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Abstract

This dissertation investigates the amenability of topological full groups using a

property of group actions called extensive amenability. Extensive amenability is a

core concept of several amenability results for groups of dynamical origin. We study

its properties and present some applications.

The main result of the thesis is such an application, a Tits alternative for

topological full groups of minimal actions of �nitely generated groups. On the one

hand, we show that topological full groups of minimal actions of virtually cyclic

groups are amenable. On the other hand, if G is a �nitely generated not virtually

cyclic group, we construct a minimal free action of G on a Cantor space such that

the topological full group contains a non-abelian free group.

Keywords: group action, amenability, extensive amenability, topological full group,

Tits alternative.

Résumé

Cette thèse étudie la moyennabilité des groupes pleins-topologiques à l'aide

d'une propriété des actions de groupes, la moyennabilité extensive. La moyennabilité

extensive est un concept qui se trouve au coeur de plusieurs résultats de

moyennabilité pour les groupes d'origine dynamique. Nous étudions ses propriétés

et en présentons des applications.

Le résultat principal de cette thèse est une alternative de Tits pour les groupes

pleins-topologiques associés aux actions minimales des groupes de type �ni. D'une

part nous montrons que les groupes pleins-topologiques des actions minimales

des groupes virtuellement cycliques sont moyennables. D'autre part, si G est un

groupe de type �ni non virtuellement cyclique, nous construisons une action libre et

minimal de G sur un espace de Cantor dont le groupe plein-topologique contient un

sous-groupe libre non abélien.

Mots-clefs: action de groupe, moyennabilité, moyennabilité extensive, groupe

plein-topologique, alternative de Tits.
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3

Introduction

The subject of amenability began with the study of �nitely additive measures

in the early twentieth century. One of the most fundamental questions was the

following: is there a good notion of volume on the 3-dimensional, or more generally,

n-dimensional, space? Based on Hausdor�'s 1914 work ([17]), Banach and Tarski

proved an astonishing theorem: it is possible to cut a unit ball into �ve pieces that

can be rearranged to form two copies of the unit ball ([2]). In other words, the unit

ball admits a paradoxical decomposition. This result shows that there is no way to

de�ne a volume that is invariant under rotations and translations.

In 1929 John von Neumann discovered the underlying cause of the Banach-Tarski

paradox. He de�ned a property of groups called amenability ([44]). A group is

amenable if there exists a �nitely additive measure on the group that is invariant

under translation by group elements. Later Tarski proved that amenability is the

only obstruction to the existence of paradoxical decompositions ([40], [41]).

The early examples of non-amenable groups all rely on the free group admitting

a paradoxical decomposition. In 1957 Day formulated the conjecture, usually

attributed to von Neumann, that a group is amenable if and only if it contains

the free group of rank 2 as a subgroup ([9]). The conjecture was disproved decades

later by Ol'shanskii ([34], [35], [36]). Today we know numerous counterexamples.

To mention a few milestones: Ol'shanskii and Sapir constructed the �rst �nitely

presented ones ([37]). In 2013 Monod found a counterexample given by piecewise

projective homeomorphisms of the line ([31]). Lodha and Moore found a �nitely

presented subgroup of Monod's group, providing the �rst torsion-free �nitely

presented counterexample ([26]).

However, there are some classes of groups for which the von Neumann-Day

conjecture is true. In 1972 Jacques Tits proved that a �nitely generated linear group

is either virtually solvable, and therefore amenable, or it contains the free group on
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two generators ([42]). Since then, we say that a group G satis�es a Tits alternative

if a similar statement holds for G: either it admits a free subgroup, or has some

restrictive property, for example virtual solvability or amenability. The classes of

groups satisfying a Tits alternative include hyperbolic groups ([16], [14]), mapping

class groups of compact surfaces ([18], [30]), Out(Fn) ([4], [5]), and large subclasses

of CAT(0) groups ([1], [38], [46]). In [39] the author of this dissertation established

a similar result about the topological full groups of minimal Cantor group actions.

LetG be a group and consider an action ofG on a compact topological space C by

homeomorphisms. This action is calledminimal if C has no properG-invariant closed

subset. The topological full group [[Gy C]] is the group of all homeomorphisms of

C that are piecewise given by elements of G, where each piece is open in C.

Topological full groups were introduced by Giordano, Putnam and Skau [15] for

Z-actions. Matui investigated these groups in a series of papers ([27], [28], [29]). He

showed that the derived subgroup of the topological full group is often simple, and

in some cases, e.g. for minimal subshifts, it is also �nitely generated. Nekrashevych

further generalized these results in [33].

Juschenko and Monod proved that for any minimal action of Z on a Cantor space

Σ, the topological full group [[Z y Σ]] is amenable ([22]). Relying on the results of

Matui, they provided the �rst examples of �nitely generated in�nite simple amenable

groups.

It is natural to ask whether the Juschenko-Monod theorem holds for minimal

actions of other (necessarily amenable) groups as well. The result of Elek and Monod

([12]) answers this question, showing that even in the case of Z2 there exists a

counterexample. Their result is even stronger: they construct a minimal action of Z2

on a Cantor space such that the topological full group contains a non-abelian free

group.

The goal of this thesis is to generalize the results of [22] and [12]. We show that

the Juschenko-Monod theorem holds for virtually cyclic groups and any compact

space. On the other hand, if the group G is in�nite but not virtually Z, we construct
a minimal action of G on a Cantor space such that the topological full group contains

a non-abelian free group. These two statements together provide a Tits alternative

for all �nitely generated groups.
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Theorem A (See Theorem 3.21.). Let G be a virtually cyclic group. Then

for any minimal action of G on a compact Hausdor� topological space C by

homeomorphisms, the topological full group [[Gy C]] is amenable.

Theorem B (See Theorem 4.12.). Let G be a �nitely generated group that is not

virtually cyclic. Then there exists a minimal free action of G on a Cantor space

Σ by homeomorphisms such that the topological full group [[G y Σ]] contains a

non-abelian free group.

One of the main ingredients of the proof of Theorem A is a property of group

actions called extensive amenability. This property was �rst used without an explicit

de�nition in [22]. Later Juschenko, Nekrashevych and de la Salle applied similar

methods to show the amenability of certain groups of dynamical origin ([23]).

Finally, Juschenko, Matte Bon, Monod and de la Salle coined the term `extensive

amenability'. They studied this property and used it to prove the amenability of

subgroups of low rank of the group of interval exchange transformations ([21]). The

secondary objective of this thesis is to introduce the reader to the topic of extensively

amenable group actions, and present some applications.

The structure is as follows: The �rst chapter introduces the basic notations,

conventions, as well as some well-known results in various topics that will be

necessary in subsequent chapters. In the second chapter, we de�ne extensive

amenability and study its properties in detail. This chapter is based on [21] and [23].

The third chapter deals with some applications of extensive amenability, including

the proof of Theorem A. Finally, in the fourth chapter we present the proof of

Theorem B.
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Chapter 1

General tools

1.1 Conventions

De�nition 1.1. Let (P ) be a property of groups. Let us recall the following two

notions.

A group G is virtually (P ), if it has a �nite index subgroup with property (P ).

We call the group G locally (P ), if all �nitely generated subgroups of G have the

property (P ).

Notation 1.2. We will denote the set of integers by Z, the set of non-negative

integers by N.

Notation 1.3. For integers a, b ∈ Z we will denote the interval of integers between

a and b by [a, b].

[a, b] := {k ∈ Z : min(a, b) ≤ k ≤ max(a, b)}.

De�nition 1.4. A topological space X is a Cantor space if X is a non-empty,

compact, metrizable, totally disconnected space without isolated points.

Recall that this is equivalent to being homeomorphic to the Cantor set 2N, where

2 denotes the 2-element set {0, 1} with the discrete topology.

De�nition 1.5. Let G be a �nitely generated group with a �nite symmetric

generating set S. The Cayley graph of G is a graph denoted by Cay(G,S) = (V,E),

where V = G and E = {(g, sg) : g ∈ G, s ∈ S}.
We usually denote the distance in the Cayley graph by d. Then (G, d) is a metric

space, we call this distance function the word metric with respect to S.
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1.2 Group actions

An action of the group G on a set X is a homomorphism φ from G to Sym(X), the

group of bijections from X to itself. We usually consider the action map

G×X −→ X

(g, x) 7−→ φ(g)(x).

When we are only dealing with one action we will usually denote φ(g)(x) by g · x or

simply gx. The notation for the group action will be Gy X.

If X has some additional structure then usually the image of φ is contained in the

automorphism group of X, i.e., those bijections X → X that preserve the structure

of the space. We will mostly work with the following three kinds of actions.

• The general case is when X is a set and there is no additional structure on it.

The image of φ lies in Sym(X).

• Many times our groups will act on topological spaces by homeomorphisms. If

X is a topological space then imφ ⊆ Homeo(X).

• Sometimes when a group G acts on another group H, then the image of φ lies

in the automorphism group Aut(H).

De�nition 1.6. Let G be a group acting on two sets X, Y . Recall that a map

f : X → Y is called a G-map if for every g ∈ G and every x ∈ X, we have f(g ·x) =

g · f(x).

1.2.1 Piecewise groups and topological full groups

Consider a group G acting on a set X. Let us de�ne the full group of this action

denoted by [G y X]. The elements of the full group are bijections on X that are

piecewise given by elements of G. Formally, ϕ ∈ [Gy X] if ϕ : X → X is a bijection,

and for every x ∈ X there exists g ∈ G such that ϕ(x) = g · x.

We will work with an important subgroup of the full group, namely the piecewise

group of an action, denoted by PW(Gy X).

The di�erence from the full group is that the elements of PW(G y X) are

piecewise given by �nitely many elements of G. In other words, ϕ ∈ PW(Gy X) if
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ϕ : X → X is a bijection, and there exists a natural number n ∈ N, a �nite partition
X = tni=1Xi and group elements g1, . . . , gn ∈ G, such that for each i ∈ [1, n] and

x ∈ Xi, we have ϕ(x) = gi · x. If this holds then we call ϕ a piecewise map.

Remark 1.7. There is an equivalent characterization of piecewise maps that we will

use. The bijection ϕ from X to itself is a piecewise G map if and only if there exists

a �nite set S ⊂ G, such that ϕ(x) ∈ S · x, for every x ∈ X.

This is indeed equivalent, since if ϕ is a piecewise map, then let S = {g1, . . . , gn},
where the gi's are the group elements from the de�nition. Conversely, if there exists

S as before, then let S = {s1, . . . , sm}, and X̄i = {x ∈ X : ϕ(x) = si · x}. The
problem is that the X̄i's might not be disjoint, so let

Xi = X̄i \
(
i−1⋃
j=1

X̄j

)
.

This way the Xi's are pairwise disjoint and ϕ(x) = si × x for x ∈ Xi, so ϕ is a

piecewise G map.

This characterization can be useful at times, for example it immediately shows

that the piecewise G maps form a group.

If G is a group acting on a topological space X, then we are able to de�ne another

subgroup of the full group called the topological full group of the action, denoted by

[[Gy X]].

The elements of [[G y X]] are piecewise given by elements of G, where each

piece is open in X. This means that if ϕ ∈ [[G y X]] then ϕ : X → X is again a

bijection, and there exists an index set Ω, group elements {gi}i∈Ω (gi ∈ G for every

i), and a partition X = ti∈ΩXi with each Xi open in X, such that for all i ∈ Ω, we

have ϕ(x) = gi · x for every x ∈ Xi.

Notice that if G acts on a compact topological space X by homeomorphisms,

then the topological full group of this action is a subgroup of the piecewise group.

Indeed, due to the compactness of X, a partition to open subsets is necessarily �nite.

This is the reason why we usually consider actions on compact spaces.

De�nition 1.8. Let (X, d) be a metric space. For a bijection ϕ : X → X let

|ϕ| = sup
x∈X
{d(x, ϕ(x))} ∈ R ∪ {∞}.

The wobbling group W(X) is de�ned as the set of all bijections ϕ : X → X such

that |ϕ| is �nite.
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The wobbling bijections and wobbling groups served as tools to prove various

non-amenability results (see [25], [11], [6]). The wobbling group of Z was central in

the study of the topological full group of a minimal Cantor Z-action ([22]). In [20],

the authors investigated the relationship between certain properties of the metric

space X, and the group structure of the wobbling group W(X).

Due to the following observation, in the case of group actions, we can focus our

attention on piecewise groups.

Proposition 1.9. Let G be a �nitely generated group, and S ⊆ G any �nite

symmetric generating set. Consider G as a metric space with the word metric with

respect to S. Then W(G) = PW(Gy G), where we consider the G-action on itself

by left multiplication. In particular, W(G) does not depend on the choice of the

generating set S.

Proof. Let ϕ : G → G be a piecewise G map. Then there exists n ∈ N, a partition

G = tni=1Xi, and group elements g1, . . . , gn ∈ G, such that for x ∈ Xi we have

ϕ(x) = gi · x. Write each gi as a product of generators, let L be the maximum of

their lengths. Then |ϕ| = L <∞, so ϕ ∈W(G).

