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Abstract

We tackle the fundamentally ill-posed problem of 3D hu-
man localization from monocular RGB images. Driven by
the limitation of neural networks outputting point estimates,
we address the ambiguity in the task with a new neural net-
work predicting confidence intervals through a loss func-
tion based on the Laplace distribution. Our architecture is
a light-weight feed-forward neural network which predicts
the 3D coordinates given 2D human pose. The design is
particularly well suited for small training data and cross-
dataset generalization. Our experiments show that (i) we
outperform state-of-the art results on KITTI and nuScenes
datasets, (ii) even outperform stereo for far-away pedestri-
ans, and (iii) estimate meaningful confidence intervals. We
further share insights on our model of uncertainty in case
of limited observation and out-of-distribution samples.

1. Introduction
The complexity of monocular 3D localization can be at-

tributed to the fundamental ambiguity of locating objects in
the world based on their observed position in an image. This
ambiguity is particularly relevant for pedestrians, which are
characterized by different heights and shapes. To overcome
this limitation, the majority of autonomous driving applica-
tions are based on LiDAR and sensor fusion, despite high
cost and sparsity of point clouds over long ranges. In addi-
tion, datasets for 3D vision are smaller compared to tradi-
tional datasets for 2D vision tasks, as they require complex
and expensive labeling procedures. Inferring 3D informa-
tion of a scene from a single image remains a critical task
yet to be solved to assure low-cost mobility. Progress has
been made on estimating the 3D position of vehicles, while
all other classes, including pedestrians, have received far
less attention due to lack of adequate performances [39, 4].

Perception systems often do not take into account mea-
sures of confidence in their predictions. Uncertainty es-
timation is crucial in monocular 3D vision when dealing
with the intrinsic ambiguity of locating 3D objects in the

Figure 1. 3D localization of pedestrians from a single RGB image.
Our method leverages 2D poses to find 3D locations of pedestrians
(3D view on the left) as well as confidence intervals (birds-eye-
view on the right) to address the ambiguity of the task.

scene. It is also essential for deep learning systems to con-
vey trust in autonomous driving applications, where human
safety is at stake. Kendall and Gal [20] introduced practical
uncertainty estimation for deep learning in computer vision,
distinguishing between aleatoric and epistemic uncertainty
[6, 20]. The former models noise inherent in the observa-
tions while the latter is a property of the model parameters
and can be reduced by collecting more data.

In this work, we propose a simple probabilistic method
for monocular 3D localization tailored for pedestrians. We
specifically address the challenges of the ill-posed task by
predicting confidence intervals in contrast to point esti-
mates, which account for aleatoric and epistemic uncertain-
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ties. Our method is composed of two distinct steps. First,
we leverage the exceptional progress of pose estimators to
obtain 2D joints, a low-dimensional meaningful representa-
tion of humans. Second, we input the detected joints to a
light-weight feed-forward network and output the 3D loca-
tion of each instance along with a confidence interval. We
explore weather 2D joints contain enough information with
the goal of learning the intrinsic ambiguity of the task as
well as accurate localization. We leverage a recently intro-
duced loss function based on the Laplace distribution [20] to
incorporate aleatoric uncertainty for each predicted location
without direct supervision at training time. MC Dropout
at prediction time is used to capture epistemic uncertainty
[10]. In parallel, based on the statistical variation of hu-
man height within the adult population [42], we quantify
the ambiguity of the task, which we call task error: an upper
bound of performances for monocular 3D pedestrian local-
ization. Surprisingly, the task error is reasonably low. Our
experiments show accurate results in 3D localization with-
out overcoming the limitation due to this intrinsic ambigu-
ity. Furthermore, our network, referred to as MonoLoco, in-
dependently learns the distribution of uncertainties, predict-
ing confidence intervals comparable with the corresponding
task error. The code is open source and available online 1.

