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Abstract

Identity Switching remains one of the main difficulties
Multiple Object Tracking (MOT) algorithms have to deal
with. Many state-of-the-art approaches now use sequence
models to solve this problem but their training can be af-
fected by biases that decrease their efficiency. In this pa-
per, we introduce a new training procedure that confronts
the algorithm to its own mistakes while explicitly attempt-
ing to minimize the number of switches, which results in
better training.

We propose an iterative scheme of building a rich train-
ing set and using it to learn a scoring function that is an
explicit proxy for the target tracking metric. Whether using
only simple geometric features or more sophisticated ones
that also take appearance into account, our approach out-
performs the state-of-the-art on several MOT benchmarks.

1. Introduction
A common concern in Multi Object Tracking (MOT)

approaches is to prevent identity switching, the erroneous
merging of trajectories corresponding to different targets
into a single one. This is difficult in crowded scenes, espe-
cially when the appearances of the individual target objects

are not distinctive enough. Many recent approaches rely on
tracklets—short trajectory segments—rather than individ-
ual detections, to keep track of the target objects. Tracklets
can be merged into longer trajectories, which can be split
again when an identity switch occurs.

Most state-of-the-art approachess [33, 18, 24, 56, 26] op-
erate on sequences or clusters of detections, often with the
help of deep, recurrent neural networks. This requires train-
ing the sequence models and is subject to one or both of two
well-known problems, which our approach overcomes:

• Metric mismatch. It occurs when training by optimiz-
ing a metric poorly aligned with the actual desired per-
formance during inference. In MOT, one example is
the use of a classification loss to create trajectories op-
timal for a tracking-specific metric, such as MOTA [7]
or IDF [45]. To eliminate this mismatch, we introduce an
original way to score tracklets that is an explicit proxy for
the IDF metric and can be computed without the ground
truth. We use it to identify how confidently the person
is tracked, predict tighter bounding box locations, and
estimate whether the real trajectory extends beyond the
observed tracklet.

• Exposure bias. It stems from the model not being ex-
posed to its own errors during training and results in very

Figure 1. Keeping track in a difficult situation. Top row: Because of the occlusion created by the passing car, a tracker can easily return
a trajectory that includes several identity switches. The corresponding bounding boxes inside camera’s field of view are shown on the
right. Bottom row: Our algorithm not only eliminates identity switches but also regresses to a set of much tighter bounding boxes. In this
example our algorithm did it solely on the basis of simple geometric features without requiring the use of appearance information.
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different data distribution observed during training and
inference/tracking. We remove this bias by introducing a
much more exhaustive, yet computationally feasible, ap-
proach to exploiting the data while training the model. To
this end, during training, we do not limit ourselves to only
using tracklets made of detections of one or two people
as in [39, 34, 48]. Instead, we consider any grouping of
tracklets produced by the tracking algorithm to be a po-
tential trajectory but prevent a combinatorial explosion
by controlling the number of tracklets that share many
common detections. This yields a much richer training
dataset, solves the exposure bias problem, and enables
our algorithm to handle confusing situations in which a
tracking algorithm may easily switch from one person to
the next or miss someone altogether. Fig. 1 depicts one
such case. Note that this can be done even when appear-
ance information is not available.

Our contribution is therefore a solution to these two prob-
lems. By integrating it into an algorithm that only uses very
simple features—-bounding boxes, detector confidence—
we outperform other approaches that do not use appearance
features either. By also exploiting appearance-based fea-
tures, we similarly outperform state-of-the-art approaches
that do. Taken together, these results demonstrate the effec-
tiveness of our training procedure.

In the remainder of this paper, we first briefly review re-
lated work and current approaches to mitigating metric mis-
match and exposure bias. We then introduce our approach
to tracking; it is a variation of multiple hypothesis track-
ing designed for learning to efficiently score the tracklets.
Next, we describe the exact form of our scoring function
and its ability to reduce both mismatch and bias. Finally,
we present our results.

