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Abstract—In this paper, we present an analysis of the prop-
agation effect along a lossy ground on the characteristics of
lightning-generated electric fields, using simultaneous observa-
tions of lightning currents and radiated fields measured at nine
different distances associated with rocket-triggered lightning. The
triggered-lightning site is located in Conghua (Guangdong, China).
The electric field waveforms were measured using the sensors
belonging to the Foshan three-dimensional lightning location sys-
tem that are located at distances from the triggered-lightning site
ranging from 69 to 126 km. The propagation path was over land
and mainly over flat ground. The field sensors used had an overall
bandwidth from 160 Hz to 1 MHz. It is shown that even though the
early response of the field can be reproduced reasonably well by
adjusting the ground electrical conductivity, the subsidiary peaks,
and the late-time response of the fields cannot be satisfactorily
reproduced assuming a homogeneous ground model. However,
a two-layer soil model allows obtaining very good agreement
between computed and measured waveforms for all the considered
distances and events. Compared to the homogeneous ground case,
the computed early-, intermediate-, and late-time response follows
to a much better extent the experimental waveforms. We also
provide a discussion on the influence of the computational model
and parameters on the simulated results.

Index Terms—Distant electric fields, ground losses, horizontally
stratified ground, return stroke, triggered lightning.

1. INTRODUCTION

HE characteristics of lightning return-stroke electro-
magnetic fields, especially for natural lightning, have
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extensively been reported in the literature (e.g., [1]-[4] ) These
characteristics (waveshape, risetime, duration, zero-crossing
time, etc.) depend obviously on the lightning discharge electri-
cal and geometrical parameters. However, the ground electrical
parameters over which electromagnetic fields propagate play
also an important role in the lightning electromagnetic field
waveshapes (e.g., [5]-[9]).

In the past years, significant efforts have been made to model
the effect of the ground on the propagation of lightning-radiated
electromagnetic fields (see, e.g., [10], [11]). Compared with ded-
icated algorithms (e.g., [12]) or numerical methods (e.g., [13])
that can be costly in terms of computation time and memory
requirements, the use of simplified approaches (e.g., [S]-[10]) is
particularly interesting when the electromagnetic fields need to
be evaluated at a significant number of points, for instance, when
evaluating the electromagnetic coupling to power networks.
One of the first simplified approximations for the electromag-
netic fields due to a vertical dipole above a homogeneous lossy
ground is done by Norton [14]-[15]. Wait [16] showed that the
concept of attenuation function and surface impedance can be
used to represent the effect of a multilayered soil. Wait [17]-[19]
and Hill and Wait [20] derived the attenuation function for the
vertical electric field propagating over a horizontally stratified
ground. Shoory et al. [21] examined the accuracy of Wait’s for-
mulations for a horizontally stratified ground using a numerical
technique and found that Wait’s formula is able to reproduce
the vertical electric field peak and waveform with a reasonably
good accuracy at far distances from the lightning channel.
Other studies have considered the effect of a mixed propagation
path or vertically stratified ground (e.g., [22] and [23]).

The aim of this paper is to analyze the propagation effect
on the characteristics of lightning-generated electric fields. In
particular, the effect of soil stratification on the radiated electro-
magnetic fields is assessed. For the analysis, we will use simul-
taneous observations of lightning currents and radiated fields
measured at different distances associated with rocket-triggered
lightning [24]. The present study demonstrates the importance
of considering the soil stratification in reproducing the late-time
features of distant fields radiated by lightning.

The paper is organized as follows. Section II briefly presents
the experimental setup and measuring stations, as well as the ob-
tained data. Section III describes the models and computational
methods adopted in this paper. Section IV presents numerical
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Fig. 1. Geographical location of the lightning triggering site in Conghua,
Guangdong, and the nine sensors belonging to the lightning locating system in
Foshan (FTLLS).

simulations and comparison with experimental data. The ob-
tained results are commented and discussed in Section V. A
summary and conclusions are given in Section VI.

II. EXPERIMENTAL SETUP AND DATA
A. Experimental Setup

The triggered-lightning site, which is located in Conghua,
Guangdong, China, has been operational for more than a decade.
Information about the triggered-lightning site is available in
[24]. The Foshan three-dimensional lightning location system
(FTLLS) has been installed and started its operation in the sum-
mer of 2013 [25]—-[27]. The network contains nine stations la-
beled in Fig. 1 as LSZ, LPZ, DTZ, CCJ, BNZ, CCZ, LJZ,
JAZ, and MCZ. The stations are located at distances from the
triggered-lightning site of, respectively, 69, 73, 74, 85, 87, 100,
101, 112, and 126 km. The triggering site, also shown in Fig. 1,
is located on the northeast of the nine sensors. The propagation
path is over land and mainly over flat ground [26].

