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Abstract—Fundamental limits on antenna performances are of 

key interest to the antenna designer, as they allow fast assessment 

of the feasibility of specific antenna requirements. These limits 

are defined on key performance indicators (KPI) of specific 

antennas, as the directivity for large aperture antennas or the 

achievable bandwidth on electrically small antennas. These limits 

have been obtained considering that the antenna radiates into 

free space. In this contribution, we develop fundamental limits 

for implanted antennas, which thus radiate first into a lossy 

medium. Key performance indicators assessing the quality of a 

specific antenna radiating into lossy medium are the total 

radiated power reaching free space (out of the lossy host 

medium) and the maximum power density obtained at the 

surface of the lossy host medium. The fundamental limits for 

implanted antennas proposed in this paper yield upper bounds 

for both KPIs and have been obtained considering elementary 

sources radiating into a spherical phantom. Spherical wave 

expansion of the electromagnetic fields was used to determine all 

the fields, and the limits obtained yield a useful upper bound for 

more complex scenarios. 

 
Index Terms—Fundamental limits, implantable antennas, 

spherical wave expansion 

 

I. INTRODUCTION 

HEORETICAL  and practical limits on antenna 

characteristics have been of huge interest for the system 

engineer since the beginning of wireless communications and 

radar systems. Examples start from the classic formula linking 

the far field limit to the antenna size, over closed form 

formulas giving the radiation characteristics for radiating 

apertures assuming the field distribution (see for instance [1]) 

to limits on side lobe levels in antenna arrays.  

Limits on the performances of electrically small antennas 

have been studied since the early days of wireless 

transmissions. Indeed, contrary to electronic components, the 

antenna size for a given application is mainly determined by 

the laws of physics and is independent on technology: the 

antenna size with respect to the wavelength is the parameter 
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which will have the preponderant influence on the radiation 

characteristics. 

The search of an explicit and if possible closed form 

relation between the electrical size of an antenna and its 

potential radiation performances has been a goal since the 

early radio days. Indeed, the HF and VHF frequencies used in 

those early days lead to large wavelengths and, in 

consequence, electrically small antennas. The pioneering work 

started by Chu [2], Wheeler [3], Harrington [4], and continued 

by Collin et al. [5], Fante [6], Fano [7] among others contains 

a large part of the theoretical developments and results which 

are still used by antenna engineers to assess the potential of an 

antenna.  

The boom of mobile communication that started in the 

nineties with the mobile phone and continued with GPS, 

wireless sensors, and reached today with the wireless 

interconnection of virtually everything has rekindled the 

interest for electrically small antenna and fostered a new 

generation of work investigating the fundamental limitations 

of such radiating devices, aiming to refine the results achieved 

by the early pioneers [8-10], account for the antenna form 

factor [11-13] or account for losses inside the antenna [14, 

15]. Finally, the seminal work of Gustafsson et al. [16-18] 

allowed obtaining the physical limitations on antennas of any 

shape by computing their static characteristics. It is interesting 

to notice that the key parameters for which limits where 

sought for were the quality factor of the antenna (linked to its 

bandwidth) and the antenna directivity. The aim of a good 

electrically small antenna design was thus to find the best 

compromise between volume, gain and bandwidth [19]. 

The next boom in wireless communications concerns 

wearable or implantable nodes with applications ranging from 

healthcare to sports over fashion tagging. These new wireless 

applications lead to the development of two new antenna 

families, the first for wearable wireless systems and the 

second for implantable ones. A review of wearable or 

implantable antennas can be found in [20-22], and recent 

attempts to design and characterize a capsule with antenna and 

wireless telemetry link can be found in [23] and [24].  

The antennas for these body centered applications are in 

most cases electrically small antennas, as the frequency bands 

allotted to them lie mostly between 300 MHz and 5GHz, and 

the antenna size can be as small as few millimeters. However, 

the physical limitations cited above do not apply to these new 

antennas, as they were obtained considering that the antenna 

radiates into free space, or at least into a lossless media. 
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Indeed most of the usual antenna theory assumes that the 

antenna radiates into free space, which is obviously not the 

case either for wearable or for implantable antennas. Radiation 

into a lossy medium has been considered in the past mainly in 

the frame of underwater communication [25], or the 

communication over a lossy ground [26]. In [25] it is clearly 

shown that fundamental antenna characteristics like the far 

field, the antenna radiation pattern or the bandwidth do not 

apply when the antenna radiates into an infinite lossy medium. 

