
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Anton SMIRNOV

Présentée le 6 juin 2019

Thèse N° 9504

Scanning near-field optical microscopy with new probes and 
feedback modes

Prof. F. Courbin, président du jury
Prof. G. Dietler, Dr. S. Sekatski, directeurs de thèse
Prof. S. Popov, rapporteur
Prof. A. Zayats, rapporteur
Prof. O. Martin, rapporteur

à la Faculté des sciences de base
Laboratoire de physique de la matière vivante
Programme doctoral en physique 



2



Scanning near-field optical microscopy with new probes

and feedback modes

Abstract

Scanning near-field optical microscope (SNOM) technique enables to overcome

Abbe diffraction limit of far-field optics as well as to obtain simultaneously optical

and topographical images. While the optical resolution of the method is limited by the

aperture size and is typically50−100nm, an excellent spatial resolution in a topography

channel, quite comparable with atomic force microscope (AFM), can be realized.

Naturally, we need a convenient and precise method to control the distance between

the tip and sample for the successful operation of any SNOM device. Nowadays, by

far the most popular method of the SNOM tip-sample distance control is the shear

force – based feedback employing a glass fiber attached to the quartz tuning fork (TF).

However, the shear-force distance control method is far from the ideal one. The

crosstalk between optical and topographical image can warp the results. The forces

between the tip and sample are high and in many cases might be destructive. We

report the realization of a new approach to the problem: bent sharpened glass optical
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fibers with carefully controlled sizes of the bent part and the radius of the curvature of

the bending were prepared and experimentally exploited as SNOM probes. Detailed

analysis of fiber vibration modes shows that realization of truly tapping mode of

the probe dithering requires extreme caution. In case of using the second resonance

mode, simply “bent”, or “curved”, probes vibratemostly in the shear-forcemode unless

the bending radius is rather small (∼ 0.3mm) and the probe’s tip is short. The

probes having these characteristics were prepared and attached to the TF in the double

resonance conditions, which enables to achieve a significant quality factor of the sensor.

Another common problem of most aperture SNOMs is the fragility of the tip. We

proposed and realized the use of different plastic fibers to solve this problem. These

fibers look very promising for the use as SNOM probes, and are characterized by

much less fragility (compare glass and plastic) and greater ease of the tip preparation.

For such preparation, hazardous treating with hydrofluoric acid, which remains the

most popular approach to prepare SNOM probes from the glass fibers, can be entirely

avoided.

Fluorescence resonance energy transfer (FRET) is one of the most promising ways

to improve the spatial resolution of the SNOM, and the main part of the Thesis is

devoted to the elaboration of FRET SNOM. The idea is to use a donor (acceptor)

nanoparticle/molecule as local fluorescence center attached to the tip and measure the

fluorescence induced by it in the sample (or vice versa) due to the FRET. Ca. ten years

ago, this idea has been realized at the single molecule level with CdSe nanocrystals
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and appropriate dye molecules. Despite the high spatial resolution (better than 20nm)

attained in this experiment, it remains an isolated one, and this is for a valid reason:

albeit rather large, the photostability of dyemolecules and semiconductor nanocrystals

still enables to use a single fluorescence center exploiting for imaging only a fewminutes

at best. Fluorescent centers with high photostability should be used to overcome this

problem. Earlier, claimed to be very photostable and bright nitrogen-vacancy (NV)

color centers in nano-diamond (ND) crystals were proposed, and the corresponding

researches started in LPMV EPFL almost ten years ago. In the Thesis at hand, we

finalize this work showing that such system is not suitable to realize single fluorescent

center FRET SNOMmethod. We propose to use certain rare-earth ions in crystals to

achive the goal, in particularLuBO3 : (Tb)micro- and nanocrystals.

Keywords: SNOM, FRET, NV,ND, POF, PC, LRSPP, scanning near-field optical

microscopy, fluorescence resonance energy transfer, tappingmode, plastic optical fibers,

bent fibers, double resonance, photonic crystal, long-range surface plasmon-polaritons,

silver nanofilm.
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Scanning near-field optical microscopy with new probes

and feedback modes

Résumé

La technique SNOM est capable de dépasser la limite de diffraction d’Abbe ainsi que

d’obtenir simultanément des images optiques et topographiques. Bienque la résolution

optique de laméthode est limitée par la taille de l’ouverture (compris entre50 et100nm,

une bonne résolution spatiale est obtenue en topographie, comparable à celle obtenue

avec l’AFM. La distance entre la point et l’échantillon doit être contrôlée de manière

précise lors de l’utilisation d’un appareil SNOM. De nos jours, la technique la plus

souvent utilisée pour contrôler la distance entre la pointe de SNOM et l’échantillon

est le feedback lié à la force de cisaillement en utilisant une fibre de verre connectée a

un diapason en quartz. Cependant, laméthode de contrôle par force de cisaillement est

loin d’être lameilleure. Les interférences entre image optique et topographiquepeuvent

déformer les résultats. Les forces entre l’échantillon et la pointe sont forte et peuvent

être facilement destructrices. Nous reportons une nouvelle approche pour résoudre ce

problème : les fibres optiques en verre pointues et incurvées/pliées, avec un contrôle
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précis de la taille ainsi que du rayon de courbure du pli, ont été préparées et testées

en tant que sondes pour SNOM. Des analyses détaillées du mode de vibration de la

fibre montrent que la réalisation en mode intermittent du tremblotement de la sonde

nécessite une grandeprécaution. Dans le cas où le secondmodede résonnance est utilisé,

les sondes simplement «pliées» ou «incurvées» vibrent principalement en mode force

de cisaillement à moins que le rayon de courbure soit petit (0.3mm) et que la pointe

de la sonde soit courte. Les sondes possédant ces caractéristiques ont été préparées et

attachées au TF dans des conditions de double résonnances ce qui permet d’obtenir un

facteur de qualité du capteur significatif.

Un autre problème fréquent chez la plupart des sondes de SNOMest la fragilité de la

pointe. Nous proposons l’utilisation de fibre en plastique pour résoudre ce problème.

Ces fibres semblent très prometteuses en tant que sonde pour SNOM car elles sont

moins fragiles et plus simples à préparer. En effet la préparation des fibres optiques

en verre requiert l’utilisation d’acide hydrofluorique, qui est extrêmement dangereux à

utiliser, et cela peut être éviter en remplaçant la fibre en verre par une en plastique.

FRET est une des techniques qui pourrait indure la compatibilité entre les données

optiques et topographiques. Le principe est d’utiliser une molécule ou nanoparticule

comme centre de fluorescence, (donneuse/accepteuse), attachée à la pointe et de

mesurer la fluorescence induite par ces molécules dans l’échantillon ou vice versa.

Cette méthode a été réalisée au stade molécule unique avec des nanocristaux de

CdSe et des colorants fluorescents appropriés. Malgré la bonne résolution spatiale
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obtenue lors de cette expérience (supérieure à 20nm), cela reste un cas isolé pour une

raison: bien que large, la photostabilité des molécules fluorescentes et des nanocristaux

semi-conducteurs permet l’utilisation d’un fluorochrome unique pendant quelques

minutes uniquement. Les centres fluorescents à haute photostabilité devraient

être utilisés pour résoudre ce problème. Auparavant, des centres de couleurs NV

prétendument très photostables et brillants dans des cristaux de nanodiamants avaient

été proposés, et les recherches correspondantes ont commencé à LPMV EPFL il y a

près de dix ans. Dans la Thèse à l’étude, nous finalisons ce travail enmontrant qu’un tel

systèmen’est pas adapté à la réalisationde laméthodeFRETSNOMàcentre fluorescent

unique. Nous proposons deux solutions : l’excitation alternative des centres d’azote

vacant dans les nanodiamants et l’utilisation de nanocristaux composés de LuBO3 :

(Tb).

Mots-clés: MOCP, SNOM, FRET, NV, ND, POF, PC, LRSPP, le microscope

optique en champ proche, le transfert d’énergie entre molécules fluorescentes, le

mode tapping, le fibres pliées, fibre optique plastique, double résonnances, cristaux

photoniques, plasmon-polariton de surface longue-portée, nanofilm d’argent.
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0
Introduction

Light or in general electromagnetic radiation is probably the best information carrier

known of today. As a result, on the par with nanoelectronics, nano-optics has emerged.

Naturally, it requires the existence of proper tools and techniques to support this

evolution and SNOM is definitely one of such tools.
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Chapter 0. Introduction

0.1 Historical overview

A human eye can distinguish objects down to 200µm in average. However,

magnification systems can help to see more. Naturally, people were always looking for

a way to do it.

More than 3 thousand years ago ancient scientists developedfirstmicroscopes. Itwas

primitive bead-like magnifiers which could provide magnification ten times roughly.

The situation lasted until XV II century when Antoni van Leeuwenhoek (1632 −

1723) designed a lens with very high magnifying power - 500 times. It was very tiny

lenses which allowed to see bacteria for the first time. Meanwhile, the astronomer

Galileo (1564 − 1642) announced his two-lens microscope. These inventions led to

the genesis of modern microscopes which now have a practical limit of magnification

around 2500 times.

Alike all optical systems confining beams of light, the microscope has a limit of

resolution due to diffraction. Back in 1873, Ernst Abbe figured out that light with

wavelength λ, traveling in a medium with refractive index n and converging to a spot

with half-angle θ will have a minimum resolvable distance:

d =
λ

2nsinθ
. (0.1.1)

Thus the Abbe limit is d ≈ λ
3
for modern optics

However, super-resolution techniques can surpass such a limit using fluorescent

dyes. In 1994, Stefan W. Hell and Jan Wichmann developed stimulated emission

depletion microscopy (STED); capable of overcoming the diffraction barrier using

non-linear characteristics of the fluorescence with two-step excitation [1]. The idea
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0.1. Historical overview

itself was patented in 1986 by V.A. Okhonin [2], however Hell was not aware of

this judging from the lack of the reference. STED microscopy allows reaching

of a 10nm lateral resolution. However, such an approach requires an expensive,

sophisticated setup. At the same time, photo activated localizationmicroscopy (PALM)

[3, 4] and stochastic optical reconstruction microscopy (STORM) [5] utilizing

sequential stochastic fluorophores activation can be realized via commercially available

microscope capable of single molecule image registration. The central principle behind

thesemethods is stochastic photoswitching, wheremost of themolecules are in the dark

state. The low-intensity excitation light activates a small fraction of molecules, which

are bleaching after their localization.

All far-field techniques have their advantages and drawbacks but only SNOM can

give excellent resolution and link topography with optical features.

The first ever published idea of near-field imaging [6] arise from the discussion

between Synge and Einstein and proposes a concept of an apparatus which is very close

to modern SNOMs. Synge suggested putting a very bright light source behind a metal

screen with a tiny pinhole (order of 100nm) and a sample in front of the screen at a

distance comparable with pinhole size. In such a system the image of a sample should

be obtained via scanning of the sample. In the end, Synge was ahead of his time with

his idea.

The next serious attempt to realize near-field imaging was undertaken in 1972 by

Ash and Nichols [7]. They demonstrated sub-wavelength imaging capabilities in the

microwave range. They succeeded to achieve
λ

60
resolution in one dimension.

Synge’s idea was finally realized starting from 1984 by two groups independently:

Lewis, Isaacson, Harootunian, and Betzig from Cornell University [8] with λ/16

resolution and Pohl, Denk, and Lanz [9] from IBM (Rüschlikon, Switzerland) with
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Chapter 0. Introduction

λ/20 resolution. As a result, nowadays, we have advanced SNOMexploiting very sharp

light sources (R << λ) kept close to the sample (d << λ) using AFM, scanning

tunneling microscope (STM) techniques.

Combining the distance control method fromAFM/STMwith the optical channel,

a resolution up to 30nm could be reached for such a microscope: this fits somewhat

in between AFM and classical optical microscope. In this case, the size of the light

source limits the resolution. Attempts to increase the resolution more than 30nm by

decreasing the size of an aperture are not practical due to a strong dependence of the

light intensity coming through the hole on the aperture size.

0.2 Classical optical microscopy

At the end of theXV II century, Ernst Abbe found that the resolution of an optical

microscope is strongly dependent on its aperture. In several experiments with the

objects having a periodic structure, he showed that this aperture factor is due to the

diffraction of light.

According toAbbe’s theory, even themost perfect lens build the imagewith a certain

error. Since any lens has a finite aperture, it can collect a limited amount of spatial

frequencies from the object’s light field. Light beams corresponding to high spatial

frequencies do not participate in the formation of the image. Thus, an image formed

by a lens cannot be a copy of the object, because of thesemissing tiny structure features.

Ultimately, the studied object can be expressed as a collection of point sources, where

each point source is imaged as anAiry disc (”circle of confusion,” an optical spot caused

by a cone of light rays from a lens not coming to a perfect point focus when imaging

a point source). The image of the object will be an overlay of such discs. In case of a

microscope, the Airy disc in the image plane have a radius equal to 1.22λL/D and
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0.2. Classical optical microscopy

is formed on a relatively large distance L by an objective with a diameter D. Thus,

according to the Rayleigh criterion, a microscope can resolve two neighboring points

separated by a distance l if a span between their Airy discs l′ is larger than the diffraction

spot radius:

l′ ⩾ 1.22
λL

D
= 0.61

λ

u′
. (0.2.1)

Where 2u′ = D
2L

is an aperture angle from the image side and the formula is valid for a

circular aperture.

Figure 1: To the illustraঞon of Abbe sine condiঞon

We can go to the linear size of the object itself using Abbe sine condition which is

correct for any microscope objective. Thus, when the u′ is small, the condition can be

written as l · n · sinu = l′ · n′ · sinu′ = n′ · l′ · u′, where 2u is an aperture angle from

the side of the object. Therefore, we have:

l ⩾ 0.61
λ

n · sinu
= 0.61

λ

NA
= lmin. (0.2.2)

NA here is a numerical aperture, which is equal to 1.4−1.6 for goodmicro-objectives.

Thus, diffraction is the limiting factor for the microscope resolution.

However, in theory, there is no limitation to get more detailed information about

the object structure. The near-field techniques can circumvent these limitations.
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Chapter 0. Introduction

Weknow[10] that in 2Dmodel complex amplitude of a planemonochromatic wave

is:

f(−→r ) = a0e
i(
−→
k −→r +φ0). (0.2.3)

The wave vector
−→
k is in the plane (x, z) see Figure 2.

Figure 2: The wave vector k is in the plane (x, z)

For this case, the complex amplitude will be

f(x, z) = f0e
i(kxx+kzz+φ0). (0.2.4)

The projections of wave vector k are not independent:

k2x + k2z = k2. (0.2.5)

Thus, kz =
√
k2 − k2x. Therefore, the complex amplitude of a plane wave can be

expressed as follows:

f(x, z) = f(x, 0)ei
√

k2−k2xz ; (0.2.6)
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0.2. Classical optical microscopy

Where complex amplitude of the plane wave in plane z = 0 is:

f(x, 0) = a0e
iφ0eikxx = ceikxx. (0.2.7)

Let’s put in the z = 0 plane a sine amplitude grating with the transfer function:

T (x) = 1 +mcos(Ωx). (0.2.8)

Thus, right behind the grating, the complex amplitude of the wave will be:

f(x) = a0(1 +mcos(Ωx)) = a0(1 +
m

2
eiΩx +

m

2
e−iΩx). (0.2.9)

By multiplying amplitude of plane wave on a 1-dimensional transfer function we can

get an expression for the complex amplitude in any point of (x, z) plane where z =

const ̸= 0. To do this we transform Equation 0.2.9 using Equation 0.2.6:

(0.2.10)f(x, z) = a0(1 +mcos(Ωx))ei
√

k2−k2xz

= a0e
i
√

k2−k2xz(1 +
m

2
ei(Ωx+

√
k2−Ω2z +

m

2
e−i(Ωx+

√
k2−Ω2z)

Thereby, the diffraction at an amplitude sine grating results in three plane waves. One

of them propagates straight in z direction and two others - in directions determined by

the grating period: sinθ = ±Ω

k
.