2. Related Work

Monocular 3D Object Detection. Recent approaches for
Monocular 3D Object Detection in the transportation do-
main focused only on vehicles as they are rigid objects with
known shape. To the best of our knowledge, no previous
work explicitly evaluated pedestrians from monocular RGB
images. Kundegorski and Breckon [24] achieved reason-
able performances combining infrared imagery and real-
time photogrammetry. The seminal work of Mono3D [4]
exploited deep learning to create 3D object proposals for
car, pedestrian and cyclist categories but it did not evaluate
3D localization of pedestrians. It assumed a fixed ground
plane orthogonal to the camera and the proposals were then
scored based on scene priors such as shape, semantic and
instance segmentations. Following methods continued to
leverage on Convolutional Neural Networks and focused
only on Car instances. To regress 3D pose parameters
from 2D detections, Deep3DBox [30] and Hu et al. [17]
leveraged on geometrical constraints for localization, while
Multi-fusion [48] and ROI-10D [28] incorporated a mod-
ule for depth estimation. Recently, Roddick et al. [39] es-
caped the image domain by mapping image-based features
into a birds-eye view representation using integral images.
Another line of work fits 3D templates of cars to the im-
age [45, 46, 3, 25].

While many of the related methods are achieving reason-

1https://github.com/vita-epfl/monoloco

able performances for cars, current literature lacks monoc-
ular methods addressing other categories in the context of
autonomous driving, such as pedestrians and cyclists.

Uncertainty in Computer Vision. Deep neural networks
need to have the ability not only to provide the correct out-
puts but also a measure of uncertainty, especially in safety-
critical scenarios like autonomous driving. Traditionally,
Bayesian Neural Networks [38, 32] were used to model
epistemic uncertainty through probability distributions over
the model parameters. However, these distributions are of-
ten intractable and researchers have proposed interesting so-
lutions to perform approximate Bayesian inference to mea-
sure uncertainty, including Variational Inference [14, 1, 40]
and Deep Ensembles [26]. Alternatively, Gal et al. [10, 11]
showed that applying dropout [41] at inference time yields
a form of variational inference where parameters of the net-
work are modeled as a mixture of multivariate Gaussian
distributions with small variances. This technique became
popular also due to its adaptability to non-probabilistic deep
learning frameworks.

In computer vision, uncertainty estimation using MC
Dropout has been applied for depth regression tasks [20],
scene segmentation [31, 20] and, more recently, LiDAR 3D
object detection for cars [8].

Human pose estimation. Detecting people in images and
estimating their skeleton is a widely studied problem. State-
of-the-art methods are based on Convolutional Neural Net-
works and can be grouped into top-down [36, 7, 18, 15, 47]
and bottom-up methods [2, 33, 35, 22].

Related to our work is Simple Baseline [29], which
showed the effectiveness of latent information contained in
2D joints stimuli. They achieved state-of-the-art results by
simply predicting 3D joints from 2D poses through a light,
fully connected network. However they estimated 3D joint
positions relative to the hip joint, not providing any infor-
mation about the real 3D location in the scene.

3. Localization Ambiguity
Inferring depth of pedestrians from monocular images is

a fundamentally ill-posed problem. This additional chal-
lenge is due to human variation of height. If every pedes-
trian has the same height, there would be no ambiguity.
In this section, we quantify the ambiguity and analyze the
maximum accuracy expected from monocular 3D pedes-
trian localization.

Previous studies from a population of 63,000 European
adults have shown that the average height is 178cm for
males and 165cm for females with a standard deviation of
around 7cm in both cases [42]. Following the approach of
Kundegorski and Breckon [24], we model the localization



Figure 2. Localization error due to human height variations at dif-
ferent distances from the camera. We approximate the distribution
of height for a generic adult as Gaussian mixture distribution with
a standard deviation of 9.5cm and we define it as the task error:
an upper bound of performances for monocular methods.

