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A Robust Data-Driven Controller Design Methodology With Applications to
Particle Accelerator Power Converters

Achille Nicoletti , Michele Martino, and Alireza Karimi

Abstract— A new data-driven approach using the frequency
response function (FRF) of a system is proposed for designing
robust-fixed structure digital controllers for particle accelerators’
power converters. This design method ensures that the dynamics
of a system are captured and avoid the problem of unmodeled
dynamics associated with parametric models. The H∞ robust
performance condition can be represented by a set of convex
constraints with respect to the parameters of a two degree of
freedom RST controller. This controller is robust with respect
to the frequency-dependent uncertainties of the FRF. A convex
optimization algorithm is implemented to obtain the controller
parameters. The effectiveness of the method is illustrated by
considering two case studies that require robust controllers for
achieving the desired performance.

Index Terms— Convex optimization, data-driven control,
H-infinity, power converter control, robust control, RST.

I. INTRODUCTION

MANY of today’s complex systems possess a multitude
of uncertainties, and obtaining an accurate parametric

model for such systems can be both laborious and impractical
for controller synthesis. In industrial schemes, the dynamics
of plants are typically approximated by low-order models,
since the controller synthesis is easier to implement for lower
order processes. However, this approximation can impede the
performance of a controller, since low-order models are subject
to model uncertainty. A survey on the differences associated
with model-based control and data-driven control has been
addressed in [1] and [2]; Hou and wang [1] and Bazanella [2]
assert that the model-based control methods are inherently less
robust due to the unmodeled dynamics of a process, and that
these controllers are unsafe for practical applications. With the
data-driven control scheme, the parametric uncertainties and
the unmodeled dynamics (for linear time-invariant systems)
are irrelevant and the only source of uncertainty comes from
the measurement process.

Data-driven control methods using frequency-domain data
are design schemes that continue to spark the interest of
many researchers. Hoogendijk et al. [3] use the frequency

Manuscript received October 5, 2017; accepted November 30, 2017. Date
of publication February 8, 2018; date of current version February 8, 2019.
Manuscript received in final form December 11, 2017. Recommended by
Associate Editor P. F. F. Odgaard. (Corresponding author: Achille Nicoletti.)

A. Nicoletti is with the Technology Department, European Organization
for Nuclear Research, CH-1211 Geneve, Switzerland, and also with the
Automatic Control Laboratory, Ecole Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland (e-mail: achille.nicoletti@cern.ch).

M. Martino is with the Technology Department, European Organization for
Nuclear Research, CH-1211 Geneve, Switzerland.

A. Karimi is with the Automatic Control Laboratory, Ecole Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2017.2783346

response data of a stable system to design an optimal controller
through a symmetric root locus technique. A robust frequency-
domain control design method has been established in [4]; this
method, however, requires a solution to a nonlinear optimiza-
tion problem. A frequency-domain loop-shaping approach to
design fixed-structure controllers is presented in [5]. In this
method, a convex optimization problem can be formulated
if a linearly parameterized controller is considered; however,
in this method, the closed-loop stability is not guaranteed and
should be verified a posteriori.

Robust controller design methods belonging to the H∞ con-
trol framework minimize the H∞ norm of a weighted
closed-loop sensitivity function. In [6], a frequency-response
method is proposed based on the Q-parametrization to guar-
antee the H∞ performance for fixed-structure controllers.
In [7], a frequency-domain approach is realized where a
convex optimization algorithm is formulated by considering
a convex approximation of the H∞ criterion (using linearly
parameterized controllers). This method is extended to data-
driven gain-scheduled controller design in [8] and multivari-
able decoupling controller design in [9]. A frequency-domain
approach for computing linearly parameterized controllers are
presented in [10] and [11], where the H∞ constraints are
convexified around an initial stabilizing controller; an iterative
algorithm is used that converges to a local optimal solution
of the nonconvex problem. The extension of this method
to design multivariable proportional-integral-derivative con-
trollers for stable systems is presented in [12]. The design of
controllers that are not linear in parameters (i.e., represented
by rational transfer functions) using frequency-domain data are
studied in [13]. The necessary and sufficient conditions for the
existence of such controllers are developed. This method needs
no initial stabilizing controller and converges to the global
solution of the H∞ problem as the order of the controller
increases.

