View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

SMALL DATA GLOBAL REGULARITY FOR HALF-WAVE MAPS IN n = 4 DIMENSIONS
ANNA KIESENHOFER AND JOACHIM KRIEGER

ABSTRACT. We prove that the half-wave maps problem on R**! with target S is globally well-posed for smooth
initial data which are small in the critical /' based Besov space. This is a formal analogue of the result [17].

1. INTRODUCTION

Denote by R"*! the Minkowski space of dimension 7 + 1, equipped with the standard metric of signature
(1, =1,...,—1). Letu : R"! — §2 < R3, with the property that V, ,u € L"(R") for some r € (1, 0),
and furthermore lim|_, . u(t,x) = p for some fixed p € S2, for each . Then defining the operator

(—A)%u == (—A)_%ﬁj(aju), we say that u is a half-wave map, provided

U = u x (—2)2u. (1.1)

This model was introduced in [8], [9], and can be traced to the physics literature, see e. g. [5], as well as
the introduction in [8]. From a mathematical perspective, this model is interesting as it constitutes a close
relative of the Schrodinger maps equation on the one hand, given by

U = u x Au,
and the classical wave maps, given by
Ou = (—u; - u; + Vu- Vu)u, 0 = 0> — A. (1.2)
In fact, the relation to the latter model becomes clearer when re-formulating (1.1) as a nonlinear system of
wave equations with non-local source terms, as done in detail in section 2 in [8]:
(07 — A)u = u(Vu - Vu — du - Oyu)
+ 10, ((—2)7u) (u- (—5)7u) (1.3)
Fux (—)2(ux (—8)7u) —u x (ux (—A)u)

In the preceding equation, the notation II,, refers to projection onto the plane orthogonal to u € S2. Nat-
urally the preceding equation coincides with (1.2) except for the last two, non-local terms on the right, and
in particular, its scaling behaviour is like that of wave maps. On the other hand, the formally conserved
quantity

E(r) = JW (=)t dx

gives an a priori bound only on HuHH 1 and so the problem becomes energy critical in dimension n = 1.

In light of the problem (1.3)’s close proximity to wave maps, in particular the fact that it is of the (very)
formal form Ou = u|Vu|?, it is then natural to inquire whether fundamental global regularity results for
small data available for wave maps, such as those obtained in [17], [15], [11], can be similarly established
for half-wave maps. This question becomes particularly interesting in low spatial dimensions, where the
null-structure in (1.2), as well as the underlying geometry, play a pivotal role for the theory of wave maps.
On the other hand, the ’null-structure’ present in (1.3) appears to be of a more complicated nature. In [8], the
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case of large dimensions n > 5 was handled, in particular establishing sharp space-time bounds for the last
two terms in (1.3) using Strichartz estimates as well as the geometry underlying the problem. In this paper,
we shall push the small data global regularity, relying mostly on Strichartz estimates for free waves, to its
limits by settling the case of spatial dimension n = 4. Specifically, we settle the issue of global regularity of
(1.1) for smooth initial data which are small in the critical Besov space Bg’lz

Theorem 1.1. Let u(0,-) = ug : R* — S? a smooth datum such that uq is constant outside of a compact

subset of R* (this condition in particular ensures that (—A) > ug is well-defined). Also, assume the smallness
condition
2%
ol = 2 2% 1 Ptlzeey < €
keZ
where € < 1 sufficiently small. Then problem (1.1) admits a global smooth solution with this datum.

Remark 1.1. We observe that exploiting the Gauge freedom for this problem as in [15], [11], it is likely
that one can improve this to global regularity for data small in the critical Sobolev space H2. Going below
spatial dimension n = 4 will certainly require new ideas, as the crucial LtzLj‘cO Strichartz estimate is no longer
available, and furthermore it is not a priori clear how the second and third term on the right hand side of
(1.3) can be bounded using the commonly used function spaces, involving X** as well as null-frame spaces.
It does seem, though, that the case n = 3 is accessible by the methods of this paper provided one restricts to
radial data.

The main technical obstacle to overcome in passing from n = 5 to n = 4 dimensions is the absence of the
L?L}-Strichartz estimate, which is useful to handle certain quadratic interactions. This means that in order
to control the source terms in (1.3), absent a strong null-form structure as for the first term on the right, one
has to exploit a genuine trilinear structure, which can be revealed upon exploiting the geometric structure,
and specifically the fact that u takes values in S 2. This is rendered somewhat cumbersome on account of the
non-local character of the last two terms in (1.3), see the proof of Lemma 3.4 below.