Moreover, the Equation 0.2.10 implies that if grating period is smaller than the

wavelength, in otherwords,Ω > k, i
√
k2 − Ω2 ·z becomes real and the field amplitude

will decay exponentially. Such a field called evanescent or near-field. These results

confirm Abbe’s theory.

The diffraction of the initialwave on amore fine structure forces the secondarywaves
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to have a more significant divergence angle. Thus to see more detailed structure one

needs to use lenses with a biggerNA value.

If the object is smaller than the wavelength, diffracted waves are evanescent and

cannot be detected with a classical microscope setup (detector placed on a distance

much larger than the wavelength). Here is the limit of traditional optical microscopy.

However one can immediately see a way to overcome this limitation: the detector must

be placed close to the sample - in the near-field. At the same time, the sizes of the

sensor must be comparable with the size of the object features. Since the detector will

observe only local intensity, it shouldbe scanned along theXY plane to get information

about thewhole structure. Or due to the reciprocity of electromagnetic field, a reversed

scheme can be used: the detector should be placed in far-field, and the sample should be

scanned via fine light source (smaller than the wavelength). The latter method is much

widespread nowadays.

0.3 Scanning near-field optical microscope

As it was said before, the sample should be scanned via a small probe, regardless if it is a

detector or a light source. That classifies SNOM as a scanning probe microscope.

There are two main types of SNOM: apertured scanning near-Field optical

microscope (a-SNOM) and scattering scanning near-field optical microscope

(s-SNOM). In s-SNOM, near-field originates from coupled optical/electronic

oscillations caused by the light focused on the sharp metal/dielectric tip. Although the

resolution of such amicroscope is determined by the apex radius (typically 10−20nm),

strong background signal coming from laser light exposure results in difficulties for

the interpretation of an image and leads to a channels crosstalk.

A-SNOMuses sub-wavelength aperture for the light confinement (since this work is
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0.3. Scanning near-field optical microscope

devoted to a-SNOM, only this type will be discussed). The probe can be used as a light

source or light harvester. In any case, the tip should be placed in the near-field zone of a

test object. Due to the exponential decay of the near-field [11], it is essential to keep the

probe on a constant distance from the sample surface (10nm typically). This feature

allows extracting additional information about the sample’s topography. An a-SNOM

have five primary modes: illumination, collection, illumination collection, reflection

and reflection collection. However, illumination mode remains the most popular. In

this regime, the sample is illuminated through the sub-wavelength aperture which is

kept close to the surface. During this process, only a small part of the sample is irradiated

leading to longer sample life. Also, the much larger efficiency collection of light can be

realized.

The typical SNOM setup is represented below, see Figure 3.

The laser light is guided through the optical fiber which has a small subwavelength

size aperture at the end. Since the apex opening must be kept close to the surface, there

should be a distance control system.

The first invented SNOM used tunneling current as a feedback mechanism [12].

To realize it according to the procedure described above, the prepared tip must be

coated additionally with indium tin oxide to provide proper electron properties. Since

the tunneling current is exponentially dependent on the distance, it can provide

outstanding resolution in topography channel and give additional information about

surface properties, but greatly reduces field of applications - only conductive samples

can be studied

Later on, Betzig used scattering-based method utilizing shear-force mechanism [13].

In such an approach, the laser light should be focused on the fiber probe and then, the

scattered light is collected by a position-sensitive diode (PSD) which will give a signal
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Figure 3: Scheme of typical SNOM setup. (1) - laser; (2) - fiber coupler; (3) - opঞcal fiber; (4) -Z scanner holding
a (5) - sharp ঞp a�ached to the quartz tuning fork in double-resonance condiঞon; (6) - sample on the cover-glass
placed on the (7) -XY scanning system; (8) - signal collecঞng objecঞve; (9) - opঞcal filter; (10) - focusing lens;

(11) - light detector.

proportional to the amplitude of oscillation.

Nowadays, the most popular method of the SNOM tip-sample distance control

is the shear force – based feedback employing a fiber attached to the quartz TF first

introduced in 1995 [14, 15]. In this method, the tip oscillates almost parallel to the

surface of the studied sample with a few nanometers amplitude.

As an alternative, normal force feedback mechanism was realized by the group from

Israel [16]. They used the laser light reflected from the cantilever-like fiber towards a

PSD. A tiny mirror was attached to the fiber to improve the reflected signal quality.

One should, however, not forget that all these methods are united by one thing:
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0.4. Scanning near-field optical microscopy probe

when the tip is close to the sample surface (tens of nm), the oscillation amplitude (aswell

as the resonant frequency and quality factor) drops in comparison to the free-standing

probe tip. That can be detected and used as a feedback signal for the distance control.

The light coming through the aperture interacts with a sample and converts into

far-field irradiation which can be efficiently collected by a micro objective and detected

via standard devices ( e.g. charge-coupled device (CCD) camera, photo-multiplier

tube). For convenience, this scheme is usually based on an inverted optical microscope.

0.4 Scanning near-field optical microscopy probe

The key element of a SNOM is the probe. It should have a sharp tip with a

sub-wavelength aperture, and have some mechanism of keeping this tip at a fixed

distance from the sample.

0.4.1 Fiber tip

For visible light several different apertured tips were developed [9, 17, 18]. However,

only the sharpened single mode optical fiber tip coated by aluminum, first realized in

1991 [19] proved to be efficient. According to this concept, the optical fiber should be

sharpened in such a manner that it has a flat end face (20nm < diameter < 500nm)

perpendicular to the fiber axis. The resulting tip apex must be coated by shadow

evaporation (see Figure 4) with an aluminum layer (> 100nm). The key of success

of such a tip is the efficiency of light transmission. Note, that the optical resolution of

SNOM is limited by aperture size and is typically 50− 100nm.

To realize such a tip one must think about two primary steps: the sharpening of the

fiber and the coating of the sharpened fiber in the right way.

There exist two ways to prepare a sharp tip: the heating and pulling or the chemical
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etching method. Both of them have endured till current days. However, they result in

different properties of a tip.

The heating and pulling method results into conoid with a smooth surface and

almost a flat end face [20]. This means that the metal coating will have an excellent

quality. However, such a tip will have a blunt end (which results in poor topography

resolution) and low range of available aspect ratios. Furthermore, heating and pulling

of the fiber leads to the significant decrease of the light transmittance due to themixing

of the core with the cladding

Chemical etching method initially invented by Turner [21] results in much better

tip quality. The formation of the apex occurs due to so-called meniscus etching in

hydrofluoric acid. A fiber with a larger radius creates larger meniscus. Thus the etching

of the fiber reduces its diameter, and this leads to the reduction of the meniscus. In

details, this problem was solved many years ago [22, 23]. Such a method of etching

results into sharp reproducible tips (aspect ratio can be varied by adjusting the etching

solution). However, the etching procedure usually leads to a rough surface which

causes relatively poor metal coating quality. This problem can be solved using the tube

etching method developed by Stöckle in 1999 [24]. Convective flow ofHF inside of

a polymer layer results into a much smoother surface of the tip. Unfortunately, this

process remains very hazardous.

The resulting sharp tips must be coated by a metal layer to localize light at the very

apex of the tip. To do this, a so-called shadow coating procedure can be used. In

this method, the process of the aperture formation occurs as follows. Coating by

evaporationof ametal takes place on thefiber rotating around its axis in such conditions

that the apex is in the geometrical shadow, see Figure 4. Thus the side walls are coating

much faster than the apex which leads to an automatic aperture formation on the apex.
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0.4. Scanning near-field optical microscopy probe

Figure 4: Principle of metal coaঞng by the shadow evaporaঞon

Needless to say that glass fiber probes are incredibly fragile and require very careful

handling.

0.4.2 Shear-force Feedback mechanism

The first shear force feedback mechanism for SNOM was realized by Betzig [15]. In

this experiment, he extracted the oscillation amplitude from the light scattered by the

fiber. As it was said before, normal force feedback was implemented as an alternative.

However, all these methods have one severe disadvantage - additional laser light brings

a strong parasitic signal.

In 1995 a tuning fork based shear-force detector was implemented [25]. This

method is realized as follows. The prepared probe is glued along one prong of the

TF. The system is excited at its resonance frequency (close to 215Hz = 32768Hz).

Approaching this fiber to the sample surface leads to the drop of the oscillation
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amplitude, and a shift of the resonance frequency, and Q-factor. As a result, a signal

coming from TF is changing, and the shift in frequency can be detected and used as a

feedback. As an explanation of the mechanism, different concepts were proposed such

as time-varying attractive Van der Waals and capillary forces acting on the tip [14] or

actual contact between the fiber and the specimen [26]. But is most important, this

method allows to achieve stable operation of the SNOM.

0.4.3 Tuning fork resonator

TF is a quartz Y-shaped resonator (see Figure 5) utilizing piezoelectric effect and

mechanical resonance to achieve an electrical signal with a precise frequency. The

oscillator’s fork is made of quartz crystal. The electrodes are thin metallic stripes

realized by a chemical vapor deposition (CVD) or ”burning in” method and have a

specific orientation to the crystallographic axis. The resonator is fixed in the nodes of

working oscillation mode to diminish energy dissipation through the crystal fixation.

The use of electrodes allows the electrical excitation of a TF. Due to the stiffness of

quartz, the component has a large quality factor and outstanding frequency stability.

Figure 5: The model of a TF resonator
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0.4.4 Probe montage mechanism

The finished SNOM probes should be attached to the quartz TF. There are two main

ways of doing that.

The first method which is in use since the invention of TF as a feedback sensor is a

non-resonant set-up. To attach the fiber to the TF one needs to glue the fiber onto TF

prong in such a way that the protruding part of the fiber should be ≈ 0.5mm. This

results in the formation of a mechanical system with quite low Q-factor (below 300)

enabling, high operation speed but with limited sensitivity.

The second way is to use the double resonant conditions [27, 28]. Such montage

requires the matching of the frequencies: the working frequency of the tuning fork

(which is close to32756Hz) coincideswith the second resonant frequency of the lateral

dithering of the free-standing part of the fiber beam. It is essential to glue carefully

both the fiber onto the metal case of the TF (to create the “hinging point”), and

the 40µm−diameter glass driving rod onto the fiber and one of the TF’s prongs (see

Figure 6). Such a method of attaching of the fiber to the tuning fork results in a quite

large quality factor: the initial value ofQ is lying in the range of 10000−12000, which

is characteristic for a free unloaded tuning fork in air, and then drops down to values

ranging 4000− 6000 after proper gluing of a glass fiber probe onto it.

Figure 6: Double-resonant montage of metalized POF (a) onto a TF (b) via thin glass rod (c) connecঞng fiber
and TF. d - metal case.
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0.5 Fluorescence Resonance Energy Transfer Scanning Near-field

Optical Microscopy

As it was said earlier, the optical resolution of classical SNOM is limited by an aperture

size. However, it can be further improved. FRET is one of the most promising ways of

SNOM evolution.

FRET is an electrodynamical phenomenonwhich occurs between a donormolecule

(in the excited state) and an acceptor molecule (in the ground state), caused by

dipole-dipole interaction [29]. The donor molecule emits light that spectrally overlaps

with the absorption of the acceptor. At small distances, such an interaction occurs

without the emission of a photon. The transfer rate of energy as a function of

donor-acceptor distance r can be expressed as follows:

kT (r) =
1

τD
(
R0

r
)6, (0.5.1)

Where τD is the decay time of the donor in the absence of acceptor andR0 is the Förster

distance. TheR0 canbedetermined as thedistance atwhichhalf of thedonormolecules

decay by energy transfer and half decay by the usual radiative way. It varies from 20 to

90Å for typical donor-acceptor pairs.

The idea of FRET SNOM is to use a donor (acceptor) nanoparticles/molecules as

local fluorescence centers attached to the tip and measure the fluorescence induced

by them in the sample (or vice versa) due to the FRET effect. This idea has been

realized at the single molecule level with singleCdSe nanocrystals and appropriate dye

molecules [30]. Despite the very high spatial resolution (better than 20nm) attained in

this experiment, it remains an isolated one, and this is for a valid reason: albeit rather

large, the photostability of dye molecules and semiconductor nanocrystals still enables
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to use a single fluorescence center exploiting for imaging only a few minutes at best.

Fluorescent centers with high photostability should be used to overcome this problem.

0.6 The ultimate goal

This work is focused on the further increase of the resolution of a-SNOM and

attempts to simplify the work of researchers utilizing SNOM. In the introduction

chapter, thebasic principles of SNOMoperationwerediscussed, and several limitations

were pointed out. Nowadays most of the biologists prefer to use classical optical

microscopes due to their stability and the ease of use, despite their limitations. Still, the

extreme sensitivity of SNOM allows performing measurements using ultra-low dyes

concentration. Here, we propose avenues to improve the SNOM technique to further

enhance its capabilities.

The primary goal was to find out if it is possible to realize stable a FRET SNOM.

We report the results of our attempted experiments to use for FRET SNOMNV color

centers in ND crystals which are claimed to be extraordinarily photostable and bright.

Most of the attempts were unsuccessful, and as a plausible explanation, we propose the

absence (instability) of NV centers lying close enough to the ND surface. Prospects of

the use of rare earth ions in crystals, which are known to be extremely photostable, are

also discussed.

The first step of SNOM technique improvement was to make probes

sample-friendly, or in other words, to find the way how to minimize the sample

and probe destruction during imaging. We report the realization of a new approach:

bent sharpened glass optical fibers. Together with small tip-sample acting forces,

bent fibers provide more convenient navigation in microscopic mode (due to saving

the space above the tip). We prepared the glass fibers with carefully controlled (and
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small) sizes of the curved part and the radius of the curvature of the bending to realize

tapping mode. The design of these probes has been based on detailed theoretical and

numerical studies of the relative tip-sample surface motion. We showed that these

same aforementioned small sizes are necessary to achieve the tapping mode; otherwise,

the “shear force type” interaction not only persists but very often dominates the whole

picture. The SNOM performance with such probes is also discussed.

The next step was to improve the durability of the probes. We developed alternative

probes for SNOM made from POF with much less fragility (in comparison to glass

one) and greater ease of tip preparation. The work has focused on finding of a proper

POF which can be used as a substitute for glass fiber, an appropriate protocol of their

preparation and further testing. As a result, we found an ideal (we believe) solution -

fibersmade of cyclo-olefin polymerswhich are known as a plastic glass. Thuswe can get

the same sharpness of the apex (resulting in excellent topography) and optical quality.

There aremore applications of the SNOMmicroscopes. Namely, SNOM is the best

tool to study electromagnetic surface waves. The nm-scale of field features requires

very high optical resolution. In the frames of the development of plasmonic devices, we

started the investigations of surface plasmon polaritons (SPP)-based structures. Since

the electromagnetic waves propagating along the surface can be strongly affected by

defects of the surface, we decided to study the influence of features of thewaveguides on

the field distribution. Presumably, the supporting structure gives a significant impact

on the behavior of the electromagnetic waves as well. Thus we developed a high quality

supporting structure for long-range surface plasmon polaritons propagating along the

surface.
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0.7 The structure

The thesis is structured into 7 chapters.