The method proposed in this brief is an extension of [14],
where the necessary and sufficient conditions that ensures the
H∞ performance for multiple weighted sensitivity functions
are presented. In addition, since the parameters of the
controller’s denominator are the optimization variables, this
method can lead to unstable controllers. Therefore, a sufficient
condition is presented to ensure that the controller remains
stable. In [14], a controller design was implemented that only
considered the nominal model of the process; in this brief,
the frequency-dependent uncertainties originating from the
measurement process are taken into consideration for robust
performance specifications. Moreover, it is shown that as the
controller order increases, the solution to the H∞ problem
converges to the global solution (for the RST controller
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structure that considers multiple weighted sensitivity
functions). The proposed method is used to design robust
controllers for two case studies; in the first one, an unstable
system with multimodel uncertainty is considered to illustrate
the generality of the method, while in the second case
(which constitutes the main applicative focus of this brief),
a robust RST controller is designed for power converters
in particle accelerators at the European Organization for
Nuclear Research (CERN). The designed controller is
implemented in the power converters to control their output
current with extremely high precision, which represent
its major challenge. The main advantage of the proposed
data-driven method for this application is to simultaneously
guarantee the robustness margins, attain the required
bandwidth, and ensure a small tracking error while avoiding
the long and tedious manual tuning process intrinsically
involved in the classical pole-placement model-based
approach.

The brief is organized as follows. The class of models,
controllers, and control objectives are defined in Section II.
Section III discusses the control design methodology and
stability conditions of the proposed method for the RST
controller structure. Convex conditions are formulated based
on the H∞ criterion. Section IV is dedicated to several case
studies where the effectiveness of the method is demonstrated
in both simulation and experiment. Finally, the concluding
remarks are given in Section V.

II. PRELIMINARIES

A. Class of Models

Let u[k] and y[k] represent the input and output signals
of a causal discrete-time system, respectively, where k is a
discrete-time instant and Ts is the sampling period. Suppose
that these signals are noise free and have zero initial and final
conditions (i.e., u[k] = y[k] = 0 for k ≤ 0 and k > Ks ).
Then, the frequency response function (FRF) of the system
can be represented as G(e− jω) = Y (e− jω)U−1(e− jω), where

U(e− jω) = 1√
Ks

Ks∑

k=0

u[k]e− jωTsk (1)

Y (e− jω) = 1√
Ks

Ks∑

k=0

y[k]e− jωTsk (2)

are the periodograms of the input and output signals and
ω ∈ [−π/Ts, π/Ts ]. Note that due to the symmetry of the
periodograms, it is sufficient to consider ω ∈ [0, π/Ts] for
practical applications. Under these assumptions, it is evident
that from a set of sampled time-domain data, one is able to
obtain a continuous FRF. If the data is noisy, then G(e− jω) is
characterized as the empirical transfer function estimate and
is asymptotically unbiased [15]. For such systems, an additive
uncertainty model can be considered to ensure robustness in
the presence of noise perturbations.

Let the set P represents the family of all stable, proper, and
real-rational transfer functions. It is imperative to note that P
is closed under multiplication and addition; in other words,

Fig. 1. RST controller structure.

if P1(z−1), P2(z−1) ∈ P , then

{P1(z
−1)+ P2(z

−1), P1(z
−1)P2(z

−1)} ∈ P (3)

where z is the complex frequency variable used to repre-
sent discrete-time systems. Suppose that a single-input-single-
output feedback control system structure is used where the
plant is represented as G(z−1) = N(z−1)M−1(z−1) such
that {N(z−1),M(z−1)} ∈ P (where N(z−1) and M(z−1)
are coprime factorizations over P [16]). Let the FRF of the
plant be defined as G(e− jω) = N(e− jω)M−1(e− jω) for all
ω ∈ �, where � := [0, π/Ts]. N(e− jω) and M(e− jω) must
be FRFs of bounded analytic functions outside the unit circle;
for a stable plant, a trivial choice is N(e− jω) = G(e− jω) and
M(e− jω) = 1. For unstable systems, a stabilizing controller is
needed in order to properly formulate N(e− jω) and M(e− jω).
In this case, N(e− jω) is the FRF between the reference signal
and the measured output, while M(e− jω) is the FRF between
the reference signal and the plant input. In general, a set G
can be formulated to represent a plant model containing p
FRF models: G = {Gl(e− jω); l = 1, . . . , p; ∀ω ∈ �}.
These FRFs can be determined by considering the frequency
response of a parametric model or from a set of input-output
data. For example, a pseudorandom binary sequence (PRBS)
signal can be used as an excitation signal to identify the
dynamics of a plant, since this type of signal has prop-
erties similar to white noise and excites all frequencies.
Sine-sweep methods can also be used for this identification.
For simplicity, one model from the set G will be considered,
and the subscript l will be omitted. However, in general,
the design procedures outlined in this brief can be applied
to the multimodel case.

It is supposed that the uncertainty associated with a given
FRF is described by an additive uncertainty of coprime factors

N̂ (e− jω) = N(e− jω)+ |Wn(e
− jω)|δne jθn

M̂(e− jω) = M(e− jω)+ |Wm(e
− jω)|δme jθm (4)

where |δn| ≤ 1, |δm | ≤ 1; {θn, θm} ∈ [0, 2π]; and Wn and Wm

are the uncertainty weighting filters which can be determined
from the covariance of the estimates for a given confidence
interval [15].

