the unvisited sets (using recursive calls) so
as to make them contractible. Once we contract all these sets, B will become a backbone in the
contracted instance and we will have thus obtained a vertebrate pair, on which the algorithm A
can be applied.11 See Figure 5.4 for an illustration.

We now formally describe the ρ-approximation algorithm Airr for irreducible instances. Given
an irreducible instance I = (G,L, x?, y), it proceeds as follows:

1. Invoke the algorithm of Lemma 5.17 to obtain a quasi-backbone B with wI(B) ≤ (αS +
3) value(I). Denote by L∗max the family of maximal (inclusion-wise) non-singleton sets in
L∗ = {S ∈ L : S ∩ V (B) = ∅}. (For example, in Figure 5.4, R1 and R2 are two such sets.)

2. For each S ∈ L∗max, recursively call Airr to find a tour TS in the instance I[S] (which is
irreducible by Fact 5.13). Then use TS and the algorithm of Lemma 5.11 to find a collection
FS of subtours such that S is contractible with respect to FS and wI(FS) ≤ wI[S](TS).

3. Let I ′ = (G′,L′, x′, y′) be the instance obtained from I by contracting all the maximal sets
S ∈ L∗max; let V ′ denote the contracted ground set. We have that (I ′, B) is a vertebrate
pair by construction: we have contracted all tight sets that were not visited by B into
single vertices, and so B is a backbone of I ′. Note that

lbI′(B̄) = 2
∑

v∈V ′\V (B)

y′v ≤ 2
∑
S∈L∗

yS ≤ (1− δ) value(I).

The first inequality follows by the definition of contraction, using Fact 5.3. We can invoke
the algorithm A on the vertebrate pair (I ′, B); by the hypothesis of the theorem, it returns
a tour T ′ of I ′ such that

wI′(T ′) ≤ κ value(I ′) + η(1− δ) value(I) + wI′(B). (5.2)

4. Finally, return the tour T consisting of the lift F of T ′ to I together with
⋃
S∈L∗max

FS .
(See the center and right parts of Figure 5.4 for an illustration.)

We remark that T is indeed a tour of I since all sets S ∈ L∗max are contractible with respect to⋃
S∈L∗max

FS .
Having described the algorithm, it remains to show that Airr runs in polynomial time and

that it has an approximation guarantee of ρ.
11Note that we never actually find a backbone of the original, uncontracted instance.

62 Obtaining Structured Instances

For the former, we bound the total number of recursive calls that Airr makes. We claim
that the total number of recursive calls on input I = (G,L, x, y) is at most the cardinality of
L≥2 = {S ∈ L : |S| ≥ 2}. The proof is by induction on |L≥2|. For the base case, i.e., when
|L≥2| = 0, there are no recursive calls since there are no non-singleton sets in L∗ ⊆ L and so
L∗max = ∅. For the inductive step, suppose that L∗max = {S1, S2, . . . , S`} ⊆ L∗ and so there are `
recursive calls in this iteration – on the instances I[S1], I[S2], . . . , I[S`]. If we let Li≥2 denote the
non-singleton laminar sets of I[Si] then, by the definition of inducing on a tight set, for every
R ∈ Li≥2 we have R (Si and R ∈ L≥2. It follows by the induction hypothesis that the total
number of recursive calls that Airr makes is

`+
∑̀
i=1
|Li≥2| ≤ `+ |L≥2| − ` = |L≥2| ,

where the inequality holds because the sets Li≥2 are disjoint and L1
≥2 ∪ L2

≥2 ∪ · · · ∪ L`≥2 ⊆
L≥2 \ {S1, S2, . . . , S`}. Hence, the total number of recursive calls Airr makes is |L≥2| ≤ |L|,
which is at most linear in |V |. The fact that Airr runs in polynomial time now follows because
each call runs in polynomial time. Indeed, the algorithm of Lemma 5.17, the algorithm of
Lemma 5.11, and A all run in polynomial time.

We now complete the proof of the theorem by showing that Airr is a ρ-approximation algo-
rithm. From (5.2) and by Lemma 5.7 we have that the weight wI(F) of the lift F of T ′ is at
most

wI′(T ′) ≤ κ value(I ′) + η(1− δ) value(I) + wI′(B) ≤ (κ+ η(1− δ) + αS + 3) value(I),

where the second inequality follows by Fact 5.5 and since wI′(B) = wI(B) (I ′ arises by contract-
ing only sets not visited by B, which preserves the weight of B) and wI(B) ≤ (αS + 3) value(I).

Now, to show that w(T) = w(F) + w
(⋃

S∈L∗max
FS

)
≤ ρ value(I), we proceed by induction

on the total number of recursive calls. In the base case, when no recursive calls are made, we
have w(T) = w(F) ≤ wI′(T ′) ≤ (κ+ η(1− δ) + αS + 3) value(I) ≤ ρ value(I). For the inductive
step, the induction hypothesis yields that for each S ∈ L∗max we have

w(FS) ≤ wI[S](TS) ≤ ρ value(I[S]) = 2ρ value(S) ,

where the equality is by Fact 5.9. Hence

w

 ⋃
S∈L∗max

FS

 =
∑

S∈L∗max

w(FS) ≤
∑

S∈L∗max

2ρ value(S)

=
∑

S∈L∗max

2ρ
∑

R∈L∗: R(S
2yR ≤ 2ρ

∑
R∈L∗

2yR ≤ 2ρ(1− δ) value(I) .

The second equality holds because Lemma 5.17 guarantees that B visits each maximal set of L,
which implies that every R ∈ L that is a subset of a set S ∈ L∗max is not visited by B, i.e.,
R ∈ L∗: thus we have

∑
R∈L: R(S 2yR =

∑
R∈L∗: R(S 2yR for all S ∈ L∗max. The last inequality

holds because B is a quasi-backbone of I (see Definition 5.16). Summing up the weight of the

5.4 Backbones and reduction to vertebrate pairs 63

lift F of T ′ and of
⋃
S∈L∗max

FS we get

w(T) ≤ (κ+ η(1− δ) + αS + 3 + 2ρ(1− δ)) value(I) = ρ value(I) ,

by the selection of ρ to equal (κ+ η(1− δ) +αS + 3)/(2δ− 1). This concludes the inductive step
and the proof of the theorem.

64 Obtaining Structured Instances

Chapter 6

Solving Subtour Partition Cover

In this chapter we solve Subtour Partition Cover on vertebrate pairs. By the reductions in
Chapters 4 and 5, this is sufficient for obtaining a constant-factor approximation algorithm for
general ATSP. We combine all the ingredients and calculate the obtained ratio in Section 6.2.

6.1 Algorithm for vertebrate pairs
In this section we consider a vertebrate pair (I, B) and prove the following theorem and corollary.
This provides the algorithm required in Theorem 5.18.
Theorem 6.1

There exists a (4, 2 value(I) + lbI(B̄))-light algorithm for Subtour Partition Cover for verte-
brate pairs (I, B).

Combined with Theorem 4.3, we immediately obtain the following.
Corollary 6.2

For every ε > 0 there is a polynomial-time algorithm that, given a vertebrate pair (I, B),
returns a tour T of I with w(T) ≤ 2 value(I) + (37 + 36ε) lbI(B̄) + w(B).

Throughout this section we will assume that B 6= ∅. In the special case when B = ∅, it must
be the case that L≥2 = ∅ and thus the instance is singleton; in that case, we simply apply the
strictly better (2, 0)-light algorithm of Theorem 4.2.

We now formulate our main technical lemma. Let L≥2 denote the family of non-singleton
sets in L.

65

66 Solving Subtour Partition Cover

S
ViUi

Figure 6.1: On the left, the “dotted” sets U1, . . . , U` of Lemma 6.3 are depicted.
On the right, we show how the set Ui is obtained by the algorithm for Subtour Partition Cover
in the proof of Theorem 6.1: Vi is intersected with a minimal non-singleton set S to obtain V ′i
(the striped area). Then, Ui is a source component in the decomposition of V ′i into strongly
connected components. This implies that there are no edges from V ′i \Ui to Ui and so any edge
in δ(Vi \ Ui, Ui) must come from outside of V ′i and thus cross the tight set S.

Lemma 6.3
There is a polynomial-time algorithm that solves the following problem. Let (I, B) be a
vertebrate pair, and let U1, . . . , U` ⊆ V \V (B) be disjoint nonempty vertex sets such that the
subgraphs G[U1], . . . , G[U`] are strongly connected and for every S ∈ L≥2 and i = 1, . . . , ` we
have either Ui ∩ S = ∅ or Ui ⊆ S. Then the algorithm finds a collection of subtours F ⊆ E

such that:

(a) w(F) ≤ 2 value(I) + lbI(B̄),
(b) |δ−F (Ui)| ≥ 1 for every i = 1, . . . , `,
(c) |δ−F (v)| ≤ 4 whenever x(δ−(v)) = 1,
(d) any subtour in F that crosses a set in L≥2 visits a vertex of the backbone.

Notice that the requirements on the disjoint sets U1, . . . , U` imply that L≥2 ∪ {U1, . . . , U`} is
a laminar family in which the sets U1, . . . , U` are minimal (see the left part of Figure 6.1). We
also remark that property (d) will be important for analyzing the lightness of our tour. Indeed,
it will imply that any subtour in our solution F ? to Subtour Partition Cover that is disjoint
from the backbone does not cross a set in L≥2. Thus any edge (u, v) in such a subtour will have
weight equal to yu + yv. Intuitively, this (almost) reduces the problem to the singleton case.

The proof will be given in Section 6.1.1, using the concept of witness flows. The witness flow
is a tool that allows us to enforce the crucial property (d) in our solution to Subtour Partition
Cover. It is inspired by a general method of ensuring connectivity in integer/linear programming
formulations for graph problems, which requires the existence of a flow (supported on the LP
solution) between the pairs of vertices that should be connected. The same role was played in
our previous work on ATSP on graphs with two different edge weights [STV18b] and in our
conference paper on the general ATSP result [STV18a] by a concept called the split graph.

Proof of Theorem 6.1.
Let (V1, V2, . . . , Vk) be the input partition of V \ V (B) in the Subtour Partition Cover problem.
We will apply Lemma 6.3 for a collection (U1, U2, . . . , Uk) of disjoint subsets with Ui ⊆ Vi, defined
as follows. For i = 1, . . . , k, let V ′i be the intersection of Vi with a minimal set S ∈ L≥2 ∪ {V }
with S ∩Vi 6= ∅. Then consider a decomposition of V ′i into strongly connected components (with

6.1 Algorithm for vertebrate pairs 67

respect to G[V ′i]). Let Ui ⊆ V ′i be the vertex set of a source component in this decomposition.
That is, there is no edge from V ′i \ Ui to Ui in G (see also the right part of Figure 6.1). By
construction, the sets U1, . . . , Uk satisfy the conditions of Lemma 6.3; in particular, V ′i (and
thus Ui) is a subset of the minimal set S chosen above, which makes Ui a subset of any laminar
superset of S and disjoint from any laminar set that is not a superset of S. We let F be the
Eulerian multiset guaranteed by Lemma 6.3.

The rest of the proof is dedicated to showing that F satisfies the requirement of an (4, 2 value(I)+
lbI(B̄))-light algorithm. Let us start with the connectivity requirement.
Claim 6

We have |δ−F (Vi)| ≥ 1 for i = 1, 2, . . . , k.

Proof.
By property (b) of Lemma 6.3, there exists an edge e ∈ δ−F (Ui). Then either e ∈ δ−F (Vi) (in which
case we are done), or e ∈ δF (Vi \ Ui, Ui). Assume the latter case.

Using that Ui was a source component in the decomposition of V ′i into strongly connected
components, e must enter a set in L≥2. Indeed, recall that Ui was selected so that there is
no edge from V ′i \ Ui to Ui. Since e ∈ δF (Vi \ Ui, Ui) and δ(V ′i \ Ui, Ui) = ∅, we must have
e ∈ δ(Vi \ V ′i , Ui) ⊆ δ(Vi \ V ′i , V ′i). However, V ′i was obtained by intersecting Vi with a minimal
set S ∈ L≥2 ∪ {V } with S ∩ Vi 6= ∅. Thus we must have e ∈ δ−F (S) (and S 6= V). Now,
property (d) of Lemma 6.3 guarantees that the connected component (i.e., the subtour) of F
containing e must visit V (B). This subtour thus visits both Vi (the head of e is in Ui ⊆ Vi) and
V (B), which is disjoint from Vi. As such, the subtour must cross Vi, i.e., we have |δ−F (Vi)| ≥ 1
as required.

Next, let us consider subtours in F that are disjoint from B.
Claim 7

Let T be a subtour in F with V (T) ∩ V (B) = ∅. Then w(T) ≤ 4 lb(T).

Proof.
Recall that the lower bound is

lb(T) = 2
∑

v∈Ṽ (T)

yv .

To bound the weight of T , note that by property (d) of Lemma 6.3, the edges of T do not cross
any tight set in L≥2. Therefore any edge (u, v) in T has weight yu + yv and so

w(T) =
∑
e∈T

w(e) =
∑

v∈V (T)

|δF (v)|yv ≤ 8
∑

v∈V (T)

yv = 4 lb(T) ,

where for the inequality we used that yv is only strictly positive if x?(δ−(v)) = 1 (see Defini-
tion 3.3), in which case |δF (v)| = 2|δ−F (v)| ≤ 8 using property (c) of Lemma 6.3.

Finally, let FB ⊆ F be the collection of subtours in F that intersect B. Then, w(FB) ≤
w(F) ≤ 2 value(I) + lbI(B̄) by property (a) of Lemma 6.3. This completes the proof that F is
a (4, 2 value(I) + lbI(B̄))-light edge set.

The rest of this section is devoted to the proof of the main technical Lemma 6.3.

68 Solving Subtour Partition Cover

6.1.1 Witness flows
Recall that L≥2 denotes the family of non-singleton sets in L. Let us use an indexing L≥2∪{V } =
{S1, S2, . . . , S`} such that 2 ≤ |S1| ≤ |S2| ≤ · · · ≤ |S`| = |V |. For a vertex v ∈ V let

level(v) = min{i : v ∈ Si}

be the index of the first (smallest) set that contains v. We use these levels to define a partial
order ≺ on the vertices: let v ≺ v′ if level(v) < level(v′). This partial order is used to classify
the edges as follows. An edge (u, v) ∈ E is a

• forward edge if v ≺ u,

• backward edge if u ≺ v,

and otherwise it is a neutral edge. Let Ef , Eb and En denote the sets of forward, backward, and
neutral edges respectively.
Definition 6.4

Let z : E → R be a circulation. We say that f : E → R is a witness flow for z if

(a) f ≤ z,
(b) f(δ+(v)) ≥ f(δ−(v)) for every v ∈ V \ V (B),
(c) f(e) = 0 for each backward edge e ∈ Eb,
(d) f(e) = z(e) for each forward edge e ∈ Ef .

We say that a circulation z is witnessed if there exists a witness flow for z.

The following lemma reveals the importance of witness flows. By a component of a circulation
z we mean a connected component of supp(z).
Lemma 6.5

Let z be a witnessed circulation. Any component C of z that crosses a set in L≥2 must
intersect B.

Proof.
Let f be a witness flow for z. Take i to be the smallest value such that Si ∩ V (C) 6= ∅. Then
we must also have V (C) \ Si 6= ∅ and so C must have an edge entering Si; moreover, all edges
of C entering Si are forward edges, and all edges of C exiting Si are backward edges. Let
U = Si ∩V (C). Then f(δ−(U)) > 0 and f(δ+(U)) = 0. If we had U ∩V (B) = ∅, then (b) would
imply that

0 > f(δ+(U))− f(δ−(U)) =
∑
v∈U

f(δ+(v))− f(δ−(v)) ≥ 0 ,

a contradiction.

The edge set F in Lemma 6.3 will be obtained from a witnessed integer circulation; in
particular, we will use the witness flow to derive property (d). We start by showing that the
Held-Karp solution x is a witnessed circulation.

6.1 Algorithm for vertebrate pairs 69

Lemma 6.6
The Held-Karp solution x is a witnessed circulation.

Before giving the full proof, let us motivate the existence of a witness flow f in a simple
example scenario where there is only one non-singleton set S ∈ L≥2. Then we have Ef = δ−(S)
and Eb = δ+(S), i.e., the forward/backward edges are exactly the incoming/outgoing edges of S.
The subtour elimination constraints imply (via the min-cut max-flow theorem) that x supports
a unit flow between any pair of vertices. Let f be such a flow from any vertex outside S to a
vertex v ∈ S ∩V (B) (such a v exists by the backbone property). It is easy to see that f satisfies
the conditions of the claim. Indeed, since S is a tight set, f saturates all incoming (forward)
edges. It also does not leave S, i.e., use any backward edges. The proof of the general case uses
an argument based on LP duality to argue the existence of f .

Proof of Lemma 6.6.
We find a witness flow f in polynomial time by solving the following linear program:

maximize
∑
e∈Ef

f(e)

subject to f(δ+(v)) ≥ f(δ−(v)) for v ∈ V \ V (B),
f(e) = 0 for e ∈ Eb,

0 ≤ f ≤ x?.

By the constraints of the linear program, we have that f satisfies (a), (b), and (c). It remains
to verify (d), or equivalently, to show that the optimum value of this program equals x(Ef).

This will be shown using the dual linear program. The variables (πv)v∈V correspond to the
first set of constraints, and (z(e))e∈Ef∪En

to the capacity constraints on forward and neutral
edges. No such variables are needed for backward edges. For notational simplicity, we introduce
πv also for v ∈ V (B), and set πv = 0 in this case. The dual program can be written as follows.

minimize
∑

e∈Ef∪En

x(e)z(e)

subject to πv − πu + z(u, v) ≥ 1 for (u, v) ∈ Ef ,
πv − πu + z(u, v) ≥ 0 for (u, v) ∈ En,

πv = 0 for v ∈ V (B),
π, z ≥ 0.

Note that setting π = ~0, z(e) = 1 if e ∈ Ef , and z(e) = 0 if e ∈ En is a feasible solution with
objective value x(Ef). We complete the proof by showing that this is an optimal dual solution.

Let us select a dual optimal solution (π, z) that minimizes π(V). We show that this minimum
value is 0, that is, there exists a dual optimal solution with π = ~0. This immediately implies that
the above solution is a dual optimal one, because given π = ~0 we get a constraint z(u, v) ≥ 1 for
all (u, v) ∈ Ef , making the objective value at least x(Ef).

Towards a contradiction, assume that π is not everywhere zero. Let us select a vertex t ∈ V
such that πt > 0, and level(t) = i∗ is minimal among all such vertices. Let S = Si∗ , and define
T = {u ∈ S : πu > 0}. Since S ∩ V (B) 6= ∅, and πu = 0 for all u ∈ V (B), we see that T is

70 Solving Subtour Partition Cover

a proper subset of S. Let F = δ(V \ S, T) and F ′ = δ(T, S \ T). A depiction of the sets is as
follows:

S = Si∗

T

F

F ′

Let us show that the edges between T and S \ T can be only of certain types.

Claim. F ′ = δ(T, S \ T) ⊆ Ef ∪ En and δ(S \ T, T) ⊆ Eb ∪ En.

Proof of Claim.
By the choice of i∗, for any Si (S we have that πv = 0 for all v ∈ Si; thus Si ∩ T = ∅,
and so for every u ∈ T we have level(u) = i∗. Therefore, for every (u, v) ∈ F ′, we must have
level(u) = i∗ ≥ level(v), and for every (u, v) ∈ δ(S \ T, T), level(v) = i∗ ≥ level(u). �

Let us construct another dual solution (π′, z′) as follows. Let ε = min{πu : u ∈ T}, and let

π′u =
{
πu − ε if u ∈ T,
πu otherwise,

and z′(e) =


z(e) + ε if e ∈ F ∩ (Ef ∪ En),
z(e)− ε if e ∈ F ′,
z(e) otherwise.

We show that (π′, z′) is another optimal solution. Then, π′(V) < π(V) gives a contradiction to
the choice of (π, z). The proof proceeds in two steps: first we show feasibility and then optimality.

Feasibility. We have π′ ≥ 0 by the choice of ε. To show z′ ≥ 0, note that for e = (u, v) ∈ F ′, by
the Claim and the dual constraints for e ∈ Ef ∪En we have 0 ≤ πv − πu + z(u, v) ≤ z(u, v)− ε,
where for the second inequality we used that πu ≥ ε and πv = 0. Thus, z(e) ≥ ε and z′(e) =
z(e) − ε ≥ 0 for every e ∈ F ′. For an edge e 6∈ F ′, we have z′(e) ≥ z(e) ≥ 0 and so we can
conclude that z′ ≥ 0. We also have π′v = 0 for v ∈ V (B) since T ∩ V (B) = ∅.

It remains to verify the constraints for (u, v) ∈ Ef∪En. For every (u, v) ∈ (F∪F ′)∩(Ef∪En),
as well as for edges not in δ(T), we have π′v −π′u + z′(u, v) = πv −πu + z(u, v), and therefore the
constraint remains valid. Thus we may have π′v − π′u + z′(u, v) 6= πv − πu + z(u, v) in only two
cases: either (i) if (u, v) ∈ δ(T, V \ S), or (ii) if (u, v) ∈ δ(S \ T, T).

In case (i), the constraint on (u, v) remains valid since π′v−π′u+z′(u, v) = πv−πu+z(u, v)+ε.
In case (ii), π′u = 0, π′v ≥ 0, and z′(u, v) ≥ 0. Further, we have shown in the above Claim that
(u, v) ∈ Eb ∪ En. There is no constraint for (u, v) ∈ Eb, and π′v − π′u + z′(u, v) ≥ 0 holds if
(u, v) ∈ En.
Optimality. When changing (π, z) to (π′, z′), the objective value increases by ε(x(F ∩ (Ef ∪
En))− x(F ′ ∩ (Ef ∪En))) = ε(x(F \Eb)− x(F ′)); we will show that this is non-positive. Recall
that S is either a tight set or V , so that x(δ−(S)) ≤ 1. Since T (S, we have 1 ≤ x(δ−(S \T)) =
x(δ−(S)) − x(F) + x(F ′) ≤ 1 − x(F) + x(F ′), and therefore x(F ′) ≥ x(F) ≥ x(F \ Eb). Thus,
the objective value does not increase, therefore (π′, z′) must be optimal.

The existence of the optimal solution (π′, z′) with π′(V) < π(V) contradicts the choice of
(π, z), which completes the proof of Lemma 6.6.

