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Abstract 

The ever-increasing availability of transcriptomic and metabolomic data can be used to deeply analyze and 

make ever-expanding predictions about biological processes, as changes in the reaction fluxes through 

genome-wide pathways can now be tracked. Currently, constraint-based metabolic modeling approaches, such 

as flux balance analysis (FBA), can quantify metabolic fluxes and make steady-state flux predictions on a 

genome-wide scale using optimization principles. However, relating the differential gene expression or 

differential metabolite abundances in different physiological states to the differential flux profiles remains a 

challenge. Here we present a novel method, named REMI (Relative Expression and Metabolomic Integrations), 

that employs genome-scale metabolic models (GEMs) to translate differential gene expression and metabolite 

abundance data obtained through genetic or environmental perturbations into differential fluxes to analyze 

the altered physiology for any given pair of conditions. REMI is the first method that integrates 

thermodynamics together with relative gene-expression and metabolomic data as constraints for FBA. We 

applied REMI to integrate into the Escherichia coli GEM publicly available sets of expression and metabolomic 

data obtained from two independent studies and under wide-ranging conditions. The differential flux 

distributions obtained from REMI corresponding to the various perturbations better agreed with the measured 

fluxomic data, and thus better reflected the different physiological states, than a traditional model. Compared 

to the similar alternative method that provides one solution from the solution space, REMI was also able to 

enumerate several alternative flux profiles using a mixed-integer linear programming approach. Using this 

important advantage, we performed a high-frequency analysis of common genes and their associated 

reactions in the obtained alternative solutions and identified the most commonly regulated genes across any 
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two given conditions. We illustrate that this new implementation provides more robust and biologically 

relevant results for a better understanding of the system physiology. 

 

Author Summary 

The recent advances in omics technologies have provided us with an unprecedented abundance of data 

spanning genomes, global gene expression, and metabolomes. Though these advancements in high-

throughput data collection offer an excellent opportunity for a more thorough understanding of metabolic 

capacities of a wide range of species, they have caused a considerable gap between “data generation” and 

“data integration.” reconstructed model to predict the observed physiology, e.g., growth phase through omics 

data integration. In this study, we present a new method named REMI (Relative Expression and Metabolomic 

Integrations) that enables the co-integration of gene expression, metabolomics and thermodynamics data as 

constraints in genome-scale models. This not only allows the better understanding of how different 

phenotypes originate from a given genotype but also aid to understanding the interactions between different 

types of omics data. 

 

Introduction 

The turnover rates of metabolites through a pathway are called fluxes, and genome-wide intracellular 

metabolic fluxes are the ultimate regulator of cellular physiology. Perturbations on this normal physiology, 

such as those that occur in a disease state, directly influence the metabolic fluxes. The well-established 

experimental approach for determining these metabolic fluxes is  13C metabolic flux analysis, though this 

experimental technique that directly measures metabolite levels is costly and time-consuming, such that 

computational tools for flux prediction have become a very popular alternative. Genome-scale metabolic 

models (GEMs), which essentially associate an organism’s genotype with its phenotype, integrate genomic 

information with known information about metabolite levels to comprehensively describe an organism's 

metabolism [1]. These models can predict metabolic fluxes, growth rates, or the fitness of gene knockouts 

using constraint-based approaches, which mainly require the knowledge of network stoichiometry that is 

available from the annotated genome sequences and metabolic pathway databases. One of the most routinely 

used constraint-based approaches is flux balance analysis (FBA), which relies on the stoichiometry and 

optimization principles to predict the steady-state metabolic flux distribution according to an objective 

function in a given metabolic network [2]. Due to network complexity, FBA commonly results in a span of 

alternative optimal solutions indicating different flux distributions with the same objective value rather than a 

unique steady-state flux distribution profile, and then selects one of these solutions at random to present back 

to the user, which is a major limitation of this method. To remedy this, it has been shown that integrating 

additional layers of constraints, such as thermodynamics, can effectively reduce the overall solution space of 

feasible flux distributions in an organism to limit the number of alternative solutions [3, 4]. 

With the growing availability of high-throughput data for different organisms under a wide range of genetic or 

environmental perturbations, GEMs became popular because of their ability to incorporate omics data as 

additional regulatory constraints for FBA problems. Because GEMs associate a genotype with a phenotype, it is 
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essential to understand that a single genome can result in thousands of different physiologies through 

different regulatory mechanisms. Therefore, the integration of static snapshots of the metabolism, obtained 

from transcriptomic and metabolomic data, provides more biologically relevant constraints for the system and 

helps to increase the precision of the flux prediction, therefore better deducing the observed physiology. 

However, despite the high number of methods that have been introduced in recent years for the integration of 

omics data into constraint-based metabolic models, the enhanced prediction of flux profiles using omics data, 

particularly in cases using multi-omics data, is still far from being resolved. Recently, these methods, their 

scopes, and limitations were extensively reviewed [5], and the authors concluded that using gene-expression 

data does enhance flux predictions, though they inferred that the accurate predictions of the physiology is not 

achievable with the available reviewed methods. 

The existing methods for integrating gene-expression data into GEMs can be classified into two categories with 

the first relying on the integration of absolute gene-expression data into GEMs. This includes techniques such 

as gene inactivity moderated by metabolism and expression (GIMME; [6]) and the use of continuous and 

discrete formulations to find a flux distribution that is consistent with given context-specific gene-expression 

data, including integrative metabolic analysis tools (iMAT; [7, 8]) [5, 9-11]. However, the assumption that 

absolute gene-expression data can be directly correlated with flux values is questionable and might not hold 

true for all genes. Moreover, these methods require user-defined thresholds to identify and categorize the 

expression levels of metabolic genes (high, moderate, or low expression), and the results are sensitive to the 

set thresholds. These drawbacks motivated the development of (ii) the second class of methods, which 

integrate the relative gene-expression data while aiming to maximize the correlation between differential 

changes in gene-expression and reaction fluxes. The underlying assumption for this class of methods is that 

the relative changes in gene expression between two conditions correlate with the resulting differential flux 

profiles [12, 13]. 

The increasing availability and quality of metabolomic data have promoted the development of methods that 

can be integrated into GEMs to refine model reconstruction, to reduce the solution space of feasible fluxes, 

and to better predict the physiological state of a system. These methods, their scope, and their limitations 

have been reviewed by Töpfer et al. [14]. One of these methods, thermodynamic-based flux balance analysis 

(TFA), integrates the absolute metabolite concentration data into GEMs, as the metabolite concentrations are 

intrinsically associated with the Gibbs free energy of metabolic reactions [3, 4]. Another available method is 

gene inactivation moderated by metabolism, metabolomics, and expression (GIM3E), an extension of the 

GIMME algorithm with added metabolomic data in addition to gene-expression data [15]. However, this 

method only considers the presence/absence of metabolites to refine the model, therefore preventing a full 

utilization of the quantitative metabolomic data. A time-resolved expression and metabolite-based prediction 

of flux values, named TERM-FLUX, integrates time-series expression and metabolomic data, and predicts flux 

distribution for a given time point t. [16]. However, the application of TERM-FLUX is limited to studies with 

time-series data, which are not widely available. More recently, a method for the integration of relative 

metabolite levels for flux prediction, iReMet-flux, has been introduced to predict differential fluxes at the 

genome-scale [17], and it requires an assessment of the differential changes of all existing metabolites in a 
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GEM. This limits its application, as metabolomic data are mostly measured not at a genome-wide level but 

rather for only a few metabolites in a system. 