Wideband electric field measuring systems with a 3 dB band-
width from 160 Hz to 1 MHz are employed to measure the
lightning electromagnetic fields at each station. The systems
are equipped with analog integrators with a 1 ms decay time
constant. Electric field signals produced by triggered-lightning
discharges were digitized with a 10-MS/s sampling rate, 12-bit
resolution, digital high-speed data acquisition card.

B. Data

The dataset is composed of simultaneous recordings of cur-
rents and multistation electric field waveforms associated with
one negative triggered-lightning flash that occurred on June 3,
2014, at 6:43 AM (local time). The flash contains five return
strokes, three of which (RS1, RS4, and RS5) were considered
in this study.
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III. ANALYSIS METHOD
A. Return-Stroke Model

The modified transmission line model with exponential decay
(MTLE) model was adopted for the analysis [28], [29]. The
current decay constant along the channel was assumed to be
A = 2km and a return-stroke speed of = 1.5 x 10® m/s was
adopted in all the simulations. The adopted value for the current
decay constant was inferred using experimental data [30]. This
value is used in most of the studies using this model (e.g.,
[31]-[36]). The measured channel-base current waveform was
represented using the sum of two Heidler’s functions [37]

I ( ¢ )7’1 I ( ¢ )712
T _t o7 ot
01 11 e TiT + 02 11 e T

i(0, 1)

=

Il

<]

>

o}
/|\
:“:‘
N |
N

S
2|2
— IN)
~__
=
=
N—

T21 T22 e
N9 = exp —E anTl . H

The parameters of (1) were determined for each return stroke
using a genetic algorithm [38]. The reason why the measured
current was represented by analytical functions is that the use of
the raw data, which includes noise could cause numerical issues.
Fig. 2 presents the measured current waveforms associated with
the three considered return-stroke pulses along (to which we
refer in this study as RS1, RS4, and RS5) with their analytical
representations using Heidler’s functions. The determined pa-
rameters of the functions for each waveform are given in Table I.

B. Electric Field Computation Model

Three different approaches will be used in this study to model
the ground plane in the computation of the electric fields at
various distances: a perfectly conducting ground plane, a ho-
mogeneous finitely conducting ground plane, and a two-layer
stratified ground.

1) Perfectly Conducting Ground: Fig. 3 presents the geome-
try adopted for the calculation of lightning electric field. The ex-
pression for the vertical electric field radiated by a vertical chan-
nel above a perfectly conducting ground is given by (e.g., [10])

1 H(d,z,p,t)
Cop (d,2,) = 2me° /0
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Fig.2. Measured current waveforms associated with the three selected return stokes (solid blue line) and their analytical representations using Heidler’s functions

(solid red line). (a) RS1. (b) RS4. (¢) RSS.

TABLE I
PARAMETERS OF HEIDLER’S FUNCTIONS USED TO REPRESENT THE RETURN STROKE CURRENT WAVEFORMS

Lightning return stroke Iy, (kA) T11(US) Tio(us)  ny Iy (kA) Ty, (us) Too(Us)  n,

RS1 16.0 0.501 9.6 5 5.6 10.0 77 3
RS4 18.0 0.359 8.9 5 59 9.5 60 3
RS5 15.0 0.417 6.1 6 5.0 8.0 55 3

and discussed by Le Vine and Meneghini [39], Rubinstein and
Uman [40], [41], Le Vine and Willett [42], Thottappillil and
Rakov [43], [44], Thottappillil et al. [45], [46], and Pavanello et
al. [47]. The current distribution predicted by the MTLE model
we are using in this paper does not feature any discontinuity at
the wavefront, and therefore, this last term is equal to zero.

2) Homogeneous Finitely Conducting Ground: The vertical
electric field above a homogeneous lossy ground can be written
in the time domain as (e.g., [10])

€, (d, z, t) - ez,p(da Z, t) * f(t) (3)

where f{?) is the attenuation function accounting for the propaga-
tion effects along a lossy half-space. Expressions for the atten-
uation function and ground surface impedance can be obtained
in the frequency domain and the corresponding time-domain
expression can be derived using inverse Fourier transforms, i.e.,

f(t) = FF(jw)] )

where w is the angular frequency. Equation (3) can be equiva-
lently expressed in the frequency domain as

Fig. 3. Geometry for the calculation of the lightning electromagnetic field.