2. TECHNICAL PRELIMINARIES

Here we recall the key tools used in [8]. We let Py, k € Z, be standard Littlewood-Paley multipliers on
R* (acting on the spatial variables), and furthermore, we denote by Q j» J € Z, multipliers which localise
a space-time function F(t,x) to dyadic distance ~ 2/ from the light cone |T| = |§ | on the Fourier side.
Specifically, letting F'(7,&) denote the space time Fourier transform of F, while f (¢) denotes the Fourier
transform with respect to the spatial variables, and letting y € C;°(R ) a smooth cutoff satisfying

E X(i) =1VxeR,,
2k
keZ

we set

5 N 7y o (T
P &) =x(5) 7€), OF = x (57— ) F(x.4).
Using these ingredients one can then define the following norms:

._ {Iv2 o -4
[ 2.0 1= 022 [V3Qulz  Fl g o= D027 2[5,
JEZ , pr- 3
Jje

In addition to these, we rely on the classical Strichartz norms, which are the mixed type Lebesgue norms
| - ‘Lﬁ’Li’—’ % + 23—q < 3, p > 2. Call such pairs (p, ¢) admissible.
We shall freely use the fact that Fourier localisers of the form P;Q; act in bounded fashion on spaces of the
form LP12, 1 < p < o, see e. g. [16]. We can now define a norm controlling our solutions as follows:

lulg =3 sup 26N P g+ [VePutd] gy =2 Y [Pra] g,
kez (p.q) admissible ke
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We also introduce
[l = S 1Pl oo
kezZ
as well as the norms

u Br,l =
? keZ
Then the following inequality is by now completely standard, see e. g. [7], [15], [17]:

Proposition 2.1.
Julls = O] g2y + ]y

We shall also frequently rely on Bernstein’s inequality. In our context, we need thatif 1 < p < g < o0,
we have

|Pef oy s 28~ K| Pef | o geny.

3. THE MAIN ESTIMATES

The following estimate will be the key towards finding solutions of the wave equation (1.3) by means of
iteration. The key here is particularly the estimate (3.3), whose proof requires a refinement of the analogous
Prop. 4.1 in [8].

Proposition 3.1. Assume that u takes values in S* and converges to p € S? at spatial infinity. Then using
introduced in the previous section, we have for suitable o > 0 the bounds

|Pe[u(Vu- Vu = G- Q)] < (1 )l ( 25 277 [Py, ) 3.
k1€Z

Furthermore, if it maps into a small neighbourhood of S* and Hﬁ” s S 1, we have the similar bound
[Pe(, ((=2)2u) - (=2)2w) [y < TT O+ ol (3 27K A Paulg, ) G2)
Vv=u,ii k\EZ

as well as
i [ x (=)7 (u x (=2)2u) —u x (u x (=a)w)]) |y

o 33
< L+ lgluls () 27 P, )- G

V=u,il k\€Z

We also have corresponding difference estimates: assuming that uld, j = 1,2, map into S?, while /) map
into a small neighbourhood of S? and with limy_, 4o P _ vl = = p € S?, then using the notation

ALFY) = FO) _ F@)

we have
HAI,ZPk[”(j) (Vu(j) vl — é’tu( . 0,u ]HN

<+ ) ) s—alk—ialp, (1) _ py®
( m?XH“ ”s)(m]aX”” Hs klZg:Z H ke U kU Hskl) 3.4)

(Z)HS)(mJaX Z 2—a\k_k1|Hpklu(j)HSkl)

+ (1 4+ max Hu(j)HS)(Hu(l)
I ki €Z
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and similarly
[Prsia ([ ((=2)2uD) @ - (=) 2u))

< max H I+ HVHS)HM(DHS( Z Z_U‘k_kl‘HPklu(l) - PkZu(Z)HSkl)

=) 70 bz
+ max H (1+ Hv”s)H“(l) - u(z)Hs (max Z Z_U‘k_kl‘HPkl“(j)Hsk ) (3-5)
v=u(f>,[¢(j) k€eZ 1
+ max (1 + ”u(])HS)”ﬁ(l) e HS (m?_lX Z 2_(r|k_k1|HPk1u(j) ”SA )
! k1EZ 1

The analogous difference estimate for (3.3) is similar.

The proof of the estimates for the wave maps term, (3.1), (3.4), is completely standard, see e. g. [17],
and the proof of Prop. 4.1 in [8]. Therefore we shall only show the other estimates here. Note that for these
estimates we do not need the X*” part of the norms H . H ¢ and || . H  but can get by using only Strichartz
estimates. In particular, we do not need the frequency localizers Q;. For the frequency localizers P, we also
use the notation uy := Pyu.

A technical tool in the proof of this proposition is the following lemma, analogous to Lemma 3.1 used in

[8]:

Lemma 3.2. Assume that | - | x,yz are translation invariant norms on C°(R") satisfying an inequality

vl < Jeel IV ]-
Let

(Fagto (1,9)) (x) = f (&, n)ite o™ €D d(E, )

R"xR"
where ki, ky € Z and the multiplier m(£,n) is C* on the support of xx, (€)xk, (1) and on this set satisfies
‘(zkl Ve)' (2k2V )Jm(f )| Sij Yik, Vi, j = 0.
Then
HFklkz (u, V)HZ S Ykika ”“kl ”XHka HY
where the implied constant depends on the size of finitely many derivatives of m.