6.1 Algorithm for vertebrate pairs 71

Let us state one more lemma that enables rounding fractional witness flows to integer ones.
Recall that in the proof of Theorem 4.2 for singleton instances a key step was to round a fractional
circulation to an integer one, a simple corollary of the integrality of the network flow polyhedron.
We will now need a stronger statement as we need to round a circulation z along with a witness
flow f consistently. We formulate the following general statement (which does not assume that
we have a vertebrate pair or that f is a witness flow).
Lemma 6.7

For a directed graph G = (V,E) and edge weights w : E → R, consider z, f : E → R+ such
that z is a circulation and f ≤ z. Then there exist integer-valued vectors z̄, f̄ : E → Z+ with
w>z̄ ≤ w>z satisfying the following properties:

(a) z̄ is a circulation,

(b) f̄(δ+(v)) ≥ f̄(δ−(v)) whenever f(δ+(v)) ≥ f(δ−(v)),

(c) bf(δ−(v))c ≤ f̄(δ−(v)) ≤ df(δ−(v))e for every node v ∈ V ,

(d) bg(δ−(v))c ≤ ḡ(δ−(v)) ≤ dg(δ−(v))e for every node v ∈ V , where g = z − f and
ḡ = z̄ − f̄ .

(e) f̄ ≤ z̄; f̄e = z̄e whenever fe = ze, and f̄e = 0 whenever fe = 0.

The proof relies on the total unimodularity of network matrices. Let (V,E) be a directed
graph and T = (V,ET) a directed tree on the same node set. These define a network matrix
B ∈ Z|ET |×|E| as follows. For every e = (u, v) ∈ E, let Pe be the unique undirected u − v path
in the tree T . Then we set BeT ,e = 1 if eT occurs in forward direction in Pe, BeT ,e = −1 if eT
occurs in the backward direction in Pe, and BeT ,e = 0 if eT does not occur in Pe. We will use
the following result (see e.g. [Sch03, Theorem 13.20]):
Theorem 6.8 ([Tut65])

Every network matrix is totally unimodular.

Consequently, any LP of the form min{c>x : Bx = b, x ≥ 0} has an integer optimal solution for
any integer vector b ∈ Z|ET |. A fundamental example of network matrices is the incidence matrix
of a directed graph G = (V,E). Consider the directed graph (V ∪ {r}, E) obtained by adding
a new vertex r and the tree T = (V ∪ {r}, {(r, u) : u ∈ V }) that forms a star. The associated
network matrix is identical to the incidence matrix of G. The proof below extends this simple
construction to capture all degree requirements.

Proof of Lemma 6.7.
Let us introduce new variables ḡ = z̄ − f̄ (the notation already used in property (d)). The
integrality of z̄ is equivalent to the integrality of f̄ and ḡ.

Let us construct a network matrix B ∈ Z4|V |×2|E| as follows. We define a tree T = (V ′, ET),
where V ′ contains a root node r, and for each v ∈ V , we include four nodes vg, vf , vg′ , vf ′

and four edges (r, vg), (vg, vf), (vf , vf ′) and (vg, vg′) in ET . Let us define the directed graph
(V ′, E′), where E′ = E′f ∪E′g is obtained as follows: for each (u, v) ∈ E, we add an edge (uf , vf ′)
to E′f and an edge (ug, vg′) to E′g. Let B be the network matrix corresponding to (V ′, E′) and
T (see Figure 6.2 for an example). That is, B is an |ET | × |E′| matrix such that

72 Solving Subtour Partition Cover

r

vg

vf

vf
′

vg
′

ug

uf

uf ′

ug′

wg

wf

wf ′

wg′

part of v’s: inc. f -flow inc. g-flow out. f -flow out. g-flow corresponds to
(uf , vf ′) (ug, vg′) (vf , wf ′) (vg, wg′) v’s constraint:

(r, vg) 1 1 -1 -1 (a)
(vg, vf) 1 0 -1 0 (b)
(vf , vf ′) 1 0 0 0 (c)
(vg, vg′) 0 1 0 0 (d)
(r, ug) -1 -1 0 0
(ug, uf) -1 0 0 0
(uf , uf ′) 0 0 0 0
(ug, ug′) 0 0 0 0

Figure 6.2: The network matrix in the proof of Lemma 6.7.
Top: fragment of the tree T = (V ′, ET) corresponding to three vertices u, v, w and two edges
(u, v), (v, w) (whose images are dashed).
Bottom: fragment of the network matrix B corresponding to vertices u, v and edges (u, v),
(v, w), illustrating how rows of B encode the degree requirements on vertex v.

• the column corresponding to (uf , vf ′) ∈ E′f has a −1 entry in the rows corresponding to
the edges (r, ug) and (ug, uf), and +1 entries corresponding to the edges (r, vg), (vg, vf),
and (vf , vf ′); all other entries are 0;

• the column corresponding to (ug, vg′) ∈ E′g has a −1 entry in the row corresponding to
the edge (r, ug), and +1 entries corresponding to the edges (r, vg) and (vg, vg′); all other
entries are 0.

Then B is a totally unimodular matrix according to Theorem 6.8. Using the variables f̄ and
ḡ, the system (a)-(e) can be equivalently written in the form

blower ≤ B(f̄ , ḡ) ≤ bupper

dlower ≤ (f̄ , ḡ) ≤ dupper,

where blower, bupper, dlower, dupper are vectors with integer or infinite entries. Namely, the variable
f̄(u, v) corresponds to the column for (uf , vf ′) ∈ E′f , and the variable ḡ(u, v) corresponds to the

6.1 Algorithm for vertebrate pairs 73

column for (ug, vg′) ∈ E′g. See also Figure 6.2.

• The rows for (r, vg) ∈ ET describe the flow conservation constraints as in (a) with blower(r, vg) =
bupper(r, vg) = 0.

• The rows for (vg, vf) ∈ ET describe the constraints as in (b), with blower(r, vf) = −∞ and
bupper(r, vf) = 0 for those v ∈ V with f(δ+(v)) ≥ f(δ−(v)), and bupper(r, vf) = +∞ for
other v ∈ V .

• The rows for (vf , vf ′) ∈ ET describe the constraints as in (c) with blower(vf , vf ′) =
bf(δ−(v))c and bupper(vf , vf ′) = df(δ−(v))e.

• The rows for (vg, vg′) ∈ ET describe the constraints as in (d) with blower(vg, vg′) =
bg(δ−(v))c and bupper(vf , vf ′) = dg(δ−(v))e (recall that g = z − f).

• The capacity constraints dlower ≤ (f̄ , ḡ) ≤ dupper are used to describe (e).

With g = z − f , the vector (f, g) is a feasible solution to the system. Consider the cost
function (w,w) ∈ R2|E|. Using total unimodularity, there must be an integer solution (f̄ , ḡ)
with (w,w)>(f̄ , ḡ) ≤ (w,w)>(f, g) = w>z. Thus, z̄ = f̄ + ḡ and f̄ satisfy the statement of the
lemma.

Equipped with the above lemmas, we are ready to prove Lemma 6.3.

Proof of Lemma 6.3.
We are given a vertebrate pair (I, B) and disjoint nonempty vertex sets U1, . . . , U` ⊆ V \ V (B)
such that the subgraphs G[U1], . . . , G[U`] are strongly connected and for every S ∈ L≥2 and
i = 1, . . . , `, we have either Ui ∩ S = ∅ or Ui ⊆ S. For the Held-Karp solution x, let f be the
witness flow guaranteed by Lemma 6.6.

We can assume that each edge e has either f(e) = 0 or f(e) = x(e) without loss of gener-
ality, by breaking e up into two parallel copies and dividing its x and f values between them
appropriately. We say that an edge e is marked if f(e) = x(e) and unmarked otherwise.

Let us now introduce a convenient decomposition of x that we will obtain and utilize in
our algorithm. By a 2-cycle we mean a closed walk that visits every vertex at most twice and
contains every edge at most once. A 2-cycle C ⊆ E is consistent if, for any two consecutive edges
(u, v), (v, v′) ∈ C with v /∈ V (B), if (u, v) is marked then (v, v′) is also marked.
Claim 8

We can in polynomial time decompose x into consistent 2-cycles. That is, there is a
polynomial-time algorithm that outputs consistent 2-cycles C1, C2, . . . , C` and multipliers
λ1, λ2, . . . , λ` ≥ 0 such that x =

∑`
i=1 λi1Ci , where 1C ∈ {0, 1}E denotes the indicator

vector of a 2-cycle C.

Proof.
The proof uses a variant of the standard cycle decomposition argument. We identify 2-cycles by
constructing walks on edges in the support of x. The algorithm identifies and removes 2-cycles
one by one. After the removal of every cycle, we maintain property (b) of witness flows: for every
v ∈ V \V (B) the outgoing flow amount on marked edges is greater or equal to the incoming flow
amount on marked edges.

We find walks using the following procedure. We start on an arbitrary (marked or unmarked)
edge. If the walk uses a marked edge then let us select the next edge as a marked edge whenever

74 Solving Subtour Partition Cover

possible, and after an unmarked edge let us continue on an unmarked edge if possible. We
terminate according to the following rules:

1. If we visit a node v ∈ V (B) the second time, then we terminate the current walk. We
select C as the segment of the walk between the first and second visits to v. (If we started
the walk from v, we also count this as a visit.)

2. When visiting a node v ∈ V \ V (B) for the second time, we terminate if the outgoing edge
of the first visit and the incoming edge of the second visit are of the same type (marked or
unmarked). We also terminate if every outgoing edge of v is marked. We select C as the
segment of the walk between the first and second visits to v.

3. If we visit a node in v ∈ V \V (B) the third time, then we always terminate. Let (v, u1) and
(v, u2) be the edges where the walk left v for the first and second time, and let (z1, v) and
(z2, v) be the edges where we arrived to v the second and third times. If (v, u2) and (z2, v)
are both unmarked or both marked, then we let C be the segment of the walk between
(v, u2) and (z2, v). Otherwise, we let C be the segment of the walk between (v, u1) and
(z2, v) (visiting v twice). (These edges are of the same type, and so are (z1, v) and (v, u2).)

Given C, we let λ denote the minimum flow value on any edge of C. We decrease the value of x
on every edge of C by λ (deleting an edge if its x-value becomes zero), and also the value of f
on every marked edge of C. We add C to the decomposition with coefficient λ, and proceed to
finding the next 2-cycle.

Assume property (b) of witnessed flows holds when we start the walk. Thus, whenever the
walk enters a node v ∈ V \V (B) on a marked edge, it can continue on a marked edge. By rule 2,
if the walk enters on an unmarked edge, it can continue on an unmarked edge. The above rules
guarantee that C will be a consistent 2-cycle: if we close C in a node v ∈ V \ V (B), then if the
incoming edge is marked, the outgoing edge will also be marked. Moreover, if the walk is not
terminated, then it can continue on a yet-unused edge.

It remains to show that property (b) is maintained after removing C. Assume we decrease
the outgoing flow at a node v ∈ V \ V (B) on a marked edge. First, notice that there can be at
most one outgoing marked edge from v on C. If there was also an incoming marked edge on C,
then the marked flow decreases by the same amount on these two edges. If all incoming edges
were unmarked, then our rules implies that all outgoing edges at v are marked. In this case, (b)
is trivially maintained (as x is, and remains, a circulation).

The proof can be immediately turned into a polynomial-time algorithm. Notice that the
number of edges decreases by at least one at the removal of every cycle.

We will construct an auxiliary graph G′ = (V ′, E′) similarly as in the proof of Theorem 4.2.
For convenience, Figure 6.3 gives an overview of the different steps, graphs and flows used by
our algorithm. We select edge sets X−i , X

+
i and flows xi and fi as follows:

• For every Ui we can select (possibly by subdividing edges as above) a subset of incoming
edges X−i ⊆ δ−(Ui) with x(X−i) = 1/2 such that either all edges e ∈ X−i are marked or
all are unmarked. This is possible since x(δ−(Ui)) ≥ 1 (and all edges are either marked or
unmarked).

• Take the decomposition of x into 2-cycles as guaranteed by Claim 8, and follow the incoming
edges in X−i in the decomposition. We let X+

i be the set of edges on which these walks
first leave Ui after entering on an edge in X−i . We let xi denote the respective x-flow on

6.1 Algorithm for vertebrate pairs 75

graph integral obtained from the previous by
x G no input to Lemma 6.3
x, f G no finding a witness flow (Lemma 6.6)
x′, f ′ G′ no introducing ai, redirecting edges, subtracting xi and fi
z̄′, f̄ ′ G′ yes rounding (Lemma 6.7 applied to z = 2x′ and 2f ′)
z̄, f̄ G yes un-redirecting edges, mapping back to G
z∗, f∗ G yes adding walks Pi (to f̄ only if f̄ ′(δ−(ai)) = 1)

Figure 6.3: This table summarizes the various circulations and flows that appear in our algo-
rithm, in order.

the segments of these walks connecting the heads of edges in X−i and the tails of edges in
X+
i . On the same edges, we define fi by fi(e) = xi(e) for every marked edge and fi(e) = 0

for every unmarked edge.

Note that we have 0 ≤ f−fi ≤ x−xi. We further claim that (f−fi)(δ+(v)) ≥ (f−fi)(δ−(v))
for every v ∈ V \V (B) except for heads of edges in X−i . Indeed, at every node we consider those
2-cycles in the decomposition that were not used for xi. In each of these 2-cycles an incoming
marked edge must be followed by an outgoing marked edge.

We now transform G into a new graph G′, x into a new circulation x′, and f into a new f ′,
as follows. For every i = 1, . . . , `, we introduce a new auxiliary vertex ai and redirect all edges
in X−i to point to ai, and those in X+

i to point from ai. We subtract the flow x̂i from x and f̂i
from f inside Ui; hence the resulting vector x′ will be a circulation in G′, and f ′ ≤ x′. We now
have f ′(δ+(v)) ≥ f ′(δ−(v)) for all v ∈ V \ V (B). We also have x′(δ−(ai)) = x′(δ+(ai)) = 1/2,
and either f ′(δ−(ai)) = 0 (in the case when f(X−i) = 0) or f ′(δ−(ai)) = f ′(δ+(ai)) = 1/2 (in
the case when f(X−i) = 1/2: since in this case all edges in X+

i must also be marked). We define
the weights w′(e) = w(e) if e was not modified, and for every redirected edge e, we set w′(e)
as the weight of the edge it was redirected from. Thus, the total weight may only decrease:∑
e∈E′ w

′(e)x′(e) ≤
∑
e∈E w(e)x(e) = value(I) (it decreases if the flows x̂i are nonzero on edges

with positive weight).
Let us now apply Lemma 6.7 in the graph G′ with weights w′ and z = 2x′ and 2f ′ in place

of f . We thus obtain the integer vectors z̄′ and f̄ ′ with w′
>
z̄′ ≤ w′

>
z. Note in particular

that properties (c), (d) imply that z̄′(δ−(ai)) = 1 for every auxiliary vertex ai; this is because
z(δ−(ai)) = 1 and 2f ′(δ−(ai)) ∈ {0, 1}.

Now we map z̄′ and f̄ ′ back to the vectors z̄ and f̄ in the original graph G. Namely, if e is
incident to an auxiliary vertex ai, then we reverse the redirection of this edge, and move z̄ and
f̄ to the original graph.

The vector z̄ may not be a circulation. Specifically, since the in- and out-degree of ai were
exactly 1 in z̄′, in each component Ui there is a pair of vertices ui, vi which are the head and
tail, respectively, of the mapped-back edges adjacent to ai. These are the only vertices whose
in-degree may differ from their out-degree. (They differ unless ui = vi.) To repair this, for each
i = 1, . . . , ` with ui 6= vi, we route a walk Pi from ui to vi in Ui; this is always possible as we
assumed that Ui is strongly connected.

We obtain a circulation z∗ from z̄ by increasing the value by 1 on every edge of every such
path Pi. Further, we obtain f∗ from f̄ as follows. If f̄ ′(δ−(ai)) = 0, then we let f∗ be identical
to f̄ inside Ui. If f̄ ′(δ−(ai)) = 1, then we increase the value of f̄ by 1 on every edge of Pi.

76 Solving Subtour Partition Cover

Claim 9
We have w>z∗ ≤ 2 value(I) + lbI(B̄), and f∗ is a witness flow for z∗.

Proof.
By the construction, w>z̄ = w′>z̄′ ≤ w′>z = 2w′>x′ ≤ 2w>x = 2 value(I). We obtained z∗

from z̄ by increasing it on a set of disjoint paths Pi in V \ V (B), and these paths do not cross
any set in L≥2. Thus, their total cost is bounded by lbI(B̄) = 2

∑
v∈V \V (B) yv.

We next verify that f∗ is a witness flow for z∗. Properties (a), (c), and (d) easily follow.
For (b), recall that we had f ′(δ+(v)) ≥ f ′(δ−(v)) for every v ∈ V \ V (B), and hence the same
holds for f̄ ′ by Lemma 6.7. For f̄ , this condition can be violated only at some nodes ui for
some values of i = 1, 2, . . . , `. We obtain f∗ from f̄ by increasing the flow value on the path
Pi from ui to vi; this increases f∗(δ+(ui)) so that f∗(δ+(ui)) ≥ f∗(δ−(ui)), while not violating
f∗(δ+(vi)) ≥ f∗(δ−(vi)) since for such an i we must have f̄ ′(δ−(ai)) = f̄ ′(δ+(ai)) = 1 and so
f̄(δ+(vi)) ≥ f̄(δ−(vi)) + 1.

Let F be the Eulerian edge multiset obtained by taking z∗e copies of edge e. The proof
concludes by showing that F satisfies all requirements of Lemma 6.3. The cost bound (a)
follows by the claim above since w(F) = w>z∗. The connectivity requirement (b), namely that
|δ−F (Ui)| ≥ 1 for every i = 1, . . . , `, is immediate by the construction.

Let us now show (c), that is, |δ−F (v)| = z∗(δ−(v)) ≤ 4 for every v ∈ V such that x(δ−(v)) = 1.
Note that we have x′(δ−(v)) ≤ 1. Denote g′ = x′ − f ′ and ḡ′ = x̄′ − f̄ ′. By properties (c), (d) of
Lemma 6.7 we have

z̄′(δ−(v)) = f̄ ′(δ−(v)) + ḡ′(δ−(v)) ≤ d2f ′(δ−(v))e+ d2g′(δ−(v))e ≤ 3 ,

as the maximum value of the function d2pe + d2qe subject to p + q ≤ 1 is 3. Adding the paths
Pi may further increase z∗(δ−(v)) over z̄′(δ−(v)) by 1.

Property (d) requires that every subtour in F that crosses a tight set in L≥2 visit a vertex of
the backbone. This follows from Lemma 6.5 since z∗ is a witnessed circulation.

6.2 Completing the puzzle: proof of Theorem 3.1
We now combine the techniques and algorithms of the previous sections to obtain a constant-
factor approximation algorithm for ATSP. In multiple steps, we have reduced ATSP to finding
tours for vertebrate pairs. Every reduction step was polynomial-time and increased the approx-
imation ratio by a constant factor. Hence, together they give a constant-factor approximation
algorithm for ATSP.

We now give an overview of these reductions and set the parameters. Throughout, ε > 0
will be a fixed small value. We set δ = 0.78. All approximation guarantees are with respect
to the optimum value of the Held-Karp relaxation LP(G,w). The reduction proceeds using the
following algorithmic subroutines.

• Corollary 4.4 provides a polynomial-time αS-approximation AS for singleton instances,
with αS = 18 + ε. This will be used to find a (quasi-)backbone for irreducible instances
(Lemma 5.17).

6.2 Completing the puzzle: proof of Theorem 3.1 77

• Algorithm Aver, which, for a vertebrate pair (I, B), finds a tour of cost κ value(I) +
η lbB(V) + w(B), where κ = 2 and η = 37 + 36ε (Corollary 6.2). Algorithm Aver uses the
reduction Theorem 4.3 from Subtour Partition Cover to ATSP.

• Algorithm Airr which, provided Aver as above, obtains a polynomial-time ρ-approximation
algorithm for irreducible instances, where ρ = (κ+ η(1− δ) + αS + 3)/(2δ − 1) < 55.61 for
sufficiently small ε > 0 (Theorem 5.18).

• Algorithm Alam, which converts the ρ-approximation algorithm Airr to a 2ρ/(1 − δ)-
approximation algorithm for an arbitrary laminarly-weighted instance I. Here, 2ρ/(1−δ) <
506 (Theorem 5.14).

• Our final Algorithm AATSP, which reduces an arbitrary input weighted directed graph
(G,w) to a laminarly-weighted instance, keeping the same approximation ratio (Theo-
rem 3.4).

All in all we have thus obtained a polynomial-time algorithm for ATSP that returns a tour
of value at most 506 times the Held-Karp lower bound.

Integrality gap Theorem 3.1 of course implies an upper bound of 506 on the integrality gap
of the Held-Karp relaxation. However, if we do not require a polynomial-time algorithm, then
the loss factor of 9(1 + ε) in the reduction of Theorem 4.3 can be decreased to 5. Therefore
non-constructively we can have α′S = 10 and η′ = 1 + 5 ·4 (instead of η = 1 + 9 · (1 + ε) ·4), which
yields ρ′ < 35.04 and a final integrality gap of at most 319.
Theorem 6.9

The integrality gap of the asymmetric Held-Karp relaxation is at most 319.

Asymmetric Traveling Salesman Path Problem In the Asymmetric Traveling Salesman Path
Problem (ATSPP), in addition to the usual ATSP input, we are also given two special vertices
s, t ∈ V and wish to find a walk that visits all vertices, starts from s, and ends at t. Feige
and Singh [FS07] proved that if there is a β-approximation algorithm for ATSP, then there is a
((2 + ε)β)-approximation algorithm for ATSPP for any ε > 0. Together with Theorem 3.1, this
implies:
Corollary 6.10

There is a polynomial-time algorithm for ATSPP that returns a tour of value at most 1014
times the integral optimum.

Note that the approximation ratio here is not bounded in terms of the Held-Karp lower bound12.
Köhne, Traub and Vygen [KTV18] give a similar reduction as Feige and Singh, but for integrality
gaps, with a loss of β 7→ 4β − 3. Together with Theorem 6.9, this implies:
Corollary 6.11

The integrality gap of the asymmetric Held-Karp relaxation for ATSPP is at most 1273.

Finally, since their reduction is constructive, together with Theorem 3.1 we get:
12For ATSPP, this is defined as the optimal value of a relaxation that is similar to LP(G,w), with the differences

that x(δ+(s))− x(δ−(s)) = 1, x(δ−(t))− x(δ+(t)) = 1, and the cuts S 3 s are only required to have at least one
outgoing edge (but possibly no incoming edge).

78 Solving Subtour Partition Cover

Corollary 6.12
There is a polynomial-time algorithm for ATSPP that returns a tour of value at most 2021
times the Held-Karp lower bound.

See the conclusions (Section 9) for a discussion of future research directions.