2. Related work
Multiple Object Tracking (MOT) has a long tradition,

going back many years for applications such as radar track-
ing [9]. With the recent improvements of object detectors,
the tracking-by-detection paradigm [2] has become a de
facto standard and has proven effective for many applica-
tions such as surveillance or sports player tracking. It in-
volves first detecting the target objects in individual frames,
associating these detections into short but reliable trajecto-
ries known as tracklets, and then concatenating these track-
lets into longer trajectories. They can then be used to solve
tasks such as social scene understanding [1, 36, 3], future
location prediction [30], or human dynamic modeling [16].

While grouping individual detections into trajectories it
is difficult to guarantee that each resulting trajectory repre-
sents a whole track of a single individual , that is, that there
are no identity switches.

Many approaches rely on appearance [6, 17, 28, 57, 58,
12, 32, 46], motion [15], or social cues [20, 43]. They

are mostly used to associate pairs of detections, and only
account for very short-term correlations. However, since
people trajectories are often predictable over many frames
once a few have been seen, superior performance could
be obtained by modeling behavior over longer time peri-
ods [22, 27, 36]. Increasing availability of annotated train-
ing data and benchmarks, such as MOT15-17 [29, 38],
DukeMTMC [45], PathTrack [37], and Wildtrack [10] now
makes it possible to learn the data association models re-
quired to leverage this knowledge. Since this is what our
method does, we briefly review here a few state-of-the-art
approaches to achieving this goal.

2.1. Modeling Longer Sequences

The work of [42, 41] is one of the first recent approaches
to modeling long trajectories using a recurrent neural net-
work. The algorithm estimates ground-plane occupancy,
but does not perform explicit data association. [39] pre-
sented an approach to performing data association with-
out using appearance features by predicting the future loca-
tion of the target. Several MOT approaches have followed,
using sequence models to make data association more ro-
bust for the purpose of people re-identification [48, 34],
learning better social models [1], forecasting future loca-
tions [30, 54] or joint detection, tracking, and activity recog-
nition [3].

These models are usually trained on sample trajectories
that perfectly match a single person’s trajectory or only
marginally deviate from that, making them vulnerable to
exposure bias. Furthermore, the loss function is usually
designed primarily for localization or identification rather
then fidelity to a ground truth trajectory. This introduces a
mismatch with the metric, usually IDF [45] or MOTA [7],
which reflects more reliably the desirable behavior of the
algorithm.

Most state-of-the-art approaches that use sequence mod-
els rely on one of two optimization techniques, hierarchi-
cal clustering for data association [50, 58, 45, 33, 18, 24]
or multiple hypothesis tracking [56, 26, 11]. The former in-
volves valid groups of observations without shared hypothe-
ses while the latter allows for conflicting sets of hypotheses
to be present until the final solution is found. The approach
most similar to our is that of [26]. It also uses a combina-
tion of multiple hypothesis tracker and a sequence model
for scoring. However, the training procedure mostly relies
on ground truth information and is therefore more subject
to exposure bias. Another closely related method is that
of [39] that trains a sequence model for data association
solely from geometric features and is therefore well-suited
for comparison with our approach when also using only ge-
ometric cues. These methods are all recent and collectively
represent the current state-of-the-art. In Section 5, we will
therefore treat them as baselines against which we can com-



pare our approach.

2.2. Reducing Bias and Metric Mismatch

Since exposure bias and metric mismatch (also called
loss-evaluation mismatch [49]) are also problems in Natural
Language Processing (NLP) [51] and in particular in ma-
chine translation [53], several methods have been proposed
in these fields to reduce it [44, 4]. Most of them, how-
ever, operate under the assumption that output sequences
can comprise any character from a predefined set. As a re-
sult, they typically rely on a beam-search procedure, which
itself frequently uses a language model to produce a diverse
set of candidates that contains the correct one. More gener-
ally, techniques that allow training models without differ-
entiable relation between inputs and outputs such as policy
gradient [52], straight-through estimation [5], and Gumbel-
Softmax [23] can be seen as methods reducing exposure
bias. In this domain, our approach is similar to DAgger [47]
and SEARN [14], which iterate between learning the policy
and obtaining data, to address exposure bias problem.

