
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Edo COLLINS

Présentée le 21 juin 2019

Thèse N° 9372

Evaluating and Interpreting Deep Convolutional Neural Networks
via Non-negative Matrix Factorization

Prof. M. Jaggi, président du jury
Prof. S. Süsstrunk, directrice de thèse
Prof. R. Sznitman, rapporteur
Dr H. Ben-Shitrit, rapporteur
Dr M. Salzmann, rapporteur

à la Faculté informatique et communications
Laboratoire d’images et représentation visuelle
Programme doctoral en informatique et communications

It’s a dangerous business, Frodo,

going out your door.

You step onto the road,

and if you don’t keep your feet,

there’s no knowing

where you might be swept off to.

— Bilbo Baggins

To Tuli the cat. . .

Acknowledgements

The last years at EPFL were a time of great change for me, both professionally and personally.

Now at the high point of this rollercoaster ride, I feel very fortunate to have had such good

people around me, whose support carried me through the twists and the turns.

First, to my thesis advisor, Prof. Sabine Süsstrunk - thank you. I am grateful for the op-

portunity you gave me, the patience and the encouragement. The confidence you put in

me and your sound advice were invaluable. I am looking forward to the next chapter in our

collaboration!

It was a great honor to present before the jury of my thesis committee: Prof. Martin Jaggi, Prof.

Raphael Sznitman, Dr. Mathieu Salzmann and Dr. Horesh Ben-Shitrit.

I would like to thank my colleagues at IVRL. Great thanks to Marjan Shahpaski for always

interesting, always encouraging office conversations - we both would have graduated a year

sooner without them, but it was time well spent. I would like to thank the next door neighbours,

Majed El Helou and Fayez Lahoud, for great talks and great feedback. A special thanks to

Dr. Radhakrishna Achanta for helping me start on the path that would ultimately lead to this

thesis, and to Dr. Siavash Arjomand Bigdeli for helping me see it through. Thanks also to

Ruofan Zhou and Sami Arpa.

A great thank you goes to Francoise Behn, without whom Swiss bureaucracy would have

claimed another victim.

To the wonderful friends I have been so lucky to have: Yahel, Assaf, Uri, Ido, Anni, Stuart,

Winston, Benoit, Ya-Ping, Elodie - thank you for keeping me sane, and keeping me happy. Last

but not least, my family, Rachel, Miri, Judy and Jacob - as I hope you already know - whatever

success I have in my life is thanks to your love and support.

This thesis is dedicated to all of you (not just the cat).

Lausanne, May 2019

v

Abstract
With ever greater computational resources and more accessible software, deep neural networks

have become ubiquitous across industry and academia. Their remarkable ability to generalize

to new samples defies the conventional view, which holds that complex, over-parameterized

networks would be prone to overfitting. This apparent discrepancy is exacerbated by our

inability to inspect and interpret the high-dimensional, non-linear, latent representations they

learn, which has led many to refer to neural networks as “black-boxes”. The Law of Parsimony

states that “simpler solutions are more likely to be correct than complex ones”. Since they

perform quite well in practice, a natural question to ask, then, is in what way are neural

networks simple?

We propose that compression is the answer. Since good generalization requires invariance

to irrelevant variations in the input, it is necessary for a network to discard this irrelevant

information. As a result, semantically similar samples are mapped to similar representations

in neural network deep feature space, where they form simple, low-dimensional structures.

Conversely, a network that overfits relies on memorizing individual samples. Such a network

cannot discard information as easily.

In this thesis we characterize the difference between such networks using the non-negative

rank of activation matrices. Relying on the non-negativity of rectified-linear units, the non-

negative rank is the smallest number that admits an exact non-negative matrix factorization.

We derive an upper bound on the amount of memorization in terms of the non-negative rank,

and show it is a natural complexity measure for rectified-linear units.

We use approximate non-negative matrix factorization to show compression can be suc-

cessfully used to distinguish between networks with different levels of memorization and

generalization. This observation is confirmed over several datasets and network architectures,

and we show that it even holds at the level of individual output classes, as well as during

training.

With a focus on deep convolutional neural networks trained to perform object recognition,

we show that the two non-negative factors derived from deep network layers decompose the

information held therein in an interpretable way. The first of these factors provides heatmaps

which highlight similarly encoded regions within an input image or image set. Shedding some

light into the “black box”, these heatmaps reveal what information a network finds relevant.

We find that these networks learn to detect semantic parts and form a hierarchy, such that

vii

Acknowledgements

parts are further broken down into sub-parts. We quantitatively evaluate the semantic quality

of these heatmaps by using them to perform semantic co-segmentation and co-localization.

In spite of the convolutional network we use being trained solely with image-level labels, we

achieve results comparable or better than domain-specific state-of-the-art methods for these

tasks.

The second non-negative factor provides a bag-of-concepts representation for an image or

image set. We use this representation to derive global image descriptors for images in a large

collection. With these descriptors in hand, we perform two variations content-based image

retrieval, i.e. reverse image search. Using information from one of the non-negative matrix

factors we obtain descriptors which are suitable for finding semantically related images, i.e.,

belonging to the same semantic category as the query image. Combining information from

both non-negative factors, however, yields descriptors that are suitable for finding other images

of the specific instance depicted in the query image, where we again achieve state-of-the-art

performance.

Keywords: deep neural networks, convolutional neural networks, non-negative matrix factor-

ization, generalization, overfitting, network interpretability, co-segmentation, co-localization,

content-based image retrieval

viii

Résumé
Avec des ressources informatiques de plus en plus importantes et des logiciels plus accessibles,

les réseaux neuronaux profonds sont devenus omniprésents dans l’industrie et le milieu

universitaire. Leur remarquable capacité de généralisation à de nouveaux échantillons défie

l’opinion conventionnelle selon laquelle des réseaux complexes et sur-paramétrés seraient

susceptibles de surapprentissage. Cette contradiction apparente est exacerbée par notre

incapacité d’inspecter et d’interpréter les représentations latentes, non linéaires et hautement

dimensionnelles que ces réseaux apprennent, ce qui a amené beaucoup à qualifier les réseaux

neuronaux de “boîtes noires”. La loi de la parcimonie stipule que "des solutions plus simples

ont plus de chances d’être correctes que des solutions complexes". Puisqu’ils fonctionnent

assez bien dans la pratique, une question naturelle à se poser est donc de savoir en quoi les

réseaux de neurones sont simples?

Nous proposons que la compression est la réponse. Étant donné qu’une bonne généralisation

exige l’invariance à des variations non pertinentes de l’entrée, il est nécessaire qu’un réseau se

débarrasse de cette information non pertinente. Par conséquent, des échantillons sémanti-

quement similaires sont mappés à des représentations similaires dans l’espace de charactères

profonds d’un réseau neuronal, où ils forment des structures simples et de faible dimension.

Inversement, un réseau surapprend s’il mémorise des échantillons individuels. Un tel réseau

ne peut pas se débarrasser de l’information aussi facilement.

Dans cette thèse, nous caractérisons la différence entre de tels réseaux en utilisant le rang

non-négatif des matrices d’activation. En se basant sur la non-négativité des unités linéaires

rectifiées, le rang non-négatif est le plus petit nombre qui admet une factorisation exacte de la

matrice non-négative. Nous établissons une limite supérieure à la quantité de mémorisation

en termes de rang non-négatif, et nous montrons qu’il s’agit d’une mesure de complexité

naturelle pour les unités rectifiées linéaires.

Nous utilisons la factorisation matricielle non-négative approximée pour montrer que la

compression peut être utilisée avec succès pour distinguer les réseaux avec différents niveaux

de mémorisation et de généralisation. Cette observation est confirmée sur plusieurs ensembles

de données et architectures de réseau, et nous montrons qu’elle se vérifie même au niveau

des classes de sortie individuelles, ainsi qu’au niveau de la formation.

En mettant l’accent sur les réseaux neuronaux convolutionnels profonds entraînés à la recon-

naissance d’objets, nous montrons que les deux facteurs non-négatifs dérivés des couches

ix

Résumé

profondes du réseau décomposent l’information qui s’y trouve d’une manière intelligible. Le

premier de ces facteurs fournit des heat maps qui mettent en évidence des régions codées de

manière similaire dans une image d’entrée ou un ensemble d’images. En éclairant la “boîte

noire”, ces heat maps révèlent l’information qu’un réseau trouve pertinente. Nous constatons

que ces réseaux apprennent à détecter les constituents sèmantiques et à former une hiérarchie,

de sorte que les constituants se décomposent davantage en sous-constituants. Nous évaluons

quantitativement la qualité sémantique de ces heat maps en les utilisant pour effectuer la

co-segmentation et la co-localisation sémantiques. Malgré le réseau convolutif que nous

utilisons et le fait que nous ne sommes formés qu’avec des étiquettes de niveau image, nous

obtenons pour ces tâches des résultats comparables ou meilleurs que les méthodes qui sont à

l’état de l’art du domaine spécifique

Le second facteur non-négatif fournit une représentation de "sac de concepts" pour une image

ou un ensemble d’images. Nous utilisons cette représentation pour dériver des descripteurs

d’image globaux pour les images d’une grande collection. Avec ces descripteurs en main,

nous effectuons deux variantes de la recherche d’images basée sur le contenu, c’est-à-dire la

recherche d’images inversée. En utilisant l’information provenant de l’un des facteurs matri-

ciels non-négatifs, nous obtenons des descripteurs qui conviennent à la recherche d’images

sémantiquement apparentées, c’est-à-dire appartenant à la même catégorie sémantique que

l’image de requête. En combinant les informations des deux facteurs non-négatifs, on obtient

des descripteurs qui permettent de trouver d’autres images de l’instance spécifique qui est

représentée dans l’image de la requête, où l’on obtient à nouveau des performances de pointe.

Keywords: deep neural networks, convolutional neural networks, non-negative matrix factor-

ization, generalization, overfitting, network interpretability, co-segmentation, co-localization,

content-based image retrieval

x

Contents
Acknowledgements v

Abstract (English) vii

List of figures xii

List of tables xiv

Abbreviations and Notation xvi

1 Introduction 1

1.1 Thesis contributions and outline . 3

2 Related Work 7

2.1 Introduction . 7

2.2 Convolutional neural networks . 7

2.2.1 From single neurons to deep convolutional neural networks 7

2.2.2 Training and gradient flow . 14

2.2.3 Generalization and overfitting . 17

2.2.4 Network interpretability . 20

2.3 Matrix factorization . 24

2.3.1 Principal component analysis (PCA) . 24

2.3.2 k-means . 25

2.3.3 Non-negative matrix factorization (NMF) 28

2.3.4 Random ablations . 29

2.4 Conclusion . 30

3 Memorization and the non-negative rank 33

3.1 Introduction . 33

3.2 Memorization bound through Common information 35

3.3 Non-linearity and rectangle cover number . 38

3.4 Estimating the non-negative rank . 40

xi

Contents

3.4.1 Single-class batches . 41

3.5 Experiments . 41

3.5.1 Datasets and networks . 41

3.5.2 Feature compression and memorization 44

3.5.3 Feature compression and generalization 51

3.5.4 Experiments on VGG-19 and ImageNet . 56

3.6 Conclusion . 56

4 Semantic localization with matrix U 59

4.1 Introduction . 59

4.2 NMF Heatmaps . 61

4.2.1 CNN Feature maps . 61

4.2.2 NMF on feature maps . 62

4.2.3 PCA heatmaps . 63

4.3 Experiments on iCoseg . 68

4.3.1 Qualitative investigation . 68

4.3.2 Object and part co-segmentation . 74

4.3.3 Layer depth . 79

4.4 Experiments on PASCAL VOC . 79

4.4.1 Object co-localization . 80

4.4.2 Part co-segmentation . 80

4.5 Conclusion . 85

5 Semantic retrieval with matrix V 87

5.1 Introduction . 87

5.2 Gradient ascent visualization . 89

5.3 Experiments on Oxford and Paris buildings . 94

5.3.1 Instance-based retrieval . 94

5.3.2 Localization . 100

5.4 Semantic image retrieval on PASCAL VOC . 103

5.5 Conclusion . 105

6 Conclusion 107

6.1 Thesis summary . 107

6.2 Future work . 108

Bibliography 119

xii

List of Figures
1.1 Training and test curves of CNNs trained on CIFAR-10 forced into various levels

of memorization . 2

1.2 Example NMF heatmaps with VGG-19 on iCoseg 4

1.3 Gradient ascent visualization of NMF basis derived from VGG-19 on iCoseg 1 . 5

2.1 Linear regression with single neuron . 8

2.2 Logistic regression with single neuron . 10

2.3 AlexNet architecture . 13

2.4 VGG-16 architecture . 14

2.5 Activation functions for neural networks . 15

2.6 ResNet building block . 16

2.7 Overfitting vs model complexity . 18

2.8 AlexNet first layer filters . 20

2.9 AlexNet first layer filters with gradient ascent . 21

2.10 AlexNet fifth layer filters with gradient ascent . 22

2.11 CAM sailency map pipeline . 23

2.12 PCA in 2D . 25

2.13 PCA vs. k-means vs. NMF . 26

2.14 k-means in 2D . 27

2.15 NMF in 2D . 29

2.16 RA in 2D . 30

3.1 Label randomization test error . 34

3.2 Support of a ReLU activation matrix . 39

3.2 Image datasets . 43

3.3 Layer-by-layer NMF compression . 46

3.4 NMF reconstruction error . 47

3.5 Detecting memorization via matrix factorization: CIFAR-10 49

3.6 Detecting memorization via matrix factorization: Various datasets 50

3.7 Detecting memorization with i.i.d. batches . 52

3.8 Detecting memorization with NMF and PCA ablations 53

xiii

List of Figures

3.9 Detecting generalization via compression . 54

3.10 NMF for early stopping . 55

3.11 Detecting memorization on VGG-19 . 57

3.12 NMF runtime on a typical ImageNet batch . 58

4.1 NMF heatmap extraction pipeline . 61

4.2 NMF and PCA heatmaps with K = 3 with VGG-19 on ImageNet 1 64

4.3 NMF and PCA heatmaps with K = 3 with VGG-19 on ImageNet 2 65

4.4 NMF and PCA heatmaps with K = 3 with VGG-19 on ImageNet 3 66

4.5 NMF and PCA heatmaps with K = 3 with VGG-19 on ImageNet 4 67

4.6 Incremental NMF with VGG-19 on iCoseg 1 . 69

4.7 Incremental NMF with VGG-19 on iCoseg 2 . 70

4.8 Incremental NMF with ResNet-50 on iCoseg 1 . 72

4.9 Incremental NMF with ResNet-50 on iCoseg 2 . 73

4.10 Average IoU score for NMF with different layers of VGG-19 on iCoseg 79

4.11 Example NMF heatmaps with VGG-19 on PASCAL-Part 1 81

4.12 Example NMF heatmaps with VGG-19 on PASCAL-Part 2 82

5.1 NMF as a bipartite graph . 88

5.2 Gradient ascent visualization of NMF basis derived from VGG-16 on iCoseg 2 . 90

5.3 Gradient ascent visualization of NMF basis derived from VGG-16 on iCoseg 2 . 91

5.4 Gradient ascent visualization of NMF basis derived from ResNet-50 on iCoseg 2 92

5.5 Gradient ascent visualization of NMF basis derived from ResNet-50 on iCoseg 3 93

5.6 Example images from Paris buildings with NMF heatmaps from VGG-16 95

5.7 Example images from Paris buildings with NMF heatmaps from ResNet-50 . . . 96

5.8 NMF global image descriptor extraction pipeline 99

5.9 Image retrieval with NMF top 5 . 100

5.10 NMF localization for top retrieved search results 102

xiv

List of Tables
3.1 Neural network architectures . 45

4.1 Part co-segmentation with VGG-19 on iCoseg . 78

4.2 Object co-segmentation on iCoseg . 78

4.3 Co-localization on PASCAL VOC 2007 . 83

4.4 Part co-segmentation with VGG-19 on PASCAL-Part 84

4.5 Part co-segmentation comparison against state-of-the-art 85

5.1 Instance-based retrieval mAP with NMF and other methods 101

5.2 NMF IoU scores on Oxford and Paris Buildings query sets 103

5.3 Semantic image-retrieval on PASCAL VOC 2010 104

xv

Abbreviations and Notation
List of Abbreviations

Abbreviation Description

NN Artificial neural network

CNN Convolutional neural network

SGD Stochastic gradient descent

PCA Principal component analysis

NMF Non-negative matrix factorization

RA Random ablations

ReLU Rectified-linear unit

BN Batch normalization

xvii

List of Tables

List of Symbols
Symbol Description

R+ Non-negative real numbers [0, inf)

M ,P arbitrary integers representing high dimensional spaces, e.g. RM+
Λ(·) A function representing a neural network

Λi (·) A function representing the i th layer of a neural network

` A loss function defining an optimization objective, not to be confised with

`2 The Eculidean norm

X, X , x Neural network input in tensor, matrix and vector form, respectively

I An input image

A, A, a Neural network activations in tensor, matrix and vector form, respectively

Â, Â, â Approximation of activations via matrix factorization

X , Z Random variables representing NN input and hidden activation respectively

ŷ NN last layer output

y Ground truth target NN should predict

Y A random variable distributed over ground truth targets

X ×Y The true data distribution of input output pairs

A,B Generic random variables

P ,I ,C,H The probability operator, mutual information, common information, and Shan-

non entropy

V A matrix holding basis vectors of a matrix factorization

U A matrix holding per-sample coefficients for matrix factorization

N Number of samples in a dataset or batch

H Height of image or feature map

W Width of image or feature map

C Number of channels at a convolutional layer

K Positive integer rank of matrix factorization, or a random variable defining a

categorical distribution on matrix factors

T Number of output classes

c,k, t A specific channel, factor, or target, i.e., 1 ≤ c ≤C , 1 ≤ k ≤ K , 1 ≤ t ≤ T

F A random variable defining a categorical distribution over each of the K matrix

factors

a,b, i , j Genetic subscripts for enumerating collections

D, Dtest Datasets used for training and testing, respectively

i A discrete random variable indexing a batch or dataset with P(i = i) = 1
N

p The probability of randomizing a training label

supp The support of a matrix

r c The rectangle cover number of a binary matrix

xviii

List of Tables

Symbol Description

U The matrix U reshaped and rescaled to form a tensor of heatmaps

B The tensor U after binarization

G A tensor containing ground truth binary segmentation masks. Unlike y , this is

not used for NN training.

R Number of relevant images with respect to a query image

r The number of relevant images retrieved up to a given rank

v NMF global image descriptor

xix

1 Introduction

Since the advent of digital computers in the 1940s, researchers have sought to use them to

automate tasks traditionally solved by human labor. As computational resources grew, so

did the desire to automate more complex and high-level tasks, such as translating natural

language texts, recognizing objects in images, etc.

Early strides towards that goal were based on rigid rule-based systems, distilling expert knowl-

edge of a task-specific domain. These systems, however, did not scale to the level of variation

which exists in most real-world inputs. A task as simple as, for instance, recognizing dog

images requires approximating a function which maps thousands or even millions of pixels

into a yes/no decision, while considering that dogs can be large or small, light or dark, 4-legged

or 3-legged, indoors or outdoors - but are not to be confused with cats or even wolves. For

such problems, machine learning proposed to design algorithms that automatically learn how

to solve a given task.

For example, the most common paradigm in machine learning is supervised learning, i.e.,

learning by example. In this setting, a dataset is given which consists of input-output pairs,

and a parametric model is trained (i.e., its parameters are gradually refined) to predict the

output given the input.

The availability of large datasets and powerful computational resources over the past decade

has facilitated the rise in popularity of deep neural networks. This flexible class of models is

at once general, i.e., requiring little domain-specific expertise, while nonetheless showing

state-of-the-art performance across diverse domains. This technology has had a profound

impact on the high-tech industry, with the deep learning market expected to reach $US 18

Billion by 20241.

1https://www.marketresearchengine.com/deep-learning-market

1

https://www.marketresearchengine.com/deep-learning-market

Chapter 1. Introduction

Tr
ai

n
se

ta
cc

u
ra

cy

6

Epochs

(a) Training curves

Te
st

se
ta

cc
u

ra
cy

7

Epochs

(b) Test curves

Figure 1.1 – Shown here are (a) training and (b) test curves during training of six convolu-
tional neural networks on the CIFAR-10 dataset forced into different degrees of memorization.
Marked in red is the outcome at the end of the training procedure. Given the final training set
accuracy, is it possible to predict the test set accuracy? In this thesis we find that a distinguishing
property which characterizes the difference between these networks, and correlates with better
generalization and less memorization, is the non-negative rank of their activation matrices.

However, the success of deep networks has also been accompanied by a certain measure of

obfuscation. The factors determining the success or failure of learning are not well understood,

and methods of evaluating what was learned are limited.

For instance, while the ultimate goal is to generalize well to new data, which is not seen during

training, some models are prone to overfitting, i.e., simply memorizing the training data. In

spite of having millions and even billions of parameters, deep neural networks have shown a

measure of resilience to this phenomenon, defying the traditional “wisdom” that models with

many parameters are likely to overfit. The factors governing a network’s tendency to overfit

are still subject to intensive study these days.

Consider for instance the learning curves in Figure 1.1. Although all networks achieve perfect

accuracy on their training sets, they have very different levels of generalization. What is the

distinguishing factor between these networks? Can it be detected independently of a test set?

2

1.1. Thesis contributions and outline

In this thesis we propose that compression is a key factor, distinguishing between networks

that generalize well and those that simply memorize their training data. Any predictive rule

with a degree of generality must ignore certain aspects of the instance to which it is applied,

effectively compressing it by discarding irrelevant information.

The notion that compression is a hallmark of well-generalizing models is not new. It is an

extension of a principle going back to antiquity and made famous as Occam’s razor: “Entities

are not to be multiplied beyond necessity”. In this case, we prefer a network that learns one

general rule that accommodates many inputs, over a network that learns many specific rules

that accommodate individual inputs.

Compression not only gives us a criterion by which to evaluate generalization behavior, it also

addresses questions regarding the interpretation of neural networks. It is natural to ask why a

certain prediction was made, by which reasoning, or by considering which aspects of the input.

The nonlinear interactions between the millions of parameters makes exact answers to these

questions incomprehensible to human beings. As these networks are deployed into products

and services all around us - from targeted advertisement on social media to autonomous

vehicles - there is a growing need to validate and understand the outcome of learning.

By examining the compression a convolutional neural network applies to images, we can

create heatmaps which allow us to see how a deep neural network conceptualizes its input. In

Figure 1.2 we show an example of this visualization, showing that in a deep network layer, a

scene or object is decomposed into its constituent parts. This demonstrates how the network

discards information it finds irrelevant, such as scale, perspective, various object deformations

etc. At the same time, for the object recognition task it was trained to accomplish, the presence

or absence of specific entities, e.g., tower or person, are deemed important enough to retain.

Furthermore, by characterizing images using the information a convolutional neural network

considers relevant about them, we can semantically compare two images. This gives a mecha-

nism with which to search for semantically similar images given a query image, and localize

the semantically matching regions within the images.

1.1 Thesis contributions and outline

Our main contribution is actualizing the idea of using compression into a working algorithm.

Our tool of choice is non-negative matrix factorization (NMF) [59], which is applicable to

neural network layers with non-negative activation, e.g. by using the popular rectified-linear

activation function (section 2.2.2). Let A ∈ RP×M+ be an intermediate representation pro-

duced by a convolutional neural network at one of its deep layers. NMF decomposes this

3

Chapter 1. Introduction

(a) Pyramids, K = 4

(b) Taj Mahal, K = 3

Figure 1.2 – What in this picture is the same as in the other pictures? Non-negative matrix
factorization allows us to see how a deep CNN trained for image classification would answer
this question. Here shown is an example of VGG-19 trained on ImageNet classification, and
then applied to subsets from the iCoseg dataset. (a) Pyramids, animals and people correspond
across images. (b) Monument parts match with each other.

representation into two parts:

A ≈UV (1.1)

where U ∈ RP×K+ , V ∈ RK×M+ . When K is the smallest integer which maintains A = UV , it is

called the non-negative rank of A.

4

1.1. Thesis contributions and outline

(a) Pyramids, K = 4

(b) Taj Mahal, K = 3

Figure 1.3 – Gradient ascent visualization of the features obtained through non-negative
matrix factorization applied to VGG-19 activation for the Pyramids and Taj Mahal subsets
from iCoseg. These visualizations of the rows of V correspond to the heatmap visualizations
of the columns of U shown in Figure 1.2 using the same color encoding, i.e., the blue framed
visualizations above correspond to the blue heatmaps in each corresponding row.

In Chapter 2 introduce interesting properties of NMF as well other factorization methods. In

the same chapter we review deep neural networks, and convolutional networks in particular,

with a focus on the challenges posed by generalization and interpretation.

In Chapter 3 we derive an upper bound over the amount of memorization in a network layer,

expressed in terms of the non-negative rank of its activation matrices. We then explicitly apply

compression to the intermediate representations learned by deep neural networks, which

allows us to compare neural networks and determine which one is likely to generalize better -

without the use of a validation set.

We show empirically that NMF is more effective than other matrix factorization techniques at

distinguishing between memorization and generalization. Our method is also effective during

training, which we demonstrate by performing early stopping, before overfitting commences.