Part II

Matching is in Quasi-NC

79

Chapter 7

Perfect Matching and Parallel
Algorithms

In this chapter we present background notions and facts on parallel algorithms and the class NC,
linear-algebraic techniques for matchings, and isolating weight functions. See Section 2.4 for the
definition of the problem and Section 2.5 for Edmonds’ LP formulation for perfect matching.

Throughout Part II we consider a fixed graph G = (V,E) with n vertices. For notational
convenience, we assume that log2 n evaluates to an integer; otherwise simply replace log2 n by
dlog2 ne. We also assume that n is sufficiently large.

7.1 Parallel complexity classes
The matching problem has been considered in a multitude of computational models, including
distributed and parallel settings. In this thesis we focus on the class NC. NC, standing for
“Nick’s Class” – named after Nicholas Pippenger by Stephen Cook – intuitively comprises those
problems that parallelize completely.
Definition 7.1

For d ≥ 0, a problem is in NCd if it is recognized by a logspace-uniform family of circuits of
polynomial size and depth O(logd n). We define NC =

⋃
d≥0 NCd.

Alternatively, one can think of NC being the class of problems that have PRAM algorithms
running in polylogarithmic time on a polynomial number of processors [AB09, Theorem 6.27].

The class Randomized NC, or RNC in short, is obtained if one allows the algorithm access
to (polynomially many) random bits and one-sided error: when the correct answer is YES, the
algorithm should return YES with probability at least 1/2, and otherwise it must return NO.
Thus RNC relates to NC similarly to how RP relates to P.

Finally, the complexity class quasi-NC is defined as quasi-NC =
⋃
d≥0 quasi-NCd, where

quasi-NCd is the class of problems having polylogspace-uniform circuits of quasi-polynomial size
2logO(1) n and polylogarithmic depth O(logd n) [Bar92].

Many basic problems are in NC. One example that will be crucial in our algorithm is com-
puting determinants:

81

82 Perfect Matching and Parallel Algorithms

3

1

4

2

T (G) =


0 X12 X13 X14
−X12 0 0 X24
−X13 0 0 X34
−X14 −X24 −X34 0


Figure 7.1: Example of a Tutte matrix of an undirected graph.

Theorem 7.2 ([Csa76, Ber84, MV97])

There is an NC2 algorithm for computing the determinant of an integer-valued matrix.

7.2 Linear-algebraic techniques for matchings
A successful approach to the perfect matching problem has been the linear-algebraic one. It
involves the Tutte matrix associated with a graph:
Definition 7.3

Given an undirected graph G = (V,E), the Tutte matrix T (G) of G is a n×n matrix defined
as follows:

T (G)u,v =


X(u,v) if (u, v) ∈ E and u < v,

−X(v,u) if (u, v) ∈ E and u > v,

0 if (u, v) 6∈ E,

where X(u,v) for (u, v) ∈ E are variables.

See Figure 7.1 for an example. The Tutte matrix is skew-symmetric, i.e., T (G)> = −T (G).
Its significance is explained by the following theorem:
Theorem 7.4 (Tutte’s Theorem [Tut47])

G has a perfect matching if and only if detT (G) 6= 0.

Tutte’s Theorem is perhaps not as algorithmic as it sounds, for T (G) is defined over a ring
of many indeterminates; exponential time may be needed to even write down the determinant
detT (G) explicitly as a sum of monomials. However, if we allow for randomization, then the
Schwartz-Zippel Lemma gives a way to test whether the determinant is nonzero:
Lemma 7.5 ([Zip79, Sch80])

For p a prime, let f ∈ Fp[X1, ..., Xk] be a nonzero polynomial. Pick r1, ..., rk ∈ Fp uniformly
at random and independently. Then P[f(r1, ..., rk) = 0] ≤ deg(f)

p .

Theorem 7.4 and Lemma 7.5 give rise to a randomized algorithm due to Lovász:
Theorem 7.6 ([Lov79])

The decision version of the perfect matching problem is in RNC.

Proof.
The algorithm is as follows. Let T ′(G) ∈ Fn×np be Tutte’s matrix T (G) with each variable X(u,v)

7.3 Isolating weight functions 83

replaced by a random value r(u,v) ∈ Fp, for a sufficiently large prime p (say p ≥ 2n). Compute
the determinant of T ′(G) over Fp. Return YES if and only if detT ′(G) = 0.

If G has a perfect matching, then by Tutte’s Theorem we have detT (G) 6= 0 and thus
detT ′(G) 6= 0 with probability at least 1 − n

p ≥
1
2 by Lemma 7.5. On the other hand, if G has

no perfect matching, then detT (G) = 0, which of course implies detT ′(G) = 0. Computing the
determinant can be done in NC (Theorem 7.2). Finally, it is easy to find some prime p with
2n < p < 4n in NC: simply try all possible integers in this range.

Note that Theorem 7.6 gives an RNC algorithm for the decision version of the perfect matching
problem. From this, using a simple reduction, one easily gets an RP algorithm for the search
version, i.e., given a graph, find a perfect matching if one exists; however, the resulting algorithm
is inherently sequential. The search version has proved to be more difficult and it was found to
be in RNC several years later by Karp, Upfal and Wigderson [KUW86] and Mulmuley, Vazirani
and Vazirani [MVV87]. We explain the latter algorithm in the following Section 7.3.

As an aside, the linear-algebraic approach leads, among others, to the fastest known sequential
running times for matching on dense graphs:
Theorem 7.7 ([MS04, Har09])

There is a (sequential) algorithm that finds a maximum matching in an undirected graph in
time O(nω), where ω < 2.376 is the matrix multiplication exponent.

7.3 Isolating weight functions
In this section we discuss the RNC algorithm of Mulmuley, Vazirani and Vazirani [MVV87]. It is
similar to the algorithm of Lovász in that it also replaces the variables X(u,v) in Tutte’s matrix
by random values. However, these values are random powers of two, and the determinant is
computed over Z rather than over a prime field.

Somewhat unintuitively, their approach consists in reducing the unweighted problem of find-
ing a perfect matching to the weighted problem of finding a minimum-weight perfect matching.
It is crucial that the weight function can be chosen smartly. In fact, it is shown that if it yields
a single minimum-weight perfect matching, then this matching can be found in NC.
Definition 7.8

Let w : E → Z+ be a weight function. We say that w is isolating if G has at most a unique
minimum-weight perfect matching with respect to w.

For example, it is easy to see that the weight function w obtained by enumerating E =
{e1, ..., e|E|} and setting w(ei) = 2i is isolating.

Given an isolating weight function w, we can define a new matrix Tw(G) ∈ Zn×n to be the
Tutte’s matrix T (G) with each variable X(u,v) replaced by the value 2w(u,v). The crucial property
of this matrix is captured by the following lemma.
Lemma 7.9

Let w be an isolating weight function. If G has no perfect matching, then detTw(G) = 0.
Otherwise let M be the unique minimum-weight perfect matching. We have detTw(G) 6= 0,
and 22w(M) is the highest power of two that divides detTw(G).

The proof extends that of Tutte’s Theorem.

84 Perfect Matching and Parallel Algorithms

Proof.
Let us write the determinant as

detTw(G) =
∑
σ∈Sn

Pσ

where

Pσ = sgn(σ)
n∏
i=1

Tw(G)i,σ(i) .

The nonzero summands Pσ correspond to directed cycle covers of G (which can contain 2-cycles).
First, we claim that those cycle covers that contain an odd cycle are unimportant.
Claim 10

Let
On = {σ ∈ Sn : σ contains an odd cycle} .

Then
∑
σ∈On

Pσ = 0.

Proof.
The elements of On can be paired up: for every σ ∈ On, reverse an odd cycle to get σ̂ (to
be precise, reverse the odd cycle that contains the lowest-indexed vertex). We have ˆ̂σ = σ and
sgn(σ) = sgn(σ̂); moreover, when going from σ to σ̂, an odd number of factors Tw(G)i,σ(i) change
their sign (as the arc 〈i, σ(i)〉 is replaced by 〈σ(i), i〉). Hence Pσ + Pσ̂ = 0.

Thus we have
detTw(G) =

∑
σ∈Sn\On

Pσ . (7.1)

If G has no perfect matching, then it also has no even cycle cover and thus detTw(G) = 0 (in
fact, detT (G) = 0 as a polynomial). Suppose otherwise, and let M be the unique minimum-
weight perfect matching. For the permutation σM ∈ Sn \ On corresponding to M (σM consists
of 2-cycles), we have

PσM
= ±

∏
(u,v)∈M

2w(u,v) · 2w(v,u) = ±22w(M) . (7.2)

On the other hand:
Claim 11

For every σ ∈ Sn \On with σ 6= σM , Pσ is a multiple of 22w(M)+1.

Proof.
Every σ ∈ Sn \ On gives rise to two perfect matchings M1 and M2: order edges on every even
cycle arbitrarily and let M1 be the odd-numbered edges while M2 is the even-numbered edges.
(If σ consists of 2-cycles, then M1 = M2.) We have Pσ = ±2w(M1)+w(M2). If σ 6= σM , then
M1 6= M or M2 6= M , thus implying that w(M1) + w(M2) ≥ 2w(M) + 1.

By (7.1) and (7.2), Claim 11 implies the statement.

7.3 Isolating weight functions 85

Lemma 7.10 ([MVV87])
There is an NC algorithm that, given an undirected graph G = (V,E) and an isolating weight
function w : E → Z with polynomially bounded entries, outputs the minimum-weight perfect
matching of G if one exists.

Proof.
An algorithm for the decision version of the perfect matching problem is implied immediately
by Lemma 7.9. Indeed, as each w(e) for e ∈ E is polynomially bounded, the bit-length of the
entries 2w(e) of the matrix Tw(G) is polynomial, and the determinant can still be computed in
NC.

For the search version, suppose G has a unique minimum-weight perfect matching M . Then
the lowest set bit in detTw(G) corresponds to the term 22w(M), and thus the algorithm can
easily learn w(M). Now, for every edge e ∈ E in parallel, we recompute the determinant for the
graph G−e. The proof of Lemma 7.9 implies the following. If e 6∈M , the lowest set bit does not
change. Otherwise M is not a perfect matching in G− e and thus every term in detTw(G− e) is
a multiple of 22w(M)+1. Therefore the algorithm can find M by returning the set of those e ∈ E
for which 22w(M)+1 does not divide detTw(G− e).

Note that the algorithm of Lemma 7.10 is deterministic. The randomized component of Mul-
muley, Vazirani and Vazirani’s algorithm deals with how to obtain an isolating weight function
with polynomially-bounded values. The following statement, known as the Isolation Lemma,
says that it is enough to simply sample the weights uniformly at random. It turns out to be true
in the much more general setting of arbitrary set families:
Lemma 7.11 (Isolation Lemma)

Let M ⊆ 2E be any nonempty family of subsets of a universe E = {1, 2, ..., |E|}. Suppose
we define a weight function w : E → {1, 2, ..., 2|E|} by selecting each w(e) for e ∈ E indepen-
dently and uniformly at random. Then with probability at least 1/2, there is a unique set
M ∈M that minimizes the weight w(M) =

∑
e∈M w(e).

For our purposes, we takeM in Lemma 7.11 to be the set of all perfect matchings. The proof
is very simple:

Proof.
Let us say that an element is special if it belongs to some but not to every minimum-weight set.
Clearly, a minimum-weight set is not unique if and only if there exists a special element. Thus

P[minimum-weight set is not unique] ≤
∑
e∈E

P[e is special] .

We will be done if we show that P[e is special] ≤ 1
2|E| for every e ∈ E. For this, condition on

the random choices of all w(e′) with e′ 6= e; now, there is at most one possible value that w(e)
can have if it is to be special. (Indeed, if e is special, then decreasing w(e) causes it to be in
every minimum-weight set, and increasing w(e) causes it to be in no minimum-weight set.) The
probability of w(e) taking that value is either 1

2|E| or 0.

Lemmas 7.10 and 7.11 together imply an RNC algorithm for (the search version of) the perfect
matching problem [MVV87].

86 Perfect Matching and Parallel Algorithms

7.4 Derandomizing the Isolation Lemma
To obtain an NC algorithm for matching, it would be enough to be able to generate isolating
weight functions (that are polynomially bounded) in NC. We do not know how to do this, even
for bipartite graphs. However, Fenner, Gurjar and Thierauf have proved the following:
Theorem 7.12 ([FGT16])

For any number n, we can in quasi-NC construct nO(logn) weight functions on {1, 2, ..., (n/2)2}
with weights bounded by nO(logn) such that for any bipartite graph on n vertices13, one of
these weight functions is isolating.

Corollary 7.13
The perfect matching problem for bipartite graphs is in quasi-NC.

Proof.
For every weight function in parallel, run the algorithm of Lemma 7.10 (which will be in quasi-NC,
as the weights are quasi-polynomially rather than polynomially bounded). If the graph has a
perfect matching, it will be found by one of the runs; otherwise they will all return NO.

Note that there are two aspects in which Theorem 7.12 is weaker than computing an isolating
weight function in NC. First, it yields a quasi-NC rather an NC algorithm. Second, we obtain
many weight functions, one of which is guaranteed to be isolating, but does not give an efficient
way to ascertain which one. At the same time, the oblivious aspect of the construction is an
advantage: the family of weight functions is constructed knowing only the number n of vertices
(and the construction is very simple). We explain the main ideas of the very elegant proof of
Theorem 7.12 in Section 8.1.1.

The main result of this part of the thesis is the following version of Theorem 7.12 for general
graphs:
Theorem 7.14 ([ST17])

For any number n, we can in quasi-NC construct nO(log2 n) weight functions on {1, 2, ...,
(
n
2
)
}

with weights bounded by nO(log2 n) such that for any graph on n vertices, one of these weight
functions is isolating.

Chapter 8 is dedicated to the proof of Theorem 7.14. We remark that the implied quasi-NC
algorithm for perfect matching is very simple. The complexity lies in the analysis, i.e., proving
that one of the weight functions is isolating (see Theorem 8.17).

We conclude this section with a formal statement of the implication:
Corollary 7.15

The perfect matching problem is in quasi-NC3: it has a parallel algorithm that uses nO(log2 n)

processors and O(log3 n) time.

Proof.
We follow the proof of Corollary 7.13. Some care is required to obtain our postulated parameters.
We could get a quasi-NC4 algorithm by applying the results of [MV97, Section 6.1] to compute the

13Here, bipartite graphs on n vertices correspond to subsets of {1, 2, ..., (n/2)2}.

7.5 The weight function construction 87

determinant(s). To shave off one logn factor, we use the following Chinese remaindering method,
pointed out to us by Rohit Gurjar. We first compute determinants modulo small primes; since
the determinant has 2O(log3 n) bits, we need as many primes (each of O(log3 n) bits). For one
prime this can be done in NC2 [Ber84]. Then we reconstruct the true value from the remainders.
Doing this for an n-bits result would be in NC1 [BCH86], and thus for a result with 2O(log3 n)

bits it is in quasi-NC3.

7.5 The weight function construction
For our derandomization of the Isolation Lemma we will use families of weight functions that
are possible to generate obliviously, i.e., by only using the number of vertices in G. We define
them below.
Definition 7.16

Given t ≥ 7, we define the family of weight functionsW(t) as follows. Let wk : {1, 2, ...,
(
n
2
)
} →

Z be given by wk(j) = (4n2 + 1)j mod k for k = 2, ..., t. We define W(t) = {wk : k = 2, ..., t}.
For brevity, we write W :=W(n20).

Recall that throughout Part II we are dealing with a fixed graph G = (V,E) on n vertices.
We consider E to be a subset of {1, 2, ...,

(
n
2
)
} and, by an abuse of notation, we identify weight

functions w with their restrictions w|E to the argument set E.
In our argument we will obtain a decreasing sequence of faces (see Definition 2.9). Each face

arises from the previous by minimizing over a linear objective (given by a weight function).
Definition 7.17

Let F be a face and w a weight function. The subface of F minimizing w will be called F [w]:

F [w] := argmin{〈w, x〉 : x ∈ F}.

Instead of minimizing over one weight function and then over another, we can concatenate
them in such a way that minimizing over the concatenation yields the same subface. In particular,
we will argue that one just needs to try all possible concatenations of O(log2 n) weight functions
from W in order to find one which isolates a unique perfect matching in G (i.e., it produces a
single extreme point as the minimizing subface).
Definition 7.18

For two weight functions w and w′, where w : E → Z and w′ ∈ W, we define their
concatenation w ◦ w′ := n21w + w′, i.e.,

(w ◦ w′) (e) := n21 · w(e) + w′(e).

We also define Wk to be the set of all concatenations of k weight functions from W, i.e.,

Wk := {w1 ◦ w2 ◦ ... ◦ wk : w1, w2, ..., wk ∈ W} ,

where by w1 ◦ w2 ◦ ... ◦ wk we mean ((w1 ◦ w2) ◦ ...) ◦ wk.

88 Perfect Matching and Parallel Algorithms

Fact 7.19
We have F [w][w′] = F [w ◦ w′].

Proof.
Both faces are integral and so we only need to show that F [w][w′] ∩ ZE = F [w ◦ w′] ∩ ZE . The
first set consists of matchings in F minimizing w and, among such matchings, minimizing w′.
The second set consists of matchings in F minimizing w ◦ w′. These two sets are equal because
for any M :

• (w ◦ w′)(M) = n21 · w(M) + w′(M),

• w′ ∈ W =W(n20) implies that 0 ≤ w′(M) < n20 · n2 < n21 for any matching M ,

• w(M) ∈ Z, so that for any two matchings M1 and M2, w(M1) > w(M2) implies (w ◦
w′)(M1)− (w ◦ w′)(M2) = n21 (w(M1)− w(M2)) + (w′(M1)− w′(M2)) > 0.

Hence, the ordering given by w◦w′ is the same as the lexicographic ordering given by (w,w′).

Chapter 8

A Quasi-NC Algorithm for Perfect
Matching

8.1 Introduction
The perfect matching problem is a fundamental question in graph theory. See Section 2.4 for
its definition. Work on matchings has contributed to the development of many core concepts of
modern computer science, including linear-algebraic, probabilistic and parallel algorithms. How-
ever, we still do not have full understanding of the deterministic parallel complexity of matching.
Namely, we do not know whether matching has an algorithm that runs in polylogarithmic time
on polynomially many processors, i.e., whether it is in the class NC (see Section 7.1). We know
that such algorithms exist if we allow randomization (see Section 7.2). In one such algorithm, due
to Mulmuley, Vazirani and Vazirani [MVV87], the only randomized component is the celebrated
Isolation Lemma (see also Section 7.3):
Lemma 8.1 (Isolation Lemma for matchings)

Consider a graph G = (V,E). Suppose we define a weight function w : E → {1, 2, ..., 2|E|} by
selecting each w(e) for e ∈ E independently and uniformly at random. Then with probability
at least 1/2, there is a unique minimum-weight matching, i.e., w is isolating.

If one were able to derandomize Lemma 8.1 by computing an isolating weight function in
NC (that has polynomially bounded values), this would imply that matching is in NC. However,
derandomizing the Isolation Lemma turns out to be a challenging open question. It has been
done for certain classes of graphs: strongly chordal [DK98], planar bipartite [DKR10, TV12],
or graphs with a small number of perfect matchings [GK87, AHT07]. More generally, there has
been much interest in obtaining NC algorithms for the perfect matching problem on restricted
graph classes (not necessarily using the Isolation Lemma), e.g.: regular bipartite [LPV81], planar
bipartite [MN89, MV00], planar [AV18, San18], P4-tidy [Par98], dense [DHK93], convex bipartite
[DS84], claw-free [CNN89], incomparability graphs [KVV85]. The general set-family setting of
the Isolation Lemma (Lemma 7.11) is also related to circuit lower bounds and polynomial identity
testing [AM08].

Recently, in a major development, Fenner, Gurjar and Thierauf [FGT16] have almost de-
randomized the Isolation Lemma for bipartite graphs. Namely, they define a family of weight

89

90 A Quasi-NC Algorithm for Perfect Matching

functions that can be computed obliviously (only using the number n of vertices) and prove that
for any bipartite graph, one of these functions is isolating (see Theorem 7.12). Because their
family has quasi-polynomial size and the weights are quasi-polynomially large, this has placed
the perfect bipartite matching problem in the class quasi-NC (see Corollary 7.13).

Nevertheless, the general-graph setting of the derandomization question (either using the
Isolation Lemma or not) remained open. In general, the best known upper bound on the size of
uniform circuits with polylogarithmic depth was exponential.

The main result of this part of the thesis is the following:
Theorem 7.14 ([ST17])

For any number n, we can in quasi-NC construct nO(log2 n) weight functions on {1, 2, ...,
(
n
2
)
}

with weights bounded by nO(log2 n) such that for any graph on n vertices, one of these weight
functions is isolating.

Theorem 7.14 implies that matching in general graphs is in the class quasi-NC (see Corol-
lary 7.15). The present chapter is devoted to the proof of Theorem 7.14. We remark that the
implied algorithm is very simple. The complexity lies in the analysis, i.e., proving that one of
the weight functions is isolating (see Theorem 8.17).

In what follows, we first give an overview of the framework in [FGT16] for bipartite graphs.
We then explain how we extend the framework to general graphs. Due to the more complex
structure of perfect matchings in general graphs, we need several new ideas. In particular, we
exploit the structural properties of the perfect matching polytope that we have developed in
Section 2.6.

See Section 8.1.4 for the outline of the rest of this chapter. Conclusions and remarks on future
work can be found in Chapter 9.

8.1.1 Isolation in bipartite graphs
In this section we shortly discuss the elegant framework introduced by Fenner, Gurjar and
Thierauf [FGT16], which we extend to obtain our result.

If a weight function w is not isolating, then there exist two minimum-weight perfect matchings,
and their symmetric difference consists of alternating cycles. In each such cycle, the total weight
of edges from the first matching must be equal to the total weight of edges from the second
matching (as otherwise we could obtain another matching of lower weight). The difference
between these two total weights is called the circulation of the cycle.14 By the above, if all cycles
have nonzero circulation, then w is isolating. It is known how to obtain weight functions which
satisfy a polynomial number of such non-equalities (see Lemma 8.5). However, a graph may have
an exponential number of cycles.

A key idea of [FGT16] is to build the weight function in logn rounds. In the first round,
we find a weight function with the property that each cycle of length 4 has nonzero circulation.
This is possible since there are at most n4 such cycles. We apply this function and from now
on consider only those edges which belong to a minimum-weight perfect matching. Crucially, it
turns out that in the subgraph obtained this way, all cycles of length 4 have disappeared – this
follows from the simple structure of the bipartite perfect matching polytope (a face is simply the
bipartite matching polytope of a subgraph) and fails to hold for general graphs. In the second
round, we start from this subgraph and apply another weight function which ensures that all

14This has no relation to the term circulation from Part I.