B. Class of Controllers

The controller structure that will be considered will be of
the RST-type. The RST controller is a two degree of freedom
controller which can be used to synthesize the tracking and



816 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 2, MARCH 2019

regulation requirements independently of each other [17].
The general structure of this controller is shown in Fig. 1.
Each controller is realized as a polynomial function as follows:

R(z−1,ρ) = r0 + r1z−1 + · · · + rnr z−nr (5)

S(z−1,ρ) = 1 + s1z−1 + · · · + sns z−ns (6)

T (z−1,ρ) = t0 + t1z−1 + · · · + tnt z
−nt (7)

where {nr , ns , nt } are the orders of the polynomials R, S,
and T , respectively. The controller parameter vector ρ ∈ R

nc

(vector of decision variables) is defined as

ρ� = [r0, r1, . . . , rnr , s1, s2, . . . , sns , t0, t1, . . . , tnt ]
where nc = nr + ns + nt + 2.

C. Sensitivity Functions

Since the design techniques introduced in this brief belong
to the H∞ framework, it is appropriate to consider the var-
ious sensitivity functions associated with the RST controller
structure. Some sensitivity functions for this process can be
asserted as follows:
S1(z

−1,ρ) = y

do
= M(z−1)S(z−1,ρ)

ψ(z−1,ρ)
(8)

S2(z
−1,ρ) = y

r
= N(z−1)T (z−1,ρ)

ψ(z−1,ρ)
(9)

S3(z
−1,ρ) = r − y

r
= ψ(z−1,ρ)− N(z−1)T (z−1,ρ)

ψ(z−1,ρ)
(10)

where ψ(z−1,ρ) = N(z−1)R(z−1,ρ)+M(z−1)S(z−1,ρ), y is
the system output, r is the reference input, and do is the output
disturbance. For notation purposes, the dependence in z−1 will
be omitted, and will only be reiterated when deemed necessary.
Note that all of the sensitivity functions are stable if the zeros
of ψ(ρ) lie within the unit circle. The sensitivity functions
defined above (and all other sensitivity functions of interest) all
contain the same transfer function ψ(ρ). Therefore, a general
construction of the sensitivity function can be expressed as
Sq(ρ) = �q(ρ)/ψ(ρ), where �q(ρ) is a linear function
of R, S, and/or T . The subscript q ∈ {1, 2, . . . , c} denotes
the q-th sensitivity of interest and c is the total number of
sensitivity functions.

III. H∞ PERFORMANCE VIA CONVEX OPTIMIZATION

A. General Design Specifications

In the general H∞ control problem, the objective is to find
the controller parameter vector ρ such that

sup
ω∈�

|Hq(e
− jω,ρ)| < γ (11)

where γ ∈ R+, Hq(e− jω,ρ) = Wq(e− jω)Sq(e− jω,ρ),
and Wq is the FRF of a stable weighting filter such that
Hq(e− jω,ρ) has a bounded infinity norm. For notation pur-
poses, the dependence in e− jω will be omitted, and will only
be reiterated when deemed necessary. The condition in (11)
can also be expressed as follows:

γ−1|Wq�q(ρ)| < |ψ(ρ)|; ∀ω ∈ �. (12)

Fig. 2. Graphical interpretation of H∞ constraints in the complex plane.

It is desired to minimize the upper bound γ such that the
H∞ performance condition is satisfied. Therefore, the follow-
ing optimization problem can be considered:

min
γ,ρ

γ

s.t.: γ−1|Wq�q(ρ)| < |ψ(ρ)|
∀ω ∈ �; q ∈ Q ⊂ {1, 2, . . . , c}. (13)

Notice that (13) is a nonconvex optimization problem.
Consider a circle in the complex plane at a specific fre-

quency in � which is centered at ψ(ρ) and has radius
γ−1|Wq�q(ρ)|. The constraint in (12) ensures that for any
frequency point in �, the circle associated with this frequency
point will not encircle the origin. Fig. 2 displays the graphical
interpretation of this condition. This geometrical construction
will be used to prove the following Lemma.

Lemma 1: Suppose that

Hq(e
− jω,ρ) = Wq (e

− jω)�q(e
− jω,ρ)ψ−1(e− jω,ρ)

is the frequency response of a bounded analytic function
outside the unit circle. Then, the following constraint is met:

sup
ω∈�

|Hq(e
− jω,ρ)| < γ (14)

if and only if there exists a stable function F(z−1) that satisfies

	{ψ(ρ)F(e− jω)} > γ−1|Wq�q(ρ)F(e
− jω)|, ∀ω ∈ �.