Matrix factorization methods have been used for exploratory data analysis for decades. As a

dimensionality reduction method, matrix factorization retrieves a compressed representation

of the data, with fewer redundancies and correlations. When the dimensionality is sufficiently

reduced, qualitative interpretation by human beings is made possible.

5

Chapter 1. Introduction

We show that this decomposition distills much of the semantics learned by a deep convolu-

tional neural network. We roughly characterize U as “where” and V “what”.

In Chapter 4, we use the U matrix of the NMF decomposition to produce heatmaps as in Figure

1.2, which offer an interpretable view into what information the network considers relevant

and what information it discards. We find that for object recognition, the network learns to

recognize fine-grained object parts, with invariance to complex transformations and noise.

For instance, for the task of detecting cars we see that color is not a discriminative feature,

whereas the presence or absence of wheels is.

We quantitatively demonstrate the rich semantics encoded in the matrix factors by applying

them to real-world tasks such as co-localization and co-segmentation of a common object

across a set of images. We obtain state-of-the-art results, with performance comparable or

surpassing even hand-crafted domain-specific methods.

Each heatmap produced by the matrix U corresponds to a network feature which is stored

in matrix V . For instance, using feature visualization techniques can visualize V as shown in

Figure 1.3. These visualization are informed of the original images shown in Figure 1.2 only

through the features in V .

In Chapter 5 we use the matrix V to describe an image globally as a bag-of-concepts. We

evaluate this representation by performing image search. Specifically, we derive global image

descriptors using V and show they can be used to retrieve images containing similar objects,

with all the invariances learned by the network. For example, given an image of a dog, we

search through a dataset and rank highly other images that portray dogs, regardless of scale,

rotation and even dog breed.

By combining information from both U and V we perform instance-based search, i.e., given

an image of a building, we rank highly only images of that particular building, and not images

of other similar looking buildings. We again find that this approach outperforms comparable

state-of-the-art methods.

In Chapter 6 we conclude the thesis with a summary of our contributions and directions for

future work.

6

2 Related Work

2.1 Introduction

The methods proposed in this thesis concern various aspects of neural networks in general,

and convolutional neural networks in particular. The first half of Section 2.2 therefore provides

an introduction to neural networks, focusing on the necessity for multiple layers in order

to achieve good performance on complex prediction tasks, and describing common design

choices in modern networks.

Section 2.2 then proceeds with an introduction of the two main themes of our work. We

discuss empirical methods to detect overfitting, its impact on generalization, and theoretical

work providing upper bounds on the generalization error. We then introduce the challenge of

network interpretability, reviewing existing approaches with a focus on convolutional neural

networks.

Our tool of choice for both detecting memorization and opening an interpretable window

into convolutional neural networks, is non-negative matrix factorization. We introduce this

method as well as other matrix factorization methods in Section 2.3.

2.2 Convolutional neural networks

2.2.1 From single neurons to deep convolutional neural networks

The class of computational models referred to as artificial neural networks (NNs) contains

many diverse models. A common characteristic to all NNs, which they share with their

biological namesakes, is the composition of simple computational units, the so-called neurons,

into a larger collective, capable of computing more complex functions.

7

Chapter 2. Related Work

y

2 0 2 4 6 8

4.8

5.0

5.2

5.4

5.6

5.8

y

2 0 2 4 6 8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

x x

(a) (b)

Figure 2.1 – A single-neuron neural network with identity activation and mean squared error
loss is equivalent to linear regression. Model predictions lie on the red line. (a) The data follows
a linear distribution and the linear regression gives accurate predictions. (b) The data follows
a non-linear distribution and linear-regression is too limited to give accurate predictions.

Linear-prediction: Single neuron and single layer

At its simplest, a single neuron is a functionΛ :RM →R:

Λ(x) = f (x>w +b) (2.1)

i.e., a weighted-sum of the input vector x with weights w , both in RM , followed by the addition

of a bias term b ∈ R. Finally the activation function f is applied to form the neuron output,

called simply the activation.

A single-neuron NN can already retrieve common statistical models. We denote the output

prediction of a NN as ŷ =Λ(x). Letting D = {xi , yi |1 ≤ i ≤ N } be a training dataset of input-

output samples, the weights w and the bias term b are trained to minimize the empirical

loss:

`D = 1

N

∑
x ,y∈D

`(ŷ , y) (2.2)

w∗,b∗ = argmin
w ,b

`D (2.3)

where ` is the loss function, measuring the prediction error.

Different settings of activation and loss functions define different models. For instance, as

shown in Figure 2.1, when y ∈ R, linear regression can be cast as a single-neuron NN with

8

2.2. Convolutional neural networks

identity activation and squared-error loss:

f (a) = a (2.4)

`(ŷ , y) = ‖ŷ − y‖2
2 → (ŷ − y)2 if y ∈R

Similarly, for binary classification with y ∈ {0,1}, as in Figure 2.2, setting the activation function

to the logistic function and loss to binary cross-entropy results in a single-neuron NN which

performs logistic regression:

f (a) = 1

1+e−a (2.5)

`(ŷ , y) =−y log(ŷ)− (1− y) log(1− ŷ)

An example of multiple neurons composed together arises with the generalization of logistic

regression to the case where y ∈ {1, · · · ,T } and we wish to classify x as belonging to exactly

one of T classes. This is accomplished by considering T neurons jointly, where we define the

j th neuron output as the score or probability of belonging to the j th class. In this case, the

weight vectors of the individual neurons are stacked into a single weight matrix, W ∈RM×T ,

and similarly all bias terms to a vector, b ∈RT . Computing the NN output prediction proceeds

as before:

ŷ =Λ(x) = f (x>W +b) (2.6)

A suitable activation function in this case is the softmax function f (x) = ex

‖ex‖1
, which normal-

izes its input to form a probability distribution. The cross-entropy loss in this case reduces to

the negative log-likelihood of the correct class `(ŷ , y) =− log ŷy . This model is referred to as

softmax regression.

Neurons combined as in Eq. (2.6) are said to form a layer of width T . A layer parameterized

this way is called “fully-connected”, since every input affects every output. A fully-connected

layer with M inputs and T outputs has a total (M +1) ·T trainable parameters.

An important property of the single-layer models described thus far is that they make linear

predictions. This can be seen in Figures 2.1 and 2.2. Linear regression explicitly parameterizes

a line equation on which its predictions lie, and both logistic and softmax regression are

characterized by linear decision boundaries.

For classification, the linearity of decision boundaries does not pose a limitation if, indeed, the

vectors associated with a label a, i.e., Xa = {xi |yi = a}, are linearly separable from the vectors

Xb , as in Figure 2.2b. In this case, logistic regression as described above is sufficient to fully

9

Chapter 2. Related Work

x 1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x
2 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x2 x2
2

(a) (b)

Figure 2.2 – A single-neuron neural network with logistic activation and binary cross-entropy
loss is equivalent to logistic regression. The decision boundary at ŷ = 0.5 is shown in red.
(a) Logistic regression cannot separate clusters which are not linearly-separable. (b) An
appropriate transformation can extract features that result in linear-separability.

minimize the loss.

However, if Xa is not linearly-separable from Xb , as in Figure 2.2a, inherent model error is

introduced that cannot be overcome by any setting of the parameters W and b.

Feature extraction: multiple layers

To overcome this issue, the input vectors x must first be transformed, by an additional function

Λh , into having linearly-separable structure. The transformed output, called features, can then

be fed to the single-layer classifier:

ŷ =Λ(Λh(x)) (2.7)

In the case shown in Figure 2.2a, although the data is given as two dimensional vectors

x =< x1, x2 >, the cluster identity is determined by the radius length x2
1 +x2

2 . SettingΛh(x) =<
x2

1 , x2
2 > is therefore an adequate transformation, which yields the linearly-separable clusters

shown in Figure 2.2b.

The question remains, however, how to find appropriate features without requiring case-by-

case analysis. Such analysis typically involves considerable investment and is limited by the

level of domain-specific expertise available to the feature designer.

10

2.2. Convolutional neural networks

One solution is to augment the input with higher-order interactions, e.g., the squared inputs

used in the above example. It is unclear, however, how complex these interactions must be

in order to achieve linear separability. Furthermore, adding all interaction terms of a certain

order increases the input size combinatorially, which quickly makes the weight matrix W large.

Over-parameterized layers have higher space and time complexity, and are exposed to the

danger of overfitting, discussed in section 2.2.3.

A different approach is to model the functionΛh similarly to the functionΛ:

Λh(x) = g (W >
h x +bh) (2.8)

where g is an activation function and Wh ∈RM×P . We accordingly redefine W ∈RP×T .

The model prediction now becomes a composition:

ŷ =Λ(Λh(x)) (2.9)

and the parameters ofΛh andΛ are both subject to training. Analyzing the features extracted

byΛh is an interesting challenge, as discussed in Section 2.2.4.

In the resulting two-layer model,Λ is called the output layer andΛh is referred to as a hidden

layer, since its P-dimensional output activation is a latent code without any a-priori assigned

meaning. The term input layer is sometimes used to refer to the input x itself. This layered

architecture is called feed-forward, since obtaining the prediction involves feeding the output

of each layer forward to the next layer.

The layer Λh has limited expressive power, since it consists of only a single linear transfor-

mation followed by an element-wise activation function. Achieving linear-separability may

require more complex transformations. In this case, complexity could be increased by intro-

ducing additional layers to the model, increasing its depth.

We thus arrive to the general L-layer feed-forward NN model, which is the underlying paradigm

for most modern NN architectures today:

a0 = x (2.10)

ai =Λi (ai−1), 1 ≤ i ≤ L

ŷ = aL

The number of hidden layers, L−1, their widths, and the activation functions used are hyper-

parameters defining the NN architecture, and are set by the network designer.

11

Chapter 2. Related Work

The vector ai is the activation vector at layer i , also referred to as the features extracted by the

first i layers. The activation of the final layer is the output prediction ŷ .

The intuition behind deep learning suggests that the deeper the layer i , the more abstract and

semantically meaningful are its features [12].

Convolution

Computer vision deals with image data for tasks such as object recognition and segmentation.

Using fully-connected NNs to solve these tasks quickly runs into a scalability issue: image

data can have hundreds-of-thousands or millions of dimensions, even at moderate image

resolutions.

To resolve this, the convolutional neural network (CNN) was introduced [58]. In this net-

work the basic layer computation is changed to have two properties: local-connectivity and

translation-invariance. These properties drastically reduce the number of network parameters,

thereby reducing computational load and the danger of overfitting.

Local-connectivity means that by applying small filters to image patches, only interactions

between near-by pixels are considered. This is based on the assumption that, for instance,

a pixel near the top-left corner of the image and a pixel near the bottom-right corner, are

unlikely to be related in a consistent manner which can be useful for making predictions.

Translation-invariance means we can use the same local filter in all spatial positions. This is

based on the assumption that image statistics distribute identically across the spatial dimen-

sions of the image.

With the properties combined, the result is that a CNN layer performs a 2D spatial-convolution

(or cross-correlation) between the input image and a set of learned filters. Note that the same

local-connectivity and translation-invariance assumptions can be applied to any directional

data, e.g., time-series or text data, in which case convolution and filters are 1D.

Formally, an image is represented as a tensor I ∈ RCI×HI×WI , where HI and WI are the height

and width of the image respectively, and CI is the number of channels, e.g., CI = 3 for RGB

color images.

The weight tensor of a convolutional layer W ∈ RCout×Cin×HW×WW is viewed as a set of Cout

filters, each of spatial dimensions HW×WW and as many channels as the layer input. The bias

vector b ∈RCout has a value for every output channel, which is added at all spatial positions.

12

2.2. Convolutional neural networks

Figure 2.3 – A schematic of AlexNet. Figure taken from Krizhevsky et al. [55].

A convolutional layer operates in the image’s 2D space and computes:

Ai ∈RCout×HAi ×WAi

Ai =Λi (Ai−1) such that [Λi (Ai−1)]c = f (Ai−1 ∗Wc +b) (2.11)

where ∗ denotes convolution, and Ai−1 is the layer input, e.g. Ai−1 = I, and thus Cin =CAi−1 .

Each of the Cout channels of the resulting activation tensor,Λ(X), is also called a feature map,

since it is a 2D activation map where each value represents a feature response with respect to

an image patch.

The output dimensions HAi ×WAi , being a function of HI and WI, vary from image to image.

In general, convolution produces an output with decreased spatial dimension. To account for

this, padding is added at each layer to give an output with the same spatial dimensionality as

the input.

Commonly, spatial dimensions are reduced with explicit down-sampling, accompanied by

an increase in the channel dimension. This further reduces the memory and computation

requirements. Down-sampling is accomplished by setting the stride of convolutions or pooling

operations to be greater than one.

A common form of pooling is max-pooling. Defined by a window of size Hp ×Wp , the pooling

window slides over the image akin to the convolution operation, and returns at every position

the maximal value within the window. When applied to an activation tensor with C channels,

max-pooling is applied to each channel separately, i.e., given input A ∈RC×Hp×Wp , max pooling

returns a C −di mensi onal vector, having pooled the spatial dimensions.

Arguably the first successfully trained large-scale CNN is AlexNet [55]. It consist of several

convolutional layers, followed by several fully-connected layers. A schematic of AlexNet is

shown in Figure 2.3.

13

Chapter 2. Related Work

Figure 2.4 – A schematic of VGG16. VGG networks follow the design of AlexNet, but are deeper
and exclusively use small filters. Figure taken from blog.heuritech.com.

Trained on ImageNet [80], AlexNet classifies images as belonging to one of 1K classes. With a

total of 60M parameters, this network achieved a top-1 accuracy of 62.5% and top-5 accuracy

of 83%.

The networks VGG-16 and VGG-19 [87] closely follow the architecture of AlexNet. However,

they exclusively use small 3×3 convolutional filters (compared to 11×11 in the first layer of

AlexNet), and have increased depth. VGG-16 improved CNN performance on ImageNet to

classification to top-1 accuracy of 74.4% and top-5 accuracy of 91.9%. See Figure 2.4 for a

schematic.

2.2.2 Training and gradient flow

Gradient optimization

Minimizing the objective function of the logistic regression model of Eq. (2.4) can be done

analytically: computing the gradient of the loss with respect to w and setting it to zero gives

the well-known normal equation, which has a closed-form solution yielding the optimal w .

Logistic regression, in Eq. (2.5), on the other hand, does not lend itself to a closed-form

solution. Instead, its parameters are iteratively updated with gradient descent (GD). Starting

from a random parameter initialization, at every iteration the gradient ∇w` is computed, and

14

blog.heuritech.com

2.2. Convolutional neural networks

 317

Xavier Glorot, Antoine Bordes, Yoshua Bengio

Figure 1: Left: Common neural activation function motivated by biological data. Right: Commonly
used activation functions in neural networks literature: logistic sigmoid and hyperbolic tangent (tanh).

hyperbolic tangent (see Figure 1, right), which are
equivalent up to a linear transformation. The hy-
perbolic tangent has a steady state at 0, and is
therefore preferred from the optimization stand-
point (LeCun et al., 1998; Bengio and Glorot,
2010), but it forces an antisymmetry around 0
which is absent in biological neurons.

2.2 Advantages of Sparsity

Sparsity has become a concept of interest, not only in
computational neuroscience and machine learning but
also in statistics and signal processing (Candes and
Tao, 2005). It was first introduced in computational
neuroscience in the context of sparse coding in the vi-
sual system (Olshausen and Field, 1997). It has been
a key element of deep convolutional networks exploit-
ing a variant of auto-encoders (Ranzato et al., 2007,
2008; Mairal et al., 2009) with a sparse distributed
representation, and has also become a key ingredient
in Deep Belief Networks (Lee et al., 2008). A sparsity
penalty has been used in several computational neuro-
science (Olshausen and Field, 1997; Doi et al., 2006)
and machine learning models (Lee et al., 2007; Mairal
et al., 2009), in particular for deep architectures (Lee
et al., 2008; Ranzato et al., 2007, 2008). However, in
the latter, the neurons end up taking small but non-
zero activation or firing probability. We show here that
using a rectifying non-linearity gives rise to real zeros
of activations and thus truly sparse representations.
From a computational point of view, such representa-
tions are appealing for the following reasons:

• Information disentangling. One of the
claimed objectives of deep learning algo-
rithms (Bengio, 2009) is to disentangle the
factors explaining the variations in the data. A
dense representation is highly entangled because
almost any change in the input modifies most of

the entries in the representation vector. Instead,
if a representation is both sparse and robust to
small input changes, the set of non-zero features
is almost always roughly conserved by small
changes of the input.

• E�cient variable-size representation. Dif-
ferent inputs may contain di↵erent amounts of in-
formation and would be more conveniently repre-
sented using a variable-size data-structure, which
is common in computer representations of infor-
mation. Varying the number of active neurons
allows a model to control the e↵ective dimension-
ality of the representation for a given input and
the required precision.

• Linear separability. Sparse representations are
also more likely to be linearly separable, or more
easily separable with less non-linear machinery,
simply because the information is represented in
a high-dimensional space. Besides, this can reflect
the original data format. In text-related applica-
tions for instance, the original raw data is already
very sparse (see Section 4.2).

• Distributed but sparse. Dense distributed rep-
resentations are the richest representations, be-
ing potentially exponentially more e�cient than
purely local ones (Bengio, 2009). Sparse repre-
sentations’ e�ciency is still exponentially greater,
with the power of the exponent being the number
of non-zero features. They may represent a good
trade-o↵ with respect to the above criteria.

Nevertheless, forcing too much sparsity may hurt pre-
dictive performance for an equal number of neurons,
because it reduces the e↵ective capacity of the model.

(a) Sigmoid activation functions

 318

Deep Sparse Rectifier Neural Networks

Figure 2: Left: Sparse propagation of activations and gradients in a network of rectifier units. The

input selects a subset of active neurons and computation is linear in this subset. Right: Rectifier and softplus
activation functions. The second one is a smooth version of the first.

3 Deep Rectifier Networks

3.1 Rectifier Neurons

The neuroscience literature (Bush and Sejnowski,
1995; Douglas and al., 2003) indicates that corti-
cal neurons are rarely in their maximum saturation
regime, and suggests that their activation function can
be approximated by a rectifier. Most previous stud-
ies of neural networks involving a rectifying activation
function concern recurrent networks (Salinas and Ab-
bott, 1996; Hahnloser, 1998).

The rectifier function rectifier(x) = max(0, x) is one-
sided and therefore does not enforce a sign symmetry1

or antisymmetry1: instead, the response to the oppo-
site of an excitatory input pattern is 0 (no response).
However, we can obtain symmetry or antisymmetry by
combining two rectifier units sharing parameters.

Advantages The rectifier activation function allows
a network to easily obtain sparse representations. For
example, after uniform initialization of the weights,
around 50% of hidden units continuous output val-
ues are real zeros, and this fraction can easily increase
with sparsity-inducing regularization. Apart from be-
ing more biologically plausible, sparsity also leads to
mathematical advantages (see previous section).

As illustrated in Figure 2 (left), the only non-linearity
in the network comes from the path selection associ-
ated with individual neurons being active or not. For a
given input only a subset of neurons are active. Com-
putation is linear on this subset: once this subset of
neurons is selected, the output is a linear function of

1The hyperbolic tangent absolute value non-linearity
| tanh(x)| used by Jarrett et al. (2009) enforces sign symme-
try. A tanh(x) non-linearity enforces sign antisymmetry.

the input (although a large enough change can trigger
a discrete change of the active set of neurons). The
function computed by each neuron or by the network
output in terms of the network input is thus linear by
parts. We can see the model as an exponential num-
ber of linear models that share parameters (Nair and
Hinton, 2010). Because of this linearity, gradients flow
well on the active paths of neurons (there is no gra-
dient vanishing e↵ect due to activation non-linearities
of sigmoid or tanh units), and mathematical investi-
gation is easier. Computations are also cheaper: there
is no need for computing the exponential function in
activations, and sparsity can be exploited.

Potential Problems One may hypothesize that the
hard saturation at 0 may hurt optimization by block-
ing gradient back-propagation. To evaluate the poten-
tial impact of this e↵ect we also investigate the soft-
plus activation: softplus(x) = log(1+ex) (Dugas et al.,
2001), a smooth version of the rectifying non-linearity.
We lose the exact sparsity, but may hope to gain eas-
ier training. However, experimental results (see Sec-
tion 4.1) tend to contradict that hypothesis, suggesting
that hard zeros can actually help supervised training.
We hypothesize that the hard non-linearities do not
hurt so long as the gradient can propagate along some
paths, i.e., that some of the hidden units in each layer
are non-zero. With the credit and blame assigned to
these ON units rather than distributed more evenly, we
hypothesize that optimization is easier. Another prob-
lem could arise due to the unbounded behavior of the
activations; one may thus want to use a regularizer to
prevent potential numerical problems. Therefore, we
use the L1 penalty on the activation values, which also
promotes additional sparsity. Also recall that, in or-
der to e�ciently represent symmetric/antisymmetric
behavior in the data, a rectifier network would need

(b) Rectified-linear activation function

Figure 2.5 – The activation function plays a crucial role in the convergence properties of a
deep NN. (a) Saturating activation functions have small gradients far from the origin, which
slows down learning as NN weights grow in magnitude. (b) The rectified-linear function [37],
on the other hand, has a gradient of 1 for all positive activations. The non-negativity of the
rectified-linear function enables us to use NMF in our analysis of CNN activations. Figure
taken from Glorot et al. [37].

the weights are updated as:

w ← w −α∇w (2.12)

where α is a hyper-parameter controlling the step size.

When the step size is not too large, GD is guaranteed to find the globally optimal value of w ,

because the single-layer logistic regression model has a convex objective function.

A NN or CNN with many layers, however, defines a highly non-convex function. Minimizing

such a function with GD could theoretically “get stuck” in a sub-optimal local minimum.

With the availability of large datasets for training, stochastic gradient descent (SGD) has been

proposed, which performs a gradient update based on a stochastically sampled subset of

the data, called a batch. The introduction of sampling noise could account for the good

performance of (stochastic) gradient descent methods in practice, since the noise allows the

network to escape from narrow local minima [51].

Augmentations of SGD have also been proposed, such as SGD with momentum [74], Adagrad

[29] and ADAM [52]. These methods all maintain a per-parameter learning rate, resulting in

faster convergence than standard SGD.

One of the main challenges of optimization with SGD variants is the problem of vanishing

and exploding gradients. Specifically, the gradient is computed by back-propagating the error

15

Chapter 2. Related Work

8 T
a
b
le

2
.

C
la

ss
ifi

ca
ti

o
n

er
ro

r
(%

)
o
n

th
e

C
IF

A
R

-1
0

te
st

se
t

u
si

n
g

d
i↵

er
en

t
a
ct

iv
a
ti

o
n

fu
n
ct

io
n
s.

ca
se

F
ig

.
R

es
N

et
-1

1
0

R
es

N
et

-1
6
4

o
ri

g
in

a
l
R

es
id

u
a
l
U

n
it

[1
]

F
ig

.
4
(a

)
6
.6

1
5
.9

3

B
N

a
ft

er
a
d
d
it

io
n

F
ig

.
4
(b

)
8
.1

7
6
.5

0

R
eL

U
b
ef

o
re

a
d
d
it

io
n

F
ig

.
4
(c

)
7
.8

4
6
.1

4

R
eL

U
-o

n
ly

p
re

-a
ct

iv
a
ti

o
n

F
ig

.
4
(d

)
6
.7

1
5
.9

1

fu
ll

p
r
e
-a

c
ti

v
a
ti

o
n

F
ig

.
4
(e

)
6
.3

7
5
.4

6

B
N

R
e
L
U

w
e
ig
h
t

B
N

w
e
ig
h
t

a
d
d
it
io
n

R
e
L
U

x
l

x
l
+
1

R
e
L
U

w
e
ig
h
t

B
N

R
e
L
U

w
e
ig
h
t

B
N

a
d
d
it
io
n

x
l

x
l
+
1

B
N

R
e
L
U

w
e
ig
h
t

B
N

w
e
ig
h
t

a
d
d
it
io
n

R
e
L
U

x
l

x
l
+
1

B
N

R
e
L
U

w
e
ig
h
t

B
N

R
e
L
U

w
e
ig
h
t

a
d
d
it
io
n

x
l

x
l
+
1

w
e
ig
h
t

B
N

R
e
L
U

w
e
ig
h
t

B
N

R
e
L
U

a
d
d
it
io
n

x
l

x
l
+
1

(
a
)

o
r
i
g
i
n
a
l

(
b
)

B
N

a
f
t
e
r

a
d
d
i
t
i
o
n

(
c
)

R
e
L
U

b
e
f
o
r
e

a
d
d
i
t
i
o
n

(
d
)

R
e
L
U
-
o
n
l
y

p
r
e
-
a
c
t
i
v
a
t
i
o
n

(
e
)

f
u
l
l

p
r
e
-
a
c
t
i
v
a
t
i
o
n

F
ig

u
re

4
.

V
a
ri

o
u
s

u
sa

g
es

o
f
a
ct

iv
a
ti

o
n

in
T
a
b
le

2
.
A

ll
th

es
e

u
n
it

s
co

n
si

st
o
f
th

e
sa

m
e

co
m

p
o
n
en

ts
—

o
n
ly

th
e

o
rd

er
s

a
re

d
i↵

er
en

t.