For multi-omic data, methods have recently been introduced for integrating different layers of data, such as 

genomic, transcriptomic, proteomic, and fluxomic, into metabolic models [18] or multi-scale models [19]. 

However, a method that couples the thermodynamic constraints into GEMs with relative transcriptomic and 

metabolomic data is not yet available.   

To address this deficiency, we herein propose a novel method, termed Relative Expression and Metabolite 

Integration (REMI), to integrate relative expression and relative metabolite abundance data into 

thermodynamically curated GEMs. REMI allows for gene-expression, metabolite abundance, and 

thermodynamic data to be integrated into a single framework, then uses optimization principles to maximize 

the consistency between the differential gene-expression levels and metabolite abundance data and the 

estimated differential fluxes and thermodynamic constraints. We demonstrate that REMI’s ability to integrate 

different layers of constrictive data significantly reduces the solution space of feasible fluxes. REMI also 

extensively enumerates alternative optimal and sub-optimal solutions, bringing a robustness and flexibility to 

the flux distribution analysis. We applied REMI to an E.coli GEM to estimate the central carbon metabolism 

intracellular flux measurements that were determined by 13C metabolic flux analysis (13C-MFA) and were 

provided by two independent experimental studies [20, 21]. Using transcriptomic and metabolomic data from 

the different experimental conditions, we observed a remarkable correlation between experimental fluxes and 

the predicted fluxes. Comparing REMI’s predictions with a similar method (GX-FBA [12]), we also show that 

REMI has on average a 32% higher Pearson correlation coefficient (r = 0.79) indicating a more precise 

exploration of organismal metabolism under wide-ranging conditions. 

 

Results and Discussion 

We designed REMI as the first method to integrate relative gene-expression and metabolite abundance data 

into thermodynamically curated GEMs, significantly reducing the solution space of feasible fluxes to provide 

results that are better at predicting cell physiologies closer to the experimental observations than can be 

reached using existing methods. The REMI framework was applied to integrate the E. coli transcriptomic and 

metabolomic data obtained from two studies under 8 [20] and 3 [21] different conditions into the 

thermodynamically curated E. coli GEM iJO1366 and to estimate the differential steady-state fluxes. We call 

the data and information from [20] “Dataset A” and data and information from [21] “Dataset B”. We 

formulated different optimization models which hierarchically integrated different combinations of available 

data to investigate the effectiveness of multi-omic data integration in reducing the metabolic flexibility of the 

provided solutions. REMI-TGex is an integrated model obtained by incorporating relative gene-expression data 

into a thermodynamically constrained model, which is represented by iJO1366 in this work. Furthermore, we 

integrated relative metabolite concentration data into the REMI-TGex model to produce REMI-TGexM and 

compared experimentally measured fluxes with the steady-state flux prediction results of REMI-TGex and 

REMI-TGexM. We also compared our prediction results with those of the previously existing GX-FBA [12], 
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though as this method does not employ thermodynamic constraints, we used REMI to incorporate gene-

expression data lacking thermodynamics constraints into E. coli GEM iJO1366 (REMI-Gex). The comparison of 

REMI-Gex and REMI-TGex highlights the significance of the thermodynamic constraints in reducing the 

solution space of flux analysis. We also performed some studies with only metabolite changes with 

thermodynamic constraints (REMI-TM) and without thermodynamic constraints (REMI-M).  

 

 

Consistency score and enumeration of alternative solutions 

The underlying assumption of the REMI method is that the perturbation of gene-expression and metabolite 

levels influences the flux levels in the metabolic network. To this end, REMI maximizes the consistency 

between relative experimentally observed changes in gene expression and metabolite changes with the flux 

levels (the objective function of the REMI constraint-based method). The maximum consistency is then 

calculated as an integer number, called the maximum consistency score (MCS). This represents the maximum 

number of constraints that can be incorporated into a FBA model from a given set of constraints (gene-

expression or metabolite abundance levels) while ensuring that the model still achieves the required metabolic 

functionalities and remains feasible. MCS is a unique number, however, in that the complex nature and 

interconnectivity of metabolic networks can result in several alternative solutions for a given MCS, meaning 

that numerous combination of different constraints from the input data could result in the same MCS. The 

theoretical maximum consistency score (TMCS) indicates the number of genes (or metabolites or both) with 

available experimental data that can potentially be integrated into the model, and MCS indicates the number 

of these available constraints that could be consistently integrated into the model.  

 

Case study I: REMI analysis of the Dataset A with gene-expression and metabolomic data 

We first applied REMI to the integration of eight datasets from Ishii et al. [20], which included genome-wide 

transcriptomics together with some metabolomic data obtained for one reference condition and seven 

different conditions or mutations, into an E. coli model. After integrating the gene-expression data of each 

condition into the model and comparing it with the reference model, we computed TMCSs, MCSs, and the 

number of alternative solutions for the REMI-Gex method (without thermodynamic constraints) and the REMI-

TGex method (with thermodynamic constraints). In contrast to other methods, REMI finds all possible 

alternative solutions of a given maximum consistency score, which involves all possible combinations of the 

given set of constraints that always result in a feasible model. These alternative solutions provide flexibility in 

the biological interpretation of the results as they are equally consistent with the provided experimental data 

(applied as constraints to the model). Note that in the GEM analysis, the alternate flux solutions are 

conventionally considered as equivalent phenotypic states [22]. In this study, however, alternative solutions 

represent the equivalent states of the maximum consistency between gene-expression (or metabolite 

abundance or both) data and the flux levels. Therefore, each feasible alternative solution provides an 

opportunity to analyze and interpret the given phenotypic state based on the condition-specific omics data, 

from a different standpoint. 
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We further integrated the available metabolomics measurements into the E. coli model using REMI-TGexM 

and obtained the MCS for the integrated metabolites as well as the global maximum consistency score 

(GMCS), which encompasses both genes and metabolites (Table 1). Although different pairs of conditions 

showed a very close TMCS variability across the seven case studies based on gene-expression data integration 

(mean = 103.6, standard deviation [sd] = 0.5) and on metabolic data (mean = 4.7, sd = 0.5), the MCS 

significantly varied across the four REMI methods: REMI-Gex (mean = 58.7, sd = 4.1), REMI-TGex (mean = 49.7, 

sd = 3.5), REMI-GexM (mean = 63.3, sd = 4), and REMI-TGexM (mean = 54.3, sd = 3.3) (Table 1). As Table 1 

shows, the gene-expression and metabolite abundance constraints for the deregulated metabolites were 

consistent across the conditions. Therefore, the REMI-TM and REMI-GexM consistency scores sum up to the 

REMI-TGexM consistency score. This means that there is no conflict between the gene-expression and 

metabolite abundance data and that they can be co-integrated without confronting each other. However, the 

number of enumerated alternative solutions highly differs across the conditions in all four methods: REMI-Gex 

(mean = 80.6, sd = 80.3), REMI-TGex (mean = 104.6, sd = 168.5), REMI-GexM (mean = 156.1, sd = 241.8), and 

REMI-TGexM (mean = 25.1, sd = 26.4) (Table 1), which suggests that the numbers of alternative solutions are 

condition-specific, as expected. As shown in the Table 1, wherever the sd is very high, for example sd=241.8 in 

REMI-GexM for the rpe vs Ref case, we observe a high number of alternative solutions (n=735 in this case). 