For the other direction, take ϕ ∈ W(G). Let |ϕ| = D < ∞. For an arbitrary

x ∈ G, we know that d(x, ϕ(x)) ≤ D, where d denotes the word metric. Therefore,

we have ϕ(x) ∈ SD · x. The set SD is a �nite subset of G, so by Remark 1.7, ϕ is a

piecewise G map.

1.2.2 Invariant sets under group actions

Recall that the action of a group G on a topological space X is minimal if the

only closed G-invariant subsets of X are the emptyset and X itself. Equivalently, all

G-orbits are dense in X.

We will need the following lemmas about group actions.

Lemma 1.10. Let G be a group, H / G a �nite index normal subgroup and C

a compact space. Suppose that G acts minimally on C by homeomorphisms. Then

there exists a closed set C0 ⊆ C, a natural number n ∈ N, and group elements

g1 = eG, g2, . . . , gn ∈ G, such that for every i, the set giC0 is a minimal closed

H-invariant set and

C =
n⊔
i=1

giC0.
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Proof. If C = ∅, then the statement holds for C0 = ∅, so we can assume that C is

non-empty.

Since C is compact, there exists a minimal, non-empty H-invariant closed subset

C0 ⊆ C. Now take any g ∈ G and consider gC0 ⊆ C. The subgroup H is normal in

G, so gC0 is also a minimal H-invariant closed set. Hence, either it is equal to C0, or

they are disjoint. For group elements g, h ∈ G let us say that g ∼ h i� gC0 = hC0.

This is an equivalence relation on G, furthermore if g � h then gC0 ∩ hC0 = ∅.
Since the index of H is �nite, there are �nitely many equivalence classes. Let n be

the number of such classes. Let us choose one element from each equivalence class

(g1 = eG from its own class), denote them by g1, g2, . . . , gn ∈ G. Hence, the set⋃
g∈G

gC0 =
n⊔
i=1

giC0

is non-empty, closed and G-invariant. By the minimality of the G-action, we have

n⊔
i=1

giC0 = C.

This �nishes the proof of the lemma.

Lemma 1.11. Let H be a group acting on a topological space X by homeomorphisms.

Assume that we can divide the space into �nitely many minimal closed H-invariant

subsets, say X =
⊔n
i=1 Xi. Now let Y ⊆ X be an open or a closed H-invariant set.

Then there exists I ⊆ [1, n] such that Y =
⊔
i∈I Xi.

Proof. First assume that Y ⊆ X is a closed H-invariant set. For i ∈ [1, n] the subset

Y ∩Xi is also a closed H-invariant set that is contained in Xi. By the minimality of

Xi either Y ∩Xi = ∅ or Xi ⊆ Y . This is true for every i ∈ [1, n], so Y is the union

of some of the Xi's as stated in the lemma.

If Y is open, then X \ Y is a closed H-invariant set, so we can use the previous

part for the complement of Y . This �nishes the proof.

1.3 Recurrence of random walks

Let G = (V,E) be a locally �nite graph and v0 ∈ V a selected vertex. A random

walk on G from the vertex v0 is as follows: we start at v0, and if at the t-th step

we are at the vertex vt, we select a neighbor of vt at random and move to that
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vertex. Usually we consider a graph with edge weights (i.e., a network) and the

transition probabilities from vt are proportional to the edge weights around vt. A

special case is when all weights are equal, in other words we move to a neighbor of

vt with probability 1/deg(vt), where deg(vt) is the degree of vt. In this case we call

our random walk the simple random walk on the graph G. The sequence of random
vertices (vt)t∈N is a Markov chain. In the case when G is a directed graph, we are

only allowed to move along the edges in one direction.

De�nition 1.12. We say that a random walk is recurrent if the probability of

returning to the starting point is 1. Otherwise, it is said to be transient.

Let G = (V,E) be a locally �nite connected graph. The capacity of a vertex

v ∈ V is de�ned by

c(v) = inf


 ∑

(x,y)∈E

|θ(x)− θ(y)|2
1/2

: θ : V → R+ �n. supp., θ(v) = 1

 .

The following theorem characterizes recurrent random walks in terms of electrical

networks.

Theorem 1.13 (Theorem 2.12. in [45]). The simple random walk starting from the

point v ∈ V on a locally �nite connected graph G = (V,E) is recurrent if and only

if c(v) = 0.

Furthermore, if there exists v ∈ V with c(v) = 0, then c(u) = 0 for all u ∈ V . In
particular, the recurrence of the simple random walk on G does not depend on the

starting point.

De�nition 1.14. Let G be a locally �nite connected graph. Then G is said to be

recurrent if the simple random walk on G is recurrent for one (and hence for every)

starting point.

The following statement is a corollary of Theorem 1.13. (See [45], Corollary 2.15.)

Proposition 1.15. Let G be a recurrent graph. Then any connected subgraph of G
is also recurrent.
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1.3.1 Random walks on groups

Let G be a �nitely generated group acting on a set X. Let µ be a symmetric measure

on G, i.e., µ(g) = µ(g−1 for every g ∈ G. Consider the random walk on X with

transition probabilities

p(x, y) =
∑
g∈G
gx=y

µ(g).

The recurrence of the described Markov chain does not depend on the choice of

µ, as long as the measure is symmetric and its support generates the group. (See for

example [45], Corollary 3.5.)

We can describe this random walk on X de�ned via a group action as a random

walk on a graph.

De�nition 1.16. Let G be a �nitely generated group with a �nite symmetric

generating set S and consider an action of G on a set X. The Schreier graph

Sch(X,G, S) is de�ned as follows. The vertices are points of X and the edge set

is {(x, sx) : x ∈ X, s ∈ S}.

Note that if µ is a symmetric measure on G with support in S, then the above

described random walk on X is identical to the random walk on the Schreier graph

Sch(X,G, S) with edge weight µ(s) on the edges (x, sx) (for all x ∈ X). Since the

recurrence of this random walk does not depend on the choice of µ, the recurrence

of the graph Sch(X,G, S) does not depend on the choice of the �nite symmetric

generating set S.

De�nition 1.17. Let G be a group acting transitively on a set X. The action

G y X is said to be recurrent , if the Schreier graph Sch(X,G, S) is recurrent for

one (and hence for any) �nite symmetric generating set S.

If the action of G on X is not necessarily transitive, we will say that Gy X is

recurrent if the G-action is recurrent on every orbit.

De�nition 1.18. Let G be a �nitely generated group. We say that G is recurrent

if the G-action on itself by left multiplication is recurrent.

The following theorem gives a complete description of recurrent groups.

Theorem 1.19 (Varopoulos, [43]). A �nitely generated group is recurrent if and

only if it is �nite, or virtually Z, or virtually Z2.
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The following proposition is another corollary of Theorem 2.12 from [45].

Proposition 1.20. Let G be a �nitely generated recurrent group. Then for any set

X and for any action of G on X the action Gy X is recurrent.

1.4 Amenability

De�nition 1.21. Let X be a set. A linear functional m : `∞(X) → R is a mean if

m(χX) = 1 and it is positive, i.e., if f ∈ `∞(X), f ≥ 0, then m(f) ≥ 0.

Let G be a group acting on the set X. For f ∈ `∞(X) and g ∈ G let (g · f)(x) =

f(g−1x) for all x ∈ X. This de�nes an action of G on `p(X) for 1 ≤ p ≤ ∞.

De�nition 1.22. Let G be a group acting on a set X. The group action Gy X is

amenable if there exists a mean m : `∞(X)→ R that is invariant under the G-action,

i.e., m(g · f) = m(f) for all f ∈ `∞(X) and every g ∈ G.
A group G is amenable if the action of G on itself by left multiplication is

amenable.

Amenability has various equivalent characterizations, we will use the following.

Finitely additive invariant measure. The action Gy X is amenable if and only

if there exists a �nitely additive probability measure µ : P(X) → [0, 1] such that

µ(g · E) = µ(E) for every E ⊆ X and g ∈ G.
Notice that for a given mean m : `∞(X) → R, its restriction to characteristic

functions of subsets of X is a �nitely additive probability measure, that is invariant

under the action of G if the mean m is G-invariant. Conversely, we can linearly

extend a �nitely additive probability measure µ : P(X)→ [0, 1] so that it becomes

a linear functional. Hence, we identify µ with its extension, and we will call both

functions a mean on X.

Notation 1.23. If m : `∞(X)→ R is a mean, for E ⊆ X we will write m(E) instead

of m(χE).

Furthermore, we will use the notation
∫
X
f(x) dm(x) = m(f).

Reiter's condition. The group action Gy X is amenable if and only if for every

ε > 0 and for every �nite subset E ⊂ G there exists f ∈ `1(X) with ‖f‖1 = 1 and

f ≥ 0 such that for all g ∈ E we have ‖g · f − f‖1 < ε.
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Equivalently, Gy X is amenable i� there exists a sequence {fn}n∈N ⊂ `1(X) of

positive unit vectors such that for every g ∈ G, we have

lim
n→0
‖g · fn − fn‖1 −→ 0.

The following lemmas present well-known properties of amenable group actions.

Lemma 1.24. Every action of an amenable group is amenable.

Proof. Let G be an amenable group acting on the set X. Take a point x ∈ X,

and de�ne ϕ : G → X, ϕ(g) = g · x. Let m be a G-invariant mean on G, then the

push-forward of m by ϕ is a G-invariant mean on X. Hence, Gy X is amenable.

Lemma 1.25. Let G be a group acting on a set X. Assume that the action Gy X

is amenable and that the stabilizer Gx is amenable for every x ∈ X. Then G itself

is also amenable.

Proof. For y ∈ X, the subgroup Gy acts on G by left multiplication. This action

is amenable, so there exists a Gy-invariant mean on G. Let us �x a set of orbit

representatives Y ⊆ X, and for all y ∈ Y , �x a Gy-invariant mean µy on G. For an

arbitrary x ∈ X, there exists y ∈ Y and g ∈ G such that g · y = x, let µx = g · µy.
This is well-de�ned since µy is Gy-invariant.

Since G y X is amenable, there is a G-invariant mean µ on X. Let us de�ne

m : P(G)→ [0, 1] as follows. For E ⊆ X let

m(E) =

∫
X

µx(E) dµ(x).

This map is �nitely additive, since the µx's are �nitely addditive. It is also

G-invariant, since

m(gE) =

∫
X

µx(gE) dµ(x) =

∫
X

µg−1x(E) dµ(x) = m(E).

(The last equality is due to the G-invariance of µ.) Hence, G is amenable.

1.5 Group extensions and virtually Z groups

In Section 3.1 we will work with virtually Z groups.

Lemma 1.26. Let G be a virtually Z group. Then there exists a �nite index normal

subgroup N / G that is isomorphic to Z.
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Proof. Since G is virtually Z, we can �nd a �nite index subgroup H ≤ G that is

isomorphic to Z. Let
N =

⋂
g∈G

g−1Hg.

Since H has �nitely many conjugates in G, N is a �nite index subgroup of H.

Therefore, N is isomorphic to Z and it has �nite index in G. The fact that N is a

normal subgroup follows from its de�nition.

Thus, a virtually Z group is always an extension of a �nite group by Z. Consider
the short exact sequence

{0} −→ Z ι−→ G
π−→ Q −→ {1},

where Q is a �nite group. We will denote the identity element of Q by eQ and

the identity element of G by eG. Choose a section x 7→ gx from Q to G such that

geQ = eG, so we have that π(gx) = x for every x ∈ Q. This de�nes the cocycle

f : Q×Q→ Z by the equality

gxgy = ι(f(x, y))gxy for x, y ∈ Q.

The map α : Q→ Aut(Z) = {±1}, x 7→ αx de�ned by

gxι(n)g−1
x = ι(nαx) for x ∈ Q and n ∈ Z

is a homomorphism. The maps f and α determine the extension.

De�nition 1.27. A virtually Z group G is de�ned by a �nite group Q, a cocycle

f : Q × Q → Z, and a homomorphism α : Q → Aut(Z) = {±1}. We have that

G = Z×Q as a set, and the multiplication is de�ned as follows.

(a, x)(b, y) = (f(x, y) + a+ bαx , xy) for a, b ∈ Z, x, y ∈ Q

Remark 1.28. The identity element of G is eG = (0, eQ). Also note that the choice

geQ = eG implies that f(eQ, x) = f(x, eQ) = 0 for all x ∈ Q.

Lemma 1.29. Let H be a subgroup of the virtually Z group G. Then one of the

following two statements holds.

• H is �nite and it has in�nite index in G,

• H is in�nite and it has �nite index in G.
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Proof. If H is �nite, then it must have in�nite index, since G itself is in�nite. Now

assume that H is in�nite. Using the notations in De�nition 1.27, there exists at least

one x ∈ Q such thatH∩(Z×{x}) is in�nite. Suppose that (a, x), (b, x) ∈ H for a 6= b,

then (a, x)−1(b, x) ∈ H ∩ (Z × {eQ}). Since a 6= b, this is not the identity element.

Therefore H ∩ (Z × {eQ}) is a nontrivial subgroup, say it is equal to kZ × {eQ}.
Hence |G : H| ≤ |G : (kZ× {eQ})| = k|Q|, so the index of H is �nite.
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Chapter 2

Extensive amenability

In 2013 Juschenko and Monod proved the amenability of the topological full group

of a minimal Cantor Z-action ([22]). They essentially developed a new method

for proving the amenability of groups. Extensive amenability of group actions is

a fundamental concept in this new approach. Since then several papers investigated

or used extensive amenability ([20], [23], [21], [13]).