where i(7/, f) is the current in the return-stroke channel,
H(d, z, ¢, t) is the apparent height of the wavefront as seen E.(d,z,jw) =E. y(d, z, jw)F(jw). 5)
by an observer at Q at time . R is the distance from a channel
segment d7 at height ' to the observation point, d is the hor-
izontal distance between the channel base and the observation
point, ¢ is the speed of light, v is return-stroke speed, and & F(jw) =1—j\/mpe Perfc(j/p) (6)
is the permittivity of free space. The second subscript p holds
for the field above a perfect ground. The last term in (2) is the
so-called turn-on term field component accounting for a possi-
ble discontinuity at the return-stroke wavefront, as introduced p = —0.57dA? @)

The expression for the attenuation function above a homoge-
neous ground derived by Wait [18] is as follows:

where er fc is the complementary error function [19] and p is
the numerical distance defined as
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Fig. 4.  Geometry for the calculation of the lightning electromagnetic field

above a two-layer soil.

in which 7y is the free-space wavenumber defined as

Yo = Jw+/1o€o (8

where i is the permeability of vacuum. A is the normalized
surface impedance of the homogeneous ground given by

Z(jw)
V Ho/€o

in which the homogeneous ground surface impedance is
given by

A= €))

Jwpo

Z(Jjw) = | ——.
() 0 + Jwepe,

(10

3) Two-Layer Stratified Ground: Fig. 4 shows the geometry
of a two-layer stratified soil. The first layer is characterized
by a vertical depth %1, and electrical parameters o; and &,;.
The second layer is characterized by electrical parameters o5
and €,9.

Wait et al. [10]-[16] derived the expression for the attenuation
function of a stratified ground given by

Fyy(jw) =1 — jy/mapsire ""er fe(jy/pser) (1)
in which the numerical distance py. is defined as
Pstr = —0.570dA,, (12)

In (12), Ay, is the normalized surface impedance of the
two-layer ground given by

Zsr ]
Ay = L) (13)
(10 /0)
where
K5 + Kjtanh(ui h
Zuy = [ g Bt Ftahlen ) gy

Mo Kl + Kztanh(ulhl)
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Fig.5. Dashed color lines describe the simulation results for the homogeneous
and for the perfect ground cases. The black solid line indicates the measured
vertical fields at station of CCZ for the first return-stroke in flash F140603.

is the surface impedance of a two-layer horizontally stratified
ground, and

K=—a (15)
01 + JWeEEF

Ky=—2 (16)
09 +jw€0€7«2

ur =/ - (17)

uy =\/73 — 3. (18)

In (17) and (18), the wave numbers in each ground layer are
given by

Y1 =V jwpo (o1 + jweoer1) (19)

and

Yo = v/ jwpo (02 + jwege,a). (20)

IV. SIMULATION AND COMPARISON WITH EXPERIMENT DATA

We consider the lightning flash occurred on June 3, 2014,
at 6:43 AM, as shown in Fig. 2. We have selected three return
strokes (labeled RS1, RS4, and RS5) for the analysis. Similar
simulations were performed for the two other strokes but they
were not shown for the sake of brevity.

Fig. 5 presents the simulation results obtained assuming ei-
ther a perfect or a homogeneous lossy ground with different
ground electrical conductivities, and their comparison with the
corresponding measured waveforms. In Fig. 5, the presented
waveforms correspond to the field at Station CCZ that is located
at a distance of 85 km with respect to the stroke location. It can
be seen that, even though the early response of the field can be
reproduced reasonably well by adjusting the ground electrical
conductivity, the subsidiary peaks and the late-time response of
the field cannot be satisfactorily reproduced assuming a homo-
geneous ground model.

The simulation results assuming a two-layer model for the
ground are shown in Fig. 6 for all the stations and all the three
return strokes. Each column presents the results for one return



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: IMPORTANCE OF TAKING INTO ACCOUNT THE SOIL STRATIFICATION IN REPRODUCING THE LATE-TIME FEATURES