Unfortunately, in the case of MOT, the detections form
a spatio-temporal graph in which many nearly identical tra-
jectories can be built. This can easily overwhelm standard
beam-search techniques: when limiting oneself to only the
top scoring candidates to prevent a combinatorial explo-
sion, it can easily happen that only a set of very similar
but spurious trajectories will be considered and the real one
ignored. This failure mode has been addressed in the con-
text of single-object tracking and future location prediction
in [21, 35] with a tracking policy learned by reinforcement
learning and in [13] by introducing a spatio-temporal atten-
tion mechanism over a batch of images, thus ensuring that
within the batch there is no exposure bias. Instead, the al-
gorithm relies on historical positive samples from already
obtained tracks, thus re-introducing it. For MOT, a rein-
forcement learning-based approach has been proposed [55]
to decide whether to create new tracklets or terminate old
ones. This is also addressed in [48] but the learning of se-
quence models is done independently and is still subject to
exposure bias. Approach of [36] attempts to explicitly opti-
mize for the IDF metric. It does so by refining the output of
other tracking methods. This reduces the metric mismatch
but the sequence scoring model is hard-coded rather than
learned and we will show that learning it yields better re-
sults.

3. Tracklet-Based Tracking
Our approach to tracking relies on creating and merging

tracklets to build high-scoring trajectories as in multiple hy-
pothesis tracking [25]. In this section, we formalize it and
describe its components, assuming that the scoring function
is given. The scoring function and how it is learned will be
discussed in the following section.

3.1. Formalization

Let us consider a video sequence made of N frames, on
which we run a people detection algorithm on each frame
individually. This yields a set D of people detections di ∈
R

4, where the four elements of di are the coordinates of the
corresponding bounding box in the image. We represent a
tracklet T as a 4×N matrix of the form [d1,d2, . . . ,dN ].
In practice, tracklets only rarely span the whole sequence.
We handle this by setting dn to zero for frames in which the
person’s location is unknown. The first non-zero column
of a tracklet is therefore its start and the last its end. Two
tracklets T1 and T2 can be merged into a single one if there
is no single frame in which they contain different detections.

Let Φ : R4×N → R
F×N be a feature function that as-

signs a feature vector of dimension F to each column of
a tracklet. In practice, these features can be bounding box
coordinates, confidence level, and shift from the nearest de-
tection in a previous frame. They can also be image-based
features associated to the detection and we list them all in
Section 5.3. Let us further assume that we can compute
from these features a score S(Φ(T)) that is high when the
tracklet truly represents a single person’s trajectory and low
otherwise. Tracking can then be understood as building the
set of non-overlapping tracklets Tj that maximizes the ob-
jective function ∑

j

S(Φ(Tj)) . (1)

In the remainder of this section, we will assume that S is
given and assigns low scores to the wide range of bad can-
didate trajectories that can be generated, and high scores to
the real ones.

3.2. Creating and Merging Tracklets

We iteratively merge tracklets to create ever longer can-
didate trajectories that include the real ones while suppress-
ing many candidates to prevent a computationally infeasible
combinatorial explosion. We then select an optimal sub-
set greedily. We consider two trajectories to be overlap-
ping when they have a large intersection over union. More
specifically, if the total number of pixels shared by bound-
ing boxes of the two tracklets, normalized by the minimum
of the sum of areas of bounding boxes in each of them, is
above a threshold CIoU . We also eliminate tracklets that
are either shorter than N - the length of the batch, or whose
score is below another threshold Cscore. CIoU and Cscore

are hyper-parameters that we estimate on a validation set.
Outlined procedure involves the two main steps described
below.

3.2.1 Generating Candidate Trajectories

The set of candidate trajectories must contain the real ones
but its size must be kept small enough to prevent a com-



binatorial explosion. To this end, given the initial set of
detections D, which we take to be the initial tracklet set.

We then iterate the following two steps for n =
2, . . . , N .

1. Growing: Merge pairs of tracklets that can be merged
and result would be bigger than the biggest of two by
1. Tracklets with k1 and k2 non-zero detections yields
a tracklet of max(k1, k2) + 1 non-zero detections, that
includes non-zero detections from both of them.

2. Pruning: Given tracklet T1, for all T2 that were
merged with it during growing phase, only retain the
merger that maximizes the score S(Φ(·)).