Chapter 0 provides the historical overview and the principles of SNOM.

Chapter 1 focuses on the possible realizations of FRET SNOM. The approach of

use NV centers in ND crystals is reported.

Chapter 2 discusses in detail tapping mode SNOM.

Chapter 3 proposes a solution of SNOM tips lifetime problems.

Chapter 4 provides an overview of the SNOM performance with fictionalized

probes.

Chapter 5 discusses the realization of the first photonic crystal (PC)-supported

long-range surface plasmon polaritons (LRSPP) in thin silver nanofilms.

Chapter 6 provides the summarized results and an overview of the field.

Chapter 7 gives an extra information.

41



Chapter 0. Introduction

42



1
Fluorescence resonance energy transfer

scanning near-field optical microscopy

A few years ago the first true single molecule FRET SNOM images were demonstrated

usingCdSe semiconductor nanocrystal – dye molecule as donor-acceptor pair [30].
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Despite this achievement, more extended experiments revealed the necessity to have

much more photostable fluorescent centers if such imaging technique should become

a practically used tool. Here we report the results of our experiments which were,

attempted to use NV color centers in ND crystals: the ND crystals are claimed to be

extremely photostable and have a large optical excitation and emission cross section,

for FRET SNOM. All attempts were unsuccessful, and as a plausible explanation we

propose the absence (instability) of NV centers lying close enough to the ND surface.

Prospects of the use of rare earth ions in crystals, which are known to be extremely

photostable are also discussed, for single molecule FRET SNOM.

1.1 Overview

FRET SNOM, which idea is illustrated in Figure 1.1, consists in a division of a donor

– acceptor FRET pair between a SNOM tip and a sample[30, 31]. If donor fluorescent

centers of the imaging tip are excited and the fluorescence of the acceptor centers of the

sample ismonitored (or vice versa)when the tip is scanning along the sample surface, the

spatial resolution is governed not by the aperture size of the SNOMtip but by the value

of a characteristic FRET (Förster) radius R0. The latter for typical donor – acceptor

pairs ranges between 2 − 9nm [32–34] and thus the spatial resolution of the SNOM

microscope can be ten times improved without the loss of sensitivity: the resolution of

a “standard” aperture SNOM is governed by an aperture size which can not be made

essentially smaller than 50nm due to the very rapid decrease of the light transmission

through the tip when the aperture is decreasing [35–37].

To achieve the subtip spatial resolution with this method, we do not need to work

with single molecule version: only a cylinder with the radius r =
√
2RR0 contributes

to the signal [30], see Figure 1.1. Here R is the curvature radius of the SNOM probe
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1.1. Overview

Figure 1.1: Illustraঞon of the FRET SNOM approach, single fluorescent centre case. Schemaঞc is shown on the
inset, in the top right corner, whereR is a radius of the curvature of SNOM probe apex;R0 - Förster radius;

r =
√
R2 − (R−R0)2 ≈

√
2RR0 - the cylinder radius that contributes to the signal.

apexwhich is typically equal to 50−100nm, and usually exactly this radius determines

the spatial resolution. It is easy to see that r << R.

Immediately after the method has been proposed [31], the corresponding

experiments were started and nanolocal FRET SNOM measurements and FRET

SNOM images have been reported by a number of research groups using such

fluorescent centers like dye molecules [38–41], semiconductor nanocrystals [42–44]

andF−aggregated color centers inLiF crystals [45]. Finally, in 2008 these efforts lead

to observation of true single molecule FRET SNOM images in an experiment where

4.8 − 4.9nm CdSe nanocrystals (this is the core diameter; the core was covered with

a protective 1 − 2nm thick ZnS layer) deposited onto a glass slide and were used as

donors theAlexa Fluor 594 dyemolecules (Molecular Probes,Oregon,USA) contained

inside a thinpoly(methylmethacrylate) (PMMA)coatingover the SNOMtip apexwere

used as acceptors [30].

However, the results reported in [30] remained isolated and did not lead to the real
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appearance of single molecule FRET SNOM imaging methods. The current situation

is still more like “towards single molecule FRET SNOM” because of the limited

photostability of dye molecules and semiconductor nanocrystals used for imaging.

(Our FRET SNOM studies involving CdSe nanocrystals did not confirm that their

photostability is much larger than that of rhodamine dyes contrary to what is often

stated). The time of life of a fluorescent center is determined by the photostability

Nphst
∼= 107cycles (a good one) and is equal to

t =
Nphsthν

Iσ
, (1.1.1)

which give us t ∼= 30s for a typical single fluorescent center with optical absorption

cross section σ ∼= 10−16cm2, photon energy hν ∼= 3 · 10−19J and the near-field

illumination intensity I ∼= 103
W

cm2
. In practice, this means that to observe single

molecule FRET SNOM images, a special construction of microscope enabling quite

fast scanning should be exploited, and extreme precautions should be implemented

to avoid the premature photobleaching of acting single FRET centre by light (such as

opening of light source only after the scanning has already started, etc.). Despite all this,

such an observation still requires a certain luck.

The situation would change dramatically provided that (say, two orders of

magnitude) more photostable fluorescent centers are used. Naturally, this suggests

to attempt the famous NV defect centers in ND crystals, claimed to be extremely

photostable [46–49]. FRET SNOM imaging, and related studies were carried out

not only in our group but also elsewhere. Still, to the best of our knowledge, these

experiments did not result in obtaining of single molecule FRET SNOM images.

Another extremely photostable fluorescent centers are rare-earth ions in crystals, and
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they should naturally be considered as perspective, active elements for FRETSNOMas

well. In particularLuBO3(Tb)microcrystals, in which FRETwas observed in certain

conditions before [50].

1.2 From CdSe nanocrystals to color centers in nano-diamond

crystals

The limitations of our first single molecule FRET SNOM images brought us to the

idea to use ultraphotostable NV color centers in ND crystals. Indeed, these same color

centers were considered as prospective from the very beginning of the FRET SNOM

research [31], while their first use in SNOM area (as local fluorescence source) goes

back to 2000 [51]. The same motivation promotes the use (or attempts to use) of

diamond NV fluorescent centers in many other areas. As an example, we can indicate

the rather successful application of such an object in STEDMicroscopy field [52, 53]

where exactly the same photostability problem defines the ultimate spatial resolution

achievable.

Photophysics of NV color centers is still not fully understood and remains debated.

Especially, this is validwhen details concerning charge statesNV0 andNV− of nitrogen

vacancy and their inter-transformations (either spontaneous or specially induced) are

considered. Nowadays, almost exclusively the NV− state that is exploited. It was

decided not to target certain particular charge state but to search for imaging caused by

either NV0 (luminescence band essentially in 570 − 700nm spectral range) or NV−

(620 − 750nm) states. Indeed, detailed time-resolved experiments with single NV

centers show thephoto-switching fromneutral to negatively charged state ofNVaswell

as reverse photochromic transformation with the time constant ranging 0.3 − 3.6µs

(2.1µs average) underdark conditions [54]; earlier, photochromismhasbeen shown for
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bulk samples [55]. There are no two different types of defects but “both fluorescence

bands originate from the same defect” and “continuous switching between two charge

states exists” [54]. The laser ionization of nitrogen donors present in the vicinity of

the NV defect is a plausible mechanism of NV0 to NV− conversion, and this means

that such a process should be strongly dependent on the concrete properties of colored

ND and laser illumination conditions. In a sense, NV0 state should be considered as

a “main” one which is initially present (and consequently, its luminescence should be

“always” observed) while NV− state should first be created by the irradiation so that its

observation may be not guaranteed at all.

Following this paradigm, different laser dye molecules to be exploited as acceptors

for either NV0 or NV− donors were systematically tested in our experiments (oxazine

1, oxazine 750, Rhodamine 800) [56]. This circumstance makes mostly irrelevant still

much debated question to what extent the neutral charge state is preferable at small (a

few nanometers) distances from theNDparticle surface and to what extent (if any) the
NV −

NV 0
concentration ratio can be influenced by surface modification or other means

[57–60].

Two different sources of bright colored ND crystals were used in our experiments.

The first were solutions and powders of ND crystals purchased from Microdiamant

AG, Lengwill, Switzerland, with the median size of 25nm or 50nm and the

communicated concentration of the nitrogen vacancies approximately 25 − 100ppm

In Figure 1.2 we present an AFM image of these particles.

To color them, the powder of these diamonds has been introduced into specially

prepared “flat” envelopes made from thin 50µm thick Al foil and irradiated by

2.4MeV−energy electron beam in the accelerator ILU-6 (average current 23mA) of

the Institute of Nuclear Physics Siberian Branch of Russian Academy of Sciences,
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Figure 1.2: AFM (Digital Instrument, Santa Barbara, USA, NanoscopeIII, tapping mode) image of 50nm-size
nanodiamond parঞcles deposited onto aptes-coated mica

Novosibirsk, Russia. The total dose of the irradiationwas set to be equal to 1·1018 e

cm2

(for one-half of the sample) and 2 · 1018 e

cm2
(another half). Afterwards, the irradiated

diamond dust has been thermally annealed in technical vacuum (around 1mTor) at

the temperature of 750 − 800◦C during two hours. No further treatment aiming to

remove graphite layers possibly covering the irradiated NDs [53, 61] was undertaken.

This procedure is more or less similar to those suggested in many other papers. It

was reported that for 3 · 1017 e

cm2
and 1.5MeV dose and energy of electron beam,

roughly one NV center in a 30nm - diameter sphere has been created [62, 63] thus we

anticipated somewhat similar results for our case.

The second sample of fluorescent nanodiamonds were commercially available

coloured NDs in solution obtained from L. M. Van Moppes & Sons SA, Geneva,
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Switzerland, (average size of 65nm, concentration of NV colour centres was not

communicated), andAdámasNanotechnologies, Inc., Raleigh,NC,USA,Companies.

For the latter, the content of color centers was indicated as on average 1 − 4 NV

fluorescent centers in one 40nm−size ND particle has been indicated.

In Figure 1.3 we present the 3D photoluminescence spectra of 40nm-diameter ND

obtained for different excitation wavelengths (results for other solutions of fluorescent

ND were similar with appropriate scaling). To prepare the sample, a drop of 5µg/ml

water-based suspension of colored 40nm-size ND particles was dried on a glass slide.

Figure 1.3: 3D Fluorescence spectra of ND with diameter 40nm deposited on a glass slide. Y axis corresponds to
excitaঞon wavelength,X - to emission,Z – intensity of emission. Fluorescence spectra were recorded via Jasco
FP-8500 spectrofluorimeter (Easton, MD, USA) with a detector sensiঞve in the 200− 850nm spectral range.

Thefirst conclusion from these data is the very strong presence of all possible types of

light “scattering” in the recorded signal. (We use this word as a generic term to describe

all observed signal that is not NV luminescence band(s); we did not perform detailed

studies to trace out its origin deeming this irrelevant for our purposes to construct

FRET SNOM. Unfortunately, existence and importance of this type of optical signal
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are almost never reported in the literature). The second conclusion is the presence of

two bright spots located about 435nm and 788nm excitation wavelength which we

believe correspond to dust particles. Large bright “smeared” spot is observed in the

excitation range ≈ 590nm − 640nm, and we believe this is the only appropriate

excitation range for themethod. (Inmostpapers532nm excitationbandasquite strong

forNV-vacancies for natural diamonds is reported. However, we did not see noticeable

emission at 532nm excitation).

The set of fluorescent spectra of ND-water solution, see Figure 1.4, reveals a strong

dependence of the ”fluorescence” peak position on excitation wavelength. Such a

situation is more typical for the Raman scattering of water for example.

Figure 1.4: Opঞcal signal recorded at different excitaঞon wavelengths for 5µg/ml water-based suspensions of
colored 40 nm-size ND parঞcles. The known NV0 luminescence band (590− 700nm) is seen when excited in
the spectral range 540− 630nm and is not seen when excited at shorter wavelengths, see the inset. The

spectra were recorded using a Jasco FP-8500 spectrofluorimeter (Easton, MD, USA) with a detector sensiঞve in
the 200− 750nm spectral range, which may obscure observaঞon of the red part of the NV center’s

fluorescence.

A direct comparison of the fluorescent signal obtained from a solution of colored

40nm-diameter ND with that of Sulphorhodamine B ethanol solution [56] excited in
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the spectral range 530−570nm, was made assuming for both the same quantum yield

and optical absorption cross-section of 3 · 10−17cm2 at maximum for NV centers [64]

(the latter is equal to 6 ·10−17cm2 for dyemolecules at the wavelength of 532nm [56]).

This comparison led to the estimation of the average number ofNV centers in oneND

particle as 0.4− 0.8 thus being indeed not too far from the data communicated by the

producer. Similar estimations gave for 25nm−diameter ND colored in Novosibirsk

the value approximately 0.2− 0.4.

Still to attest the NV luminescence excited by nanosecond pulsed 532nm laser,

we performed measurments of fluorescence kinetics (see Figure 1.5) which gives a

lifetime (intensity weighted) equal to ca. 16ns, thus quite comparable with the

literature data [46–49] (Time Correlated Single Photon Counting module PicoHarp

300, PicoQuant, Berlin, Germany, was used). Such a measurement required incredibly

long time of recording (more than 12 hours) due to very weak signal.

Figure 1.5: Intensity decay of fluorescent 40nm- NDs in water soluঞon (blue curve on the top). The red curve
corresponds to an instrument response funcঞon (IRF). The blue curve on the bo�om represents χ2 of

de-convoluঞon of the intensity decay with the IRF using two exponenঞal decay model.

Similar kinetics have been observed forND samples in thin polymer films and thin
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layers of polymer deposited onto aperture SNOM tip apex. To attach NDs to the

sample/probewe used chitosan (CHI) as amatrix. Themixture of 1µl ofND (wND =

0.1%, water suspension) and 50µl of CHI solution (wCHI = 0.1%: 1mg of CHI

dissolved in 1.0g of CH3COOH 0.8% water solution) give an excellent distribution

of particles resulting in isolated particle next to the tip aperture, see (figs. 1.6a and 1.6b).

The efficiency of excitation of the NV centers fluorescence by ns-pulsed 532nm

laser, with which the most of FRET SNOM experiments employing ND were made,

is hard to estimate. Our data suggest for the corresponding cross section the value

something like at least one order of magnitude smaller than at maximum, i.e. ∼

3 ·10−18cm2. (Note the value 1 ·10−17cm2 used for the optical excitation cross section

at this wavelength in [65]).

For FRET SNOMexperiments, the distance between donor and acceptor should be

smaller than the Förster radiusR0. This adds one more constrain which from the first

glance does not look too restrictive: for a spherical particle of radiusR, only those color

centers which lie at the distances larger thanR − r with r < R0 from the center, can

contribute. ForR = 12.5nm and r = 3nm this signifies thatmore than one half of all

NV centers, provided they are evenly distributed inside a nanocrystal, can be excited.

In brief, the numbers given above show that the task to realize singlemolecule FRET

SNOMwithNV color centers inNDs presently available is certainly demanding. With

the aim of coating the SNOM probe with NDs, we dipped the probes into solutions

containing a polymer (PMMA or chitosan) to attach the NDs to the tips. A suitable

solvent for the polymer (acetone, chloroform or ethanol) and different NDs samples

were used. We retracted the probes from solutions in different ways and let the solvents

to evaporate. In this way, we presented tips coated with NDs of varying sizes and

varying concentrations of NV centers. After solvent evaporation, one has at hand an
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(a) (b)

(c)

Figure 1.6: The SEM image of 5 µl ND-CHI soluঞon dried on freshly cleaved mica. On the 1.6c image, the
obtaining of isolated individual ND parঞcles with this approach is illustrated. 1.6c: SEM image of SNOM ঞp

coated with NDs, isolated parঞcles are marked with red circles.
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aperture SNOM probe which is covered by thin polymer layer with ND particles; the

presence of the latter has been confirmed by fluorescent and kinetic measurements, see

Figure 1.6. Previously, we prepared similar probes with dye molecules [41] and CdSe

semiconductor nanocrystals [42] (we coined the name “self-sharpening pencil probe”

for them).