3
.2

D
is

c
u
ss

io
n
s

A
s

in
d
ic

at
ed

b
y

th
e

gr
ey

ar
ro

w
s

in
F
ig

.
2,

th
e

sh
or

tc
u
t

co
n
n
ec

ti
on

s
ar

e
th

e
m

os
t
d
ir

ec
t
p
at

h
s
fo

r
th

e
in

fo
rm

at
io

n
to

p
ro

p
ag

at
e.

M
u
lt
ip

li
ca

ti
ve

m
an

ip
u
la

ti
on

s
(s

ca
li
n
g,

ga
ti

n
g,

1
⇥

1
co

n
vo

lu
ti

on
s,

an
d

d
ro

p
ou

t)
on

th
e

sh
or

tc
u
ts

ca
n

h
am

p
er

in
fo

rm
at

io
n

p
ro

p
ag

at
io

n
an

d
le

ad
to

op
ti

m
iz

at
io

n
p
ro

b
le

m
s.

It
is

n
ot

ew
or

th
y

th
at

th
e

ga
ti

n
g

an
d

1⇥
1

co
n
vo

lu
ti

on
al

sh
or

tc
u
ts

in
tr

o
d
u
ce

m
or

e
p
ar

am
et

er
s,

an
d

sh
ou

ld
h
av

e
st

ro
n
ge

r
re

p
re

se
n
ta

ti
o
n
a
l

ab
il
it

ie
s

th
an

id
en

-
ti

ty
sh

or
tc

u
ts

.
In

fa
ct

,
th

e
sh

or
tc

u
t-

on
ly

ga
ti

n
g

an
d

1
⇥

1
co

n
vo

lu
ti

on
co

ve
r

th
e

so
lu

ti
on

sp
ac

e
of

id
en

ti
ty

sh
or

tc
u
ts

(i
.e

.,
th

ey
co

u
ld

b
e

op
ti

m
iz

ed
as

id
en

ti
ty

sh
or

tc
u
ts

).
H

ow
ev

er
,

th
ei

r
tr

ai
n
in

g
er

ro
r

is
h
ig

h
er

th
an

th
at

of
id

en
ti

ty
sh

or
t-

cu
ts

,
in

d
ic

at
in

g
th

at
th

e
d
eg

ra
d
at

io
n

of
th

es
e

m
o
d
el

s
is

ca
u
se

d
b
y

op
ti

m
iz

at
io

n
is

su
es

,
in

st
ea

d
of

re
p
re

se
n
ta

ti
on

al
ab

il
it

ie
s.

4
O

n
th

e
U

sa
g
e

o
f
A

ct
iv

a
ti

o
n

F
u
n
ct

io
n
s

E
x
p
er

im
en

ts
in

th
e

ab
ov

e
se

ct
io

n
su

p
p
or

t
th

e
an

al
y
si

s
in

E
q
n
.(

5)
an

d
E

q
n
.(

8)
,

b
ot

h
b
ei

n
g

d
er

iv
ed

u
n
d
er

th
e

as
su

m
p
ti

on
th

at
th

e
af

te
r-

ad
d
it

io
n

ac
ti

va
ti

on
f

Figure 2.6 – Residual connections form the basis of ResNets. In this diagram weight refers to a
linear transformation, BN to batch-normalization,and ReLU is the rectified-linear function.
Figure taken from He et al. [44].

[79] from the output layer, through deep layers, into early layers. Through multiplicative

interactions along the way, the gradient signal for early layers can have a very small or very

large magnitude, leading to slow convergence. The next two sections deal with proposed

solutions to this phenomenon.

Activation functions and residual connections

The activation function produces the final layer output and can greatly affect gradient flow. For

many years, sigmoidal (“S”-shaped) functions, such as the logistic function and the hyperbolic

tangent were widely used, shown in Figure 2.5.

With the advent of deep networks, it was soon realized that sigmoid functions caused gradients

to vanish. As network weights grew with every SGD update, activations would be pushed into

the high- and low-end plateaus of the sigmoid activation function, where the gradient is very

small.

A solution was proposed in the form of rectified-linear units (ReLU) [37]. This activation

function, f (x) = max(x,0), has a gradient that is either 0 or 1, as shown in Figure 2.5b. This

allows gradients to flow freely (or not at all), and is now standard in most modern CNNs.

ReLU additionally has the property of producing non-negative activations, which enables our

analysis of CNN activations using non-negative matrix factorization.

While ReLUs can pass the gradient unaltered, a long chain of linear transformations is still

sufficient to hurt network performance. A solution to this issue comes in the form of residual

connections [44], which tweaks the standard feed-forward pipeline as follows:

ai = ai−1 +Λi (ai−1), 1 ≤ i ≤ L (2.13)

16

2.2. Convolutional neural networks

In other words, the layerΛi computes a residual term, which, once added to the layer input,

achieves the desired transformation. Figure 2.6 shows the basic residual block.

This simple change means that the gradient can flow into ai−1 throughΛi as well as directly.

The popular ResNet-50, which consists of 50 residual layers, further improves upon the stan-

dard feed-forward nets described above, achieving ImageNet classification top-1 accuracy of

79.26% and top-5 accuracy of 94.75%. In addition to residual connections, ResNets employ

ReLU activations and bach-normalization, described below.

Initialization and batch-normalization

The random initialization at the start of training has been found to have a significant impact

on convergence [64]. Effective initialization methods have been proposed to ensure that the

gradient magnitude is maintained constant as it flows from layer to layer [36; 43], improving

convergence. These methods, however, only affect SGD iterations near the start of training.

Batch-normalization [46], on the other hand, is a method that explicitly normalizes network

activations according to the statistics of the current SGD batch, all throughout training. By

doing so, the magnitude of the gradients is also controlled, and convergence is accelerated.

This technique also is widely incorporated into most modern CNNs, and is applied between

the convolution and ReLU activation.

2.2.3 Generalization and overfitting

The training set D = {xi , yi |1 ≤ i ≤ N } ∼ {X ×Y } is a collection of N samples, each sampled

from the data distribution X ×Y over pairs (x , y). In the discussion so far we have referred to

NN training as the task of minimizing the empirical loss, or training loss, evaluated using D,

as in Eq. (2.2).

The ultimate goal of learning, however, is to do well on new data, unseen during training. We

want to minimize the generalization loss:

`X×Y = Ex ,y∼X×Y [`(Λ(x), y)] (2.14)

The generalization loss is approximated by measuring the test loss using a test set Dtest, which

contains additional samples from X ×Y not used during training.

Large NNs have the capacity to overfit their training set, i.e., memorize individual input-to-

output mappings, which does not promote good generalization to new data samples. In this

way, the training loss can be minimized while the test loss remains high. This phenomenon is

demonstrated in Figure 2.7.

17

Chapter 2. Related Work
220 7. Model Assessment and Selection

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Model Complexity

Pr
ed

ic
tio

n
Er

ro
r

FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

– Test error
– Training error

Figure 2.7 – Overfitting is characterized by low training error but high test error. This is due
to a model having sufficient capacity to memorize individual input-to-output mappings, at
the expense of converging onto a more general strategy. This figure is adapted from Friedman
et al. [34], where 100 datasets were reconstructed using sparse coding. Shown in light blue,
the training prediction error of individual trials steadily decreases with increased model
complexity (e.g., dictionary size). However, when examining the test prediction error, shown
in light red, there is an intermediate model complexity above which overfitting starts to occur.
Average training and test errors are show as solid lines.

It has been observed empirically that modern CNNs have sufficient capacity to memorize even

very large datasets with random labels [102], but when trained on real data they generalize

well, a behavior which seemed to defy theoretical justification.

Early bounds on `X×Y were derived based on properties such as the Vapnik–Chervonenkis

(VC) dimension [92] and Rademacher complexity [7]. These properties indicate a model’s

ability to fit randomly labeled data, i.e., D̃ = {x , ỹ |x ∈D}, where ỹ is a randomly (re-)sampled

label. They can therefore serve as an estimate of model complexity, or more specifically the

complexity of the decision boundaries it can produce. However, since these quantities depend

on the number of network parameters, these bounds do not explain the good performance of

NNs, which in modern networks can reach billions.

Generalization bounds were recently proposed which scale with the number of NN layers

[8; 69], as a product of weight matrix norms, but modern NNs have shown better performance

with increased depth, which therefore remains unexplained.

Other work has focused on properties of SGD itself, showing it is biased towards minima that

18

2.2. Convolutional neural networks

generalize well [88; 15]. These results relate to the flatness of the local minimum to which the

network converges.

In a flat minimum, applying perturbations to a network’s parameters or activations does

not result in a dramatic change to its (training set) performance, and this is taken as an

indicator of good generalization [45; 17; 51; 68; 61]. Robustness to noise was used also to

derive generalization bounds [2].

However, any reversible transformation, such as simple scaling, can be used to arbitrarily

manipulate the curvature of the local minimum, without affecting generalization [28]. For

instance, analysis could be applied to layerΛi with perturbations of a certain magnitude, and

its sensitivity could be measured. Then, dividing the weights ofΛi by 10 and multiplying the

weights of Λi+1 by 10 does not change the output of a ReLU NN, and so does not affect its

generalization. However, subjecting the re-scaledΛi to the same magnitude of perturbations

as before will show it as being more sensitive. Care must therefore be taken to use perturbations

of ‘appropriate units’ [61].

Related to the notion of flat local minima, compression has been proposed to play a key role for

good generalization [2]. Our analysis in Chapter 3 pursues this direction explicitly, where we

study the impact of compression, through matrix factorization, on the performance of NNs.

Notably, the information bottleneck principle (IB) [84] proposes that well-generalizing NNs

have hidden layers which function as minimal sufficient statistics [86]. Formally, let the random

variable X represent the NN input and Y its output. A hidden variable Z is a function of the

input, and by the data-processing inequality [24]:

I(X ,Y) ≥ I(X , Z) (2.15)

where I(·, ·) is the mutual information.

In other words, the input X itself contains all the relevant information about the output Y .

The hidden representation Z is considered optimal according to IB if it discards irrelevant

information about X , retaining only the information relevant to the prediction of Y :

Z = argmax
Z

I(Y , Z)−βI(X , Z) (2.16)

where β controls the level of compression. Optimizing empirical approximations of the

compression terms has shown to improve generalization in practice [11].

By virtue of using mutual information, IB provides a generalization bound that is invariant

to reversible transformations, addressing the issue raised in perturbation analysis methods.

This advantage carries over to our own analysis, and indeed, our dimensionality-reducing

19

Chapter 2. Related Work

Figure 2.8 – First layer CNN filters can be directly visualized, often revealing Gabor-like filters
and opponent-color edges. Depicted here are the first-layer filters of AlexNet [55].

perturbations are similarly invariant.

2.2.4 Network interpretability

In section 2.2.1 we introduced the concept of automatic feature extraction. Each layer of a

neural network extracts more complex features, which eventually indicate whether a sample

belongs to a particular output class or another.

A few things are known a-priori. The activation a0 is the input itself. The activation aL

represents scores or probabilities of an input belonging to each output class. The feature space,

i.e., the space of activation vectors, of layer ΛL−1 should be such that clusters of activation

vectors aL−1 belonging to different clusters are linearly separable.

Otherwise, not much is known about the intermediate layers. What features do the hidden-

layer activations a2 or aL−2 extract? What information does the network use to solve a pre-

diction task? The lack of clear answers to these questions has led to NNs being described as

black-box models.

As NNs are incorporated into applications requiring validation and user trust, such as medical

diagnosis [16] and autonomous driving [13], there is a growing need to answer these questions.

The field of network interpretability has therefore received much attention recently.

Specifically for CNNs applied to image data, the task of interpretation is somewhat simplified.

Various visualization techniques have been proposed that lend themselves to qualitative

interpretation by humans.

20

2.2. Convolutional neural networks

Figure 2.9 – Gradient ascent visualization of the AlexNet first-layer filters shown in Figure 2.8.

Feature visualization

First layer filters exist in pixel space and can be visualized. For instance, the first layer of

AlexNet consists of 96 filters of size 11×11 and 3 color channels. Shown in Figure 2.8, these

filters are reminiscent of the well-known result of Olshausen and Field [71], where sparse-

coding applied to natural images retrieved filters suggestive of the receptive field of biological

neurons in the V1 region of the human visual cortex.

The features extracted by deeper layers do not have a pixel representation, and so cannot be

similarly visualized. However, it is possible to generate an input in pixel space, that once fed

to the CNN results in a high filter response value for a filter of interest [31]. Visualizing the

feature corresponding to the j th filter in the i th layer amounts to finding:

x∗ = argmax
x

‖ [Λi ◦ · · · ◦Λ1(x)] j ‖ (2.17)

This optimization can be accomplished with gradient ascent, starting from a random x and

iteratively updating it. For ReLU networks, since activation in not bounded from above, a

norm constraint is added on x . Many additional regularization tricks have been proposed to

improve feature visualization [63; 70].

To get a sense of this type of visualization, we use the method of Olah et al. [70] to generate

visualization for the first layer filters shown in Figure 2.8 and qualitatively compare. The

corresponding gradient ascent visualizations are shown in Figure 2.9. As can be seen, these

visualizations are able to roughly capture the color-selectivity and frequency of the filters, but

introduce a significant amount of random variation.

When applied to a deep layer, feature visualization can reveal a degree of semantics. In Figure

21

Chapter 2. Related Work

Figure 2.10 – Gradient ascent allows us to visualize features in deep layers. Here we visualized
a subset of filters from the fifth and final convolutional layer of AlexNet. As opposed to the
rudimentary features of the first layer (Figure 2.9), these features show more variation and can
reveal a degree of semantics. For instance, the filter visualized on the bottom row, second from
the right, seems to capture a feature related to dogs.

2.10 we apply feature visualization to the fifth and final convolutional layer of AlexNet. Some

of the resulting images are suggestive of various objects and landscapes1.

Note that the gradient ascent technique is not limited to visualizing single filters, but rather

any weighted combination of their responses. In general, whether the axis aligned directions

in feature space (i.e., single filters) are more meaningful that off-axis directions is an open

question. However, it is not clear a-priori which combination of filters is meaningful. As we

will show in the sequel, such directions of interest can be found using NMF.

Saliency maps

A different class of methods, exploits the fact that convolutional layers preserve the 2D layout

of the image. To undo the down-sampling induced by the CNN architecture, feature maps of

1If it is not immediately clear, we recommend squinting.

22

2.2. Convolutional neural networks

Australian
terrier ...

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

GAP ...

w1

w2

wn

w1 * + w2 * + … + wn *

Class
Activation
Map

(Australian terrier)

=

C
O
N
V

Class Activation Mapping

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
∑

k

wc
k

∑

x,y

fk(x, y) =
∑

x,y

∑

k

wc
kfk(x, y). (1)

We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
∑

k

wc
kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.

dome

chain saw

Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-

2923

Figure 2.11 – CAM produces a saliency map with respect to a specific output class. The final
weight vector entering the output unit corresponding to the class of interest is used to average
CNN feature maps. Figure taken from [103].

a deep layer are up-sampled back to the original image resolution. When overlaid with the

input image, the up-sampled feature map acts as a heatmap, spatially highlighting the image

region which the corresponding filter responds to.

This is the basis of “network dissection” [10]. Having acquired images with pixel-wise ground

truth annotation, indicating object class, object-part class (e.g., leg), texture and color, the

authors proceed to test each individual feature map for significant overlap with any ground

truth concept.

This method suffers from two main limitations. First, the availability of ground truth is essential

to their analysis, and limits the concepts which can be detected. Second, it does not consider

filter combinations, though these might correspond to concepts which otherwise would be

missed.

One example of an approach which creates a single heatmap by performing a weighted

combination of feature maps is class-activation maps (CAM) [103]. CAM requires a specific

CNN architecture, and therefore cannot be applied to AlexNet and VGG.

The CAM pipeline is shown in Figure 2.11. It requires a CNN classifier that uses global average

pooling (GAP) to transition to the final fully-connected layer. That is, the feature maps of the

last convolutional layer are averaged spatially to yield a vector of fixed-dimension. CAM then

produces class-aware saliency maps, by averaging the feature maps (before pooling) using the

weights of the fully connected layer which correspond to the output class of interest.

CAM can be seen as a special case of using the gradient with respect to a specific output

unit to derive weights for combining features maps. This observation has led to the more

23

Chapter 2. Related Work

general Grad-CAM method [83], which can be applied to any CNN architecture. Grad-CAM

is still, however, limited to producing maps with respect to the set of output classes used for

training the network. Layer-wise Relevance Propagation [56] produces heatmaps similarly to

Grad-CAM, but propagates a relevance score instead of the gradient.

The heatmaps we derive with NMF, however, are not associated with an output unit or output

class. Instead, NMF heat maps capture common activation patterns, which allows us to create

saliency maps which localize objects never seen before by the CNN, and for which there is no

designated output unit.

2.3 Matrix factorization

Matrix factorization techniques describe each data point in a matrix A ∈RN×M as a combina-

tion of K basis vectors:

A ≈UV (2.18)

where U ∈ RN×K and V ∈ RK×M . In this paper we consider factorizations minimizing the

Frobenius or `2 norm of the reconstruction error, i.e., ‖A −UV ‖F .

Factorization can give zero reconstruction error as long as K is greater or equal to the intrinsic

dimension of the data, i.e., the dimension of the data manifold encoded by the matrix A. When

K is smaller than the intrinsic dimension, lossy compression occurs.

In addition to limiting the number of basis vectors K , different factorization methods impose

additional constraints on what these vectors can be and how they can be combined. We

consider several factorization methods, introduced below.

2.3.1 Principal component analysis (PCA)

A classical method for dimensionality reduction is principal component analysis (PCA) [48].

Projecting the data from the low-dimension space back to the original space give an approxi-

mation that is constrained in its rank. As a matrix factorization method, then, PCA finds an

approximation that is optimal (in the `2 sense):

PCA(A,K) =argmin
ÂK

‖A − ÂK ‖2
F ,

subjectto ÂK = AV V >,

V >V = IK ,

(2.19)

24

(a) K = 2 (b) K = 1

Figure 2.12 – Principal component analysis in 2D. (a) Setting K = 2 naturally returns an
orthonormal basis that spans R2, and so the 2D data is perfectly reconstructed. (b) Setting
K = 1 projects the data onto a 1-dimensional subspace, leading to lossy compression.

where VK ∈RM×K is an orthonormal basis.

PCA has an incremental property, meaning the K basis vectors of a K -rank approximation are

also the first K basis vectors of a (K +1)-rank approximation. The smallest K that admits an

exact PCA approximation A = ÂK is the rank of A, rank(A).

An example of PCA in 2D is shown in Figure 2.12.

2.3.2 k-means

Though normally viewed through the lens of clustering, k-means can be seen as a factorization

method, optimizing the following objective:

k-means(A,K) =argmin
ÂK

‖A − ÂK ‖2
F ,

subjectto ÂK =UV >,

[U]i ∈ {e1, · · · ,eK },

(2.20)

where U ∈RN×K , H ∈RK×M , and e j is the canonical vector of dimension j . As such, a row in A

in approximated by exactly one row of V .

As can be seen, although the constrains are different, the basic objective is the same as PCA

[27]. An example of k-means in 2D is shown in Figure 2.14.

From a probabilistic point of view, k-means is equivalent to performing maximum-likelihood

Chapter 2. Related Work

© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 401 | 21 OCTOBER 1999 | www.nature.com 789

PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ ^
n

i¼1
^

m

m¼1

½VimlogðWHÞim 2 ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 3 19 pixels, and constituting an
n 3 m matrix V. All three find approximate factorizations of the form V < WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 3 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 3 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

 k-means

Figure 2.13 – Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas k-means and principal components analysis (PCA) learn representations whose
components are only explicable by reference to the whole. The three factorization methods
were applied to a database of 2,429 greyscale facial images, each consisting of 19×19 pixels,
forming a matrix A ∈R2,429×192

. Each method approximates A ≈UV . On the left, the K = 49
rows of V form a set basis images. Positive values are shown in black and negative values in
red. A particular instance of a face is approximated by a weighted combination of basis images.
The row of U corresponding to that image holds the coefficients for this combination, and is
shown to the right of V . The resulting approximation is shown on the right. Figure adapted
from Lee and Seung [59].

26

2.3. Matrix factorization

(a) K = 2 (b) K = 1

Figure 2.14 – k-means in 2D. A datapoint is approximated by one of the K centroids that is
closest to it. Assuming no duplicate datapoints, perfect reconstruction requires setting K = N .

estimation, with hard assignments, with respect to a mixture of Gaussians.

Consider the probability density function of a (single) multivariate Gaussian centered at Vk ,

with identity co-variance:

P(Ai |Vk) = c exp

(
−1

2
‖Ai −Vk‖2

)
(2.21)

where c = 1p
(2π)M

. It is evident then that − logP(Ai |Vk) ∝ ‖Ai −Vk‖2, which is the mean-

squared error objective (assuming cluster indicator U = 1).

The connection to a Gaussian mixture usually proceeds by defining global mixture weights ωk :

P(Ai |V) =
K∑
k
ωkP(Ai |Vk) (2.22)

and then introducing hard assignments as an exponent:

P(Ai ,k|V) =
K∑
k
ωkP(Ai |Vk)U

i ,k (2.23)

We adopt a different view, where the mixture weights are defined per-sample.

P(Ai) =
K∑
k

Ui ,kP(Ai |Vk) (2.24)

where a hard cluster assignment collapses the sum over K to the single index where U = 1. In

the next chapter we will extend this view to non-negative matrix factorization, where it will be

27

Chapter 2. Related Work

used to derive a memorization bound.

A variant of k-means is spherical k-means [26], which only considers the angle between a

centroid and a data point. Therefore instead of minimizing the mean squared-error objective,

spherical k-means minimizes the cosine dissimilarity:

spherical k-means(A,K) =argmin
ÂK

∑
i

1−cos(Ai , [ÂK]i), (2.25)

where cos(u, v) = u>v
‖u‖2‖v‖2

.

Probabilistically, spherical k-means can be seen as a mixture of von Mises–Fisher distributions

[6]:

P(Ai |Vk) = cκ,M exp(κ ·cos(Ai ,Vk)) (2.26)

where cκ,M is a constant determined by the ambient dimension M and the concentration

parameter κ.

2.3.3 Non-negative matrix factorization (NMF)

Though many variants and constraints have been proposed, in its simplest form, non-negative

matrix factorization (NMF) [60] aims to find the optimal low-rank approximation:

NMF(A,K) =argmin
ÂK

‖A − ÂK ‖2
F ,

subjectto ÂK =UV ,

∀i j ,Ui j ,Vi j ≥ 0,

(2.27)

where U ∈RN×K+ and V ∈RK×M+ are element-wise non-negative. The smallest K that admits an

exact NMF, i.e., A = ÂK , is called the non-negative rank of A, r ank+(A).

Compared to low-rank approximation using PCA, which spans an Rk subspace, NMF predic-

tions are restricted to a simplicial cone in the positive orthant, whose rays are the rows of V .

This gives NMF a probabilistic interpretation as forming a probability simplex, interpolating

between the rays. In the next chapter, we adopt this view to cast NMF as a mixture model,

which forms the basis of our memorization bound.

Note that although NMF minimizes a mean squared-error objective, by virtue of having U

entries of any scale, it is more similar to spherical k-means than standard k-means.

Unlike PCA and k-means, NMF predictions are always non-negative. The matrix A to be

28

2.3. Matrix factorization

(a) K = 2 (b) K = 1

Figure 2.15 – None-negative matrix factorization in 2D. (a) Unlike PCA, NMF basis vectors are
not orthogonal to each other. Furthermore, since interactions between them are only additive,
they do not span R2, but rather a cone whose edges are the basis vectors themselves.

approximated must therefore also be non-negative. For our study of NNs, since ReLUs project

their input data points onto the positive orthant, NMF can naturally be applied to network

feature activations.

The approximated features ÂK are expressed only through additive interactions, which has

been observed to lead to part-based decomposition, as shown in Figure 2.13.

NMF has gained popularity due to its producing meaningful factorizations that lend them-

selves to qualitative interpretation across various domains such as document clustering [101],

audio source separation [40], and face recognition [41]. An example of NMF in 2D is shown in

Figure 2.15. There has been work extending NMF to multiple layers [20], implementing NMF

using neural networks [30] and using NMF approximations as input to a neural network [95].

In this thesis we show that, by virtue of the non-negativity of ReLU activations, NMF can

be applied to CNN activations. To the best of our knowledge, the application of NMF to the

activations of a neural network has not been previously proposed. The resulting factorization

has applications towards both detecting memorization and network interpretability, which we

demonstrate in subsequent chapters.

2.3.4 Random ablations

In Chapter 3 we compare our approach to that of Morcos et al. [66]. In their main experiment,

the authors establish a positive correlation between a NN’s generalization performance and

its robustness to random ablations (RA) of canonical directions. RA is implemented by setting

the activation value of several units or feature maps to zero, as in dropout [89].