Indeed, in the classic far field region of an antenna radiating 

into free space, the radiation intensity depends only on the 

angular coordinates  and , yielding the classic radiation 

patterns independent on the radial coordinate r. If the antenna 

radiates into a medium which is lossy, as the ocean for 

instance, the radiation intensity will also depend on the radial 

coordinate through the term exp(-2r), and the resulting 

pattern will highly depend on the choice of the origin of the 

coordinate system. The case of the frequency bandwidth of an 

antenna radiating into a lossy medium defined as the band for 

which the latter’s input reflection coefficient is below a certain 

value is also of limited interest since a low reflection 

coefficient does not necessarily signify that a large part of the 

power gets radiated, as it could also be dissipated into the host 

body.  

In the case of implantable antennas, the lossy medium into 

which the antenna radiates is not infinite. It consists of the 

biological body hosting the wireless system, which is a 

complex inhomogeneous lossy medium of finite dimensions. 

The radiation properties of the system will thus not depend 

solely on the antenna, but also on the shape, dimensions and 

composition of the host body. Also, the near field coupling 

due to losses makes that the effect of the two cannot be 

separated, as the channel can be separated from the antenna in 

free space [27, 28]. The key radiation characteristic of an 

implantable antenna is thus the amount of power which 

reaches outside the body [29]. Some of the absorption in the 

host medium is unavoidable, as it is linked to the propagating 

wave traversing it before reaching free space. Another part, 

the losses due to the near field coupling to the biological 

medium is more difficult to assess, and to compare for 

different antennas.  

In this paper we will first show how to differentiate between 

unavoidable propagation losses through the lossy medium, and 

avoidable losses due to near field coupling between the 

electromagnetic fields in the vicinity of the implanted antenna 

and the lossy medium hosting it.  We will then propose some 

fundamental physical limits on the maximal power density 

that can reach free space for a specific antenna-biological host.  

To this aim, we will consider the canonical case of 

elementary electromagnetic sources placed in a spherical body 

phantom. The latter can consist of several concentric layers to 

model the typical biological body layers (e.g. skin, muscle, 

bone); the accuracy of spherical phantoms used for 

characterization of implanted antennas is discussed in [30]. To 

analyze the properties of this canonical case, we use a 

numerical tool based on spherical waves expansion which has 

been presented earlier [31, 32] and has the advantage of being 

computationally very fast. From the results obtained, we can 

first understand the absorption mechanism in the lossy body 

and enhance the model in order to provide an upper bound for 

the power density reaching outside the host body. The paper is 

organized as follows: Section II presents the spherical wave 

model used, which was already partly described in [31] but 

which is required to understand the following sections. Section 

III presents results obtained with the spherical wave model 

proposed in section II, while section IV presents the derivation 

of a physical limit yielding the maximum power density 

reaching outside the lossy body as a function of the distance of 

the implant to the body surface and the dimension of the 

implant.  

 

II. SPHERICAL BODY MODEL 

A spherical model of a human body provides worthwhile 

and useful results despite being only a rough approximation 

[4,30]. Therefore, the analyzed structure, shown in Fig. 1, is 

composed of a sphere (with radius rbody) and of an implanted 

antenna. The sphere modeling the body can be either 

homogeneous or formed by concentric layers in order to 

mimic a part of the human body (skin, fat, muscle, bone, for 

instance) by using dielectric properties that are similar to those 

of real human tissues (values are taken from [30, 33]). Since 

we are interested in the basic properties of the implanted 

antenna, it is modeled as a small sphere with radius rimpl (filled 

with air) and a current source (either an electric or a magnetic 

dipole). The implanted antenna itself is located at a distance 

rfeed from the center of the body, and both parallel and 

perpendicular orientations of the antenna (defined by the 

orientation of the current source vector relative to the nearest 

outer interface of the sphere) are investigated.   

 

 
 

Fig 1. View of the analyzed structure with the excitation moved away from 

the center. 