Nevertheless, despite all these efforts, we were unable to acquire FRET SNOM

images with such probes coated with layers of Oxazine 1, Oxazine 750 or Rhodamine

800 dyes [56] (calculated Förster radii range 46nm) even at the “manymolecules” level.

(These experiments were performed exploiting the excitation by a nanosecond pulsed

532nm laser, 607nm continuous wave (CW) laser and CW argon ion laser line at

514nm; in all cases the necessary Kaiser Optics notch filter and appropriate set of long

pass optical filters were exploited.

Results of our experiments show that the fluorescence efficiency of NV center in

ND crystals is much smaller than 1. Recently, it was confirmed in [66] that the real

quantum yield of NV in ND is much smaller than 1 and typically does not exceed 0.2

with an average value of 0.03, which makes NDs useless for our aims. If one would

measure the fluorescence of 100nmNDswith concentration of 0.1g/L, it will be∼ 55

times weaker than the Raman scattering of water [67] (the exact concentration of NV

centers inND in this work is not mentioned). Furthermore, crashing of 100nmNDs

to a 30− 50nm size will reduce emission by≈ 25 times [66, 67]. Taking into account

blinking effect [68] which become noticeable whenNV-centers are close to the surface,

NDs with NV-color centers become practically useless.

It is known and broadly accepted in the area of near field optics (and fully

corresponds to our own experience) that, when working with CW laser, light intensity

at the subwavelength-size aperture of SNOM probe cannot exceed the value around
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I ∼= 103W/cm2, and this corresponds to the laser power of ca. 0.5 − 3mW at the

entrance of the probe made of single-mode glass fiber. For larger values, the probe can

be easily damaged and burned by light. Correspondingly, when measuring the signal

caused by single fluorescent center, we can expect approximately a counting rate of:

n = η
Iσ

hν
∼= 3 · 103 − 104cps. (1.2.1)

Whereη is an overall efficiency coefficientwhich includes all factors such as fluorescence

quantum yield, photon collection- and detector efficiencies. For the above estimation

it is taken in the range 0.01− 0.03 (a good value indeed) while all other parameters are

the same as were used on the page 46. This value is one-two orders of magnitude larger

than a typical dark noise level of the single photon detector used. Experimentally it is

quite difficult to diminish the parasitic noise signal, caused essentially by unavoidable

stray light. However, if the quantum yield will drops by two orders of magnitude, the

overall efficiency drops as well, andwill result in a signal comparablewith the dark noise

level.

The FRET phenomenon observation between single approximately 20 − nm size

ND and infrared IRdye-800CW (the calculated Förster radius is equal to 5.6nm)

has been reported in [69]. An analysis of this paper shows that here the fluorescent

center is located somewhere close to the nanocrystal center, and a large number of

dye molecules, attached to the surface of this particle, are responsible for an observed

FRET. In this research, the authors used ND colored by 40keV He+ ion irradiation

[70]. It is, of course, clear that much more bright particles can be obtained in such

a way: we not once attempted to produce such bright sources. Starting from a

liquid solution of 50nm diamond particles in water with initial concentration 7 ·
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1010 − 7 · 1012particles/ml prepared by dissolving initial water solutions (with

some additives to prevent coagulation) obtained from Microdiamant AG, Lengwill,

Switzerland. A 10µl droplet of the solution was deposited onto thin quartz plate,

spread over the surface ∼ 0.5cm2 and dried in air, afterwards these plates were

immediately irradiated with He+ ion beam, either of energy 1MeV and dose 3 ·

1015ion/cm2 in van der Graaf generator of Sevchenko Institute of Applied Physics

Problems Belorussian State University, Minsk, Belarus, or of energy 1.7MeV and

dose 1015ions/cm2 in tandemtrone accelerator of Indira Gandhi Center of Atomic

Research, Kalpakkam, India. After a few days these quartz plates were annealed in

technical vacuum at 700◦C for two hours. Based on data reported in [70] and other

available data concerning defect production in dielectrics by high energy ions, we

estimated that in these conditions we should be close to the saturation, i.e. the most

part of nitrogen vacancies could be transferred into fluorescent centers. These samples

were indeed very bright and single fluorescent nanodiamond crystals were easily seen

in our SNOM (in illumination mode) when excited by 514nm line of cw argon ion

laser, see Figure 1.7. Corresponding Kaiser notch filter and a set of appropriate glass

color filters for cutting fluorescence shorter that 590nm have been used during signal

detection. Unfortunately, all attempts to “lift off”brightnanocrystal(s) fromthequartz

sample by approaching and gentle pressure cycle [71, 72] using bare or modified (for

example, coated with thin polylysine layer) SNOM tip to prepare an active FRET

SNOM tip grafted with ND crystal failed. The reverse experiment, namely to acquire

FRET SNOM images of these ND using “self-sharpening pencil” aperture SNOM

probes coated with thin layers of the aforementioned appropriate dyes [41] also were

unsuccessful.

Next, besides the NV centers in ND, other types of defects are now considered
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Figure 1.7: Topographical (le[) and near-field fluorescent images (right) of 50nm - size NDs colored by He ion
irradiaঞon in Kalpakkam, India. Scan size: 150× 150nm

to be used in quantum informatics and could be prospective samples for FRET

SNOM. Diamond can have more than 500 types of defect centers: some of them

look quite suitable, probably even more appropriate than NV centers for the task

at hand. Analysis of the literature shows that, for example, chromium-related color

centers, which possess narrow a fluorescent line∼ 750nm and for which an enormous

quantum efficiency was reported [73] look quite interesting. Similarly, Si-related

color centers (narrow fluorescence line ∼ 740nm) look interesting as well. Recently,

precisely the circumstance that the SiV centers, contrary to the NV centers, are stable

and bright emitters in particles as small as 1.6nm in size, became the main topic of

research [74]; note also that these centers are also theoretically predicted to be stable

in such small crystals [75]. Similarly, Xe−related vacancies [76] can be considered,

and so on. However, the questions of their thermodynamic stability when close to the

nanoparticle surface, aswell as detailed studies of photostability of all these color centers

(which is usually claimed to be quite large however, but we failed to find exact data) and

their quantum efficiency must be undertaken before further steps in this direction will
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become possible.

1.3 Future plans of fluorescence resonance energy transfer scan-

ning near-field optical microscopy with rare earth ions in

nanocrystals

The Förster radius of FRET is independent on the donor dipole moment and

directly related to parameters of the FRET pair (spectral overlap, orientation) and

solution refraction index [32–34]. This is a prerequisite for the use of semiconductor

nanocrystals or color centers (weaker than dyemolecules) as donors for single molecule

FRET SNOM. If one is willing to use rare earth ions in crystals for this purpose

(for many of optical transitions in them the quantum efficiency is close to 100%

even at room temperatures [77–80]), due to their optical absorption/emission cross

sections (dipole forbidden intraband f − f transitions) roughly two − three orders

of magnitude smaller than those pertinent for dyes [77–80], one will have instead of

thousands counts/s, a signal at the level of only of the order of 10counts/s (see

Equation 1.2.1). Knowing that for relatively strong transitions of rare earth ions in

crystals the fluorescence time ranges between tens to two hundreds of microseconds,

the exploitation of µs−duration laser pulses with a repetition rate around 100Hz (i.e.

something similar to what we actually used in our experiments with acousto-optical

modulator [27]) looks desirable and can lead to signal – noise ratio improvement that

can overcome the dark noise detector limit (again, the total laser power at the SNOM

fiber probe entrance should not exceed a fewmW ). However, of course, in any case

such low level of the signal presupposes slow scanning rates, and it’s hard to say if such

an approach is realizable and might be useful in practice.

Certainly, the optical excitation cross section of rare earth ions can be a few orders of
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magnitude larger than the corresponding optical absorption/emission cross section if

the energy transfer fromorganic ligandsornanoparticle surrounding this ion is involved

[77]. Due to the very nature of FRET, if the donor-acceptor distance is equal to Förster

distanceR0, the rate of energy transfer is equal to that of the radiation decay hence the

process of imaging at suchdistances remains slow. Interesting possibilitiesmight appear

if we are able to work at donor-acceptor distances, say, twice smaller than theR0 value.

This will lead to roughly 26 = 64 times increase of the FRET rate: consequently, one

may observe sufficiently strong FRET signal when the active ion of the SNOMprobe is

very close to the acceptor, and observe no signal when there is not an appropriate donor

in its vicinity. Besides, the scanning rate also might be essentially increased, and all this

certainly looks promising for FRET SNOM.

A literature search [50, 81–84] has turned up interesting candidates: for example

the following intense optical transition 5D4 →7 F5 (observed in LuBO3 : (Tb)

crystals on the wavelength λmax = 542.3nm) which was found in Tb3+ ions. Thus

LuBO3 : (Tb) nanocrystals should be considered as a candidate for single molecule

FRET SNOM.The 5D4 →7 F5 transition excited using standard 280nmNd : Y AG

pumped ultraviolet (UV) laser is followed by fast and effective decay of the excited state

back to 5D4 state with the light emission with maximum in the green part of spectrum.

The excitation efficiency of LuBO3 : (Tb) and certain FRET applications were

already reported [50]. We established a collaboration with this group who prepared for

us samples of LuBO3 : (Tb) microcrystals (see Figure 1.8 for an scanning electron

microscope (SEM) image of the microcrystals).

The synthesized samples have different morphology, depending on the fractions

of Tb3+. A 5µL drop of water solution of 0.1% LuBO3(Tb) was deposited on a

silicon wafer and then dried in air (see section 7.1). The sample with higher amount
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Figure 1.8: SEM image ofLuBO3 : (Tb) microcrystals

of Tb3+ had flake-like particles, see Figure 1.9a. The lower portion of Tb3+ led to a

formation ofmore compact structures, see Figure 1.9b. In both cases, the particles have

microscopic size of the order of 1 to 50µm, which is not convenient for utilizing them

as a functional particles. To achieve smaller sized particles we used ultrasonication for a

long period - 12 hours. Such a treatment leads to the functioning of the micro-crystals

into nano-crystals, see Figure 1.9a and Figure 1.9b. Statistical analysis of multiple

SEM images of ultrasonicated particles gives the maximum of the distribution for the

radius at 120nm for Lu0.925BO3 : (Tb0.075) and 400nm for Lu0.85BO3 : (Tb0.15)

respectively.

To excite the fluorescence of such crystals we used a LUV-280 laser (Photonic

Solutions, United Kingdom) with the wavelength 280nm and output power up to

10mW . The fluorescence spectra of LuBO3 : (Tb)microcrystals excited with such a

laser is presented below (Figure 1.10). Such a laser excite the 4F8 →4 F7
5D1 transition

in Tb3+ ion, which is following by relaxation and fluorescence at λmax = 542.3nm
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(a) (b)

(c) (d)

Figure 1.9: Morphology ofLu1−xBO3 : (Tbx) deposited on a silicon wafer.

(a) x = 0.15

(b) x = 0.075

(c) x = 0.15, utlrasonicated for 12 hours

(d) x = 0.075, utlrasonicated for 12 hours

(transition 5D4 →7 F5).

The peak corresponding to this transition is clearly visible on the Figure 1.10. The

red and blue curves corresponds to particles in a shape of a flake and have more intense

signal at λmax = 542.3nm in comparison to the green and purple curves which

correspond to a standard, round shape. Apparently, this complicated structure results

in a higher value of absorption cross section and gives an increased quantumyield. Such

a behavior is described in [66] for fluorescent NDs.

As an addition, the use of the UV laser, working in the UV region requires quartz

optics and special fibers for the SNOM. The fiber probes capable of transmitting
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Figure 1.10: Fluorescence spectra ofLuBO3(Tb) microcrystals with different Tb3+ fracঞons. The exciataঞon
wavelength is 280nm. The spectra were recorded using SpectraPro 2150i Spectrometer (Princeton Instruments,
Massachuse�s, USA) and LUV-280 laser in a 90◦ setup, the light was collected using 25mm focusBK7 lens.

280nm light with high efficiency were prepared for us by NT-MDT company

(Zelenograd, Russia). Quartz-made optics is widely commercially available. Hence,

the realization of rare-earth based FRET SNOM is possible and is underway in our

laboratory.

1.4 Conclusion

In theThesis, the current state of singlemolecule FRETSNOMwas discussed. Despite

numerous many years-long efforts, we were unable to observe FRET SNOM images

with ND crystals containing NV color centers. The most plausible explanation, we

believe, is that the NV color centers in nanodiamond crystals, which are supposed to

haveultrahighphotostability and absolute quantumyield, actually haveneither of these

properties, and the presented in the literature optical characteristics of them seems are

overestimatedmost of the times. With some satisfaction we state that nowadays, in the
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literature it is already possible to findpaperswhere the authors dare to arrive to the same

conclusion, see e.g. aforementioned [66, 67]. At the end of the chapter another object

and future plans were proposed. The possibility to utilize this candidate as a FRET

donor for microscopy is very prominent. Some FRET application were shown before

[50]. The efficiency of fluorescence excitation was approved by us as well.

This chapter is mainly based on the following article:

Sekatskii, S. K., K. Dukenbayev, Mounir Mensi, A. G. Mikhaylov, E. Rostova, A.

Smirnov, N. Suriyamurthy, and G. Dietler. ”Single molecule fluorescence resonance en-

ergy transfer scanning near-field optical microscopy: Potentials and challenges.” Faraday

discussions 184 (2015): 51-69.

Personal contribution: Detailed studying of the fluorescence of nanodiamond

particles under different excitation conditions, searching for the most appropriate

excitation conditions and numerous related FRET SNOM experiments. Elaboration

of the method NDs attachment onto the SNOM tip, SEM analysis of functionalized

probes. Performing the fluorescence lifetime measurements of the NV centers in

NDs. Searching for the explanation of very weak fluorescence observed in all these

experiments. Selection of nanocrystals with rare-earth ions as next promissing material

for the FRET SNOM and first experiments with them.
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2
Tapping mode Scanning Near-Field

Optical Microscopy with bent glass fiber

probes

In the field of SNOM, the tappingmode feedback could be preferable to the shear force

mode which is the most popular nowadays.
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Such an approach can be realized, e.g., using bent fiber probes and it is often

claimed that any fiber probe is suitable for this task. Detailed analysis of fiber vibration

modes, however, shows that the realization of truly tapping mode of the probe

dithering require an extreme caution. In the case of using the second resonance mode,

probes vibrate mostly in shear-force mode unless the bending radius is rather small

(ca. 0.3mm) and the probe’s tip is short. Otherwise, the shear force character of the

dithering persists. Probes having these characteristics were prepared by heating of a

tapered etched glass fiber with a CWCO2 laser. We could show that to achieve a truly

tapping character of dithering, short, not exceeding 3mm, lengths of a free-standing

part of bent fiber probe beam should also be used in the case of non-resonant excitation.