error due to a 7cm of standard deviation of height as a func-
tion of the distance from the camera. However, a pose de-
tector does not distinguish between genders. Assuming that
the distribution of human stature follows a Gaussian distri-
bution [9], we estimate the combined localization error due
to male and female height variations as a Gaussian mixture
distribution. We obtain a distribution with standard devia-
tion of ∼ 9.6cm and a relative error of 5.6%. We define the
task error as:

e = m ∗ d (1)

where m is a fixed coefficient representing the relative
error and d the distance from the camera. The task error e
represents a lower bound for 3D pedestrian localization due
to the intrinsic ambiguity of the task. The analysis can be
extended beyond adults. A 14-year old male reaches 90%
of his full height and a female about 95% [9]. Including
people down to 14 years old leads to an additional source
of height variation of 7.9% and 5.6% for men and women,
respectively [24]. Figure 2 shows the localization error due
to height variation in different cases as a function of the
distance from the camera. We also include in the compar-
ison the consumer-level Global Position System (GPS) ac-
curacy, which is approximately±5m under ideal conditions
[43, 24]. Even at 40 meters from the camera, the task error
is smaller than the GPS one. This analysis shows that the
ill-posed problem of localizing pedestrians, while imposing
an intrinsic limit, does not prevent from robust localization
in general cases.

4. Method
The goal of our method is to estimate 3D pedestrian lo-

calization in egocentric coordinates given monocular im-
ages. We argue that effective monocular localization im-
plies not only accurate estimates of the distance but also
realistic predictions of uncertainty. Consequently, we pro-
pose a method which learns the ambiguity from the data and
predicts confidence intervals in contrast to point estimates.
The task error modeled in eq 1 allows to compare the pre-
dicted confidence intervals with the intrinsic ambiguity of
the task.

Figure 3 illustrates our overall method, which consists of
two main steps. First, we exploit a pose detector to escape
the image domain. 2D joints are a meaningful low-level
representation which provides invariance to many factors,
including background scenes, lighting, textures and clothes.
Second, we use the 2D joints as input to a feed-forward neu-
ral network which predicts the distance and the associated
ambiguity of each pedestrian. In the training phase, there
is no supervision for the ambiguity. The network implicitly
learns it from the data distribution.

4.1. Setup

Input. We use a pose estimator to detect a set of
keypoints[ui, vi]

T for every instance in the image. We then
back-project each keypoint i into normalized image coordi-
nates [x∗i , y

∗
i , 1]

T using the camera intrinsic matrix K:

[x∗i , y
∗
i , 1]

T
= K−1 [ui, vi, 1]

T
. (2)

This transformation is essential to prevent the method
from overfitting to a specific camera or dataset. Further-
more, even if we are not predicting a relative 3D location
but the distance to the camera, we zero-center the 2D inputs
around the hip joint. This ensures that the model only uses
relative distances between joints to make predictions and it
prevents overfitting on specific locations of the image.

2D Human Poses. We obtain 2D joint locations of pedes-
trians using two state-of-the-art pose detectors: the top-
down method MASK R-CNN [15] and the bottom-up one
PifPaf [23], both trained on the COCO Dataset [27]. The
detector can be regarded as a stand-alone module, where its
predictions are the input of our network. None of the detec-
tors have been fine-tuned on KITTI or nuScenes datasets as
no annotations for 2D poses are available.

Output. We parametrize the 3D physical location of each
instance through its center location D = [xc, yc, zc]

T . We
further assume that the projection of the center into the im-
age plane corresponds to the center of the detected bound-
ing box [uc, vc]

T . Under these settings, the location of
each pedestrian has three degrees of freedom (DoF) and



Figure 3. Network architecture. The input is a set of 2D joints extracted from a raw image and the output is the 3D location of a pedestrian
µ and the spread bwhich represents the associated aleatoric uncertainty. The confidence interval is obtained as µ±b. Epistemic uncertainty
is obtained through stochastic forward passes applying dropout at test time. The dashed ellipse represents the two combined uncertainties.
Every fully connected layer outputs 256 features and is followed by a Batch Normalization layer [19] and a ReLU activation function.

two constraints. We choose to regress the norm of the vec-
tor ||D||2 =

√
x2c + y2c + z2c to further constrain the loca-

tion of a pedestrian. For brevity we will use the notation
d = ||D||2. The main criterion is that the dimensions of any
object projected into the image plane only depend on the
norm of the vector D and they are not affected by the com-
bination of its components. The same pedestrian in front of
a camera or at the margin of the camera field-of-view will
appear as having the same height in the image plane, as long
as the distance from the camera d is the same.