This chapter reviews the de�nition and properties of extensively amenable

actions, all the results we discuss here were obtained in [22], [21] and [23]. We

also draw some ideas of proofs from the books [3] (Chapter 11) and [19] (Chapters

5-8).

2.1 De�nition

Let G be a group acting on a set X. The �nite subsets of X form an abelian group

with the symmetric di�erence. Let us denote this group by Pf (X). The G-action on

X gives rise to an action of G on Pf (X). (Note that the group Pf (X) is isomorphic

to the direct sum ⊕X(Z/2Z) = Z/2Z(X).)

Notation 2.1. For x ∈ X we introduce the following notation for the collection of

subsets containing x.

Ex = {E ⊆ X : x ∈ E, |E| <∞} ⊂Pf (X).

De�nition 2.2. The action G y X is extensively amenable if there exists a

G-invariant mean m on Pf (X) such that m(Ex) = 1 for every x ∈ X.
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Remark 2.3. Let A ∈Pf (X). Let us de�ne

EA = {E ⊆ X : A ⊆ E, |E| <∞} ⊂Pf (X).

Notice that

EA =
⋂
a∈A

Ea.

Therefore, if m is a mean on Pf (X) that gives full weight to Ex for all x ∈ X, then

we also have m(EA) = 1 for all A ∈Pf (X).

De�nition 2.4. The group Pf (X)oG acts on Pf (X) given by the formula

(E, g)(F ) = E4g(F ),

where E,F ∈Pf (X) and g ∈ G.

2.2 Equivalent characterizations and properties

The �rst proposition provides some equivalent characterizations for the extensive

amenability of a transitive action.

Proposition 2.5 (Lemma 3.1 in [22].). Let G be a group acting transitively on a

set X, and x ∈ X a point. The following statements are equivalent.

1. Gy X is extensively amenable.

2. There exists a G-invariant mean on Pf (X) giving full weight to the set Ex =

{E ⊆ X : x ∈ E, |E| <∞}.

3. There exists a G-invariant mean on Pf (X) giving non-zero weight to the set

Ex = {E ⊆ X : x ∈ E, |E| <∞}.

4. The action Pf (X) o G y Pf (X) is amenable (i.e., it admits an invariant

mean).

Proof. 2. ⇒ 1. This direction follows from the transitivity of the action. If a

G-invariant mean gives full weight to Ex, then it also gives full weight to Ey for

all y ∈ X.
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1.⇒ 4. For every E ∈Pf (X) let us de�ne a mean µE on Pf (X) as follows. For

E ⊂Pf (X) let

µE(E) =
|Pf (E) ∩ E|
|Pf (E)| =

1

2|E|
|{F ∈ E : F ⊆ E}|,

in other words, µE counts the ratio of subsets of E that are contained in E .
Since theG-action onX is extensively amenable, there exists a mean µ on Pf (X)

giving full weight to sets of the form EA for A ∈ Pf (X). We de�ne another mean

m on Pf (X), for E ⊂Pf (X) let

m(E) =

∫
Pf (X)

µE(E) dµ(E).

Since E 7→ µE is a G-map and µ is G-invariant, the mean m is also G-invariant. For

A ∈Pf (X), let A4E = {A4F : F ∈ E}. Note that if A ⊆ E, then µE is invariant

under the action of A, since if F = A4 F ′ with F ′ ∈ E , then F ⊆ E if and only if

F ′ ⊆ E. Hence, for A ⊆ E, we have

µE(A4 E) =
1

2|E|
|{F ∈ A4 E : F ⊆ E}|

=
1

2|E|
|{F ′ ∈ E : F ′ ⊆ E}| = µE(E).

Therefore, m is invariant under the action of any A ∈Pf (X):

m(A4 E) =

∫
Pf (X)

µE(A4 E) dµ(E)

=

∫
EA
µE(A4 E) dµ(E)

=

∫
EA
µE(E) dµ(E)

=

∫
Pf (X)

µE(E) dµ(E) = m(E),

since µ(EA) = 1.

We proved that the mean m on Pf (X) is G-invariant, and also Pf (X)-invariant.

This implies that m is also invariant under the action of Pf (X)oG, so the action

Pf (X)oGy Pf (X) is amenable.

4.⇒ 3. Let m be a Pf (X)oG-invariant mean on Pf (X). Then m is G-invariant,

and since it is invariant under the action of {x} ∈ Pf (X), we have that m(Ex) =

m({x} 4 Ex) = m(Pf (X) \ Ex). Hence, m(Ex) = 1/2.
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3. ⇒ 2. Let µ be a G-invariant mean on Pf (X) such that µ(Ex) = c > 0. For

n ∈ N let us de�ne

ϕn : Pf (X)n −→Pf (X)

(E1, . . . , En) 7−→
n⋃
i=1

Ei.

Let µ⊗n be the nth power of the mean µ. This is a mean on Pf (X)n that is invariant

under the diagonal G-action. Let µn be the push-forward of the mean µ⊗n by the

map ϕn. Since the ϕn's are G-maps, the means µn are all G-invariant, and we also

have

µn(Ex) = 1− µn(Ecx) = 1− µ⊗n(ϕ−1
n (Ecx)) = 1− µ(Ecx)n = 1− (1− c)n.

Therefore, if m is an accumulation point of the sequence (µn)n∈N, then m is a

G-invariant mean on Pf (X) that gives full weight to Ex.

The next statement shows that, from the viewpoint of extensive amenability, it

is enough to consider �nitely generated groups and transitive actions.

Proposition 2.6 (Lemma 2.2 in [21].). Let G be a group acting on a set X, then

the following two statements are equivalent.

1. Gy X is extensively amenable.

2. For every �nitely generated subgroup H ≤ G and every H-orbit Y ⊆ X, the

action H y Y is extensively amenable.

Proof. 1. ⇒ 2. Consider a �nitely generated subgroup H ≤ G and an H-orbit

Y ⊆ X. Let µ be a G-invariant mean on Pf (X) such that µ(Ex) = 1 for every

x ∈ Y . For A ∈ Pf (X) de�ne A′ = {E ∩ Y : E ∈ A} ∈ Pf (Y ), then A 7→ A′
is an H-map. The pushforward m of the mean µ to Pf (Y ) is H-invariant, and we

also have m(E ′x) = 1 for every x ∈ Y . Therefore, the action H y Y is extensively

amenable.

2.⇒ 1. For a �nitely generated subgroupH ≤ G and a union Y = Y1∪Y2∪· · ·∪Yk
ofH-orbits let us de�ne a meanmH,Y on Pf (X) as follows. For every i ∈ [1, k] choose

an H-invariant mean mi on Pf (Yi) that gives full weight to Ey for all y ∈ Yi. For
E ⊆Pf (X) let

mH,Y (E) =
k∏
i=1

mi

(
{E ∩ Yi : E ∈ E}

)
.
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The mean mH,Y is H-invariant and gives full weight to Ex for every x ∈ Y .
Let us order the pairs (H,Y ) by inclusion and let m be a cluster point of the net

(mH,Y ). Then m is a G-invariant mean on Pf (X) that gives full weight to Ex for all
x ∈ X. Hence, Gy X is extensively amenable.

Proposition 2.7 (Lemma 2.1 in [21].). Every action of an amenable group is

extensively amenable.

If X is non-empty, then every extensively amenable action on X is amenable.

Proof. First, let G be an amenable group and consider an action of G on a space

X. By Proposition 2.6, we may assume that G is �nitely generated and that the

G-action on X is transitive. Note that Pf (X) is an abelian, hence also amenable

group. Therefore, the semidirect product Pf (X)oG is also amenable, since the class

of amenable groups is closed under extensions. Every action of an amenable group

is also amenable, so Pf (X)oGy Pf (X) is amenable. Hence, by Proposition 2.5,

Gy X is extensively amenable.

For the second statement, assume that Gy X is an extensively amenable action.

Let µ be a G-invariant mean on Pf (X) that gives full weight to the set Ex for each
x ∈ X. Let us de�ne m : P(X)→ [0, 1] in the following way. For E ⊆ X let

m(E) =

∫
Pf (X)\{∅}

|E ∩ F |
|F | dµ(F ).

We have m(X) = 1, since X 6= ∅. Furthermore, m is �nitely additive, so m is a

mean on X. Due to the G-invariance of µ, the mean m is also G-invariant, so the

G-action on X is amenable.

Remark 2.8. Note that there exist amenable actions that are not extensively

amenable, and non-amenable groups can act extensively amenably (see Example

2.11).

The following proposition states that extensive amenability is preserved by

extensions of actions.

Proposition 2.9 (Proposition 2.4 in [21].). Let G be a group acting on the sets X

and Y , and let q : X → Y be a G-map. If the action Gy Y is extensively amenable

and for every y ∈ Y the stabilizer Gy acts extensively amenably on q−1(y), then

Gy X is also extensively amenable.

If q is surjective, then the converse also holds.
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Proof. First assume that the actions G y Y and Gy y q−1(y) are extensively

amenable for every y ∈ Y . Let T ⊂ Y be a transversal for the action of G on Y ,

i.e., T contains exactly one element of each G-orbit in Y . For every y ∈ T let µy be

a Gy-invariant mean giving full weight to the collection of sets containing any given

element of q−1(y). For any g ∈ G and y ∈ T , let us de�ne µgy to be the push-forward
of µy by g. If gy = g′y, then the push-forward measures by g and g′ are the same by

the Gy-invariance of µy, so µgy is well-de�ned.

For every �nite subset F = {y1, . . . , yn} ⊆ Y let us de�ne a mean µF on Pf (X)

as follows.

µF (E) =
n∏
i=1

µyi
(
{E ∩ q−1(yi) : E ∈ E}

)
for E ⊂Pf (X). Note that for all g ∈ G, the push-forward of µF by g is exactly µgF

and that µF gives full weight to the set Ex ⊂Pf (X) for every x ∈ q−1(F ).

Now consider a G-invariant mean µ on Pf (Y ) that gives full weight to the

collection of sets containing any given element of Y . For E ⊂Pf (X) let

m(E) =

∫
Pf (Y )

µF (E) dµ(F ).

The mean m on Pf (X) is G-invariant due to the properties of the µF 's and µ. On

the other hand, for any x ∈ X we have

m(Ex) =

∫
Pf (Y )

µF (Ex) dµ(F ) =

∫
Ex
µF (Ex) dµ(F ) =

∫
Ex

1 dµ(F ) = 1.

Therefore, the action Gy X is extensively amenable.

For the converse, assume that q is onto and that Gy X is extensively amenable.

By Proposition 2.6, the action Gy y q−1(y) is also extensively amenable for every

y ∈ Y . Let µ be a mean on Pf (X) witnessing the extensive amenability of the

G-action on X. For E ⊆Pf (Y ) de�ne

m(E) = µ
(
{E ∈Pf (X) : q(E) ∈ E}

)
.

Then m is a G-invariant mean on Pf (Y ), and for every y ∈ Y choose x ∈ q−1(y),

then we have

m(Ey) = µ
(
{E ∈Pf (X) : q(E) ∈ Ey}

)
≥ µ(Ex) = 1.

Hence, the action Gy Y is also extensively amenable.
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Corollary 2.10 (Corollary 2.5 in [21].). Let K ≤ H ≤ G be groups. Then the action

Gy G/K is extensively amenable if and only if both of the actions Gy G/H and

H y H/K are extensively amenable.

Proof. We apply Proposition 2.9 for G and X = G/K, Y = G/H and the map

q : G/K → G/H, gK 7→ gH. Then the stabilizer of H ∈ G/H is precisely H ≤ G,

and q−1(H) = {hK : h ∈ H} = H/K.

Example 2.11 (Monod-Popa, [32].). The corresponding statement for amenable

actions does not hold. Let Q be a non-amenable group. De�ne

G = Q o Z =

(⊕
n∈Z

Q

)
o Z

H =
⊕
n∈Z

Q

K =
⊕
n∈N

Q.

We claim that the actions G y G/H and G y G/K are amenable, but the action

H y H/K is not.

• The action G y G/H factors through an action of Z, so it is amenable, and

also extensively amenable.

• Consider the action Gy G/K. Let t denote the positive generator of Z in G.

For f ∈ `∞(G/K), set mr(f) = f(trK). Then mr is a mean that is invariant

under the action of t−rKtr = ⊕n≥−rQ. Since H = ∪r∈N (⊕n≥−rQ), a weak-∗

limit of the mr's is an H-invariant mean m on G/K.

Let µ be a G-invariant mean on G/H (we know that Gy G/H is amenable).

For f ∈ `∞(G/K) de�ne m̄(f) = µ(gH 7→ m(g · f)). Note that the function

gH 7→ m(g · f) is well-de�ned due to the H-invariance of m. Then m̄ is a

G-invariant mean on G/K. Therefore, the action Gy G/K is amenable.

• Observe that the amenability of the action H y H/K would imply that the

group ⊕n<0Q is amenable, which contradicts the non-amenability of Q. Hence,

the action H y H/K is not amenable.