Different conditions (mutations) alter the cell metabolism differently, leading to different levels of metabolic 

adaptations and metabolic flux rerouting. Hence, we speculate that the differences in flux rerouting across 

conditions results in differences in the numbers of alternative solutions across the seven relative conditions. 

Note that for REMI-TM and consequently for REMI-M, the constraints for all the deregulated metabolites were 

consistently integrated into the model, so we found only one solution for the REMI-TM models without any 

alternative solution. 

 

Alternative solutions and consistency scores of REMI-TGex and REMI-TGexM 

For the metabolomic integration, the GMCS was higher in the REMI-TGexM models compared to REMI-TGex 

because in REMI-TGexM, the GMCS was computed based on both relative metabolite (Table 1; Metabolites) 

and relative gene-expression levels (Table 1; Genes), whereas the MCS for the REMI-TGex model was 

computed based on only relative expression levels. We further investigated the consistency between gene-

expression and metabolomic data and whether the data contradicted each other in certain scenarios. All the 

available experimental metabolomic data (Table 1; TMCS and MCS) were integrated using the REMI-TGexM 

method for the pgm vs Ref, gapC vs Ref, zwf vs Ref, wt5 vs Ref, and wt7 vs Ref comparisons. We observed that 

the number of alternative solutions for these five cases was identical between REMI-TGexM and REMI-TGex. 

This implies that the relative expression constraints and the relative metabolite constraints were not 

contradictory for these five cases. However, in rpe vs Ref and pgi vs Ref, all the metabolic data were integrated 

in the model, but the number of alternative solutions differed (and in the case of rpe vs Ref was noticeably 

reduced) between REMI-TGexM and REMI-TGex. To see if this indicated a contradiction, further investigation 

into the alternative solutions revealed that in the rpe vs Ref and wt5 vs Ref comparisons, REMI-TGexM and 
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REMI-TGex have the same set of constraints, which means that the constraints from metabolomics and 

expression data were not contradictory. However, we found that the metabolomics integration resulted in a 

reduction in the number of alternative solutions (Table 1). We hypothesized that further integration of 

metabolomics (on the top of the gene-expression constraints) imposed a flux rerouting in the metabolic 

network.  

 

Table 1. Maximum consistency score and the number of alternative solutions for different models. The 

reference refers to the wildtype growth rate of 0.2/hour. TMCS, theoretical maximum consistency score; MCS, 

maximum consistency score; # Alt, number of alternatives; HFC, high frequency constraint. Metabolites 

represent differentially regulated metabolite between two conditions. SD represents the standard deviation 

across comparisons. 

 
 

High-frequency constraint (HFC) analysis 

As REMI allows enumerating all the possible alternative solutions for a given consistency score, we further 

interrogated the alternative solutions by High-frequency constraint (HFC) analysis. 

The results of this analysis indicate the core constraints that consistently operate in all the alternative 

solutions (the constitutive part of all solutions). Meaning that such core constraints certainly perturb fluxes 

within each pair of conditions. Therefore, these constraints could potentially be the indicators of the 

regulators of the condition-specific metabolism, which assist biologist in determining which metabolic 

subsystems to deregulate or to mutate. We believe that the capability to analyze and identify these regulators 

is a key advantage of REMI.  

As shown in the Table 1, the computed HFCs differ across conditions for all four cases: REMI-Gex (mean = 52, 

sd = 5.4), REMI-TGex (mean = 44.4, sd = 4.5), REMI-GexM (mean = 56.9, sd = 5.4), and REMI-TGexM 

(mean = 49.6, sd = 4.2). Constraints that were common amongst all the alternative solutions, indicating key 

regulators, were the potential candidates for further investigations. After analyzing HFCs across conditions and 

between the four cases, we found that a reaction catalyzed by glycolate oxidase (GLYCTO4) from the alternate 

carbon metabolism and another reaction from the murine recycling pathway (MDDEP4pp) were always 

deregulated in the pgm, gapC, zwf, rpe, pgi, and wt7 conditions. These reactions are likely key regulators of 

mutation in E. coli because they were found to be deregulated in all mutant conditions.    

 

REMI-Gex vs REMI-TGex: flux variability analysis to investigate the influence of thermodynamic constraints 

Genes
Comparisons TMCS MCS #0Alt HFC MCS #0Alt HFC TMCS MCS GMCS #0Alt HFC GMCS #0Alt HFC
pgm$vs$Ref 104 56 11 50 49 8 45 5 5 61 12 55 54 8 50
gapC$vs$Ref 104 60 16 56 48 16 44 5 5 65 16 61 53 16 49
zwf$vs$Ref 104 62 8 59 54 4 52 5 5 67 8 64 59 4 57
rpe$vs$Ref 104 58 67 48 49 512 40 5 5 62 735 52 53 4 46
pgi$vs$Ref 103 59 236 50 49 64 43 4 4 63 96 56 53 16 49
wt5$vs$Ref 103 65 160 58 55 80 49 4 4 69 160 62 59 80 53
wt7$vs$Ref 103 51 66 43 44 48 38 5 5 56 66 48 49 48 43
Mean 103.6 58.7 80.6 52.0 49.7 104.6 44.4 4.7 4.7 63.3 156.1 56.9 54.3 25.1 49.6
SD 0.5 4.1 80.3 5.4 3.5 168.5 4.5 0.5 0.5 4.0 241.8 5.4 3.3 26.4 4.2

REMI:Gex REMI:TGex Metabolites REMI:TGexMREMI:GexM
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To study the effect of thermodynamics on the model, we compared the reduction in solution space for the 

predicted flux profiles from the REMI-TGex and REMI-Gex methods when coupled with the gene-expression 

data (Table 1). The MCS was consistently reduced in the REMI-TGex model compared to REMI-Gex for all pairs 

of conditions, as REMI-TGex eliminates flux solutions that are not thermodynamically feasible.  

To better illustrate the positive influence of thermodynamic constraints in reducing the solution space, we 

show the example of pgm vs Ref as a case study, where we obtained MCS = 56 in REMI-Gex and MCS = 49 in 

REMI-TGex (Table 1). First, we enforced the models to satisfy any given consistency score (56 and 49 in this 

example) by adding a new constraint, which would further allow us to perform conditional FVA. Then, we 

performed the FVA that satisfies the consistency score (MCS = 56) in REMI-Gex and the consistency score 

(MCS = 49) in REMI-TGex. Comparing the FVA results of REMI-Gex and REMI-TGex revealed that there exist 45 

reactions in REMI-Gex that operate in a thermodynamically infeasible direction and which also contribute to 

the MCS = 56. The flux ranges of these reactions are shown in Table S1 and indicate that the TGex method is 

indeed eliminating the infeasible solutions to enrich for more relevant results. For more clarification, two 

reactions out of the 45 are shown as examples in Figure 1. As expected, the flux ranges for these reactions are 

less flexible for the REMI-Gex (MCS = 56) compared to the REMI-TGex (MCS = 49), which confirms some extent 

of the thermodynamic infeasibility in the REMI-Gex predictions as infeasible flux ranges directly indicate the 

model infeasibility. On the other words, if we integrate thermodynamic constraints to the model and allow the 

consistency score (MCS=56) then the model certainly generates infeasible solutions. To investigate whether 

the higher consistency score caused thermodynamic infeasibility in the REMI-Gex, we performed a FVA of 

REMI-Gex while forcing lower consistency scores (MCS = 49 and 10). We found that the flux ranges of 

reactions became more flexible at lower consistency scores in the REMI-Gex model compared to the REMI-

TGex model (Figure 1), indicating that if both REMI-TGex and REMI-Gex have the same consistency scores, the 

REMI-Gex cannot allow thermodynamic infeasibility. In contrast, if the consistency score is higher in the REMI-

Gex compared to the REMI-TGex, then it leads to thermodynamic infeasibility. The same results were obtained 

for all other reactions (Table S1). 