This process keeps the number of hypotheses linear with re-
spect to the number of detections. Yet, it retains a candidate
for every possible detection. This prevents the algorithm
from losing people and terminating trajectories too early
even if mistakes are made early in the pruning process. We
give an example in Fig. 2, (b). In supplementary material,
we compare this heuristic to several others and show that
it is effective at preventing combinatorial explosion without
losing valid hypotheses.

3.2.2 Selecting Candidates

Given the resulting set of tracklets, we want to select a com-
patible subset that maximizes our objective function. To this
end we select a subset of hypotheses with the best possible
sum of scores, subject to a non-overlapping constraint. We
do this greedily, starting with the highest scoring trajecto-
ries. As discussed in the supplementary material, we also
tried a more sophisticated approach that casts it as an in-
teger program solved optimally, and the results are similar.

4. Learning to Score
The scoring function S(Φ(·)) of Eq. 1 is a the heart of the

tracking procedure of Section 3. When we create and merge
tracklets, we want it to favor those that can be associated to
a single person without identity switch, that is, those that
score well in terms of the IDF metric. We choose IDF over
other popular alternative such as MOTA because it has been
shown to be more sensitive to identity switches [45].

In the remainder of this section, we first define S, which
we implement using the deep network depicted by Fig. 2(a).
We then describe how we train it.

4.1. Defining the Scoring Function
Ideally, we should have S(Φ(T)) ≈ IDF(T,G) for ev-

ery tracklet T and the corresponding ground truth trajectory
G. Unfortunately, at inference time, G is unknown by def-
inition. To overcome this difficulty, recall from [45] that
IDF for tracklet T = [d1, . . . ,dn] and ground truth tra-
jectory G = [g1, . . . ,gn] is defined as twice the number

of detections matched by ground truth, over sum of total
lengths of the two:

IDF(T,G) =

2 ·
∑

n:dn 6= #»
0 ,gn 6= #»

0

1(IoU(dn,gn) > 0.5)

|{n : dn 6=
#»
0 }|+ |{n : gn 6=

#»
0 }|

, (2)

where IoU is the intersection over union of the bounding
boxes. To approximate it without knowing G, we write

S(Φ(T)) =

2 ·
∑

n:dn 6= #»
0 ,labn>0.5

ioun

|{n : dn 6=
#»
0 }|+ |{n : labn > 0.5}|

, (3)

assuming that the deep network of Fig. 2, (a) has been
trained to regress from T to

• ioun: the prediction of intersection over union of the
dn and gn boxes;

• labn: the prediction of whether the ground truth trajec-
tory exists in frame n.

We also train our network to predict the necessary change
to bounding box dn to produce the ground truth bounding
box gn, which we denote sftn . It is not used to compute S,
but can be used during inference to better align the observed
bounding boxes with the ground truth.

To train the network to predict the labn, ioun, and sftn
values introduced above, we define a loss function that is
the sum of errors between predictions and ground truth. We
write it as

L(T ,G) =

N∑
n=1

Llab(dn,gn) +
∑

n:dn 6= #»
0

Liou(dn,gn)

+
∑

n:dn 6= #»
0

Lsft(dn,gn), (4)

Llab(dn,gn) = ||labn − 1(gn 6=
#»
0 )||2,

Liou(dn,gn) = ||ioun − IoU(dn,gn)||2,
Lsft(dn,gn) = 1− IoU(dn + sftn,gn),

where dn +sftn denotes the shifting the bounding box dn

by sftn.
Arguably, we could have trained the network to directly

regress to IDF instead of first estimating ioun, labn, and
sftn and then using the approximation of Eq. 3 to compute
it. However, our experiments have shown that asking more
detailed feedback for every time step, as we do, forces the
network to better understand motion, while a good estima-
tion of IDF can be often produced by an average prediction.