Proof: The basic idea is similar to that of the proof of
[18, Th. 1]. It is clear that (14) is satisfied if and only if the disk
of radius γ−1|Wq�q(ρ)| centered at ψ(ρ) does not include
the origin for all ω ∈ �, i.e., |ψ(ρ)| > γ−1|Wq�q(ρ)|. This
is equivalent to the existence of a line passing through the
origin that does not intersect the disk. Therefore, at every given
frequency ω, there exists a complex number f (e− jω) that can
rotate the disk such that it lays inside the right-hand side of
the imaginary axis. Hence, we have

	{[ψ(ρ)− γ−1|Wq�q(ρ)|e jθ] f (e− jω)} > 0

∀ω ∈ �, ∀θ ∈ [0, 2π] (15)



NICOLETTI et al.: ROBUST DATA-DRIVEN CONTROLLER DESIGN METHODOLOGY 817

where 	{·} denotes the real part of the argument. Since
f (e− jω) = | f (e− jω)|e jθ f , then (15) can be expressed as

	{ψ(ρ) f (e− jω)} > γ−1|Wq�q(ρ) f (e− jω)| cos(θ + θ f )

∀ω ∈ �, ∀θ ∈ [0, 2π]. (16)

However, (16) is satisfied if and only if

	{ψ(ρ) f (e− jω)} > γ−1|Wq�q(ρ) f (e− jω)| ∀ω ∈ �. (17)

In [18], it is shown that, f (e− jω) can be approximated
arbitrarily well by the frequency response of a stable transfer
function or FIR function F(z−1) if and only if

Z = (
ψ(ρ)− γ−1

0 |Wq�q(ρ)|e jθ)−1
(18)

is analytic outside the unit circle for all γ0 > γ and all
θ ∈ [0, 2π]. However, ψ−1(ρ) is stable because of the
stability of Hq(ρ). On the other hand, by decreasing γ0 from
infinity to γ , the poles of Z move continuously with γ0.
Therefore, Z is not analytic outside the unit circle (i.e., Z has
poles outside the unit circle) if and only if Z−1(e− jω) = 0 for
a given frequency, which is not the case because the origin is
not in the interior of the circle γ−1

0 |Wq�q(ρ)|e jθ . �
The set of all controllers that meet the performance condi-

tion defined by the weighted norm of sensitivity functions is
asserted in the following theorem.

Theorem 1: Given the FRF G(e− jω) = N(e− jω)
M−1(e− jω) and the frequency response of a weighting filter
Wq (e− jω), then the following statements are equivalent for a
given q ∈ Q.

1) There exists an RST controller that stabilizes G and

sup
ω∈�

|WqSq(ρ)| < γ. (19)

2) There exists an RST controller such that

	{ψ(ρ)} > γ−1|Wq�q(ρ)| ∀ω ∈ �. (20)

Proof (b ⇒ a): ψ(ρ) is analytic outside the unit circle and
its real part is positive for all ω ∈ �. Therefore, ψ(ρ) will not
encircle the origin when ω travels along the Nyquist contour,
and its inverse is stable. This implies that R(ρ) and S(ρ)
stabilizes G. On the other hand, we have

|ψ(ρ)| ≥ 	{ψ(ρ)} ∀ω ∈ �
which leads to |Wq�q(ρ)| < γ |ψ(ρ)| for all ω ∈ � and
to (19) in Statement (a).

(a ⇒ b): Assume that R(ρ0), S(ρ0), and/or T (ρ0) satisfy
Statement (a) but not Statement (b). Then, according to
Lemma 1, there exists a FIR function F(z−1) such that

	{ψ(ρ0)F(e
− jω)} > γ−1|Wq�q(ρ0)F(e

− jω)| (21)

for all ω ∈ �. Therefore, there exists a higher order
RST controller with R = R(ρ0)F , S = S(ρ0)F , and/or
T = T (ρ0)F such that Statement (b) holds. �

The above theorem gives a necessary and sufficient con-
dition for satisfying the H∞ criterion for one sensitivity
function. However, in typical control system applications,
it is desired to shape several sensitivity functions simulta-
neously and impose multiple constraints on the weighted

sensitivity functions. The following theorem ensures necessity
and sufficiency of the H∞ criterion when multiple sensitivity
functions are considered.

Theorem 2: Given the FRF G(e− jω) = N(e− jω)
M−1(e− jω) and the frequency response of weighting filters
Wq(e− jω) for ∀q ∈ Q, then the following statements are
equivalent.

1) There exists an RST controller that stabilizes G and

sup
ω∈�

|WqSq (ρ)| < γ ∀q ∈ Q. (22)

2) There exists an RST controller such that

	{ψ(ρ)} > γ−1|Wq�q(ρ)| ∀ω ∈ � (23)

and for all q ∈ Q.
Proof (b ⇒ a): The proof for this condition is equivalent to

the proof presented in Theorem 1. By satisfying the constraint
in (23) for all q ∈ Q, the condition in (22) for each
corresponding q is obtained.