2.1 Introduction

The most popular method of the SNOM tip-sample distance control is the shear force

– based feedback employing a fiber attached to the quartz TF first introduced in 1995

[25]. In this method, the tip oscillates (Figure 2.1a) almost parallel to the surface of the

studied sample with a few nanometers amplitude. Near-field optics community has

very much debated in the nineties and the beginning of XXI century [14, 26, 85, 86]

the origins and physical mechanisms of the shear-force interaction. As an explanation,

different concepts were proposed such as time-varying attractive Van der Waals and

capillary forces acting on the tip [14] or actual contact between the fiber and the

specimen. Although, some related debates still sometimes take place, nowadays, it

seems established that a real contact between tip and sample surface occur at a certain

point [26, 85–88]. In other words, there is no such a significant difference between

shear-force and tapping modes. However, when the former is operative, the oscillation

occurs at somewhat unfavorable conditions with the angle between the velocity of the

66



2.1. Introduction

movement of the fiber probe tip and the normal to the sample surface approaching

ninety degrees. As a result, it appears that the shear-force distance control method is

far from the ideal one. The crosstalk between optical and topographical image can

degrade the results. The forces between the tip and sample are high and easily might be

destructive. In particular, the direct measurement of the interaction force in combined

SNOM - AFM device gives the values approximately 100 − 200nN [26] for the force

perpendicular to the sample’s surface *.

These considerations lead many experimental groups to propose and implement

a tapping mode SNOM feedback when the probe tip apparently moves roughly

perpendicularly to the sample surface (Figure 2.1b), see, e.g. [89–95]. A few

realizations of this approach were based on straight optical fibers or short fragments

thereof properly attached to the tuning fork or bimorph [92, 93]. However, the use of

long but bent optical fibers attached to the tuning fork in a standard fashion seems

was the most popular [94]. Still, the detailed analysis of the relative fiber – sample

surface motion in these experiments has not been performed. Herewith the “true

tapping” character of this motion (comparable with the motion of AFM cantilever in

the tapping-mode regime, see the end of “Simulations” section) was taken for granted.

(a) The shear-force mode (b) The tapping mode

Figure 2.1: The oscillaঞon modes of SNOM probes

Here, we report the realization of a new approach to the problem: bent sharpened

*We do not discuss here the force parallel to the sample’s surface
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glass optical fibers with carefully controlled (and small) sizes of the bent part and the

radius of the curvature of the bending were prepared and experimentally exploited as

SNOM probes. The design of these probes has been based on detailed theoretical and

numerical studies of the relative tip – sample surface motion. We showed that these

same aforementioned small sizes are necessary to achieve the tapping mode; otherwise,

the “shear force type” interaction not only persists but very often dominates the whole

picture. In our opinion, there are substantial grounds to suppose that the most of the

earlier reported tapping mode SNOMs were not the devices working in tapping mode.

2.2 Simulations

The commercially available softwarepackageANSYS17.2 (Canonsburg, PA,USA)was

used for the numerical simulations. These simulations are based on the finite-element

method [96] exploiting the triangulated models of the tip (“meshing”) created via

commercially available software package formodeling SolidWorks 2016 (Waltham,MS,

USA). The local mesh size of the structure was based on the local curvature to cover all

important (and possibly tiny) features of its design. The probe beams were hinged at

the base. As a material, pure silicon was chosen for the AFM cantilevers and quartz for

the fiber probes. The change of material properties (such as density ρ , elastic modulus

E andPoisson ratio) does not impact themode shape but, of course, strongly influences

the absolute values of resonant dithering frequencies, see below.

We introduce the following notation (see Figure 2.2). The local symmetry axis of the

probe’s tip, see Fig. 1, is taken as Ox while the axis perpendicular to Ox and lying in

the same plane as the Ox axis and the symmetry axis of the unbent part of the probe

is taken as Oy. (The third axis, Oz, is not important since lateral oscillations in this

direction are negligible). The origin of the coordinates was put at the point coinciding
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with the tip apex. For probe vibrations at the frequency ω, the motion of the tip apex

can be expressed as

−→
r(t) = Ax

−→
i cos(ωxt+ φx) + Ay

−→
j cos(ωyt+ φy), (2.2.1)

where at a moment we are not interested in the phases φx,y. We normalize the ratio

between the amplitudes of the oscillations in Ox and Oy directions as

ψ =
A2

x

A2
x + A2

y

, (2.2.2)

and name this quantity depending only on the probe characteristics and ranging

between 0 and 1 “the tapping mode efficiency”: if the sample surface is parallel to the

Oy axis, it gives the ratio of “tappingmode - type” and “shear force – type”movements

of the probe apex.

Figure 2.2: Illustraঞng the geometry of the bent fiber. On the le[, the following sizes of the bent fiber probe are
shown: α - bending angle,R – bending radius, d - fiber diameter,L - length of the fiber from the point at which
it is rigidly fixed unঞl the bent sector, h - length of the probe’s free part a[er the bending secঞon. On the right,

you can see the photo of a real bent fiber a�ached to the TF, here
α ≈ 90◦, R ≈ 300µm, d = 125µm,L = 4mm,h ≈ 300µm. Thin glass fiber-made driving rod

connecঞng the probe with one of the TF’s prongs is shown with a red arrow.

For straight, unbent glass fiber without a tapered part (i.e., ordinary cylinder), the

resonant dithering frequencies can be found from the following equation (see, e.g.
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[97]):

fres,n =
Ω2

n

L2

√
EI

ρS
=

Ω2
nr

4πL2

√
E

ρ
(2.2.3)

HereΩn, n = 1, 2, 3, ..., are orderedΩj > Ωi if j > i solutions of the characteristic

equation cosΩncoshΩn+1 = 0, and we have taken into account the dependencies of

the cylinder beam cross-section S and its inertia moment I on the radius r = d/2 =

62.5µm. Using the known valuesΩ1 = 1.88,Ω2 = 4.69,Ω3 = 7.13 [98] we see that

the probe resonantly oscillates at the TF working frequency 32768Hz if the lengths

of the freestanding part of the probe are equal to 1.7, 4.3 and 6.6mm respectively for

the first, second and third resonances. For our proprietary so called “double resonant”

montage of the SNOMprobe ontoTF, the exact coincidence of theworking frequency

of the latter with the second resonant frequency of the fiber probe beam is realized

[27, 28]. Thus it leads to the small acting forces and giving possibilities to excellent

spatial resolution in the topography channel.

In Figure 2.3, we present the simulation results pertinent to the first and second

resonance modes of the fiber probe dithering. These graphs express an idea about

the level of impact of different parameters on the tapping mode efficiency (ψ was

calculated from amplitudes of the oscillations inOx andOy for probes with different

parameters according to Equation 2.2.2). The exact values of the resonant frequencies

slightly depend on the parameters of the probe being close to the values of 5140Hz and

32768Hz respectively for the first and second resonances.

The main conclusion following from this simulation is the clear difference between

the first and second resonances. While for the first resonance mode and the probe

bending angle of 90◦, the tapping mode character of the probe’s tip motion do takes
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(a) Efficiency on the bending angle
dependence ψ(α). R ≈ 300µm, d =
125µm,L = 4mm,h ≈ 200µm.

(b) Efficiency on the radius dependence
ψ(R). α ≈ 90◦, d = 125µm,L =

4mm,h ≈ 200µm.

(c) Efficiency on the bending angle
dependence ψ(h). α ≈ 90◦, R ≈
300µm, d = 125µm,L = 4mm.

(d) Efficiency on the bending angle
dependence ψ(L). α ≈ 90◦, R ≈

300µm, d = 125µm, h ≈ 200µm.

Figure 2.3: Simulaঞon results for the 1st and 2nd resonance mode of the fiber with 125µm diameter.

place for a rather broad range of the probe parameters (as it seems intuitively evident).

To achieve high tapping mode efficiency for the usually used (see above) second

resonance mode, careful control of the probe’s free part length h and its curvature

radius R are needed. Otherwise, the shear-force type motion dominates (which looks

somewhat counter-intuitive). Both these parameters should be as small as possible.

The length of the probe L does not strongly affect this same efficiency. However,

the varying of this length can be used to adjust the resonance frequency of the probe

without seriously influencing its other characteristics. The exploitation of the third

resonance mode gives the quite poor quality of the tapping mode (data are not shown
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in Figure 2.3), so it does not seem attractive to work in such configuration.

Indeed, theminimization of bothh andR parameters is limited by the very diameter

d = 125µm of the standard glass optical fiber used to prepare SNOM probes.

Moreover, such a minimization presents technical challenges already for the values are

two-three times bigger than d. We succeeded to solve these challenges (see below), and

in Figure 2.2, right, we present an optical image of one of the fiber probes used in the

SNOM experiments reported below. Note that for our experiments we were using 2nd

resonance mode.

For the “state-of-the-art” fiber probe (h and R values are as small as possible, viz.

α = 90◦, R = 250µm, h = 300µm), we calculated the tapping mode efficiency of

the second resonance mode according to Equation 2.2.2. The computed efficiency is

approximately ψ = 0.6: a good value certainly exceeding one half, which enables us

to reasonably speak about the tapping mode for the case. But it is still far from the

unity. As attested by the Figures presented, simulations show that even a small increase

of the aforementioned crucial probe parameters rapidly results in ψ values well below

0.5. One cannot speak of tapping mode character of the probe motion. It can be said

that, up to now this was exactly the typical situation in the field. Again, the exploitation

of common non-resonance (i.e., characterized by an arbitrary and not well controlled

length of the freestanding part) SNOM probe (with classical TF) cannot drastically

change the situation with the tapping mode efficiency ψ. It arises from the origins of

non-resonance mode - a combination of a few resonances with the main contribution

from the second one.

Indeed, by varying an angle τ between the sample surface and Ox, Oy axis

(Figure 2.4), the ratio of the “tapping – type” and “shear force type” motions can

be changed following the simple geometrical formula, which arises from the rotation
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matrix,

ψ′ = (1− ψ)[sin(τ)−

√
ψ

1− ψ
cos(τ)]2. (2.2.4)

We illustrate this circumstance on the left of the Figure 2.4 by presenting the data

pertinent for our optimized fiber probe with the parameters as above α = 90◦, R =

250µm, h = 300µm (ψ = 0.6). Note, however, that the apparent increase of the

tapping mode efficiency for negative rotation angles very often is only illusory and

cannot be realized in practice due to geometrical limitations, see Figure 2.4 right.

Figure 2.4: Rotaঞon of the ঞp (iniঞal ψ = 0.6) results in the change of the ψ factor. On the right, it can be seen
the geometry of problem: bent fiber a�ached to the TF in double resonance condiঞon is ঞlted relaঞve to the

sample. Rotaঞon angle τ is shown in the figure. One can see that the rotaঞon in the negaঞve direcঞon is limited
by the very sample.

Let us now briefly analyze what is the situation with the tapping and shear-force

dithering modes when the standard procedure of gluing the fiber directly on one of

the TF’s prongs is used. This implies the subsequent non-resonant excitation. Such

approach does not preserve the initial high-quality factor of the TF electromechanical

oscillations, its value diminishes typically down to ∼ 300 − 500 and often even

lower, leading to essentially larger acting forces. It is well known that at conditions

of non-resonant excitation of a beam at a frequency ω, the shape of the dithered beam

(“deflection curve”) is given by the weighted sum of the shapes of the corresponding

n-th normalmodes of vibration of the beam. In our case, these are themodes pertinent

to the dithering of a rod whose one end is hinged and the another is free. The relative
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weights of the corresponding contributions are proportional to |ω2 − ω2
n|−1 , see, e.g.

[98]. Indeed, any system having distributed mass and elasticity can be described in

this way. Using formula Equation 2.2.3 with the known ratio ω2/ω1 = Ω2
2/Ω

2
1 =

6.22 , we immediately see that a severe caution should be paid to the length L of the

fiber beam if one wants to realize a tapping mode probe-sample interaction. This

situation is illustrated in Figure 2.5: for the values of L smaller than L = 3mm, the

contribution of the first resonance mode dominates. However, already for this length,

the second resonance contributes already for roughly one-third of the total amplitude

of a dithering. The contribution of the first resonancemode rapidly becomes negligible

for larger values of L. Taking into account the aforementioned performance of the

second ditheringmode, it can be said that often the claimed tappingmode character of

the bent fiber probe dithering is not at all such one. In reality, the usability of the probe

with the length L less than 3mm is severely limited because of the difficulties to work

with short probes.
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Figure 2.5: The raঞo of the contribuঞons of the first and second resonance vibraঞon modes of the fiber probe

beam (factor
|ω2 − ω2

2 |−1

|ω2 − ω2
1 |−1

) to the amplitude of the dithering of the probe as a funcঞon of the length of the

freestanding part of the beam when excited at 32768Hz.

At the same time, one should keep in mind that with decreasing values of the length
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L and keeping a relatively long probe’s free part after the bending section h, a new

resonance mode will come into play. We studied the most popular scheme of the

bent fiber attached to the TF in non-resonant conditions (see Figure 2.6 left, similar

parameters of bending were used in [94]). Such a rush method of fiber bending and

attaching to the TF can lead to the reduced tapping mode efficiency due to the mode

excitation on the probe’s free part (see Figure 2.6 Right). The oscillations happen

mostly in the Oy direction; the ψ value for this mode is less than 0.05. Additionally,

the longer the probe’s free part is, the worse the tapping mode efficiency is. In order

to improve ψ, short fiber tips should be used, namely,R and h values should be rather

small to achieve a true tapping dithering.

Figure 2.6: Illustraঞng the typical probe using non-resonant excitaঞon scheme. On the le[, the model of such a
scheme, here α = 90◦, R = 500µm, d = 125µm, l = 200µm, h = 800µm. On the right, dominant

oscillaঞon mode 36kHz, ψ < 0.05

Finally, let us note that a similar numerical analysis of the standard AFM probes

reveals a truly tapping mode character of interaction there: the factor ψ is 0.95 and

even more for the case for the first resonance †. At the same time, for the most AFM

setups the cantilever is tilted by 10 − 15◦ in respect to the normal to the sample

surface and leads to the drop of the factor ψ down to ca. 0.75 making it comparable

†A cantilever 0.5−5µm thick, 50−200µm long and 20−50µm in width rectangular beams with
a 10− 30µmmicrons-long pyramid tip “elastically” attached to them is taken as a standard. The whole
probe is considered as made from one initially intact piece of material without any gluing.
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to the optimized bent SNOM probes discussed below and working in the second

resonance mode. Furthermore, for the case of ultrashort cantilevers (10µm long) the

tapping mode efficiency will be noticeably smaller, especially in multi-frequency (MF)

excitation mode. Thus, the cantilevers behavior in MF-AFM regime will be different

instead of taken for granted oscillation normal to the surface.

2.3 Preparation of the bent glass fiber probes

Bent optical fiber-made SNOM probes were prepared as follows. Single-mode glass

optical fibers FS-SN-3224 from 3M (Maplewood, MN, United States) with 125µm

diameter were dipped into a ca. 40% HF water solution with vacuum oil overlayer

without stripping the polymer coating (so-called tube etching method [24]) and

etched for 120 minutes. After the etching, the polymer coating was dissolved in hot

concentratedH2SO4. The temperature ofHF solution was carefully controlled and

was maintained at 35± 0.05◦C.

The bending of the sharpened fibers occurs under the effect of a focused CO2 laser

irradiation that locally heats the quartz nearby the tip up to the melting point. The tip

of the fiber is pushed towards the laser beam due to the surface tension forces arising

in the area facing the beam where quartz melts faster than on the opposite side. By

changing the power of the incident laser radiation and the size of the focal spot, it is

possible to control the bending radius and angle.