  

Figure 1: Thermodynamic infeasibility test for two example reactions,  CPGNR3 [pgm] and CPGNUtex [pgm]. 
The bars represent the flux variability range, with a longer bar indicating greater flexibility of feasible flux 
ranges.  Flux ranges are calculated based on the flux variability analysis of the REMI-TGex and REMI-Gex 
models at different consistency scores. For more clarification, two reactions out of the 45 are shown as 
examples, where it can easily be seen that there is a much greater variability in the Gex-10 and Gex-49 models 
by the length of the bar. This indicates that these two models are more flexible compared to the TGex-49 
model. This means an equal consistency score (Gex-49) or a lower consistency score (Gex-10) in the absence of 
thermodynamic constraints (instead of Gex-56) provides a greater flexibility compared to TGex-49.  
 
Case study II: REMI analysis of the Dataset B with gene-expression and fluxomic data 

To further benchmark REMI with the available experimental data, we used a second data set (2 overexpression 

compared to the ref condition) from an independent study where the role of metabolic cofactors, such as 

NADH and ATP in different aspect of metabolism is studied by overexpressing NADH oxidase and the soluble 

F1-ATPase in E. coli [21]. REMI integrated the gene-expression data from Holm et al. [21] into the E. coli model, 

and a summary of the results is shown in Table 2. Like the previous analysis, we observed a reduction in the 
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MCS value within REMI-TGex as compared to REMI-Gex, as REMI-Gex satisfies fluxes that were not 

thermodynamically feasible. The number of alternative solutions highly differs between NOX overexpression 

and ATPase overexpression for both REMI-TGex and REMI-Gex, which is likely due to the condition-specific 

regulations (NOX vs ATPase overexpression) that do not necessarily involve the same set of deregulated genes. 

 

Table 2. Maximum consistency score and alternatives for REMI-Gex and REMI-TGex in second E. coli study. 
“Ref” represents the wildtype, and ATPase overexpression and NOX overexpression are relative to the 
wildtype. TMCS, theoretical maximum consistency score; MCS, maximum consistency score; # Alt, number of 
alternatives; HFC, high frequency constraint.    

  
REMI-Gex REMI-TGex 

Comparisons TMCS MCS # Alt HFC MCS # Alt HFC 

NOX vs Ref 202 64 48 58 61 16 57 

ATPase vs Ref 200 75 384 66 65 96 58 

 

Bidirectional reaction analysis with and without thermodynamics 

To investigate the influence of thermodynamic constraints on flux ranges, we identified the overlapping 

constraints (HFCs) across all the alternative solutions and then enforced them to be active to build the most 

consistent model. An active HFC satisfies differential gene expression (or metabolite levels) between two 

conditions form a given experimental data. Thus, for each condition, we build the most consistent model 

despite having many alternatives. We next performed FVA on the REMI-Gex and REMI-TGex models. As REMI 

is based on pair-wise relative constraints (for two conditions) and builds two models that are then compared 

as opposed to modifying one solution based on a given condition, we obtained two FVA solutions, i.e. one for 

each condition. We identified less bidirectional reactions (BDRs) in the REMI-TGex case compared to the REMI-

Gex case (Table 3), which means that thermodynamic constraints reduce the solution space and consequently 

the number of BDRs. This is consistent with the fact that thermodynamic constraints eliminate infeasible 

reaction directionalities. The number of BDR reductions differs across conditions, and we identified the highest 

BDR reduction for the rpe vs. Ref case and the lowest BDR reduction for the NOX vs. Ref case, which therefore 

indicates more reduction in the feasible flux solution space in the rpe vs. Ref case compared to the NOX vs. Ref 

case. For the all comparisons, we found a further reduction in BDRs upon the integration of relative 

metabolomic data into the REMI-TGex model. In most of the cases, we found a similar decrease in BDRs, which 

means that the metabolomic data further constrained the solution space. Except for the wt7 vs Ref case, we 

observed a decrease in BDRs for all cases that were constrained by metabolites and expression data together 

(GexM) as compared to only expression (Gex) data. Unexpectedly and unlike all the other cases, by 

incorporating metabolomics data for the wt7 vs Ref case, we found an increase of one reaction in the BDRs. 

This suggests that for the wt7 vs Ref case the integration of gene expression and metabolites reroutes fluxes 

through the metabolic networks differently compared to other cases.  As expected, we consistently find a 

reduction in BDRs for the REMI-TM model (thermodynamics and relative metabolomics) in compared to 

without thermodynamics (the REMI-M model). This is in agreement with the fact that integrating 
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thermodynamic constraints into a model eliminates infeasible reaction directionalities and consequently the 

flux feasible solution space.  

 

Table 3. Uni- and bidirectional reactions for the REMI-Gex and REMI-TGex models in the second E. coli study. 
Table entries are in the form of S (n1,n2), where as S represents the sum of n1 and n2, n1 is the number of 
bidirectional reactions for the mutant model, and n2 represents bidirectional reactions for the reference 
model.  

 
 

Relative flexibility analysis with and without thermodynamics  

To further illustrate the positive influence of thermodynamic constraints in reducing the feasible solution 

space, we performed a relative flexibility (Materials and Methods) analysis using the REMI-TGex and REMI-Gex 

methods. To perform a relative flexibility analysis, a reference model is compared to a target model to 

investigate the relative flux reduction. For a reference, we used the iJ01366 model without integrating any 

data, meaning that the reference model implies only mass balance constraints. We took the pgi vs. Ref case as 

an example to demonstrate the average relative flexibility (ARF) reduction at a global (e.g. all reactions) level 

as well as at the subsystem level.  

For the pgi vs. Ref case, we found a 10%, 20%, 50%, 77%, and 80% reduction in the global ARF in RMI-M, REMI-

Gex, REMI-TGex, REMI-GexM, and REMI-TGexM models compared to the reference model, respectively (Figure 

2a). We found 40% and 80% more reduction in the global ARF for the REMI-TGex and REMI-TGexM models 

compared to REMI-Gex (Figure 2a), which was expected as the REMI-TGex and REMI-TGexM models are more 

constrained by thermodynamic and metabolomic data compared to REMI-Gex. We further analyzed the ARF at 

the subsystem/pathway level to investigate the reduction in ARF for each specific subsystem using the REMI-

TGex and REMI-Gex methods. Consistently, each subsystem for the REMI-TGexM and REMI-TGex models was 

more reduced than REMI-Gex (Figure 2b). For REMI-TGex and REMI-TGexM, we observed a remarkable ARF 

reduction in the glycerophospholipid metabolism, lipopolysaccharide biosynthesis, murein recycling and 

biosynthesis, and the biomass and maintenance function subsystems. We further performed the same analysis 

for the pgi vs. Ref, rpe vs. Ref, pgm vs. Ref, wt5 vs. Ref, wt7 vs. Ref, NOX vs. Ref, and ATPase vs. Ref data 

(Figure S1). We found a similar reduction in ARF for REMI-TGex and REMI-TGexM compared to REMI-Gex for 

the cases of gapC vs. Ref and zwf vs. Ref and found a small reduction in pgi vs. Ref and rpe vs. Ref (Figure S1). 