(a ⇒ b): Assume that R(ρ0), S(ρ0), and/or T (ρ0) satisfy
Statement (a) but not Statement (b). Then, according to
Lemma 1, there exist FIR transfer functions Fq(z−1) such that

	{Fqψ(ρ0)− γ−1|Fq Wq�q(ρ0)|} > 0 (24)

for all ω ∈ � and for all q ∈ Q. For Statement (b) to
hold, there must exist a common F for all q ∈ Q such that
R = R(ρ0)F , S = S(ρ0)F , and/or T = T (ρ0)F .

For a given frequency, the constraints in (22) will represent
circles in the complex plane that are centered exactly at ψ(ρ0)
with varying radii (where the radii depend on each q). Let us
define the following quantities at every ω ∈ �:

(e− jω,ρ0) := {|W1�1(e

− jω,ρ0)|, . . . , |Wc�c(e
− jω,ρ0)|}

rπ(e
− jω,ρ0) := γ−1 max

q∈Q

(e− jω,ρ0). (25)

For any ω, the circle with radius rπ (ρ0) does not include
the origin, and all of the other circles with smaller radii are
enclosed in the circle with radius rπ(ρ0), that is

γ−1|Wq�q(e
− jω,ρ0)| ≤ rπ (e

− jω,ρ0).

Therefore, for a given frequency, the complex number fq

which is used to rotate the circle associated with radius
rπ(e− jω,ρ0) ensures that all of the circles with γ−1|Wq�q

(e− jω,ρ0)| ≤ rπ (e− jω,ρ0) are also rotated such that they all
lie in the right-hand side of the imaginary axis. Therefore,
there will always exist a common F that interpolates all
fq (different q in different frequencies) such that the con-
ditions in (24) hold true for all q ∈ Q. �

B. Robust Design

With the proposed method, it is possible to design a fixed-
structure controller which accounts for the uncertainties of a
given FRF (as described in Section II-A). Given this additive
uncertainty, a desired performance condition �WqSq�∞ < γ
will be satisfied for all models in the uncertain set (4)
if �Wq Ŝq�∞ < γ , where Ŝq = �̂q/ψ̂(ρ) and ψ̂(ρ) =
N̂ R(ρ) + M̂ S(ρ). For example, consider the nominal perfor-
mance condition �W3Ŝ3�∞ < γ with �̂3(ρ) = M̂ S(ρ) +
N̂ [R(ρ)−T (ρ)]; as a worst case consideration, δm and δn can
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be selected to be equal to one in (4) (which ensures that
the uncertainty in the entire disk is taken into account).
By substituting the expressions in (4) into this condition,
the following constraint can be devised:

|W3[ψ(ρ)− NT (ρ)+ S(ρ)|Wm |e jθm + C(ρ)|Wn |e jθn ]|
< γ |ψ(ρ)+ R(ρ)|Wn |e jθn + S(ρ)|Wm |e jθm | (26)

∀ω ∈ �,∀{θn, θm} ∈ [0, 2π], where C(ρ) = R(ρ)−T (ρ). For
notation purposes, let ψ (ρ, θn) := ψ(ρ) + R(ρ)|Wn |e jθn be
defined. Then for a given {ω, θn, θm}, (26) represents a circle
centered at ψ (ρ, θn)+ S(ρ)|Wm |e jθm with a radius of

x p(ρ, θm, θn) = γ−1|W3| |ψ (ρ, θn)+ S(ρ)|Wm |e jθm

− T (ρ)[N + |Wn|e jθn ]|. (27)

According to Theorem 1, a necessary and sufficient condition
for (26) can be constructed as follows:

x p(ρ, θm , θn) < 	{ψ (ρ, θn)+ S(ρ)|Wm |e jθm}
∀ω ∈ �,∀{θm, θn} ∈ [0, 2π]. (28)

By gridding in ω, θm , and θn , then (28) becomes a convex
constraint (with respect to ρ); however, gridding in all of
these variables can be computationally expensive. Therefore,
a sufficient condition for (26) can be devised as follows:

sup
ω∈�

|W3|[|ψ(ρ)− NT (ρ)| + |C(ρ)Wn | + |S(ρ)Wm |]
|ψ(ρ)| − |R(ρ)Wn | − |S(ρ)Wm | < γ.

.(29)

With this condition, the dependence in θm and θn has been
removed, and gridding in only one variable (i.e., ω) is required.

The condition in (29) can be represented as a disk in the
complex plane which is centered at ψ(ρ) and has radius

xr (ρ) = γ−1|W3|[|ψ(ρ)− NT (ρ)| + |C(ρ)Wn |
+ |S(ρ)Wm |] + |R(ρ)Wn | + |S(ρ)Wm |.

(30)

Therefore, a set of convex constraints is devised with
xr (ρ) < 	{ψ(ρ)} for all ω ∈ �. This constraint has the
same structure as that of the sensitivity functions and so can
readily be included in the optimization problem. Note that (29)
introduces some conservatism; however, this conservatism can
always be reduced by imposing (28) (at the cost of a larger
computation time).