 

The solution procedure makes use of the spherical-wave 

modal expansion. The electromagnetic field in a spherical 

structure (with zero free-charge density) can be represented 
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using vector spherical harmonics [34,35] as: 
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Here 
mn  is the elementary solution of the Helmholtz 

differential equation, i.e. 
nẐ denotes Schelkunoff type of 

spherical Bessel or Hankel functions [35], and β denotes the 

wavenumber of the considered media. For the outgoing waves 

the electromagnetic field components can be explicitly written 

as (e.g. the E-field components): 
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We can also define the mode impedance for the outgoing 

spherical modes. For the electric sources the mode impedance 

is equal 
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while for magnetic type of sources we can define: 
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Here η represents the wave impedance of the considered 

media. Note that the mode impedance does not depend on the 

- index m. It is only a function of the radial coordinate and of 

the order of the Hankel function (radial index n).  

As can be seen in Fig. 1 the structure of interest consists of 

two spherical structures - the spherical model of a body and 

the spherical model of an implanted antenna. Each spherical 

structure can be multilayered and can be separately analyzed 

using the spherical-wave modal expansion approach described 

with eqs. (1)–(3) (if the structure is multilayered it can be 

analyzed using a reflection and transmission matrix approach, 

a vector-Legendre approach or an equivalent circuit analysis 

approach, see [36–38] for details). Therefore, the main 

challenge in the analysis of the structure in Fig. 1 lies in 

connecting two spherical problems that have displaced centers 

of coordinate systems.  

If we denote spherical harmonics in the global coordinate 

system (related to spherical body) with ( , , , )mn r n mM  and 

( , , , )mn r n mN , and in the local coordinate system (related to 

the implanted antenna) with ( , , , )r    M  and 

( , , , )r    N , then these two representations can be 

connected using addition theorems, see [39-41] for details. 

 The EM fields in the implanted antenna sphere and in the 

outer sphere (human body) are “matched” using the 

equivalence theorem. In more details, using Love’s 

equivalence principle we have defined two equivalent 

problems: (a) the equivalent implanted antenna problem 

consisting of an implanted antenna surrounded with air, and 

(b) the equivalent spherical body problem in which the 

implanted antenna is replaced with a dielectric of permittivity 

equal to the one of implanted antenna surrounding material. 

The spherical harmonics representations of two equivalent 

problems should fulfill the boundary condition that the 

tangential EM-field is continuous at the boundary of the small 

sphere (containing the implanted antenna).  

 The boundary between the body and the surrounding free 

space, as well as the multilayer body case, is included into the 

outside equivalent problem using the scattered field approach. 

The scattered field from the outer boundary and from the rest 

of the multilayer spherical structure 
scatscat HE

~
 and 

~
is 

calculated by transforming the EM-fields from the local to the 

global coordinate system using the following scheme (here ‘~’ 

denotes one component of the spherical-wave modal 

expansion given with eq. (1)):  
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Here req represents the radius of the sphere defined in the 

global coordinate system containing equivalent currents that 

radiate the same EM field as the equivalent currents defined in 

the local coordinate system at r’ = r’impl (both related to the 

outside equivalent problem). In other words, in order to 

calculate the scattered field from the outer body boundary (and 

from other layers in the multilayer structure) one needs to 
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transform the excitation from local to global coordinate 

system. Furthermore, in order to match the fields at the 

boundary of a small sphere one needs to transform the 

scattered field back from the global to local coordinate system.

 Details about the implemented analysis method can be 

found in [31].  

 

III. FIRST RESULTS AND FINDINGS 

The aim of this section is to understand the propagation in a 

lossy medium and the different mechanisms contributing to 

the losses, by analyzing some simple canonical scenarios of 

elementary sources placed in a spherical phantom using the 

described spherical wave decomposition method. To this aim, 

we will first recall some of the results already published in 

[31], before deepening our understanding from different points 

of view. The geometry considered, if not otherwise specified, 

is the one used in [31] and described in Fig. 1, with a working 

frequency of 403.5 MHz, a phantom sphere  rbody = 9 cm 

radius and permittivity εr = 43.50 – j34.75 [33, IEEE Head 

model]. 