29

Chapter 2. Related Work

(a) (b)

Figure 2.16 – Random ablations in 2D. Random ablation simply set a subset of M −K dimen-
sions to constant zero. This can be viewed as a crude form of dimensionality reduction. Shown
are the two possible projections when setting K = 1.

We note that simply removing M −K units from an M-dimensional datapoint results in its

projection onto a K -dimensional subspace. This can be seen as a crude form of compression,

i.e., by simply removing dimensions:

ÂK = AV (2.28)

where V = diag(v) is a diagonal matrix with v ∈ {0,1}M being a mask binary mask containing

K ones and M −K zeros. In accordance with the convention for dimensionality reduction, we

will talk about retaining K basis vectors, which is the same as ablating M −K dimensions. An

example of RA in 2D is shown in Figure 2.16.

Note however that for PCA, k-means and NMF, retaining K dimensions with is not equivalent

to ablating the (M −K)-rank approximations. In other words, RA does not consider matrix

statistics, and therefore handles each datapoint independently of the others.

2.4 Conclusion

In this chapter we reviewed the fundamentals of deep learning with convolutional neural

networks, and reviewed some of the practical challenges and their solutions.

We introduced the two main directions of investigation taken in this thesis, detecting memo-

rization and interpreting network activations.

Both tasks will be addressed by use of non-negative matrix factorization. In our review of

matrix factorization, we additionally reviewed several well-known methods, which we will use

30

2.4. Conclusion

as additional quantitative and qualitative baselines for our NMF-based approaches.

31

3 Memorization and the non-negative
rank

3.1 Introduction

A fundamental challenge in machine learning for classification is that while the true objective

is defined by a data distribution (x , y) ∼P , the objective optimized in practice is defined by an

empirical distribution derived from a training set D = {xi , yi |1 ≤ i ≤ N } ∼P .

While deep NNs have achieved state-of-the-art generalization performance on many bench-

marks, across various domains, they have also been shown to be over-parameterized to the

point of being able to memorize very large training sets of randomly labeled data [102].

Specifically, a dataset with random labels D̃ = {x , ỹ |x ∈D} was created, where ỹ is a randomly

(re-)sampled label. Interestingly, setting the probability of replacing a label with a random

one to p, i.e., P(ỹ = y) = 1−p, leads to intermediate level of overfitting and generalization.

In other words, while the training error remains unaffected by label randomization (due to

memorization), intermediate values of p lead to intermediate levels of test error, as can be

seen in Figure 3.1.

Understanding what distinguishes networks that learn from networks that memorize is a mat-

ter of much importance, with applications towards better network design and optimization.

The empirical studies of Morcos et al. [66] and Arpit et al. [3] also study networks induced into

memorization in this way. Specifically, Morcos et al. [66] set random axis-aligned directions

in feature space to zero, This can be viewed as a crude form of dimensionality reduction, i.e.,

by simply removing canonical dimensions, as in dropout [89]. The authors find the network

that learn and do not memorize are more robustness to this type of perturbation. In our

Some of the work presented in this chapter first appeared in [23].

33

Chapter 3. Memorization and the non-negative rank

Te
st

er
ro

r

(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

To gain further insight into this phenomenon, we experiment with different levels of randomization
exploring the continuum between no label noise and completely corrupted labels. We also try out
different randomizations of the inputs (rather than labels), arriving at the same general conclusion.

The experiments are run on two image classification datasets, the CIFAR10 dataset (Krizhevsky
& Hinton, 2009) and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset. We test the
Inception V3 (Szegedy et al., 2016) architecture on ImageNet and a smaller version of Inception,
Alexnet (Krizhevsky et al., 2012), and MLPs on CIFAR10. Please see Section A in the appendix for
more details of the experimental setup.

2.1 FITTING RANDOM LABELS AND PIXELS

We run our experiments with the following modifications of the labels and input images:

• True labels: the original dataset without modification.

• Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

• Random labels: all the labels are replaced with random ones.

• Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion is applied to all the images in both training and test set.

• Random pixels: a different random permutation is applied to each image independently.

• Gaussian: A Gaussian distribution (with matching mean and variance to the original image
dataset) is used to generate random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged hyperparameter settings can optimize the
weights to fit to random labels perfectly, even though the random labels completely destroy the
relationship between images and labels. We further break the structure of the images by shuffling
the image pixels, and even completely re-sampling random pixels from a Gaussian distribution. But
the networks we tested are still able to fit.

Figure 1a shows the learning curves of the Inception model on the CIFAR10 dataset under vari-
ous settings. We expect the objective function to take longer to start decreasing on random labels
because initially the label assignments for every training sample is uncorrelated. Therefore, large
predictions errors are back-propagated to make large gradients for parameter updates. However,
since the random labels are fixed and consistent across epochs, the network starts fitting after going
through the training set multiple times. We find the following observations for fitting random labels
very interesting: a) we do not need to change the learning rate schedule; b) once the fitting starts,
it converges quickly; c) it converges to (over)fit the training set perfectly. Also note that “random
pixels” and “Gaussian” start converging faster than “random labels”. This might be because with

p

Figure 3.1 – Label randomization can be used to control the level of memorization and mem-
orization in a CNN. Gradually increasing the probability of label randomization p results in
a gradual increase in test error. Shown here are results for CIFAR-10, where in all cases the
training error (not shown) is completely minimized. Figure taken from Zhang et al. [102].

experiments we refer to this method as random ablations (RA).

In this thesis we identify the key difference between networks that learn and those that mem-

orize as robustness to compression. We begin our study of factors involved in memorization

by recalling the information bottleneck principle (IB) [86]. IB proposes that compression in

hidden layers plays a key role in good generalization.

Let X and Y be random variables that represent the network input and output, respectively,

and let Z represent a hidden layer. The IB-functional defines an optimality criterion for hidden

activations:

I(Y , Z)−βI(X , Z) (3.1)

where I(·, ·) is the mutual information and β controls the level of compression.

To make the problem of memorization explicit, we modify the IB-functional compression

term:

I(Y , Z)−βI(i, Z) (3.2)

where the random variable i indexes the training set D, taking on values in [1, · · · , N] with

equal probability. For networks with the same value of I(Y , Z), lower I(i, Z) directly indicates

less memorization and implies better generalization. A similar expression was used in Alemi

34

3.2. Memorization bound through Common information

et al. [1], albeit for unsupervised learning.

We study the term I(i, Z) by considering a related concept, the common information [98; 100],

which upper bounds the mutual information between a pair of variables via an auxiliary

variable that explicitly captures interactions between the pair. This allows us to both quantify

memorization, as well as analyze a network’s hidden representations through analysis of the

auxiliary variable, which is the basis for the subsequent chapter in this thesis.

Inspired by [14], we prove that an exact non-negative factorization of a ReLU activation

matrix contains the common information between i and Z , yielding an upper bound on

memorization in terms of the non-negative rank (Section 3.2). We further show a the non-

negative rank to be a natural measure of complexity for a ReLU activation matrix capturing its

departure from linearity (Section 3.3).

Although computing the non-negative rank is NP-hard [93], we can restrict it with approximate

non-negative matrix factorization (NMF). Consequently, we propose to estimate the impact of

NMF on NN performance over a grid of approximation ranks K , as described in Section 3.4.

This procedure can be seen as measuring the robustness of a NN to increasing compression

applied to its activations. Throughout our experiments in Section 3.5, we therefore compare

our NMF approach to three additional dimensionality reduction techniques, namely principal

component analysis (PCA), k-means, and RA.

Our experimental setup is similar to that of Morcos et al. [66] in that both NMF and RA are a

form of compression to hidden activations. Our results show that robustness to NMF compres-

sion is much more correlated with low memorization/high generalization than robustness to

RA.

Using our approach, we make several interesting observations, which we verify over a variety

of network architectures trained on several image and audio datasets. In Section 3.5.2, we

show that the structure of convolutional networks results in memorization being localized to

deeper layers.

Furthermore, we show our method can effectively detect memorization during training (Sec-

tion 3.5.3), as well as with respect to individual output classes (Section 3.5.4).

3.2 Memorization bound through Common information

The common information [98; 100] between random variables A and B is:

C(A,B)
∆= inf

F :A⊥B |F
I ((A,B) ,F) (3.3)

35

Chapter 3. Memorization and the non-negative rank

where (A,B) represents the joint distribution of A and B . A variable F that satisfies I(AB |F) = 0

is said to contain the common information between A and B , and by definition I((A,B),F) ≥
C(A,B).

Since I(A,B) ≤ C(A,B), to obtain an upper bound over the mutual information it is sufficient

to find an appropriate variable F . This is the strategy taken by Braun and Pokutta [14], who

prove the following proposition:

Proposition 1 (Braun and Pokutta [14]). Let A and B be discrete random variables over a finite

set, and let their joint distribution be represented as a non-negative matrix A ∈R|A|×|B |
+ where

P(A = i ,B = j) = Ai j . Let A =UV be an exact NMF of rank K . Then:

I(A,B) ≤ logK (3.4)

Proof. NMF can be seen as a sum of K rank-1 matrices:

A =
K∑
k

U·kV k· (3.5)

(3.6)

Define a discrete random variable F taking on values in {1, · · · ,K }, such that:

P(F = k|A = i ,B = j) = Ui ,kVk, j

A[i , j]
(3.7)

It then follows that:

P(F = k) =∑
i , j

Ui ,kVk, j (3.8)

P(A = i ,B = j |F = k) = Ui ,kVk, j∑
i ′, j ′ Ui ′,kVk, j ′

(3.9)

and we can already see that the probability consists of a product of terms that depend either

on i or on j , which verifies the conditional independence of A and B given F . Finally, by using

the definition of common information and the properties of mutual information:

I(A,B) ≤ C(A,B) ≤ I((A,B),F) ≤H(F) ≤ logK (3.10)

where H is Shannon entropy.

It is interesting to seek a similar interpretation of NN activation matrices. While the index

variable i is discrete and can be assumed to distribute uniformly across the rows, the variable

36

3.2. Memorization bound through Common information

Z is not discrete. Instead, Z is a continuous vector variable, and as a result, unlike Proposition

(1), the individual entries of a ReLU activation matrix A (even after normalization) cannot be

interpreted as probabilities.

Fortunately, we can derive similar bounds also in this case, based on a probabilistic interpreta-

tion of clustering.

Proposition 2. Let the A ∈RN×M+ represent the joint distribution of a discrete index variable i,

uniformly distributed across the N rows, and a continuous vector variable Z , such that:

P(i = i , Z = z) =P(i)P(Z |i)
= 1

N
ϕ(z |Ai) (3.11)

where ϕ is a probability density function defined below.

Let A =UV be an exact matrix factorization of rank K , where U is non-negative (but V may not

be). Then:

I(i, Z) ≤ logK (3.12)

Proof. Following the discussion in Section 2.3, the matrix factorization defines per-row i

mixture of probability distributions centered as the rows of V , with coefficients Ui ·∑
k Ui k

as

mixing weights.

We thus define ϕ(z |a) to be the probability of z under the mixture defined by a.

For a 6∈ A, let U (a) be the operator to extract optimal coefficients with respect to V , con-

sidering V as a frozen basis. The operator is a simple convex program that can be solved

deterministically. It is of course the case that U (Ai) =Ui ·.

We therefore have:

ϕ(z |a) =
K∑
k

U (a)k∑
k ′ U (a)k ′

φ(z |Vk·) (3.13)

where φ is any density function over RM , e.g., a von Mises–Fisher distribution with fixed κ.

The first term in the above sum indicates P(F = k|i = i). The second term in the sum indicates

P(Z = z |F = k).

37

Chapter 3. Memorization and the non-negative rank

It then follows that:

P(i = i , Z = z) = 1

N
ϕ(z |Ai) (3.14)

=P(i = i)
K∑
k
P(F = k|i = i)P(Z = z|F = k) (3.15)

and we get that Z is conditionally independent of i given F .

This proof builds on a clustering interpretation of matrix factorization which is obvious

for k-means, but perhaps less intuitive for NMF. It does not apply to PCA, since the matrix

U typically contains negative values, and the mixing weights in Eq. (3.13) depend on the

non-negativity of factorization coefficients.

The mixing weights reflect properties of the factorization. For k-means, for instance, cluster

assignments are hard, i.e. the probability mass is concentrated on a single value k∗ where

U (a)i k∗ = 1. The density in this case collapses to ϕ(z |Ai) =φ(z |Vk∗·).

With NMF, the factorization defines a simplex, on which each point defines a categorical

probability distribution over the K corners of the simplex, i.e., the rows of V . Conditioning

on a vector in this case, ϕ(·|a), results in a soft mixture. This view explicitly casts NMF as a

relaxation of spherical k-means clustering. In other words, while NMF does indeed ‘span’ a

cone in RM , perfectly reconstructing all points in the cone, the probability density defined

above considers the rays of the NMF cone as modes and penalizes mode averaging. That is, for

a point a inside the simplex, the mode of ϕ(·|a) is not at a, but rather at the ray closest to it.

The smallest K that satisfies the bound is the non-negative rank of A, yielding:

Corollary 2.1. With i, Z and A defined as in Proposition (2):

I(i, Z) ≤ logrank+(A) (3.16)

In the next section we show an additional view of rank+(A) as a measure of non-linearity with

respect to ReLU activation matrices.

3.3 Non-linearity and rectangle cover number

Consider a ReLU layer parameterized by a weight matrix W ∈RM×P . For a batch of N inputs

X ∈RN×M , we compute the layer activation matrix A as A = max(X W ,0) ∈RN×P+ . We omit the

bias term for notational convenience.

Since ReLU is piece-wise linear, the processing of a single input x by a ReLU network is

38

3.3. Non-linearity and rectangle cover number
Sa

m
p

le
s

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	

	

	

	

	

	

	

	

	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

Channels
(a) Linear (b) Approximately linear (c) Highly non-linear
r c(M) = 1 r c(M) = 3 r c(M) = 8

Figure 3.2 – The support of a ReLU activation matrix is determined by the threshold at zero. (a)
When all the rows of the support are identical, there is a sub-weight-matrix such that the layer
is fully linear with respect to the input batch. (b, c) As the support becomes more complex,
which we characterize by the increase in its rectangle cover number, the layer becomes more
non-linear.

equivalent to sampling a linear sub-network with respect to the sample [97]. The linear

function is obtained by setting to zero the columns of each W whose dot product with the

input is negative (and would thus be set to zero by ReLU), after which the ReLU can be

removed.1

Extending this notion to a batch of several input samples, suppose that at some layer the

samples are sufficiently close such that they all share the same ReLU mask m ∈ {0,1}P . In this

case, we may say that the layer is linear with respect to its input batch. This is because, for the

entire batch, instead of using ReLU, we could zero out a subset of columns and obtain a linear

system, i.e., A = X W diag(m).

To characterize how far an activation matrix diverges from the linear case, consider the support

M = supp(A), such that Mi , j = 1 where Ai , j > 0 and is 0 elsewhere. Because A is a ReLU

activation matrix, the support is mainly determined by the thresholding at zero.2 If all the rows

of M are identical to a unique vector m, we can say the layer is completely linear with respect

to X . In general, the ‘simpler’ the support M , the closer to linearity the layer.

One measure that captures this idea is the rectangle cover number of a matrix, r c(M), an

important quantity in the study of communication complexity [53]. Also known as the Boolean

rank, r c(M) is the smallest number r for which there exist binary matrices UB ∈ {0,1}n×r ,

VB ∈ {0,1}r×q such that their Boolean matrix multiplication satisfies M =UB VB . As a complexity

measure for ReLU activations, r c(M) = 1 means the layer is linear with respect to its input, and

1This is a similar intuition to that of viewing dropout as an approximation to a model ensemble, where the
dropout mask is seen to sample a sub-network [89].

2The probability of an activation value being exactly zero prior to thresholding is negligible.

39

Chapter 3. Memorization and the non-negative rank

higher values r c(M) imply increasing non-linearity. This is visualized in Figure 3.2.

Intuitively, imagine having to fit a layer with ‘ReLU switches’, each of which controls a subset

of weight matrix columns. In the linear case, one switch would suffice to describe the data.

In the most non-linear case, we would require a switch for every column, which is also the

maximal value of r c(M). Since adding a new row to the support M such that the row is a union

of existing rows of M does not increase the rectangle cover number, there is no increase in the

number of switches.

The non-negative rank is also hard-constrained by the combinatorial arrangement of supp(A),

but additionally accounts for the precise value in the non-zero entries of A, thus yielding [33]:

r c(supp(A)) ≤ rank+(A) (3.17)

3.4 Estimating the non-negative rank

For convolutional networks, we reshape the activation tensor from N ×C ×H ×W to (N ·H ·
W)×C , i.e., we flatten the batch (N) and spatial (H ,W) dimensions to form an activation

matrix with C columns, where C is the number of channels in that layer. We then inversely

reshape the factorized features to continue forward propagation. Compression is thus applied

treating each single C -dimensional vector as a separate data point, rather than each whole

feature map. In the convolutional case, the index variable i therefore indexes patches, rather

than whole images.

Although computing rank+(A) is NP-hard, we restrict it by performing approximate NMF. The

factorization error depends on the magnitude of the activations, which makes comparison

across networks and layers difficult. We therefore evaluate the impact of compression by

forward-propagating the compressed activations and measuring the change in final network

performance (i.e., classification accuracy) as we change K .

Concretely, if we let A j be the activation matrix at layer j , during the forward pass we replace

the feature activations of one or several layers with their rank K approximations:

Ã j =UV (3.18)

A j+1 =Λ j+1
(

Ã j
)

The resulting curves allow us to estimate a value for rank+(A). We estimate the usefulness of

our approach by applying it to networks with varying levels of memorization and generaliza-

tion error.

40

3.5. Experiments

3.4.1 Single-class batches

The activation matrix A represents a batch of samples from a larger training set. The distribu-

tion of Y over the batch defines a lower bound on the memorization term I(i, Z):

Proposition 3. With i, Z , and Y defined as above, I(i, Z) ≥ I(Z ,Y)

Proof. The chain rule of mutual information decomposes:

I(Z , (i ,Y)) =I(i, Z)+I(Z ,Y |i) (3.19)

=I(Z ,Y)+I(i, Z |Y)

Dependence of i is described by the Markov chain

i → Y (3.20)

i → X → Z

and we get that I(Z ,Y |i) = 0. Since I(i, Z |Y) ≥ 0 we get the result.

We thus sample a batch where all input samples map to same output, such that I(Z ,Y) = 0

and I(i, Z) is lower bounded only by zero. We refer to such batches as single-class batches, as

opposed to multi-class batches which are sampled i.i.d. The effect of different sampling is

discussed in Section 3.5.2.

3.5 Experiments

In this section we present results that empirically confirm the connection of the non-negative

rank to memorization and generalization. Our experiments include various datasets and

network architectures, and check for correlation between the non-negative rank of deep

activation matrices and memorization/generalization post-training, during training, as well

as per-class.

3.5.1 Datasets and networks

Datasets

We perform experimental evaluations on several image datasets (see examples in Figure 3.2),

as well as an audio classification dataset.

41

Chapter 3. Memorization and the non-negative rank

(a) CIFAR-10 examples

(b) Fashion-MNIST examples

42

3.5. Experiments

(c) SVHN examples

(d) ImageNet examples

Figure 3.2 – Examples from the four image datasets we used in our study of NN memorization.
43

Chapter 3. Memorization and the non-negative rank

CIFAR-10 CIFAR-10 [54] consists of 60K 32×32 RGB images classified into ten categories:

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The dataset has a standard

split into 50K training images and 10K test images.

Fashion-MNIST Fashion-MNIST [99] consists of 70K 28×28 greyscale images, classified into

ten categories: T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot.

The dataset has a standard split into 60K training images and 10K test images.

SVHN SVHN [67] (Street View House Numbers) consists of approximately 560K 32×32 RGB

images classified into ten categories, one for each digit 0-9. The images are cropped from

Google Street View images containing house numbers.

The dataset has a standard split into approximately 73K training images, 25K test images, and

an additional 531K ’easy’ samples as extra training images. In this thesis, we only make use of

the first training set.

ImageNet ImageNet [80] is a dataset of about 1.2M RGB images classified into 1K categories,

including types of animals, flowers, furniture, tools, etc. While these images are originally of

varying sizes, we use them here in conjunction with a pre-trained VGG network [87], for which

the input was scaled to 224×224.

Urban Sounds Urban Sounds [82] consists of almost 9K audio clips, each of up to 4 seconds

long, classified into ten categories: air conditioner, car horn, children playing, dog bark,

drilling, engine idling, gun shot, jackhammer, siren, street music. The dataset has a standard

split into 10 folds, of which we use the first 8 for training and the final 2 as test.

Neural Network Architectures

The exact architectures we used for each dataset are given in Table 3.1. We denote a linear or

convolutional layer followed by a ReLU as Linear+ and Conv+, respectively.

In addition to these networks, we tested VGG-19 on ImageNet data.

3.5.2 Feature compression and memorization

We study networks that have been forced into different levels of memorization due to label

randomization applied to their training set [102], as described in Section 3.1. The level of

induced memorization is controlled by setting a probability p for a training label to be ran-

44

3.5. Experiments

CIFAR-10
Type Dim Kernel Padding Stride
Conv+ 64 3 1 1
Conv+ 64 3 1 1
Conv+ 128 3 1 2
Conv+ 128 3 1 1
Conv+ 128 3 1 1
Conv+ 256 3 1 2
Conv+ 256 3 1 1
Conv+ 256 3 1 1
Conv+ 512 3 1 2
Conv+ 512 3 1 1
Conv+ 512 3 1 1
Linear 10 - - -

Urban Sounds
Type Dim Kernel Padding Stride
Conv+ 64 3 1 1
MaxPool - 2 - 1
Conv+ 128 3 1 1
Conv+ 128 3 1 1
MaxPool - 2 - 1
Conv+ 256 3 1 1
Conv+ 256 3 1 1
MaxPool - 2 - 1
Conv+ 512 3 1 1
Conv+ 512 3 1 1
MaxPool - 2 - 1
Linear+ 4096 - - -
Linear+ 4096 - - -
Linear 10 - - -

SVHN
Type Dim Kernel Padding Stride
Conv+ 64 3 1 1
Conv+ 64 3 1 1
Conv+ 128 3 1 2
Conv+ 128 3 1 1
Conv+ 256 3 1 2
Conv+ 256 3 1 1
Conv+ 512 3 1 2
Conv+ 512 3 1 1
Linear 10 - - -

Fashion-MNIST
Type Dim Kernel Padding Stride
Linear+ 128 - - -
Linear+ 512 - - -
Linear+ 2048 - - -
Linear+ 2048 - - -
Linear 10 - - -

Table 3.1 – Neural network architecture used for each dataset in this chapter.

domized, i.e., p = 0 is the unmodified dataset and p = 1 has fully random labels. The capacity

of these networks is sufficiently large that they achieve a training accuracy of 1 in all cases,

for all values of p.

As such, we use batches of training data and observe the accuracy drop, from 1 to constant

guess, as the level of compression is increased. In all experiments, sampling single-class

batches is done with respect to the label used for training (i.e., the random label if p > 0). Since

all datasets we consider here have 10 classes, we stochastically sample 10 batches, one per

class in the single-class case, and standard i.i.d in the multi-class case. We have found all

methods discussed below to be robust to the batch size (e.g., 20-100) and the exact samples

chosen. In all our experiments we set the batch size to 50.

45

Chapter 3. Memorization and the non-negative rank

Fully-connected NN on Fashion-MNIST
A

cc
u

ra
cy

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy
A

u
C

fc1 fc2 fc3 fc4

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

p
0.0
0.2
0.4
0.6
0.8
1.0

K K Layer index
(a) fc1, single-class NMF (b) fc2, single-class NMF (c) All layers

CNN on CIFAR-10

A
cc

u
ra

cy

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy
A

u
C

1_1 1_2 2_1 2_2 2_3 3_1 3_2 3_3 4_1 4_2 4_3
0.75

0.80

0.85

0.90

0.95

1.00

conv:

p
0.0
0.2
0.4
0.6
0.8
1.0

K K Layer index
(d) conv3_1, single-class

NMF
(e) conv4_1, single-class

NMF
(f) All layers

Figure 3.3 – Layer-by-layer NMF compression in (a,b,c) fully-connected vs. (d,e,f) CNNs.
Increasing p indicates a higher level of memorization. We compress the activations of a
layer using NMF with increasing K and observe the impact on classification performance. In
(a,b,d,e) we see that layers at different depth respond differently. (c,f)To get a global view of
the effect of compression, we describe every layer by the area under the curve (AuC) of its K
vs. classification accuracy curve. Unlike fully-connected networks, memorization in CNNs is
localized to deeper layers. Interestingly, the case p = 1 shifts the process to earlier layers.

Layer by Layer Analysis

We begin by studying each NN layer individually using NMF. We trained a total of 60 neural

networks, ten networks (with different random initializations) trained per randomization level

p.

In Figure 3.3 (a,b,d,e) we show examples of NMF compression applied to individual layers

46

3.5. Experiments

of these networks, where we measured the impact on classification accuracy as we vary the

factorization rank K . As can be seen, networks trained with different levels of label randomiza-

tion respond differently to compression, depending on the layer and overall architecture. At

some layers, memories with no induced memorization are significantly more robust to NMF

compression than those forced into memorization.