Next stage of the probe preparation consists in the fabrication of the

subwavelength-size aperture for the light transmission onto their apex. Different

attempts to realize a known shadow coating procedure [19, 99] for this purpose were

undertaken, but they all failed due to themuchmore complex geometry of our probe in

comparisonwith the straight one. Therefore, the blindmetal coatingwas used together
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with the subsequent opening of the subwavelength aperture using Focused Ion Beam

milling technique; see Figure 2.7a for the SEM image of the metal-coated fiber and

Figure 2.7b for the close-up of the very apex of the coated fiber. For the coating, an

aluminum layer of 150nm thickness was deposited exploiting Alliance-Concept EVA

760 e-beam evaporator. In few cases, the preparation of the subwavelength aperture

by simple intensive scratching of the initially obstructed metal-coated probe over an

appropriate sufficiently “rigid” sample (e.g., a glass slide) has been used.

The finished bent SNOM probes were glued onto the quartz tuning fork in the

double resonant conditions following the procedure outlined on page 37 . To match

resonant frequencies of TF and fiber we used following parameters: L = 3.8 ±

0.1mm,α = 90◦, R = 250µm, h = 300µm. The driving rod connecting the

probe with one of the TF’s prongs should be glued at ca. 2mm distance from the

fiber hinging point. For illustration, in Figure 2.7c we present a typical Amplitude

Frequency Characteristic of the bent fiber attached to the TF in double resonance

conditions (the Q-factor is approximately 4300) together with the SEM images of the

probe tip.

(a)

(b)
(c)

Figure 2.7: 2.7a SEM image of theAl-coated bent fiber ঞp. 2.7b SEM image of the ঞp apex marked with a red
frame on the Figure 2.7a. 2.7c Amplitude Frequency Characterisঞc of the bent fiber probe a�ached to the TF.
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2.4 Conclusion

We have presented the truly tapping mode Scanning Near-field Optical Microscopy

with single-mode glass optical fiber - made bent probes. Extensive numerical

simulations enabled to clarify the conditions necessary to achieve a tapping rather than

shear force probe-sample interaction and also to quantify the level of tapping mode

by the ψ parameter. Based on these simulations, we prepared such probes to be tested

in a real SNOM microscope. Tapping mode efficiency of our probes, working in the

conditions of second resonance dithering mode, lies in the range 0.6 − 0.7, which is

not too far from the AFM cantilevers efficiency in the case of a standard setting. It

is essential to mention that bent optical fiber-based SNOM probes prepared without

taking into account the above simulation results indeed often cannot be considered as

working in tapping mode.

It was shown [100] that tapping mode SNOM is preferable in studies of soft

biological samples. Furthermore, it can operate in liquids with much better

performance [95]. Due to the use of our proprietary double-resonantmontage of these

bent probes onto the tuning fork [27, 28], similarly small acting interaction forces, lying

in a few nano-, or even sub nano-Newton range, were achieved. This paves the way to

use them for the imaging of fragile biological samples and future work in liquid.

This chapter is mainly based on the following article:

Smirnov, A., V. M. Yasinskii, D. S. Filimonenko, E. Rostova, G. Dietler, and S. K.

Sekatskii. ”True Tapping Mode Scanning Near-Field Optical Microscopy with Bent

Glass Fiber Probes.” Scanning 2018 (2018).

Personal contribution: designing and performing simulations of probe’s motion;

testing of the bent probes; writing and discussion.
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3
Long-life plastic optical fiber probes for

scanning near-field optical microscope

Nowadays, sharpened glass fiber probes attached to aquartzTF and exploiting the shear

force – based feedback are by far the most popular in the field of SNOM. However,

these probes are expensive, very fragile and their fabrication is difficult, hard to control

and in many cases a hazardous process.
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Here we are presenting the first SNOMprobes made from plastic optical fibers with

a small, submicron size, core diameter and glass-like optical properties.

3.1 1st generation POF

A few years ago, we presented [101] the first SNOMprobesmade fromPMMAoptical

fibers (A.R.T.PhotonicsGmbH,Germany)with an initial nominal diameter of250µm

(with the 200µm core), generally used for the so-called side illumination purposes.

To prepare sharp tips a two-stages etching procedure was used. In the first stage, the

ca. 2 cm-length portion of the fiber was submerged into ethyl acetate for 30− 40min.

As a result, the diameter of the fiber was halved, and the external protective polymer

film coat of the fiber was destroyed. In the second stage (20− 30min) the end part of

the bare fiberwas slowly submerged into the etching solutionwhichwas agitated. After

etching, the tips were rinsed in de-ionisedwater [101]. These tips were sharp, much less

fragile and of greater ease of preparation than glassmade tips. However, the very design

of the POF used to prepare the probes naturally limited their performance.

It is known, that multimode fibers lead to higher dispersion and attenuation of the

signal in it. That means that the use of such a fiber as a SNOM probe results in a very

low transmittance efficiency and significant parasitic signal. Moreover, the end of the

tip is nomore a dielectricwaveguide but ametallicwaveguide, which changes drastically

themode structure. That leads to themods reorganizationwith attenuation because of

the decrease of the diameter inducing a back reflected light. That leads to elimination

of all modes except the HE11 [102]. Thus, the transmittance coefficient of a probe

is determined by the ratio between the energy stored in absorbed modes to the energy

of theHE11 mode. The energy stored in non-propagating modes is back-reflected or

absorbed by the metal layer followed by its heating.
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There is the so called V number which determines the fraction of the optical power

in a certain mode which is confined in the fiber core [103]. For single-mode fibers, that

fraction is low for lowV values (e.g. below 1), and reaches≈ 90%near the single-mode

cut-off at V ≈ 2.405. This number is a dimensionless parameter and it is defined as

V =
2π

λ
· rcore ·NA =

2π

λ
· rcore ·

√
n2
core − n2

cladding, (3.1.1)

where λ is the vacuum wavelength, rcore is the core radius, and NA is the numerical

aperture. ForV values below≈ 2.405, a fiber supports only onemode per polarization

direction and the mode number can be estimated as

M ≈ V 2

2
, (3.1.2)

Thus, for the 1st-gen POF, we have rcore = 100µm,NA =
√
n2
core − n2

cladding =

0.631 and for the 532nm laser V ≈ 745 which gives us huge amount of modes

according the Equation 3.1.2.

That lead us the development of 2nd-gen POF.

3.2 2nd generation POF

In order to decrease number of allowed modes and bring the use of POF as close to

commonly used SNOM single mode optical glass fibers as possible it was decided to

change the POF design. We ordered the 125µm diameter fibers (specially prepared for

us by Paradigm Optics Company, USA) with a polystyrene core (diameter is 0.85µm,

ncore = 1.59) and acrylic cladding (ncladding = 1.49). They proved to be more easy to

prepare and well capable of imaging in both channels: optical and topographical.

The etching protocol which we used earlier for PMMA fibers does not work well
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for the 2nd-gen POF. Acid vapor coming from the etchant-air interface can result into

bubbles on the tip, see Figure 3.1a. On the other hand, the fiber now is made of two

different materials, and the use of pure ethyl acetate can lead to the appearance of split

ends, see Figure 3.1b. This is due to the difference of dissolution rates for polystyrene

and acrylic in pure ethyl acetate (EA) (in the case shown on the Figure 3.1b the core was

dissolved faster).

(a) (b)

Figure 3.1: Illustraঞon of etching defects:

(a) ”bubbles” appear due to the acid vapor coming from the etchant-air interface

(b) non-uniform etching of core and cladding can result into split ends

To avoid the aforementioned problems, we elaborated the following protocol for the

POF etching. To protect fiber from acid vapor, the double-layer solution was used (see

Figure 3.2). It was a 9:1 mixture of dichlormethane (DCM) and EA with water.

The mixture of DCM and EA provides nearly uniform etching. Moreover, using

such an etchant results in a most significant weight loss of POF during the preparation

process. The etching of the POF is a quick (tens of seconds) and self-terminating

process which results in the formation of the sharp conical tip with the radius of

curvature equal to 30− 150nm (see Figure 3.3).

Next stage of the probe preparation consists in the fabrication of the

subwavelength-size aperture for the light localization onto the apex. First, the blind
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Figure 3.2: The double-layer soluঞon representaঞon

Figure 3.3: SEM image of uncoated plasঞc ঞp, curvature radius is below 50nm.

metal coating was used together with the subsequent opening of the subwavelength

aperture by virtue of the Focused Ion Beam milling technique; see Figure 3.4 for the

SEM image of the metal-coated fiber. For the coating, platinum layer with 100nm

thickness was deposited exploiting Alliance-Concept EVA 760 (Cran-Gevrier, France)

e-beam evaporator. The tip prepared in such a way was good enough for SNOM, but

the reproducibility of this coating procedure is not that high, and it is more expensive

also due to using FIB.

As an alternative, shadow coating procedure (see page 35) can be used directly. Since

we do not have proper instruments for this, we initiated colloboration with Vladimir V.
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Figure 3.4: SEM image of the etched POF ঞp coated with Pt by the blind CVD, aperture size is more 500nm;
significant light sca�ering was observed from such ঞp.

Rogov (Institute for Physics of Microstructures, Nizhny Novgorod, Russia).

As a result, we obtained sharp metal-coated tips with a clearly visible aperture at the

apex (Figure 3.5).

Figure 3.5: SEM image of the etched POF ঞp coated by the classical shadow evaporaঞon technique.

The sharpened POF SNOM probes were glued onto the quartz TF in the double

resonant conditions. To match resonant frequencies of TF and fiber, the length of a

free-standing part of the fiber beam should be equal to 2.8± 0.1mm. The driving rod

connecting the probewith one of theTF’s prongs should be glued at 1.55mm distance
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from the fiber hinging point.

The performance of such probes is excellent but can be further improved. In

particular, even these probes are durable during scanning operations, they require very

careful handling. We realized that etching and coating procedure make this fiber very

fragile close to the tip apex. Thus, many times fibers very simply broken just before

gluing procedure by a ”wind-blow”.

To solve this problem two options were suggested: the partial alignment of the

polymer chains (adjusting the tension) during the draw process of the fibers or change

of material to more promising one.

3.3 3d generation POF

Taking into account all previous results, we ordered 250µm diameter fiber made

of cyclo-olefin polymers (specially prepared for us by Paradigm Optics Company,

USA) with Zeonex core (diameter is 0.85µm, ncore = 1.535) and Zeonor cladding

(ncladding = 1.528).

The V number is estimated to be equal to ≈ 1.47 which determines it as a single

mode fiber.

The huge advantage of ZEONEX Cyclo Olefin Polymer are glass-like properties.

This new material proved to has an extremely low fluorescence, low birefringence, low

water absorption and high optical transmission and claimed as the engineering plastic

of tomorrow [104, 105].

The preparation procedure is the following. A mixture 100 : 10 : 13 of toluene,

acetone and propane was chosen as an etchant because the dissolution rate of POF in

it proved to be mostly isotropic during the immersion time. The etching of the POF

takes approximately 20minutes and results in the formation of sharp conical tip with
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the radius of curvature equal to 50−150nm. The shape of the cone can be adjusted by

changing the temperature. In order to get aspect ratio corresponding to ca. 25 − 30◦

which is crucial parameter for shadow coating, we maintain the temperature during

etching at the level of 18− 19◦C. After etching, the tip should be rinsed in de-ionized

water to ensure that the shapewill not be affectedby the etchant residuals. The resulting

fiber is shown below (Figure 3.6).

Figure 3.6: Uncoated 3d-gen POF ঞp

Taking into account quality and reproducability of shadow coating technique

(established for 2nd-gen POF) we used the same technique. As a result we got fibers

with good aperture quality (Figure 3.7) similar to those for glass made fiber.

3.4 Conclusion

The first SNOMprobesmade from submicron core-size POF andmetalized by shadow

coatingmethodwere demonstrated. Preparation of these probes is simple and does not

require any hazardous materials or procedures.

This chapter is partly based on the following article:
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Figure 3.7: Al-coated 3d-gen POF ঞp, aperture formed by shadow coaঞng technique

Smirnov, A., E.Rostova, G.Dietler, andS. Sekatskii. ”Long-life plastic optical fiber probes

for scanning near-field optical microscope.” In Biomedical Imaging and Sensing Confer-

ence, vol. 10711, p. 107110P. International Society for Optics and Photonics, 2018.

Personal contribution: development and realization of the method of probes

preparation; testing of the POF probes; writing and discussion.
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4
Scanning near-field optical microscope

performance

4.1 Instrumentation

The SNOMused in our researches is a home-made devicewhichwas built few years ago

[27]. This microscope is based on the inverted optical microscope Carl Zeiss Axiovert

200 (Carl Zeiss, Germany). It is designed mainly for the illumination mode operation

which allows high sensitivity. The SNOMhead consists of several key elements typical

for almost all modern SNOMs:

• XY scanning system
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• Z-distance piezo-positioner

• Topography sensor and preamplifier

Our microscope (Figure 4.1) is capable of fast and precise scanning. The main tools

allowing this is the use of sensor utilizing double-resonance conditions (described in

subsection 0.4.4). It provides very high quality factor enabling extreme force sensitivity.

Figure 4.1: Old SNOM scanning design

The original setup presented on the Figure 4.1, had some limitations. The XY

scanning is realized for the tip instead of a sample which gives not a consistent position

of a light source relative to the collecting objective. Next, Z-position displacement

system was based on a single piezo-tube, thus to realize coarseZ-movement the sample

carriage was not fixed rigidly but held by friction on the border with sliding. For the

timeof construction, that systemwasquite efficient, but it is anunforgiving instrument.

A little displacement could ruin the tip and the sample.

Having this in mind, we decided to modify the existing system, see Figure 4.2 (or

Figure 3 for the model). First of all, we changed Z-scanning system. We put a modern
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scanner ECSx3050 (attocube systems AG, Germany) with sub-nm fine positioning

and 30mm coarse travel range. It allows us to safely swap XY scanning part from

the tip to the sample. As an addition, we built up XY -positioning for the tip (using

linear mechanical stages). Since the original scanner was realized using piezo-tube,

it utilized high voltage (500 − 1000V ) and had a small capacitance (tens of nF )

— these parameters allowed to use low-power HV-amplifier. The scanner we used

for modernization has much higher capacitance (hundreds of nF ) which means it

requires more powerful voltage generator. Thus, we usedENV 800 amplifier module

(piezosystem jena GmbH, Germany) to operate with theZ-distance control signal.

Figure 4.2: New SNOM scanning design

The essential part of any newly developed device is its performance properties. For

the new SNOM probes, we test them on reference samples. Properties such as:

• lateral performance in topography channel

• spatial performance in topography channel

• optical performance in near-field mode
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• probe light collection efficiency

can be quantitatively determined. Example of samples are calibrating gratings,

bio-samples like DNA and others. The probes were prepared according to the

procedures outlined in section2.3 for the bent fiber tappingmodeprobes; in section3.2

for the 2nd generation POF and section 3.3 for the 3d generation POF.

4.2 Topography tests

The performance of the aperture SNOM probes has been assessed exploiting them

as probes of the slightly modernized customarily made Scanning Near-Field Optical

Microscope. Themain tool to achieve high sensitivity in topography channel is the use

of an original “double resonance principle”, see page 37. The use of proprietary low

noise, precise and fast electronicsmeasuring the resonance frequency fres andQ-factor

of a tuning fork is also important. The double resonant montage enables to routinely

achieve the quality factor of the sensor ranging 3500−5500, and its exploitation results

in the force sensitivity as small as 30pN in a bandwidth of 300Hz. All the images

presented in this section were obtained in constantQ−factor mode.