Base Network. The building blocks of our model are
shown in Figure 3. The architecture, inspired by Martinez et
al. [29], is a simple, deep, fully-connected network with six
linear layers with 256 output features. It includes dropout
[41] after every fully connected layer, batch-normalization
[19] and residual connections [16]. The model contains ap-
proximately 400k training parameters.

4.2. Uncertainty

In this work, we propose a probabilistic network which
models two types of uncertainties: aleatoric and epistemic
[6, 20].

Aleatoric uncertainty is an intrinsic property of the task
and the inputs and does not decrease when collecting more
data. In the context of 3D monocular localization, the in-
trinsic ambiguity of the task represents a quota of aleatoric
uncertainty. In addition, some inputs may be more noisy
than others, leading to an input-dependent aleatoric uncer-
tainty. Epistemic uncertainty is a property of the model pa-
rameters and it can be reduced gathering more data. It is
useful to quantify the ignorance of the model about the col-
lected data, e.g., in case of out-of-distribution samples.

Aleatoric Uncertainty. Aleatoric uncertainty is captured
through a probability distribution over the model outputs.

We define a relative Laplace loss based on the negative log-
likelihood of a Laplace distribution as:

LLaplace(x|µ, b) =
|1− µ/x|

b
+ log(2b) (3)

where x is the ground truth and {µ, b} are the parameters
predicted by the model. µ represents the predicted distance
while b is the spread, making this training objective an at-
tenuated L1-type loss via spread b. During training, the
model has the freedom to predict a large spread b, leading to
attenuated gradients for noisy data. At inference time, the
model predicts the distance µ and a spread bwhich indicates
its confidence about the predicted distance. Following [20],
to avoid the singularity for b = 0, we apply a change of
variable to predict the log of the spread s = log(b).

Compared to previous methods [20, 44], we design a
Laplace loss which works with relative distances to keep
into account the role of distance in our predictions. Esti-
mating the distance of a pedestrian with an absolute error
can lead to a fatal accident if the person is very close or be
negligible if the same human is far away from the camera.

Epistemic Uncertainty. To model epistemic uncertainty,
we follow [10, 20] and consider each parameter as a mix-
ture of two multivariate Gaussians with small variances and
means 0 and θ. The additional minimization objective for
N data points is:

Ldropout(θ, pdrop) =
1− pdrop

2N
||θ||2 . (4)

In practice, we perform dropout variational inference by
training the model with dropout before every weight layer
and then performing a series of stochastic forward passes at
test time using the same dropout probability pdrop of train-
ing time. The use of fully-connected layers makes the net-
work particularly suitable for this approach, which does not
require any substantial modification of the model.



KITTI Dataset [12] Type ALP [%] ALE [m]
< 0.5m < 1m < 2m Easy Moderate Hard

Mono3D [4] Mono 12.6 21.7 35.9 2.10 (2.11) 2.78 (2.96) 3.24 (3.67)
MonoDepth [13] Mono 20.3 34.8 49.8 1.48 (1.69) 2.23 (3.00) 2.30 (3.48)
Our Geometric baseline Mono 17.3 32.5 60.9 1.41 (1.47) 1.35 (1.68) 1.54 (1.90)
Our MonoLoco - trained on KITTI Mono 27.6 48.7 70.3 0.93 (1.03) 1.03 (1.45) 1.10 (1.61)
Our MonoLoco - trained on nuScenes Mono 30.4 51.9 71.7 0.84 (0.92) 0.91 (1.23) 1.25 (1.74)
3DOP [5] Stereo 38.9 50.0 56.5 0.59 (0.60) 1.04 (1.03) 1.79 (1.32)

Table 1. Comparing our proposed method against baseline results on KITTI dataset. We calculated ALE for pedestrians commonly
detected by all methods to make fair comparison. On parenthesis, we reported the ALE for all the pedestrians detected by each method. We
outperform all monocular methods and we achieve comparable performances against 3DOP which leverages on stereo images for training
and testing. Our main method uses monocular images and it has not been trained on KITTI. We use PifPaf [23] for 2D poses.