Note that G y G/K cannot be extensively amenable due to Corollary 2.10.

Therefore, this is an example of an amenable, but not extensively amenable action.
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On the other hand, G y G/H is an extensively amenable action of a

non-amenable group.

Let G be a group acting on a set X. We have seen in Proposition 2.5 that

the extensive amenability of the G-action on X is equivalent to the amenability of

the a�ne action Pf (X) o G y Pf (X). The next theorem (that was obtained in

[21]) generalizes this equivalence by replacing the `lamp functor' X 7→ Pf (X) =

(Z/2Z)(X) by other functors applied to the space X.

Let us denote the category of group actions by A. The objects are triples

(X,G, ϕ), where X is a set, G is a group, and ϕ : G × X → X is a group action.

We will omit the action from the notation and write only (X,G). A morphism

f : (X,G) → (Y,H) is a pair of maps f0 : X → Y , f1 : G → H such that

f1(g)f0(x) = f0(gx) holds for all x ∈ X and g ∈ G. The subcategories of amenable

and extensively amenable actions will be denoted by AA and EA respectively.

Let I denote the category whose objects are sets and morphisms are injections,

and let FI denote the subcategory {�nite sets, injections}. We will consider functors

F : FI→ AA, X 7→ (F0(X), F1(X)). Since the direct limits of amenable actions are

also amenable, we can extend F to a functor I→ AA that we denote by the same

letter. If F takes values in EA, we will call it an extensively amenable functor .

De�nition 2.12. The functor F : I → AA is called tight on the set X if, for

every x ∈ X, no F1(X)-invariant mean on F0(X) gives weight 1 to the image of

F0(X \ {x})→ F0(X).

Consider a functor F : I → AA. If G is a group acting on the set X, then the

set F0(X) and the group F1(X) inherit G-actions. Hence, we can de�ne the action

F1(X)oGy F0(X) as follows. For g ∈ G, γ ∈ F1(X) and x ∈ F0(X) let

(γ, g)(x) = γ(gx).

Let F : I→ AA such that F is the extension of a functor FI→ AA, and assume

that F is tight on the set X. In the next theorem, we will see that the extensive

amenability of an action Gy X is equivalent to the amenability of the a�ne action

F1(X)oGy F0(X).

Theorem 2.13. [Theorem 3.14 in [21].] Let G be a group acting on a set X, and

let F : I→ AA be extended from a functor FI→ AA as described above.
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If G y X is extensively amenable, then the action F1(X) o G y F0(X) is

amenable. If furthermore F is an extensively amenable functor, then F1(X)oGy
F0(X) is extensively amenable.

On the other hand, if F1(X) o G y F0(X) is amenable and F is tight on X,

then the action Gy X is extensively amenable.

Proof. First assume that G y X is extensively amenable. Since F is a functor

with image in AA, for every E ∈ Pf (X), the action F1(E) y F0(E) is amenable.

Thus, there exists a mean µE on F0(E) that is invariant under the action of F1(E).

We extend µE to a mean on F0. We can choose the means µE in such a way that

the map Pf (X) → M(F0(X)), E 7→ µE becomes a G-map. (This can be done by

choosing µE to be a F1(X)oSym(E)-invariant mean for one E of a �xed cardinality,

then translating this to all other �nite subsets of X of the same cardinality. The

Sym(E)-invariance ensures that the means do not depend on the choice of the

bijections.)

Let µ be a G-invariant mean on Pf (X) that gives full weight to EA for all

A ∈Pf (X). For every Y ⊆ F0(X) let us de�ne

m(Y ) =

∫
Pf (X)

µE(Y ) dµ(E).

This m is a G-invariant mean on F0(X). Let A ∈ Pf (X), then for Y ⊂ F0(X), we

have

m(F1(A)(Y )) =

∫
Pf (X)

µE(F1(A)(Y )) dµ(E)

=

∫
EA
µE(F1(A)(Y )) dµ(E)

=

∫
EA
µE(Y ) dµ(E)

=

∫
Pf (X)

µE(Y ) dµ(E) = m(Y ),

since µ(EA) = 1 and µE is F1(E)-invariant, hence it is also F1(A)-invariant for

A ⊆ E. Therefore, m is F1(A)-invariant for all A ∈Pf (X), so it is F1(X)-invariant.

This proves that the action F1(X)oGy F0(X) is amenable.

For the converse, assume that the F1(X) o G-action on F0(X) is extensively

amenable and F is tight on X. For y ∈ F0(X) let us de�ne the support of y as

follows.

supp(y) = ∩{E ∈Pf (X) : y ∈ im(F0(E)→ F0(X))}.
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The map supp: F0(X)→Pf (X) is a G-map. Let µ be a F1(X)oG-invariant mean

on F0(X), and de�ne m as the pushforward of µ by supp. Then m is a G-invariant

mean on Pf (X). Let us compute m(Ex) for some x ∈ X. Note that for y ∈ F0(X)

we have x ∈ supp(y) if and only if for every E ∈ Pf (X), y ∈ im(F0(E) → F0(X))

implies x ∈ E. Therefore, x /∈ supp(y) if and only if there exists E ∈ Pf (X) such

that x /∈ E and y ∈ im(F0(E)→ F0(X)), i.e., we have

supp−1(Ex) = {y ∈ F0(X) : x ∈ supp(y)} =

= F0(X) \ (∪{im(F0(E)→ F0(X)) : E ∈Pf (X), x /∈ E}) =

= F0(X) \ F0(X \ {x}).

Since F is tight on X, the set F0(X)\F0(X \{x}) has positive measure. Hence, since

µ is F1(X)-invariant, we have m(Ex) = µ(supp−1(Ex)) = µ(F0(X)\F0(X \{x})) > 0.

We conclude that the action Gy X is extensively amenable.

It remains to be proved that for an extensively amenable functor F and an

extensively amenable action G y X, the action F1(X) o G y F0(X) is also

extensively amenable.

Consider the functor F̃0(Y ) = Pf (Y ) and F̃1(Y ) = Pf (Y ) for a set Y . Note

that we can use the �rst statement of the theorem for the functor F̃ and the action

F1(Y ) y F0(Y ), since F̃ : I → AA is the extension of a functor FI → AA, and F

is an extensively amenable functor. We get that the action

Pf (F0(Y ))o F1(Y ) y Pf (F0(Y ))

is amenable. Hence, by setting H0(Y ) = Pf (F0(Y )) and H1(Y ) = Pf (F0(Y )) o
F1(Y ) we get a functor H : I → AA that is the extension of a functor FI → AA.

Let us use the �rst statement of the theorem for the action Gy X and the functor

H. We get that the action

(Pf (F0(X))o F1(X))oGy Pf (F0(X))

is amenable. Notice that

(Pf (F0(X))o F1(X))oG = Pf (F0(X))o (F1(X)oG) =

= F̃1(F0(X))o (F1(X)oG) .

Now apply the converse statement to the tight functor F̃ and the amenable

action

F̃1(F0(X))o (F1(X)oG) y F̃0(F0(X)).
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This implies that the action F1(X)oGy F0(X) is extensively amenable, �nishing

the proof of the theorem.

As mentioned earlier, a speci�c example of such a functor is

X 7→Pf (X) y Pf (X) = (Z/2Z)(X) y (Z/2Z)(X).

Let us mention a few other examples of functors to which the above result can be

applied.

Let AG denote the category of amenable groups whose morphisms are group

homomorphisms. Note that AG can be realized as a subcategory of AA: for an

amenable group G we consider the action G y G by left multiplication. This way

the discussed result also holds for any functor F : I → AG that is the extension of

a functor FI→ AG.

Example 2.14. Fix an amenable group A. Let F : FI → AG be the functor that

maps a �nite set X to AX . Then the extension of F maps an arbitrary set X to

A(X), the restricted product, since A(X) is the directed union of subgroups of the

form AY , where Y ⊆ X is a �nite subset.

Example 2.15. For a �nite set X consider the group Sym(X). The extension of

this functor is X 7→ Symf (X), where Symf (X) is the group of �nitely supported

permutations on X. We will see this example in an application to interval exchange

transformations in Section 3.2.

Example 2.16. The functor X 7→ Symf (X) y X, I → AA is the extension of the

functor that maps a �nite set X to the action Sym(X) y X.

2.3 Recurrence

In general, it can be quite di�cult to determine whether a given action is

extensively amenable. In this section we show that recurrence of the Schreier

graph implies the extensive amenability of an action. Since recurrent actions are

well-understood, this method remains the only e�cient way to establish extensive

amenability of an action.

Theorem 2.17 (Theorem 2 in [23].). Let G be a group acting transitively on the

set X. If the graph of the action G y X is recurrent, then the G-action on X is

extensively amenable.
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Proof. Assume that the action G y X is recurrent. Let x0 ∈ X be a point. By

Theorem 1.13 There exist functions θn : X → R+ with �nite support, such that

θn(x0) = 1 for all n ∈ N and we have

‖gθn − θn‖2 −→ 0

for every g ∈ G. We can assume that 0 ≤ θn(x) ≤ 1 for all x ∈ X, n ∈ N.
Let us de�ne ξ : Pf (X)→ R+ as follows. For E ∈Pf (X) let

ξn(E) =

1 if E = ∅∏
x∈E θn(x) otherwise.

Since θn is �nitely supported, we have ξn ∈ `2(Pf (X)). Let fn = ξn/‖ξn‖2. We would

like to prove that the unit vectors fn ∈ `2(Pf (X)) are approximately Pf (X) o
G-invariant.

First, consider the element {x0} ∈Pf (X). We have

{x0} · fn(E) =
1

‖ξn‖2

ξn({x0} 4 E)

=
1

‖ξn‖2

∏
x∈{x0}4E

θn(x)

=
1

‖ξn‖2

∏
x∈E

θn(x)

=
1

‖ξn‖2

ξn(E) = fn(E)

since θn(x0) = 1. Hence, for all n ∈ N, the vector fn is {x0}-invariant.
It is su�cient to show that the vectors fn are increasingly G-invariant, then the

Pf (X)oG-invariance will follow by the transitivity of the G-action on X. Take an

element g ∈ G. Our goal is to prove that ‖g · fn − fn‖2 → 0. We have

‖g · fn − fn‖2
2 = ‖fn‖2

2 + ‖g · fn‖2
2 − 2〈g · fn, fn〉 = 2− 2〈g · fn, fn〉,

so it is enough to show that 〈g · fn, fn〉 → 1. We can compute

‖ξn‖2
2 = 〈ξn, ξn〉2

=
∑

E∈Pf (X)

(∏
x∈E

θn(x)

)2

=
∏
x∈X

(1 + θn(x)2)

=
∏
x∈X

(1 + θn(g−1x)2)
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and

〈g · ξn, ξn〉 =
∑

E∈Pf (X)

(∏
x∈E

θn(g−1x)θn(x)

)

=
∏
x∈X

(1 + θn(g−1x)θn(x)).

Therefore, we have

1

〈g · fn, fn〉2
=

( 〈ξn, ξn〉
〈g · ξn, ξn〉

)2

=
∏
x∈X

(1 + θn(x)2)(1 + θn(g−1x)2

(1 + θn(g−1x)θn(x))2
.

Using that log(t) ≤ t− 1 for all t > 0, we get

0 ≤ 2 log
1

〈g · fn, fn〉

=
∑
x∈X

log
(1 + θn(x)2)(1 + θn(g−1x)2)

(1 + θn(g−1x)θn(x))

≤
∑
x∈X

(
(1 + θn(x)2)(1 + θn(g−1x)2)

(1 + θn(g−1x)θn(x))
− 1

)
=
∑
x∈X

θn(x)2 + θn(g−1x)2 − 2θn(g−1x)θn(x)

(1 + θn(g−1x)θn(x))2

≤
∑
x∈X

(θn(x)− θn(g−1x))2

= ‖g · θn − θn‖ −→ 0.

Hence, we have that 〈g·fn, fn〉 → 1 for any g ∈ G, so the vectors fn are approximately

Pf (X) o G-invariant. Therefore, the positive unit vectors {f 2
n} are increasingly

Pf (X)oG-invariant, so by Reiter's condition the action Pf (X)oGy Pf (X) is

amenable. This proves the extensive amenability of the action Gy X.

Remark 2.18. Juschenko, Matte Bon, Monod and de la Salle presented an alternate

proof for Theorem 2.17, using inverted orbits ([21]).

Remark 2.19. Garban de�ned a stronger property, di�use-extensive-amenability, and

proved that it is equivalent to recurrence for actions of wobbling groups ([13]). This

led him to conjecture that the action of the wobling group W(Zd) y Zd is not

extensively amenable for d ≥ 3.
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In the following proposition we give a su�cient condition for the action of the

piecewise group to be extensively amenable. The same statement follows from the

�rst part of Theorem 1.4 in [20] in the case of �nitely generated groups.

Proposition 2.20. Let G be a group acting on a set X. Assume that for all �nitely

generated subgroups H ≤ G and all H-orbits Y ⊆ X the graph of the action H y Y

is recurrent. Then the action of the piecewise group PW(Gy X) on X is extensively

amenable.