Proof. As in [8], write the multiplier m(&, n) as a Fourier series on the support of xx, (€)x, (n),
S )
m,peZ
Then (Fiyx, (u,v))(X) = 2., pezn Gmplik (X + 2=Mm)v;, (x + 27%p). By taking Nth order derivatives of m
we see that the Fourier coefficients a,,, satisfy [am,| Sv Vi, (|m| + [p])™". Hence 3., con lamp| S Yisk,
and the estimate for Fy,, follows. ]

Applying Lemma 3.2 to the multipliers

m(é,m) = xo(é +n)(|€ +nl —Inl) resp. m(€,n) = xo(&+n)nl(I€ +n| — In))
we obtain for ky, kpy < 1:

HPO ((_A)%(Mkl Cljy) — U - (_A%”k2)> HZ <2 H”kl HXHMIQHY (3.6)

1 1
[P (=00 - (=)0 =, - (o) | 2% g ], a7
To establish the bounds (3.2), (3.3), we shall rely on a simple paradifferential identity which derives from
the crucial feature that
u-u=1,
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which gets localised to
Po(u-u) = 0.
We perform a frequency decomposition:
Po(u - u) = Po(P<_you - u) + Po(P=_1ou - u)

= Po(P<_10u - P>_iout) + Po(P=_1ou - P<_1ou)

+ Po(P=_1ou - P>_1ou)

= 2Py(P<_jou - P>_you) + Po(P=_jou - P=_1ou).
It follows that we have the identity

Po(P<_1ou - P>_1ou) = —EPO(Pz—loM - P>_jou).
More generally the same reasoning leads to
1
Py (P<ktt - Pxpu) = _EPm(PZk“ - Pxyu).

forany m > k + 3.

(3.8)

3.9

This can be used as follows. Summing (3.6) over k; < —10,k, € [—2,2] and using Equation (3.8) we

obtain

[Po(u<—10- (=8)2u)], = |Poluc—io - (=2)7u=—10)]
< HPO(_A)%(M<—10M “u=_10)|, + HPO((_A)%(M<—10 “Us_10) — U<—10 - (—A)%uz—w)HZ

S |Po(=8) (uzr0 - umr0) [+ D% 29 -
k1<—10,
koe[—2.2]

Similarly, combining (3.6) and (3.7) we obtain
[Potau<—ro - (=s), < [Po(=a) 10 usro)l + 25 27 [ e -

k| <—10,
kae[—2.2]

Rescaling Equations (3.10) and (3.11) for Z = L7, X = L?', Y = L?* (where 1 = p% + p%) we get:

p

1Py (u<k—10 - (—A)%M)

S HPk(_A)% (Usk—10 - Usk—10) HLg + Z 250 g, HLf' uar,
ky <k—10
koelk—2.k+2]

HPk(u<k710 . (_Au))HLf: < HPk(—A) (Usk—10 - M>k710)||L5 + Z 2kth ”ukl
k1 <k—10,
koelk—2,k+2]

L2

u .
Li’l ko LiZ

forall k € Z.

The proof of the preceding proposition will be accomplished in a sequence of lemmas:

Lemma 3.3. Let u, ii be as in the statement of the proposition. Then we have the bound

[Po (s ((—)200) (- (=) 2u)) [ 3y 5 327 M Prals (1 + )
keZ

for suitable o > 0. In particular, we have the bound

[ (=) 2u) (- (=)2u) [ jur < 1+ ) .

5
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Proof. In the sequel, the norm | - | will only refer to the Strichartz type mixed Lebesgue norms in the
original definition of | - V.. This weaker norm will suffice to bound things. To

begin with, we observe that

[Po (M ()2 5 (1+ Jal) 3 270
kieZ

(3.14)

for suitable o; > 0, and by re-scaling we have

[Pe(s ((—8)2) | < 240+ [l g) 35 27 =¥y
k1€Z

(3.15)

To see this bound, write

ff [ |
Then further decompose
i . il il 1 17
Po((= - (—2)2u)—) = Po((+= - (=2)2u=10) 7=
(G ) = Pl 1))
i 1 u
Po((=—= - (—2)2uj_ T
+ Po(( 7 (—=2)2ui—10,10]) @ )
i 1 i
+ Po((-= - (=2)2u<—10) =
(G <)y
Then use for the first term on the right that
it 1 it
”PO((M : (_A)ZM>IO>H7) HLZLO%LOOL2
it 1 it
< ||P0(([T]>k1710 : (_A)zukl)T)HLZLOOmLOOLZ
]| | 7 e ok
ki>10
it 1 it
+ ||P0(([T]<k1710 (_A)zukl)[7]>k1*5)HLZLOOK\LOCLZ
k (e i e
1>10
12 1
7 >k1*a||L,°°L%. (—2)2u, HLfL;?CmLfOL%
T SH0aS0 " ’
2_7H”k1 s
k1>10

where we have used Holder’s and Bernstein’s inequality. For the second term on the right, we have