8 8
i R 61 1
[ Stratified ground L Stratified ground /\ ------- Stratified ground
—~ i —_ i
E 5 ‘.". ---------------- Measured data g E ‘E ---------------- Measured data £y '.l;l """""""" Measured data
> 4 P LSZ(69km) for RS1 = 4 j i LSZ(69km) for RS4 2 } ‘ LSZ(69km) for RS5
i ~ §o
S SR =2 |
2 28 g
i 0o iy
i b A A A / Py
op AARMAAMAAAY ol o
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (us) Time (us) Time (u5)
(al) (a2) (a3)
8 Uw 6 —
fi
6 ,’..'. ---- Stratified ground 6 ; - --- Stratified ground II’ 1 - Stratified ground
T ! l". Measured data o) ;’ "‘ ---------------- Measured data ) 4 '} l“ === Measured data
S 4t LPZ(72km) for RS1 S 4t LPZ(72km) for RS4 S |t LPZ(72km) for RS5
(2 ih < H < I
N [ N Y N2,
= PATER 2 = 2 | = oA R
[N | { A
i R gy Y e,
0 o \:-:_ A i A 0 4 of N"T":"L'__;‘\;‘,\;.-:—w“/—“’—"!‘w"
0 10 20 30 40 50 0 0 10 20 30 40 50
Time () Time (us) Time (us)
(bl) (b2) (b3)
61— 6
A 6 n .
4 ’IP'!I; -------- Stratified ground \\ -------- Stratified ground noo T Stratified ground
z ; ’\‘ ---------------- Measured data g R R Measured data g 4 ’,'“ ---------------- Measured data
2 olit,  CCZ@ESkm) for RS1 > CCZ(85km) for RS4 s |1} CCZ(85km) for RS5
N TV ey N iy N2
= S . B2 W g 27 A
0Ff N R A Y Y | W"“"‘«‘ -
0 N s g of N AT
e
-2
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (ps) Time (pus) Time (ps)
(cl) (c2) (c3)
6 g
" 6t o i
x'l"‘»“ -------- Stratified ground ‘,".\ -------- Stratified ground 4 "n, -------- Stratified ground
’E‘ 4 ,{" ---------------- Measured data ’E‘ 4 ',' [ Measured data ’E‘ ! " ---------------- Measured data
= i = i = [l
Z |" i CCJ(87km) for RS1 2 l.' it CCJ(87km) for RS4 Z 2 5 ! CCJ(87km) for RS5
I i ]
S 200 S 2 a |
! !
0 :l‘ _,‘_j o ‘ T R g e Y 0 .Il 0 :l’
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (ps) Time (pus) Time (pus)
(dn) (d2) (d3)
6 6
d - Stratified ground ;" ‘;' -------- Stratified ground 4 ,'"3, -------- Stratified ground
E 4 :"- ---------------- Measured data E 4 ‘,’ '.I ---------------- Measured data E ,l' 3‘ ---------------- Measured data
= |t BNZ(100km) for RS1 s || ". BNZ(100km) for RS4 = 2 i BNZ(100km) for RS5
a2t SEAIRT RN ERR
T R T [ IR VAN
i\ o IR YA An i 14 ~
AT A §oV s PV |
ol \“\“‘AJ;;;J;\:QEAM»’?“M?&&‘#@ 0 l‘"‘l“q\":~“A‘;“;;'V‘P‘fl':\i\",ﬁu‘\!’?&"’_‘!ﬂé’f o ¥ T 2"’.&{@,\;";‘;}5,”«#5&'&&:‘-#!&.
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (ps) Time (pus) Time (ps)
(el) (€2) (e3)

Fig. 6. Simulation results from the two-layer soil for the three considered cases. The dashed red line and black dotted line represent the stratified ground
simulation and measured data, respectively. (al)—(gl) Left-hand column present simulation results from multiple stations for RS1 for RS1 in flash F140603.

(a2)—(g2) Middle column corresponds to RS4. (a3)—(g3) Right-hand column corresponds to RSS5.
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of the ground electrical parameters should be gained for each
field measurement site. Note also that the adopted value for the
top layer conductivity (0.001 S/m) is consistent with available
data [50].

It can be seen that a two-layer soil model allows obtain-
ing very good agreement between computed and measured
waveforms for all the considered distances and events. Com-
pared to the homogeneous ground case, the computed early-,
intermediate-, and late-time response follows to a much better
extent the experimental waveforms. The observed discrepan-
cies (for example at CCJ and BNZ stations) might be due to the
variation of the soil electrical parameters along the considered
paths.

V. DISCUSSION

A discussion is in order on the influence of various param-
eters adopted for the simulations, namely the adopted return-
stroke model, the values for the ground conductivity of the top

5,62 = 80, 01 = 0.001 S/m, 62 =4S/m,hl = 15.5m.

and lower layer, depth of the top layer, and the return-stroke
speed.