8.1 Introduction 91

select w

=⇒
1

1

1

0
0

0

0
0

0

Figure 8.1: The main difficulty of derandomizing the Isolation Lemma for general graphs as
compared to bipartite graphs. In trying to remove the bold cycle, we select a weight function w
such that the circulation of the cycle is 1−0+1−0 6= 0. By minimizing over w we obtain a new,
smaller subface – the convex hull of perfect matchings of weight 1 – but every edge of the cycle
is still present in one of these matchings. The cycle has only been eliminated in the following
sense: it can no longer be obtained in the symmetric difference of two matchings in the new face
(since none of them select both swirly edges). The vertex sets drawn in gray represent the new
tight odd-set constraints that describe the new face (indeed: for a matching to have weight 1, it
must take only one edge from the boundary of a gray set). We will say that the cycle does not
respect the gray vertex sets (see Section 8.2).

even cycles of length up to 8 have nonzero circulation (one proves that there are again ≤ n4 many
since the graph contains no 4-cycles). Again, these cycles disappear from the next subgraph, and
so on. After logn rounds, the current subgraph has no cycles, i.e., it is a perfect matching. The
final weight function is obtained by combining the logn polynomial-sized weight functions. To
get a parallel algorithm, we need to simultaneously try each such possible combination, of which
there are quasi-polynomially many.

This result has later been generalized by Gurjar and Thierauf [GT17] to the linear matroid
intersection problem – a natural extension of bipartite matching. From the work of Narayanan,
Saran and Vazirani [NSV94], who gave an RNC algorithm for that problem (also based on comput-
ing a determinant), it again follows that derandomizing the Isolation Lemma implies a quasi-NC
algorithm.

8.1.2 Challenges of non-bipartite graphs
We find it useful to look at the method explained in the previous section from a polyhedral
perspective (also used by [GT17]). We begin from the set of all perfect matchings, of which we
take the convex hull: the perfect matching polytope. After applying the first weight function,
we want to consider only those perfect matchings which minimize the weight; this is exactly the
definition of a face of the polytope. In the bipartite case, any face was characterized by just
taking a subset of edges (i.e., making certain constraints xe ≥ 0 tight), so we could simply think
about recursing on a smaller subgraph. This was used to show that any cycle whose circulation
has been made nonzero will not retain all of its edges in the next subgraph. The progress we
made in the bipartite case could be measured by the girth (the minimum length of a cycle) of
the current subgraph, which doubled as we moved from face to subface.

Unfortunately, in the non-bipartite case, the description of the perfect matching polytope is
more involved (see Theorem 2.4). Namely, moving to a new subface may also cause new tight
odd-set constraints to appear. These, also referred to as odd cut constraints, require that, for
an odd set S ⊆ V of vertices, exactly one edge of a matching should cross the cut defined by S.

92 A Quasi-NC Algorithm for Perfect Matching

C1∆C2

=⇒

Figure 8.2: The minor difficulty of derandomizing the Isolation Lemma for general graphs as
compared to bipartite graphs: two even cycles whose symmetric difference contains no even cycle.

This complicates our task, as depicted in Figure 8.1 (the same example was given by [FGT16]
to demonstrate the difficulty of the general-graph case). Now a face is described by not only a
subset of edges, but also a family of tight odd-set constraints. Thus we can no longer guarantee
that any cycle whose circulation has been made nonzero will disappear from the support of the
new face, i.e., the set of edges that appear in at least one perfect matching in this face. Our
idea of what it means to remove a cycle thus needs to be refined (see Section 8.2), as well as
the measure of progress we use to prove that a single matching is isolated after logn rounds (see
Section 8.3). We need several new ideas, which we outline in Section 8.1.3.

Another difficulty, of a more technical nature, concerns the counting argument used to prove
that a graph with no cycles of length at most λ contains only polynomially many cycles of length
at most 2λ. In the bipartite case, the symmetric difference of two even cycles contains a simple
cycle, which is also even. In addition, one can show that if the two cycles share many vertices,
then the symmetric difference must contain one such even cycle that is short (of length at most λ)
and thus should not exist. This enables a simple checkpointing argument to bound the number
of cycles of length at most 2λ, assuming that no cycle of length at most λ exists. Now, in the
general case we are still only interested in removing even cycles, but the symmetric difference
of two even cycles may not contain an even simple cycle (see Figure 8.2). This forces us to
remove not only even simple cycles, but all even walks, which may contain repeated edges (we
call these alternating circuits – see Definition 8.2), and to rework the counting scheme, obtaining
a bound of n17 rather than n4 (see Lemma 8.21). Moreover, instead of simple graphs, we work
on node-weighted multigraphs, which arise by contracting certain tight odd-sets.

8.1.3 Our approach
This section is a high-level, idealized explanation of how to deal with the main difficulty (see
Figure 8.1); we ignore the more technical one in this description.

Removing cycles which do not cross a tight odd-set As discussed in Section 8.1.2, when
moving from face to subface we cannot guarantee that, for each even cycle whose circulation
we make nonzero, one of its edges will be absent from the support of the new face. However,
this will at least be true for cycles that do not cross any odd-set tight for the new face. This is
because if there are no tight odd-set constraints, then our faces behave as in the bipartite case.
So, intuitively, if we only consider those cycles which do not cross any tight set, then we can
remove them using the same arguments as in that case. This implies, by the same argument as
in Section 8.1.1, that if we apply logn weight functions in succession, then the resulting face will
not contain in its support any even cycle that crosses no tight odd-set. This is less than we need,
but a good first step. If, at this point, there were no tight sets, then we would be done, as we

8.1 Introduction 93

would have removed all cycles. However, in general there will still be cycles crossing tight sets,
which make our task more difficult.

Decomposition into two subinstances To deal with the tight odd-sets, we will make use of
two crucial properties. The first property is easy to see: once we fix the single edge e in the
matching which crosses a tight set S, the instance breaks up into two independent subinstances.
That is, every perfect matching which contains e is the union of: the edge e, a perfect matching
on the vertex set S (ignoring the S-endpoint of e), and a perfect matching on the vertex set V \S
(ignoring the other endpoint of e).

This will allow us to employ a divide-and-conquer strategy: to isolate a matching in the entire
graph, we will take care of both subinstances and of the cut separating them. We formulate the
task of dealing with such a subinstance (a subgraph induced on an odd-cardinality vertex set)
as follows: we want that, once the (only) edge of a matching which lies on the boundary of the
tight odd-set is fixed, the entire matching inside the set is uniquely determined. We will then call
this set contractible (see Definition 8.7).15 This can be seen as a generalization of our isolation
objective to subgraphs with an odd number of vertices. If we can get that for the tight set and for
its complement, then each edge from the cut separating them induces a unique perfect matching
in the graph. Therefore there are at most n2 perfect matchings left in the current face. Now, in
order to isolate the entire graph, we only need a weight function w which assigns different weights
to all these matchings. This demand can be written as a system of n4 linear non-equalities on
w, and we can generate a weight function w satisfying all of them (see Lemma 8.5).

While it is not clear how to continue this scheme beyond the first level or why we could hope
to have a low depth of recursion, we will soon explain how we utilize this basic strategy.

Laminarity The second crucial property that we utilize is that the family of odd-set constraints
tight for a face exhibits good structural properties. Namely, it is known that a laminar family of
odd sets is enough to describe any face (see Lemma 2.15). Recall that a family of sets is laminar
if any two sets in the family are either disjoint or one is a subset of the other (see Figure 8.4 for
an example). This enables a scheme where we use this family to make progress in a bottom-up
fashion. This is still challenging as the family does not stay fixed as we move from face to face.
The good news is that it can only increase: whenever a new tight odd-set constraint appears
which is not spanned by the previous ones, we can always add an odd-set to our laminar family.

Chain case To get started, let us first discuss the special case where the laminar family of tight
constraints is a chain, i.e., an increasing sequence of odd-sets S1 (S2 (... (S`. We remark
that this will be an informal and simplified description of the proof of Lemma 8.23. For this
introduction, assume ` = 8 as depicted in Figure 8.3. Denote by U1, ..., U8 the layers of this
chain, i.e., U1 = S1 and Up = Sp \ Sp−1 for p = 2, 3, ..., 8. Suppose this chain describes the face
that was obtained by applying the logn weight functions as above that remove all even cycles
that do not cross a tight set. Then there is no cycle that lies inside a single layer Up.

Notice that every layer Up is of even size and it touches two boundaries of tight odd-sets:
Sp−1 and Sp (that is, δ(Up) ⊆ δ(Sp−1) ∪ δ(Sp)). Any perfect matching in the current face will
have one edge from δ(Sp−1) and one edge from δ(Sp) (possibly the same edge), therefore Up
will have two (or zero) boundary edges in the matching. An exception is U1, which is odd, only
touches S1 and will have one boundary edge in the matching. This motivates us to generalize

15This has no relation to the term contractible from Part I.

94 A Quasi-NC Algorithm for Perfect Matching

S1

U1

S2

U2

S3

U3

S4

U4

S5

U5

S6

U6

S7

U7

S8

U8

U1,2 U3,4 U5,6 U7,8

U1,4 U5,8

U1,8

Phase 1

Phase 2

Phase 3

Phase 4

e4
e6

e8

Figure 8.3: Example of a chain consisting of 8 tight sets, and our divide-and-conquer argument.

our isolation objective to layers as follows: we say that a layer Up is contractible if choosing an
edge from δ(Sp−1) and an edge from δ(Sp) induces a unique matching inside Up. This definition
naturally extends to layers of the form Sr \ Sp−1 = Up ∪Up+1 ∪ ...∪Ur, which we will denote by
Up,r.

Recall that we have ensured that there is no cycle that lies inside a single layer Up = Up,p. It
follows that these layers are contractible. This is because two different matchings (but with the
same boundary edges) in the current face would induce an alternating cycle in their symmetric
difference.

Let us say that this was the first phase of our approach (see Figure 8.3). In the second phase,
we want to ensure contractibility for double layers: U1,2, U3,4, U5,6 and U7,8. In general, we
double our progress in each phase: in the third one we deal with the quadruple layers U1,4 and
U5,8, and in the fourth phase we deal with the octuple layer U1,8.

Let us now describe a single phase. Take e.g. the layer U5,8 and two boundary edges e4 ∈ δ(S4)
and e8 ∈ δ(S8) (see Figure 8.3); we want to have only a unique matching in U5,8 including these
edges. Now we realize our divide-and-conquer approach. Note that the layers U5,6 and U7,8 have
already been dealt with (made contractible) in the previous phase. Therefore, for each choice
of boundary edge e6 ∈ δ(S6) for the matching, there is a unique matching inside both of these
layers. Just like previously, this implies that there are only n2 matchings using e4 and e8 in the
layer U5,8, and we can select a weight function that isolates one of them. We actually select only
one function per phase, which works simultaneously for all layers Up,r in this phase (here: U1,4
and U5,8) and all pairs of boundary edges ep−1 and er.

By generalizing this strategy (from ` = 8 to arbitrary `) in the natural way, we can deal with
any chain in log ` ≤ logn phases, even if it consists of Ω(n) tight sets. We remark that, in the
general proof, we do not quite use a binary tree structure like in the example. Instead, in the
t-th phase, we deal with all layers Up,r having 1 ≤ p ≤ r ≤ ` with r − p ≤ 2t−1 − 1. This makes
our proof simpler if ` is not a power of two.

8.1 Introduction 95

Figure 8.4: Example of a general laminar family.
Dark-gray sets are of size at most λ and thus contractible.
Dashed sets are of size more than λ but at most 2λ; they must form chains (due to the
cardinality constraints). We make them contractible in the first step. Then we contract them
(so now all light-gray and dark-gray sets are contracted).
Thick sets are of size more than 2λ. For the second step, we erase the edges on their boundaries.
Then we remove cycles of length up to 2λ from the resulting instance (the contraction), which
has no tight odd-sets (and no cycles of length up to λ).

General case Of course, there is no reason to expect that the laminar family of tight cuts we
obtain after applying the initial logn weight functions will be a chain. It also does not seem easy
to directly generalize our inductive scheme from a chain to an arbitrary family. Therefore we
put forth a different progress measure, which allows us to make headway even in the absence of
such a favorable odd-set structure.

Since a laminar family can be represented as a tree, we might think about a bottom-up
strategy based on it; however, we cannot deal with its nodes level-by-level, since it may have
height Ω(n) and we can only afford poly(logn) many phases. Instead, we will first deal with
all tight odd-sets of size up to 4, then up to 8, then up to 16 and so on, by making them
contractible. At the same time, we also remove all even cycles of length up to 4, then up to
8 and so on.16 These two components of our progress measure, which we call λ-goodness, are
mutually beneficial, as we will see below.

Making odd-sets contractible enables us not only to achieve progress, but also to simplify our
setting. A contractible tight set can be, for our purposes, thought of as a single vertex – much
like a blossom in Edmonds’ algorithm. This is because such a set has exactly one boundary edge
in a perfect matching (as does a vertex), and choosing that edge determines the matching in the
interior. As the name suggests, we will contract such sets.

Suppose that our current face is already λ-good. Roughly, this means that we have made
odd-sets of size up to λ (which we will call small) contractible and removed cycles of length up

16As discussed in Section 8.1.2 and Figure 8.1, the meaning of the term remove needs to be refined, as we
cannot hope to always delete an edge of the cycle from the support of the current face.

96 A Quasi-NC Algorithm for Perfect Matching

to λ. Now we want to obtain a face which is 2λ-good.
The first step is to make odd-sets of size up to 2λ contractible. Let us zoom in on one such

odd-set – a maximal set of size at most 2λ (see the largest dashed set in Figure 8.4). Once we
have contracted all the small sets into single vertices, all interesting sets are now of size more
than λ but at most 2λ, and any laminar family consisting of such sets must be a chain, since
a set of such size cannot have two disjoint subsets of such size (see Figure 8.4). But this is the
chain case that we have already solved!

Having made odd-sets of size up to 2λ contractible, we can contract them. The second step
is now to remove cycles of length up to 2λ. However, here we do not need to care about those
cycles which cross an odd-set S of size larger than 2λ – the reason being, roughly, that in our
technical arguments we define the length of a cycle based on the sizes of sets that it crosses, and
thus such a cycle actually becomes longer than 2λ. In other words, we can think about removing
cycles of length up to 2λ from a version of the input graph where all odd-sets of size up to 2λ
have been contracted and all larger ones have had their boundaries erased (see Figure 8.4). We
call this version the contraction (see Definition 8.11). Our λ-goodness progress measure (see
Definition 8.13) is actually defined in terms of cycles in the contraction.

Now the second step is easy: we just need to remove all cycles of length up to 2λ from the
contraction, which has no tight odd-sets and no cycles of length up to λ – a simple scenario,
already known from the bipartite case. Applying one weight function is enough to do this.

Finally, what does it mean for us to remove a cycle? When we make a cycle’s circulation
nonzero, it is then eliminated from the new face in the following sense: either one of its edges
disappears from the support of the face (recall that this is what always happened in the bipartite
case), or a new tight odd-set appears, with the following property: the cycle crosses the set with
fewer (or more) even-indexed edges than odd-indexed edges (see the example in Figure 8.1). In
short, we say that the cycle does not respect the new face (see Section 8.2). This notion of
removal makes sense when viewed in tandem with the contraction, because once a cycle crosses
a set in the laminar family, there are two possibilities in each phase: either this set is large –
then its boundary is not present in the contraction, which cancels the cycle, or it is small – then
it is contracted and the cycle also disappears (for somewhat more technical reasons).

To reiterate, our strategy is to simultaneously remove cycles up to a given length and make
odd-sets up to a given size contractible. We can do this in logn phases. In each such phase we
need to apply a sequence of logn weight functions in order to deal with a chain of tight odd-sets
(as outlined above). In all, we are able to isolate a perfect matching in the entire graph using a
sequence of O(log2 n) weight functions with polynomially bounded weights.

8.1.4 Outline
The rest of this chapter is organized as follows. In Section 8.2 we define alternating circuits (our
generalization of alternating cycles), discuss what it means for such a circuit to respect a face,
and develop our tools for circuit removal. In Section 8.3 we introduce our measure of progress
(λ-goodness), contractible sets and the contraction multigraph. We also state Theorem 8.17,
which implies our main result. Finally, in Section 8.4 we prove our key technical theorem: that
applying log2 n + 1 weight functions allows us to make progress from λ-good to 2λ-good. See
Chapter 9 for conclusions and remarks on future work.

8.2 Alternating circuits and respecting a face 97

e4

e1

e3

e2
e0
e5

Figure 8.5: An example of an alternating circuit C of length 6 with indicator vector (±1)C =∑5
i=0(−1)i1ei

= −1e1 + 1e2 − 1e3 + 1e4 (since +1e0 and −1e5 cancel out). Also note that〈
(±1)C ,1δ(S)

〉
= 0 for the tight set S depicted in gray.

8.2 Alternating circuits and respecting a face
In this section we introduce two notions which are vital for our approach. Before giving the
formal definitions, we give an informal motivation.

Our argument is centered around removing even cycles. As discussed in Section 8.1.2 and Fig-
ure 8.1, the meaning of this term in the non-bipartite case needs to be more subtle than just
“removing an edge of the cycle”.

In order to deal with a cycle, we find a weight function w which assigns it a nonzero cir-
culation. Formally, given an even cycle C with edges numbered in order, define a vector
(±1)C ∈ {−1, 0, 1}E as having 1 on even-numbered edges of C, −1 on odd-numbered edges
of C, and 0 elsewhere. Then, nonzero circulation means that 〈(±1)C , w〉 6= 0. Now, in the bipar-
tite case, if such a cycle survived in the new face F [w] (recall that this is the face obtained by
minimizing the weight function w), that is, C ⊆ E(F [w]), then the vector (±1)C could be used
to obtain a point in the face F with lower w-weight than the points in F [w], a contradiction. This
argument is possible because of the simple structure of the bipartite perfect matching polytope.

In the non-bipartite case, it is not enough that C ⊆ E(F [w]) in order to obtain such a
point (and a contradiction). It is also required that, if the cycle C enters a tight odd-set S
on an even-numbered edge, it exits it on an odd-numbered edge (and vice versa). This makes
intuitive sense: if C were obtained from the symmetric difference of two perfect matchings which
both have exactly one edge crossing S, then C would have this property. Formally, we require
that

〈
(±1)C ,1δ(S)

〉
= 0 for each S ∈ S(F [w]). If C satisfies these two conditions, i.e., that

C ⊆ E(F [w]) and that
〈
(±1)C ,1δ(S)

〉
= 0 for every S ∈ S(F [w]), then we say that C respects

the face F [w]. The notion of respecting a face exactly formalizes what is required to obtain a
contradictory point as above (see the proof of Lemma 8.4).

In other words, if we assign a nonzero circulation to a cycle, then it will not respect the new
face, and this is what is now meant by removing a cycle.

To deal with the second, more technical difficulty discussed in Section 8.1.2, we need to
remove not only simple cycles of even length, but also walks with repeated edges. However, we
would run into problems if we allowed all such walks (up to a given length). Consider for example
a walk C of length 2; such a walk traverses an edge back and forth. It is impossible to assign
a nonzero circulation to C, because its vector (±1)C is zero. We overcome this technicality by
defining alternating circuits to be those even walks whose vector (±1)C is nonzero (see Figure 8.5
for an example). For generality, we also formulate the definition of respect in terms of the vector
(±1)C .

98 A Quasi-NC Algorithm for Perfect Matching

Definition 8.2
Let C = (e0, ..., ek−1) be a nonempty cyclic walk of even length k.

• We define the alternating indicator vector (±1)C of C to be (±1)C =
∑k−1
i=0 (−1)i1ei

,
where 1e ∈ RE is the indicator vector having 1 on position e and 0 elsewhere.

• We say that C is an alternating circuit if its alternating indicator vector is nonzero. We
also refer to C as an alternating (simple) cycle if it is an alternating circuit that visits
every vertex at most once.

• When talking about a graph with node-weights, the node-weight of an alternating circuit
is the sum of all node-weights of visited vertices (with multiplicities if visited multiple
times).

We remark that (±1)C does not need to have all entries −1, 0 or 1 since edges can repeat in C.
Definition 8.3

We say that a vector y ∈ ZE respects a face F if:

• supp(y) ⊆ E(F), and

• for each S ∈ S(F) we have
〈
y,1δ(S)

〉
= 0.

Furthermore, we say that an alternating circuit C respects a face F if its alternating indicator
vector (±1)C respects F .

Clearly, if F ′ ⊆ F are faces and a vector respects F ′, then it also respects F .
Now we argue that we can remove an alternating circuit by assigning it a nonzero circulation.

The proof of this lemma (which generalizes Lemma 3.2 of [FGT16]) motivates Definition 8.3.
Lemma 8.4

Let y ∈ ZE be a vector and F a face. If w : E → R is such that 〈y, w〉 6= 0, then y does not
respect the face F ′ = F [w].

Proof.
Suppose towards a contradiction that y respects F ′. Assume that 〈w, y〉 < 0 (otherwise use −y in
place of y). We pick x ∈ F ′ to be the average of all extreme points of F ′, so that the constraints
of PM which are tight for x are exactly those which are tight for F ′. Select ε > 0 very small.
Then 〈x+ εy, w〉 < 〈x,w〉, which will contradict the definition of F ′ = argmin{〈w, x〉 : x ∈ F}
once we show that x+ εy ∈ F . We show that x+ εy ∈ F ′ ⊆ F by verifying:

• If e ∈ E(F ′) (i.e., e is an edge with xe > 0), then (x + εy)e = xe + εye ≥ 0 if ε is chosen
small enough.

• If e ∈ E\E(F ′) (i.e., e is an edge with xe = 0), then from y respecting F ′ we get e 6∈ supp(y)
and so (x+ εy)e = 0.

• If S 6∈ S(F ′) is an odd set not tight for F ′, i.e.,
〈
x,1δ(S)

〉
> 1, then

〈
x+ εy,1δ(S)

〉
=〈

x,1δ(S)
〉

+ ε
〈
y,1δ(S)

〉
≥ 1 if ε is chosen small enough.

8.2 Alternating circuits and respecting a face 99

• If S ∈ S(F ′) is an odd set tight for F ′ (this includes all singleton sets), then from y

respecting F ′ we get
〈
y,1δ(S)

〉
= 0 and thus

〈
x+ εy,1δ(S)

〉
=
〈
x,1δ(S)

〉
= 1.

The following lemma says that we can assign nonzero circulation to many vectors at once
using an oblivious choice of weight function from W (see Section 7.5 for the definition of W). It
is a minor generalization of Lemma 2.3 of [FGT16] and the proof remains similar. We give it for
completeness.
Lemma 8.5

For any number s and for any set of s vectors y1, ..., ys ∈ ZE \ {0} with the boundedness
property ‖yi‖1 ≤ 4n2, there exists w ∈ W(n3s) with 〈yi, w〉 6= 0 for each i = 1, ..., s.