We chose not to apply any weight factors to the com-
ponents of the loss function because its components could
be seen as identifying the false positive (when lab should
be zero) and false negative (when IoU < 0.5) errors, and
since we wanted to weigh the two equally, we did not use
any weight factors to Llab, Lsft, Liou.
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(a) (b)
Figure 2. Network architecture and pruning mechanism. (a) Tracklet features are passed through an embedding layer and then processed
using a bi-directional LSTM. Its outputs are used to predict the IoU with ground truth bounding boxes (iou), presence of a person in a
scene (lab), and regress bounding box shift to obtain ground truth bounding boxes (sft). (b) Candidate tracklets starting from two different
bounding boxes in blue and ending with bounding boxes in white. In this case, during pruning phase the best tracklets, shown in green, are
assigned the highest score and retained, and all others are eliminated.

4.2. Training Procedure

The key to avoiding exposure bias while training the net-
work is to supply a rich training set. To this end, we alter-
nate between the following two steps:

1. Run the hypothesis generation algorithm of Section 3.2
using current network weights when evaluating S;

2. Add the newly created tracklets to the training set and
perform a single epoch of training.

In addition to learning the network weights, this procedure
helps refine the final tracking result: The tracking proce-
dure of Section 3 makes discrete choices about which hy-
potheses to pick or discard, which is non-differentiable. We
nevertheless help it make the best choices by training the
model on all candidates, both good and bad, encountered
during tracking. In other words, our approach makes dis-
crete choices during training and then updates the parame-
ters based on all hypotheses that could have been selected,
which is similar in spirit to using a straight-through estima-
tor [5].

While simple in principle, this training procedure must
be carefully designed for optimal performance. We list here
the most important details of our implementation and study
their impact in the ablation study.

Stopping criterion. We start the process with random
network weights and stop it when the training set size in-
creases by less than 5% after iterating the process 10 times.
We then fully train the model on the whole resulting train-
ing set. This process can be understood as a slow traverse of
the search space. It starts with an untrained model that se-
lects random hypotheses. Then, as the training progresses,
new hypotheses are added and help the network both to dif-
ferentiate between good and bad alternatives and to pick the
best ones with increasing confidence.

Randomized merging. During inference, we grow each
tracklet by merging it with one that yields the highest possi-
ble score. By contrast, during training, we make the training
set more diverse by randomizing the merging process. To do

that, when selecting between two candidates, we can select
the one with the lower score with probability proporional to
the exponent of the score difference, divided by the temper-
ature. We initially set the coefficient so that the optimal pair
is almost always chosen and we then progressively reduce
it to increase the randomness.

Balancing the dataset. One potential difficulty is that this
procedure may result in an unbalanced training set in terms
of the IDF values to which we want to regress. We solve
this by splitting the dataset into 10 groups by IDF value
([0.0; 0.1), [0.1; 0.2), · · · , [0.9, 1.0]), selecting all samples
from the smallest group, and then the same number from
each other group. This enables us to perform h-hard-mining
by selecting h ∗K samples at random and retaining the K
that contribute most to the loss.

5. Results
We now present the datasets we use, baselines we com-

pare against, our results, and finally a qualitative analysis.

5.1. Datasets

We used the following publicly available datasets to
benchmark our approach.

DukeMTMC [45]. It contains 8 sequences, with 50 min-
utes of training data, and testing sequences of 10 (”Hard”,
dense crowd traversing several camera views) and 25 min-
utes (”Easy”) with hidden ground truth, at 60fps.

MOT17 [38]. It contains 7 training-testing sequence
pairs with similar statistics and hidden ground truth for the
test sequences, spanning 785 trajectories and both static and
moving cameras. For each, there are 3 different sets of de-
tections using different algorithms, which makes it possible
to evaluate the quality of the tracking without overfitting to
a specific detector.

MOT15 [29]. It contains 11 training and 11 testing se-
quences, with moving and stationary cameras in various set-
tings. The ground truth for testing is hidden, and for each



testing sequence there is a sequence with roughly similar
statistics in the training data.

5.2. Baselines

We compare against a number of recent algorithms that
collectively represent the state-of-the-art. We distinguish
below between those that do not use appearance cues and
those that do, and provide expanded description in sup-
plementary materials. Baselines without appearance are
LP2D [29], RNN [39], PTRACK [36], and SORT [8, 40].
Baselines with appearance are MHT [56], CDSC [50],
REID [58], BIPCC [45], DMAN [59], JCC [24],
MOTDT17 [33], MHTBLSTM [26], EDMT17 [11], and
FWT [18]. Most similar to our approach are RNN and
MHTBLSTM, which both use sequence model to score the
tracks, but use a different loss function and training data.
MHTBLSTM also relies on multiple hypothesis tracking.