The profile of such a K -vs.-accuracy curve can be characterized by its area under the curve

(AuC), such that a higher non-negative rank memorization corresponds with lower AuC, and

vice versa. To compare between layer, we normalize the AuC by dividing it by the layer width,

such that the AuC is at most 1. Considering the AuC allows us to characterize each network

layer with a single scalar, giving a bird’s eye view of the network, shown in Figure 3.3 (c,d).

In the fully-connected networks shown in Figure 3.3c, we find that deeper layers are more

robust to compression than earlier layers, as expected if we assume deeper activations become

more abstract and invariant to nuisance variables. In the convolutional networks, however,

shown in Figure 3.3f, we find that memorization is localized to deeper layers, where there is a

big difference between memorization levels.

Early layers and the last layer show similar statistics across all memorization levels. We

hypothesize that this is due to the network shifting from “place-coding” to “channel-coding”

(similar observations are made in [81]), as features extracted at lower layer are integrated to

produce more global representations. Interestingly, setting p = 1 shifts the process to earlier

layers, explaining why layer-by-layer these networks appear as outliers.

CIFAR-10

E
rr

o
r

A
u

C

1_1 1_2 2_1 2_2 2_3 3_1 3_2 3_3 4_1 4_2 4_3

500

1000

1500

2000

2500

conv:

p
0.0
0.2
0.4
0.6
0.8
1.0

N
o

rm
al

iz
ed

er
ro

r
A

u
C

1_1 1_2 2_1 2_2 2_3 3_1 3_2 3_3 4_1 4_2 4_3

0.30

0.35

0.40

0.45

0.50

0.55

conv:

p
0.0
0.2
0.4
0.6
0.8
1.0

Layer Layer
(a) Raw NMF error (b) Normalized NMF error

Figure 3.4 – Layer-by-layer view of (a) raw and (b) normalized NMF reconstruction errors. This
is the error that the NMF objective is trying to minimize. The reconstruction error itself is
sensitive to the arbitrary magnitude of network weight, which makes it difficult to interpret
across layer and networks.

47

Chapter 3. Memorization and the non-negative rank

In addition to classification accuracy, the NMF reconstruction error itself is also a quantity

of interest. The main difficulty involved with interpreting the NMF error is scale. The error

depends on the magnitude of the activations, which varies across networks, layers, and even

channels.

In Figure 3.4 (a) and (b) we show the raw and normalized NMF reconstruction error, i.e.

‖A − Ã‖2 and ‖A−Ã‖2
‖A‖2

respectively. Measurements are taken over the same networks discussed

in Figure 3.3 (d,e,f). Observing the normalized values reveals that, proportionally, activation

matrices become harder to approximate with depth, with an interesting interaction between

the memorization level and depth. The error in absolute terms echo the accuracy curve, with

p = 1 again presenting outlier behavior.

Factorization methods

We compare k-means, PCA, NMF and RA. Rather than compress a single layer, we sequentially

apply compression to several layers one after another during the forward pass. In particular,

we apply compression to each layer in the final convolutional block of our CNN, consisting

of three layers, each of which consists of 512 channels (see Table 3.1). In fully-connected

networks, we applied compression to all layers.

In Figure 3.5 we report results for the CIFAR-10 dataset. Given its limited expressiveness,

k-means requires a very large K to approach good classification accuracy, and the result is

not useful for distinguishing levels of memorization. NMF produces the best results, clearly

distinguishing different levels of I(i, Z). In contrast, PCA, which is less constrained, regains

good accuracy already with small values of K , but is less discriminative with respect to the

level of memorization.

Finally, we confirm that robustness to RA correlates with less memorization, however less

so than NMF. It should be noted, however, that NMF does show more variance than other

methods, and incurs some additional overhead, as discussed below.

We show additional results in Figure 3.6 for on three additional datasets and network architec-

tures, including a fully-connected network for Fashion-MNIST. These results further establish

NMF as a good method for distinguishing levels of memorization.

48

3.5. Experiments

CIFAR-10

A
cc

u
ra

cy

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

K K
(a) Single-class k-means (b) Single-class NMF

A
cc

u
ra

cy

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

K K
(c) Single-class PCA (d) RA

Figure 3.5 – We compress NN activation using various matrix factorization methods. Factoriza-
tion was applied to the final three (convolutional) layers of CNNs trained on CIFAR-10 with
different levels of label randomization (p). (a) k-means requires on the order of N (number
of samples) centroids to approach a good approximation, and does not seem to be a feasible
method for detecting memorization. (b) NMF approximates the activations well enough to
retain good accuracy, while clearly distinguishing between different levels of I(i, Z) across
the networks. (c) Due to its expressiveness, PCA is able to well approximate the activations
even with small values of K , but is therefore less distinctive between levels of I(i, Z). (c)
Though not taking into account batch statistics, RA does distinguish between different levels
of memorization, albeit less significantly.

49

Chapter 3. Memorization and the non-negative rank

Fashion-MNIST
A

cc
u

ra
cy

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

K K K
(a) Single-class PCA (b) Single-class NMF (c) RA

SVHN

A
cc

u
ra

cy

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

K K K
(d) Single-class PCA (e) Single-class NMF (f) RA

Urban Sounds

A
cc

u
ra

cy

0 250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

K K K
(g) Single-class PCA (h) Single-class NMF (i) RA

Figure 3.6 – We show that NMF-based compression is sensitive to memorization in diverse
settings. Each row shows results for a specific dataset and network architecture. PCA and RA
consistently show less sensitivity to memorization compared with NMF.

50

3.5. Experiments

Following the discussion in Section 3.4.1, in Figure 3.7 we evaluated the effect of compression

with multi-class batches, i.e., sampled i.i.d. Compared to single-class batches (Figures 3.5

and 3.6), the different levels of memorization are indeed less distinct. Another view of this

behavior is that batching samples from various classes together assures the batch distribution

is multi-modal. This naturally requires a higher factorization rank in order to obtain a good

approximation.

Ablating NMF and PCA directions

We study the impact of ablating the activation in the directions found by NMF and PCA by

forward propagating the residual, i.e.,

A j+1 =Λ j+1
(

A j − Ã j
)

(3.21)

This is interesting because in the case of PCA, for instance, the top K directions are those that

capture most of the variance in the activation matrix, and presumably the K directions found

by NMF are of similar importance. This is not true for RA, where the ablated directions are of

no special importance.

In Figure 3.8 we see that networks with no induced memorization that are most vulnerable to

ablation of NMF and PCA direction. In other words, while non-memorizing networks are more

robust to random ablations, they are less robust to ablations of specific important directions.

This is in contrast to the interpretation of Morcos et al. [66] that non-memorizing networks

are more robust to ablations of single directions.

3.5.3 Feature compression and generalization

So far we have dealt with networks that were induced into memorization by randomizing their

training labels. We now show that NMF is useful for predicting good generalization in a more

realistic setting.

For this experiment, we trained 96 CNNs on CIFAR-10, over a grid of hyper-parameter values

for the batch size, weight decay and optimization algorithm, SGD vs. ADAM [52]. Following

the procedure of Section 3.5.2, we computed the AuC of the K -vs.-accuracy curve of each

network’s final convolutional block.

In Figure 3.9 we compare the AuC of NMF, PCA, and RA against the generalization error on

the test set. While all three methods show correlation with generalization error, NMF is most

correlated with a Pearson correlation of -0.82, followed by PCA with -0.64 and RA with -0.61.

51

Chapter 3. Memorization and the non-negative rank

CIFAR-10
A

cc
u

ra
cy

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

Fashion-MNIST

A
cc

u
ra

cy

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

SVHN

A
cc

u
ra

cy

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0

p
0.0
0.2
0.4
0.6
0.8

K K
Multi-class PCA Multi-class NMF

Figure 3.7 – Compared with Figures (3.5 and (3.6), using multi-class batches results in de-
creased sensitivity to memorization, as discussed in Section 3.4.1.

52

3.5. Experiments

CIFAR-10

A
cc

u
ra

cy

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0 p
0.0
0.2
0.4
0.6
0.8

0 400 800 1200 1600

0.2

0.4

0.6

0.8

1.0 p
0.0
0.2
0.4
0.6
0.8

Fashion-MNIST

A
cc

u
ra

cy

100 101 102 1030.0

0.2

0.4

0.6

0.8

1.0
p

0.0
0.2
0.4
0.6
0.8

100 101 102 1030.0

0.2

0.4

0.6

0.8

1.0
p

0.0
0.2
0.4
0.6
0.8

Urban Sounds

A
cc

u
ra

cy

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0 p
0.0
0.2
0.4
0.6
0.8

0 250 500 750 1000 1250 1500

0.2

0.4

0.6

0.8

1.0 p
0.0
0.2
0.4
0.6
0.8

K K
Single-class PCA Single-class NMF

Figure 3.8 – NMF and PCA directions are more important in networks which do not memorize.
Compared to Figures 3.5 and 3.6, where non-memorizing networks are more robust to random
ablation (RA), in all cases we see they are less robust to ablation of NMF and PCA directions
compared to memorizing networks. 53

Chapter 3. Memorization and the non-negative rank

N
o

rm
al

iz
ed

A
u

C

0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

Generalization error
(a) Single-class NMF (b) Single-class PCA (c) RA

Figure 3.9 – Area under the curve (AuC) of K -vs.-accuracy curves derived with NMF, PCA and
RA. While all three methods show correlation with generalization error, NMF is most correlated
with a Pearson correlation of -0.82, followed by PCA with -0.64 and RA with -0.61.

NMF thus gives us a tool to evaluate a network’s test error, although it is based on training

data. We test the usefulness of NMF as a proxy to the test error in the next section, by using

NMF to determine when to perform early stopping.

Early Stopping

One feature of overfitting is that it does not happen all at once. In early training iterations, the

test (or validation) error decreases along with training error. It is only later that the network

starts to depend on noisy variations in the input to decrease the training error at the expense

of the test error. Early stopping refers to training only up to the point when overfitting starts,

and not past it.

While this is typically achieved using a validation set, in this experiment we test whether NMF

can serve as an early stopping indicator while seeing only training data.

Once more, we trained CNNs on CIFAR-10 with the original labels, i.e., p = 0. Each network

was trained for 10K batches with a batch size of 100. We recorded the test set error every 250

batches, and applied factorization to the deepest three convolutional layers using single-class

NMF with a coarse grid on K . As before, we compute the area under each K vs. accuracy curve.

Finally, we also computed the area under the curve produced by RA.

Results of two instances are shown in Figure 3.10 (a) and (b). We smooth the plots using a

radius of two epochs to reduce noisy fluctuations. The matching-color dashed lines mark the

local minima of the test loss in as well as the location of the first local maxima of the NMF and

RA AuC curves after smoothing has been applied. We notice that the test loss minima align

54

3.5. Experiments
Te

st
lo

ss

0 5 10 15 20
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Test loss
NMF AuC
Ablation AuC

0 5 10 15 20

0.5

1.0

1.5

2.0

Epoch Epoch
(a) (b)

E
ar

ly
st

o
p

gu
es

s

4 6 8 10 12

4

6

8

10

12

NMF stop
Ablations stop

True optimum
(c)

Figure 3.10 – Early stopping for CNN training on CIFAR-10. (a, b) The test loss is (in blue) starts
to increase after about the 5th epochs, indicating the start of overfitting. Using single-class
NMF, we can detect the test loss turning point. We show the area under the curve (AuC)
computed with single-class NMF (in green), as discussed in section 3.5.2. Similarly, we show
the AuC for RA (in orange). (c) The NMF AuC curve and test loss curve consistently have near
extrema, as seen over several runs.

55

Chapter 3. Memorization and the non-negative rank

almost precisely with the maximum NMF AuC. We show more examples of this behavior in

Figure 3.10 (c), where we compare the stopping times of NMF and RA against the best test loss

over 10 different runs.

3.5.4 Experiments on VGG-19 and ImageNet

We perform a case study of VGG-19 [87], trained on ImageNet [80], since it is known for its

good generalization ability and usefulness as a general feature extractor.

We apply NMF compression to the three deepest convolutional layers, for both single-class

batches and multi-class batches. We selected 50 random classes from ImageNet and gathered

batches of 50 training samples from each class.

In Figure 3.11 (a), accuracy of single-class batches under NMF (blue curve) exhibits a denoising

effect which improves over the baseline top-1 accuracy (dashed line). As the constraint on K is

relaxed, that accuracy drops back to the baseline level. This is in contrast to multi-class batches

(green curve), where we regain baseline accuracy only when K is large. In Figure 3.11 (b) we

see extreme sensitivity to single-class NMF ablations. Ablating multi-class NMF directions,

however, has an impact similar to (d) ablating random axis-aligned directions.

In Figure 3.11 (c) we show a significant per-class correlation (Pearson r = 0.78) between NMF

AuC and test accuracy as measured on batches from the ImageNet test set.

In the next chapter we will revisit VGG-19, and delve into the interesting properties of the NMF

factorization A ≈UV itself.

3.6 Conclusion

In this chapter we showed the relationship between compression through matrix factorization

and memorization both in theory and in practice.

By extending a probabilistic view of k-means to NMF, we derived a bound over a the mutual

information between specific input samples and their hidden activations. We proposed

another view of NMF as a measure of the non-linearity of ReLU activation matrices.

Extensive empirical experiments confirmed that, indeed, NMF compression is effective at

distinguishing between NNs of different levels of memorization and generalization. Our

experiments suggest that this holds additionally during training and even per-class.

We conclude this chapter with a brief discussion of the computational overhead associated

with NMF. Applying NMF compression to large matrices naturally incurs certain overhead. Our

56

3.6. Conclusion
A

cc
u

ra
cy

0 250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0

Single classes
All classes
Original

0 250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0
Single classes
All classes
Original

K K
(a) Single vs. multi class (b) Residuals

A
cc

u
ra

cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

toyshop
printer

garbage truck

snail

barn spider

jean

hatchet

folding chair

coffee mug

limpkin

goose

0 250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0
Random

NMF AuC K
(c) Per-class test accuracy (d) RA

Figure 3.11 – (a) Single-class batches are highly compressible in deep VGG layers, as indicated
by high accuracy for small values of K . Compression has a denoising effect, improving upon
the baseline accuracy of the batch (dashed line), dropping back as K grows and capture more
variation in the input. (b) Ablating single-class NMF directions causes a dramatic drop in
accuracy. Ablating multi-class NMF directions, however, has an impact similar to (d) ablating
random axis-aligned directions. (c) Per-class test set accuracy is significantly correlated with
the area under the NMF K -vs.-accuracy curve (NMF AuC).

57

Chapter 3. Memorization and the non-negative rank

M
ill

is
ec

o
n

d
s

0 100 200 300 400 500

20

40

60

80

100

120

140

K

Figure 3.12 – NMF runtime on a typical ImageNet batch. Thanks to GPU acceleration, NMF
with multiplicative updates can be run to convergence in reasonable time.

implementation of the NMF multiplicative update algorithm [60], however, runs in reasonable

time thanks to GPU acceleration.

A typical batch used for VGG-19, i.e., 100 samples of 224×224 color images, is transformed to

100×14×14 by layer conv5_4. The tensor flattens into a matrix of size 19600×512. In Figure

3.12 we show the timing curve for this batch as we increase K , using an NVIDIA Titan X. As

can be seen, at K = 500 processing of the batch to convergence requires 197 milliseconds on

average.

For a batch of 32x32 CIFAR-10 images, where the deep feature maps are, say, 8×8, the batch

processing time drop to approximately 135 milliseconds for K = 500. Sweeping over all values

of K with an interval of 20 therefore takes about 2 seconds.

58

4 Semantic localization with matrix U

4.1 Introduction

In the previous chapter we established a relationship between non-negative matrix factoriza-

tion applied to ReLU activations and memorization. More specifically, we showed that varying

the factorization rank K affects classification performance in a way that is indicative of the

level of memorization when compared across networks.

Recall that each application of NMF decomposes the activations as A ≈UV . In this and the

next chapter, we delve into the individual components U and V , and show they decompose

the semantics learned by the CNN in a useful and revealing way.

In this chapter we focus on the matrix U , which can be roughly interpreted as answering en-

coding “where”. In other words, the matrix U holds soft clustering assignments for every patch

given its representation in CNN feature space. The result is an unsupervised decomposition

into semantic parts.

As neural networks become ubiquitous, there is an increasing need to understand and inter-

pret their learned representations [65; 76]. In Section 4.2 the matrix U is shown to provide

an interpretable window into how a CNN encodes objects in its hidden layer, by means of

heatmaps showing which objects are considered similar and which are not.

Previous methods have been developed to explain CNN activations in terms of heatmaps [103;

83] (see Section 2.2.4). In these methods, heatmaps are derived by weighting the importance

of each feature maps with respect to a particular output unit. These methods can therefore be

Some of the work presented in this chapter first appeared in [22].

59

Chapter 4. Semantic localization with matrix U

seen as supervised, since the resulting heatmaps are associated with a designated output unit,

which corresponds to an object class from a predefined set.

With NMF, however, heatmaps are not associated with an output unit or object class. Instead,

they capture salient and common activation patterns in the input, as indicated by clusters in

a deep CNN layer. This enables us to localize objects never seen before by the CNN, and for

which there is no relevant output unit.

We evaluate NMF-based heatmaps on several tasks with subtle but important differences in

naming:

• Segmentation vs. Localization is the difference between predicting pixel-wise binary

masks and predicting bounding boxes, respectively.

• Segmentation vs. co-segmentation is the distinction between segmenting a single

image into regions and jointly segmenting multiple images, thereby producing a cor-

respondence between regions in different images (e.g., cats in all images belong to the

same segment).

• Object co-segmentation vs. Part co-segmentation. Given a set of images representing

a common object, the former performs binary background-foreground separation where

the foreground segment encompasses the entirety of the common object (e.g., cat). The

latter, however, produces K segments, each corresponding to a part of the common

object (e.g., cat head, cat legs, etc.).

In Section 4.3 we use NMF to perform co-segmentation of objects not in the original training

set, such as pyramid (Figure 1.2), or object-parts such as the head or torso of an animal (Figure

4.6), which emerge in spite of training the CNN only with image level labels.

We find that parts form a hierarchy in feature space, e.g., the activations cluster for the concept

body, which contains a sub-cluster for limbs, which in turn breaks down to arms and legs (see

Figure 4.7).

In Section 4.4 we further evaluate NMF heatmaps by performing co-localization on a challeng-

ing real-world dataset, with significant clutter and object variation.

We validate our approach using several datasets and pre-trained CNNs, showing good perfor-

mance across a variety of settings. In fact, in spite of using a pre-trained CNN with no fine

tuning, co-localization with NMF achieves results comparable with the state-of-the-art.

60

4.2. NMF Heatmaps

Image Feature extraction Factorization

≈ U

Heat-map

F
la

tt
e

n

R
e

s
h

a
p

e

A

V

K

K

Figure 4.1 – An illustration of the NMF heatmap extraction pipeline. We obtain features from
a deep CNN and view them as a matrix. We apply NMF to the feature matrix and reshape
the resulting K factors into K heatmaps. See section 4.2 for a detailed explanation. Shown:
VGG-19 heatmaps with K = 3 on the Statue of Liberty subset from iCoseg with.

4.2 NMF Heatmaps

We review in detail the procedure by which the matrix U is obtained and its relation to the

input that generated it. Figure (4.1) gives an overview of the heatmap extraction pipeline.

4.2.1 CNN Feature maps

As before let an input image be a tensor of dimension I ∈ RCI×HI×WI , where the final two

dimensions are the height and the width of the image, respectively, and the third dimension is

the number of channels, e.g., 3 for RGB images. The image I defines spatial grid, with the first

dimension being a CI-dimensional feature representation of a particular spatial position. For

an RGB image, this feature corresponds to color.

As the image gets processed layer by layer, the hidden activation at the i th layer of the CNN is

the tensor Ai ∈RCAi ×HAi ×WAi . For ease of notation, we drop the subscript i and Ai if there is

no ambiguity. In most cases H < HI, W < WI due to pooling operations commonly used in

CNN pipelines. The number of channels C is user-defined as part of the network architecture,

and in deep layers is usually between 256 and 1024.

Like the original image I, the tensor A has a spatial interpretation as a feature map. The final

two dimensions represent a spatial grid, where each position now corresponds to a patch of

pixels in I, and the first dimension forms a CA-dimensional representation of the patch.

A feature map represents multiple patches (depending on the size of image I), and we view

each one as a point inhabiting a single C -dimensional space, which we refer to as the CNN

feature space.

61

Chapter 4. Semantic localization with matrix U

4.2.2 NMF on feature maps

Feature space in deep layers is known to encode a high degree of semantic information, which

can be distilled by applying NMF to a matrix of samples from that space.

As before, to apply matrix factorization we partially flatten A into a matrix:

A ∈R(H ·W)×C (4.1)

Note that the matrix A is effectively a “bag of features” in the sense that the spatial arrangement

has been lost. The rows of Ai
I can be permuted without affecting the result of factorization.

We can naturally extend factorization to a set of N images, by vertically concatenating their

patch features together:

A =


A(I1)

...

A(IN)

 ∈RP×C (4.2)

where we use the superscript to indicate the image for which activations were produced and

P =∑N
i HA(i) ·HA(i) . For ease of notation, we assume all images are of the same size, in which

case P = (N ·H ·W).

Having obtained A we proceed to factorize the matrix with a predefined rank K . In addition to

NMF, we consider PCA as well.

After factorization we obtain A ≈UV . The kth factor (1 ≤ k ≤ K) is represented by the pair

(U·k ,Vk·).

While Vk· is a C -dimensional vector with some meaning in the CNN feature space, the matrix

U , of size (N ·H ·W)×K , has as many rows as the activation matrix A, one corresponding to

every patch in every image.

Consequently, a single column Uk (1 ≤ k ≤ k) can be reshaped into N ×H ×W , and be viewed

as a set of N heatmaps, each of dimension H ×W . These spatial dimensions are those of Ai ,

and as such are often subsampled compared to the input images, e.g., by a factor of 16. We

match the size of the heatmaps with that of the input images using bilinear interpolation. The

N heatmaps can now be overlaid on top of their respective input images.

Repeating this procedure for each column of U creates K sets of N heatmaps, i.e., the tensor

U ∈ RN×K×HI×WI+ . By giving each of the K sets a different color, we can overlay U with the

original images all at once, as shown in Figure 1.2.

62

4.2. NMF Heatmaps

We note here that in early experiments with NMF we observed that some of the resulting

factors would localize most strongly along the borders of the image. This predominantly

occurred when batch normalization [46] was applied after zero-padded convolutions, as in

ResNet-50. This combination amplifies edge artifacts present around the border. To resolve

this problem and obtain clean heatmaps even in this case, we replaced all zero-padding with

reflection-padding.

4.2.3 PCA heatmaps

It is interesting to compare the heatmaps generated by NMF to those generated by PCA. In

Figures 4.2-4.5 we show NMF and PCA heatmaps for four categories from ImageNet. Since

PCA coefficients can be negative, we do not overlay multiple heatmaps and instead show each

of the K = 3 sets of maps in a different row.

A close inspection of PCA heatmap reveals they too hold a degree of semantics. Echoing back

to the difficulty of interpreting PCA factors in pixel space as in Figure 2.13, in this case too it is

not obvious how to handle the negative values. Flipping the sign of a column-row pair in the

PCA U and V matrices, respectively, is also a solution to the PCA objective, and so the sign of

any given solution is arbitrary.

While some processing heuristics might be applied, such as thresholding each PCA map into

two positive maps, we do not pursue that direction in this thesis.

63

Chapter 4. Semantic localization with matrix U

NMF

PCA

Figure 4.2 – An example of NMF and PCA heatmaps with K = 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 497, church building.

64

4.2. NMF Heatmaps

NMF

PCA

Figure 4.3 – An example of NMF and PCA heatmaps with K = 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 323, monarch butterfly.

65

Chapter 4. Semantic localization with matrix U

NMF

PCA

Figure 4.4 – An example of NMF and PCA heatmaps with K = 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 889, violin, fiddle.

66

4.2. NMF Heatmaps

NMF

PCA

Figure 4.5 – An example of NMF and PCA heatmaps with K = 3 (one factors per row) derived
from VGG-19 conv5_4. While NMF factors can be directly interpreted as saliency maps, prin-
cipal components are less straightforward to interpret, and require additional post-processing.
Here shown are images from ImageNet class 294, brown bear.

67

Chapter 4. Semantic localization with matrix U

4.3 Experiments on iCoseg

The iCoseg dataset [9] is a popular benchmark for co-segmentation methods. It consists of 38

image sets, where each image is annotated with a pixel-wise mask encompassing the main

object common to the set. Images within a set are uniform in that they were all taken on a

single occasion, depicting the same object(s). The challenging aspect of this dataset lies in the

significant variation of viewpoint, illumination, and object deformation.

We chose five sets and further labeled them with pixel-wise object-part masks, namely the

categories Elephants, Taj Mahal, Pyramid, Gymanstics1, Statue of Liberty. This process involved

splitting the given ground truth whole-object masks into individual parts. We also annotated

common background objects, e.g., animal in the Pyramids set (see Figure 1.2). The number of

images in these sets ranges from as few as 5 up to 41. When comparing against [94] and [78] in

Table 4.2, we used the subset of iCoseg used in those papers.