We identified a remarkable reduction in ARF (more than 90%) across all the comparisons using the REMI-

TGexM method for the glycerophospholipid metabolism, murein recycling, and lipopolysaccharide 

Comparisons
BDRs-in-REMI1Gex-
(model1,-model2)

BDRs-in-REMI1
TGex-(model1,-
model2)

BDRs-in-REMI1
TGexM-
(model1,-
model2)

BDRs-
reductio
n(GeX1
TGeX)

BDRs-in-REMI1
GexM-(model1,-
model2)

BDRs-in-REMI1TM-
(model1,-model2)

BDRs-in-REMI1M-
(model1,-model2)

pgm$vs$Ref 222$(109,113) 188$(92,96) 186$(93,93) 34 209$(103,106) 204$(102,102) 224$(112,112)
pgi$vs$Ref 247$(132,115) 205$(103,102) 169$(78,91) 42 209$(103,106) 204$(102,102) 224$(112,112)
gapC$vs$Ref 201$(103,98) 158$(77,81) 156$(76,80) 43 195$(100,95) 205$(103,102) 224$(112,112)
zwf$vs$Ref 226$(114,112) 200$(102,98) 192$(98,94) 26 220$(110,110) 204$(102,102) 224$(112,112)
rpe$vs$Ref 260$(135,125) 201$(99,102) 169$(89,80) 59 224$(112,112) 198$(100,98) 218$(110,108)
wt5$vs$Ref 223$(112,111) 202$(102,100) 200$(100,100)21 223$(111,112) 204$(102,102) 224$(112,112)
wt7$vs$Ref 223$(112,111) 198$(101,97) 194$(100,94) 25 224$(112,112) 204$(102,102) 224$(112,112)
NOX$vs$Ref 208$(104,104) 188$(96,92) 20
ATPase$vs$Ref 229$(116,113) 202$(101,101) 27
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biosynthesis/recycling subsystems (Table S2). This suggests that these subsystems are more perturbed based 

on our available gene-expression and metabolite level data, which indicates that they might be key regulator 

pathways for the studied mutations. 

 

Figure 2. Relative flexibility for the pgm mutant vs. reference case. a) Cumulative relative flexibility of the 
reactions.  Solid lines represent the distribution of relative flexibility of reactions and dotted lines represent the 
average relative flexibility of reactions. Average relative flexibility for models with thermodynamic (TGexM, 
TGex, and TM) are smaller compared to their respective in models without thermodynamic (GexM, Gex, and 
M). This designates the elimination of flux solution space due to thermodynamically infeasible reaction 
directionality. Interestingly, we found the most reduction in TGexM model which is the most constrained model 
by three data types.   b) The average relative flexibility is shown for the top ten (according to TGexM ) 
metabolic subsystems.  Similar to part a, thermodynamically constrained models show a bigger reduction in the 
feasible flux solution space at the metabolic subsystem level.      
 

Comparing predictions of different REMI models with the GX-FBA method  

To demonstrate the efficacy of the REMI methods in reducing the solution space and therefore predicting flux 

profiles close to the experimental measurements, we compared the flux predictions of the REMI-Gex, REMI-

TGex, and REMI-TGexM methods with those of the alternative, previously used GX-FBA method and compared 

both methods to the available experimental measured fluxes from 13C experiments. To implement the GX-FBA 

method, we integrated the relative gene-expression datasets into the iJO1366 model using GX-FBA and 

computed the flux distributions. For the comparisons, we computed two metrics: 1) the Pearson correlation 

between the predicted and measured intracellular fluxes, and 2) the average percentage error (see Materials 

and Methods) between the measured and predicted fluxes. A good prediction requires a noticeable 

correlation and a small average percentage error.  

The results of the first set of experimental data [20] (pgm vs. Ref, rpe vs. Ref, zwf vs. Ref, wt5 vs. Ref, and wt7 

vs. Ref) showed a considerably improved flux prediction for the REMI-Gex, REMI-TGex, REMI-TGexM, and 

REMI-GexM models as compared to the GX-FBA method as indicated by Pearson correlation and average 

percentage error (Figure 3a). The GX-FBA and REMI-Gex methods predicted a similar flux correlation for the 

experimental fluxes for the pgi vs. Ref and gapC vs. Ref cases (Figure 3a). For the second set of experimental 

data [21] (Nox vs. Ref and ATPase vs. Ref), REMI-TGex predicted better correlation than REMI-Gex and GX-FBA, 

and the average percentage error of GX-FBA was higher than that of REMI-TGex and REMI-Gex (Figure 2b). On 

an average across all nine comparisons (excluding references) we found that the REMI-Gex method has 32% 

higher Pearson correlation coefficient compared to the GX-FBA method, which indicates a remarkable 

improvement in the flux prediction. Since the REMI methods use an additional objective that is the 

minimization of the sum of fluxes (see Materials and Methods), we modified GX-FBA to imply the minimization 

of the sum of fluxes as an objective to perform an unbiased comparison. This modified GX-FBA prediction 

agreed less with the experimental results than the REMI predictions (Suppl. Figure 1), meaning that REMI 

outperforms GX-FBA in terms of predictions. REMI also has two advantages over GX-FBA and other relative 

expression methods in that, first, we do not need to estimate a reference flux distribution a priori, because 

two flux distributions for two different conditions are obtained in the same optimization framework in REMI 

(see Materials and Methods), second, REMI enumerates alternative solutions at the MCS, providing a higher 
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confidence when investigating and analyzing results. Generating two separate flux distributions for the two 

compared conditions allows REMI to be more suitable to study the differential flux analysis between two 

conditions, and the extensive enumeration of alternative solutions provides robustness and flexibility in the 

biological interpretations of the provided data.   

Although all REMI methods were in relative agreement with the experimental fluxomic measurements, we did 

not observe a significant difference in the predicted results of REMI-Gex, REMI-TGex, and REMI-TGexM. 

However, as the fluxomic measurements were very limited around the central carbon metabolism, we cannot 

draw any overarching conclusions about the accuracy of REMI from these results, as this could only indicate 

that the major fluxomic differences occur in pathways outside of this one specific metabolic pathway. We 

believe that to investigate the differences in flux predictions across REMI methods, fluxomic and metabolomic 

measurements will be required on a grander scale, such as the genome level.   