5.3. Experimental Protocol

In this section, we describe the features we use in prac-
tice along with our approach to batch processing, training,
and choosing hyperparameters.

Features For a fair comparison against the two classes of
baselines described above, we use either features in which
appearance plays no part or features that encode actual im-
age information. We describe them below.

Appearance-less features. We use the following sim-
ple features that can be computed from the detections with-
out further reference to the images:

• Bounding box coordinates and confidence (∈ R5).

• Bounding box shift with respect to previous and next de-
tection in the tracklet (∈ R8).

• Social feature - a description of the detections in the
vicinity, ∈ R3∗M . It comprises offsets to the M near-
est detections and their confidence values. All values are
expressed relative to image size for better generalization.

Appearance-based features. As a basis for appear-
ance, we used the 128-dimentional vector produced from
a bounding box by the re-identification model of [19]. Dis-
tance in euclidian space between such vectors indicate sim-
ilarity between people appearances and likelihood that they
are the same person. To this end, we provide following ad-
ditional features in our appearance-based model:

• Appearance vector for each bounding box (∈ R128).

• Euclidian distance from appearance in the bounding box
to the appearance that best represents trajectory so far be-
fore the current batch, if one is available (∈ R1). To
pick the appearance that best represents trajectory so far,

Method App. IDF MOTA IDs IDF MOTA IDs
Sequence Easy Hard
OURS + 84.0 79.2 169 76.8 65.4 267
MHT + 80.3 78.3 406 63.5 59.6 1468
REID + 79.2 68.8 449 71.6 60.9 572
CDSC + 77.0 70.9 693 65.5 59.6 1637
OURS-geom - 76.5 69.3 426 65.5 59.1 972
PTRACK - 71.2 59.3 290 65.0 54.4 661
BIPCC + 70.1 59.4 300 64.5 54.6 652

Table 1. Results on the DukeMTMC dataset. The second column
indicates whether or not the method uses appearance information.

we computed euclidian distances between each pair of
appearances in the trajectory, and picked one with the
smallest sum of distances to all others.

• Crowd density feature - distance from the center of cur-
rent bounding box to the center of nearest 1st, 5th, and
20th detection in the current frame (∈ R3). As we dis-
cuss in the ablation study, that feature made impact on
the behavior of our model with appearance in very dense
crowd scenarios.

Batch processing. In Section 3, we focused on process-
ing a batch of N images. In practice, we process longer
sequence by splitting them into overlapping batches, shift-
ing each one by N

3 frames. While pruning hypotheses, we
never suppress all those that can be merged with trajectories
from the previous batch. This ensures that we can incorpo-
rate all tracks from the previous batch. We used 3-second
long batches for training as in [48]. During inference, we
observed that our model is able to generalize beyond 3s,
and having longer batches can be beneficial in cases of long
occlusions. Inference used 6-second long batches.

Training and Hyperparameters For all datasets and se-
quences, cross-validation revealed that thresholds CIoU and
Cscore of Sec. 3.2 equal to 0.6 and the hard-mining param-
eter h of Sec. 4.2 equal to 3 to be near-optimal choices.
For DukeMTMC, we selected a validation set of 15’000
frames for each camera, pre-trained the model on data from
all cameras simultaneously, and performed a final train-
ing on the training data for each individual sequence. We
used only DukeMTMC training data to train the appear-
ance model of [19]. For each MOT15 pair of training and
testing sequence pair, we used the training sequence for val-
idation purposes and the remaining training sequences to
learn the network weights. For MOT17, we pre-trained our
model on PathTrack, the appearance model of [19] on on
CUHK03 [31] dataset, and used the MOT17 training se-
quences for validation purposes. More details are in sup-
plementary materials.