Remark 2.21. By Theorem 2.17 and Proposition 2.6, it immediately follows that the

action of G on X is extensively amenable. Now we prove the extensive amenability

of the action of the piecewise group by verifying the recurrence assumption for all

�nitely generated subgroups of the piecewise group.

Proof. According to Proposition 2.6, it is su�cient to show that for a �nitely

generated subgroup F ≤ PW(G y X), the action of F on X is extensively

amenable. So let F be any �nitely generated subgroup of PW(G y X). For any

ϕ ∈ F , there exists a �nite set of group elements Sϕ = {g1, . . . , gk} ⊂ G such that

ϕ(x) ∈ Sϕ · x for all x ∈ X. Hence there exists a �nitely generated subgroup H ≤ G

such that F ≤ PW(H y X).

Let p ∈ X be an arbitrary point and let Y ⊆ X denote the H-orbit of p. By

Proposition 2.6, it is enough to show that the F -action on Y is extensively amenable.

Let GF be the graph of the action of F on Y , i.e., V(GF ) = Y and E(GF ) =

{(y, ϕ(y)) : y ∈ Y, ϕ ∈ T} where T = T−1 ⊆ F is a �nite generating set of F . This

graph might not be connected.

Now each ϕ ∈ T is a piecewise H map on X, so we can �nd a �nite set Sϕ ⊂ H

such that ϕ(x) ∈ Sϕ · x for all x ∈ Y . Let T̂ =
⋃
ϕ∈T Sϕ ⊂ H and let S be a

symmetric generating set of H such that T̂ ⊆ S. Let GH denote the graph of the

action of H on Y with generating set S.

The vertex set of GF is equal to the vertex set of GH . Whenever (y, ϕ(y)) is an

edge in GF , there exists g ∈ T̂ such that ϕ(y) = g · y. Since T̂ ⊆ S, this implies that

(y, ϕ(y)) is also an edge of GH . Hence GF is a subgraph of GH .
By the assumption in the statement the graph GH is recurrent. By Proposition

1.15 all connected subgraphs of a recurrent graph are also recurrent. In particular, all

connected components of GF are recurrent. Hence by Theorem 2.17 and Proposition

2.6 the F -action on Y is extensively amenable.
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Corollary 2.22. Let G be a group such that every �nitely generated subgroup of G

is either virtually cyclic or virtually Z2. Consider an action of G on a set X. Then

the action of the piecewise group PW(Gy X) on X is extensively amenable.

Proof. We use Proposition 2.20 for G. Consider a �nitely generated subgroup H ≤
G, we know that H is virtually cyclic or virtually Z2. In both cases, the group H is

recurrent by Theorem 1.19, so for every action of H, the graph of the action is also

recurrent by Proposition 1.20. This veri�es the assumption of Proposition 2.20, so

the action of PW(Gy X) on X is extensively amenable.
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Chapter 3

Amenability of full groups

This chapter presents some amenability results that use extensive amenability.

In the following two statements we consider functors F : I→ AG. Let e denote the

unit element of F (X).

Proposition 3.1 (Corollary 1.4 in [21]). Let F : I→ AG be extended from a functor

FI → AG and let G y X be an extensively amenable action. Consider a subgroup

H ≤ F (X)oG. If the intersection H ∩ ({e}×G) is amenable, then the subgroup H

is also amenable.

Proof. Let Y be the theH-orbit of e in F (X). Since F (X)oGy F (X) is extensively

amenable (by Theorem 2.13), the action H y Y is also extensively amenable, hence

amenable.

On the other hand, the stabilizer of e inH is precisely the subgroupH∩({e}×G).

It is amenable by assumption. Therefore, by Lemma 1.25, H is amenable.

The following is a special case of Proposition 3.1.

Corollary 3.2. Let F : I → AG be extended from a functor FI → AG and let

G y X be an extensively amenable action. Assume that there exists an embedding

i : G ↪→ F (X)oG of the form g 7→ (cg, g), such that the set {g ∈ G : cg = e} is an
amenable subgroup of G. Then G is amenable.

Proof. Use Proposition 3.1 for H = i(G). Then the subgroup i(G) ∩ ({e} × G) is

exactly {g ∈ G : cg = e}.



36 Chapter 3: Amenability of full groups

Remark 3.3. Consider a map c : G→ F (X) and let i : G→ F (X)oG, g 7→ (cg, g).

Then for g, h ∈ G, we have

(cgh, gh) = i(gh) = i(g)i(h) = (cg, g)(ch, h) = (cgg(ch), gh).

From these calculations we can see that i is a group homomorphism if and only if c

satis�es the cocycle identity.

Also note that the set ker c = {g ∈ G : cg = e} is a subgroup of G since e is a

�xed point of the action of G on F (X).

De�nition 3.4. The map c : G → F (X), g 7→ cg from Corollary 3.2 is called a

cocycle with amenable kernel .

Thus, we can reformulate the statement of Corollary 3.2 as follows. Let Gy X

be an extensively amenable action. If there exists a cocycle c : G → F (X) with

amenable kernel for some F : I → AG that is extended from a functor FI → AG,

then G is amenable.

The following two sections both contain an application of Corollary 3.2.

3.1 Virtually cyclic groups

In this section we will consider a virtually Z group G acting minimally on a

compact Hausdor� topological space C by homeomorphisms. Our goal is to prove

the amenability of the topological full group [[Gy C]]. In order to achieve this we

will construct a cocycle on [[Gy C]] with an amenable kernel.

Remark 3.5. Note that minimality is a necessary requirement. It is possible to

construct a Z-action on a Cantor space such that the topological full group contains

a non-amenable free group, so it cannot be amenable. We present such an action in

Example 4.6.

We will always think of G as the set Z×Q with the multiplication

(a, x)(b, y) = (f(x, y) + a+ bαx , xy) for a, b ∈ Z, x, y ∈ Q,

as described in De�nition 1.27.
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3.1.1 Action on an orbit

Take a point p in the space C. Since the action of G is minimal, the orbit of p

is dense. This means in particular that the stabilizer Gp has in�nite index in the

virtually Z group G, so it is �nite by Lemma 1.29. Let us denote the orbit of p by

X, consider the action G y X that is the restriction of the action on C. Let us

de�ne the map

εp : [[Gy C]] ↪−→ PW(Gy X),

ϕ 7−→ ϕ∣∣X .
Since X is dense in C, the action of ϕ on X determines ϕ on C, so this map is

injective.

In many cases it will be more convenient to work with the piecewise group

PW(Gy X) instead of the topological full group [[Gy C]].

We will use the following technical lemma and remark in the construction of our

cocycle.

Lemma 3.6. If G is a virtually Z group acting on a compact space C minimally,

then we can �nd a point p ∈ C such that the normalizer NG(Gp) is in�nite.

Proof. Suppose for contradiction that for all points q ∈ C, the normalizer NG(Gq)

is �nite. The stabilizer of g · q is gGqg
−1, so the �niteness of all normalizers implies

that for every q, there are only �nitely many points in the orbit of q that have the

same stabilizer as q, and all the others have conjugate stabilizers.

Consider the map from Subf (G) = {K ≤ G : K is �nite} to C (C) = {C ′ ⊆ C :

C ′ is closed} that gives us the set of points stabilized by a certain subgroup. For

K ≤ G, let

ξ(K) = {q ∈ C : g · q = q for every g ∈ K}.

This is indeed a closed set in C, since G acts by homeomorphisms. Note that q ∈
ξ(K) implies K ≤ Gq. We have

C =
⋃

K=Gq for

some q∈C

ξ(K).

Since Subf (G) is countable, we can have at most countably many subgroups as

stabilizers. So C is the union of countably many closed sets. By the Baire category
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theorem, at least one of these sets has non-empty interior. LetK0 ≤ G be a subgroup

such that int(ξ(K0)) 6= ∅.
Choose a point q ∈ C for which K0 = Gq. As we saw in the beginning of the

proof, there are only �nitely many points in the orbit of q that are stabilized by

K0. Hence, this orbit intersects the non-empty open set int(ξ(K0)) at �nitely many

points, so it cannot be dense in C. This contradicts the minimality of the action.

Remark 3.7. By Lemma 3.6, we can always �nd a point p such that NG(Gp) is

in�nite, so it has �nite index in the virtually Z group G by Lemma 1.29. Hence, its

intersection with Z × {eQ} is kZ × {eQ} for some k ∈ N. We also know that Gp

intersects Z× {eQ} trivially, since Gp is �nite. Hence, Gp and kZ× {eQ} normalize

each other and their intersection is trivial, so they commute. Therefore, we can

assume (perhaps by passing to a �nite index subgroup of Z) that Gp commutes with

the normal subgroup Z× {eQ} in G. We will use this assumption later.

De�nition 3.8 (Generators). As before, let G be a virtually Z group acting

transitively on the space X, and let p ∈ X be a point and H = Gp its stabilizer.

Using the notations of De�nition 1.27, H intersects (Z× {eQ}) ≤ G trivially. With

π denoting the projection map G → Q, the subgroup π(H) is isomorphic to H.

Let m be the index of π(H) in Q, and let {x1, . . . , xm} be a system of left coset

representatives of π(H) in Q such that x1 = eQ. Let us introduce the notations

τ = (1, eQ) ∈ G,
σi = (0, xi) ∈ G for i ∈ [1,m].

Let S = {τ, σ2, . . . , σm}.

The choice of the set S = {τ, σ2, . . . , σm} ensures that the graph of the action of

G onX is connected with generating set S. (Since σ1 = eG, it is not necessary to have

it among the generators, but this notation will be convenient in some calculations.)

Lemma 3.9. We have X = G · p = {τ kσi · p = (k, xi) · p : k ∈ Z, i ∈ [1,m]}.
Furthermore τ kσi · p = τ `σj · p if and only if (k, i) = (`, j).

Proof. Observe that

τσi = (1, eQ)(0, xi) = (1, xi),

σiτ = (0, xi)(1, eQ) = (1αxi , xi) = τ±1σi.
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Hence, G · p = {τ kσi · p = (k, xi) · p : k ∈ Z, i ∈ [1,m]}. If τ kσi · p = τ `σj · p, then
σ−1
j τ k−`σi = τ±(k−`)σ−1

j σi ∈ H. By taking the π-image we have

π(τ±(k−`)σ−1
j σi) = x−1

j xi ∈ π(H).

Since these are coset representatives of π(H), we have xi = xj and i = j. Hence,

σi = σj, and τ k−` ∈ H implies k = `.

Therefore, τ kσi · p = τ `σj · p if and only if (k, i) = (`, j).

3.1.2 De�nition of the cocycle

De�nition 3.10. Let G be a virtually Z group acting minimally on the compact

space C, and let p ∈ C with the assumption of Remark 3.7. Let X = G · p as before.
Let us de�ne A ⊆ X as follows.

A = {(k, xi) · p : k ∈ Z, i ∈ [1,m], kαxi ≥ 0}

Observe that A is a collection of `half lines'. Whenever αxi is the identity, A

contains the positive half line {(k, xi) · p : k ∈ N}, and when αxi = −1, it contains

the negative half line {(k, xi) · p : −k ∈ N}.

Lemma 3.11. For every g ∈ G, the set gA \ A ⊂ X is �nite.

Proof. Let g = (`, y) be an arbitrary element of G. We have

g · ((k, xi) · p) = (`, y)(k, xi) · p = (f(y, xi) + `+ kαy , yxi) · p.

There exists a unique j ∈ [1,m], such that yxiπ(H) = xjπ(H) and a unique (t, z) =

h ∈ H, such that yxiz = xj. Using these notations, we have

(f(y, xi) + `+ kαy , yxi) · p = (f(y, xi) + `+ kαy , yxi)(t, z) · p
= (f(yxi, z) + f(y, xi) + `+ kαy + tαyxi , xj) · p.

We are going to use the assumption that H commutes with Z × {eQ}, mentioned

in Remark 3.7. This implies that α(π(H)) = {+1}, so whenever x and x′ are in the

same coset of π(H) in Q, we have αx = αx′ . Now we know that yxi and xj are in

the same coset, so αyxi = αxj . Therefore,

(f(yxi, z) + f(y, xi) + `+ kαy + tαyxi , xj) · p /∈ A
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m

0 > (f(yxi, z) + f(y, xi) + `+ kαy + tαyxi )αxj

= (f(yxi, z) + f(y, xi) + `+ kαy + tαyxi )αyxi

= f(yxi, z)
αyxi + f(y, xi)

αyxi + `αyxi + kαxi + t.

For a �xed g and �xed i ∈ [1,m], the number f(yxi, z)
αyxi + f(y, xi)

αyxi + `αyxi + t

is also �xed. For i ∈ [1,m] let Ai = {(k, xi) · p : k ∈ Z, kαxi ≥ 0}. The previous

calculations show that

|gAi \A| =
∣∣{k ∈ Z : kαxi ≥ 0 and f(yxi, z)

αyxi +f(y, xi)
αyxi + `αyxi +kαxi + t < 0}

∣∣,
which is �nite. Hence,

gA \ A =
⋃

i∈[1,m]

(gAi \ A)

is also a �nite set.

Proposition 3.12. For every piecewise map ϕ ∈ PW(Gy X), the set A4ϕ(A) is

�nite.