In Figure 4.3, we present the topographical image of677−AFM calibrating grating,

2000lines/mm (Ted Pella, Redding, CA,USA) obtained exploiting bent fiber probes.

In Figure 4.4, we present the shear force topographical image of the TGX01

calibrating grating (NT-MDT, Zelenograd, Russia) obtained using 2nd-gen POF.

As a more severe test, mica samples containing densely deposited DNA molecules

onto APTES*-modified surface, see, e.g. [106] for preparation details and AFM

images, were used, see Figure 4.5.

*(3-Aminopropyl)triethoxysilane (APTES) is an aminosilane frequently used in the process of
silanization, the functionalization of surfaces with alkoxysilane molecules. It can also be used for co-
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(a)

(b)

Figure 4.3:

(a) The topography of the calibraঞng graঞng 2000lines/mm, 2.0μm×2.0μm. The image was obtained
in constantQ−factor mode using bent fiber probe.

(b) The cross-secঞon profile from the le[ image along the red line

(a)

(b)

Figure 4.4:

(a) The shear-force image of the TGX01 calibraঞng graঞng. The image is presented without any filtering and
scanner non-linearity compensaঞon andwas obtained using2nd-gen POF probe. Scan size4.5×4.5µm.

(b) The cross-secঞon profile from the le[ image along the red line
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(a)

(b)

Figure 4.5:

(a) The topography image of the close-packed Phi X 174 DNA, 0.7μm× 0.7μm obtained using bent fiber
probe.

(b) The cross-secঞon profile from the le[ image along the red line

To test the 2nd-gen POF we also used mica samples containing amyloid fibrils

deposited onto the surface (see [107, 108] for preparation details), see Figure 4.6.

(a)

(b)

Figure 4.6:

(a) The shear-force image of the amyloid fibrils deposited on the mica surface obtained using 2nd-gen POF
probe. Scan size 4× 2µm.

(b) The cross-secঞon profile from the le[ image along the red line

The images obtained via 2nd-gen POF presented above were recorded using the tip

valent attaching of organic films to metal oxides such as silica and titania
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which earlier has touched the surface few times. Note that itwouldbenearly impossible

to continue work with glass tips if it would touch something. This fact is one of the

direct evidences of POF tips durability.

The lateral resolution canbe estimated as the elongationof the edgeon the feature. In

our cases the elongationwas smaller than the pixel size. Thus the resolution is estimated

to be not lower than 16nm for the bent fiber probes and not lower than 5nm for POF

probes.

4.3 Optical channel performance

To the large extent, the near-field performance of any probes can be verified using

standard calibrating grating SNG01 - rhomb vanadium islands 15 − 30nm thick on

the quartz substrate (NT-MDT, Zelenograd, Russia) giving the transmission through

coating (rhombs)< 20%, UV image of such sample can be found in [109].

To test optical performance, we conducted experiments in illumination mode using

the pulsed laser (λ = 532nm, the repetition rate for all experiments belowwas equal to

5kHz) as the light source. The transmitted lightwas collected viamicro-objective (40x,

NA = 0.65) and detected with a photomultiplier tube (dark count rate< 10cps).

The image obtained exploiting tapping mode bent probes is presented in Figure 4.7.

Since the aperture was formed by a collision of the tip with the rigid surface (quartz

plate), it has low resolution∼ 500nm.

The optical performance of POF tips is shown below.

For the 2nd-gen POF, see Figure 4.8, it is possible to see some dust particles at the

topography image. However these objects are completely transparent in an optical

channel, whichmeans there is no crosstalk between topographical and optical channels.

The relatively low (for SNOM) resolution, 170nm, is most likely due to not clearly
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Figure 4.7: The opঞcal image (20µm× 20µm) of the SNG01 SNOM calibraঞng graঞng – Rhomb vanadium
islands 20− 30nm in thick on the quartz substrate (NT-MDT, Zelenograd, Russia) obtained in transmission

mode using bent fiber probe; cross-secঞon along the red line is shown on the bo�om.

formed aperture.

The next, use of the 3d-gen POF fibers results in better performance, see Figure 4.9.

The resolution is estimated to be∼ 75nm, which is comparable with standard glass

fiber probes. At the same time the image has better contrast.
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(a)

(b)

(c)

(d)

Figure 4.8:

(a) The shear-force image of the SNG01 (NT-MDT, Zelenograd, Russia) calibraঞng graঞng. The image is pre-
sented without any filtering and scanner non-linearity compensaঞon.

(b) The cross-secঞon profile from the image (a) along the red line

(c) The near-field opঞcal image of the SNG01 calibraঞng graঞng.

(d) The cross-secঞon profile from the image (c) along the red line

2nd-gen POF probe. Scan size 6× 6µm. The resoluঞon is esঞmated to be∼ 170nm.
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(a)

(b)

Figure 4.9:

(a) The near-field opঞcal image of the SNG01 calibraঞng graঞng.

(b) The cross-secঞon profile from the le[ image along the red line.

3nd-gen POF probe. Scan size 14× 12µm. The resoluঞon is esঞmated to be∼ 75nm.
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4.4 SNOM collection mode

To test probes collection efficiency, we used optical near-field created by frustrated total

internal reflection using an auxiliary right angle prism. Such a configuration allows to

avoid the use of metal coated tips, what can be useful specially for bent fiber probes.

Taking into account the rising interest to surface wave-mediated sensors and

plasmonic devices we attempted to study the propagation of surface electromagnetic

waves inside the surface waveguides supported by a PC structure. Together with the

group of Sergei Popov (Royal Institute of Technology, Sweden), we designed and

developed several types of waveguides: bent waveguide (constant 90◦ angle, variation

on the bending radius from 1µm to 150µm), Y -splitter (variation on the angle from

4◦ to 150 ◦), symmetricMach − Zehnder interferometers (variation on the split

angle from 4◦ to 150 ◦) and asymetricMach−Zehnder interferometers (variation

on the split angle from 2+5◦ to 2+45 ◦). Thewaveguides weremade ofSU8 polymer

and had initial width equal to 10µm and the height equal to 320nm.

The supporting PC was designed for p−polarization and consisted of 10 pairs of

layers (94.0nm of Ta2O5 / 131.1nm of SiO2) deposited on fused silica plane. The

calculated dispersion curve of such a structure with 135nm SU8 polymer on it is

shown on Figure 4.11. To launch the surface electromagnetic waves we used a standard

He−Ne laser ( λ = 632.8nm).

Mainly we were interested in the field distribution close to the splitting point.

However, our setup is not suitable for this studies due to small scanning ranges (40 ×

40µm at maximum), where only the width of the waveguides was 10µm. The results

can be seen below (Figure 4.12).

Apart the problems with the search of structures, we realized that system should be
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Figure 4.10: The illustraঞon of waveguide structure supported by PC.

Figure 4.11: The dispersion curve of the structure for surface electromagneঞc waves studies. Z−bar
corresponds to the efficiency of surface waves excitaঞon

much more carefully prepared in comparison to our approach. On the Figure 4.12a

one can see the topography defects which results in relatively poor waveguide quality.

The Figure 4.12b is only one area on which we succeeded to collect near-field signal,

many others consist mostly from noise.
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(a) The topography of the node of the
Y -spli�er in the waveguide

(b) The near-field distribuঞon in the node of
the Y -spli�er in the waveguide

Figure 4.12: The images were obtained using bent fiber probe. Scan size 10× 10µm.

The initial idea brought us to the development of a fine structure able to support

surface electromagnetic waves and study them (e.g. propagation length of surface

modes can be studied).

101



Chapter 4. Scanning near-field optical microscope performance

4.5 Conclusion

Wetestedbent fiber probes prepared in accordance to the simulations (see page 71). The

small acting forces allow to image not only calibration gratings but also mica-deposited

DNAmolecules.

POF probes do demonstrate quite high “durability” during the exploitation. The

images presented in this chapter (Figure 4.4, Figure 4.6 and Figure 4.8) were obtained

exploiting the probes, which already have touched the surface a few times.

This chapter is partly based on the following articles:

Smirnov, A., V. M. Yasinskii, D. S. Filimonenko, E. Rostova, G. Dietler, and S. K.

Sekatskii. ”True Tapping Mode Scanning Near-Field Optical Microscopy with Bent

Glass Fiber Probes.” Scanning 2018 (2018).

Personal contribution: designing and performing simulations of probe’s motion;

testing of the bent probes; writing and discussion.

Smirnov, A., E.Rostova, G.Dietler, andS. Sekatskii. ”Long-life plastic optical fiber probes

for scanning near-field optical microscope.” In Biomedical Imaging and Sensing Confer-

ence, vol. 10711, p. 107110P. International Society for Optics and Photonics, 2018.

Personal contribution: development and realization of the method of probes

preparation; testing of the POF probes; writing and discussion.
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5
Long-range surface plasmon-polaritons

propagating along silver nanofilms

Starting from the early 20th century researchers are interested in surface

electromagnetic waves. Naturally, such waves are very sensitive to the surface

defects and that gave rise to bio- and chemical-sensing systems.
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In particular, surface electromagnetic waves without any metal layer supported by

PC has numerous implications in sensorics, electromagnetic field control at the surface

and so forth ([110–118]). Any devices exploiting properties of electromagnetic surface

waves requires supporting structure having exceptional quality. Earlier, it was shown

that a specially designed PC [119] enabled the launch and use of surface plasmons (in

the red spectral region) for such “non-plasmonic” materials as palladium [120–122]

and cobalt [123], as well as launch and use blue (at 405nm [124]) surface plasmons for

gold.

Here, we report the realization of PC-supported long-range surface plasmons for

silver at the red wavelength of He-Ne laser, λ = 632.8nm. Quite narrow plasmon

resonances, attesting the ultralong SPP propagation and high quality of silver films,

were observed. From one point of view, silver is always considered as the best surface

plasmon-supportingmetal in the red and near-infrared spectral ranges. However, from

another point of view, the difficulties in the preparation of high-quality thin layers

of silver and rapid degradation of this material exposed to the atmosphere make its

exploitation quite tricky. To the best of our knowledge, up to date LRSPP with

thin silver nanofilms have been realized only with the (almost) symmetrical sandwich

structures composed of silica and (very) thick layers of an index matching oil or

polymer [125, 126], so that their exploitation as sensors seems not possible., see further

references therein.

5.1 Photon crystal design

The following structure (see Figure 5.1) has been designed and prepared

to realize LRSPP propagation along silver − ZnS/air interface:

SiO2/(HL)
19/Al2O3/ZnS(1)/Ag/ZnS(2)/air, where SiO2 are standard
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2.3mm thick fused silica plate, (HL)19 are 19 pairs of tantalum pentoxide and silicon

dioxide layers (that is transparent dielectrics having high and low refraction indices

which form a 1D PC) with the thicknesses respectively 96.6 and 134.4nm, Al2O3

layer has a thickness of 20nm, ZnS layers 1 and 2 have the thicknesses respectively 52

and 20nm, Ag is 12.5nm−thick silver layer. SiO2/(HL)
19 PC on silica substrate has

been prepared by magnetron sputtering in one coating run, and afterward all other

layers have been deposited on top of this finished structure also in one (but another)

coating run.

Figure 5.1: 1D PC-based structure, supporঞng LRSPP propagaঞon along silver/ZnS/air interface.

Through extensive experimentation with ultrathin (sub−15nm) Ag layers

deposited by either thermal evaporation or sputtering, we have found that one

possible solution to improve the thin layer morphology (preventing island-type

growth) was to carefully select the underlying layer chemistry, and established that

ZnS sublayers (substrate layers for Ag) led consistently to improving the layer

morphology. In particular, the near-infrared (IR) reflection/transmission (R/T )

spectra of custom-designed low-emissivity multilayer coatings employing them have
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been systematically studied. It is well-known that when the morphology of layers is

compromised (island growthwith holes in-between takes place), this unavoidably leads

to the insufficient reflection of near-IR light by these layers and the coatings based on

them. Only if theR/T spectra of multilayer coatings employing at least twoAg layers

of thickness below 15nm are fitted very closely with the spectra predicted using the

data pertinent for idealized Ag layers (bulk n and k data), we could conclude that the

morphology of growth is close to an ideal one. Exactly such a situation takes place

in practice, which allows us to claim the quality of ultrathin silver layers when ZnS

substrate layer was used. A thickness of 12.5nm for the silver layer has been selected as

the minimal thickness for which, accroding to our expirience, high-quality of the film

is achieved.

For the principles of optimal PC design see [127]. The thicknesses of H and L

layers forming PCwere selected following the procedure optimizing the extinction per

unit length (for a given wavelength and external media, of course), the thickness of the

ZnS(2) layer of dZnS2 = 20nmwas selected as “the smallest sufficient” to protect the

silver layer from atmosphere. Al2O3 layer (of again the smallest reasonable thickness)

was used to improve the quality and adhesion of the first ZnS(1) layer. Finally, we

optimize the thickness of this same first internal ZnS(1) layer to achieve the most

favorable conditions for LRSPP propagation, and optimize the number of pairs of

layers in PC to have the maximal amplification of the light wave on the silver−ZnS

interface.

An essential difference of the structure at hand in comparison with the earlier

used PC supporting LRSPP propagation [119–122, 124] is the appearance of one

additional protective ZnS(2) layer which necessitates the following modifications.

In impedance representation [127], the condition for the surface wave propagation
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remains the same: Zleft + Zright = 0, where Zleft is an impedance of the system

SiO2/(HL)
19/Al2O3/ZnS(1)/Ag calculated using results from [127]; Zright is an

impedance of the systemZnS(2)/air which is equal to

Zright = Zair ·
ZZnS − iZair · tan(αZnS2)

Zair − iZair · tan(αZnS2)
, (5.1.1)

And an impedance of the infinite external media (air) equal to

Zair =

√
1− ρ/nair

nair

, (5.1.2)

where ZZnS =

√
1− ρ/nZnS

nZnS

, αZnS2 =
2π

λ
· nZnS · dZnS2 ·

√
1− (ρ/nZnS)2,

and ρ is a “propagation parameter”, viz., an angular variable equal to ρ = nisinϑi.

This variable, according to the Snell’s law, remains the same for each layer having the

refraction indexniwithϑi being an angle between thepropagating light and thenormal

to all interfaces [127]. This change is not negligible and must be taken into account

because already for 20nm−thick ZnS layer with the refraction index nZnS = 2.318

and r = 1.017 we have comparable values of aZnS2 = 0.41, Zair = 0.1285i and

ZZnS = 0.39. At the same time, for many practical purposes, the whole effect of this

additional layer can be seen simply as a relatively slight modification of the refraction

index of an infinite external medium. Comparing Equation 5.1.2 and 5.1.1 we see that

for r = 1.017 Equation 5.1.2 gives the same impedance as Equation 5.1.1 if one put

nair = neff = 1.03 into Equation 5.1.2.

The results of our calculations are presented in Figure 5.2. It is easy to see that for

He − Ne laser wavelength of 632.8 nm we do have a LRSPP wave characterized by

the angular variable (propagation parameter) ρ ∼= 1.02 and possessing quite strong

107



Chapter 5. Long-range surface plasmon-polaritons propagating along silver
nanofilms

thirty-fold enhancement of the intensity of light.

Figure 5.2: On the le[, calculated dispersion of the 1D PC-based structure, supporঞng LRSPP propagaঞon along
silver/ZnS/air interface is presented. Color scale presents a value of log10(Ie/I0) where Ie, I0 are

respecঞvely the intensiঞes of light at the interface and at the entrance of the structure. Right picture
corresponds to the magnified small part of the dispersion curve.