5.4. Comparative Performance

We compared on DukeMTMC and MOT15 against
methods that ignore appearance features because their re-



Method Use appearance IDF MOTA IDs
OURS-geom - 27.1 22.2 700
SORT - 26.8 21.7 1231
RNN - 17.1 19.0 1490
LP2D - —- 19.8 1649

Table 2. Results on the MOT15 dataset. Appearance is never used.
Method Use appearance IDF MOTA IDs
OURS + 57.2 44.2 1529
DMAN + 55.7 48.2 2194
JCC + 54.5 51.2 1802
MOTDT17 + 52.7 50.9 2474
MHTBLSTM + 51.9 47.5 2069
EDMT17 + 51.3 50.0 2264
FWT + 47.6 51.3 2648

Table 3. Results on the MOT17 dataset. Appearance always used.

sults are reported on these two datasets. For the same rea-
son, we used DukeMTMC and MOT17 to compare against
those that exploit appearance. We summarize the results be-
low, reporting IDF and MOTA tracking metrics, and a num-
ber of identity switches (IDs), and provide a much more de-
tailed breakdown in the supplementary material. We present
some tracking results in Fig. 3 and Fig. 4 and videos can be
found in supplementary material.

Comparing to Algorithms that exploit Appearance.
We report our results on MOT17 in Tab. 3 and on
DukeMTMC in Tab. 1.

On DukeMTMC, our approach performs best both for
the Easy and Hard sequences in terms of IDF, MOTA,
and the raw number of identity switches. Furthermore, un-
like other top scoring methods that use re-identification net-
works pre-trained on additional datasets, ours was trained
using only the DukeMTMC training data.

On MOT17, our approach is best both in terms of IDF
metric, and the number of identity switches. However, it
does poorly on MOTA. Strikingly, FWT does the exact
opposite: it yields best MOTA and the worst IDF on this
dataset. We did experiments to investigate this, in Sec. 5.5.

Comparing to Algorithms that ignore Appearance. We
report our results on MOT15 in Tab. 2 and on DukeMTMC
in Tab. 1. On MOT15 dataset, method most similar to ours
is RNN, which also uses an RNN to perform data associ-
ation. Despite the fact that RNN uses external data to pre-
train their model, and we use only the MOT15 training data,
our approach is able to outperform it with a large margin.
Another interesting comparison is with SORT, which per-
forms nearly as good as our approach. However, it can not
leverage training data effectively, and to show that we ad-
ditionally ran this approach on the validation data we used
for DukeMTMC, where there is much more training data
that in MOT15. This resulted in a MOTA score of 49.9 and
IDF one of 24.9, whereas our method reaches 70.0 and 74.6
on the same data.

Figure 3. Bounding boxes and the last 6 seconds of tracking, de-
noted by lines, in dense crowd on DukeMTMC dataset.

Figure 4. Bounding boxes and last 6 seconds of tracking, denoted
by lines, in two sequences of the MOT17 dataset.

Remarkably, on DukeMTMC dataset, even though we
ignored appearance for the purpose of this comparison, our
approach also outperforms or rivals some the methods that
exploit it [45, 50]. This shows that our training procedure is
powerful enough to overcome this serious handicap.

5.5. Analysis

We now analyze results and components of our method.

IDF-MOTA metric disagreement Careful examination
of the trajectories on MOT17 shows that metric disagree-
ment comes from producing many short trajectories that in-
crease the overall number of tracked detections, and there-
fore MOTA, at the cost of assigning many spurious identi-
ties, increasing fragmentation, and decreasing IDF. This ex-
ample illustrates why we believe IDF to be the more mean-
ingful metric and why we have designed our tracklet scoring
function to be a proxy for it.

To further strengthen this claim, we investigated the fol-
lowing toy example. Consider one ground truth trajectory
of 100 frames, with detector firing randomly 97% of the
time. Combining consecutive detections yields tracklets
of varying lengths. We sort them by length and take sev-
eral longest ones as our tracking result. In Fig. 5, we plot
the resulting MOTA and IDF scores as a function of per-
centage of taken tracklets. MOTA monotonically increases
whereas IDF monotonically decreases. In other words,
adding the very short tracklets that our algorithm rejects im-
proves the MOTA score and focusing on the long ones that



Figure 5. Mean and variance of IDF and MOTA score as a func-
tion of the number of tracklets in 100 runs of the toy experiment.