Proof. There exists a �nite set T = {g1, . . . , gt} ⊂ G, such that for every h ∈ G,

ϕ(h · p) ∈ Th · p. We have the following inclusion.

ϕ(A) \ A ⊆
(

t⋃
i=1

giA

)
\ A =

t⋃
i=1

(giA \ A).

By Lemma 3.11, the sets on the right-hand side are all �nite, so ϕ(A) \ A is also

�nite. The same argument works for ϕ−1(A) \ A, implying that A \ ϕ(A) is also

�nite. Hence, A4ϕ(A) is �nite.

Proposition 3.12 allows us to de�ne the following embedding.

De�nition 3.13. For ϕ ∈ PW(Gy X) let cϕ = A4ϕ(A) ∈Pf (X). The map

[[Gy C]] ≤ PW(Gy X) ↪−→Pf (X)o PW(Gy X),

ϕ 7−→ (cϕ, ϕ) = (A4ϕ(A), ϕ)

is an embedding.



Chapter 3: Amenability of full groups 41

3.1.3 Amenable kernel

This section is dedicated to proving that the kernel of the cocycle [[G y C]] →
Pf (X), ϕ 7→ cϕ = A4ϕ(A) de�ned in the previous section is amenable. The kernel

is the subgroup {ϕ ∈ [[Gy C]] : ϕ(A) = A}, i.e., the stabilizer of the set A ⊆ X in

the full group [[Gy C]].

De�nition 3.14. Let G be a group acting on the space C. Let D ⊂ G be a �nite

set containing the identity element. For an element ϕ ∈ PW(G y C) and for two

points q1, q2 ∈ C, we say that the ϕ-action is the same on the D-neighborhood of q1

and q2, if for every d ∈ D, ϕ acts by the same element of G on d · q1 and on d · q2

(i.e., there exists g ∈ G such that ϕ(d · q1) = gd · q1 and ϕ(d · q2) = gd · q2).

Lemma 3.15. Let G be a virtually Z group acting minimally on the compact space

C, and let p ∈ C be as before.

For every �nite subset F ⊂ [[G y C]] and every n ∈ N, there exists n̂ =

n̂(n, F ) ∈ N, such that for every interval I ⊂ Z of length 2n̂, there exists t ∈ I

such that [t − n, t + n] ⊆ I, and for every ϕ ∈ F , the ϕ-action is the same on the

[−n, n]×Q-neighborhood of p and (t, eQ) · p.

Proof. Let F ⊂ [[Gy C]] be a �nite subset and n ∈ N. We can �nd a �nite partition

P of C into clopen (closed and open) sets, such that every ϕ ∈ F is just acting with

an element of G when restricted to an element of P . This implies that there exists

an open neighborhood V of p, such that for all j ∈ [−n, n] and all x ∈ Q, the set

(j, x) · V is contained in some P ∈ P . The union⋃
`≥1

⋃
|r|≤`

(r, eQ) · V

is nonempty, open and Z-invariant, where Z = Z×{eQ}/G. By Remark 1.10, there

exists a minimal Z-invariant closed subset C0 ⊆ C with p ∈ C0, a natural number

M ∈ N, and group elements eG = g1, g2, . . . , gM ∈ G, such that

C =
M⊔
i=1

gi · C0.

By Lemma 1.11, the nonempty, open and Z-invariant set
⋃
`≥1

⋃
|r|≤`(r, eQ) ·V is

the union of some gi · C0's. Since it contains p, it has a nonempty intersection with

C0, hence we have

C0 ⊆
⋃
`≥1

⋃
|r|≤`

(r, eQ) · V.
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By the compactness of C0, a �nite union already contains it, so there is ` ∈ N such

that

C0 ⊆
⋃
|r|≤`

(r, eQ) · V.

Let n̂ = n̂(n, F ) = `+n. Now if I ⊂ Z is an interval of length 2n̂, then I = [s−n̂, s+n̂]

for some s ∈ Z. We have

C0 = (−s, eQ) · C0 ⊆
⋃
|r|≤`

(−s, eQ)(r, eQ) · V =
⋃
|r|≤`

(−s+ r, eQ) · V.

Hence, there is an integer −t ∈ [−s− `,−s + `], such that p ∈ (−t, eQ) · V . By the

choice of n̂, we have [t − n, t + n] ⊆ [s − n̂, s + n̂]. By multiplying with the inverse

of (−t, eQ), we get

(−t, eQ)−1 · p = (t, eQ) · p ∈ V.

Thus for all j ∈ [−n, n] and for all x ∈ Q, both (j, x) · p and (j, x)(t, eQ) · p are in

(j, x) ·V , so every element of F acts on them as the same element of G (by the choice

of the partition and the open set V ). In other words, the action of every element of

F is the same on the [−n, n]×Q-neighborhoods of p and (t, eQ) · p.

The picture we have in mind is the following. We think of X = G · p as a

collection of lines, for each i ∈ [1,m] the corresponding line is (Z × {xi}) · p,
and the origin on this line is the point (0, xi) · p. Suppose that we only know

the action of F on a neighborhood of the origin on each line (i.e., the ([−n, n] ×
{x1, . . . , xm})-neighborhood of p). Lemma 3.15 states that on any chosen line in any

long enough interval we can �nd a subinterval of length 2n, where the action of F

is determined by what we know.

Having these lines in mind we introduce a de�nition to get the coordinate of a

given point on the corresponding line.

De�nition 3.16. For q ∈ X = G · p, there exists exactly one element of the form

(k, xi) ∈ G, such that q = (k, xi) · p. Let |q| = |k|.

The following lemma shows that there is a universal bound on the distance

between the coordinate of a point in X and that of its image under the action of a

piecewise G map.

Lemma 3.17. Let ϕ ∈ PW(Gy X). Then

sup{
∣∣|q| − |ϕ(q)|

∣∣ : q ∈ X}
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is �nite.

Proof. Consider the graph of the action Gy X with the generating set S introduced

in De�nition 3.8 (this assures that the graph is connected). Let d denote the distance

function on this graph. The piecewise group PW(G y X) also acts on the graph,

take ϕ ∈ PW(Gy X). Since this is a piecewise G map, it can only move points to

a limited distance. Let

|ϕ| = max{d(q, ϕ(q)) : q ∈ X}.

This means that we can get to ϕ(q) from q by applying at most |ϕ| many

generators. When we multiply a point with the generator τ = (1, e), the coordinate

changes by 1. Now take σi = (0, xi) ∈ S. We would like to compute the di�erence

of the coordinates of q and σi · q. Let q = (n, xj) · p, then we have

σi · q = (0, xi)(n, xj) · p
= (f(xi, xj) + nαxi , xixj) · p.

There exists a unique h = (`, z) ∈ H = Gp such that xixjz = xk (for some k ∈
[1,m]).

σi · q = (f(xi, xj) + nαxi , xixj)(`, z) · p
= (f(xixj, z) + f(xi, xj) + nαxi + `αxixj , xk) · p.

The di�erence of the coordinates is∣∣|q| − |σi(q)|∣∣ =
∣∣|f(xixj, z) + f(xi, xj) + nαxi + `αxixj | − |n|

∣∣
≤ |f [xixj, z)|+ |f(xi, xj)|+ |`|.

Recall that f : Q × Q → Z is a cocycle. Since Q is �nite, there is an upper bound

on the absolute values f can take, let us denote this number by f0 ∈ Z. We also

know that H is �nite, so there are only �nitely many possible values for the �rst

coordinate of an element of H, let us denote the maximum absolute value by `0 ∈ Z.
We obtained that ∣∣|q| − |σi(q)|∣∣ ≤ 2f0 + `0,

and this bound does not depend on the choice of the point q. So we have∣∣|q| − |ϕ(q)|
∣∣ ≤ |ϕ|(2f0 + `0)

for every q ∈ X. This �nishes the proof of the lemma.
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Notation 3.18. For a �nite set F ⊂ PW(G y X), let us introduce the following

notation.

dF = max{
∣∣|q| − |ϕ(q)|

∣∣ : ϕ ∈ F, q ∈ X}.

By Lemma 3.17, we know that this is �nite.

Proposition 3.19. The stabilizer [[Gy C]]A is locally �nite.

Proof. Let F ⊂ [[G y C]]A be a �nite subset of the stabilizer. We would like to

prove that the subgroup generated by F in [[Gy X]]A is �nite.

By Lemma 3.15 for F and n = dF + 1, we have n̂ = n̂(n, F ). Let I0 = [−n̂, n̂],

and decompose Z as the disjoint union of consecutive intervals {Ik}k∈Z of length 2n̂.

(So for example I1 = [n̂ + 1, 3n̂ + 1], I−1 = [−3n̂ − 1,−n̂ − 1], etc.) According to

the lemma, for each k ∈ Z \ {0}, there exists tk ∈ Ik such that [tk − n, tk + n] ⊆ Ik,

and for every ϕ ∈ F , the ϕ-action is the same on the [−n, n] × Q-neighborhood of

(tk, eQ) · p and of p. Let t0 = 0.

Now for k ∈ Z and i ∈ [1,m], let

Bk,i = {(`, xi) · p : ` ∈ [t
αxi
k , (tk+1 − 1)αxi ]}

=
(
[t
αxi
k , (tk+1 − 1)αxi ]× {xi}

)
· p ⊂ (Z× {xi}) · p.

Note that for αxi = −1 this interval becomes [−tk+1 + 1,−tk]. For k ∈ Z we de�ne

Bk =
m⋃
i=1

Bk,i ⊂ X.

Claim 3.20. For every k ∈ Z, the �nite set Bk ⊂ X is invariant under the action

of F .

Proof. Fix k ∈ Z. Take arbitrary elements ϕ ∈ F and (r, xi) · p ∈ Bk, then there

exists a group element g = (`, z) ∈ G, such that the action of ϕ on (r, xi) · p is

multiplication by g. So we have

ϕ((r, xi) · p) = (`, z)(r, xi) · p
= (f(z, xi) + `+ rαz , zxi) · p.

There is a unique (L, y) ∈ H, such that zxiy = xj for some j ∈ [1,m].

ϕ((r, xi) · p) = (f(z, xi) + `+ rαz , zxi)(L, y) · p
= (f(z, xi) + `+ rαz + Lαzxi + f(zxi, y), xj) · p.
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Let R = f(z, xi) + `+ Lαzxi + f(zxi, y), by Lemma 3.17 we have |R| ≤ dF = n− 1,

since this is the di�erence of the coordinates of (r, xi) · p and its ϕ-image. There are

three cases.

1. r ∈ [(tk + n)αxi , (tk+1 − n− 1)αxi ],

2. r ∈ [t
αxi
k , (tk + n− 1)αxi ],

3. r ∈ [(tk+1 − n)αxi , (tk+1 − 1)αxi ].

In each case we conclude that the image of the point (r, xi) · p stays in the set Bk.

1. Note that we have αxj = αzxi = αzαxi , since they are in the same coset of

π(H) in Q. Therefore, in this case we have

rαz ∈ [(tk + n)αxj , (tk+1 − n− 1)αxj ].

Moreover, we know that |R| < n, and hence by acting with ϕ we cannot leave

the interval, i.e.,

rαz +R ∈ [(tk)
αxj , (tk+1 − 1]αxj ].

This means that ϕ((r, xi) · p) ∈ Bk.

2. In this case the point (r, xi) ·p is in the [−n, n]×Q-neighborhood of (tk, eQ) ·p,
so we can use that the ϕ-action on this neighborhood of (tk, eQ) · p is the same

as on the [−n, n] × Q-neighborhood of p. This, and the fact that ϕ is in the

stabilizer of A, ensures that the image of (r, xi) · p stays in Bk.

Let b = r−tαxik , then bαxi ∈ [0, n], so (r, xi)·p = (b+t
αxi
k , xi)·p = (b, xi)(tk, eQ)·p.

Now we can see the action of ϕ on (r, xi) · p the following way.

ϕ((r, xi) · p) = ϕ((b, xi)(tk, eQ) · p)
= (`, z)(b, xi)(tk, eQ) · p
= (`, z)(b+ t

αxi
k , xi) · p

= (`, z)(t
αxi
k , eQ)(b, xi) · p

= (`+ (t
αxi
k )αz , z)(b, xi) · p

= (t
αxiαz
k , eQ)(`, z)(b, xi) · p

= (t
αxiz
k , eQ)ϕ((b, xi) · p).
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The last equality is due to the fact that (b, xi) · p is in the [−n, n] ×
Q-neighborhood of p, this is the corresponding point to (r, xi)·p, so the ϕ-action
on this point is also multiplication by g = (`, z). We have

ϕ((b, xi) · p) = (t
αxiz
k , eQ)−1ϕ((r, xi) · p)

= (−tαxizk , eQ)(rαz +R, xj) · p
= (rαz +R− tαxizk , xj) · p.

Since ϕ is in the stabilizer of the set A ⊂ X, the image of (b, xi) · p is also in

A, so we have

0 ≤ (rαz +R− tαxizk

)αxj
=
(
(b+ t

αxi
k )αz +R− tαxizk

)αxj
= bαxi +Rαxj .