 

 
 

 

Figure 3. The comparison of steady-state fluxes between GX-FBA and REMI. The blue bar represents the 
Pearson correlation coefficient (PCC) between the experimental fluxes and predicted fluxes for the wildtype or 
reference state and the green bar represents the PCC for the mutant or overexpressed state. The third bar 
denotes the average percentage error between the experimental fluxes and predicted fluxes. Error bars 
(available only for the REMI method) represent the standard error of the mean of the alternative solutions. a) 
The comparison between the mutant and wildtype for the pgm, pgi, gapC, zwf, and rpe mutants as well as the 
comparison of the wildtype at growth rates of 0.5 hour-1 (wt5) and 0.7 hour-1  (wt7) compared to a reference 
wildtype with a 0.2 hour-1 growth rate (Ref). b) The comparison of NOX overexpression and ATPase 
overexpression against the wildtype.  
 
 

 

Conclusions 

We developed the computational tool, REMI, which combines gene-expression, metabolomics, and 

thermodynamics constraints with the mass balance constraints imposed in metabolic models to predict 

phenotypic changes in an organism upon environmental or genetic perturbations. As the integration of these 

three additional physiological constraint results in a highly reduced flexibility of the predicted feasible flux 

profiles, REMI enhances the quality of the computationally predicted fluxes. REMI’s novel formulation permits 

the extensive enumeration of alternative solutions because there exist several alternative sets of pathway that 

result in the same phenotype due to the complexity and interconnectivity of metabolic networks, meaning 

that the results provided by REMI more accurately reflect natural biological states than previously existing 

methods. The effectiveness of incorporating thermodynamic data with gene-expression and metabolomic data 

in reducing the flexibility of predicted feasible flux profiles. This means that we can obtain manageable set of 

physiological consistent hypothesis and physiological interpretations which have a higher confidence as they 

are consistent with a larger set of data. Applying REMI to experimental data has shown that there is not always 

a full consistency between gene-expression and metabolomic data, which shows that there is still much to 



 13 

learn about how gene expression and metabolism are linked. As systematic multi-omics integration remains a 

challenge, REMI opens the possibility of not only multi-omics integration, but also the identification of the 

crosstalk between the various omics present in a system.  

 

Materials and Methods 

Omics datasets and genome-scale model  

Eleven total sets of experimental data that had been previously integrated into the genome-scale model (GEM) 

of E.coli by Kim et al. [23] and were originally obtained from two independent studies done by Ishii et al. (8 

datasets) [20] and Holm et al. (3 datasets) [21] were used for the evaluation of the REMI methodology. 

The three datasets from Holm et al. [20] comprise genome-wide transcriptomic data together with fluxomic 

data (21 measured fluxes) collected from three experimental conditions: wildtype E. coli, cells overexpressing 

NADH oxidase (NOX), and cells overexpressing the soluble F1-ATPase (ATPase). The eight datasets from Ishii et 

al. [20] include genome-wide transcriptomic, fluxomic (31 measured fluxes), and metabolomic (42 

metabolites) data obtained under eight different experimental conditions: wildtype E. coli cells cultured at 

different growth rates of 0.2, 0.6, and 0.7 per hour along with single-gene knockout mutants of the glycolysis 

and pentose phosphate pathway (pgm, pgi, gapC, zwf, and rpe). 

All analyses were performed using IJO1366, the latest GEM of E. coli [24]. The model comprises 2,583 

reactions, 1,805 metabolites, and 1,367 genes. The REMI code is implemented in Matlab R2016a. Mixed-

integer linear programming (MILP) problems were solved using the CPLEX solver on an Intel 12-core desktop 

computer running Mac. 

 

Integration of thermodynamic constraints into the genome-scale model 

It has been previously shown that thermodynamic constraints not only effectively reduce the solution space of 

FBA by eliminating the thermodynamically infeasible fluxes from the solution space, but also allow the 

integration of metabolite concentrations. This provides important links between mass and energy balance and 

the phenotypic characteristics of the organism. The thermodynamic constraints, as depicted in Equation (1), 

were integrated into the IJO1366 model [3]. The standard Gibbs free energy ∆"𝐺$° without corrections for the 

pH and ionic strength was estimated using the group contribution method [25]. 

 

∆"𝐺$& = ∆"𝐺$&(	 + 𝑅𝑇 ∙ ∑ 𝑛$0 ∙ ln3𝑥05										|	for	all	known	∆"𝐺$&(	=
0>?                 (1) 

 
 
For each reaction of a GEM, the Gibbs free energy of the reaction (∆"𝐺$&) was computed, which considers the 

charge and the activity (𝑥0) of each metabolite 𝑗 given the pH, the metabolite concentration range, and the 

ionic strength at the cellular compartment where the reaction occurs.  

 

Assessment of tentative reaction flux ratios from the gene-expression and metabolomic data 
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We used the gene-protein-reaction (GPR) association rules acquired from the E. coli GEM to translate the 

relative gene-expression levels (being relatively up- or downregulated) to the differential and relative flux 

values of corresponding reactions. GPRs are not mapped as one gene to one reaction, meaning there are many 

cases in which one gene is mapped to several reactions and multiple genes are mapped to a single reaction, 

which are depicted with “and” and “or” affiliations, respectively. 

In REMI, if the reaction R is associated with two genes (g1 “and” g2), the expression level ratios for genes g1 

and g2 in the two corresponding conditions are calculated to obtain the geometric mean of the g1 and g2 

ratios. Whereas, if the reaction R is associated with two genes (g1 “or” g2), the arithmetic mean of the 

obtained expression data ratios is calculated. Thus, from GPR associations, REMI computes the so-called 

tentative “reaction flux ratios” to further constrain the model. For the metabolomic data, the ratio of 

metabolite concentration for each metabolite (if available) is calculated for any two given conditions. 

 

Evaluating the differentially regulated metabolites and reactions  

To evaluate whether a reaction or metabolite was up- or downregulated, the ratios (calculated as explained in 

the previous section) were sorted, with the top 5% (ratios > 1) selected as upregulated and the bottom 5% 

(ratios < 1) as downregulated using a conservative cutoff criterion, which is user-defined. 

 

REMI workflow 

The REMI workflow along with an illustration of the method performed on a toy model is presented in Figure 

4. REMI requires a GEM (FBA model) and sets of gene-expression and/or metabolomic data. The first step 

consists of data pre-processing wherein the FBA model is converted to a thermodynamic-based flux analysis 

(TFA) model [3] that incorporates the Gibbs free energy of metabolites and reactions into the model. The 

gene-expression/metabolite-level ratios are further systematically converted into reactions ratios to integrate 

them into the REMI methods. Based on the type of integrated data, there are three different REMI methods. 

REMI-TGex integrates thermodynamic and gene-expression data, REMI-TM integrates thermodynamic and 

metabolomic data, and REMI-TGexM integrates thermodynamic, gene-expression, and metabolomic data into 

an FBA model. Note that the REMI methods can be used without thermodynamic data, such as in REMI-Gex, 

which integrates gene-expression data into a FBA model. However, we will provide several examples to 

illustrate the power of thermodynamic constraints, when coupled with omics data, in reducing the predicted 

feasible flux profiles and better predicting the cell physiology. 