In [31], we showed that as expected as the losses in the 

phantom are of an electric type, the total power reaching 

outside the body was higher for a magnetic source than for an 

electric dipole. What was less intuitive was that for the 

considered phantom having the dimension of about one 

wavelength in the tissue, the total power reaching free space 

almost did not depend on the position of the source. When the 

electric dimension of the phantom increased (considering 

higher frequencies for instance), the position started to have 

some effect. What was also shown was that the level of the 

electric field just outside the phantom showed a lens effect due 

to the body. This focusing effect is strongly dependent on the 

position of the source inside the body. Finally, it was shown in 

[31] that the radius of the air bubble containing the source had 

a crucial importance on the amount of total power reaching 

free space; as smaller the bubble is, the larger is the near field 

coupling between the dipole and the lossy phantom.  

Fig. 2 shows the total radiated power in the phantom 

reaching out of a sphere of radius R for an electric and a 

magnetic source placed at the centre of the phantom, 

considering an air bubble of radius rimpl = 0.1 cm around the 

source. Note that the total radiated power from the body is 

given with respect to 1 mW input power emitted by the current 

source (i.e. entering the lossy medium); it can be calculated 

directly from the spherical mode expansion using Parseval’s 

theorem [36]. We can separate three zones in the phantom: the 

first, where the reactive near-field absorption dominates, the 

second, characterized by an exponential decay due to 

propagating field absorption, and the third at the discontinuity 

at the phantom-air boundary. Note that the reactive near-field 

region is partly in the air sphere containing the implanted 

antenna, and partly in the lossy body.  
 

 
Fig. 2. Total radiated power in the phantom reaching out of a sphere of radius 

R (radial coordinate) for an electric and a magnetic source placed at the centre 

of the phantom at 403 MHz, rimpl = 0.1cm.  
 

In order to investigate a bit more on the crucial contribution 

of the near field coupling to the losses, Fig. 3 represents the 

total radiated power reaching free space as a function of the 

radius of the air bubble, rimpl, for different position of the 

source inside the phantom. We see clearly that the total 

radiated power increases with the radius of the air bubble, 

which stems from the decrease of the near field losses. We 

also see that the benefits of increasing the lossless area around 

the sources reach saturation after a certain radius, as we reach 

the limit of the reactive near field. Furthermore, for air bubble 

large enough, there is practically no difference between 

electric and magnetic source since the reactive near-field is 

concentrated in the bubble and thus the main differentiation 

effect is not present in a lossy media (body). Finally, as 

indicated earlier, the position of the bubble has very little 

effect in this scenario. 
 

 

 
Fig, 3 : Total radiated power reaching free space as a function of the radius of 
the air sphere encapsulating the electric source (rimpl), for different positions of 

the latter. The source is parallel to the phantom-air interface when it 

approaches the latter. 
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The effect of increasing the bubble is shown from a 

different perspective in Fig. 4, where the total power reaching 

out of a sphere of radius R inside the phantom is shown for an 

electric and a magnetic source placed at the centre, but for 

different radii of the lossless air bubble surrounding the 

sources.   

 
(a) 

 
(b) 

Fig. 4. Total radiated power in the phantom reaching out of a sphere of radius 

R (radial coordinate) for a source placed at the centre of the phantom at 403 

MHz, rimpl = 0.1, 0.2, 0.4 and 1 cm; (a) electric source, (b) magnetic source. 

 

The three different areas in the phantom (reactive near field, 

propagating field absorption and edge discontinuity) are again 

clearly seen, but we see that the reactive near-field area in the 

lossy media (body) becomes smaller when the size of the 

lossless encapsulations increases (since the outer radius of the 

reactive near-field region is not changed).  

The presented results also hold for other frequencies and 

permittivities. However, it is hard to make a general 

conclusion how the power density and the total radiated power 

behave depending on frequency and (complex) permittivity, in 

particular since the permittivity of biological tissues vary a lot 

with frequency. Furthermore, we cannot change the 

permittivity of biological tissues, i.e. we need “to live with 

permittivities we have”. Generally speaking, larger tissue 

conductivity (i.e. larger imaginary part of permittivity) will 

cause larger losses related to all three effects – reactive near 

field losses, propagating field losses and losses due to 

reflection. A larger magnitude of permittivity (with the same 

ratio between real and imaginary part of permittivity) will 

decrease the radius of the reactive near field region and, 

therefore, the reactive near field losses will be smaller; 

however, the other two effects will be larger. A change of 

frequency will have a similar effect (since the wave number is 

proportional to the frequency), except for the reflection 

coefficient losses which in principle will not change unless the 

phantom is small in terms of wavelength (there is a strong 

reactive near-field effect outside a small body which will 

cause that the reflection losses are enlarged if the frequency is 

reduced).   