In the second equation we used that from αxj = αxiz = αzxi = αxiαz we get

αzαxj = αxi , since im(α) ⊆ Aut(Z) = {±1}. We also know that |b| + |R| ≤
2n− 1, so

0 ≤ bαxi +Rαxj ≤ 2n− 1.

From the choice of the tk's it is clear that |tk+1 − tk| ≥ 2n, so we have

[tk, tk+1 − 1] 3 tk + bαxi +Rαxj

=
(
(t
αxi
k + b)αz +R

)αxj
= (rαz +R)αxj .

Hence, rαz + R ∈ [tk, tk+1 − 1]αxj . Therefore, ϕ((r, xi) · p) ∈ Bk holds in the

second case as well.

3. In this case we use that the complement of A ⊂ X is invariant under the action

of ϕ. Hence, exactly the same ideas and similar calculations as in the second

case show that ϕ((r, xi) · p) ∈ Bk.

This proves that Bk is indeed invariant under the action of all elements of F .

Since every Bk is invariant under the action of F , we can realize the group 〈F 〉 as
a subgroup of

∏
k∈Z Sym(Bk). By the choice of tk ∈ Ik, we have that |tk+1−tk| ≤ 4n̂,

so |Bk,i| ≤ 4n̂ for every i ∈ [1,m], and hence |Bk| ≤ 4n̂m for all k ∈ Z. This means
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that there is a uniform bound on the cardinality of the Bk's, so the direct product∏
k∈Z Sym(Bk) is locally �nite. The group 〈F 〉 is a �nitely generated subgroup of

this, consequently it is �nite.

Now we can prove Theorem A.

Theorem 3.21. Let G be a virtually cyclic group. Then for any minimal action of

G on a compact Hausdor� topological space C by homeomorphisms, the topological

full group [[Gy C]] is amenable.

Proof. The action PW(G y C) y C is extensively amenable by Corollary 2.22.

As [[G y C]] is a subgroup of the piecewise group, the action [[G y C]] y C is

also extensively amenable. The kernel of the cocycle [[G y C]] → Pf (X), ϕ 7→
cϕ = A4ϕ(A) is exactly the stabilizer [[G y C]]A. By Proposition 3.19 this kernel

is locally �nite, hence amenable. Therefore, by Corollary 3.2, the topological full

group [[Gy C]] is amenable.

3.2 Interval exchange transformations

De�nition 3.22. An interval exchange transformation is a right continuous

bijection g : R/Z→ R/Z such that the set of angles {gx− x : x ∈ R/Z} is �nite.
Since the composition of interval exchange transformations is also an interval

exchange transformation, they form a group. We denote the group of all interval

exchange transformations by IET. By construction, IET acts on the set R/Z.

In other words, if we cut the circle R/Z into �nitely many intervals and rearrange

them, we get an interval exchange transformation. These transformations have been

widely studied in dynamical systems, for example in connection with polygonal

billiards with rational angles.

There are several unanswered questions concerning the subgroups of IET, for

instance, Katok asked whether IET contains a non-abelian free group. Dahmani,

Fujiwara and Guirardel [8] showed that free subgroups are rare in IET, in the

sense that a subgroup generated by two generic elements is not free. A related

open question asked in [10] is the following.

Question 1. Is the group IET amenable?
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It was shown in [21] as an application of extensive amenability, that subgroups

of low rational rank of IET are amenable. We present the proof of their result in

this section.

Given a �nitely generated group G ≤ IET we de�ne its group of angles Λ(G) ≤
R/Z as the subgroup of R/Z generated by {gx − x : x ∈ R/Z, g ∈ G}. Since G
is �nitely generated, Λ(G) is a �nitely generated abelian group. Therefore, it is

isomorphic to Zd × F , where F is a �nite abelian group.

De�nition 3.23. For a �nitely generated subgroup G ≤ IET the rational rank of

G is the supremum of all d ∈ N for which Zd embeds in Λ(G). The rational rank of

G is denoted by rkQ(G).

As presented in [7], Chapter 5, it is possible to realize a �nitely generated

subgroup of IET as a subgroup of a topological full group of a Cantor minimal

action of a �nitely generated abelian group.

Let G ≤ IET be a �nitely generated subgroup and let us assume that G contains

a rotation z by an irrational angle. Let D ⊂ R/Z denote the set of all points of

discontinuity of all elements of G. This set is countable since G is �nitely generated,

and it is dense in R/Z since the z-orbit of a discontinuity point is also in D. Now

let

Σ = (R/Z \D) t {x−, x+ : x ∈ D}.

Let us de�ne the factor map π : Σ→ R/Z that collapses the two copies of each point

of D.

π(y) =

y if y ∈ (R/Z \D),

x if y = x− or y = x+ with x ∈ D.

We also de�ne a topology on Σ as follows. For x, y ∈ R/Z let (x, y) ⊂ R/Z denote

the open interval obtained by going from x to y counterclockwise. We declare for

every x, y ∈ D the set [x, y] = π−1((x, y)) ∪ {x+, y−} ⊂ Σ to be open.

Notice that every element g ∈ G∪Λ(G) can be viewed as a permutation of Σ, for

every point of discontinuity x, we extend g continuously to x− and x+. Therefore,

G and Λ(G) both act on Σ by homeomorphisms. For every x, y ∈ D, the set [x, y] is

clopen (since [y, x] is the complement of [x, y]), so G is contained in the topological

full group of the Λ(G)-action on Σ. Since Λ(G) contains an irrational rotation, its

action is minimal on R/Z, and also on Σ.
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Proposition 3.24. Let G ≤ IET be a �nitely generated subgroup such that rkQ(G) =

d ≥ 1. Then G embeds in the topological full group of a minimal action of Λ(G) on

a Cantor space.

Proof. Since the rational rank of G is at least 1, we can assume that G contains

a rotation z by an irrational angle. Thus, the above construction yields a minimal

Λ(G)-action on the space Σ, such that G is contained in the topological full group.

Note that Σ is a compact Hausdor� space that has no isolated points. The clopen

sets of the form [x, y] (with x, y ∈ D) form a countable base for the topology. Hence,

Σ is a Cantor space.

As we will see in the proof of the following theorem, there exists a cocycle with

amenable kernel on the whole group IET. This reduces the question of amenability of

a �nitely generated subgroup G ≤ IET to determining whether the action Gy R/Z
is extensively amenable.

Theorem 3.25 (Proposition 5.3 in [21].). Let G ≤ IET be a �nitely generated

subgroup. Then G is amenable if and only if the G-action on R/Z is extensively

amenable.

Proof. If G is amenable, then any action of G is extensively amenable (by

Proposition 2.7), proving the `only if' direction of the statement.

For the other direction, our goal is to construct a Symf (R/Z)-cocycle g 7→ σg

with amenable kernel. Then we can apply Corollary 3.2 for the Symf functor.

If we replace the convention that interval excange transformations are right

continuous with left continuity, we get another group ĨET, also acting on R/Z.
If g ∈ IET, let g̃ denote the left continuous map that coincides with g except in

the points of discontinuity of g. Then the map IET → ĨET, g 7→ g̃ is a group

isomorphism. Observe that

σg = g̃g−1

is a permutation of R/Z that is equal to the identity everywhere except for the

points of discontinuity of g−1. Hence, σg ∈ Symf (R/Z). For g, h ∈ IET we have

σgh = g̃h(gh)−1 = g̃h̃h−1g−1 = σggσhg
−1.

Let us de�ne

ι : IET −→ Symf (R/Z)o IET

g 7−→ (σg, g).
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The map ι is an injective group homomorphism. Indeed, for all g, h ∈ IET we have

ι(gh) = (σgh, gh) =

= (σggσhg
−1, gh) =

= (σg(
gσh), gh) =

= (σg, g) · (σh, h) = ι(g) · ι(h).

Assume that G ≤ IET is a subgroup and the action G y R/Z is extensively

amenable. The restriction ι : G→ Symf (R/Z)oG is also an embedding. Note that

σg = id if and only if g has no points of discontinuity, in other words, if g is a

rotation of the circle. Therefore, ι(G)∩ ({id}×G) is a group of rotations and hence

it is amenable. Thus, g 7→ σg is a cocycle with amenable kernel, so by Corollary 3.2,

the group G is amenable.

Corollary 3.26. ] Let G ≤ IET be a subgroup with rational rank at most 2. Then

G is amenable.

Proof. If G has rational rank 0, then G is contained in a subgroup of rational rank

1. Since subgroups inherit amenability, we can assume that the rational rank of G

is either 1 or 2. Then by Proposition 3.24 G embeds in the topological full group

of an action of Λ(G) which is either a virtually Z or a virtually Z2 group. In both

cases Corollary 2.22 implies that the topological full group of Λ(G) acts extensively

amenably on Σ. Hence, the action of G is also extensively amenable on Σ.

Note that the map π : Σ→ R/Z is a surjective G-map. We also observe that for

x ∈ D ⊂ R/Z, any g ∈ Gx �xes the points x− and x+ in Σ. Hence, the Gx-action on

π−1(x) is the trivial action, in particular it is extensively amenable. By Proposition

2.9 the G-action on R/Z is also extensively amenable. Therefore, by Theorem 3.25,

G is amenable.
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Chapter 4

Free groups in full groups

In this chapter G will be an in�nite, not virtually Z group. Our goal is to prove

Theorem B.

4.1 Action on the space of colorings

Notation 4.1. We denote the identity element of G by e.

Let S be a symmetric generating set for the group G. If a and b are subsets or

elements of G, then we will denote their distance in the Cayley graph Cay(G,S) by

d(a, b). For g ∈ G, let length(g) denote d(e, g).

Let k ∈ N. For x ∈ G let Bk(x) denote the k-ball around x in the Cayley

graph. For a subset X ⊆ G, we will denote its k-neighborhood by Bk(X), i.e.,

Bk(X) =
⋃
x∈X Bk(x).

We will work with edge colorings of graphs. We introduce the following notion.

De�nition 4.2. Let A,B,C,D1, D2, . . . Dk denote k + 3 di�erent colors and let

X ∈ {A,B,C,D1, D2, . . . , Dk} be one of the colors. An edge coloring of a graph

is X-proper, if there are no adjacent X-colored edges in the graph. We will call a

coloring 3-proper if it is A-proper, B-proper and C-proper.

Let G be a group with a symmetric generating set S. Let ΣG denote the

space of 3-proper edge colorings of the Cayley graph Cay(G,S) by the letters

A,B,C,D,E, F .

Proposition 4.3. If G is an in�nite group, then ΣG is a Cantor space with the

topology of pointwise convergence.
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Proof. Let E(Cay(G,S)) denote the set of edges of the Cayley graph. Then ΣG is a

non-empty subspace of the topological space {A,B,C,D,E, F}E(Cay(G,S)), where we

consider the discrete topology on the set of colors. In the space of colorings, being

3-proper is a closed condition, i.e., 3-proper colorings converge to a 3-proper coloring.

Hence, ΣG is a closed subspace of a compact, metrizable and totally disconnected

space, so it inherits these properties.

Let σ ∈ ΣG be any coloring. We are in one of the following two cases:

� There exists some N ∈ N such that outside of the ball BN(e) every edge has

color E in σ: for every n ∈ N, de�ne σn to be equal to σ in the n-ball around

the identity element, and the constant F coloring outside of it.

� There is no such N ∈ N: for n ∈ N let σn be equal to σ in the ball Bn(e), and

the constant E coloring outside of it.

In both cases, we have σn ∈ ΣG, and the sequence (σn)n∈N converges to σ, but σn is

never equal to σ.

Hence, ΣG has no isolated points, so it is a Cantor space.

De�nition 4.4. Consider the natural (left) G-action on ΣG de�ned by translations.

For each color X ∈ {A,B,C}, there exists a corresponding continuous involution
on ΣG, that we will denote by the same letter. On σ ∈ ΣG it is de�ned as follows: if

the vertex e ∈ G is adjacent to an edge labeled by X, then we translate the coloring

towards the other endpoint of this edge (i.e., the origin is now at that other vertex),

if e has no adjacent edges labeled by X then X · σ = σ. (This is well-de�ned since

the coloring is 3-proper, so we have at most one X-colored edge from every vertex.)

For X ∈ {A,B,C}, the involution X is contained in the topological full group

[[Gy ΣG]]. Note that it preserves any G-invariant subset of ΣG, so if M is a closed

G-invariant subset, then A,B and C can also be viewed as elements of the topological

full group [[G y M ]]. This gives us a homomorphism from the free product ∆ =

〈A〉 ∗ 〈B〉 ∗ 〈C〉 to [[GyM ]]. Since ∆ is isomorphic to (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z), it

contains the free group on two generators. Our goal is to �nd a subspace M so that

this homomorphism is injective, proving that [[GyM ]] contains a non-abelian free

group.

De�nition 4.5. We will think of elements of ∆ as words using the letters A,B,C,

that do not contain two consecutive instances of the same letter. There are no powers
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or inverses needed, since the generators are all involutions. For w ∈ ∆, length(w)

denotes its length as a word from the letters A,B,C.

Given a coloring σ ∈ ΣG, we will say that a word w ∈ ∆ is written along a path

p : [0, k] → G, i 7→ vi, if the length of w is k and the color of the edge (vi−1, vi) is

the ith letter of w.