The combined epistemic and aleatoric uncertainties are
captured by the sample variance of predicted distances x̃.
They are sampled from multiple Laplace distributions pa-
rameterized with the predictive distance µ and spread b from
multiple forward passes with MC Dropout:

V ar(X̃) =
1

TI

T∑
t=1

I∑
i=1

x̃2t,i(µt, bt)

−

[
1

TI

T∑
t=1

I∑
i=1

x̃t,i(µt, bt)

]2

(5)

where for each of the T computationally expensive forward
passes, I computationally cheap samples are drawn from
the Laplace distribution.

5. Experiments
5.1. Implementation details.

Datasets. We train our model on the nuScenes
dataset [34]. NuScenes is a dataset recently released which
contains 24k instances of pedestrians over 6k images sam-
pled at 2 Hz. Even if up to now only a teaser of 100
scenes have been released, it is currently the largest dataset
available for 3D object detection. No previous method for
monocular pedestrian localization has been evaluated on
nuScenes to the best of our knowledge.

The reference dataset for 3D object detection is
KITTI [12]. It contains 7481 training images with up to
30 pedestrians per image along with the camera calibration
files. We use this dataset for evaluation purposes.

Training Procedure. We split nuScenes into training and
test set by scenes and we choose the best model by cross-
validation. We run the training procedure for 200 epochs
using the Adam optimizer [21], a starting learning rate of
0.005 with exponential decay and mini-batches of 256. For
the pose detections we directly use the pre-trained weights
of PifPaf or Mask R-CNN trained on COCO [27] and we
don’t update the weights during training.

We do not apply data augmentation but we modify the
resolution of the images to match the minimum dimension
of 32 pixels of COCO instances. NuScenes contains high-
definition images of 1600x900 pixels and Mask R-CNN re-
sizes each input image to an ideal size of 1333x800 pixels.
In order to avoid down-sampling of the images in Mask R-
CNN, we first remove the upper side of each image (approx-
imately corresponding to the sky) and then we split each
image into two overlapping crops of 1000x600 pixels. We
finally apply non-max suppression to avoid double detec-
tions. PifPaf does not resize images by default and we dou-
ble the resolution of the original images. We apply the same
procedure for evaluation on KITTI.

The code is developed using PyTorch [37]. Working with
a low-dimensional latent representation is very appealing as
it allows us to make fast experiments with different archi-
tectures and hyperparameters.

5.2. Evaluation.

Localization Error. We evaluate 3D pedestrian localiza-
tion using the Average Localization Precision (ALP) met-
ric defined by Xiang et al. [45] for the car category. ALP
considers a prediction correct if the error between the pre-
dicted distance and the ground truth is smaller than a certain
threshold. We also analyze the average localization error
(ALE) in two different conditions. Following KITTI guide-
lines, we split the detected pedestrians in three difficulty
regimes based on bounding box height, levels of occlusion
and truncation: easy, medium and hard. We also analyze the
ALE as a function of the distance and we compare the re-
sults against the task error of eq 1. The task error defines the
target error for monocular approaches due to the ambiguity
of the task.

Evaluation Protocol. We train our model on nuScenes
and we evaluate it on KITTI dataset. For evaluation, we
follow the train/val split of Chen et al. [4] and we ignore the
training images, only performing evaluation over the 3769
validation images. We train and evaluate our main model on



two different datasets to analyze generalization capabilities
of our network. However, for completeness we also show
results on a model trained exclusively on KITTI. We do not
perform cross-dataset training.

Geometrical Approach. 3D pedestrian localization is an
ill-posed task due to human height variations. On the other
side, estimating the distance of an object of known dimen-
sions from its projections into the image plane is a well-
known deterministic problem. As a baseline, we consider
humans as fixed objects with the same height and we inves-
tigate the localization accuracy under this assumption.

For every pedestrian, we apply a pose detector to cal-
culate distances in pixels between different body parts in
the image domain. Combining this information with the lo-
cation of the person in the world domain, we analyze the
distribution of the real dimensions (in meters) of all the in-
stances in the training set for 3 segments: head to shoulder,
shoulder to hip and hip to ankle.