Remark 1: For stable plants, M = 1 may be selected.
Therefore, the disk uncertainty associated with M is |Wm | = 0.
From (27) and (28), it can be observed that with |Wm | = 0,
the dependence on θm is removed, and no gridding in θm is
required. The necessary and sufficient condition then becomes

x p(ρ, θn) < 	{ψ (ρ, θn)} ∀ω ∈ �, ∀θn ∈ [0, 2π] (31)

where x p(ρ, θn) = γ−1|W3|
∣∣ψ (ρ, θn)−T (ρ)[N +|Wn |e jθn ]∣∣.

C. Controller Stability

Computation of an unstable controller should generally be
avoided [17]. For the RST structure, it is evident that if the
polynomial S(z−1,ρ) possesses zeros outside the unit circle,
then the open-loop system will become unstable. In order to
avoid this impairment, it is required to impose a constraint
such that the polynomial S(z−1,ρ) possesses zeros inside the
unit circle. This rationalization leads to the following lemma.

Lemma 2: Suppose that S(z−1,ρ) is parameterized as
in (6). Then a sufficient (convex) condition to ensure that the
zeros of S(z−1,ρ) remain inside the unit circle is

	{S(ρ)} > 0; ∀ω ∈ �. (32)

Proof: First note that a strictly positive real transfer
function (and its inverse) is stable. 	{S(ρ)} > 0 implies
that the Nyquist diagram of S(ρ) will not encircle the origin.
Therefore, S−1(ρ) will not encircle the origin, and S(ρ) is
stable.

D. Convex Optimization via Semidefinite Programming

Suppose that it is desired to obtain H∞ performance for a
sensitivity function (i.e., minimize γ in �WqSq�∞ < γ ). Then
according to the results in Theorem 2, one can formalize an
optimization problem to obtain the admissible R(ρ), S(ρ),
and/or T (ρ) controllers as follows:

min
γ,ρ

γ

s.t.: γ−1|Wq�q(ρ)| < 	{ψ(ρ)}
∀ω ∈ �; q ∈ Q. (33)

The optimization problem in (33) is convex for a fixed value
of γ . The classical solution to this problem is to implement a
bisection algorithm in order to obtain the global solution.

The problem in (33) is known as a semiinfinite program-
ming problem since there are a finite number of optimization
variables and an infinite number of constraints. To solve
this problem, the optimization algorithm can be converted
to a semidefinite programming (SDP) problem. A predefined
frequency grid can be implemented in order to solve a finite
number of constraints. This frequency grid can be predefined
in a variety of manners (see [9], [19]).

It can be shown that by increasing the controller order,
the optimal solution to (33) converges to the global optimal
solution of the H∞ problem.

Lemma 3: Suppose that the RST controller achieves the
optimal H∞ performance for the plant model G = N M−1

such that

γo = sup
ω

|Wq�q(ρ)ψ
−1(ρ)|, ∀q ∈ Q.

In addition, suppose that γn is the optimal solution of the
convex optimization in (33) when R(ρ), S(ρ), and/or T (ρ) are
parameterized by an nth order FIR filter. Then γn converges
monotonically from above to γo when n → ∞.

Proof: The proof of a similar condition has been estab-
lished in [13] (for q = 1 and for a one-degree-of-freedom con-
troller), and has been omitted to conserve space. However, the
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TABLE I

PROCEDURE FOR COMPUTING AN RST CONTROLLER

necessary and sufficient condition from Theorem 2 can be
combined with the ideas presented in [13] to ensure that the
solution to (33) converges to the global optimal solution of
the H∞ problem as n increases (∀q ∈ Q). �

Table I displays a general method for designing a controller
using the proposed approach.

IV. CASE STUDIES

A. Case 1: Multi-Model Uncertainty

Consider the following unstable system reported in [20]
which describes the dynamics of a magnetic levitation system
linearized around an operating point (airgap of 17 mm):

G(s) = Y (s)

U(s)
= α1

(s + 131.3)(s − α2)(s + α2)
(34)

where α1 = 163863.6 and α2 = 29.85. The input u is
proportional to the inductor current and the output y is propor-
tional the measured airgap. To demonstrate the effectiveness
of the proposed method, it is supposed that there exists some
uncertainty with the mass of the steel ball where the gain and
poles of the system belong in the sets α̂1 ∈ {0.9α1, α1, 1.1α1}
and α̂2 ∈ {0.7α2, α2, 1.3α2}. With the proposed approach,
a multimodel design can be implemented where stability
and performance is guaranteed for all of the uncertainties
associated with the system. The plant can be expressed as
Gl(s) for l = 1, . . . , 9 (which represents the plant model
with respect to the lth unique combination of the uncertain
parameters).