Example 4.6. Consider the usual Cayley graph of the integers, with the generating

set S = {−1, 1} and let us examine the Z-action on the Cantor space ΣZ.

If w ∈ ∆ = 〈A〉 ∗ 〈B〉 ∗ 〈C〉 is any word, then there exists a coloring σ ∈ ΣZ

that is not �xed by w. Indeed, write w along a path ending at 0, and label the rest

of the edges with the color E. Hence, the homomorphism ∆ → [[Z y ΣZ]] is an

embedding.

Therefore, Z y ΣZ is an action of Z on a Cantor space such that the topological

full group contains a non-abelian free group. Note that this action is clearly not

minimal.

De�nition 4.7. Let w be a word from ∆ = 〈A〉 ∗ 〈B〉 ∗ 〈C〉. Assume that in a

coloring σ the word w is written along a path p : [0, k] → G, i 7→ vi. We will say

that in this appearance of the word w, the point vi is marked with the color X (with

X ∈ {D,E, F}), if all edges going from vi have color X except for (vi−1, vi) and

(vi, vi+1). (In the case when i = 0 or i = k, then one of these does not exist, so there

is only one exception.)

Let σ be a 3-proper coloring of Cay(G,S), i.e., σ ∈ ΣG.

We will say that σ has property (P1) if for any word w ∈ ∆, there exists a

number Rσ(w) ∈ N, such that every ball of radius Rσ(w) in Cay(G,S) contains the

word w written along a path with the starting point marked with the color D and

all other points marked with the color E.

We say that σ has property (P2) if for every g ∈ G \ {e}, there exists a radius

Nσ(g) ∈ N, such that in every Nσ(g)-ball in Cay(G,S) we can �nd an edge (x, y),

such that g · (x, y) is also in that Nσ(g)-ball and the color of (x, y) is di�erent from

the color of g · (x, y).

4.2 Construction

As we will see from the next proposition, property (P1) ensures that the map ∆→
[[G y M ]] is injective, while property (P2) is responsible for the freeness of the
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action of G on M .

Proposition 4.8. Let G be a �nitely generated in�nite group with a �nite symmetric

generating set S. Assume that there exists a coloring σ ∈ ΣG with property (P1).

Let M be a non-empty minimal closed G-invariant subset of the orbit closure G · σ.
Then M is a Cantor space and the topological full group [[G y M ]] contains a

non-abelian free group.

If we assume furthermore that σ has property (P2), then the action of G on M

is free.

Proof. SinceM is a closed subspace of ΣG, it is also compact, metrizable and totally

disconnected.

Suppose for contradiction that there exists an isolated point θ ∈ M . Then all

points in the orbit of θ are also isolated points. Due to the minimality ofM , the orbit

of θ is dense in M . Since it consists of isolated points, we have M = G · θ = G · θ,
so by compactness, M is �nite.

Let us examine the property (P1). The same property holds for every coloring

in the orbit of σ, since G acts by translations. Let w be a word from 〈A〉 ∗ 〈B〉 ∗ 〈C〉.
Take a convergent sequence (σn)n∈N of colorings satisfying property (P1), such that

for all words w and every i, j ∈ N we have Rσi(w) = Rσj(w). In the limit coloring

we will see the word w written along a path with the starting point marked with D

and other points marked with E in every ball of radius Rσ1(w), since this holds for

every coloring in the sequence. Hence, property (P1) (with the same R(w)'s) holds

for any coloring in the orbit closure G · σ, including the colorings in M .

The �niteness of the orbit M = G · θ means that the coloring of some �nite

neighborhood of the identity element determines the whole coloring θ. From property

(P1) it follows that every vertex in the Cayley graph can only be the starting point

of one word. Hence, in the coloring θ we can only see �nitely many words from

〈A〉 ∗ 〈B〉 ∗ 〈C〉 written along paths. This is a contradiction, so M cannot be �nite.

Therefore, there are no isolated points in M . Hence, M is a non-empty, compact,

metrizable and totally disconnected topological space with no isolated points, so by

de�nition it is a Cantor space.

Now consider the previously mentioned homomorphism ∆ → [[G y M ]]. Since

∆ contains a non-abelian free group, it is enough to prove that this homomorphism

is injective.
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Take a word w ∈ ∆. We would like to �nd an element of M that is not �xed by

w. Take an arbitrary coloring λ ∈ M . Due to property (P1) we can see w written

along a marked path in the ball BRλ(w)(e) in the coloring λ, say with endpoint g ∈ G.
Consider the coloring g · λ ∈ M . Here we can see w written along a path ending at

the origin. Since the starting point is marked with the color D, and the endpoint

with the color E, this path cannot be a cycle. Therefore, w · (g ·λ) 6= g ·λ. Hence, w
does not act as the identity on M , so the homomorphism ∆→ [[GyM ]] is indeed

injective.

Now assume that σ has property (P2) and suppose for contradiction that there

exists λ ∈ M and g ∈ G, such that g · λ = λ. Let N = Nσ(g) be the radius for g

given by property (P2). Since λ is in the closure of G · σ, we can �nd a coloring in

the orbit of σ, say h · σ, such that the coloring of the N -ball around the identity

is the same in λ and h · σ. In the coloring h · σ, due to property (P2), there is an

edge (x, y) in the N -ball that has a di�erent label than g · (x, y), and both edges

are in the N -ball. On this ball the coloring coincides with λ, this contradicts the

assumption that g · λ = λ. So the action of G on M is free.

De�nition 4.9. Let G = (V,E) be a locally �nite graph with distance function d.

Recall that a path p : I → V is a geodesic if

� I ⊆ Z is a �nite or in�nite interval, i.e., if a, b ∈ I and a ≤ k ≤ b, then k ∈ I,
� if n, n+ 1 ∈ I, then (p(n), p(n+ 1)) ∈ E,
� for every a, b ∈ I, we have d(p(a), p(b)) = |a− b|.
We will call a subset ` ⊆ V a geodesic if there exists a geodesic p : I → V such

that im(p) = `.

For a vertex v ∈ V , we will say that ` is a geodesic through v if v ∈ `.

The main idea of the proof of the following proposition was communicated by

Tamás Terpai.

Proposition 4.10. Let G be a �nitely generated in�nite group that is not virtually

Z, with symmetric generating set S. Then there exists a coloring σ ∈ ΣG satisfying

the properties (P1) and (P2).

Lemma 4.11. Let G = 〈S〉 be in�nite but not virtually Z. Then for any n ∈ N,
there exists an integer K(n), such that whenever g ∈ G and ` is a geodesic through

g in Cay(G,S), we can �nd another vertex h with d(`, h) = n and d(g, h) ≤ K(n).
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Proof. We can translate the vertex g to the identity element e ∈ G, so it is enough

to prove the statement for g = e. Suppose for contradiction that there is n ∈ N,
such that for every k ∈ N, there exists a geodesic `k through e with no suitable h.

This implies that the n-neighborhood of `k covers the k-ball around e.

By local �niteness there exists a geodesic ` through e, such that the

n-neighborhood of ` covers the whole Cayley graph.

We will estimate the growth of the Cayley graph. Let k ∈ N, k > n, and look at

Bk+1(e) \Bk(e). For s ∈ N let `s = `∩Bs(e). By the triangle inequality we have the

following inclusions:

Bn(`k−n) ⊆ Bk(e) ⊆ Bk+1(e) ⊆ Bn(`k+n+1).

Hence, we have

Bk+1(e) \Bk(e) ⊆ Bn(`k+n+1) \Bn(`k−n) ⊆ Bn(`k+n+1 \ `k−n).

The set `k+n+1 \ `k−n has size at most 4n + 2, so the size of its n-neighborhood is

bounded above by (4n + 2)|Bn(e)|. This number does not depend on k, so the size

of Bk+1(e) \ Bk(e) is bounded by a constant. Therefore, the growth of the Cayley

graph is at most linear, implying that the group is either �nite or virtually Z (by

[24]). This contradicts the assumption of the lemma, concluding the proof.

Proof of Proposition 4.10. We enumerate the words ∆ = {w1, w2, w3, . . . } and the

group elements G \ {e} = {g1, g2, g3, . . . } such that for every i ≥ 1 we have

length(wi) < length(gi) (we allow repetitions). We will �x ranges {Ri}i≥1, and for

every k, we are going to construct a coloring σk ∈ Σk that satis�es the requirements

of (P1) with respect to the �rst k words in ∆, with Rσk(wi) = Ri for each i ≤ k, and

the requirements of (P2) for the �rst k elements of G, with Nσk(gi) = Ri for all i ≤ k.

Then we will take σ to be the limit point of a convergent subsequence of {σk}k≥1.

Thus, σ will have property (P1) and (P2) with Rσ(wi) = Ri and Nσ(gi) = Ri for

every i ≥ 1.

For each i ≥ 1, let us de�ne Ri and an auxiliary range R′i as follows. Let R
′
1 =

length(g1) + 2 and

R′i = max{length(gi) + 2, 2R′i−1 +K(2R′i−1 + 1)} for i ≥ 2,

Ri = 6R′i +K(2R′i + 1) + length(gi) + 1 for i ≥ 1,

where K is the function from Lemma 4.11.
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For a �xed k ∈ N, the construction of σk is as follows. The variable i will take

the values k, k − 1, . . . , 2, 1 successively, and for every i we place copies of wi, and

also label additional edges that ensure property (P2) for gi, resulting in the partial

coloring σ(i)
k . In each step the following three conditions will hold.

(1) In every Ri-ball we can see wi written along a path with the starting point

marked with D, and other points marked with E.

(2) In every Ri-ball there is an edge (x, y) with label D, such that gi · (x, y) has

label E. We will call these the labeled edges belonging to gi.

(3) If g is a vertex in a copy of the word wi, then the R′i-ball around g does not

intersect any copy of a word wj (other than the one containing g) for i ≤ j or

labeled edges belonging to gj for i < j.

In the nth step (when the value of i is k + 1 − n) we take a maximal set of points

T ⊂ G, such that the 2R′i-balls around the points of T

• do not intersect each other,

• do not intersect a previously placed copy of a word wj for all j such that i < j,

• do not contain previously labeled edges belonging to gj for any j such that

i < j.

Then for every point t in T , we take a geodesic path starting from t and ending

at gi · t, write wi along this path, and mark the starting point with the color D,

all other points with E. (Here we use that length(wi) < length(gi).) Now for each

t ∈ T , pick an edge adjacent to t that is labeled by D, and label the gi-translate of

this edge by E, these will be the labeled edges belonging to gi. This way condition

(3) is immediately satis�ed, since R′i ≥ length(gi) + 2.

Now we will verify that conditions (1) and (2) hold for the partial coloring σ(i)
k .

Take an arbitrary vertex g ∈ G, we would like to �nd a copy of wi and a labeled

edge pair belonging to gi in the ball BRi(g). If g ∈ T , then the �rst condition clearly

holds, so assume that g /∈ T . The reason why g cannot be added to T is that the

2R′i-ball around g intersects the 2R′i-ball around a point of T , or it intersects a copy

of another word wj with i ≤ j, or a labeled edge belonging to gj with i ≤ j.

• In the �rst case we have p ∈ T such that B2R′i
(g) ∩B2R′i

(p) 6= ∅. This implies

that d(g, p) ≤ 4R′i, so the Ri-ball around g contains the copy of wi starting

from p, a D-labeled edge from p and its gi-translate labeled by E.
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• In the second case there is a point x ∈ B2R′i
(g) belonging to a copy of the word

wj or an endpoint of a labeled edge belonging to gj (so x is the gj-translate of

the starting point of a copy of wj). In both cases we can consider the geodesic

` on which wj is written, we have x ∈ `. By Lemma 4.11, there is a point

y ∈ G, such that d(y, `) = 2R′i + 1 and d(y, x) ≤ K(2R′i + 1). This way the

ball B2R′i
(y) does not intersect the geodesic ` and lies in the protective ball

BR′j
(x) (since i < j), so it does not intersect any other previously placed word

or labeled edge either. Hence, there exists a point q ∈ T ∩ B4R′i
(y), otherwise

y could be added to T to enlarge it (possibly y = q). We have that

d(g, q) ≤ d(g, x) + d(x, y) + d(y, q) ≤
≤ 2R′i +K(2R′i + 1) + 4R′i ≤
≤ Ri − length(gi)− 1,

so the ball BRi(g) contains a copy of wi, and also an edge adjacent to q labeled

by D and its gi-translate labeled by E.

In both cases we can see that conditions (1) and (2) are satis�ed, so we can

continue the coloring. After k steps, we obtain the partial coloring σ(1)
k . We label

the remaining edges with the color F , concluding the construction of σk.

Now we can prove Theorem B.

Theorem 4.12. Let G be a �nitely generated group that is not virtually cyclic. Then

there exists a minimal free action of G on a Cantor space Σ by homeomorphisms,

such that the topological full group [[Gy Σ]] contains a non-abelian free group.

Proof of Theorem 4.12. Let S be a symmetric generating set for G. By Proposition

4.10 there exists a coloring in ΣG with property (P1) and (P2). Hence, Proposition

4.8 implies the statement of the theorem.
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