For our calculation we assume a pinhole model of the
camera and that all instances stand upright. Using the cam-
era intrinsic matrix K and knowing the ground truth loca-
tion of each instance D = [xc, yc, zc]

T we can back-project
each keypoint from the image plane to its 3D location and
measure the height of each segment using equation 2. We
calculate the mean and the standard deviation in meters of
each of the segments for all the instances in the training
set of nuScenes. The standard deviation is used to choose
the most stable segment for our calculations. For instance,
the position of the head with respect to shoulders may vary
a lot for each instance. To take into account noise in the
2d joints predictions we also average between left and right
keypoints values. The result is a single height ∆y1−2 which
represents the average length of two body parts.

The next step is to calculate the approximate location of
each instance knowing the value of the chosen keypoints in
pixels v1 and v2 and assuming ∆y1−2 to be their relative
distance in world coordinates. This configuration requires
to solve an over-constrained system of linear equations with
two specular solutions, of which only one is inside the cam-
era field of view.

Baselines. We compare our method on KITTI against two
monocular approaches and one stereo approach:

• Mono3D [4] is a monocular 3D object detector for
cars, cyclists and pedestrians. 3D localization of
pedestrians is not evaluated but detection results are
publicly available.

• MonoDepth [13] is a monocular depth estimator
which predicts a depth value for each pixel in the im-
age. To estimate a reference depth value for every

Figure 4. Average localization error for the instances commonly
detected by all methods. We outperform the monocular Mono3D
[4] while achieving comparable performances with the stereo
3DOP [5]. Monocular performances are bounded by our modeled
task error in equation 1.

Figure 5. Results of aleatoric uncertainty predicted by MonoLoco
(spread b) and the modeled aleatoric uncertainty due to human
height variation (task error e). The term b − e is indicative of the
aleatoric uncertainty due to noisy observations. On the top figure,
we visualize the average predicted and ground truth confidence in-
tervals ±b and ±e at various distances.

pedestrian, we detect 2D joints using PifPaf and cal-
culate the depth for a set of 9 pixels close to each key-
point. We then consider the minimum depth as our
reference value. Experimentally, the minimum depth
increases the performances compared to the average
one. From the depth, we calculate the distance d using
the normalized image coordinates of the center of the
bounding box.

• 3DOP [5] is a stereo approach for pedestrians, cars and
cyclists and their 3D detections are publicly available.



Figure 6. Simulating the outlier case of a person lying on the
ground. In the top image, the predicted confidence interval is small
and the detection accurate. In the bottom image, we create an out-
lier pose projecting on the ground the original pose. The network
predicts higher uncertainty, a useful indicator to warn about out-
of-distribution samples

Mask R-CNN [15] ALE [m]
10
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30 All

Geometric 0.79 1.52 3.17 9.08 3.73
L1 loss 0.85 1.17 2.24 4.11 2.14
Gaussian loss 0.90 1.28 2.34 4.32 2.26
Laplace Loss 0.74 1.17 2.25 4.12 2.12
PifPaf [23] ALE [m]

10
0

20
10

30
20

+
30 All

Geometric 0.83 1.40 2.15 3.59 2.05
L1 loss 0.83 1.24 2.09 3.32 1.92
Gaussian loss 0.89 1.22 2.14 3.50 1.97
Laplace Loss 0.75 1.19 2.24 3.25 1.90

Table 2. Impact of different loss functions and pose detectors on
nuScenes [34] validation set.

5.3. Results.

Localization Accuracy. Table 1 summarizes our quan-
titative results on KITTI. We strongly outperform all the
other monocular approaches on all metrics. We obtain com-
parable results with the stereo approach 3DOP [5], which
has been trained and evaluated on KITTI and makes use of
stereo images during training and test time. On the other
hand, our method has been only trained on nuScenes, mak-
ing it less likely to overfit on KITTI.