 

Figure 4: The REMI workflow requires two inputs: a genome-scale flux balance analysis (FBA) model and sets of 
gene-expression and/or metabolomic data. In the pre-processing step, the FBA model is converted into a 
thermodynamic-based flux analysis (TFA) formulation, and the relative flux ratios are further assessed based on 
the omics data. Also based on the omics data provided, REMI translates to the REMI-TGex, REMI-TM, and 
REMI-TGexM methods (third block). Examples of gene-expression and metabolomic data (second block) 
together with a toy mode (third block) are used to illustrate the applicability of the REMI methods. The 
theoretical maximum consistency score (TMCS) is the number of available omics data (for metabolites, genes 
(reactions), or both) and the maximum consistency score (MCS) is the number of those constraints that are 
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consistent with fluxes and could be integrated into REMI models. The MCS is always equal to or smaller than 
the TMCS. 

 
Integration of relative gene-expression levels as constraints into a model (REMI-Gex) 

For a given metabolic network that includes R reactions and M metabolites, bidirectional reactions are 

decomposed into forward and backward reactions to allow all fluxes to have positive values. Assuming that S is 

a stoichiometry matrix, Smr is the stoichiometric coefficient associated with the metabolite m (m = 1,..., M) in 

reaction r (r = 1,..., R). Positive and negative stoichiometric coefficients of metabolites signify the substrate or 

products of a reaction. A binary variable zr was assigned to each reaction r to ensure a positive flux vr (Equation 

(2)) through the reaction r, and when zr = 0, there was no flux. An additional constraint was formulated using 

Equation (3) to ensure that only one reaction directionality could be active and carry flux. α and β indicate the 

forward and reverse directions of a reaction.  

 

𝑣" ≤ 𝑀& ∗ 𝑧"														𝑟 = 	1,… , 𝑅					(2) 

 

𝑧M + 𝑧N = 1			[𝑓𝑜𝑟	𝑎𝑙𝑙	𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠	]					(3)	 

 

In REMI, two models are described for each given condition. Throughout the manuscript, the terms “wildtype” 

and “mutant” are used to better differentiate between the two conditions (or models) when describing the 

REMI framework. REMI can, however, be used for any two given conditions and is not restricted to the 

wildtype and mutant labels. Equation (4) specifies the mass balance constraints for the wildtype and mutant 

conditions at the steady state. 

𝑆𝑣]$^_ = 𝑆𝑣=`abca = 0					(4) 

 

The relative information about the gene-expression levels or metabolite levels between the two given 

experimental conditions was formulated as additional constraints and integrated into the two representative 

models of the conditions. To do this, binary variables for the up- and downregulated reactions were assigned 

as u and d, respectively, where n is the total number of up- and downregulated reactions. For the upregulated 

reactions, a higher flux was enforced in the mutants as compared to the wildtype, while for downregulated 

reactions, a higher flux was enforced for the wildtype as compared to the mutant. 

 

For u upregulated and d downregulated reactions, a total of n binary variables were generated (B1,...Bi,...Bn), 

where Bi = 1 indicates the up- or downregulation of a reaction. Next, n constraints (Equations (6 and 7)) were 

added to enforce a basal flux in both the wildtype and mutant conditions. For u upregulated reactions, 

constraints (Equation (8)) were added to ensure a mutant flux could be higher (p*vr
wild) than a wildtype flux, 

where p is a reaction ratio between the wildtype and mutant (computed from gene-expression ratio). 

Constraints were added (Equation (9)) for d downregulated reactions that ensured a mutant flux was lower 
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compared to a wildtype flux. In Equation (10), n constraints were added to form the boundary for the slack 

variables that are used in Equations (8) and (9), where 𝜀 = 10gh,𝑀& = 1000. 

 

𝑛 = 𝑢 + 𝑑		(5) 

 

𝑣$=`abca ≥ 𝜀 ∗ 𝐵$							[	𝑖 = 1, . . , 𝑛	𝑓𝑜𝑟	𝑏𝑜𝑡ℎ	𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑎𝑛𝑑	𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠]					(6) 

 

𝑣$]$^_ ≥ 𝜀 ∗ 𝐵$							[𝑖 = 1, . . , 𝑛	𝑓𝑜𝑟	𝑏𝑜𝑡ℎ	𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑎𝑛𝑑	𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠]					(7) 

 

𝑣$=`abca ≥ 𝑝 ∗ 𝑣"]$^_ − 𝜎$		[	𝑖 = 1, . . , 𝑢	𝑓𝑜𝑟	𝑢𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠]					(8) 

 

𝑣$=`abca ≤ 𝑝 ∗ 𝑣"]$^_ + 𝜎$		[	𝑖 = 1, . . , 𝑑	𝑓𝑜𝑟	𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠]						(9) 

 

𝜀 ∗ (1 − 𝐵$) ≤ 𝜎$ ≤ 𝜀 + (1 − 𝐵$) ∗ 𝑀&				𝑖 = 1, . . , 𝑛						(10) 

 

Integration of relative metabolite levels as constraints into the model (REMI-M) 

In GEMs, gene-level perturbations can mediate both reactions and their subsequent metabolites. Available 

studies show a correlation between gene changes and metabolite changes and infer that perturbations at the 

metabolite level are formed from perturbations in genes or reaction levels [26, 27]. Thus, if experimental 

evidence shows remarkable changes in a given metabolite abundance level across two conditions, the 

assumption is that there is an imbalance in the incoming or outgoing fluxes around that metabolite. 

If the experimental data indicates that a metabolite is upregulated, it is assumed in REMI that either the sum 

of production 𝜙z in condition 2 is greater than the 𝜙z in condition 1 or the sum of consumption 𝜙{ in 

condition 2 is less than the 𝜙{ in condition 1 (Figure 5b). Due to mass balance, 𝜙z and 𝜙{ will be equal. 

 

 

Figure 5. The relative metabolite integration within REMI.  

 

In Equation (11), the sum of production and of consumption of a metabolite i is shown, where the metabolite 

is produced by reactions 1 and 2 and is consumed by reactions 3 and 4 (Figure 5a).  

 

𝜙$,z = 𝜙$,{ = 𝑉? + 𝑉} = 𝑉~ + 𝑉�		(11)		 

 

(𝜙$,z=`abca ≥ 	𝜙$,z]$^_ ∗ 𝑝& − 𝜎$	)𝐵$ 		+ (1 − 𝐵$)	(𝜙$,{=`abca ≤ 𝜙$,{]$^_ ∗ 𝑝& − 𝜎$		)							𝑖 = 1, . . , 𝑢&					(12) 

 

𝜀 ∗ (1 − 𝐵$) ≤ 𝜎$ 	≤ 𝜀 + (1 − 𝐵$) ∗ 𝑀&				𝑖 = 1, . . , 𝑛&				(13) 

 

(𝜙$,z=`abca ≤ 	𝜙$,z]$^_ ∗ 𝑝& + 𝜎$		)𝐵$ 		+ (1 − 𝐵$)	(𝜙$,{=`abca ≥ 𝜙$,{]$^_ ∗ 𝑝& + 𝜎$		)							𝑖 = 1, . . , 𝑑&					(14) 
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Based on available experimental measurements of metabolite abundance, REMI finds the total number (n’) of 

up- and downregulated metabolites, where u’ and d’ are up- and downregulated metabolites, respectively. For 

an up-regulated metabolite i (i.e. in the mutant vs. wildtype), either more production or less consumption is 

enforced in the mutant compared to the wildtype using Equations (12) and (13). In Equation (12), a binary 

variable (Bi) is introduced, which switches to production if Bi = 1 and to consumption if Bi = 0. Similarly, for 

downregulated metabolites i, less production or more consumption is enforced in the mutant compared to the 

wildtype (Equations (13) and (14), see supplementary description for more detail). 