 

The following conclusions can be drawn from these results: 

 The exponential absorption of signal as it travels 

through the lossy phantom is unavoidable and has 

to be lived with. 

 A large amount of the losses is due to the reactive 

near field. These losses can be avoided, by using 

the lossless encapsulation around the source. 

 Finally, if the total radiated power reaching out of 

the phantom does not depend much on the position 

of the source in the latter, the EM field just outside 

the body depends highly on this position, due to 

the lens effect of the body [31].   

 

In the case of an implanted antenna, it seems thus that 

power density usable for a link with a transceiver located out 

of the body will depend mainly on four factors:  

1. The dielectric and conductive characteristics of the 

body at the considered frequency 

2. The type of the antenna (electric, magnetic or a 

combination of both) 

3. The distance to the body-free space interface 

4. The diameter of the lossless encapsulation of the 

antenna. 

In the next section, we will develop a rigorous closed form 

formula giving the upper limit of this power density, 

according to the frequency, the phantom characteristics, the 

distance from the antenna to the interface and the radius of its 

lossless encapsulation. 

 

IV. THEORETICAL RESULTS AND LIMITS 

The excitation used so far was the dominant spherical mode 

only (i.e. the lowest spherical mode radiated by electric or 

magnetic point source) since the losses of higher order modes 

are much higher and they do not contribute significantly in the 

overall results. This is visible in Fig. 5. where a comparison 

between dominant mode excitation and higher modes 

excitation for both, electric and magnetic type sources is 

shown. We can see that the radius of the near-field reactive 

zone for higher order modes is much larger and leads to a 

faster decay of radiated power. 
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(a) 

 
(b) 

Figure 5. Total radiated power evaluated for specific modes along different 

radii away from the source, (a) electric dipole case, (b) magnetic dipole case. 

 

To clearly identify the problem with higher-order modes 

Fig. 6. shows the spherical mode impedance for the considered 

cases. We notice that the wave impedance is predominately 

reactive when |βr| < n (the imaginary part prevails) and 

almost constant when |βr| > n (here the real part prevails, see 

[4]). In other words, in the volume |βr| < n the EM field is 

predominately reactive or non-radiating, i.e. most of the EM 

energy is circulating around the implanted antenna and, 

consequently, is absorbed in the tissue. Furthermore, radius at 

which the reactive fields stop to dominate depends on the 

order of the excited spherical mode (and on the permittivity of 

the considered media). 

Therefore, the goal is to excite the spherical modes with 

index n as small as possible, i.e. the goal is to excite the 

spherical modes with n = 1. 

 
(a) 

 
(b) 

Figure 6. Magnitude of spherical mode impedance evaluated for specific 

spherical modes along different radii away from the source, (a) electric dipole 

case, (b) magnetic dipole case. 

 

Once focused on the dominant mode we can express the 

power density for this case (electric dipole excitation in 

lossless media, see eqs. (1)-(4)) 
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or, more specifically [42]: 
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Here the constant C is equal 2

01C b  . If the 
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The total radiated power is obtained through integration 
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In this expression, a clear separation between the “far-field” 

and “reactive near-field” part is made. We can further use this 

separation idea and rearrange it to obtain the expressions for 

certain types of losses (losses in certain regions). Namely, 

using eq. (4), in the near-field the losses and corresponding 

efficiency e can be expressed with 
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Here rfar represents “large-enough” radius at which only far-

field components are practically present. This expression can 

be approximated for the dominant spherical mode as  

 

 

  

2

losses 3
in the
reactive
near field

Re

Im impl

e
r

 

 


                       (14) 

 

The propagating field absorption efficiency is equal  

 

propagating
field
absorption
losses

exp( 2 ( ))body imple r r            (15) 

 

and the efficiency due to reflections at the outer boundary 
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The mode impedance Z is calculated using the equations (5) 

and (6). For the far-field region Z  = η. 