4.3.1 Qualitative investigation

For each set in iCoseg, we obtained activations from two CNNs. For VGG-19 we used the

deepest convolutional layer, conv5_4, and for ResNet-50 we used the last layer of the third

convolutional block. We then applied NMF to these activations with increasing values of K .

VGG-19 In Figures 4.6 and 4.7 we present VGG-19 results for two image sets, Elephants

and Gymanstics1, respectively. We see a clear correspondence between NMF factors and

coherent object-parts, however, the heatmaps are coarse. Due to the low resolution of deep

CNN activations, and hence of the heatmap, we get blobs that do not perfectly align with the

underlying region of interest.

We notice that when K = 1, the single NMF factor corresponds to a whole object, encompassing

multiple object-parts. This, however, is not guaranteed, since it is possible that for a set of

images, setting K = 1 will highlight some background element rather than the foreground.

Nonetheless, as we increase K , we get a decomposition of the object or scene into individual

parts. This behavior reveals a hierarchical structure in the clusters formed in CNN feature

space.

For instance, in Figure 4.7, we can see that K = 1 encompasses most of gymnast’s body, K = 2

distinguished her midsection from her limbs, K = 3 adds a finer distinctions between arms and

legs, and finally K = 4 adds a new component that localizes the beam. This observation also

indicates the CNN has learned representation that ‘explains’ these concepts with invariance to

pose, e.g., leg positions in the 2nd, 3rd, and 4th columns.

68

4.3. Experiments on iCoseg
K
=1

K
=2

K
=3

K
=4

VGG-19 heatmaps for Elephants

Figure 4.6 – NMF with incremental K on the Elephants subset from iCoseg with VGG-19. Each
row shows a separate factorization where only K is changed. Different colors correspond to
the heatmaps of the K different factors. NMF factors correspond well to distinct object parts.
This Figure visualizes the data in Table 4.1, where heatmap color corresponds with row color.

69

Chapter 4. Semantic localization with matrix U

K
=1

K
=2

K
=3

K
=4

VGG-19 heatmaps for Gymnastics1

Figure 4.7 – NMF with incremental K on the Gymnastics1 subset from iCoseg with VGG-19.
Each row shows a separate factorization where only K is changed. Different colors correspond
to the heatmaps of the K different factors. NMF factors correspond well to distinct object parts.
This Figure visualizes the data in Table 4.1, where heatmap color corresponds with row color.

70

4.3. Experiments on iCoseg

A similar decomposition into legs, torso, back, and head can be seen for the elephants in

Figure 4.6. This shows that we can localize different objects and parts even when they are all

common across the image set.

Interestingly, the decompositions shown in the introductory Figure 1.2 exhibit similar high se-

mantic quality in spite of their dissimilarity to the ImageNet training data, as neither pyramids

nor the Taj Mahal are included as class labels in that dataset.

We also note that as some of the given sets contain as few as 5 images (Figure 1.2b comprises

the whole set), our method does not require many images to find meaningful factors.

ResNet-50 In Figures 4.8 and 4.9 we show similar heatmaps, extracted using ResNet-50.

Compared to VGG-19 heatmaps, these heatmaps are considerably more dense.

To explain this difference be examined the VGG-19 and ResNet-50 feature maps themselves. A

likely cause for this reason is the fact that VGG-19 and VGG-16 deep activations are 92% sparse

on iCoseg, whereas with ResNet-50 activations are only 71% sparse for the same data.

The main differences between the two architectures is ResNet’s use of batch-normalization

and residual layers. We tested whether the former is the trigger for the denser activation

by examining the activations of VGG-16 BN and VGG-19 BN, i.e., versions of the basic VGG

architecture with added batch-normalization. In this case too, however, VGG-16 BN and

VGG-19 BN activation proved about 90% sparse. We conclude therefore that the difference is a

characteristic of the residual architecture itself.

With K = 1, ResNet-50 produces a heatmap which encompasses the whole image, as opposed

to VGG-19 which preferred the salient object. In both Figures 4.8 and 4.9, K = 2 results in

clear foreground-background separation, with one of the components singling out the salient

object. This too, however, is not guaranteed, since setting K = 2 could result in a separation

between background elements.

As we increase K , we find that factors are indeed allocated to describing variations in the

background. For instance, in Figure 4.8, the sky and the ground are each assigned a factor.

Increasing to, e.g., K = 7 (not shown) gives a factor that isolated the dark green trees in the

background.

As a result it is only with relatively high factorization ranks, relative to VGG-19, that ResNet

heatmaps contain parts of the same ‘resolution’ as VGG-19.

71

Chapter 4. Semantic localization with matrix U

K
=1

K
=2

K
=3

K
=4

K
=5

ResNet-50 heatmaps for Elephants

Figure 4.8 – NMF with incremental K on the Elephants subset from iCoseg with ResNet-50.
Compared to Figure 4.6, ResNet produces heatmaps with considerably more dense background
activation. Increasing K is as likely to distinguish between background elements (e.g. ground
vs sky vs tree) as between parts of the foreground object.

72

4.3. Experiments on iCoseg
K
=1

K
=2

K
=3

K
=4

K
=5

ResNet-50 heatmaps for Gymnastics1

Figure 4.9 – NMF with incremental K on the Gymnastics1 subset from iCoseg with ResNet-50.
Compared to Figure 4.7, ResNet produces heatmaps with considerably more dense background
activation. Increasing K is as likely to distinguish between background elements as between
parts of the foreground object.

73

Chapter 4. Semantic localization with matrix U

4.3.2 Object and part co-segmentation

Given the heatmaps U ∈RN×K×H×W+ and ground truth part segmentations masks G{0,1}N×T×H×W ,

we would like to quantify the correspondence of NMF heatmaps to those parts. A high score

indicating a match attests to the semantic meaning of the NMF factors.

Since NMF factors are unsupervised, a single factor may correspond not to a single part, but to

a composition of several parts, e.g. limbs, as observed in the examples of the previous section.

Conversely, a single part might correspond to a composition of several factors (e.g., the wheels

in Figure 4.11c).

We must therefore associate groups of factors with groups of parts. This can be done with

respect to two different objectives. The first objective is exploratory, meaning we have com-

plete access to ground truth data. We can then estimate the semantics of a factor vs. part

combination simply by evaluating all ground truth data.

This is the strategy used in [10], with the crucial difference being that they consider each indi-

vidual CNN feature map, of which there are typically hundreds or even thousands, whereas we

consider only K NMF heatmaps, where K is usually small. In addition, each NMF heatmap is a

combination of all CNN heatmaps, which allows for correlations not present when considering

individual feature maps.

The second objective is predictive, i.e., we produce an association between factors and parts

using none or only a fraction of ground truth data, and evaluate the match on the remainder

of the ground truth.

For instance, for object co-segmentation we need to produce a single heatmap encompassing

the object of interest. Based on the examples shown in Figures 4.6 and 4.7, a viable strategy

for VGG-19 is to simply set K = 1. This will produce a heatmap likely to surround the salient

object.

Similarly, inspired by Figures 4.8 and 4.9, a strategy for ResNet-50 can be to set K = 2 and select

the foreground factor. This can be done with a simple heuristic: if factor a has less activation

on the 1-pixel-wide border of the heatmap than factor b, then factor a is the foreground.

Finally, a more robust solution is to use a small subset of ground truth, e.g., a single ground

truth mask, to associate factors and parts. We can then test the quality of the match on the

remaining images in the set.

Our matching and evaluation proceeds as follows. We first binarize the NMF heatmaps U,

producing B. We then augment the collections of factor and part heatmaps by merging

certain subsets. Finally, we measure the match between (sets of) factors and parts using the

intersection-over-union (IoU) measure, also known as Jaccard similarity. We review these

74

4.3. Experiments on iCoseg

steps below, describing the merging procedure last.

Extracting B Recall that the tensor U is reshaped from the NMF matrix U . As such, its scale

is arbitrary. We therefore divide each set U·k··, 1 ≤ k ≤ K by the maximal number in that set.

This simple heuristic approximates the probabilistic interpretation of NMF presented in the

previous chapter, with the assumptions that there is at least one point per factor that is highly

probable with respect to that factor, which we set to 1.

To binarize the normalized maps, we can use a simple threshold, e.g. B = normalize(U) ≥
τbinarize. We experimentally set τbinarize = 0.75.

Measuring IoU We compute the IoU as follows:

B = flatten(B), G = flatten(G) (4.3)

IoUk,t =
B>

k Gt∑
Bk +

∑
Gt −B>

k Gt
(4.4)

The IoU is also the probability of a pixel i being 1 in both masks, given that it is 1 in one of

them. It therefore equals 1 when overlap between the masks is exact, and is 0 when they are

mutually exclusive.

The computation above results in a K ×T matrix of IoU scores. We consider a factor k and a

part t as matching only when IoUk,t > IoUk ′,t ∧ I oUk,t > IoUk,t ′ ∀ 1 ≤ k ′ ≤ K , 1 ≤ t ′ ≤ T .

Merging factors and parts We propose to look at the two quantities related to the IoU, and

use them to augment B or G.

The first term, intersection-over-parts, is the probability of part t being entirely contained in

factor k:

IoFk,t =
B>

k Gt∑
Bk

(4.5)

This information is used only to create new ground truth targets, and so the evaluated NMF

heatmaps are independent of the ground truth data. In other words, this type of augmentation

is possible even in the unsupervised case.

75

Chapter 4. Semantic localization with matrix U

The second term, intersection-over-factors, is the probability of factor k being entirely con-

tained in a part t :

IoPk,t =
B (n)>

k G (1)
t∑

G (n)
t

(4.6)

This information is used to create new NMF heatmaps which are not independent of the

ground truth data. This means that factor augmentation is not possible in the unsupervised

case. In the partial data case, n < N is the number of images whose ground truth contributes

to augmentation, e.g. n = 1 for “one-shot” prediction, and finally n = N in the fully exploratory

setting.

Finally, let τmerge be a set threshold, we augment the set of binary factors B by concatenating

up to T composite factors:

B′
t =

∑{
Bk |IoFt ,k ≥ τmerge

}
(4.7)

B←
[

B{
B′

t

∣∣|B′
t | ≥ 2

}] (4.8)

And similarly by concatenating up to K merged parts:

G′
k =∑{

Gt |IoPt ,k ≥ τmerge
}

(4.9)

G←
[

G{
G′

k

∣∣|G′
k | ≥ 2

}] (4.10)

In all our experiments we empirically set τmer g e = 0.2. Given these augmented sets, we obtain

IoU results as described above.

Results

For VGG-19, Table 4.1 shows the matching parts and IoU scores for factors extracted from the

five image sets of iCoseg that we have annotated. We used all the ground truth to associate

factors and parts. In this case, no factor merging was needed, but part merging is common.

These scores correspond to the visualizations of Figures 1.2, 4.6 and 4.7, confirming what

we observe qualitatively. As can be seen, although the factors align well visually with their

respective parts, the IoU can still low due to the low-resolution of the original heatmaps.

In Table 4.2 report results for object co-segmentation, i.e., T = 1 and the set G contains a single

76

4.3. Experiments on iCoseg

ground truth ’part’, corresponding to the whole object.

We use VGG-19 with the K = 1 heuristic and ResNet-50 with the K = 2 heuristic described

above. We also considered “one-shot” co-segmentation, where we used a single ground truth

instance to determine which factors belong in the foreground. In that case we used heatmaps

from several application of NMF, with K = {2,4,6,8}.

We include results of several state-of-the-art co-segmentation methods for comparison. The

supervised method of Vicente et al. [94] chooses among multiple segmentation proposals

per image by learning a regressor to predict, for pairs of images, the overlap between their

proposals and the ground truth. Input to the regressor included per-image features, as well as

pairwise features.

The methods Rubio et al. [78] and Rubinstein et al. [77] are unsupervised and rely on a Markov

random field formulation, where the unary features are based on surface image features

and various saliency heuristics. For pairwise terms, the former method uses a per-image

segmentation into regions, followed by region-matching across images. The latter approach

uses a dense pairwise correspondence term between images based on local image gradients.

These methods employ heavy use of surface features, e.g., edges and colors in pixel space, to

obtain a pixel-accurate segmentation, and as a result, they achieve high intersection-over-

union scores.

The objective of our experiments, however, is to asses the semantics of learned CNN features,

not maximize the segmentation accuracy. As a result, we do not apply heavy post processing

to our heatmaps. Nonetheless, in spite of being based on low-resolution heatmaps, NMF

heatmaps compare favorably against these domain-specific methods, even outperforming

them in some cases.

We can see that in most of these cases, the K = 1 and K = 2 heuristics work well for VGG-19 and

ResNet-50, respectively, where the category Pyramids is an exception for both. Shown in Figure

1.2, the salient region in this image set does, in fact, include more than the eponymous object

of interest. The one-shot methods overcome this issue since we essentially over-segment the

image set by setting a large K , and use the single ground truth sample to aggregate the relevant

segments. In all cases, however, ResNet-50 produces better results than any VGG network.

77

Chapter 4. Semantic localization with matrix U

Elephants Taj Mahal Pyramids Gymnastics1 Statue of Liberty

torso/back/head 59 dome 33 animal 36 torso/waist 35 torso 36
VGG-19, K =2

torso/leg 35 tower/building 46 pyramid 56 arm/leg/head 20 torch/base/head 28

back/head 46 building 45 background 27 torso/waist 38 base 14

torso 25 dome 40 pyramid 55 arm/head 22 torso 39VGG-19, K =3

leg 21 tower 13 animal 36 leg 33 torch/head 23

torso/back/head 58 building 72 background 27 torso/waist 40 torso 39

head 36 dome 43 pyramid 52 torso/arm/head 33 background 44

torso 20 background 08 animal 37 leg 37 torch/head 26
VGG-19 , K =4

leg 16 tower 16 person 12 background 14 base 40

Table 4.1 – Object and part co-segmentation on five iCoseg image sets using VGG-19. Part-
labels are automatically assigned to NMF factors using all available ground truth, and are
shown with their corresponding IoU-scores. These results show that clusters in CNN feature
space correspond to coherent parts. More so, the results indicate the presence of a cluster
hierarchy in CNN feature space, where part-clusters can be seen as sub-clusters within object-
clusters (See Figures 1.2, 4.1, 4.6 and 4.7 for visual comparison. Cell color corresponds with
heatmap color).

Method Supervision Elephants Taj Mahal Pyramids Gymnastics1 Statue of Liberty

Vicente [94] Supervised 43 91 - - 94
Rubio [78] Unsup. 75 89 - - 92
Rubinstein [77] Unsup. 63 48 57 94 70
VGG-19, K =1 Unsup. 65 41 49 43 49
ResNet-50, K =2 Unsup. 77 63 30 44 81
VGG-16 One-shot 68 51 31 46 32
VGG-16 BN One-shot 60 60 44 43 50
VGG-19 One-shot 62 48 57 46 36
VGG-19 BN One-shot 62 54 43 50 59
ResNet-50 One-shot 77 73 74 66 88

Table 4.2 – Object co-segmentation on five iCoseg image sets. We compare results across
different levels of supervision. The colored cells of the unsupervised NMF approaches refer
to the similarly colored factors shown in Figures 4.6, 4.7 (VGG-19) and 4.8, 4.9 (ResNet-50).
Here, “Unsup.” is unsupervised and “One-shot” refers to the use of a single ground truth
instance, which we use to associate NMF factors with ground truth parts. In the one-shot
case we consider factors from multiple factorizations, with K = {2,4,6,8}. Co-segmentation
with NMF compares favorably against state-of-the-art methods, in spite of being based on
low-resolution activations of a pre-trained network.

78

4.4. Experiments on PASCAL VOC

4.3.3 Layer depth

The NMF heatmaps considered so far have all been derived from activations of deep layers.

In this section we study earlier layer in VGG-19 to evaluate the how much of the semantic

information present in conv5_4 is unique to that layer.

We can characterize the quality of whole factorization as the average IoU of its matching

factors and parts (not including background). In Figure 4.10 we show the average IoU for

different layers of VGG-19 on iCoseg with increasing K . The variance shown is due to repeated

trials with different NMF initializations. There is a clear gap between convolutional blocks.

Performance within a block, however, does not strictly follow the linear order of layers.

We also see that the optimal value for K is between 3 and 5. This is a result of not using factor

merging in this experiment, which means factors must math the resolution of the part ground

truth. As K increases, NMF heatmaps become more localized, highlighting regions that are

beyond the granularity of the ground truth annotation, e.g., a pair of factors that separate leg

into ankle and thigh.

A
vg

.I
o

U

1 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5
conv5_4
conv5_3
conv5_2
conv5_1

conv4_4
conv4_3
conv4_2
conv4_1

conv3_4
conv3_3
conv3_2
conv3_1

K

Figure 4.10 – Average IoU score for NMF with different layers of VGG-19 on iCoseg. As expected,
earlier convolutional blocks match up significantly less to semantic parts.

4.4 Experiments on PASCAL VOC

PASCAL VOC has been commonly used to evaluate object co-localization methods. Images

in this dataset often comprise several objects of multiple classes from various viewpoints,

making it a challenging benchmark.

As in previous work [57; 19; 49], we use the trainval set for evaluation and filter out images

that only contain objects which are marked as difficult or truncated. As we use PASCAL VOC

79

Chapter 4. Semantic localization with matrix U

2007 specifically, the final set has 20 image sets (one per class), with 69 to 2008 images each.

For part co-segmentation, we use the PASCAL-Part dataset [18]. An extension of PASCAL VOC

2010 [32], this dataset has been further annotated with part-level segmentation masks and

bounding boxes. The dataset decomposes 16 object classes into fine grained parts, such as

bird-beak and bird-tail etc.1 After filtering out images containing objects marked as difficult

and truncated, the final set consists of 16 image sets with 104 to 675 images each.

4.4.1 Object co-localization

The task of co-localization involves fitting a bounding box around the common object in a

set of image. As before, with VGG-19 we set K = 1 to retrieve a heatmap which localizes that

salient object across an image set.

After binarizing the single heatmap, as described in the previous section, we follow [83] and

extract a single bounding box per heatmap. This is done by fitting a box around the largest

connected component in the binary map.

We report the standard CorLoc score [25] of our localization. The CorLoc score is defined as

the percentage of predicted bounding boxes for which there exists a matching ground truth

bounding box. Two bounding boxes are deemed matching if their IoU score exceeds 0.5.

The results of our method are shown in Table 4.3. We compare against several state-of-the-art

object co-localization methods. These methods operate by ranking set of object proposals,

produced by a region-proposal CNN [62] or an object-saliency heuristic [19; 49]. They then

choose the highest ranked region as a bounding box.

The authors of [57] present a method for unsupervised object co-localization that, like ours,

also makes use of CNN activations. Their approach is to apply K -means clustering to glob-

ally max-pooled activations, with the intent of clustering all highly active CNN filters to-

gether. Their method therefore produces a single heatmap, which is appropriate for object

co-localization, but cannot be extended to part co-localization.

Our method compares favorably to these previous approaches. For instance, we improve

co-localization for the class dog by 16% higher CorLoc and achieve better co-localization on

average, in spite of our approach being simpler and more general.

4.4.2 Part co-segmentation

In Table 4.4 we give IoU results for VGG-19 on five classes from PASCAL-Parts, which have

been automatically matched to parts using all available ground truth data, as in section 4.3.1.

80

4.4. Experiments on PASCAL VOC

(a) Aeroplane

(b) Car

(c) Motorbike

Figure 4.11 – Example NMF heatmaps for three vehicle classes from PASCAL-Part with K = 3.
We show four successful decompositions per-class and a failure case on the right-most column.
NMF manages to retrieve interpretable decompositions in spite of great variation in the data.

81

Chapter 4. Semantic localization with matrix U

(a) Bird

(b) Cow

(c) Cat

Figure 4.12 – Example NMF heatmaps for three animal classes from PASCAL-Part with K = 3.
We show four successful decompositions per-class and a failure case on the right-most column.
NMF manages to retrieve interpretable decompositions in spite of great variation in the data.

82

4.4. Experiments on PASCAL VOC

Method aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Mean
Joulin [49] 33 17 21 18 5 27 33 41 6 29 35 32 26 40 18 12 25 28 36 12 25.60
Cho [19] 50 43 30 19 4 62 65 43 9 49 12 44 64 57 15 9 31 34 62 32 36.60
Li [62] 73 45 43 28 7 53 58 45 6 48 14 47 69 67 24 13 52 26 65 17 40.00
Le (A) [57] 70 52 44 30 5 56 60 59 6 49 16 51 59 67 23 12 47 27 59 16 40.36
Le (V) [57] 72 62 48 28 12 64 59 72 6 37 12 45 67 72 19 11 37 29 67 23 41.97
VGG-19 63 49 54 20 10 62 51 79 4 51 32 67 67 73 19 15 43 35 66 24 44.20
ResNet-50 72 45 60 42 11 53 57 78 9 60 36 66 68 74 26 18 46 55 65 16 47.98

Table 4.3 – Co-localization results for PASCAL VOC 2007. Numbers indicate CorLoc scores. Us-
ing NMF with K = 1 applied to VGG-19 activations, we exceed the state-of-the-art approaches,
though using a much simpler method.

In Figures 4.11 and 4.12 we visualize some of the corresponding K = 3 NMF heatmaps.

When comparing the heatmaps against their corresponding IoU-scores, several interesting

observations arise. For instance, in the case of motorbike, the first and third factors for K = 3

in Table 4.4 both seems to correspond with wheel. The visualization in Figure 4.11b reveals

that these factors in fact sub-segment the wheel into top and bottom, which is beyond the

resolution of the ground truth data. The fact this distinction arises already with K = 3 indicates

its importance in feature space, yet it is not an intuitively human distinction.

Returning to Table 4.4, when K = 4, a factor emerges that localizes instances of the class person,

which occur in 60% of motorbike images. This again shows that while most co-localization

methods only describe objects that are common across the image set, the NMF approach finds

fine distinctions within the set of common objects.

Note that while the first factor of the class aeroplane (Figure 4.11a) consistently localizes

airplane wheels, it does not to achieve high IoU due to the coarseness of the heatmap and

fineness of the part.

In our final experiment, we use NMF heatmaps derived from both VGG-19 and ResNet-50

to segment the two classes, cow and horse. Since we have not come across examples of part

co-segmentation in the literature, we compare against a method for supervised part segmen-

tation, namely Wang and Yuille [96]. Their method relies on a compositional model with

strong explicit priors w.r.t to part size, hierarchy and symmetry. We also show results for two

baseline methods described in [96]: PartBB+ObjSeg where segmentation masks are produced

by intersecting part-bounding-boxes [18] with whole-object segmentation masks [42]. The

method PartMask+ObjSeg is similar, but here bounding-boxes are replaced with the best of 10

pre-learned part masks.

In spite of the highly domain-specific nature of their approach, we show in Table 4.5 that NMF

nonetheless compares favorably to their results and even surpasses them in most cases using

83

Chapter 4. Semantic localization with matrix U

K
aero

p
lan

e
b

ird
car

m
o

to
rb

ike
cat

1
aerop

lan
e

42
bird

40
car

29
w

h
eel

30
eye/h

ead
/n

eck/n
ose

31

2
w

h
eel

2
beak/eye/h

ead
/n

eck
13

w
h

eel
10

w
h

eel
38

torso
24

bod
y/stern

/tail/w
in

g
49

n
eck/torso/w

in
g

39
d

oor/roof/w
in

d
ow

22
p

erson
9

eye/h
ead

/n
eck/n

ose
36

w
h

eel
2

leg
2

w
h

eel
10

w
h

eel
30

eye/h
ead

/n
eck/n

ose
32

bod
y/stern

/w
in

g
47

n
eck/torso/w

in
g

43
d

oor/h
ead

ligh
t/licen

sep
late

24
h

ead
ligh

t
1

torso
30

3
bod

y/tail
35

beak/eye/h
ead

/n
eck/torso

30
m

irror/roof/w
in

d
ow

20
w

h
eel

29
ear/eye/h

ead
/n

eck/n
ose

38

4

w
h

eel
1

foot/leg
3

w
h

eel
9

w
h

eel
33

eye/h
ead

/n
ose

31
bod

y/w
h

eel/w
in

g
44

n
eck/torso/w

in
g

44
h

ead
ligh

t/licen
sep

late
31

p
erson

10
eye/n

eck/n
ose

5
stern

/tail/w
in

g
21

beak/eye/h
ead

/n
eck/torso

30
fron

t
8

w
h

eel
17

ear/eye/h
ead

/n
ose

35
bod

y/tail
32

n
eck

2
m

irror/roof/w
in

d
ow

22
backgrou

n
d

13
torso

27

Tab
le

4.4
–

N
M

F
o

n
V

G
G

-19
fo

r
PA

SC
A

L-Parts
segm

en
tatio

n
.E

ach
N

M
F

facto
r

is
au

to
m

atically
lab

eled
w

ith
p

artlab
els

as
in

sectio
n

4.3.1.
H

igh
er

valu
es

o
fK

allow
N

M
F

to
lo

calize
fi

n
er

regio
n

s
acro

ss
th

e
im

age
set,so

m
e

o
fw

h
ich

go
b

eyo
n

d
th

e
reso

lu
tio

n
o

fth
e

gro
u

n
d

tru
th

p
artan

n
o

tatio
n

.F
igu

res
4.11

an
d

4.12
visu

alize
th

e
resu

lts
fo

r
K
=

3
(row

co
lo

r
co

rresp
o

n
d

s
to

h
eatm

ap
co

lo
r).