We usually invoke Lemma 8.5 with vectors yi being the alternating indicator vectors of alternating
circuits. Then the quantities 〈yi, w〉 are the circulations of these circuits.

Proof.
Let w′ : E → Z be given by w′(ej) = (4n2 + 1)j for j = 1, ..., |E|. Then we have 〈yi, w′〉 6= 0 for
each i because the highest nonzero coefficient dominates the expression. Formally, let j′ be the
maximum index with yi(ej′) 6= 0 and suppose yi(ej′) > 0 (the other case is analogous). Then,
because ‖yi‖∞ ≤ ‖yi‖1 ≤ 4n2, we have

〈yi, w′〉 = yi(ej′)(4n2 + 1)j
′
+
∑
j<j′

yi(ej)(4n2 + 1)j > (4n2 + 1)j
′
+

j′−1∑
j=−∞

(−4n2)(4n2 + 1)j = 0 .

Let t = n3s. We want to show that there exists k ∈ {2, ..., t} such that for all i = 1, ..., s,
〈yi, wk〉 6= 0. Recalling the definition of wk (see Definition 7.16), 〈yi, wk〉 6= 0 is equivalent to
|〈yi, w′〉| 6= 0 mod k.

This will be implied if there exists k ∈ {2, ..., t} such that
∏
i |〈yi, w′〉| 6= 0 mod k. So there

should be some k ∈ {2, ..., t} not dividing
∏
i |〈yi, w′〉| – equivalently, lcm(2, ..., t) should not

divide
∏
i |〈yi, w′〉|. Knowing that

∏
i |〈yi, w′〉| 6= 0, this will follow if we have

∏
i |〈yi, w′〉| <

lcm(2, ..., t). This is true because

s∏
i=1
|〈yi, w′〉| <

(
(4n2 + 1)|E|+1

)s
< (4n2 + 1)n

2s = 2n
2s log(4n2+1) < 2n

3s = 2t < lcm(2, ..., t)

where we used that lcm(2, ..., t) > 2t for t ≥ 7 [Nai82].

Lemmas 8.4 and 8.5 together imply the following:
Corollary 8.6

Let F be a face. For any finite set of vectors Y ⊆ ZE \ {0} with the boundedness property
‖y‖1 ≤ 4n2 for every y ∈ Y, there exists w ∈ W(n3 · |Y|) such that each y ∈ Y does not
respect the face F ′ = F [w]. �

100 A Quasi-NC Algorithm for Perfect Matching

S

e

Figure 8.6: Illustration of the matching M12 constructed in the proof of Lemma 8.9. Straight
and swirly edges denoteM1 andM2 respectively. The thick edges denoteM12, which agrees with
M1 outside S and with M2 inside S.

8.3 Contractible sets and λ-goodness
We will make progress by ensuring that larger and larger parts of the graph are “isolated” in our
current face F . By “parts of the graph” we mean sets S which are tight for F . As discussed in
Section 8.1.3, for such a set S, the following isolation property is desirable: once the (only) edge
of a matching which lies on the boundary of S is fixed, the entire matching inside S is uniquely
determined. This motivates the following definition:
Definition 8.7

Let F be a face and let S ∈ S(F) be a tight set for F . We say that S is F -contractible
if for every e ∈ δ(S) there are no two perfect matchings in F which both contain e and are
different inside S.

Note that, in the above definition, there could be no such perfect matching for certain edges
e ∈ δ(S) (this is the case if and only if e 6∈ E(F)). Intuitively, a contractible set can be thought
of as a single vertex with respect to the structure of the current face of the perfect matching
polytope. The notion of contractibility enjoys the following two natural monotonicity properties:
Fact 8.8

Let F ′ ⊆ F be two faces. If S is F -contractible, then it is also F ′-contractible. �

Lemma 8.9
Let F be a face and S ⊆ T two sets tight for F , i.e., S, T ∈ S(F). If T is F -contractible,
then so is S.

Proof.
Let e ∈ δ(S). Suppose that M1 and M2 are two perfect matchings in F which contain e but are
different inside S. We will argue that in that case there also exist two perfect matchings M1 and
M12 in F which contain e, are different inside S, and are equal outside of S.

Once we have that, we conclude as follows. Let f be the (only) edge in δ(T) ∩M1 (perhaps
f = e); then also f ∈ M12. Then M1 and M12 are two perfect matchings in F which contain
f ∈ δ(T) but are different inside T , contradicting that T is F -contractible.

To get the outstanding claim, we define

M12 = (M1 \ E(S)) ∪ (M2 ∩ E(S))

8.3 Contractible sets and λ-goodness 101

to be the perfect matching that agrees with M1 on all edges not in E(S) and agrees with M2 on
all edges in E(S) (see Figure 8.6). To see that M12 is a perfect matching, notice that both M1
and M2 are in F and contain e. Furthermore, as e ∈ δ(S) for the tight set S ∈ S(F), we have
that M1 ∩E(S) and M2 ∩E(S) are both perfect matchings on the vertex set S where we ignore
the vertex incident to e. We can thus “replace” M1 ∩ E(S) by M2 ∩ E(S) to obtain the perfect
matching M12.

We now show that M12 is in the face F . Suppose the contrary. Since M1 and M2 are both
in F , we have M12 ⊆ E(F). Therefore, if M12 is not in F , we must have |δ(R) ∩M12| > 1 for
some tight set R ∈ S(F). Since |R| is odd, also |δ(R) ∩M | is odd for any perfect matching M .
In particular, |δ(R) ∩M12| ≥ 3, which contradicts

|δ(R) ∩M12| ≤ |δ(R) ∩M1|+ |δ(R) ∩M2| = 2 ,

where the equality holds becauseM1 andM2 are perfect matchings in F and R ∈ S(F) is a tight
set.

In our proof, we will be working with faces and laminar families which are compatible in the
following sense:
Definition 8.10

Let F be a face and L a laminar family. If L ⊆ S(F), i.e., all sets S ∈ L are tight for F , then
we say that (F,L) is a face-laminar pair.

Given a face-laminar pair (F,L), we will often work with a multigraph obtained from G

by contracting all small sets, i.e., those with size being at most some parameter λ (which is a
measure of our progress). This multigraph will be called the contraction (see Figure 8.7 for an
example).

In the contraction, we will also remove all boundaries of larger sets (i.e., those with size larger
than λ). This is done to simulate working inside each such large set independently, because the
contraction then decomposes into a collection of disconnected components, one per each large
set. Because, in the contraction, each set in L has either been contracted or has had its boundary
removed, our task is reduced to dealing with instances having no laminar sets.

Moreover, we only include those edges which are still in the support of the current face F ,
i.e., the set E(F).
Definition 8.11

Given a face-laminar pair (F,L) and a parameter λ (with 1 ≤ λ ≤ 2n), we define the
(F,L, λ)-contraction of G as a node-weighted multigraph as follows:

• the node set is the set of maximal sets of size (cardinality) at most λ in L,

• each node has a node-weight equal to the size of the corresponding set,

• the edge set is obtained from E(F) \
⋃
T∈L:|T |>λ δ(T) by contracting each of these

maximal sets. That is, an edge of G maps to an edge of the contraction if it is in E(F),
it is not inside any of the contracted sets and it does not cross any cut defined by a set
T ∈ L : |T | > λ. Sometimes we identify edges of the contraction with their preimages
in G.

102 A Quasi-NC Algorithm for Perfect Matching

1

3

3

1

1

3

Figure 8.7: An example of the (F,L, λ)-contraction of G.
On the left: a graph G and a laminar family L. We only draw the edges in E(F). We also do
not draw ellipses for the singleton sets in L. The dark-gray sets are F -contractible.
On the right: the (F,L, 4)-contraction of G. Its vertices are labeled by their node-weights.

In the (F,L, λ)-contractions arising in our arguments, we will always only contract sets S ∈
L which are F -contractible (i.e., the vertices of a contraction will always correspond to F -
contractible sets). Then, a very useful property is that alternating circuits in the contraction
can be lifted to alternating circuits in the entire graph G in a canonical way. This is done in the
proofs of Lemmas 8.20 and 8.25.

Finally, we need the following extension of Definition 8.3 for vectors defined on the contraction.
Definition 8.12

Denote the (F,L, λ)-contraction of G as H, and let z ∈ ZE(H) be a vector on the edges of
H. We say that z respects a subface F ′ ⊆ F if 17

• supp(z) ⊆ E(F ′), and

• for each S ∈ S(F ′) which is a union of sets corresponding to vertices in V (H),18 we
have

〈
z,1δ(S)

〉
= 0.

As before, we say that an alternating circuit C in H respects a subface F ′ if its alternating
indicator vector (±1)C ∈ ZE(H) respects F ′.

Now we are able to define our measure of progress. On one hand, we want to make larger
and larger laminar sets contractible. On the other hand, there could very well be no laminar
sets, so we also proceed as in the bipartite case: remove longer and longer alternating circuits.

17In the following conditions we abuse notation and think of z as a vector in ZE obtained by identifying each
edge of H with its preimage in G and letting those edges of G without a preimage in H have value 0.

18That is, the maximal sets of size at most λ in L.

8.3 Contractible sets and λ-goodness 103

Definition 8.13
Let (F,L) be a face-laminar pair and λ a parameter (with 1 ≤ λ ≤ 2n). We say that (F,L)
is λ-good if L is a maximal laminar subset of S(F) and:

(i) each S ∈ L with |S| ≤ λ is F -contractible,

(ii) in the (F,L, λ)-contraction of G, there is no alternating circuit of node-weight at most
λ.

We begin with λ = 1, which is trivial, and then show that by concatenating enough weight
functions we can obtain face-laminar families which are 2-good, 4-good, 8-good, and so on. We
are done once we have a λ-good family with λ ≥ n. The components of this proof strategy are
given in the following three claims. The first step is clear:
Fact 8.14

Let L0 be a maximal laminar subset of S(PM). Then the face-laminar pair (PM,L0) is
1-good. �

Note that L0 contains all singleton sets, i.e., {{v} : v ∈ V } ⊆ L0.
We then proceed iteratively in log2 n rounds using the following theorem. Its proof, which

constitutes the bulk of our argument, is given in Section 8.4.
Theorem 8.15

Let (F,L) be a λ-good face-laminar pair. Then there exists a weight function w ∈ W log2 n+1

and a laminar family L′ ⊇ L such that (F [w],L′) is a 2λ-good face-laminar pair.

We are done once λ exceeds n:
Lemma 8.16

Suppose (F,L) is λ-good for some λ ≥ n. Then |F | = 1.

We think that the proof of this lemma is instructive. It serves to understand and motivate
Definition 8.13, and more involved versions of this argument appear in the sequel.

Proof.
Let H be the (F,L, λ)-contraction of G. Also let S1, S2, ..., Sk be all maximal sets in L. As L
contains all singletons, their disjoint union is V and we have V (H) = {S1, ..., Sk} and E(H) =⋃k
i=1 δ(Si). Since (F,L) is λ-good with λ ≥ n, each set S ∈ L is F -contractible, and H contains

no alternating circuit of node-weight at most λ – in particular, H contains no alternating simple
cycle. Indeed, an upper bound on the node-weight of any alternating simple cycle is |S1|+ ...+
|Sk| = n ≤ λ.

Now we show that there is only one perfect matching in F . One direction is easy: since F
is a face, it is nonempty by definition. For the other direction, let M1 and M2 be two perfect
matchings in F . We show that M1 = M2.

Because the sets S1, ..., Sk are tight for F and no edge can possibly cross a tight odd-set of
cardinality at least λ ≥ n, any perfect matching (in the face F) in G induces a perfect matching in
H. If the matchings induced byM1 andM2 were different, then their symmetric difference would
contain an alternating simple cycle in H, which is impossible. So the induced matchings must
be equal, i.e., M1 ∩

⋃
i δ(Si) = M2 ∩

⋃
i δ(Si). Moreover, the sets S1, ..., Sk are F -contractible,

104 A Quasi-NC Algorithm for Perfect Matching

which means that, given the boundary edges, there is a unique perfect matching in F inside each
Si. This yields M1 = M2.

Before we proceed to the proof of Theorem 8.15, let us see how Fact 8.14, Theorem 8.15,
and Lemma 8.16 together give our desired result:
Theorem 8.17

There exists an isolating weight function w ∈ W(log2 n+1) log2 n, i.e., one with |PM[w]| = 1.

Proof.
Let ` = log2 n. We iteratively construct a sequence of face-laminar pairs (Fi,Li) for i = 0, 1, ..., `
such that (Fi,Li) is 2i-good and Fi = Fi−1[wi] for some weight function wi ∈ W`+1. We begin
by setting F0 = PM and L0 to be a maximal laminar subset of S(PM). By Fact 8.14, (F0,L0)
is 1-good. Then for i = 1, ..., ` we use Theorem 8.15 to obtain the wanted weight function wi
along with a laminar family Li ⊇ Li−1. Finally, we have that (F`,L`) is 2`-good, so that by
Lemma 8.16, |F`| = 1.

It remains to argue that F` = PM[w] for some w ∈ W(`+1)`. To do this, we proceed as in
Section 7.5: define the concatenation w′ •w′′ := n21(`+1)w′+w′′ for two weight functions w′ and
w′′, where w′′ ∈ W`+1. (We need to use a padding term n21(`+1) that is larger than the n21 of
Definition 7.18 because the right-hand weight functions are now fromW`+1 rather than fromW.)
By the same reasoning as for Fact 7.19 we get that F` = PM[w1][w2]...[w`] = PM[w1•w2•...•w`].
We put w = w1 • w2 • ... • w` ∈ W(`+1)`.

Theorem 8.17 implies Theorem 7.14 because we have |W(log2 n+1) log2 n| = |W|(log2 n+1) log2 n ≤
n20(log2 n+1) log2 n, the values of any w ∈ W(log2 n+1) log2 n are bounded by n21(log2 n+1) log2 n, and
the functions w ∈ W can be generated obliviously using only the number of vertices n.

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good
In this section we show how to make progress (measured by the λ parameter of λ-goodness)
by applying a new weight function to the current face. Our objective is to make larger sets
contractible (by doubling the size threshold from λ to 2λ) and to ensure that in the new contracted
graph, alternating circuits of an increased node-weight are not present. We do this by moving
from the current face-laminar pair, which we call (Fin,Lin), to a new face-laminar pair (Fout,Lout).
Both pairs have the property that the laminar family is a maximal laminar family of sets tight
for the face. The new family extends the previous, i.e., Lout ⊇ Lin.

Our main technical tools are Theorem 8.18 and Lemma 8.23. Theorem 8.18 is used to ensure
that certain alternating circuits are not present in the new contraction. It says that if our
current contraction has no alternating circuits of at most some node-weight, then a single weight
function w ∈ W is enough to guarantee that all alternating circuits of at most twice that node-
weight do not respect the new face obtained by applying w. We call this removing these circuits.
Lemma 8.23 is used to make sure that sets in our laminar family that are of size at most 2λ
become contractible. Later, new sets will be added to the laminar family in Lemma 8.25, in such
a way that these properties are maintained and that the removed alternating circuits indeed do
not survive in the new contraction.

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 105

The formal structure of the proof is as follows. We begin from a λ-good face-laminar pair
(Fin,Lin). Then, using our technical tools Theorem 8.18 and Lemma 8.23, we show in Theo-
rem 8.22 the existence of a weight function wout ∈ W log2(n)+1 such that the face Fout = Fin[wout]
satisfies two conditions which make progress on conditions (i) and (ii) of λ-goodness:

(i)’ For each S ∈ Lin with |S| ≤ 2λ, S is Fout-contractible.

(ii)’ In the (Fout,Lin, 2λ)-contraction of G, there is no Fout-respecting alternating circuit of node-
weight at most 2λ.

This gives us the wanted face Fout and weight function wout. Finally, in Lemma 8.25 we show that
extending the laminar family Lin to a maximal laminar family Lout (of sets tight for the new face)
yields a 2λ-good pair (Fout,Lout). This finishes the proof of Theorem 8.15.

8.4.1 Removing alternating circuits
This section is devoted to the proof of Theorem 8.18, which is a technical tool we use to remove
alternating circuits of size between λ and 2λ from the contraction.
Theorem 8.18

Consider a face-laminar pair (F,L) such that each S ∈ L with |S| ≤ β is F -contractible (for
a parameter β). Denote by H the (F,L, β)-contraction of G. If H has no alternating circuit
of node-weight at most λ, then there exists w ∈ W such that H has no F [w]-respecting
alternating circuit of node-weight at most 2λ.

We begin with a simple technical fact: to verify that a vector respects a face, it is enough to
check this for a maximal laminar family of tight constraints.
Lemma 8.19

Consider a face F and a vector y ∈ ZE . Let L be a maximal laminar subset of S(F). If for
each S ∈ L we have

〈
y,1δ(S)

〉
= 0, then the same holds for all S ∈ S(F).

Proof.
The proof is similar to that of Lemma 2.16, but even simpler. As L is a maximal laminar subset
of S(F), Lemma 2.15 says that span(L) = span(S(F)). In other words, for any S ∈ S(F) we
can write 1δ(S) as a linear combination

∑
L∈L µL1δ(L) for some coefficients (µL)L∈L. Hence

〈
y,1δ(S)

〉
=
〈
y,
∑
L∈L

µL1δ(L)

〉
=
∑
L∈L

µL
〈
y,1δ(L)

〉
= 0.

Now we prove a lemma which reduces the task of removing an alternating circuit in H to that
of removing a vector defined on the edges of G, which we can do using Corollary 8.6. Throughout
this section, F , L and H are as in the statement of Theorem 8.18. Recall that the vertices of
H are elements of L, i.e., sets of vertices, and so by S ∈ V (H) we mean the set S ∈ L that
corresponds to a vertex in H.

106 A Quasi-NC Algorithm for Perfect Matching

Lemma 8.20

Let z ∈ ZE(H) be a nonzero vector on the edges of H satisfying
〈
z,1δ(S)

〉
= 0 for each

S ∈ V (H). Then there exists a nonzero vector y ∈ ZE such that for any face F ′ ⊆ F we
have: if z respects F ′, then y respects F ′. We also have ‖y‖1 ≤ n‖z‖1.

We remark that y does not depend on F ′.

Proof.
We consider z as a vector z ∈ ZE by identifying each edge of H with its preimage in G and
letting those edges of G without a preimage in H have value 0. We may assume supp(z) ⊆ E(F);
otherwise z cannot respect F ′ (see Definition 8.12) and thus we are done by outputting any y.

The proof idea is to extend z to a vector y ∈ ZE which resembles an alternating indicator
vector. We do this in a canonical way so that if this extension does not respect F ′, then it must
be because z itself does not respect F ′.

To this end, we do the following for each S ∈ V (H): pair up the boundary edges e ∈ δ(S)
which have ze > 0 with boundary edges e which have ze < 0, respecting their multiplicities
as given by z. For example, if we had δ(S) = {e1, e2, e3} with z(e1) = 3, z(e2) = −2 and
z(e3) = −1, we would get the pairs {(e1, e2), (e1, e2), (e1, e3)}. Such a pairing is always possible
because

〈
z,1δ(S)

〉
= 0. Let

{
(e+
i , e
−
i)
}
i
be the multiset of pairs of edges obtained in this way

across all S ∈ V (H), and let Si ∈ V (H) be the set for which the pair (e+
i , e
−
i) has been introduced.

Also denote by v+
i , v

−
i the Si-endpoints of edges e+

i , e
−
i .

Now, for each i we have e+
i , e
−
i ∈ supp(z) ⊆ E(F), and S is F -contractible, so there is

a unique perfect matching M+
i on the vertex-induced subgraph (Si \ {v+

i }, E(Si \ {v+
i })) in F

(more precisely,M+
i is the unique perfect matching on that subgraph that extends to a matching

in F), as well as a unique perfect matching M−i on (Si \ {v−i }, E(Si \ {v−i })) in F . We let

y := z +
∑
i

(
1M+

i
− 1M−

i

)
.

What remains now is to prove the following claim:
Claim 12

Let F ′ ⊆ F be such that z respects F ′. Then y respects F ′.

Proof.
Since z respects F ′ (see Definition 8.12), we have supp(z) ⊆ E(F ′). This implies that for
each i, M+

i ⊆ E(F ′). Indeed, since e+
i ∈ supp(z) ⊆ E(F ′), there is a perfect matching on

(Si \ {v+
i }, E(Si \ {v+

i })) in F ′. However, Si is F -contractible and thus M+
i is the only such

matching in F (thus also in F ′). Therefore M+
i ⊆ E(F ′) and analogously M−i ⊆ E(F ′).

Now we check the conditions for y to respect F ′ (see Definition 8.3):

• We have supp(y) = supp(z) ∪
⋃
i

(
M+
i ∪M

−
i

)
⊆ E(F ′).

• Let T ∈ S(F ′). We need to verify that
〈
y,1δ(T)

〉
= 0. Let L′ be a maximal laminar

subfamily of S(F ′) extending L, i.e., L ⊆ L′ ⊆ S(F ′). By Lemma 8.19, it is enough to
verify that

〈
y,1δ(T)

〉
= 0 for T ∈ L′. For a set T belonging to a laminar family which

extends L, it is not hard to see that there are two possibilities: either T (S for some
S ∈ V (H), or T is a union of sets in V (H) (for recall that V (H) is a partitioning of V that

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 107

consists of sets in L). In the latter case,
〈
y,1δ(T)

〉
=
〈
z,1δ(T)

〉
= 0 because y equals z on

edges crossing sets in V (H) and because z respects F ′. In the former case, we have

〈
y,1δ(T)

〉
=
〈 ∑
i:Si=S

(
1e+

i
− 1e−

i
+ 1M+

i
− 1M−

i

)
,1δ(T)

〉
=
∑
i:Si=S

〈
1e+

i
− 1e−

i
+ 1M+

i
− 1M−

i
,1δ(T)

〉
because these are the only edges in y’s support that have an endpoint in S (other edges
cannot possibly cross T ⊆ S). Now it is enough to show that each summand is 0.
For this, we know that M+

i ∪ {e
+
i } and M

−
i ∪ {e

−
i } are (partial) matchings in F ′ and that

T is tight for F ′. Therefore we have |δ(T) ∩
(
M+
i ∪ {e

+
i }
)
| = 1,19 and the same holds for

M−i ∪ {e
−
i }. Therefore

〈
1M+

i
∪{e+

i
},1δ(T)

〉
= 1 =

〈
1M−

i
∪{e−

i
},1δ(T)

〉
.