5.2 Experimental results

Schematic of an experimental setup together with the data attesting an observation of

very narrow angular plasmon resonance in the light reflection from the aforementioned

PC +Ag layer structure are presented in Figure 5.3. For the measurements of LRSPP,

standardKretschmann configuration employing quartz right angle prism onwhich the

structure at question has been “glued” via a droplet of phase matching oil has been

used [128]. Standard p-polarizedHe − Ne laser light (beam diameter around 5 mm)

has been focused on the structure studied with 100mm focal length lens, and the

angular structure of the reflected light has been recorded observing the light spots at

distances of 1620 and/or 4050mm (both recordings of the light intensity with CMOS

(complementary metal-oxide semiconductor) camera and processing of color digital

photographs of the corresponding light spots were used leading to essentially the same

results).
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Figure 5.3: Schemaঞc of an experimental equipment (1–5), color photograph of the reflected light spot (6) and
intensity profile (7) measured at a distance of 4050mm. (1)He−Ne laser, (2) polarizer, (3) focusing lens, (4)
invesঞgated structure SiO2/(HL)

19/Al2O3/ZnS(1)/Ag/ZnS(2)/air glued to silica prism via a
droplet of phase-matching oil, (5) CMOS (complementary metal-oxide semiconductor) camera.

Surface plasmon excitation has been observed for conditions quite close to the

normal incidence of the incoming light beam onto the prism entrance face: the

corresponding angle was equal to 0.3◦C which results in the incidence angle onto the

prism hypotenuse ϑ = 44.80 giving the propagation parameter ρ = 1.04. Deviation

of this value from the theoretical one is due to the deviations of actual refraction indices

and layer thicknesses from the (theoretical or “searched for”) values used in calculations,

and this is quite common for the field.

Another indication of the narrowness of the plasmon resonance in our structure

has been obtained when we, in the same configuration, used unfocused He − Ne

laser beam: for an optimal adjustment, the intensity of reflected light dropped from

5.9mW (out of resonance) to 2.6mW (in resonance) thus attesting that more than

one half of an incoming radiation power has been transferred into the surface wave.
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The same experiment also was used to demonstrate the polarization dependence of the

observed reflection minimum: the difference in the intensity of light reflected for out

of- and in-resonance conditions well followed the content of the p−polarized light in

the incoming laser beam (it was changed by the rotation ofHe − Ne laser having the

polarization ratio not smaller than 50 : 1 without a polarizer), and such a difference

was completely undetectable for the pure s-polarization case.

The width of the angular resonance curve in Figure 5.3 is equal to ca. ∆ϑair = 8 ·

10−4which corresponds to the surface plasmon propagation length l of approximately

180µm. (Standard formula l =
λ

2π∆ϑprnprcosϑpr

was used. Here, the subscript

pr corresponds to the values inside the prism; the value of ∆ϑpr can be recalculated

from the experimentally measured ϑair by applying Snell’s law. For our case of almost

normal incidence of light onto the prism catet∆ϑair ≃ npr∆ϑpr). Comparable, but

slightly worse results with the angular width somewhat exceeding 10−3 were obtained

when using a semiconductor cw fiber Bragg grating laser diode at the wavelength of

636.7nm (QPhotonics LLC, Ann Arbor, MI, USA). This is the main result of our

research, and it unambiguously attests the first realization of LRSPP for PC-supported

silver nanofilms. The long-term stability of the prepared structures was noticed: the

reflection parameters remained virtually the same during nine months of observations;

the sample has been kept in usual room conditions in a polyethylene packet (not

hermetically sealed).

The experimentally observed value ρ = 1.04 enables to determine the actual

distributionof the square (EE∗) of electric fieldof SPPboth inside an externalmedium

(air, for which we take the refraction index equal to unity) and PC. For the former, we

have an exponential decrease with the characteristic length lext =
λ

4π
√
ρ2 − 1

∼=

180nm, that is much larger than the thickness of the ZnS layer adjacent to the silver
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nanofilm. Inside the PC, we have a standing wave with an exponentially decreasing

envelope eKz . The value ofK can be found applying e.g.,Equation 5.1.1 of [119]. An

easy calculation gives eKΛ = 1.163which corresponds, for thePCperiodΛ = 231nm,

to the characteristic decay length of lPC
∼= 1.53µm. (Actually, the same value can be

obtained calculating the transmission coefficient for one period of PC, se Section 2.4 of

[127]). The precise field distribution inside a metal layer and, correspondingly, inside

the dielectric layers immediately adjacent to it, is quite sensitive to the exact thickness

of metal layer and its refraction index which define the location of the minimum of an

electric field inside the nanofilm, see a detailed discussion in [119, 127].

Discussing the obtained results, we first want to note that the observed LRSPP

propagation length in our silver nanofilm-based structures is quite comparable to the

value of 160µm reported in [119] for LRSPP supported by a specially designed PC and

ca. 5nm-thick gold film at the wavelength of 710nm. This is not surprising given the

quite comparable “plasmonic qualities” of gold and silver at the (different) wavelengths

at question: according to Palik’s book [[129], at 710nm we have εAu = −15.723 +

1.3413i which gives Im(

√
εAu

εAu + 1
) = 0.0030i for the quantity describing the

dissipation for SPPpropagating along the interface air—infinitely thick gold layer [128].

For our case, using the experimentally measured (by our group) value of the silver

refraction index for a given wavelength, nAg = 0.1345 + 3.986i, that is εAg =

−15.8701 + 1.0722i, we have Im(

√
εAg

εAg + 1
) = 0.0023i. However, one should

also note more than two times smaller value of the metal layer thickness, ca. 5nm,

in experiments reported in [119]: a very important factor, given the inverse quadratic

dependence of theLRSPPdissipation on this same thickness [130–132]. All this, again,

should be considered as the demonstration of truly high-quality silver nanofilm in our

case.
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Indeed, comparable LRSPP propagation lengths have been observed also in

experiments with Pd [121] and Co [123] nanofilms deposited onto the properly

designed PC. The common characteristic feature here is that in all of these cases, the

experimentally measured values, although are impressively large enough and much

exceed the propagation lengths for simple metal—dielectric interfaces, turn out to be

substantially smaller than those which could be achieved according to the theoretical

predictions.

The latter can be estimated approximating the real system by a “symmetrical

sandwich structure composed by an infinite medium with the refraction index neff

- thin, with the thickness dm, metal layer with the refraction index nm - an infinite

medium with the refraction index neff , using the value neff = 1.03 described

above (varying of this value contributes to the result quite slightly). In the so called

Leontovich approximation, see formula A3 from Konopsky paper [127] and other

details therein, we have:

1

λ
=

1

2πdmnm

· arctan(
2nmn

2
eff (ρ

2 − n2
eff )

1/2

n4
eff + n2

mn
2
eff − n2

mρ
2
). (5.2.1)

As a function of ρ, this is a simple bi-quadratic equation

Q2n4
mρ

4−2ρ2(Q2n2
m(n

4
eff+n

2
mn

2
eff )+2n2

mn
4
eff )+Q

2(n4
eff+n

2
mn

2
eff )

2+4n2
mn

6
eff = 0,

(5.2.2)

whereQ2 = tan2 2πdmnm

λ
, and its solution gives ρ = 1.0033+6 ·10−6i corresponding

to the theoretical propagation length of∼=
λ

2πImρ
= 17mm, which is two orders of

magnitude larger than the experimentallymeasured value. Similarly, for gold at 710nm

and for the thickness of 5nm, cf. [119], we have Imρ ∼= 10−6, for palladium at 739nm
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with d = 8nm and nPd = 1.9 + 4.8i [121, 127] we have Imρ ∼= 10−5, and so forth.

Certainly, for the case of nanofilms, additional damping mechanisms exist and

should be taken into account. The most well-known and fundamental one is the

collision-induced scattering of conducting electrons at the walls of the nanofilm

(“anomalous skin- and size-effects”)which has been profoundly discussed starting from

the end of the forties (see e.g., [133, 134] and references therein; see also [127]). For

our purposes, it is sufficient to present here only the final formula pertinent for the

imaginary part of the dielectric constant for a continuous thin film at a frequency ω

[134]:

ε′′ = ε′′bulk +
3ω3

p

8ω3
· υF
c

· 1 + cosh2(ωpd/c)

sinh(ωpd/c)cosh(ωpd/c) + ωpd/c
· (1− p), (5.2.3)

where d is nanofilm thickness, ωp is plasma frequency, υF - Fermi velocity and p - the

so called “scattering parameter” defined as a fraction of electrons specularly reflected

on the walls. (Real part of the dielectric constant is practically non-affected by this

same scattering). For a completely diffuse scattering, p = 0, Equation 5.2.3 gives the

following limit for small thicknesses:

ε′′ = ε′′bulk +
3ω3

p

8ω3
· υF
d
, (5.2.4)

Taking for estimations for our case of silver nanofilm υF = 1.4 · 106m/s [135],

h̄ωp = 9eV [136], d = 12.5nm and the frequency corresponding to theHe − Ne

laser used,wehave
3ω3

p

8ω3
·υF
d

∼= 0.4. This is non-negligible but still not such a significant

change given that ε′′ = n2
Ag = −15.87 + 1.07i, and it results in the new value of an

effective refractive index of the “gold in the nanofilm”nfilm =
√
ε′′ = 0.1846+3.99i.
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Substitution of this value into Equation 5.2.2 instead of nAg = 0.1345+ 3.986i leads

only to aminor change in the dissipation giving Imρ ∼= 8 ·10−6. The same conclusion

can be drawn applying Equation 5.2.4 for other cases, such as gold and palladium.

This same aforementioned noticeable difference between the experimentally

observed and theoretically possible propagation lengths of LRSPP supported by

Photonic Crystals should not be considered as surprising, because the ideal matching

of the design of the PC and a real structure parameters, as well as ideal quality of all

interfaces and materials, are needed (not to mention that in reality we certainly have a

finite PC only). In any case, obtained values are already quite impressive and suitable

for practical applications. Nevertheless, we should bear in mind that apparently there

is still significant room for improvements in this field.

5.3 Conclusion

We reported on the first experimental realization of PC - supported LRSPP in thin,

12.5nm-thick, silver nanofilms. These nanofilms have been deposited onto specially

prepared and purpose-optimized for the task 1D PC, the design of which included as

the most external part a thin ZnS layer earlier proposed as one of the most suitable

adjacent layer tomake a high-quality silver nanofilm. Another thinZnS layer has been

deposited over this Ag nanofilm, it is in contact with the atmosphere and serves as

an indispensable external protective layer. The design of the PC takes into account

the necessity of adding this layer, and the structure parameters have been optimized to

enable the propagationof surface electromagneticwaves along the combined “thin layer

ofZnS + air” external media—silver interface. Reasonable long-term stability of the

structure has been observed.

The ultranarrow surface plasmon resonance corresponding to the LRSPP
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5.3. Conclusion

propagation length of 180µm has been recorded. This value is quite large, and enables

the practical use of similar structures as sensors, cf. [120–124].

This chapter is mainly based on the following article:

Sekatskii, Sergey, Anton Smirnov, Giovanni Dietler, Nur E. Alam, Mikhail Vasiliev,

and Kamal Alameh. ”Photonic crystal-supported long-range surface plasmon-polaritons

propagating along high-quality silver nanofilms.” Applied Sciences 8, no. 2 (2018): 248.

Personal contribution: performed the optical studies of plasmons; writing and

discussion.
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Chapter 5. Long-range surface plasmon-polaritons propagating along silver
nanofilms
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6
Conclusion

The performance of any SNOM strongly depends on the probe’s characteristics. Thus

most of the microscopes inherit common problems: the fragility of the tip and the

possibility to damage a sample, poor coarse navigation along the sample surface, and

limited operation ability in liquids. We explored several ways to enhance SNOM

performance.

• Tapping mode SNOM utilizing bent fiber probes. The comprehensive analysis

of the probe vibration modes allows the clarifying of conditions essential to

realize true efficient tapping mode. (It turned out that most SNOM probes

claimed to work in the tapping mode actually do not work in this same

mode). Based on the simulations, we prepared such probes and tested them.
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Chapter 6. Conclusion

Among others, we believe, that the smaller interaction forces between the tip

and sample pave the way to operate in liquid. Furthermore, we found that

not only SNOM probes, but AFM cantilevers, considered to have exclusively

tapping mode dithering, can deviate from this behavior: ultrashort cantilevers

encounter shear-force interaction mechanism, which is especially important for

the interpretation of Multiple Frequency experiments results.

• SNOM probes made of plastic optical fibers. We realized the first POF SNOM

probes with submicron core size and metalized by the shadow coating method.

The proven extreme durability of these probes, along with the excellent imaging

quality comparable with the performance of classical glass fiber probes, enables

to consider them as the “most suitable” probes for SNOM. Furthermore,

non-hazardous preparation of these probes greatly facilitates theway of practical

applications.

The use of bent POFprobe alsowas considered. Small core size can increase the light

transmission efficiency in the bent part. Together with the lowweight and small acting

forces, this can help to reach an excellent performance.

The central part of the work was devoted to the single molecule FRET SNOM.

The numerous efforts to realize such a scheme using NV centers in ND crystals failed.

This, together with a number of other recent publications, show that the fluorescence

efficiency of this object is quite low, and researchers can not be guided by the results

obtained using the fluorescence of bulk diamond samples when exploiting NDs. The

quantum yield of NV centers in NDs can be estimated to be∼ 2% on average, which

makes them inappropriate for the FRET SNOM. As an alternative, we proposed and

launched the realization of FRET SNOM based on the rare-earth ions in nanocrystals
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6.1. The perspective

as the fluorescent source.

The current work also includes the study of surface electromagnetic waves

propagation along the surface. We reported the realization of the first PC-supported

LRSPP in thin silver nanofilms. The structure optimization allows to reach the

propagation length of 180µm.

6.1 The perspective

In the current state SNOM is a powerful and unique technique. The primary

concurrent - STED is extremely expensive, cannot link the topographywith the optical

response and always requires the linkers (dyes). At the same time, SNOMcanovercome

all these problems and even can study biological objects in alive conditions. However,

it is not a popular technique because it is an unforgiving one. Thus it still has a room

for the improvement.

In the thesis in hand, we proposed the solution of themain problem: POFprobes. It

allows to drastically increase the life cycle of probes andmake them user-friendly. Now

the next step is to put it to mass-production, then it will have the same price as a glass

one and also will be able to substitute them for everyday experiments.

Concerning the tappingmode SNOMprobes, the situation is complicated: the fiber

for this should be bent with careful control of parameters otherwise shear-force will

dominate in the oscillation. On the other hand, we realized tapping mode probes, but

it seems to be unpractical due to difficulties in coating and huge losses of an optical

signal in the bending point.

The realization of stably operating FRET SNOM is still an open question: the

photo-stable donor (or acceptor) is yet to be found. The most prominent candidates

now are rare-earth ions which have acceptable quantum yield and high photostability.
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Chapter 6. Conclusion

Another way is to work in liquid (or in other media without the oxygen): thus the

standard quantum dots (CdSe) could be used and will not be burned due to the

absence of strong oxidizers.

Ideally, the SNOM should become a gadget for a standard optical microscope. For

example, the condenser can be changed to the SNOM tip. Alternatively, SNOM could

have a form a standard micro-objective which can be swapped in seconds.
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Extra
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Chapter 7. Extra

7.1 Appendix A

Figure 7.1: The SEM image of 0.1%LuBO3(Tb) drop on the gold substrate dyed on the air. The image
demonstrate ”coffee ring” effect caused by a capillary flow.
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