In Figure 4, we make an in-depth comparison against
monocular Mono3D and the stereo approach 3DOP, ana-
lyzing the average localization error as a function of the
ground truth distance. We also compare the performances
against the task error due to human height variations mod-
eled in equation 1, which approximate the upper bound
of performances on pedestrian localization for monocular
methods. It is worth noticing that 3DOP is able to over-

come the threshold for closer instances. This is expected
as stereo approaches are not subjected to the same intrinsic
limitation of the monocular ones. Even with such intrinsic
ambiguity, our method results in more stable performances,
with a quasi-linear behaviour which almost replicates the
target threshold. Figure 7 shows our qualitative results on
challenging images from nuScenes and KITTI datasets.

Uncertainty. We compare in Figure 5 the aleatoric un-
certainty predicted by our network through spread b with
e, the task error due to human height variation defined in
equation 1. The predicted spread b is a property of each
set of inputs and, differently from e, is not only a function
of the distance from the camera d. Indeed, the predicted
aleatoric uncertainty includes not only the uncertainty due
to the ambiguity of the task, but also the uncertainty due to
noisy observations [20], i.e. the 2D joints inferred by the
pose detector. Hence, we can approximately define the pre-
dictive aleatoric uncertainty due to noisy joints as b− e and
we observe that the further a person is from the camera, the
higher is the term b − e. The spread b is the result a proba-
bilistic interpretation of the model. On nuScenes validation
set, we observe that 69% of the detected instances lie in the
interval µ ± b. On KITTI validation set, we observe that
68% of the annotations lie in the confidence interval given
by the spread b.

The combined aleatoric and epistemic uncertainties are
captured by sampling from multiple Laplace distributions
using MC Dropout. The magnitude of the uncertainty de-
pends on the chosen dropout probability pdrop in eq 4. We
test different dropout probabilities and choose pdrop = 0.2.
We perform 100 computationally expensive forward passes
and, for each of them, 100 computationally cheap samples
from Laplace distribution using eq 5. As a result, 85% and
82% of pedestrians lie inside the predicted confidence inter-
vals for the validation sets of nuScenes and KITTI, respec-
tively.

Our final goal is to make self-driving cars safe and be-
ing able to predict a confidence interval instead of a single
regression number is a first step towards this direction. To
illustrate the benefits of predicting intervals over point es-
timates, we construct a controlled risk analysis. We define
as high-risk cases all those instances where the ground truth
distance is smaller than the predicted one, hence a collision
is more likely to happen. We estimate that among the 1932
detected pedestrians in KITTI which match a ground truth,
48% of them are considered as high-risk cases, but for 89%
of them the ground truth lies inside the predicted interval.

Outliers Leveraging on the simplicity of manipulation of
2D joints, we analyze the role of the predicted uncertain-
ties in case of an outlier. As shown in Figure 6, we recreate
the pose of a person lying down and we compare it with a



Figure 7. Illustration of results from KITTI [12] (top and middle) and nuScenes [34] (bottom) datasets containing true and inferred
distance information as well as confidence intervals (represented by ellipses with minor axis of 1 meter). We observe that the predicted
uncertainty increases in case of occlusions (bottom image, pedestrians 1 and 2).

”standard” detection of the same person standing up. When
the pedestrian is lying down, the network predicts an unusu-
ally large confidence interval which still includes the ground
truth location.

In the bottom image of Figure 7 we also highlight the
behavior of the model in case of partially occluded pedes-
trians (pedestrians 1 and 2), where we also empirically ob-
serve higher confidence intervals when compared to visible
pedestrians at similar distances.

5.4. Ablation studies

In Table 2 we analyze the effects of choosing a top-down
or a bottom-up pose detector with different loss functions
and with our deterministic geometric baseline. L1-type

losses perform slightly better than the Gaussian loss but the
main improvement is given by choosing PifPaf as pose de-
tector.

6. Conclusions
We have proposed a new approach for 3D pedestrian lo-

calization based on monocular images which addresses the
intrinsic ambiguity of the task by predicting calibrated con-
fidence intervals. We have shown that our method even out-
performs a stereo approach at further distances because it is
less sensitive to low-resolution imaging issues.

For autonomous driving applications, combining our
method with a stereo approach is an exciting direction for
accurate, low-cost 3D localization.
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