Regarding the norm: every edge (with multiplicity) in z causes less than n/2 new edges (a partial
matching) to appear in y. Therefore ‖y‖1 ≤ (n/2 + 1)‖z‖1 ≤ n‖z‖1.

Our second lemma gives a bound on the number of alternating circuits we need to remove.
Its proof resembles that of Lemma 3.4 in [FGT16], but it is somewhat more complex, as we are
dealing with a node-weighted multigraph, as well as with alternating circuits instead of simple
cycles (see Section 8.2). We have made no attempt to minimize the exponent 17.
Lemma 8.21

There are polynomially many alternating circuits of node-weight at most 2λ in H, up to
identifying circuits with equal alternating indicator vectors. More precisely, the cardinality
of the set

{(±1)C : C is an alternating circuit in H of node-weight at most 2λ}

is at most n17.

Proof.
We will associate a small signature with each alternating circuit in H of node-weight at most
2λ, with the property that alternating circuits with different alternating indicator vectors are
assigned different signatures. This will prove that the considered cardinality is at most the
number of possible signatures, which is polynomially bounded.

Let C = (e0, e1, ..., ek−1) be an alternating circuit in H of node-weight at most 2λ. We want
to define its signature σ(C). To streamline notation, we let vi be the tail of ei for i = 0, . . . , k−1.
Thus C is of the form

v0
e0−→ v1

e1−→ . . .
ek−2−−−→ vk−1

ek−1−−−→ v0 .

19Formally, consider a perfect matching M+ (on G) in F ′ which is a superset of M+
i ∪ {e

+
i }. Then we have

|δ(T) ∩M+| = 1. But δ(T) ∩
(
M+

i ∪ {e
+
i }
)

= δ(T) ∩M+ because T ⊆ S.

108 A Quasi-NC Algorithm for Perfect Matching

1

9

11

1

4

5

3 1

4

e2

e1

e0

e9

e8

e7

e6
e5

e4

e3

i0

i1

i2

i3 1

9

11

1

4

5

3 1

4

1

1
g4

g3

g2

g1

f2

f1

i0

i1, a

b

ci2, d

i3

Figure 8.8: Intuition of the signature vector definition and the proof of Lemma 8.21.
On the left, each vertex is labeled by its node-weight, and the corresponding selection of
i0, i1, i2, i3 is shown for λ = 16. Notice that the selected vertices partition the alternating
circuit into paths; the total node-weight of internal vertices on each path is at most λ/2.
On the right we see two different alternating circuits with the same signature. They differ in
that one uses f2 and the other uses g3, g2, g1. The thick edges illustrate the alternating circuit
B = (f1, f2, g1, g2, g3, g4) of node-weight at most λ which leads to the contradiction. We walk
the dashed path (PD) in reverse.

(See also Figure 8.8 for an example.) We also let NW(vi) denote the node-weight of vertex vi,
and in(vi) = e(i−1) mod k and out(vi) = ei be the incoming and outgoing edges of vi in C.20 We
now define the signature σ(C) as the output of the following procedure:

• Let i0 = 0 be the index of the first vertex in C.
• For j = 1, 2, 3, select ij ≤ k to be the largest index satisfying

∑ij−1
i=ij−1+1 NW(vi) ≤ λ/2.

• Let t = max{j : ij < k} and output the signature σ(C) = ((−1)ij , in(vij), out(vij))j=0,1,...,t.
(Note that t ≤ 3.)

The intuition of the signature is as follows (see also the left part of Figure 8.8). The procedure
starts at the first vertex vi0 = v0. It then selects the farthest (according to C) vertex vi1 while
guaranteeing that the total node-weight of the vertices visited in-between vi0 and vi1 is at most
λ/2. Similarly, vi2 is selected to be the farthest vertex such that the total node-weight of the
vertices vi1+1, . . . , vi2−1 is at most λ/2, and i3 is selected in the same fashion. The indices
i0, i1, . . . , it thus partition C into paths

C0 = vi0
ei0−−→ vi0+1

ei0+1−−−→ . . .
ei1−2−−−→ vi1−1

ei1−1−−−→ vi1

C1 = vi1
ei1−−→ vi1+1

ei1+1−−−→ . . .
ei2−2−−−→ vi2−1

ei2−1−−−→ vi2
...

Ct = vit
eit−−→ vit+1

eit+1−−−→ . . .
ei0−2−−−→ vi0−1

ei0−1−−−→ vi0

20The functions in(v) and out(v) are not formally well-defined since they depend on the considered alternating
circuit C and on which occurrence of v in the circuit we are considering, but their values will be clear from the
context.

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 109

so that the total node-weight of the internal vertices on each path is at most λ/2. Indeed, for
Cj with j < 3 this follows from the selection of ij . For C3 (in the case t = 3), by maximality of
i1, i2 and i3 we have

i1∑
i=i0+1

NW(vi)︸ ︷︷ ︸
≥λ/2

+
i2∑

i=i1+1
NW(vi)︸ ︷︷ ︸
≥λ/2

+
i3∑

i=i2+1
NW(vi)︸ ︷︷ ︸
≥λ/2

≥ 3
2λ

and so the internal vertices of C3 can have node-weight at most λ/2 (the total node-weight of C
being at most 2λ).

We now count the number of possible signature vectors. As for each j there are at most n2

ways of choosing the incoming edge, at most n2 ways of choosing the outgoing edge, and ij can
have two different parities, the number of possible signatures is (summing over the choices of
t = 0, 1, 2, 3) at most

(
2n2 · n2)+

(
2n2 · n2)2 +

(
2n2 · n2)3 +

(
2n2 · n2)4 < n17.

It remains to be shown that any two alternating circuits C and D in H of node-weight at most
2λ have different signatures if (±1)C 6= (±1)D. Suppose that (±1)C 6= (±1)D but σ(C) = σ(D).
We would like to derive a contradiction with the assumption (in Theorem 8.18) that H contains
no alternating circuit of node-weight at most λ. This will finish the proof.

As described above, C can be partitioned into disjoint paths C0, . . . , Ct using its indices
i0, . . . , it. Similarly we partition D into D0, . . . , Dt. Since these are disjoint unions, (±1)C 6=
(±1)D implies that at least one of the four subpaths must be different between C and D, in
the sense that the part of the alternating indicator vector arising from that subpath is different.
More formally, let bj denote the parity (i.e., the first element) of the j-th tuple in the signatures
σ(C) = σ(D). Then we have (±1)C =

∑t
j=0 bj · (±1)Cj

and (±1)D =
∑t
j=0 bj · (±1)Dj

.
Therefore, as (±1)C 6= (±1)D, there must be a j ∈ {0, . . . , t} such that (±1)Cj

6= (±1)Dj
. We

will “glue” together the paths Cj and Dj to obtain another alternating circuit B.
First notice that both Cj and Dj are paths of the form vij = a → b → · · · → c → d =

vi(j+1) mod t
, where the segment from b to c differs between them.21 This follows from the assump-

tion that σ(C) = σ(D). Let PC denote the path from b to c in Cj and let PD denote the path
from b to c in Dj . As the parity fields of the signatures agree, we have that |PC |+ |PD| is even.
Now let B be the cyclic walk of even length obtained by walking from b to c along the path PC
and back from c to b along the path PD (in reverse). That is, B is of the form (see also the right
part of Figure 8.8)

b
f1−→ . . .

f|PC |−−−→ c
g1−→ . . .

g|PD|−−−→ b ,

where we let f1, . . . , f|PC | denote the edges of the path PC and g1, . . . , g|PD| denote the edges
of the reversed path PD. To verify that B is an alternating circuit we need to show that its

21Here again we slightly abuse notation since ij might differ between C and D; however, the vertex vij does
not, because it is the tail of eij , which is part of the signature σ(C) = σ(D). The same applies to vij+1 mod t

.

110 A Quasi-NC Algorithm for Perfect Matching

alternating indicator vector is nonzero:

−(±1)B =
|PC |∑
i=1

(−1)i1fi +
|PD|∑
i=1

(−1)|PC |+i1gi

=

(−1)0
1out(a) +

|PC |∑
i=1

(−1)i1fi
+ (−1)|PC |+1

1in(d)


︸ ︷︷ ︸

=(±1)Cj

+

(−1)|PC |+2
1in(d) +

|PD|∑
i=1

(−1)|PC |+2+i
1gi + (−1)|PC |+|PD|+3

1out(a)


︸ ︷︷ ︸

=−(±1)Dj

.

The second equality is easiest to see by mentally extending B from a circuit b→ ...→ c→ ...→ b

to a → b → ... → c → d → c → ... → b → a. Also recall that |PC | + |PD| is even. Thus we get
(±1)B = −(±1)Cj + (±1)Dj , which is nonzero by the choice of j. Finally, the node-weight of B
is at most the node-weight of the internal nodes of path Cj plus the node-weight of the internal
nodes of path Dj and thus at most λ/2 + λ/2 = λ.

We have thus shown that B is a nonempty cyclic walk of even length whose alternating
indicator vector is nonzero – thus an alternating circuit – and whose node-weight is at most λ.
This contradicts our assumption on H.

Now we have all the tools needed to prove the main result of this section.

Proof of Theorem 8.18.
Let us fix some w ∈ W. We want to articulate conditions on w which will make sure that the
statement is satisfied. Then we show that some w ∈ W satisfies these conditions.

Let C be any alternating circuit in H of node-weight at most 2λ. Our condition on w will be
that all such circuits C should not respect F [w], i.e., that all vectors from the set

Z := {(±1)C : C is an alternating circuit in H of node-weight at most 2λ}

should not respect F [w]. We use Lemma 8.20 to transform each z ∈ Z (z ∈ ZE(H)) to a vector
y = y(z) ∈ ZE such that if y(z) does not respect F [w], then z does not respect F [w]. Let
Y = {y(z) : z ∈ Z}. Clearly |Y| ≤ |Z| (actually |Y| = |Z| since the mapping z 7→ y(z) is
one-to-one), and |Z| ≤ n17 by Lemma 8.21. Moreover, since the alternating circuits C were of
node-weight at most 2λ ≤ 4n, we have ‖z‖1 ≤ 4n for z ∈ Z and ‖y‖1 ≤ 4n2 for y ∈ Y. Now it is
enough to apply Corollary 8.6 to obtain that there exists w ∈ W(n3 · n17) = W such that each
y ∈ Y does not respect the face F [w], and thus each z ∈ Z does not respect F [w].

8.4.2 The existence of a good weight function
In this section, we use Theorem 8.18 to prove the existence of a weight function defining a face
Fout with the desired properties (so as to be the face in our 2λ-good face-laminar pair), namely:

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 111

Theorem 8.22
Let (Fin,Lin) be a λ-good face-laminar pair. Then there exists a weight function wout ∈
W log2(n)+1 such that the face Fout = Fin[wout] satisfies:

(i)’ For each S ∈ Lin with |S| ≤ 2λ, S is Fout-contractible.

(ii)’ In the (Fout,Lin, 2λ)-contraction of G, there is no Fout-respecting alternating circuit of
node-weight at most 2λ.

Throughout this section, Fin and Lin are as in the statement of Theorem 8.22. The proof
of Theorem 8.22 is based on the following technical lemma.
Lemma 8.23

There exists a weight function wmid ∈ W log2 n such that the face Fmid = Fin[wmid] satisfies:

(i)’ For each S ∈ Lin with |S| ≤ 2λ, S is Fmid-contractible.

Before giving the proof of Lemma 8.23 let us see how it, together with Theorem 8.18, readily
implies Theorem 8.22. In short, once we have made sets of size up to 2λ contractible using
Lemma 8.23, we are only left with removing alternating circuits of node-weight between λ and
2λ. One application of Theorem 8.18 is enough to achieve this.

Proof of Theorem 8.22.
Lemma 8.23 says that there is a weight function wmid ∈ W log2(n) such that the face Fmid = Fin[wmid]
satisfies that every S ∈ Lin with |S| ≤ 2λ is Fmid-contractible. As we will obtain Fout as a subface
of Fmid, we have thus proved point (i)′ of Theorem 8.22, as any set that is Fmid-contractible will
remain contractible in any subface of Fmid (by Fact 8.8).

By the above, every vertex in the (Fmid,Lin, 2λ)-contraction of G corresponds to an Fmid-
contractible set. Moreover, by the assumption that the face-laminar pair (Fin,Lin) is λ-good, the
(Fin,Lin, λ)-contraction of G does not have any alternating circuits of node-weight at most λ.
This implies that the (Fmid,Lin, 2λ)-contraction of G does not have any such alternating circuits.
For suppose C were one. Let S1, ..., Sk be maximal sets of size at most 2λ in Lin, i.e., the vertices
of the (Fmid,Lin, 2λ)-contraction of G. Note that C cannot cross a set Si with |Si| > λ, because
then its node-weight would be larger than λ. Therefore C only crosses sets Si with |Si| ≤ λ.
Thus C also appears in the (Fmid,Lin, λ)-contraction of G, with the same node-weight, and in the
(Fin,Lin, λ)-contraction (of which the (Fmid,Lin, λ)-contraction is a subgraph) as well. This is a
contradiction.

We can thus apply Theorem 8.18 with β = 2λ to the face-laminar pair (Fmid,Lin). We get
a weight function w ∈ W such that the (Fmid,Lin, 2λ)-contraction has no Fmid[w]-respecting al-
ternating circuit of node-weight at most 2λ. Therefore, as the (Fmid[w],Lin, 2λ)-contraction is
a subgraph of the (Fmid,Lin, 2λ)-contraction, the face Fout = Fmid[w] satisfies (ii)′. Selecting
wout = wmid ◦ w ∈ W log2(n)+1 completes the proof (by Fact 7.19).

The rest of this section is devoted to the proof of Lemma 8.23. Recall that we need to prove
the existence of a weight function wmid ∈ W log2(n) satisfying (i)′, i.e., that

for each S ∈ Lin with |S| ≤ 2λ, S is Fmid-contractible,

112 A Quasi-NC Algorithm for Perfect Matching

S
(1)
1

S
(3)
2

S
(3)
1

S
(2)
3

S
(2)
2

S
(2)
1

e1

e3

Figure 8.9: An example of the laminar family L, which consists of disjoint chains. The different
shades of gray depict the sets U (i)

p .

where Fmid = Fin[wmid]. First note that the statement will be true for every S ∈ Lin with |S| ≤ λ,
regardless of the choice of the weight function wmid. Indeed, by assumption (Fin,Lin) is λ-good and
so S is Fin-contractible. Thus, by Fact 8.8, S remains Fmid-contractible for any subface Fmid ⊆ Fin.

It remains to deal with the sets S ∈ Lin with λ < |S| ≤ 2λ. Let L = {S ∈ Lin : λ < |S| ≤ 2λ}
be the laminar family Lin restricted to these sets. Notice that any set in L can have at most one
child in L due to the cardinality constraints. In other words, L consists of disjoint chains, as
depicted in Figure 8.9.

Notation. We refer to the sets in the i-th chain of L by Li. Let `i = |Li| and index the sets
of the chain Li = {S(i)

1 , S
(i)
2 , . . . , S

(i)
`i
} so that S(i)

1 ⊆ S
(i)
2 ⊆ · · · ⊆ S

(i)
`i

. Let U (i)
1 = S

(i)
1 and

U
(i)
p = S

(i)
p \ S(i)

p−1 for p = 2, 3, . . . , `i. Also define U (i)
p,r = U

(i)
p ∪ U (i)

p+1 ∪ · · · ∪ U
(i)
r .

Recall that a set U (i)
1,r = S

(i)
r is defined to be F -contractible if for every er ∈ δ(U (i)

1,r) there are
no two perfect matchings in F which both contain er and are different inside U (i)

1,r (Definition 8.7).
For the proof of Lemma 8.23, we generalize this definition to also include sets U (i)

p,r with p ≥ 2.
Definition 8.24

Consider a face F . We say that a set U (i)
p,r with 2 ≤ p ≤ r ≤ `i is F -contractible if for every

ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) there are no two perfect matchings in F which both contain
ep−1 and er and are different inside U (i)

p,r. (It is possible that ep−1 = er, in which case neither
endpoint of this edge lies in U (i)

p,r.)

The intuition of this definition is similar to that of Definition 8.7. Consider the second chain
in Figure 8.9 for an example. If we restrict our attention to perfect matchings that contain
edges e1 ∈ δ(S(2)

1) and e3 ∈ δ(S(2)
3), then, as S(2)

1 are S(2)
3 are tight sets, the task of selecting

such a matching decomposes into two independent problems: the problem of selecting a perfect
matching in U

(2)
2,3 (ignoring the vertices incident to e1 and e3) and the problem of selecting a

perfect matching in V \ U (2)
2,3 (again ignoring the vertices incident to e1 and e3).

The proof now proceeds iteratively as follows.

• First we select w1 ∈ W such that F1 = Fin[w1] satisfies:

U
(i)
p is F1-contractible for all chains i and 1 ≤ p ≤ `i. (8.1)

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 113

• For t = 2, 3, . . . , log2(n) we select wt ∈ W such that Ft = Ft−1[wt] satisfies:

U
(i)
p,r is Ft-contractible for all chains i and 1 ≤ p ≤ r ≤ `i with r − p ≤ 2t−1 − 1. (8.2)

We remark that, having selected w1, w2, . . . , wlog2(n) as above, if we let wmid = w1 ◦ w2 ◦ . . . ◦
wlog2(n) ∈ W log2(n), then the face Fmid = Fin[wmid] equals Flog2(n) (by Fact 7.19). To see that
this completes the proof of Lemma 8.23, note that `i < n/2 for any chain i since |S(i)

1 | > λ =
(2λ)/2 ≥ |S(i)

`i
|/2 and |S(i)

`i
| ≤ n. Therefore any set S(i)

r ∈ L has r ≤ n/2 and so, by (8.2),
S

(i)
r = U

(i)
1,r is Fmid-contractible.

In what follows, we complete the proof of Lemma 8.23 with a description of how to select w1,
followed by the selection of wt, t = 2, 3, . . . , log2(n), in the iterative case.

The selection of w1

The following claim allows us to use Theorem 8.18 to show the existence of a weight function w1
satisfying (8.1).
Claim 13

If the (Fin,Lin, λ)-contraction of G has no F1-respecting alternating circuit of node-weight at
most 2λ, then every U (i)

p is F1-contractible.

The claim together with Theorem 8.18 completes the selection of w1 as follows. Since (Fin,Lin)
is λ-good, we can apply Theorem 8.18 with β = λ to obtain the existence of a weight function
w1 ∈ W such that in the (Fin,Lin, λ)-contraction of G there is no F1-respecting alternating circuit
of node-weight at most 2λ, where F1 = Fin[w1]. Hence, by the above claim, every U (i)

p is F1-
contractible as required.

Proof of Claim 13.
This proof resembles that of Lemma 8.16. Fix U (i)

p and let ep−1 ∈ δ(S(i)
p−1) and ep ∈ δ(S(i)

p).22

Suppose that M1 and M2 are two perfect matchings in F1 that both contain ep−1 and ep. We
want to show that M1 and M2 are equal inside U (i)

p .
Let S1, ..., Sk be all maximal sets S ∈ Lin with S ⊆ U

(i)
p . They are those vertices of the

(Fin,Lin, λ)-contraction which lie in U
(i)
p , and we have S1 ∪ ... ∪ Sk = U

(i)
p . Because these sets,

as well as S(i)
p−1 and S

(i)
p , are tight for F1, any perfect matching in F1 containing ep−1 and ep

induces an almost-perfect matching on S1, ..., Sk, that is, one where only the (up to two) sets Si
containing endpoints of ep−1 and ep are unmatched (see the left part of Figure 8.10).

If the matchings induced byM1 andM2 were different, then their symmetric difference would
induce an alternating simple cycle C in the graph obtained from E(Fin) by contracting S1, ..., Sk.
The cycle C would also be present in the (Fin,Lin, λ)-contraction. This is because S1, ..., Sk are
maximal sets of size at most λ in Lin, so they are indeed vertices of the contraction, and because
the edges between these vertices are not on the boundary δ(T) of any T ∈ Lin with |T | > λ (in
which case they would be missing from the contraction), which in turn follows by laminarity of
Lin and the definition of U (i)

p .

22Here and in Section 8.4.2, we abuse notation and assume p ≥ 2. The only difference is that, given a set U(i)
p,r

with p = 1 (in this section p = r), we consider matchings containing one edge er ∈ δ(S(i)
r) instead of matchings

containing two edges ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r), since if p = 1, the set S(i)
p−1 is not defined.

114 A Quasi-NC Algorithm for Perfect Matching

S
(i)
p−1 S

(i)
p

ep−1

ep

Claim 13

S
(i)
p−1 S

(i)
r

ep−1
er

Claim 14

S
(i)
p−1 S

(i)
q S

(i)
r

ep−1
er

eq

Claim 15

Figure 8.10: An illustration of the claims used in the proof of Lemma 8.23.
Claim 13: Straight and swirly edges denote M1 and M2 respectively. The thick edges denote
the alternating cycle. The dark-gray sets are S1, ..., Sk.
Claim 14: Straight and swirly edges denote M1 and M2 respectively. The thick edges denote
M12, which agrees with M1 outside U (i)

p,r and with M2 inside U (i)
p,r.

Claim 15: The divide-and-conquer argument is illustrated (only edges ep−1, eq, and er are
depicted). After fixing ep−1 and eq, the matching in the light-gray area is unique in the face
Ft−1. Similarly, after fixing eq and er, the matching in the dark-gray area is unique in the face
Ft−1. Thus, for each choice of ep−1 and er, there can be at most one matching inside U (i)

p,r for
each possible way of fixing eq. It follows that there are at most n2 matchings inside U (i)

p,r that
contain ep−1 and er.

Since C arises from two matchings in F1, it respects F1. This follows by a similar argument
as the proof of Claim 12, which we repeat here for completeness. Clearly, supp(C) ⊆ M1 ∪
M2 ⊆ E(F1). Let T ∈ S(F1) be a set tight for F1 which is a union of the vertices of the
contraction; we want to show that

〈
(±1)C ,1δ(T)

〉
= 0. Because C is a cycle in the contraction

and |M1 ∩ δ(T)| = |M2 ∩ δ(T)| = 1, either C has no edge in δ(T) or it has two, one from M1 and
one from M2 (and they cancel out).

Moreover, since C is a simple cycle inside U (i)
p , its node-weight is at most |S1|+ . . .+ |Sk| =

|U (i)
p | ≤ 2λ. This contradicts our assumption.
Therefore, the induced matchings must be equal. Moreover, the sets S1, ..., Sk are F1-

contractible, since they are vertices of the (Fin,Lin, λ)-contraction, (Fin,Lin) is λ-good, and F1 ⊆
Fin. This means that, given the boundary edges (i.e., the induced matching plus ep−1 and ep),
there is a unique perfect matching in F1 inside each Si. It follows that M1 and M2 are equal
inside U (i)

p .