 

Using these expressions for different efficiencies the 

radiated power can be expressed as  
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       (17) 

 

Similar can be derived for the magnetic type source case, but 

if we observe the expression for the total radiated power  
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and by noting that the product 
0   is a real number, 

we can simplify the upper expression as  
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This is additional (mathematical) explanation why the 

magnetic dipole has much less absorbed power in the near 

field (since there are no high-order terms in the expression for 

the total radiated power). Therefore, the near-field losses and 

the corresponding efficiency for the implanted magnetic 

dipole can be expressed as 
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or approximately 
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A quick calculation for our test case gives 

 
TABLE I   

TOTAL RADIATED POWER REACHING FREE SPACE. 

 Electric  

dipole 

Magnetic 

dipole 

Pentering the body (dBm) 0 0 

elosses in the reactive near-field (dB) -34.2 -10.2 

epropagating field absorption losses  (dB) -16.1 -16.1 

elosses due to reflections (dB) -6.2 -7.5 

Total radiated power (dB) – 

calculated using (17) 
-56.5 -33.8 

Total radiated power (dBm) – 

calculated rigorously 
-56.4 -33.7 

 

The results shown so far focused on describing the loss 

mechanisms in the body and they were demonstrated using 

sources placed in the center of the sphere. A more practical 

situation would be to have the sources placed closer to the 

body - air boundary and one would expect that due to loss of 

symmetry the loss mechanisms will be affected. However, Fig. 

7 shows the case when the distance of the source from the 

body – air interface is fixed and the radius of the body is 

changed, and we see that the behavior is the same as in the 

center case. There is an additional drop of the total radiated 

power (since the body is larger in that case), but this change 

can be predicted using diagrams in Fig. 7. 

 

The other term of interest would be the maximum power 

density that we can get just outside the body (where we could 

put on-body antenna to establish the communication link). If 

we fix the distance of the antenna to the body interface, we 

can see that the same efficiency expressions can be used also 

for this scenario (with the assumption that the orientation of 

the dipole is transverse to direction of observation). Fig. 8 

shows the radial component of the power density evaluated at 

different points on the radial line connecting the center of the 

body and the feed point (i.e. on the x-axis with x > rfeed) . Here 

the position of the implanted antenna is kept fixed at 9 cm 

distance from the body boundary, and the radius of the 

spherical body is taken as a parameter. Note that the power 

density is normalized with the factor 
2 2

0 0(8 3) (8 3) ( )obs feedW r W r r     , were W0 is the 

maximum value of the real part of the power density 

component normal to the surface of implanted antenna, i.e., 

just inside the lossy medium. 

 

 
(a) 

 
(b) 

Fig. 7. Total radiated power as a function of body radius when the source is 

kept fixed at a certain distance from the boundary; (a) electric dipole case, (b) 

magnetic dipole case 

 

 
 
Fig. 8. Radial component of the normalized power density at different 

distances from the implanted antenna. The source is kept fixed at 9 cm 

distance from the body boundary. Results for the electric and magnetic dipole 

are shown.  
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Fig. 9. Angular dependency of the normalized power density as a function of 

dielectric sphere radius. The z-oriented electric dipole is located at the x-axis 9 

cm away from the boundary in all cases (Fig. 1) and the angular dependency 

is taken in xy plane 1 cm away from the outside boundary of the dielectric 

sphere. 

 

The focusing effect of the dielectric body is illustrated in Fig. 

9 in which the angular dependency of the normalized power 

density is shown as a function of dielectric sphere radius. Like 

in the previous case the source is kept fixed at 9 cm distance 

from the body boundary and the power density is calculated at 

1 cm distance from the outside boundary of the dielectric 

sphere. It can be seen that value of the power density strongly 

depends on the distance from the source, i.e. on the amount of 

propagating field absorption losses.  In other words, for the 

maximum value of the power density outside the body the 

shape and dimension of the host medium has very little 

importance.  

 

Further investigation of this scenario is shown in Fig. 10 

which shows that the maximum of power density just outside 

the body mostly depends on the distance from the implanted 

antenna, i.e. that in principle does not depend on the body 

radius. In the concentric case (when the implanted antenna is 

placed in the origin of the body) there is only stronger 

influence of the efficiency due to reflections at the outer 

boundary. However, when this symmetry is broken, the 

influence of reflection is much weaker. This leads to a 

conclusion that the assumptions and approximate expressions 

derived earlier can be also used for practical implant cases 

when they are located relatively close to the body – air 

boundary.  