IDF favors degrades MOTA.
We also looked at the results of the top methods

on MOT15 on ’AVG-Towncentre’ sequence (those where
raw tracking data is available) and found that methods
with some of the highest IDF scores feature little or no
tracks shorter than 5 frames (i.e. ’TDAM’-0, ’RAR15Pub’-
0, ’JointMC’-0, ’QuadMOT’-1), while those with the
worst IDF featuring more than 50 (i.e. ’NOMT’-82,
’DCCRF’-138). This points in the same direction as our
toy example, namely that there is MOTA/IDF trade-off that
depends on the length of the retained tracklets.

Computational Complexity. We performed training on a
single 2.5Hz CPU, and all other actions (computing IDF
values for dataset balancing, generating training data, etc.)
in parallel on 20 such CPUs. Training data contained at
most 1.5× 107 tracklets (DukeMTMC dataset, camera 6),
resulting in at most 1.35 × 106 training data points after
balancing the dataset. Generating training data took under
6 hours, and training on it achieved best validation scores
within 30 epochs, taking under 10 minutes each. Inference
runs at about 2 frames per second. However, adding a cutoff
on sequence scores in the pruning step of Sec. 3.2.1 speeds
up our python implementation to 30fps, at the cost of a very
small performance decrease (IDF of 71 instead of 74.6).

Ablation study. The last 15’000 frames of training se-
quences of DukeMTMC were used for an ablation study.
We varied the three main components of our solution to
show their effect on the tracking accuracy: data composi-
tion, scoring function, and training procedure. We report
the drop in IDF when applying such changes. Creating
a fixed training set by considering tracklets with at most
one identity switch as in [48, 34] decreased performance
(-3.9). Pruning hypotheses based on their scores or total
count like [56] resulted in either a computational explosion
or reduced performance (-20). Computing loss on the pre-

diction of S(Φ(T )), regressing IDF value directly, not re-
gressing bounding box shifts, or using a standard classifica-
tion loss as in [48] were equally counter-productive (-5.1,
-13.2, -2.2, -32.8). Not balancing the training set or not
using hard-mining also adversely affected the results (-4.7,
-2.5). Selecting the final solution using an Integer Program
instead of a greedy algorithm, pre-training model with each
type of features separately, or training a deeper network had
no significant effect.

Feature groups. We also performed an evaluation of how
different features affect the quality of the solution. Ap-
pearance features improved overall IDF from 74.6 to 82.5,
with appearance distance feature having the biggest effect.
Crowd density feature mostly affected crowded scenarios,
where our merging procedure preferred to merge detections
that are further apart in time, but more visually similar, com-
pared to less crowded scenarios, where it preferred to merge
detections based more on the spatial vicinity. Social fea-
ture mostly affected appearance-less model, helping to pre-
serve identities by ensuring that detections of the surround-
ing people are consistent throughout trajectory, improving
IDF from 67.5 to 74.6. Probabilistic merging from Sec. 4.2
was vital to fuse appearance-based and geometry-based fea-
tures together. Without it, picking only the best candidate
resulted in a model that performed merges mostly either
based on the appearance information (largely ignoring spa-
tial vicinity), or based on the spatial and motion information
(largely ignoring appearance information).

6. Conclusion

We have introduced a training procedure that signifi-
cantly boosts the performance of sequence models by itera-
tively building a rich training set. We have also developed
a sophisticated model that can regress from tracklets to the
IDF multiple target tracking metric. We have shown that
our approach outperforms state-of-the-art ones on several
challenging benchmarks both in scenarios where appear-
ance is used and where it is not. In the second case, we
can even come close to what appearance-based method can
do without using it. This could prove extremely useful to
solve problems in which appearance is hard to use, such as
cell or animal tracking [39].

In future work, we will extend our data association pro-
cedure to account for more advanced appearance features,
such as 2D and 3D pose. We will also look into further
reducing the loss-evaluation mismatch by using the actual
IDF, instead of our proposed IDF regressor, which would
require the use of reinforcement learning.
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