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 115

The selection of wt for t = 2, 3, . . . , log2(n)
In this section we show the existence of a weight function wt ∈ W satisfying (8.2), i.e.,

U
(i)
p,r is Ft-contractible for all chains i and 1 ≤ p ≤ r ≤ `i with r − p ≤ 2t−1 − 1,

where Ft = Ft−1[wt].
The proof outline is as follows. First, in Claim 14, we give sufficient conditions on wt for U (i)

p,r

to be Ft-contractible. They are given as a system of linear non-equalities with coefficients in
{−1, 0, 1}. Then, in Claim 15, we upper-bound the number of these non-equalities by n11. This
allows us to deduce the existence of wt ∈ W by applying Lemma 8.5.

The following claim gives sufficient linear non-equalities on wt for every U
(i)
p,r to be Ft-

contractible (one non-equality for each choice of U (i)
p,r, ep−1, er, M1 and M2).

Claim 14

Let U = U
(i)
p,r for some chain i and 1 ≤ p ≤ r ≤ `i. Suppose that for every two edges

ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) defining a face F = {x ∈ Ft−1 : xep−1 = 1, xer
= 1} we have:

wt(M1 ∩ E(U)) 6= wt(M2 ∩ E(U)) for any two matchings M1,M2 in F that differ inside U .

Then U is Ft-contractible.

Proof.
We prove the contrapositive. Suppose that U is not Ft-contractible. Then, by definition, there
must be ep−1 ∈ δ(S(i)

p−1) and er ∈ δ(S(i)
r) that define a face F ′ = {x ∈ Ft : xep−1 = 1, xer

= 1}
such that there are two matchings M1 and M2 in F ′ that differ inside U . Notice that F ′ ⊆ F =
{x ∈ Ft−1 : xep−1 = 1, xer

= 1}. Therefore M1 and M2 are also two matchings in F that differ
inside U .

We complete the proof of the claim by showing that

wt(M1 ∩ E(U)) = wt(M2 ∩ E(U)) . (8.3)

Define

M12 = (M1 \ E(U)) ∪ (M2 ∩ E(U))

to be the perfect matching that agrees with M1 on all edges not in E(U) and agrees with M2 on
all edges in E(U) (see the central part of Figure 8.10 for an example). By the same argument
as in the proof of Lemma 8.9, M12 is a perfect matching in F ′. It differs from M1 inside U and
agrees with M1 outside U .

We now use that M1 and M12 are perfect matchings in F ′ to prove (8.3). As Ft = Ft−1[wt]
is the convex-hull of matchings in Ft−1 that minimize the objective function wt, all matchings
M in Ft and in its subface F ′ have the same weight wt(M). In particular,

wt(M1 \ E(U)) + wt(M1 ∩ E(U)) = wt(M1) = wt(M12) = wt(M1 \ E(U)) + wt(M2 ∩ E(U))

and thus wt(M1 ∩ E(U)) = wt(M2 ∩ E(U)) as required.

116 A Quasi-NC Algorithm for Perfect Matching

The above claim says that it is sufficient to write down a non-equality for each choice of U (i)
p,r,

ep−1, er, M1, and M2. It is easy to upper-bound the number of ways of choosing i, p, r, ep−1,
and er. The following claim bounds the number of ways of choosing M1 and M2. Its proof is
based on a divide-and-conquer strategy (see the right part of Figure 8.10). It uses the inductive
assumption that U (i)

p,r is Ft−1-contractible for all chains i and 1 ≤ p ≤ r ≤ `i with r−p ≤ 2t−2−1.

Claim 15

Let U = U
(i)
p,r with r−p ≤ 2t−1−1 and define q = b(p+r)/2c. For any two edges ep ∈ δ(S(i)

p−1)
and er ∈ δ(S(i)

r) defining a face F = {x ∈ Ft−1 : xep−1 = 1, xer
= 1} we have

|{M ∩ E(U) : M is a matching in F}| ≤ |δ(S(i)
q) ∩ E(F)| ≤ n2 .

We remark that the first inequality holds with equality, but we only need the inequality.

Proof.
The second inequality in the statement is trivial. We prove the first.

As we have S(i)
q ∈ Lin ⊆ S(Fin) and F ⊆ Ft−1 ⊆ Fin, the set S(i)

q is tight for F . Thus any
matching M in F must satisfy M ∩ δ(S(i)

q) = {eq} for some edge eq ∈ δ(S(i)
q) ∩ E(F).

We prove the statement by showing that for every choice of eq, any matching M in the face
Feq

= {x ∈ F : xeq
= 1} matches the nodes in U (i)

p,r in a unique way. In other words, we show
that |{M ∩ E(U) : M is a matching in Feq

}| ≤ 1 for every eq ∈ δ(S(i)
q) ∩ E(F), which implies

|{M ∩ E(U) : M is a matching in F}| ≤
∑

eq∈δ(S(i)
q)∩E(F)

|{M ∩ E(U) : M is a matching in Feq
}|

≤ |δ(S(i)
q) ∩ E(F)| .

To prove that |{M ∩ E(U) : M is a matching in Feq}| ≤ 1, suppose the contrary, i.e., that
|{M ∩ E(U) : M is a matching in Feq}| ≥ 2. Take two such matchings M1 and M2 that differ
inside U . By the definition of Feq we have M1 ∩ δ(S(i)

q) = M2 ∩ δ(S(i)
q) = {eq} and so M1 and

M2 must differ inside U (i)
p,q or inside U (i)

q+1,r; assume the former (the argument for the other case
is the same). Notice that M1 and M2 are two matchings in Feq ⊆ Ft−1 which both contain
ep−1 and eq but differ inside U (i)

p,q, which contradicts that U (i)
p,q is Ft−1-contractible. (Note that

q − p ≤ (r − p)/2 ≤ 2t−2 − 1/2, which implies that q − p ≤ 2t−2 − 1.)

We now have all the needed tools to show the existence of a weight function wt ∈ W such that
the face Ft = Ft−1[wt] satisfies (8.2), i.e., that for all chains i and 1 ≤ p ≤ r ≤ `i with r − p ≤
2t−1−1, U (i)

p,r is Ft-contractible. By Claim 14, this holds if for any U = U
(i)
p,r with r−p ≤ 2t−1−1

and for any ep−1 ∈ δ(S(i)
p−1) and er ∈ δ(S(i)

r) defining a face F = {x ∈ Ft−1 : xep−1 = 1, xer
= 1}

we have the following:

wt(M1 ∩ E(U))− wt(M2 ∩ E(U)) 6= 0 for any two matchings M1,M2 in F that differ inside U .

There are at most n ways of choosing i, n ways of choosing p, n ways of choosing r, n2

ways of choosing ep−1, n2 ways of choosing er, and by Claim 15 there are at most n4 ways of
choosing M1 and M2. In total, we can write the sufficient conditions on the weight function

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 117

wt as a system of at most n11 linear non-equalities with coefficients in {−1, 0, 1}. It follows
by Lemma 8.5 that there is a weight function wt ∈ W(n14) ⊆ W(n20) = W satisfying these
conditions. This completes the selection of wt and the proof of Lemma 8.23.

8.4.3 A maximal laminar family completes the proof
In Theorem 8.22 we have demonstrated the existence of a weight function wout that defines a
face Fout with properties (i)′ and (ii)′. We now show that extending Lin to a maximal laminar
family Lout of S(Fout) yields a 2λ-good face-laminar pair. Such an extension is possible because
Lin consists of sets that are tight for Fin and thus also for Fout. As explained in the beginning
of Section 8.4, this will complete the proof of Theorem 8.15.

Why a maximal laminar family? Part of our argument so far was about removing certain
alternating circuits C. In other words, we have made C not respect the new face Fout. This means
either not having some edge from supp(C) in the support E(Fout) of Fout, or introducing a new
odd-set S which is tight for Fout and such that

〈
(±1)C ,1δ(S)

〉
6= 0. In the latter case, we want

to have an odd-set with this property also in the new laminar family Lout, so that the removal of
C is reflected in the new contraction (which is based on Lout). Lemma 8.19 guarantees that this
will happen if we choose Lout to be a maximal laminar subset of S(Fout).
Lemma 8.25

Let (Fin,Lin) be a λ-good face-laminar pair and Fout ⊆ Fin be the face guaranteed by Theo-
rem 8.22. Then (Fout,Lout) is a 2λ-good face-laminar pair, where Lout is any maximal laminar
family with Lin ⊆ Lout ⊆ S(Fout).

Proof of Lemma 8.25.

Recall that Theorem 8.22 guarantees that:

(i)’ each S ∈ Lin with |S| ≤ 2λ is Fout-contractible,

(ii)’ in the (Fout,Lin, 2λ)-contraction of G, there is no alternating circuit of node-weight at most
2λ which respects Fout.

We want to show that the pair (Fout,Lout) satisfies Definition 8.13, that is,

(i) each S ∈ Lout with |S| ≤ 2λ is Fout-contractible,

(ii) in the (Fout,Lout, 2λ)-contraction of G, there is no alternating circuit of node-weight at most
2λ.

Property (i). Fix a set S ∈ Lout with |S| ≤ 2λ. Let S1, ..., Sk be all maximal subsets of S in Lin

(we have S = S1 ∪ ... ∪ Sk). If S is contained in a set from Lin of size at most 2λ, then that set
is Fout-contractible by (i)′, and thus S is Fout-contractible by Lemma 8.9. So assume that is not
the case; therefore, by laminarity, each Si is a maximal set of size at most 2λ in Lin, that is, a
vertex of the (Fout,Lin, 2λ)-contraction of G. By (i)′, each Si is Fout-contractible.

Now the proof proceeds as in Claim 13. We present it for completeness. Let M1 and M2 be
two perfect matchings in Fout which both contain an edge e ∈ δ(S). We want to show that M1
and M2 are equal inside S. Because S and S1, ..., Sk are tight for Fout, any perfect matching (on

118 A Quasi-NC Algorithm for Perfect Matching

S ∈ V (Hout)

T

e1 e2

S1 = Se1 S2 S3 S4 S5 = Se2

S6 S7

Figure 8.11: The construction of the path Pe1e2 inside a set S ∈ V (Hout) in the proof of
Property (ii). The dark-gray sets correspond to vertices of Hin that are subsets of S. The
straight and swirly edges depict matchings M1 and M2, respectively. The path Pe1e2 is depicted
by fat edges.

G) in Fout containing e induces an almost-perfect matching on S1, ..., Sk, that is, one where only
the set Si containing the S-endpoint of e is unmatched.

If the matchings induced byM1 andM2 were different, then their symmetric difference would
contain an alternating simple cycle in the (Fout,Lin, 2λ)-contraction. Since this cycle arises from
two matchings in Fout, it respects Fout. Moreover, since it is a simple cycle inside S, its node-weight
is at most |S1|+ . . .+ |Sk| = |S| ≤ 2λ. This would contradict our assumption (ii)’.

Therefore the induced matchings must be equal. Moreover, the sets S1, ..., Sk are Fout-
contractible, which means that, given the boundary edges (i.e., the induced matching plus e),
there is a unique perfect matching in Fout inside each Si. It follows that M1 and M2 are equal
inside S.

Property (ii). Let Hout be the (Fout,Lout, 2λ)-contraction of G and let Hin be the (Fout,Lin, 2λ)-
contraction of G. Thus Hout can also be obtained by further contracting Hin, as well as removing
all edges that are in the boundaries of sets S ∈ Lout \ Lin with |S| > 2λ. This will be our
perspective. Suppose towards a contradiction that there is an alternating circuit Cout in Hout of
node-weight at most 2λ.

To obtain a contradiction, we are going to lift Cout back to an Fout-respecting alternating circuit
Cin in Hin, which should not exist by (ii)′. (This is in the same spirit as the proof of Lemma 8.20.)
Namely, whenever Cout visits a vertex S ∈ V (Hout), we connect up the dangling endpoints of this
visit inside S to obtain a walk in Hin. More precisely, let e1 and e2 be two consecutive edges of
Cout, whose common endpoint in Hout is S. Between them, we insert a simple path Pe1e2 inside
the image of S in Hin, which is constructed as follows.

Since e1, e2 ∈ supp(Cout) ⊆ E(Fout), there exist matchingsM1 andM2 (on G) in Fout containing
e1 and e2, respectively. Let S1, ..., Sk be all maximal subsets of S in Lin (Si are vertices of Hin

and we have S = S1 ∪ ...∪Sk). Denote by Se1 and Se2 the sets Si which contain the S-endpoint
of e1 and e2, respectively. The sets S and S1, ..., Sk are tight for Fout, so M1 induces a perfect
matching on {S1, ..., Sk} \ {Se1} (and similarly for M2 and e2). The symmetric difference of
these two induced matchings contains a simple path Pe1e2 from Se1 to Se2 in Hin which has even
length (possibly 0). For an example, see Figure 8.11. We obtain Cin by inserting such a path
Pe1e2 between each two consecutive edges e1, e2 in Cout.

8.4 Proof of the key Theorem 8.15: from λ-good to 2λ-good 119

To obtain a contradiction, we need to prove that Cin is an alternating circuit of node-weight
at most 2λ which respects Fout.

• That Cin is an alternating circuit follows by construction because each path Pe1e2 is of even
length and the alternating indicator vector of Cin is nonzero since it contains the alternating
indicator vector of Cout (via the natural mapping of edges).

• For the node-weight, note that in Cout, the visit to S (on the edge e1) incurs a node-weight
increase of |S|, whereas in Cin, the visit to a certain subset of {S1, ..., Sk} (on e1 and Pe1e2)
incurs an increase of at most |S1|+. . .+|Sk| = |S| because Pe1e2 is a simple path. Therefore
the node-weight of Cin is at most that of Cout – at most 2λ.

• To see that Cin respects Fout, we use the assumption that Lout is a maximal laminar subset
of S(Fout). This is in similar spirit as the proof of Claim 12. To work around the fact that
we are dealing with the contraction, we use the following version of Lemma 8.19:
Claim 16

Consider a vector z ∈ ZE(Hin). If for each T ∈ Lout which is a union of sets in V (Hin)
we have

〈
z,1δ(T)

〉
= 0, then the same holds for each T ∈ S(Fout) which is a union of

sets in V (Hin).

Let us defer the proof of Claim 16 and first use it to show that Cin respects Fout. We verify the
conditions of Definition 8.12. First, note that supp(Cin) ⊆ E(Fout) by construction. Second,
let T ∈ S(Fout) be a union of vertices of Hin; we need to show that

〈
(±1)Cin ,1δ(T)

〉
= 0.

By Claim 16, we may assume that T ∈ Lout. We consider two cases:

– If |T | > 2λ, then all boundary edges of T are absent from Hout (see Definition 8.11),
so supp(Cout) ∩ δ(T) = ∅. In this case T is a union of vertices of Hout and so no path
Pe1e2 contains any edges from δ(T) either. Hence supp(Cin) ∩ δ(T) = ∅.23

– If |T | ≤ 2λ, then T must be contained in a single set S ∈ V (Hout) (as depicted
in Figure 8.11). This is because T ∈ Lout and the sets S ∈ V (Hout) are maximal
sets S ∈ Lout with |S| ≤ 2λ. For every path Pe1e2 inside S, the path e1, Pe1e2 , e2 is
a path from outside of S to outside of S which is part of the symmetric difference
of two matchings in Fout. If this path enters T , it must also leave T . Suppose it
entered T on an edge of the first matching. Then it must exit T on an edge of the
second matching, since T ∈ Lout ⊆ S(Fout) is tight for Fout and both matchings are
in Fout, and so the corresponding ±1 terms cancel out. Abusing notation, we have〈
(±1)e1,Pe1e2 ,e2 ,1δ(T)

〉
= 0. Since this holds for every path Pe1e2 inside S, we get〈

(±1)Cin ,1δ(T)
〉

= 0 as required.

Thus Cin is an alternating circuit of node-weight at most 2λ which respects Fout. Its existence
contradicts (ii)′. We conclude with the proof of Claim 16:

Proof of Claim 16.
We wish to reduce our setting to that of Lemma 8.19. Define H ′in to be the graph obtained
from (V,E(Fout)) by contracting all maximal sets S ∈ Lin with |S| ≤ 2λ, but not erasing the

23Here we take advantage of the fact that the boundaries of large sets are erased in the definition of the
contraction. If they were not erased, we would be unable to proceed, as there would be no reason for Cout (and
thus Cin) to respect Fout.

120 A Quasi-NC Algorithm for Perfect Matching

boundaries of sets S ∈ Lin with |S| > 2λ. (If we did erase them, we would obtain Hin; instead,
we have V (Hin) = V (H ′in) and E(Hin) ⊆ E(H ′in).)

Next, we define F ′out to be the image of Fout in H ′in. More precisely, since the contracted
sets S ∈ Lin with |S| ≤ 2λ are tight for Fout, each perfect matching on G in Fout induces a
perfect matching on H ′in. We let F ′out be the convex hull of the indicator vectors of these induced
matchings. Note that there is a one-to-one correspondence between subsets of V (Hin) that are
tight for F ′out and subsets of V that are tight for Fout and are unions of sets in V (Hin).

Finally, Lout also naturally maps to a laminar family L′out of subsets of vertices of H ′in since
Lin ⊆ Lout. Specifically, there is a set in L′out corresponding to each set in Lout that is a union of
sets in V (H ′in). Note that each set in L′out is still tight for F ′out, and that L′out is still a maximal
subset of S(F ′out). Indeed, if it were possible to add any set in S(F ′out) to L′out while maintaining
laminarity, then that set could be mapped back to a set in S(Fout) and used to enlarge Lout.

Now, by assumption, for each T ∈ Lout which is a union of sets in V (Hin) we have
〈
z,1δ(T)

〉
= 0.

This is equivalent to saying that
〈
z,1δ(T ′)

〉
= 0 for each T ′ ∈ L′out. By Lemma 8.19 (applied to

H ′in, F ′out, and L′out), we have the same for all T ′ ∈ S(F ′out). Finally, that is equivalent to having〈
z,1δ(T)

〉
= 0 for each T ∈ S(Fout) which is a union of sets in V (Hin).

This concludes the proof of Property (ii) and Lemma 8.25.

Chapter 9

Conclusion

In this thesis we have developed new algorithms for two fundamental graph problems: the trav-
eling salesman problem and perfect matching. In Part I we gave a constant-factor approximation
algorithm for the Asymmetric TSP, and in Part II we gave a deterministic algorithm that solves
perfect matching in polylogarithmic time while using a quasi-polynomial number of processors.
Even though these problems are combinatorial in nature, our solutions in both cases crucially
utilize the continuous linear programming formulations for these problems and extract from them
a laminar structure of sets on which we then make progress by performing contractions. This
serves as strong evidence of the power of polyhedral techniques.

We believe that, in general, an improved understanding of polytopes associated with combina-
torial optimization problems can lead to further advances in the design and analysis of algorithms
for these problems. Indeed, on the analysis side, for many problems the known LP relaxations
outperform the integrality gap upper bounds that we know for them – not just in practice, but
on all instances we have tried. This is certainly the case for ATSP and the Held-Karp relaxation,
where our upper bound of 319, though constant, is very far from the lower bound of 2 [CGK06].

Open question 1
Is the integrality gap of the Held-Karp relaxation for ATSP upper-bounded by 2?

On the algorithmic side, the gap in our understanding is even wider: 506 versus 75/74 [KLS13].
The decrease of the approximation ratio from 5500 [STV18a] to 506 was brought about by a
more careful design and analysis of the algorithm, but we believe that in order to obtain another
order-of-magnitude improvement, substantially new ideas will be required. We raise this as an
important open problem.
Open question 2

Is there a 50-approximation algorithm for ATSP?

We hope that the modularity of our framework for ATSP will facilitate new developments. In
particular, the reduction of Theorem 3.4 should find wide applicability as it induces no loss
in the approximation guarantee. Moreover, it is a significant open problem to improve the
approximation ratio for the special case of node-weighted or singleton instances.

Another approach to ATSP that has been hoped to yield a constant-factor approximation
algorithm is based on thin spanning trees. Given a vector x ∈ RE (here: an optimum solution to

121

122 Conclusion

the Held-Karp relaxation), we say that a tree T is α-thin if for every S ⊆ V we have |T ∩ δ(S)| ≤
α · x(δ(S)). Asadpour et al. [AGM+10] proved that given an α-thin tree, one can find a tour
that is an O(α)-approximation with respect to the Held-Karp relaxation. They also showed how
to efficiently obtain trees of thinness O

(
logn

log logn

)
, and Anari and Oveis Gharan [AG15] proved

the existence of poly(log logn)-thin trees. Our algorithm does not imply any new result in this
context, and the following question remains unanswered:
Open question 3

Does every graph have an O(1)-thin spanning tree? If so, how to find one efficiently?

A related problem is Bottleneck TSP: given a complete graph with metric edge weights (i.e.,
ones satisfying the triangle inequality), find a Hamiltonian cycle that minimizes the maximum
edge weight (rather than the sum). Note that here every vertex must be visited exactly once.
The approximability of the problem is well-understood in the symmetric case: there is a 2-
approximation algorithm [Fle74, Lau81, PR84] and approximating the problem within a factor
smaller than 2 can be easily seen to be NP-hard using the same argument as in the proof of
Fact 2.1. For the asymmetric case, the best known approximation algorithm is due to An, Klein-
berg and Shmoys [AKS10]. In fact, they too reduce the problem to finding thin spanning trees,
which yields an O

(
logn

log logn

)
-approximation algorithm, as well as a poly(log logn)-estimation

algorithm [AG15]. No better result is known.
Open question 4

Is there an O(1)-approximation algorithm for the Bottleneck ATSP?

Note that an affirmative answer to Open question 3 would imply the same for Open question 4.
Thus improving the state of the art for Bottleneck ATSP can be seen as an easier objective than
for thin trees.

For the symmetric TSP, a major challenge is to improve upon the 3/2-approximation algorithm
of Christofides [Chr76] and Serdyukov [Ser78].
Open question 5

Is there a ρ-approximation algorithm with ρ < 3/2 for the symmetric TSP?

Recently there has been much progress in the case of unweighted graphs [GSS11, MS16, Muc12,
SV14]. A compelling question is whether we can translate this progress to more general settings.
Here, some natural classes might be node-weighted instances24 or graphs with two edge weights.

Open question 6
Is there a ρ-approximation algorithm with ρ < 3/2 for the symmetric TSP on node-weighted
graphs or on graphs with two edge weights?

We also remark that the symmetric Held-Karp relaxation exhibits the same laminar structure as
we have used in Theorem 3.4. This gives us hope that the general setting can be in some sense
reduced to the unweighted (or node-weighted?) setting.