 

 

 
(a) 

 
(b) 

Fig. 10. Power density as a function of the body radius when the source is 

kept fixed at a certain distance from the boundary; (a) electric dipole, (b) 

magnetic dipole. 

 

Therefore, we can conclude that the maximum power density 

that is obtainable from the implantable antenna located in a 

body of arbitrary shape and dimensions is equal: 

(a) for the magnetic type of antenna of radius rimpl placed at 

distance Δ inside the body  
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  (22) 

 

(b) for the electric type of antenna of radius rimpl placed at 

distance Δ inside the body 
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.   (23) 

 

Note that in our spherical model Δ = rbody – rfeed . Furthermore, 

the maximum bound does not take into account losses due to 

reflections since these losses depend on the body boundary 

properties. A good approximation can be obtained with the 

large-radius variation of eq. (16): 
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In order to illustrate the limit for maximum power density 

obtainable from the implanted antenna two design diagrams 

containing power density limits are shown in Fig. 11. In the 

first case the working frequency (f = 403.5 MHz) and the type 

of tissue (muscle tissue with εr = 57. 1 – j35.51) are fixed. As a 

parameter we took the radius of the implanted antenna and the 

position (depth) of the antenna inside the body. We considered 

the electric type of implanted antenna. The diagram gives the 

relation between the affordable losses in the body, position of 

the antenna inside the body and the size of the capsule. Also 

plotted as a small triangle in Fig. 11.a is the estimated power 

density for the antenna described in [23] (the capsule in [23] 

has a shape of a pill with dimensions 17 × ø7 mm and it is 

evaluated in spherical phantom with 50 mm radius). Here for 

the dimension of the equivalent spherical implanted antenna we 

took ø10 mm (defined with the size of the antenna inside the 

capsule) and since the estimated power density obtained in [23] 

is W/W0 = -24.2 dB, which includes losses due to reflection, we 

can conclude that the radiation properties of this antenna are 

near the limit. In Fig. 11.b we illustrated the influence of 

different types of tissues on the amount of losses inside the 

body. The working frequency is again f = 403.5 MHz, the 

radius of the implanted antenna is rimpl = 4 mm and the position 

(depth) of the implanted antenna inside the body is Δ = 90 mm. 

Between the considered tissues, bones introduce the smallest 

losses, while the largest losses are due to muscle and brain 

tissues.    

 

 
 

       (a)

 
 

        (b) 
Fig. 11. Maximum power density W/W0 (dB) obtainable from a implanted 

antenna of electric type; (a) as a function of size and position of implanted 

antenna, and (b) as a function of complex permittivity (▲– muscle tissue  r = 

57.1 – j35.51,  ● – fat tissue r = 5.58 – j1.8,  ♦ – dry skin r = 46.7 –j30.72,   

x  –  bone r =  13.1 – j4.0,  ■ – brain - IEEE head model  εr = 43.50 – j34.75). 

 

V. CONCLUSION 

The knowledge of fundamental radiation limits for antennas 

implanted in a lossy medium is instrumental in the design of 

such implants. These limits were studied assuming elementary 

radiating sources, a spherical model for the host body and a 

spherical expansion to describe the electromagnetic fields 

inside the structures. With this model, first the loss 

mechanisms were analyzed and it was shown the losses can be 

divided into three contributions; (i) close to the implant, the 

losses due to the coupling of the near field and the lossy 

biological host tissue, (ii) the losses due to the field 

propagating through the body, (iii) the reflection at the body –

free space interface. The last two loss contributions are 

unavoidable for the signal to reach free space, however, the 

antenna designer should work on the first to minimize the loss. 

Based on this separation the upper bound was obtained for the 

power density that can reach free space from an implant, 

depending only on the frequency, the dielectric permittivity of 

the biological tissue, the depth of the implant and the size of 

the implant encapsulation. This is vital information for 

comparing potential antennas and also gives a maximal bound 

for the link budget between an implant and an on body 

antenna. 

Finally, as demonstrated, the critical dimension for this upper 

bound is the depth of the implant, not the shape of the 

phantom. Thus, the results are quite universal and directly 

usable in practice for host bodies of other shapes. 
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