1) Return-stroke model: Fig. 7 shows the simulation results
for the station LPZ using three different return-stroke
models: MTLE [28]-[29], TL [51], and MTLL [52]. It
can be seen that, as far as the early-time response of the
field is concerned, the three models provide very similar
results. The fact that the TL model fails in reproducing the
late-time response is well known and is due to the absence
of any attenuation of the current pulse along the channel
(e.g., [53]). In summary, it can be said that the adopted
return-stroke model will affect to some extent the results.
Conductivity of the top layer: Fig. 8 shows the simula-
tion results considering three different conductivities for
the top ground layer associated with return-stroke RSS5 in
Fig. 2(c). The relative permittivity was settoe,; = 5. The
conductivity and the relative permittivity of the second

2)
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3)

layer were set, respectively, to 0o = 4S/mand €,9 = 80.
The depth of first layer was set to A1 = 15.5m. As ex-
pected, it can be seen that the conductivity of the top layer
affects essentially the early-time and intermediate-time
response of the field. A decrease of the conductivity re-
sults in an increase of the peak electric field, which can
be higher than the peak corresponding to the perfectly
ground case. In addition, for low conductivities, the field
waveform has an oscillatory behavior featuring subsidiary
peaks. These results are consistent with previous studies
(e.g., Shoory et al. [21]). As discussed in [5], when the
conductivity of the top layer is lower than that of the lower
layer, the attenuation function can be larger than unity for
certain frequencies.

Depth of the top layer: The effect of the depth of the
top layer is illustrated in Fig. 9, in which the elec-
tric field was evaluated considering three different val-
ues for this parameter, namely 3, 15, and 50 m. The
ground electrical parameters are £,1 = 5,&,0 = 80, 01 =
0.001S/m, andoy = 4S/m. It can be seen that the fre-
quency of oscillations and the field peaks depend strongly
on the depth of the top layer. The larger the depth,
the smaller the peak and the oscillation frequency. For
large values of the top layer depth (50 m or higher), the
oscillation disappears. In this case, the depth of the top

Erl = 5,€7~2 = 8(),0‘2 = 4S/m,h1 = 15.5m.
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Fig. 11. Influence of the return-stroke speed on simulated results. £, =

5,72 = 80, 01 = 0.001S/m, 09 =4S/m,hl = 15.5m.

4)

5)

It

layer is much larger than the skin depth for the relevant
frequencies, and the stratified ground behaves as a homo-
geneous ground with upper layer parameters [5].
Conductivity of the lower layer: Fig. 10 shows the sim-
ulations considering three different conductivities for the
lower layer, namely 0.0004, 0.04, and 4 S/m. In agreement
with [5], it can be seen that the subsidiary peaks resulting
from the oscillatory behavior appear only when the con-
ductivity of the lower layer is greater than that of the top
layer.
Return-stroke speed: The effect of the return-stroke speed
is illustrated in Fig. 11, considering three different values,
namely 0.8 x 10°%, 1.3 x 10°, and 1.8 x 10® m/s. It can
be seen that the return-stroke speed affects essentially the
early-time response of the field and its peak value. At the
considered distant location, the peak field is essentially
proportional to the value of the return-stroke speed [54].
is worth noting that the late-time features of the distant

electric fields may also be influenced by other effects, such as
attenuation and dispersion of the propagating current along the
lightning channel as discussed in Shao et al. [55] and Shoory
et al. [35], channel tortuosity [56], return-stroke speed, and
return-stroke model inaccuracies. Furthermore, the fact that
other factors such as local effects at the field-measuring sta-
tions could affect the subsidiary peaks cannot be completely
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ruled out. However, the fact that a two-layer soil model allows
us to reproduce reasonably well the fields measured at nine dif-
ferent stations located in different geographical locations is an
indication that the stratified soil plays at least an important role
in the late-time response of the field.

VI. SUMMARY AND CONCLUSION

We presented an analysis of the propagation effect along
a lossy ground on the characteristics of lightning-generated
electric fields, using simultaneous observations of lightning
return-stroke currents and vertical radiated fields measured at
nine different distances from rocket-triggered lightning. The
triggered-lightning site was located in Conghua (Guangdong,
China). The electric field waveforms were measured using the
sensors belonging to the FTLLS, which were located at distances
from the triggered-lightning site ranging from 69 to 126 km. The
propagation path is over land and mainly over flat ground. The
field sensors have an overall bandwidth from 160 Hz to 1 MHz.

It was shown that, even though the early response of the fields
can be reproduced reasonably well by adjusting the ground elec-
trical conductivity of a single-layer ground model, the subsidiary
peaks and the late-time response of the fields cannot be satis-
factorily reproduced assuming a homogeneous ground model.
However, it was shown that a two-layer soil model allows ob-
taining very good agreement between computed and measured
waveforms for all the considered distances and events. Com-
pared to the homogeneous ground case, the computed early-,
intermediate-, and late-time response follows to a much better
extent the experimental waveforms. We also provided a discus-
sion on the influence of computational model and parameters
on the simulated results.
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