24Note that in the asymmetric case, node-weighted instances are almost equivalent to unweighted ones, as one
can replace every weighted node with a directed path of an appropriate length (see also [KTV18, Theorem 16]).
We are not aware of such a reduction for the symmetric case.

123

For the perfect matching problem, we gave a deterministic algorithm that works in polylog-
arithmic time on a quasi-polynomial number of processors. The most immediate open problem
left by our work is to go down to a polynomial number of processors.
Open question 7

Is the perfect matching problem in NC for bipartite graphs? In general?

Making progress on Open question 7 will require new insights, as the framework of Fenner,
Gurjar and Thierauf [FGT16] seems to inherently mandate a logarithmic number of weight
functions applied in succession. On the other hand, there has been much recent progress that
allows us to hope for a resolution of Open question 7. In a subsequent version of the paper
they [FGT19] provide two somewhat different approaches to eliminating cycles (that still lead to
a quasi-NC algorithm). Furthermore, our techniques have helped in obtaining an NC algorithm
to find a perfect matching in planar graphs [AV18]. In general, Anari and Vazirani show that
to get an NC algorithm for the search version of the problem, it is enough to give one for the
decision version [AV19]. They also obtain a pseudodeterministic RNC algorithm for the search
version: one that is randomized but with high probability always finds the same matching.

In fact, let us give a candidate algorithm:
Open question 8

Is it true that, for all n and for all (bipartite) graphs of size n, some function w ∈ W(n3500)
is isolating?

An affirmative answer to Open question 8 would yield an NC algorithm (see Lemma 7.10
and Corollary 7.15).

A related problem is Exact Matching [PY82]. We are given a graph, with some subset of edges
colored red, and a number k. The task is to determine whether the graph has a perfect matching
that uses exactly k red edges. If randomness is allowed, Exact Matching is efficiently solvable
even in parallel: it is in RNC [MVV87]. However, in the deterministic setting our understanding
is very poor: the problem is not known to be in P, even for bipartite graphs! This intriguing state
of affairs seems to be related to the fact that we do not know any linear programming formulation
that captures the problem well. Consider for example the natural linear program obtained by
adding the constraint

∑
e xe = k to the perfect matching polytope PM, and a (bipartite) graph

consisting of a single Hamiltonian cycle with every other edge red. This is a YES-instance only
if k ∈ {0, n/2}, yet the LP is feasible for every k ∈ {0, 1, ..., n/2}.
Open question 9

Is Exact Matching in P for bipartite graphs? In general?

Roughly speaking, the only efficient algorithms known for this problem follow the randomized
linear-algebraic approach. The following is a much relaxed version of Open question 9:
Open question 10

Give an RP algorithm for Exact Matching (for bipartite graphs) that is significantly different
from the linear-algebraic ones.

A problem that is somewhat similar in nature is one we call Min-k Matching. We are given an
edge-weighted graph and a number k. The objective is to find the cheapest set of k edges that
extends to a perfect matching; or, in other words, a perfect matching whose cheapest k edges are
as cheap as possible. We do not know a reduction in either direction between Min-kMatching and

124 Conclusion

Exact Matching, but the problems have the same status: the RNC algorithm [MVV87] extends
to Min-k Matching, yet the problem is not known to be in P.
Open question 11

Is Min-k Matching in P (for bipartite graphs)?

One can also associate a natural LP with Min-k Matching, the polytope being {(x, y) ∈ RE×RE :
x ∈ PM, 0 ≤ y ≤ x,

∑
e ye = k}.

Open question 12
What is the integrality gap of this LP?

As we remarked above, our ability to derandomize the Isolation Lemma seems to depend on
the structure of the associated polytope. This motivates the following general question:
Open question 13

Which zero-one polytopes admit such a derandomization?

One class that comes to mind are totally unimodular polyhedra – and indeed, for that class
this question has been resolved [GTV18], generalizing a similar result for linear matroid inter-
section [GT17], which can in turn be seen as a generalization of bipartite matching [FGT16].
Fenner, Gurjar and Thierauf conjecture that their approach works for any family of sets whose
corresponding polytopes can be described using 0/1 constraints [FGT19].

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[AG15] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally
thin trees, and asymmetric TSP. In IEEE 56th Annual Symposium on Foundations
of Computer Science (FOCS), pages 20–39, 2015.

[AGM+10] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and
Amin Saberi. An O(log n/ log log n)-approximation algorithm for the asymmetric
traveling salesman problem. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, pages 379–389, 2010.

[AHT07] Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially
bounded perfect matching problem is in NC2. In STACS 2007, 24th Annual Sympo-
sium on Theoretical Aspects of Computer Science, pages 489–499, 2007.

[AKS10] Hyung-Chan An, Robert D. Kleinberg, and David B. Shmoys. Approximation al-
gorithms for the bottleneck asymmetric traveling salesman problem. In APPROX,
pages 1–11, 2010.

[AKS15] Hyung-Chan An, Robert D. Kleinberg, and David B. Shmoys. Improving
Christofides’ algorithm for the s-t path TSP. J. ACM, 62(5):34:1–34:28, 2015.

[AM08] Vikraman Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma
and lower bounds for circuit size. In APPROX and RANDOM, pages 276–289, 2008.

[AV18] Nima Anari and Vijay V. Vazirani. Planar graph perfect matching is in NC. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), 2018.

[AV19] Nima Anari and Vijay V. Vazirani. Matching is as easy as the decision problem, in
the NC model. CoRR, abs/1901.10387, 2019.

[Bar92] D. A. M. Barrington. Quasipolynomial size circuit classes. In Proceedings of the
Seventh Annual Structure in Complexity Theory Conference, pages 86–93, Jun 1992.

[BCH86] Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, November 1986.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a
small number of processors. Information Processing Letters, 18(3):147–150, 1984.

125

126 BIBLIOGRAPHY

[Blä08] Markus Bläser. A new approximation algorithm for the asymmetric TSP with triangle
inequality. ACM Transactions on Algorithms, 4(4), 2008.

[CFN85] Gérard Cornuéjols, Jean Fonlupt, and Denis Naddef. The traveling salesman problem
on a graph and some related integer polyhedra. Mathematical Programming, 33(1):1–
27, 1985.

[CGK06] Moses Charikar, Michel X. Goemans, and Howard J. Karloff. On the integrality ratio
for the asymmetric traveling salesman problem. Math. Oper. Res., 31(2):245–252,
2006.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Graduate School of Industrial Administration, CMU,
1976.

[CNN89] Marek Chrobak, Joseph Naor, and Mark B. Novick. Using bounded degree spanning
trees in the design of efficient algorithms on claw-free graphs, pages 147–162. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1989.

[Csa76] L. Csanky. Fast parallel inversion algorithm. SIAM Journal of Computing, 5:618–623,
1976.

[DHK93] E. Dahlhaus, P. Hajnal, and M. Karpinski. On the parallel complexity of Hamiltonian
cycle and matching problem on dense graphs. Journal of Algorithms, 15(3):367 – 384,
1993.

[DK98] Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching in
chordal and strongly chordal graphs. Discrete Applied Mathematics, 84(1-3):79–91,
1998.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a
perfect matching in bipartite planar graphs. Theory Comput. Syst., 47(3):737–757,
2010.

[DS84] Eliezer Dekel and Sartaj Sahni. A parallel matching algorithm for convex bipartite
graphs and applications to scheduling. Journal of Parallel and Distributed Comput-
ing, 1(2):185–205, 1984.

[Edm65a] Jack Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Journal of
Research of the National Bureau of Standards, 69:125–130, 1965.

[Edm65b] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[FGM82] Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case perfor-
mance of some algorithms for the asymmetric traveling salesman problem. Networks,
12(1):23–39, 1982.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching
is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pages 754–763, 2016.

BIBLIOGRAPHY 127

[FGT19] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. A deterministic parallel al-
gorithm for bipartite perfect matching. Commun. ACM, 62(3):109–115, February
2019.

[Fle74] Herbert Fleischner. The square of every two-connected graph is Hamiltonian. Journal
of Combinatorial Theory, Series B, 16(1):29 – 34, 1974.

[FS07] Uriel Feige and Mohit Singh. Improved approximation ratios for traveling salesperson
tours and paths in directed graphs. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, 10th International Workshop,
APPROX 2007, and 11th International Workshop, RANDOM 2007, pages 104–118,
2007.

[GK87] Dima Grigoriev and Marek Karpinski. The matching problem for bipartite graphs
with polynomially bounded permanents is in NC. In 28th Annual Symposium on
Foundations of Computer Science (FOCS), pages 166–172, 1987.

[GS11] Shayan Oveis Gharan and Amin Saberi. The asymmetric traveling salesman problem
on graphs with bounded genus. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, pages 967–975, 2011.

[GSS11] Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding
approach to the traveling salesman problem. In IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pages 550–559, 2011.

[GT17] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-NC. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC, pages 821–830, 2017.

[GTV18] Rohit Gurjar, Thomas Thierauf, and Nisheeth K. Vishnoi. Isolating a vertex via
lattices: Polytopes with totally unimodular faces. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 74:1–74:14, 2018.

[Har09] Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems.
SIAM J. Comput., 39(2):679–702, 2009.

[Jac90] Carl Gustav Jacob Jacobi. De investigando ordine systematis aequationum differ-
entialium vulgarium cujuscunque (published posthumously by C. W. Borchardt).
Borchardt Journal für die reine und angewandte Mathematik, 64:297–320, 1890.

[Kar96] Alexander Karzanov. How to tidy up a symmmetric set-system by use of uncrossing
operations. Theoretical Computer Science, 157:215–225, 1996.

[Kha79] Leonid G Khachiyan. A polynomial algorithm in linear programming. In Doklady
Akademii Nauk SSSR, volume 244, pages 1093–1096, 1979.

[KLS13] Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability
bounds for TSP. In Algorithms and Computation - 24th International Symposium,
ISAAC 2013, pages 568–578, 2013.

128 BIBLIOGRAPHY

[KLSS05] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approxima-
tion algorithms for asymmetric TSP by decomposing directed regular multigraphs.
J. ACM, 52(4):602–626, 2005.

[KTV18] Anna Köhne, Vera Traub, and Jens Vygen. The asymmetric traveling salesman path
LP has constant integrality ratio. CoRR, abs/1808.06542, 2018.

[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is
in random NC. Combinatorica, 6(1):35–48, 1986.

[KV12] Bernhard Korte and Jens Vygen. Combinatorial optimization. Springer, 2012.

[KVV85] Dexter Kozen, Umesh V. Vazirani, and Vijay V. Vazirani. NC algorithms for compa-
rability graphs, interval gaphs, and testing for unique perfect matching. In Proceed-
ings of the Fifth Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 496–503, London, UK, 1985. Springer-Verlag.

[Lau81] H. T. Lau. Finding EPS-graphs. Monatshefte für Mathematik, 92(1):37–40, Mar
1981.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages
565–574, 1979.

[LPV81] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for routing in
permutation networks. IEEE Transactions on Computers, C-30(2):93–100, Feb 1981.

[LRS11] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combina-
torial optimization. Cambridge University Press, 2011.

[MN89] G. L. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks. In
30th Annual Symposium on Foundations of Computer Science, pages 112–117, 1989.

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination.
In 45th Symposium on Foundations of Computer Science (FOCS), pages 248–255,
2004.

[MS16] Tobias Mömke and Ola Svensson. Removing and adding edges for the traveling
salesman problem. J. ACM, 63(1):2:1–2:28, 2016.

[Muc12] Marcin Mucha. 13/9-approximation for graphic TSP. In 29th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2012, pages 30–41, 2012.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and com-
plexity. 1997.

[MV00] Meena Mahajan and Kasturi R. Varadarajan. A new NC-algorithm for finding a
perfect matching in bipartite planar and small genus graphs. In Proceedings of the
Thirty-second Annual ACM Symposium on Theory of Computing, STOC, pages 351–
357, 2000.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105–113, 1987.

BIBLIOGRAPHY 129

[Nai82] M. Nair. On Chebyshev-type inequalities for primes. The American Mathematical
Monthly, 89(2):126–129, 1982.

[NSV94] H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized parallel algo-
rithms for matroid union and intersection, with applications to arboresences and
edge-disjoint spanning trees. SIAM J. Comput., 23(2):387–397, 1994.

[Par98] I. Parfenoff. An efficient parallel algorithm for maximum matching for some classes
of graphs. Journal of Parallel and Distributed Computing, 52(1):96 – 108, 1998.

[PR82] Manfred W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings.
Mathematics of Operations Research, 7(1):67–80, 1982.

[PR84] R.Gary Parker and Ronald L Rardin. Guaranteed performance heuristics for the
bottleneck travelling salesman problem. Operations Research Letters, 2(6):269 – 272,
1984.

[PY82] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted
spanning tree problems. Journal of the ACM, 29(2):285–309, April 1982.

[Rot17] Thomas Rothvoss. The matching polytope has exponential extension complexity.
Journal of the ACM, 64(6):41, 2017.

[San18] Piotr Sankowski. NC algorithms for weighted planar perfect matching and related
problems. In 45th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 97:1–97:16, 2018.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980.

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer-Verlag, Berlin, 2003.

[Ser78] Anatoliy I. Serdyukov. On some extremal tours in graphs (in russian). Upravlyaemye
systemy, 17:76–79, 1978.

[ST17] O. Svensson and J. Tarnawski. The matching problem in general graphs is in Quasi-
NC. c© 2017 IEEE. Reprinted, with permission. In 2017 IEEE 58th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 696–707, 2017.

[STV18a] Ola Svensson, Jakub Tarnawski, and László A. Végh. A constant-factor approxima-
tion algorithm for the asymmetric traveling salesman problem. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
204–213, New York, NY, USA, 2018.

[STV18b] Ola Svensson, Jakub Tarnawski, and László A. Végh. Constant factor approximation
for ATSP with two edge weights. Mathematical Programming, 172(1-2):371–397,
2018.

[SV14] András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for
the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica, 34(5):597–629, 2014.

130 BIBLIOGRAPHY

[Sve15] Ola Svensson. Approximating ATSP by relaxing connectivity. In FOCS 2015: Pro-
ceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science,
2015.

[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 22:107–111, 1947.

[Tut65] William Thomas Tutte. Lectures on matroids. J. Research of the National Bureau
of Standards (B), 69:1–47, 1965.

[TV12] Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in
planar graphs. Inf. Comput., 215:1–7, 2012.

[VY99] Santosh Vempala and Mihalis Yannakakis. A convex relaxation for the asymmet-
ric tsp. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’99, pages 975–976, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics.

[Wol80] Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound,
pages 121–134. Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W.
Ng, editor, Symbolic and Algebraic Computation, pages 216–226, Berlin, Heidelberg,
1979. Springer Berlin Heidelberg.

Jakub Tarnawski
http://jakub.tarnawski.org jakub.tarnawski@epfl.ch

Research interests

• Approximation algorithms, graph algorithms, combinatorial optimization,
submodular maximization

Education & research positions

• Microsoft Research, Redmond, USA – Research Intern (05–08.2018), under supervision of
Nikhil Devanur and Janardhan Kulkarni.

• École Polytechnique Fédérale de Lausanne, Switzerland – Doctoral Assistant
(09.2014–present), Theory of Computation laboratory under supervision of Ola Svensson.

– Simons Institute for the Theory of Computing – visiting graduate student (11–12.2017).

• École Polytechnique Fédérale de Lausanne, Switzerland – Summer@EPFL internship
(07–08.2013), Theory of Computation laboratory under supervision of Aleksander Mądry.

• Faculty of Mathematics and Computer Science, University of Wrocław, Poland.
Two majors: Computer Science and Mathematics, 2008–2014, MSc in both. GPA over
4.95/5.00.

Awards

• Best Paper Award at STOC 2018

• Best Paper Award at FOCS 2017

• Honorable mention in competition for best Masters thesis in computer science
(Polish Society of Informatics, 2016)

• Scholarship of Polish Ministry of Education for academic achievements – 2008, 2011, 2013

• EU scholarship for top students – 2009, 2010, 2011

• Multiple scholarships for high GPA from University of Wrocław

Teaching experience

• Teaching Assistant for 8 semesters (Advanced Algorithms 2016–2018,
Algorithms 2015–2018, Theory of Computation 2015), EPFL

• gave several lectures in Algorithms (2018) and Advanced Algorithms (2016, 2018), EPFL

• supervised a Master semester project (02–06.2016), EPFL

• taught exercises in Algorithms and Data Structures (graduate level) (02–06.2014), Wrocław

• taught supplementary tutorial in Logic For Computer Science for first-year students
(10.2010–02.2011), Wrocław

Invited talks

• University of Bonn, Germany (Apr 2019)

• ETH Zürich, Switzerland (Mar 2019)

• Toyota Technological Institute of Chicago, USA (Feb 2019)

• University of California San Diego, USA (Feb 2019)

• Georgia Institute of Technology, USA (Jan 2019)

• BIRS workshop on TSP, Banff Centre, Canada (Sep 2018)

• Microsoft Research Redmond, USA (Jul 2018)

• Google Research Zürich, Switzerland (Apr 2018)

• Aussois, 22nd Combinatorial Optimization Workshop, France (Jan 2018)

• Stanford University, USA (Nov 2017)

• Georgia Institute of Technology, USA (Oct 2017)

• ETH Zürich, Switzerland (Sep 2017)

• 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, France (Sep 2017)

• NII Shonan Meeting “Current Trends in Combinatorial Optimization”, Japan (Apr 2016)

• University of Wrocław, Poland (Feb 2016)

Industry experience

• Facebook – Software Engineering Intern (07–09.2012, Seattle, USA). Traffic Infrastructure
team. Performance optimization of the load balancing software that all of Facebook’s web
traffic passes through. Achieved a 30% gain in efficiency.

Competitive programming

• Onsite finals of Facebook Hacker Cup 2014 and 2015 (top 25, Menlo Park)

• ACM ICPC World Finals 2013 (St. Petersburg, Russia) and 2014 (Ekaterinburg, Russia;
13th place out of over 12000 teams)

• 1st place in IEEEXtreme 10.0 2016 (out of ∼2000 teams), 2nd place in 2015, 3rd place
in 2018

• 1st place in Wielka Przesmycka 2016 (Wrocław; open individual championship of Poland)

Service

• Reviewer for journals: Journal of the ACM, Theoretical Computer Science,
Discrete Optimization

• Reviewer for conferences: SODA 2019, FOCS 2018, ICALP 2018, STOC 2018, STOC 2017,
APPROX 2017, SWAT 2016, ESA 2014

• Reviewer of grant proposals: Polish National Science Center

• Head of problemsetting team at Helvetic Coding Contest, an annual programming
competition held at EPFL (2015–2018); same for Santa’s Programming Challenge
(2014–2017)

• Contributed problems to Polish Collegiate Programming Contest AMPPZ (2015–2018)

• Maintainer and main author of open source project Hightail, a tool for competitive
programming (> 6000 downloads)

References

• Prof. Ola Svensson (ola.svensson@epfl.ch), faculty at EPFL.
Association: Co-author and PhD supervisor.

• Prof. Aleksander Mądry (madry@mit.edu), faculty at MIT.
Association: Co-author and internship supervisor.

• Dr. Nikhil Devanur (nikdev@microsoft.com), researcher at Microsoft.
Assocation: Internship supervisor.

• Prof. Amin Saberi (saberi@stanford.edu), faculty at Stanford.

Publications

• A. Norouzi-Fard, J. Tarnawski, S. Mitrović, A. Zandieh, A. Mousavifar and O. Svensson.
Beyond 1/2-Approximation for Submodular Maximization on Massive Data Streams. In
35th International Conference on Machine Learning (ICML), 2018, long talk.

• O. Svensson, J. Tarnawski and L. Végh. A Constant-Factor Approximation Algorithm for
the Asymmetric Traveling Salesman Problem. In 50th Annual ACM Symposium on the
Theory of Computing (STOC), 2018. Best Paper Award

• O. Svensson and J. Tarnawski. The Matching Problem in General Graphs is in Quasi-NC.
In 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2017.
Best Paper Award

• S. Mitrović, I. Bogunović, A. Norouzi-Fard, J. Tarnawski and V. Cevher. Streaming Robust
Submodular Maximization: A Partitioned Thresholding Approach. In Neural Information
Processing Systems (NIPS), 2017.

• A. Mosińska, J. Tarnawski and P. Fua. Active Learning and Proofreading for Delineation of
Curvilinear Structures. In 20th International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), 2017, oral presentation.

• C. Kalaitzis, O. Svensson and J. Tarnawski. Unrelated Machine Scheduling of Jobs with
Uniform Smith Ratios. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2017.

• O. Svensson, J. Tarnawski and L. Végh. Constant Factor Approximation for ATSP with
Two Edge Weights. Mathematical Programming 172(1–2), 2018. Previously in 18th
Conference on Integer Programming and Combinatorial Optimization (IPCO), 2016.

• A. Mądry, D. Straszak and J. Tarnawski. Fast Generation of Random Spanning Trees and
the Effective Resistance Metric. In 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2015.

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	Our contributions
	Outline

	Preliminaries and Linear Programming
	Notation
	Approximation algorithms
	The traveling salesman problem
	The perfect matching problem
	Linear programming
	Laminarity and uncrossing

	I A Constant-Factor Approximation Algorithm for the AsymmetricTraveling Salesman Problem
	Asymmetric Traveling Salesman Problem
	Our approach and outline of part:atsp
	Notation
	Laminarly-weighted ATSP and singleton instances

	Reducing ATSP to Subtour Partition Cover
	Subtour Partition Cover
	Subtour Partition Cover for singleton instances
	From local to global connectivity
	Existence of a good tour
	Polynomial-time algorithm

	Obtaining Structured Instances
	Paths in tight sets
	Contracting and inducing on a tight set
	Contracting a tight set
	Inducing on a tight set

	Reduction to irreducible instances
	Backbones and reduction to vertebrate pairs
	Finding a quasi-backbone
	Obtaining a vertebrate pair via recursive calls

	Solving Subtour Partition Cover
	Algorithm for vertebrate pairs
	Witness flows

	Completing the puzzle: proof of Theorem 3.1

	II Matching is in Quasi-NC
	Perfect Matching and Parallel Algorithms
	Parallel complexity classes
	Linear-algebraic techniques for matchings
	Isolating weight functions
	Derandomizing the Isolation Lemma
	The weight function construction

	A Quasi-NC Algorithm for Perfect Matching
	Introduction
	Isolation in bipartite graphs
	Challenges of non-bipartite graphs
	Our approach
	Outline

	Alternating circuits and respecting a face
	Contractible sets and -goodness
	Proof of the key main: from -good to 2-good
	Removing alternating circuits
	The existence of a good weight function
	A maximal laminar family completes the proof

	Conclusion
	Curriculum Vitæ