84

4.5. Conclusion

Method
cow horse

head neck+torso leg head neck+torso leg
PartBB+ObjSeg 26.77 53.79 11.18 37.32 60.35 27.47
PartMask+ObjSeg 33.19 56.69 11.31 41.84 63.31 21.38
Compositional model [96] 41.55 60.98 30.98 47.21 66.74 38.18
VGG-19 40.53 59.48 21.57 20.21 54.77 28.94
ResNet-50 42.34 63.36 36.45 34.31 64.49 40.72

Table 4.5 – Avg. IoU(%) for three fully supervised methods reported in [96] and for our NMF
approach. Despite not using hand-crafted features, NMF compares favorably to these ap-
proaches, and is not specific to these two image classes. We manually matched NMF factors
with their appropriate part labels by visually examining the heatmaps of only five images, out
of approximately 140 images. This illustrates the usefulness of NMF co-segmentation for fast
semi-automatic labeling. See visualization for cow heatmaps in Figure 4.12.

ResNet-50. This is in spite of not using any hand-crafted features or supervised training.

We note that for this experiment, our strategy for mapping NMF factors to their appropriate

part labels was manual, in order to showcase the prospect of using NMF for semi-automatic

labeling. We examined the heatmaps of five images, out of approximately 140 images, and

manually assigned factors as corresponding to head, tors+neck or leg.

4.5 Conclusion

Following the result that well-generalizing CNNs are robust to NMF compression applied

to their activations A ≈ UV , in this chapter we studied the properties of the U matrix. By

visualization U as a set of heatmaps, we could qualitatively see why this is the case: NMF

factors correspond to semantic parts.

We evaluated the semantic quality of the resulting factors quantitatively with a series of co-

segmentation and co-localization tasks, at the resolution of whole objects as well as finer parts.

We found that in spite of their low resolution, the heatmaps derived from NMF factors match

ground truth segmentation masks to high extent, with ResNet-50 showing better performance

than some domain-specific over-engineered segmentation methods.

Based on these observation we hypothesize that CNNs learn clusters in feature space which

correspond to a “natural” decomposition of the data into constituent parts. In a similar way

to how Gabor-like edge detectors are optimal for sparse coding of images [71], and naturally

emerges in both statistical models and the visual cortex, we propose that a decomposition of

the kind detected by NMF is is optimal for the image-level classification task, and therefore

naturally emerges in deep layers.

85

5 Semantic retrieval with matrix V

5.1 Introduction

In this chapter we continue our examination of the NMF factors, A ≈UV , focusing on the

matrix V . Recall that when A ∈R(N ·H ·W)×C
+ is a CNN activation matrix, each row represents an

image patch embedding in C -dimensional feature space. This space is a latent space, and as

such it has no known a-priori interpretation. Its analysis and interpretation is the premise of

our study of network interpretability.

The matrix Vk,· represents a point or direction in the C -dimensional feature space. In the

previous chapter we inferred the semantic meaning of Vk,· via the spatial distribution of its

corresponding U·,k . Under a clustering interpretation of NMF, each Ui ,k serves as a weight

associating a datapoint Ai ,· with a cluster centroid Vk,·, as shown in Figure 5.1. Heatmap

locations were considered matching when they showed strong weights with respect to the

same centroid. For this reason, we think of the matrix U as encoding “where”, and the matrix

V as encoding “what”, with the latter being represented in C -dimensional feature space.

We begin our study in Section 5.2 with a qualitative analysis, where we use gradient ascent

to generate inputs that maximize activation in a direction Vk,·. While these visualizations are

certainly interesting, we find they are not always relatable to the heatmaps derived from U .

The matrix V is interesting because it represents the K most important non-negative directions

in CNN feature space, with respect to reconstructing network activations. We can therefore

think of V as a set of K attributes, indicating the presence of important semantic concepts

within an image.

Some of the work presented in this chapter first appeared in [21].

87

Chapter 5. Semantic retrieval with matrix V

●

●

●

!"

!#

!$

●

●

●

%"

%$

%&

%'

(","
(",$

(",#

Figure 5.1 – Non-negative matrix factorization can be seen as forming a bipartite graph, where
each data point Ai is associated with a component Vk by a weight Ui ,k .

It therefore gives us a means by which to compare different images without having to jointly

factorize them. That is, instead of concatenating several images together, A = [
A(a) A(b)

]
, and

factorizing against a single V , we can factorize each image individually to obtain V (a) and V (b).

If the rows of V (a) and V (b) are “similar”, we can conclude the images are semantically related.

Based on this view, we quantify how well the rows of V describe the contents of individual

images by performing content-based image retrieval. The goal of image retrieval in general is

to correctly rank images from a large collection according to their relevance with respect to an

input query. Content-based retrieval specifically means that the query itself is also an image.

Like in many other vision-related tasks, CNN-based methods currently hold the state of the

art for content-based image retrieval. With deep CNN layers, moderately low-dimensional

descriptors can be derived that encode global image semantics both succinctly and discrim-

inatively. This allows for efficient content-based search, where a query image is matched

against a large collection of images by a simple operation, e.g., cosine similarity.

Some of the best performing global descriptors are derived by aggregating several local descrip-

tors. Selecting the appropriate local regions, however, is not straight forward. Methods have

been proposed that simply consider the whole image as single region [4; 5]. Others impose a

simple grid over the feature maps [91] and some even randomly sample regions [85]. In our

case, viewing V as a set of local descriptor sets their corresponding regions to nothing else but

the heatmaps encoded in U .

Most CNN-based methods for image retrieval focus specifically on instance-based image

retrieval, where the goal is to retrieve images that contain the same object instance as the

query image. For example, given an image of a building, we aim to highly rank other images of

that specific building, and not images of similar buildings.

88

5.2. Gradient ascent visualization

A related task is that of semantic image retrieval [38] where given a query image, e.g., of a dog,

we aim to rank highly all images in our collection that portray any dog. This task introduces

much greater variability into the set of relevant images, and limits an algorithm’s reliance on

surface features such as texture and color.

In Sections 5.3 and 5.4 we tackle these two tasks. Interestingly, while we show in Section 5.3

that a descriptor based purely on V excels at semantic image retrieval, it is insufficient for

instance-based image retrieval. Instead, the information required to accomplish the latter task

is distributed across both U and V . As we show in Section 5.3, when both are combined, our

algorithm yields state-of-the-art results also for instance-based image retrieval.

5.2 Gradient ascent visualization

As described in Section 2.2.4, several methods have been proposed that directly visualize

directions in CNN feature space. This is accomplished by generating an input image that

maximizes activation in that direction. Since a row Vk,· inhabits this space, it is interesting to

see if these visualization agree with our interpretation via the heatmaps derived from U·,k .

We used to the method of Olah et al. [70], where we optimized:

Ik = argmax
I

∑
i , j

cos
(
A·,i , j ,Vk,·

)
(5.1)

where A ∈ RC×H×W+ is the deep layer activation in response to input Ik . In their method,

the image Ik is parameterized by its Fourier coefficients. This parameterization guides the

optimization with gradient ascent towards qualitatively more pleasing visualizations.

In Figures 5.2 and 5.3 we show gradient ascent visualization obtained for the V derived from

activation of VGG-19 on the iCoseg dataset. Specifically, we return to the examples of Figures

4.6 and 4.7, where we applied NMF with increasing rank K to the activations of two image sets,

Elephants and Gymnastics1. Whereas in Figures 4.6 and 4.7 we visualized the NMF U matrix as

heatmaps, here we visualize the V matrix as described above. The colored frames in Figures

5.2 and 5.3 correspond to the similarly colored heatmap derived from U .

We created visualization with ResNet-50 as well, shown in Figures 5.4 and 5.5. These differ

substantially from those of VGG-19, and are dominated by color and texture. With the excep-

tion of some background components resembling trees, these visualization do not suggest any

coherent structures or objects.

As can be seen, the quality of the visualization differs significantly between examples. While in

Figure 5.2 one can readily discern elephant-like parts reflected in the visualization, Figure 5.5

89

Chapter 5. Semantic retrieval with matrix V

K
=1

K
=2

K
=3

K
=4

Figure 5.2 – Gradient ascent visualization of the NMF basis vectors derived from VGG-16
on the Elephants subset from iCoseg. These visualizations of the rows of V correspond to
the heatmaps derived from the columns of U shown in Figure 4.6 using the same color en-
coding, i.e., the blue framed visualizations above correspond to the blue heatmaps in each
corresponding row.

90

5.2. Gradient ascent visualization

K
=1

K
=2

K
=3

K
=4

Figure 5.3 – Gradient ascent visualization of the NMF basis vectors derived from VGG-16
on the Gymnastics1 subset from iCoseg. These visualizations of the rows of V correspond
to the heatmaps derived from the columns of U shown in Figure 4.7 using the same color
encoding, i.e., the blue framed visualizations above correspond to the blue heatmaps in each
corresponding row.

91

Chapter 5. Semantic retrieval with matrix V

K
=1

K
=2

K
=3

K
=4

K
=5

Figure 5.4 – Gradient ascent visualization of NMF basis derived from ResNet-50 on Elephants
subset from iCoseg. These visualizations of the rows of V correspond to the heatmap visual-
izations of the columns of U shown in Figure 4.8 using the same color encoding, i.e., the blue
framed visualizations above correspond to the blue heatmaps in each corresponding row.

92

5.2. Gradient ascent visualization
K
=1

K
=2

K
=3

K
=4

K
=5

Figure 5.5 – Gradient ascent visualization of NMF basis derived from ResNet-50 on Gymnas-
tics1 subset from iCoseg. These visualizations of the rows of V correspond to the heatmap
visualizations of the columns of U shown in Figure 4.9 using the same color encoding, i.e., the
blue framed visualizations above correspond to the blue heatmaps in each corresponding row.

93

Chapter 5. Semantic retrieval with matrix V

is quite more abstract and not easy to interpret.

5.3 Experiments on Oxford and Paris buildings

We evaluate NMF for image retrieval using two standard datasets, Oxford Buildings [72] and

Paris Buildings [73]. These datasets consist of 5,063 and 6,392 images, respectively, and each

includes 55 query images with a bounding box annotation and a list of corresponding relevant

matches. We process images by scaling their smaller side to 512 pixels, and perform pixel-wise

normalization to achieve zero mean and unit variance. In Figures 5.6 and 5.7 we show two

example subsets from Paris Buildings overlaid with NMF heatmaps.

Given the activation tensor for a single image A ∈R+(N ·H ·W)×C , our goal is to obtain for

each image a C -dimensional vector. We call this vector the global NMF descriptor of the image,

and denote it as v .

After we obtain v , we score the match between query and target descriptors using cosine

similarity. The ranking of the returned images is evaluated using mean average precision

(mAP), defined as follows. First we define the precision at ranking position n:

P@n = r

n
(5.2)

where r is the number of relevant images in the top n results.

Now let 1n be an indicator function which is 1 one the nth result is relevant. Furthermore let

our image collection consist of N images, of which R are relevant and for the current query.

We define:

AP =
∑M

n 1nP@n

R
(5.3)

the mean average precision is computed by averaging the average precision over all queries in

the query set.

5.3.1 Instance-based retrieval

We now describe how we derive v from A. An overview of all steps is shown in Figure 5.8.

Before applying NMF, we adopt a method proposed by [50], known as CroW. This method

weighs each channel 1 ≤ c ≤ C with a weight Wc . This weight decreases inversely with the

94

5.3. Experiments on Oxford and Paris buildings
K
=2

K
=3

K
=4

Figure 5.6 – Three queries of the Notre-Dame subset of Paris Buildings, shown here with NMF
heatmaps (matrix U) derived using VGG-19.

95

Chapter 5. Semantic retrieval with matrix V

K
=2

K
=3

K
=4

Figure 5.7 – Three queries of the Louvre subset of Paris Buildings, shown here with NMF
heatmaps (matrix U) derived using ResNet-50.

96

5.3. Experiments on Oxford and Paris buildings

ratio of positive channel activations, Qc :

Qc =
∑

w,h 1
[
Ac,w,h > 0

]
H ·W (5.4)

Wc = log

(∑C
c ′ Qc ′

Qc

)

where again 1[·] is an indicator function that equals 1 when its condition evaluates to true.

As a result, in A′ =A·W, the contribution of channels that are relatively less active is increased.

That reasoning behind this procedure is analogous to that of tf-idf (term frequency–inverse

document frequency) often used in the context of document retrieval. This weighing amplifies

rare features, since these are more likely to be discriminative than features that are very

common.

Next, we obtain the NMF matrices U and V . At this point of the pipeline we have the option to

incorporate spatial information from U , in addition to the semantic information in V . This

will be discussed later on, but for now we proceed considering only the matrix V .

Viewing the rows of V as local descriptors, we follow a pipeline that has become standard

practice in image retrieval pipelines. Namely, we normalize each local descriptor, perform

PCA-whitening, followed by row-wise summation and a final l 2-normalization. The resulting

vector is v ∈RC , the global NMF image descriptor.

At search time, a query image is given along with a bounding box indicating the region of

interest. In this case, we follow a similar procedure but include an additional step to filter

out rows of V that represent irrelevant concepts. In particular, since each row of V has a

corresponding heatmap, we use the provided bounding box to select a subset V f ∈RK ′×c+ of

K ′ factors, whose heatmaps allocate more than 75% of their activation within the box. This

is reminiscent of our “one-shot” co-segmentation procedure in Section 4.3.1. Note that this

use of the query bounding box is different from how other approaches to image retrieval use

it, where the box is typically used to crop the query image. The matrix V f replaces V in the

remainder of the NMF descriptor extraction pipeline as described thus far.

The results of this pipeline are given in Table 5.1 as NMF V , since we only used V to derive

the NMF descriptor. We compare our results against several baseline and state-of-the-art

methods.

Namely, R-MAC [91] (Regional Maximum Activation of Convolutions) proceeds by sliding

several max-pooling kernels over the A, each with a different scale and aspect ratio. At every

spatial position max-pooling generates a C -dimensional vector, which is stored. The result is a

matrix with a number of rows which depends on the size of A and C columns. The rows are

97

Chapter 5. Semantic retrieval with matrix V

then identically as V in the pipeline we have described for NMF.

More recently, [47] proposed image descriptors derived using class-activation maps (CAM)

[103] (see Section 2.2.4). Similarly to NMF heatmaps, CAM maps define a soft spatial weighting

over the feature map, dividing it into several semantically meaningful regions. There are,

however, two downsides to CAM in this context. First, CAM requires a specialized CNN

architecture, and is not compatible with just any off-the-shelf pre-trained CNN. Second, CAM

depends on last layer outputs, and thereby on the set of output labels used for CNN training.

NMF is on the other hand is compatible with any ReLU CNN, and is not bound to any label set.

Returning to Table 5.1, while performance with VGG-16 is improved compared to competing

methods, and overall performance with NMF is superior to retrieval with CAM, on ResNet-50

our method does not do as well as R-MAC. The same is true also when we perform query

expansion, i.e., we aggregate the descriptors of the top-5 matching results together with the

original query descriptor, re-normalize, and repeat the search.

To understand where our method fails, consider Figure 5.9 where we show a query from Oxford

Buildings along with its top five matches, two of which are in fact irrelevant. The query image is

marked by an orange frame, and green and red frames indicate relevant and irrelevant matches

respectively. To better understand how NMF sees these images, we separately factorized each

image with K = 4, as also shown in 5.9, where we aligned similar factors in the same row for

easier inspection. When examining the false positives, it is difficult to find a clear fault in the

heatmap correspondence. Components such as window and other architectural components

are indeed shared between the query image and the false positives. The difference lies not in

their presence or absence, but in their spatial arrangement.

To account for this, we return to the matrix U and incorporate it into the NMF descriptor in

the following way, First, we reshape U into a tensor U ∈RK×H×W , and compute:

UG = matrix(U∗G) (5.5)

U ′
·, j =

[UG]·, j

‖[UG]·, j‖2
(5.6)

V ′ =U ′>U ′V (5.7)

where G is a 2D Gaussian filter, convolved against each of K heatmaps in U. The matrix U ′>U ′

is a K ×K matrix capturing spatial interactions between concepts. Multiplication against this

matrix informs the resulting V ′ of which concepts are adjacent to which. We empirically set

the Gaussian filter G to have a kernel size of 13×13 pixels and a variance of 2.

With the rest of the pipeline unaltered, we repeat the experiment and report the results in 5.1

as NMF V +U . As can be seen, with this additional information, NMF descriptors significantly

98

5.3. Experiments on Oxford and Paris buildings

CN
N

!×
#×

$×
%

re
sh

ap
e

to
(!

'$
'%

)×
#

Ch
an

ne
l w

ei
gh

ts
 W

*

NM
F

+

+

Q
ue

ry
fil

te
rin

g
NM

F-
de

sc
rip

to
r ,

PC
A

w
hi

te
ni

ng - .-
no

rm
al

iza
tio

n

Q
ue

ry

bo
un

di
ng

 b
ox

(!
'$

'%
)×
+

re
sh

ap
e

to
!×

+×
$×

%

2D
 G

au
ss

ia
n

bl
ur

/′
1 /
′2

∑

F
ig

u
re

5.
8

–
N

M
F

d
es

cr
ip

to
rs

ar
e

o
b

ta
in

ed
b

y
ag

gr
eg

at
in

g
N

M
F

b
as

is
ve

ct
o

rs
o

fd
ee

p
C

N
N

fe
at

u
re

ac
ti

va
ti

o
n

s.
Sh

ow
n

h
er

e
in

so
li

d
lin

es
is

th
e

p
ip

el
in

e
u

se
d

to
ex

tr
ac

ta
d

es
cr

ip
to

r
fo

r
ev

er
y

im
ag

e
in

th
e

la
rg

e
co

lle
ct

io
n

b
ei

n
g

in
d

ex
ed

.A
n

ac
ti

va
ti

on
te

n
so

r
re

p
re

se
n

ti
n

g
N

im
ag

es
is

re
sh

ap
ed

in
to

a
m

at
ri

x
w

h
o

se
co

lu
m

n
re

p
re

se
n

t
th

e
C

ch
an

n
el

s
at

th
at

la
ye

r
(e

.g
.5

12
fo

r
V

G
G

-1
6

fi
n

al
co

n
vo

lu
ti

o
n

al
la

ye
r)

.U
si

n
g

N
M

F,
th

e
m

at
ri

x
is

d
ec

o
m

p
o

se
d

in
to

a
p

re
d

efi
n

ed
sm

al
ln

u
m

b
er

o
ff

ac
to

rs
,K

.W
h

en
re

sh
ap

ed
b

ac
k

in
to

fe
at

u
re

m
ap

s,
th

e
K

co
lu

m
n

s
of

U
fo

rm
h

ea
tm

ap
s,

w
h

ic
h

h
ig

h
lig

h
ts

em
an

ti
c

co
n

ce
p

ts
in

th
e

sc
en

e,
w

h
ile

ro
w

s
in

V
ar

e
d

es
cr

ip
to

rs
of

th
os

e
co

n
ce

p
ts

in
C

N
N

fe
at

u
re

sp
ac

e.
T

h
e

m
at

ri
ce

s
U

o
fV

ar
e

co
m

b
in

ed
to

fo
rm

th
e

N
M

F
q

u
er

y
d

es
cr

ip
to

r,
as

d
is

cu
ss

ed
in

se
ct

io
n

5.
3.

1.
A

ts
ea

rc
h

ti
m

e,
w

e
ad

d
it

io
n

al
ly

em
p

lo
y

th
e

p
ip

el
in

e
sh

ow
n

u
si

n
g

a
d

as
h

ed
lin

e.
B

ef
o

re
ag

gr
eg

at
io

n
,a

b
o

u
n

d
in

g
b

ox
is

u
se

d
to

fi
lt

er
o

u
tr

ow
s

o
f

V
w

h
os

e
co

rr
es

p
on

d
in

g
h

ea
tm

ap
s

d
o

n
ot

fa
ll

w
it

h
in

th
e

b
ou

n
d

in
g

b
ox

.F
ilt

er
in

g
th

u
s

re
ta

in
s

on
ly

fa
ct

or
s

th
at

ar
e

lik
el

y
to

b
e

re
le

va
n

t
to

th
e

q
u

er
y.

99

Chapter 5. Semantic retrieval with matrix V

Figure 5.9 – An example of incorrect ranking with using NMF V for instance-based retrieval.
The query image is on the left surrounded by a yellow frame. To its right, a green frame signifies
a relevant image and a ref frame signifies an irrelevant image. While all top scoring matches
with NMF V do in fact share common elements with the query image, they do not depict the
same instance.

outperform all other methods.

5.3.2 Localization

Given the set of top matching images with respect to some query, it is straight forward to

localize the relevant image regions by applying NMF jointly, as in Chapter 4. This generates

corresponding heatmaps extending both the query and its matches. As before, we keep only

those heatmaps that are sufficiently contained within the query bounding box.

Two examples are shown in Figure 5.10, where we re-scaled images to be 224 pixels on the

smaller side, followed by NMF and a bounding box prediction. The predicted bounding

box (shown in red) is obtained in three steps. First, the filtering step discards NMF maps

100

5.3. Experiments on Oxford and Paris buildings

Oxford5k Paris6k
VGG ResNet VGG ResNet

MAC [4] 55.7 57.2 68 69.9
R-MAC [91] 67.8 71 77.4 81.4
CroW [50] 65.4 63.3 74.3 71.7
CAM* [47] 71.2 69.9 80.5 80.4
NMF V 71.9 67.7 81.3 77.5
NMF V +U 73.4 74.8 83 83.2

(a)

Oxford5k Paris6k
VGG ResNet VGG ResNet

MAC [4] 60.2 66.5 77.6 81.2
R-MAC [91] 72.1 77.5 82.4 85.5
CroW [50] 68.5 68 77.1 76.4
CAM* [47] 73 - 83.6 80.4
NMF V 73.8 69.2 82.3 81.4
NMF V +U 74.2 78.8 83.8 86.2

(b)

Table 5.1 – Instance-based retrieval mAP results for various state-of-the-art methods and
our NMF approach. In (a) we show single-pass retrieval results and in (b) after top-5 query
expansion *To enable CAM, the authors used a fully-convolutional variant of VGG-16 was used
instead of the standard VGG-16 architecture.

which allocate less than 75% of their activation within the query bounding box. Next, the

remaining heatmaps are averaged to form a single map, which is binarized by setting the top

30% activations to one, and the rest to zero. Finally, a bounding box is placed around the

largest connected component.

In [91] localization is performed using R-MAC, i.e. using region max-pooling. First, the query

image is cropped according to its bounding box, and its MAC descriptor is obtained. Then

the query descriptor is scored with a similarly extracted local descriptor computed for every

window in each of the target images. A more efficient approximate method, AML, is also

proposed. We compare their reported localization results on Oxford buildings and Paris

Buildings to ours in Table 5.2.

Our evaluation follows the same protocol of [91], cross matching the five query images that are

given per building. A single image is used as a query (orange box), and the resulting predictions

(red boxes) are evaluated on the other four (green boxes). This is repeated using each of the

five images as a query. Bounding box overlap is measured with intersection over union (IoU).

NMF achieves better localization results, and again we find ResNet-50 outperforming VGG-16.

101

Chapter 5. Semantic retrieval with matrix V

(a) VGG-16 localization (b) ResNet-50 localization

Figure 5.10 – NMF heatmaps localize objects within retrieved images, as shown in the two
examples above. In each example, we apply NMF to the image set and obtain K factors. The
ground truth bounding boxes for the region of interest are shown in orange and green. In each
row, using only the orange bounding box, we filter out factors whose heatmap is not localized
within the box. The remaining K ′ heatmaps are averaged to form a single heatmap per image,
shown above. The bounding boxes shown in red are predicted by binarizing the averaged
heatmap, and surrounding the largest connected component. When compared to ground
truth boxes not used for filtering, i.e., only those shown in green, our predictions overlap
substantially. See Table 5.2 for quantitative results. Best viewed on a color display.

102

5.4. Semantic image retrieval on PASCAL VOC

Method Oxford5k Paris6k
AML [91] 51.3 51.4
Exhaustive R-MAC [91] 52.6 52.9
NMF VGG-16 49.3 67.6
NMF ResNet-50 53.2 68.7

Table 5.2 – Bounding box IoU for NMF on query images. As shown in Figure 5.10, we can apply
NMF to a query and its matches to retrieve semantically corresponding regions across the
image set. By using the bounding box of the query image, we select only the regions relevant to
the query. We surround the relevant factors in the remainder of the image set with a predicted
bounding box.

5.4 Semantic image retrieval on PASCAL VOC

In the previous section we found that an image descriptor derived solely based on V was sub-

optimal for instance-based image retrieval. We explained this with V indicating the presence

or absence of certain semantic concepts, it lacked information about the spatial relationship

between them, which is needed to discriminate between instances of the same category. If

true, however, then this makes a descriptor extracted based solely on V highly suitable the

related task of semantic image retrieval, where the objective is to retrieve all instances of the

class.