Remark 2: Note that these models are simply used to obtain
the FRFs of the plants and the controller synthesis does not
rely on these parametric models. As a result, both continuous-
and discrete-time plant models can be considered for the
synthesis.

1) Performance Specifications: For this particular case
study, it was desired to obtain the best performance for
disturbance rejection (i.e., by minimizing �W1Sl

1�∞ ∀l where
Sl

1 denotes the sensitivity function with respect to the lth plant
model from the set Gl ). Note that this is a regulation prob-
lem, and the polynomial T (ρ) is not included in the design
process. In addition, in order to have a zero steady-state

Fig. 3. Optimal solution γ � as a function of the controller order. Solutions
obtained with the proposed method (dashed-blue line); solutions obtained with
the method from [21] (dashed-red line).

error, the controller should include an integrator [i.e., S(ρ) =
(1− z−1)S(ρ)]. The weighting filter was selected as W1(s) =
(s+ωd)s−1, which was designed in accordance with the meth-
ods described in [16]. The rejection bandwidth ωd [rad s−1]
was selected as ωd = 100π . Note that W1( jω) is unbounded
at ω = 0; however, due to the fixed integrator in the controller,
�W1Sl

1�∞ remains bounded ∀l and ∀ω.
2) Controller Synthesis: Since each model is unstable,

then each coprime factor must be selected such that
{Nl (s),Ml (s)} ∈ P for all l. A simple choice is to divide
both the numerator and denominator of each model by a factor
(s + 10)3.

Remark 3: If a parameteric model is not available for
acquiring the FRFs of these coprimes, then a closed-loop
identification experiment can be performed to obtain them
(see Section II).

The problem in (33) was solved for q = 1 by considering all
models in the set Gl and a linearly-spaced grid of 300 points
from 0 to π/Ts rad s−1 (where a working sampling time
of Ts = 0.002 s was selected, as asserted in [20]). The
optimal solution γ � for various controller orders have been
computed and compared with the solutions obtained with
the frequency-domain method in [21] (which requires the
selection of a desired open-loop transfer function). Fig. 3
depicts the optimal solution as a function of the controller
order; it can be observed that as the controller order increases,
the solution obtained with the proposed method achieves better
performance (i.e., converges monotonically to the global opti-
mal solution of the H∞ problem). For comparative purposes,
the optimization times with both the proposed method and the
method in [21] for a fifth-order controller (with γmax = 5,
γmin = 10−3, and a tolerance of 10−5 set for the bisection
algorithm) are 111.5 s and 9.8 s, respectively. The difference
in optimization times stems from the fact that the method
in [21] fixes the polynomial S(ρ) a priori such that R(ρ)
is the only polynomial to be optimized; with the proposed
method, the parameters in both R(ρ) and S(ρ) are optimized.
The optimization times were calculated based on a computer
having the following hardware specifications: Intel-Core i7,
3.4 GHz CPU, and 8 GB RAM. The optimization algorithm
was run using MATLAB version (R2015b) on a Windows 7
platform (64-b).
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Fig. 4. Power converter control system.

Fig. 5. Desired reference current profile. The blue-dashed line indicates
the time when the error must remain within ±1000 parts-per-million (ppm);
the dashed red line indicates the time when the error must remain
within ±100 ppm.

B. Case 2: Power Converter Control

The general configuration of the CERN power converter
control system is depicted in Fig. 4. The control loop consists
of a magnet (i.e., the load), a voltage source Vs , low-pass
antialiasing analog, and digital filters, a digital-to-analog
converter (DAC), and an analog-to-digital converter (ADC).
The DAC (optional) and ADCs are integrated in the control
unit labeled as the function generator controller (FGC, [22])
whose main function is to execute the control algorithm. The
main objective is to design an RST controller such that the
error obtained from a specific desired current profile, shown
in Fig. 5, meets the desired specifications.

The magnet is represented as an RL circuit, and the dynam-
ics of this circuit are dominant over the other components of
the system. Thus a first-order model with delay [i.e., Gm(s) =
e−sTd (Lms + Rm)

−1, where Rm is the circuit resistance, Lm is
the circuit inductance, and Td is the time delay] is appropriate
to approximate the dynamics of the plant. For this case study,
the model parameters are identified as: Rm = 164.3 m�,
Lm = 736.4 μH, and Td = 275.4 μs.

At CERN, the above model is discretized using the zero-
order-hold method and used to design an RST controller based
on the model-reference control (MRC) strategy [17]. The main
difficulty is that the choice of the observer poles that lead to a
good robustness margin is not trivial; the design of a working
controller is a time-consuming iterative process.