 

The objective function and the consistency score based on the relative expression data 

Based on the assumption that alterations in gene-expression or metabolite levels within two different 

physiological conditions results in differential flux profiles, REMI defines such alterations as constraints and 

integrates them accordingly into the two metabolic models corresponding to the two conditions. However, as 

additional constraints reduce the solution space of FBA, particularly in the case of multi-omic data integration, 

the resulting models might not be feasible. Therefore, the objective function (Equation (15)) was formulated in 

such a way as to obtain feasible models with a maximum agreement between the relative expression and 

metabolite levels and their corresponding constraints. Equation (15) maximizes the agreement with 

experimental data using mathematical optimization principles subject to Equations (5)–(10), where n is the 

total number of up- and downregulated reactions. The maximum consistency score (MCS) is the sum of the 

binary variables (Equation (15)) in the outcome of the optimization that is formulated in REMI. 

 

	𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦	𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	�𝐵$

c

$>?

					(15) 

 

Alternative enumeration for consistency score 

An aforementioned mathematical optimization model (objective function (15) subject to Equations 1–9) allows 

us to maximize the total number of consistent reactions between the differential gene-expression or 

metabolite levels with the differential flux profiles between two models and to obtain a maximum consistency 

score (MCS). Depending on the flexibility of the model, many alternative flux distribution profiles for a given 

MCS, and subsequently MCS-n, are possible. MCS and MCS-n represent optimal and suboptimal consistency, 

respectively. To enumerate alternative solutions, integer cut constraints (Equation (16) [28] were used as 

follows: 

 

�𝐵′$

c

$>?

𝐵$ ≤ ��𝐵&$

c

$>?

� − 1					(16) 

 

The left-hand side of Equation (16) determines the number of up- and downregulated reactions in the current 

solution that carries fluxes in the first MCS solution. The right-hand side represents the number of reactions 
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that carry fluxes in MCS-1. The inequality ensures that the new solution differs at least by one new reaction 

that carries flux compared to the previous solution. Repeating this procedure allows the enumeration of 

alternative solutions for each MCS. 

Combined consistency score using relative expression and relative metabolite (REMI-GexM) 

To concurrently integrate both the relative gene-expression data and the relative metabolite levels, an 

integrated mathematical optimization model was built with a global objective function (Equation (17) subject 

to a combined set of constraints, i.e. equations (5)–(14). This optimization model was then solved to maximize 

the objective, which is the combined consistency score of the two sets of constraints. 

 

𝐺𝑙𝑜𝑏𝑎𝑙	𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦	𝑠𝑐𝑜𝑟𝑒	(𝐺𝐶𝑆) = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 � 𝐵$,
c�c&

$>?

					(17) 

 

where n and n’ represent a total number of up- and downregulated metabolites and up- and downregulated 

genes, respectively.  

 

Representative flux distribution profiles 

To compare the REMI-predicted fluxes with the experimentally measured ones, predicted flux distribution 

profiles were required. To obtain such predicted flux profiles, all the alternative solutions at MCS were first 

enumerated. Then, an additional optimization was performed by minimizing the sum of the fluxes for each 

alternative solution to obtain a representative flux profile for benchmarking REMI against the experimental 

flux measurements.   

 

Metrics for comparing the predicted in silico fluxes with experimentally measured fluxes 

To effectively compare the predicted in silico fluxes from REMI with the corresponding 13C-determined in vivo 

intracellular fluxes, the following two metrics were used: the uncentered Pearson correlation coefficient 

(Equation 18), and the average percentage error in predicted fluxes (Equations (18)-(20)). The uncentered 

Pearson correlation is a good metric for the flux comparison, as fluxes are usually not centered, and it has 

been used for comparing two flux vectors [23]. 

 

Uncentered	Pearson	correlation	coefficent	(r) 	=
𝑣$. 𝑣=
|𝑣$||𝑣=|

						(18) 

 

In Equation (18), vi and vm are the in silico and measured vectors of the fluxes, respectively. The correlation 

coefficients +1 and -1 indicate a strong positive and negative linear relationship between vi and vm, and the 0 

correlation coefficient indicates no linear relationship between vi and vm. 

The average percentage error has been used in the GX-FBA method [12] to compare two fluxes. In Equation 

(19), the dr is used to measure the relative deviation between the two fluxes in two conditions, where x and y 

correspond to the flux of a given reaction in condition 1 and condition 2, respectively. Since |dr| lies between 
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0 and 1, one can consider dr as a percentage flux change from condition 1 to condition 2. The average (per 

reaction) percentage error, e, in the predicted in silico fluxes was calculated using Equation (20), where di
insilico 

and di
exp indicate relative deviation in predicted in silico flux using methods such as REMI and GX-FBA, and 

experimentally measured flux and N represent the number of reactions with available experimental flux data. 

 

𝑑" =
𝑥 − 𝑦
|𝑥| + |𝑦|					(19) 

 

𝑒 =
1
𝑁
��	d$c�$^${(� − d��z� �					(20)
�

$>?

 

 

Assessing the relative flexibility of metabolic systems  

For a given system, the FBA results in a solution space of optimal flux profiles, and the magnitude of this 

solution space indicates the metabolic flexibility of the system. The integration of the thermodynamic 

knowledge of reactions as well as condition-specific experimental data, e.g. gene-expression or metabolomic 

data, constrains the metabolic system to a less flexible one. Thus, the solution space and the subsequent range 

of the metabolic responses are reduced. Comparing and quantifying the relative flexibility of a metabolic 

system before and after constraint is a decent indication of the effectiveness of the data integration [29]. 

Performing a flux variability analysis (FVA) outlines the flux variability range of each reaction in the system for 

the two conditions as follow:  

 

𝐹𝑅$? = �𝑣=$c,$? , 𝑣=b�,$? �				(21) 

 

𝐹𝑅$} = �𝑣=$c,$} , 𝑣=b�,$} �				(22) 

 

The relative flexibility (𝑅𝐹) for reaction 𝑖 is calculated using the following equation:  

 

𝑅𝐹$ = �3𝑣=$c,$} − 𝑣=b�,$} 5/3𝑣=$c,$? − 𝑣=b�,$? 5�					(23) 

 

where 𝐹𝑅$? and 𝐹𝑅$} represent the flux variability range of reaction 𝑖 at each of the two conditions, one 

condition is usually designated as a reference condition or reference state, such as when comparing the 

relative flexibility of a metabolic system with (condition 1) and without (condition2) thermodynamic 

constraints. The value of RF that is computed for each reaction i reflects the relative changes in the flux 

variability range of one condition compared to the other condition. The global relative flexibility change 

between two given condition is then computed by averaging the Fi values for each reaction 𝑖 that carry flux in 

the reference state. 
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Supplementary Tables 

Table S1. Flux variability ranges for 45 reactions at different consistency score.   

Table S2. Relative flexibility of metabolic subsystems for 9 different comparisons.  

Supplementary Figures 

Figure S1.  Relative flexibility over all reactions for 9 different comparisons. 

Figure S2. Comparison of the flux perdition between the GX-FBA and REMI-Gex method.  
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