In this section we verify this hypothesis by evaluating NMF, and other methods introduced in

the previous section, on retrieval with PASCAL VOC 2010 [32]. Like other version of PASCAL

VOC, the 2010 version consists of 20 classes, mostly of animals, vehicles and furniture. We

filtered out images whose main object was labeled difficult or truncated, which left us with a

total of 5,455 images, ranging from 86 (dining table) to 980 (person).

We then manually selected five query images from each category for a total of 100 queries. The

set of relevant images consisted of all images containing the main object in the query. To stay

consistent with the retrieval methodology above, we needed to supply a bounding box sur-

rounding the main query object. Since images in PASCAL VOC can contain multiple instances

of the same category, we selected a single bounding box by first merging any overlapping

bounding boxes and then choosing the single largest box.

We evaluated that quality of the retrieved ranking with mean average precision at 30 (mAP@30):

AP@30 =
∑30

n 1nP@n

30
(5.8)

This choice avoids issues due to class imbalance present in this dataset, and also reflects the

fact that users, in general, do not care about the long tail of search results, but rather focus on

103

Chapter 5. Semantic retrieval with matrix V

N
etw

o
rk

M
eth

o
d

aero
b

icy
b

ird
b

o
a

b
o

t
b

u
s

car
cat

ch
a

cow
d

tab
d

o
g

h
o

rs
m

b
ik

p
ers

p
ln

t
sh

e
so

fa
trai

tv
M

ean

R
esN

et-50

M
A

C
[4]

13.5
22.4

10.3
6.7

5.6
9.6

14.8
7.7

5.6
4.6

3.9
18.1

9.2
9.5

24.8
9.0

10.1
3.5

6.9
13.9

10.5
C

ro
W

[50]
32.5

37.3
17.6

12.9
11.2

23.6
36.8

16.3
11.3

7.6
10.5

27.6
19.2

25.0
43.3

16.9
8.6

10.0
7.7

21.6
19.9

R
-M

A
C

[91]
38.1

48.4
30.8

14.8
15.2

27.0
21.6

26.9
13.2

6.5
7.2

33.2
28.1

24.7
38.4

23.3
21.4

10.3
11.6

22.9
23.2

N
M

F
V
+

U
71.3

56.4
46.4

43.5
37.8

57.6
72.7

40.0
25.3

13.3
20.0

43.9
39.9

33.3
60.0

30.5
31.5

32.7
34.2

41.6
41.6

N
M

F
V

91.9
83.4

54.2
53.1

53.2
72.8

85.4
58.0

31.6
11.9

26.0
53.7

47.2
60.3

89.1
34.7

38.2
42.3

35.8
43.5

53.3

V
G

G
-16

M
A

C
[4]

43.4
42.9

42.5
24.0

30.8
49.5

46.9
38.9

14.4
11.1

5.9
57.6

22.7
22.9

48.1
23.8

31.0
11.3

24.4
29.3

31.1
C

ro
W

[50]
76.5

69.0
58.8

38.6
35.6

64.9
64.0

52.6
29.1

22.3
17.1

64.8
54.3

56.4
71.1

33.6
49.1

41.2
37.8

54.9
49.6

R
-M

A
C

[91]
83.5

82.5
70.3

49.3
49.2

69.4
71.9

57.0
28.1

19.0
14.6

59.9
53.6

54.7
74.7

55.2
62.9

39.5
53.7

64.6
55.7

N
M

F
V
+

U
96.4

67.6
64.3

62.9
64.6

80.7
87.9

84.1
29.3

25.2
28.6

74.4
71.8

67.4
76.7

52.8
70.7

43.8
42.8

81.5
63.7

N
M

F
V

100
97.5

83.5
82.6

72.5
92.5

95.3
90.1

44.6
31.0

29.4
86.0

82.6
94.2

81.2
71.9

86.8
51.1

56.0
95.8

76.2

Tab
le

5.3
–

Sem
an

tic
im

age-retrievalo
n

PA
SC

A
L

V
O

C
2010

u
sin

g
R

esN
et-50

an
d

V
G

G
-16.U

n
like

in
stan

ce-b
ased

im
age

retrieval,th
e

“clean”
sem

an
tics

o
fth

e
row

s
o

fV
yield

b
etter

resu
lts

th
an

d
escrip

to
r

w
h

ich
p

artially
en

co
d

e
m

ixin
g

b
etw

een
d

ifferen
t

sem
an

tic
con

cep
ts.Fu

rth
erm

ore,u
n

like
localization

-b
ased

tasks,h
ere

V
G

G
-16

sign
ifi

can
tly

ou
tp

erform
s

R
esN

et-50.T
h

is
resu

lts
w

ou
ld

su
ggest

th
atR

esN
et-50

activation
stillh

old
a

fair
d

egree
ofsu

rface
featu

res,w
h

ich
w

h
ile

con
d

u
cive

for
p

recise
localization

,is
less

in
varian

tto
n

u
isan

ce
variab

les.

104

5.5. Conclusion

the top few. The descriptor extraction pipeline is identical to that of the previous section, for

all methods.

We report results in Table 5.3. As expected, the descriptors based on NMF V outperform

both R-MAC and NMF V +U . Also notable is the excellent performance of VGG-16 compared

to ResNet-50. These results, along with other empirical results presented throughout this

thesis, suggest that ResNet-50 features hold a larger degree of low-level information, e.g.,

about texture and color. While this is conducive for precise localization, these features are less

invariant to nuisance variables, and evidently perform worse on the task of semantic image

retrieval.

5.5 Conclusion

Just as the columns of U represent semantic concepts by virtue of their spatial distribution,

the rows of V represent those same concepts in CNN feature space.

In this chapter we leveraged this property to derive fixed-size global image descriptors that at

once characterize the potentially many concepts present within an image, while remaining

discriminative with respect to them.

We again evoked the over-simplified, yet useful, view of the NMF factors representing “where”

and “what”, which led to two flavors of image descriptors, which are useful in different in

contexts.

Relevant to our discussion of future work in the next section, we briefly mention here that

image retrieval can be further improved with end-to-end CNN training [39; 75]. We limited

ourselves to the setting of using a pre-trained network, since our goal was to study the networks

and their NMF decomposition. Nonetheless, the NMF descriptors we derived outperformed

all other methods in this category.

105

6 Conclusion

6.1 Thesis summary

We started this thesis with the goal of understanding what distinguishes neural networks

that learn from those that simply memorize their training set. In Chapter 2 we formulated

memorization as the information I(i,Z) that an intermediate NN representation Z holds about

a specific input, index by i. We showed that this quantity is upper bounded by the non-negative

rank of a matrix, A, in which the i th row contains the intermediate NN representation, i.e., A

is the activation matrix.

Since the non-negative rank is NP-hard to compute, we derived a related quantity, computable

in reasonable time, that allowed us to compare the amount of memorization across different

networks, as well as predict which one will generalize better to new data. Specifically, using

approximate NMF, A ≈UV , with different rank constraints K , we showed that the area under

the K vs. classification accuracy curve serves as a good proxy to the non-negative rank.

Using NMF as well as other matrix factorization methods, we found that NNs that memorize

less are more robust to compression applied to their activations, indicating the underlying

data manifold is intrinsically lower-dimensional, compared to NNs that memorize more. Con-

versely, we showed that networks that memorize less are more vulnerable to their activations

being ablated in the directions found by by NMF. During NN training, we demonstrated that

NMF can guess when to early stop quite precisely, sparing the use of a validation set.

In Chapter 4 we examined the matrix U generated by NMF when applied to deep CNN acti-

vations, and saw that it provided a rare and interpretable view into the emergent semantics

encoded in deep CNN layers. The fact that we sought a means to evaluate memorization and

generalization and found that it provides a useful tool for network interpretability outlines

that generalization and interpretability are in fact related, as we alluded to in the introduction.

107

Chapter 6. Conclusion

Consider the following quote, famously (but falsely) attributed to Albert Einstein:

“If you can’t explain it to a six year old, you don’t understand it yourself.”

– Not Albert Einstein

If a network generalizes well, i.e., understands the data well, then it successfully filters away

much irrelevant information, and the remaining signal should be low-dimensional enough for

humans to make sense of. NMF successfully extracts that signal from high-dimensional NN

activations.

The heatmaps derived from U suggested CNNs form a cluster hierarchy in deep feature space,

with clusters representing objects that decompose into parts and further into sub-parts. In

most cases, these hierarchies reflected human intuition, e.g., person→limbs→arms, but not

always, e.g., car→wheels→bottom of wheels. We quantified the semantics contained in the

heatmaps by performing a series co-localization and co-segmentation experiments applied

to objects and object parts, and found the heatmaps compare favorably in their localization

quality even when compared to more elaborate methods.

In Chapter 5 we exploited the NMF matrices to derive a global image descriptor used for

content-based image search, i.e., where both the query and the results to be returned are

images. Using the matrix V we performed semantic image search, successfully retrieving

images on other instances belonging to the same semantic category. By combining information

from both V and U , we conducted instance-based image search, where the retrieved images

depicted the same object instance. For the latter, we once more observed state-of-the-art

retrieval performance for methods using a pre-trained CNN.

6.2 Future work

Having shown that the non-negative rank of activation matrices upper bounds the amount of

memorization, a natural step is to minimize it as a form of regularization. There are, however,

a number of obstacles to overcome.

First, as the non-negative rank is NP-hard to compute, so is its gradient. Minimizing it directly

is therefore not possible. The proxy measure we derive using approximate NMF over a grid of

different rank values K is not directly usable for this end. Although the computational pipeline

that is defined by NMF with multiplicative updates is differentiable, its gradient properties are

poor. Due to repeated matrix multiplication operations, the gradient tends to vanish.

One possibility is to instead incorporate NMF perturbations, i.e., A + [UV − A]noise, as a non-

differentiable noise term. This form of regularization would be to NMF what the random

108

6.2. Future work

ablations method (Section 2.3.4) is to dropout [89]. However, since the noise is not indepen-

dent of the data it is not clear what effect this would have.

Additionally, computing the approximate measure does entail certain overhead, which if

incurred at every training iteration can substantially slow down training. A strategy that

selectively applies NMF regularization, at certain iterations with certain values of K , could

alleviate this problem but would involve more hyper-parameters and tuning.

The decomposition into the matrices U and V has potentially many uses that rely on image

co-segmentation. One example is style transfer [35], where the NMF decomposition could

be used to match different styles to different parts in a semantically-aware way. Applications

could be based on applying NMF to consecutive frames of a video, for instance for object

tracking.

Finally, the emergence of a distinct part through NMF does not necessarily mean its presence

promotes correct classification. Similar to the study of adversarial examples [90], it is interest-

ing to see how ablating or perturbing specific column-row pairs from U and V , respectively,

promotes, hurts or has no effect on the correctness of network predictions.

109

Bibliography

[1] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational

information bottleneck. In International Conference on Learning Representations (ICLR),

2018.

[2] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization

bounds for deep nets via a compression approach. In International Conference on

Machine Learning (ICML), 2018.

[3] Devansh Arpit, Stanisław Jastrzkbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,

Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.

A closer look at memorization in deep networks. International Conference on Machine

Learning (ICML), 2017.

[4] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan

Carlsson. From generic to specific deep representations for visual recognition. In

Computer Vision and Pattern Recognition (CVPR) workshop, 2015.

[5] Artem Babenko and Victor Lempitsky. Aggregating local deep features for image retrieval.

In The IEEEConference on Computer Vision (ICCV), 2015.

[6] Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, and Suvrit Sra. Clustering on the

unit hypersphere using von mises-fisher distributions. Journal of Machine Learning

Research (JMLR), 6(Sep):1345–1382, 2005.

[7] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk

bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482,

2002.

[8] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin

bounds for neural networks. In Advances in Neural Information Processing Systems

(NeurIPS), pages 6240–6249, 2017.

111

Bibliography

[9] Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo Luo, and Tsuhan Chen. icoseg: Interac-

tive co-segmentation with intelligent scribble guidance. In Computer Vision and Pattern

Recognition (CVPR), pages 3169–3176. IEEE, 2010.

[10] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network

dissection: Quantifying interpretability of deep visual representations. In Computer

Vision and Pattern Recognition (CVPR), pages 3319–3327. IEEE, 2017.

[11] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Ben-

gio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In

International Conference on Machine Learning (ICML), 2018.

[12] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A re-

view and new perspectives. Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 35(8):1798–1828, 2013.

[13] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bernhard

Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep neural network trained

with end-to-end learning steers a car. arXiv preprint arXiv:1704.07911, 2017.

[14] Gábor Braun and Sebastian Pokutta. Common information and unique disjointness.

Algorithmica, 76(3):597–629, 2016.

[15] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns

over-parameterized networks that provably generalize on linearly separable data. In

International Conference on Learning Representations (ICLR), 2018.

[16] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.

Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day read-

mission. In Conference on Knowledge Discovery and Data Mining (SIGKDD), pages

1721–1730. ACM, 2015.

[17] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi,

Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd:

Biasing gradient descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

[18] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan

Yuille. Detect what you can: Detecting and representing objects using holistic models

and body parts. In Computer Vision and Pattern Recognition (CVPR), pages 1971–1978,

2014.

[19] M. Cho, S. Kwak, C. Schmid, and J. Ponce. Unsupervised object discovery and localiza-

tion in the wild: Part-based matching with bottom-up region proposals. In Computer

Vision and Pattern Recognition (CVPR), 2015.

112

Bibliography

[20] Andrzej Cichocki and Rafal Zdunek. Multilayer nonnegative matrix factorisation. Elec-

tronics Letters, 42(16):1, 2006.

[21] Edo Collins and Sabine Süsstrunk. Deep feature factorization for content-based image

retrieval and localization. In IEEE International Conference on Image Processing (ICIP),

2019.

[22] Edo Collins, Radhakrishna Achanta, and Sabine Susstrunk. Deep feature factorization

for concept discovery. In The European Conference on Computer Vision (ECCV), 2018.

[23] Edo Collins, Siavash Arjomand Bigdeli, and Sabine Süsstrunk. Detecting Memorization

in ReLU Networks. arXiv preprint arXiv:1810.03372, 2018.

[24] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,

2012.

[25] Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. Weakly supervised localization

and learning with generic knowledge. International Journal of Computer Vision (IJCV),

100(3):275–293, 2012.

[26] Inderjit S Dhillon, James Fan, and Yuqiang Guan. Efficient clustering of very large

document collections. In Data mining for scientific and engineering applications, pages

357–381. Springer, 2001.

[27] Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In

International Conference on Machine Learning (ICML), page 29. ACM, 2004.

[28] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can

generalize for deep nets. In 34thConference on Machine Learning (ICML), 2017.

[29] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):

2121–2159, 2011.

[30] Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization.

arXiv preprint arXiv:1511.06443, 2015.

[31] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-

layer features of a deep network. University of Montreal, 1341(3):1, 2009.

[32] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-

CAL Visual Object Classes Challenge 2010 (VOC2010) Results. http://www.pascal-

network.org/challenges/VOC/voc2010/workshop/index.html, 2010.

113

Bibliography

[33] Samuel Fiorini, Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. Combina-

torial bounds on nonnegative rank and extended formulations. Discrete Mathematics,

313(1):67 – 83, 2013.

[34] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, 2001.

[35] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convo-

lutional neural networks. In Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2414–2423, 2016.

[36] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In International Conference on Artificial Intelligence and Statistics

(AISTATS), pages 249–256, 2010.

[37] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.

In Conference on Artificial Intelligence and statistics, pages 315–323, 2011.

[38] Albert Gordo and Diane Larlus. Beyond instance-level image retrieval: Leveraging

captions to learn a global visual representation for semantic retrieval. In Conference on

Computer Vision and Pattern Recognition (CVPR), pages 6589–6598, 2017.

[39] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image retrieval:

Learning global representations for image search. In European Conference on Computer

Vision (ECCV). Springer, 2016.

[40] Emad M Grais and Hakan Erdogan. Single channel speech music separation using

nonnegative matrix factorization and spectral masks. In Digital Signal Processing (DSP),

pages 1–6. IEEE, 2011.

[41] David Guillamet and Jordi Vitria. Non-negative matrix factorization for face recognition.

In Topics in Artificial Intelligence, pages 336–344. Springer, 2002.

[42] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous

detection and segmentation. European Conference on Computer Vision (ECCV), 2014.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In International

Conference on computer vision, pages 1026–1034, 2015.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Computer Vision and Pattern Recognition (CVPR), pages 770–778,

2016.

114

Bibliography

[45] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42,

1997.

[46] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning (ICML), pages 448–456, 2015.

[47] Jimenez, Albert and Alvarez, Jose M., and Giro-i-Nieto, Xavier. Class-Weighted Convolu-

tional Features for Visual Instance Search. In British Machine Vision Conference (BMVC),

2017.

[48] Ian T Jolliffe. Principal component analysis and factor analysis. In Principal component

analysis, pages 115–128. Springer, 1986.

[49] Armand Joulin, Kevin Tang, and Li Fei-Fei. Efficient image and video co-localization

with frank-wolfe algorithm. In European Conference on Computer Vision (ECCV), pages

253–268. Springer, 2014.

[50] Yannis Kalantidis, Clayton Mellina, and Simon Osindero. Cross-dimensional weighting

for aggregated deep convolutional features. In The European Conference on Computer

Vision (ECCV). Springer, 2016.

[51] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and

Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and

sharp minima. Conference on Learning Representations (ICLR), 2015.

[52] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

Conference on Learning Representations (ICLR), 2015.

[53] Hartmut Klauck. Rectangle size bounds and threshold covers in communication com-

plexity. In Conference on Computational Complexity (CCC), pages 118–134. IEEE, 2003.

[54] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Master’s thesis, Department of Computer Science, University of Toronto, 2009.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems (NeurIPS), pages 1097–1105, 2012.

[56] Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Klaus-Robert Müller, and

Wojciech Samek. The lrp toolbox for artificial neural networks. Journal of Machine

Learning Research, 2016.

115

Bibliography

[57] Hieu Le, Chen-Ping Yu, Gregory Zelinsky, and Dimitris Samaras. Co-localization with

category-consistent features and geodesic distance propagation. In Computer Vision

and Pattern Recognition (CVPR), pages 1103–1112, 2017.

[58] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. IEEE, 86(11):2278–2324, November 1998.

[59] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788, 1999.

[60] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization.

In Advances in neural information processing systems (NeurIPS), pages 556–562, 2001.

[61] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of

neural nets. arXiv preprint arXiv:1712.09913, 2017.

[62] Yao Li, Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. Image co-localization

by mimicking a good detector’s confidence score distribution. In European Conference

on Computer Vision (ECCV), pages 19–34. Springer, 2016.

[63] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations

by inverting them. In IEEE Conference on computer vision and pattern recognition, pages

5188–5196, 2015.

[64] Dmytro Mishkin and Jiri Matas. All you need is a good init. International Conference on

Learning Representations (ICLR), 2016.

[65] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting

and understanding deep neural networks. Digital Signal Processing, 73, 2018.

[66] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the

importance of single directions for generalization. In International Conference on

Learning Representations (ICLR), 2018.

[67] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. In NeurIPS

workshop on deep learning and unsupervised feature learning, number 2, page 5, 2011.

[68] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring

generalization in deep learning. In Advances in Neural Information Processing Systems

(NeurIPS), pages 5947–5956, 2017.

[69] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian ap-

proach to spectrally-normalized margin bounds for neural networks. In International

Conference on Learning Representations (ICLR), 2018.

116

Bibliography

[70] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,

2017. doi: 10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

[71] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A

strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

[72] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large

vocabularies and fast spatial matching. In Computer Vision and Pattern Recognition

(CVPR), 2007.

[73] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving

particular object retrieval in large scale image databases. In Computer Vision and Pattern

Recognition (CVPR), 2008.

[74] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural

networks, 12(1):145–151, 1999.

[75] Filip Radenović, Giorgos Tolias, and Ondřej Chum. CNN image retrieval learns from BoW:

Unsupervised fine-tuning with hard examples. In European Conference on Computer

Vision (ECCV). Springer, 2016.

[76] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?:

Explaining the predictions of any classifier. Conference on Knowledge Discovery and

Data Mining (SIGKDD), pages 1135–1144, 2016.

[77] Michael Rubinstein, Armand Joulin, Johannes Kopf, and Ce Liu. Unsupervised joint

object discovery and segmentation in internet images. Computer Vision and Pattern

Recognition (CVPR), June 2013.

[78] Jose C Rubio, Joan Serrat, Antonio López, and Nikos Paragios. Unsupervised co-

segmentation through region matching. In Computer Vision and Pattern Recognition

(CVPR), pages 749–756. IEEE, 2012.

[79] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations

by back-propagating errors. nature, 323(6088):533, 1986.

[80] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal

of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[81] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.

In Advances in Neural Information Processing Systems (NeurIPS), pages 3856–3866, 2017.

117

Bibliography

[82] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound research.

In Conference on Multimedia, pages 1041–1044, Nov. 2014.

[83] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,

Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via

gradient-based localization. See https://arxiv. org/abs/1610.02391 v3, 7(8), 2016.

[84] Ohad Shamir, Sivan Sabato, and Naftali Tishby. Learning and generalization with the

information bottleneck. Theoretical Computer Science, 411(29-30):2696–2711, 2010.

[85] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN

features off-the-shelf: an astounding baseline for recognition. In Computer Vision and

Pattern Recognition (CVPR) workshop, pages 806–813, 2014.

[86] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks

via information. arXiv preprint arXiv:1703.00810, 2017.

[87] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[88] Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on

separable data. In International Conference on Learning Representations (ICLR), 2018.

[89] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research (JMLR), 15(1):1929–1958, 2014.

[90] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International

Conference on Learning Representations (ICLR), 2014. URL http://arxiv.org/abs/1312.

6199.

[91] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular object retrieval with integral

max-pooling of CNN activations. In International Conference on Learning Representa-

tions (ICLR), 2016.

[92] Vladimir Vapnik. Statistical learning theory. 1998. Wiley, New York, 1998.

[93] Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal

on Optimization, 20(3):1364–1377, 2009.

[94] Sara Vicente, Carsten Rother, and Vladimir Kolmogorov. Object cosegmentation. In

Computer Vision and Pattern Recognition (CVPR), pages 2217–2224. IEEE, 2011.

118

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

Bibliography

[95] Thanh T Vu, Benjamin Bigot, and Eng Siong Chng. Combining non-negative matrix

factorization and deep neural networks for speech enhancement and automatic speech

recognition. In Acoustics, Speech and Signal Processing (ICASSP), pages 499–503. IEEE,

2016.

[96] Jianyu Wang and Alan L Yuille. Semantic part segmentation using compositional model

combining shape and appearance. CVPR, 2015.

[97] Shengjie Wang, Abdel-rahman Mohamed, Rich Caruana, Jeff Bilmes, Matthai Plilipose,

Matthew Richardson, Krzysztof Geras, Gregor Urban, and Ozlem Aslan. Analysis of deep

neural networks with extended data jacobian matrix. In International Conference on

Machine Learning (ICML), pages 718–726, 2016.

[98] Aaron Wyner. The common information of two dependent random variables. Transac-

tions on Information Theory, 21(2):163–179, 1975.

[99] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[100] Ge Xu, Wei Liu, and Biao Chen. Wyners common information for continuous random

variables-a lossy source coding interpretation. In Information Sciences and Systems

(CISS), pages 1–6. IEEE, 2011.

[101] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix

factorization. In Conference on Research and Development in Informaion Retrieval

(SIGIR), pages 267–273. ACM, 2003.

[102] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-

derstanding deep learning requires rethinking generalization. Conference on Learning

Representations (ICLR), 2017.

[103] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning

deep features for discriminative localization. In Computer Vision and Pattern Recogni-

tion (CVPR), pages 2921–2929. IEEE, 2016.

119

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Acknowledgements
	Abstract (English)
	List of figures
	List of tables
	Abbreviations and Notation
	Introduction
	Thesis contributions and outline

	Related Work
	Introduction
	Convolutional neural networks
	From single neurons to deep convolutional neural networks
	Training and gradient flow
	Generalization and overfitting
	Network interpretability

	Matrix factorization
	Principal component analysis (PCA)
	k-means
	Non-negative matrix factorization (NMF)
	Random ablations

	Conclusion

	Memorization and the non-negative rank
	Introduction
	Memorization bound through Common information
	Non-linearity and rectangle cover number
	Estimating the non-negative rank
	Single-class batches

	Experiments
	Datasets and networks
	Feature compression and memorization
	Feature compression and generalization
	Experiments on VGG-19 and ImageNet

	Conclusion

	Semantic localization with matrix U
	Introduction
	NMF Heatmaps
	CNN Feature maps
	NMF on feature maps
	PCA heatmaps

	Experiments on iCoseg
	Qualitative investigation
	Object and part co-segmentation
	Layer depth

	Experiments on PASCAL VOC
	Object co-localization
	Part co-segmentation

	Conclusion

	Semantic retrieval with matrix V
	Introduction
	Gradient ascent visualization
	Experiments on Oxford and Paris buildings
	Instance-based retrieval
	Localization

	Semantic image retrieval on PASCAL VOC
	Conclusion

	Conclusion
	Thesis summary
	Future work

	Bibliography