A PRBS signal was used as the input voltage reference of
the open-loop system in order to capture the dynamics of the
process. A total of five experiments were performed with the
PRBS clock period Tcl = 100 μs; the acquired periods (with
transients removed in postprocessing) could then be merged
together. A custom FGC signal is limited to 1023 samples;
therefore, a 9-b PRBS signal was used for identification
purposes. For a signal of length 511, the frequency resolution

Fig. 6. PRBS signal used for the input voltage v(t) of the open-loop system
along with the resulting output current i(t).

is limited to 255 points. The uncertainty was obtained from
the covariance of the estimates with a 95% confidence interval.
Fig. 6 shows the input and output signals acquired from the
identification experiment.

1) Weighting Filter Selection: For this particular case
study, it was desired to obtain the best tracking performance
(i.e., by minimizing �W3S3�∞) while ensuring reasonable
stability margins. It is evident that Sd

2 + Sd
3 = 1, where

Sd
2 and Sd

3 are the desired complementary and error sensitivity
functions, respectively. Based on this condition, the weighting
filter W3 was selected as W3 = [Sd

3 ]−1. Sd
2 was chosen as a

standard second-order model Sd
2 (s) = ω2

d(s
2+2ζωd s+ω2

d )
−1,

where ζ is the damping factor and

ωd = 2π fd

[
1 − 2ζ 2 +

√
2 − 4ζ 2 + 4ζ 4

]−0.5

and fd [Hz] is the desired closed-loop bandwidth.
A simulation was performed to determine the required

bandwidth to satisfy the desired error specifications. At CERN,
the error is calculated with respect to a delayed reference
input (i.e., e(t) = r(t − η ) − y(t)); η is determined by
shifting the reference signal such that the minimum peak
error is achieved. By assuming that the closed-loop response
behaves as Sd

2 , the bandwidth fd can be selected such that the
error between the delayed reference input and output remains
within the requirements set by the application (which are
shown in Fig. 5); the simulation results led to fd = 300 Hz
and ζ = 0.8.

2) Synthesis and Experimental Results: The voltage applied
to the magnet by the voltage source and the relative current are
both sampled at 10 kHz while the control loop is run 3 times
slower (i.e., Ts = 300 μs). Since the plant is stable, then a pos-
sible selection for the coprime factors is N(e− jω) = G(e− jω)
and M(e− jω) = 1. With a minimum value of md = 0.5 set for
the modulus margin [i.e., the minimum distance between the
critical point (−1+ j0) and the Nyquist plot of the open-loop
transfer function], the following optimization problem must be
solved:

min
γ,ρ

γ

s.t.: 	{ψ(e− jωk ,ρ)} > xr (e
− jωk ,ρ)

	{ψ(e− jωk ,ρ)} > xm(e
− jωk ,ρ)

	{S(e− jωk ,ρ)} > 0 (35)
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Fig. 7. Comparison between the error resulting from the model-based design
(solid-black line with red error-bars) and the error resulting with the proposed
method (solid-black line with green error-bars).

for k = 1, . . . , 255, where S(z−1,ρ) = (1 − z−1)2 S(z−1,ρ),
xr (e− jωk ,ρ) is defined as in (30), and xm(e− jωk ,ρ) =
|md S(e− jωk ,ρ)|+ |R(e− jωk ,ρ)Wn(e− jωk )|. The first inequal-
ity in (35) ensures that H∞ nominal performance is achieved
for the RST structure whilst considering the frequency depen-
dent uncertainties. The second inequality ensures that the
modulus margin is at least 0.5 (a requirement for robust
stability at CERN). The third inequality ensures that S(ρ) has
no unstable zeros (another requirement at CERN).

The SDP solver (SDPT3) was used in conjunction with
MATLAB to perform the bisection algorithm [23]. A ninth-
order controller was used to achieve the desired results (by fol-
lowing the steps outlined in Section III-D). An optimal value
of γ � = 1.202 was obtained after 61.3 s using the same
computer as in the previous example.

A total of ten experiments were performed; the error
for both the model-based MRC method and data-driven-
based designs (with the associated error bars showing the
minimum and maximum errors at each sampling instant) is
shown in Fig. 7. It can be observed that both designs are
comfortably within the ±1000 ppm fast-transient requirement
and within the ±100 ppm steady-state requirement. Indeed,
both controllers achieve ±100 ppm even during the fast
transients. However, the proposed method ensures that all of
the design requirements are met while eliminating the iterative
process of attaining robust performance from the model-based
methodology.

V. CONCLUSION

The necessary and sufficient conditions for the existence of
RST controllers that achieve H∞ performance for multiple
weighted sensitivity functions have been established with a
set of convex constraints. In addition, constraints have been
devised in order to design a controller which considers the
frequency-dependent uncertainties and to assure the controller
stability. The simulation and experimental results show that
the proposed data-driven method offers an optimization-based
systematic approach that leads to low-order RST controllers
meeting the challenging specifications required by each appli-
cation. For future work, the extension of the method to
multivariable systems will be investigated.
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