1
)”LQLOOmLOOLZ ~ H )2 up-10,10] HL,ZLF;%L,OOLi

[kq |

s 2 277 s

k1€[—10,10]



Finally, for the last term on the right, we get

i 1 i
HPO((m (_A>;u<—10)ﬂ)”L2LOO 112

-l
s )2 Hules

k1< 10

The bound (3.14) then follows in light of the fact that all the norms in || - |5 are obtained by interpolating
between L>L¥ and L* L2 and using Bernstein’s inequality.
Proceeding with the proof of the lemma, it suffices to prove a bound of the form

[Po((PrTTas) ((—8)2u) (- (=) )y gy 2740 352780 e a5

(3.16)

for suitable o > 0, since we can then bound the right hand side by
278032 M
k

and summing over k; we obtain the statement of the lemma.
We show (3.16) by distinguishing between a number of cases:

(i): ki < —10. We place (Pleﬁl)((—A)% ) into L7LY

[Po((Pr Tl ) (=) ) (- (=) 2u) 3o
(

< (P M) ((—a ”)HLZ (- (=2) “) HL,ZLi

2% (2327l g 5) [ Po u - (=) 2) o
k>

where we have used (3.15) and the definition of S for the last inequality.
We are thus left with showing that ||P0 (u . (—A)%u) H 2 S HuHé If the first factor u has large frequency
the estimate is straightforward:

[Po(u=—10- (—2) : )HL2L2 < Z otk HLfOL%
ki —ka| <10, k,>10

+ Z Jts HL,OOLi

ki€[—10,10], k<20
2
S s

If u has low frequency we use Equation (3.10) to turn it into high frequency:

( A %ukz

HLZLDO

(—a %“kz HLZLOC

[Po(Pecto (=)2u) 1y < |Po(=23 (oo Poion) [ p + 3
e 23]

LXL2:

This expression now is easily seen to be bounded by HuHé and so the case k; < —10 is finished.
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1

(ii): ky = —10. Now we place (P, I1;1) ((—2)2u) into L L?
[Po((Pe Tl ) ((—2)7u) (1 (=) 2u) |y
<[ (P ) (=) 200) o o - (=) 20,

<270 Y 2kl | - (—a)7u

We are left with showing that ||u - (—A)%uHLILOO < HuHE Decompose
+ box

BI—=

1 1 1
i (=)= Y Pr(uak—10 (—2)2u + tz10 - (—A)Tucp_10 + Uz—10 - (—A)
keZ

U=k-10)  (3.17)

Then estimate the first term by using Equation (3.12):

[Pe(ucicro (~)) |y 3 [Pe-0) (umicro - i)y + S p
o 0<k—10 o
ko€[k—2,k+2]
Summing over k € Z we get for the first term on the right
2 1Pe(=0) (10 - wza-10) [ 10 2% fuziro] el <
keZ keZ
k=t 2
2 2 27 fuelgluly s Jul:
keZ €=k—10
for the second term the same bound is seen to hold so
Z | Pic(ucr—10 - (—a )HL e S < Ju HS
keZ
Now for the second term in brackets in Equation (3.17) we directly see that

Z | Pic(uzr—10 - (=2 )2”<k 10 HLlLoo Z s, HL2L°O |- 2u<k*10”L,2L30 S HMHE

kez kez ’
It remains to estimate the last term in brackets in Equation (3.17):

1 2
I3 we oVl < 3 Juel |-l e s 3 Juls el = Juls-
€,meZ €, meZ mezZ
[6—m|<20 |6—m|<20
We conclude that
[Po((Pry T ) (=) 200) (- (=) 2u) |y <27 Z 2 AN
O

We next prove (3.3). This will follow from the next lemma, after a simple re-scaling:

Lemma 3.4. Under the assumptions of the preceding proposition, we have the bound
1 1
||(P0Ha¢)[u X (—=2)2(u x (—A)2u) —u x (u x (_AM»]HL,‘H}

_ 2
< 2,27 s

keZ
for suitable o > 0.



Proof. This is more delicate than the previous proof, since we have to take advantage of the relation (3.8),

but the operator (—A)% acts non-locally, causing the factors in (3.8) to be evaluated at different points.
Observe that it is enough to prove the bound

[Pofiex (=% g x (=8)%) = x g x (=0)] |y (.18
277 g g + o o 5 -
To get rid of the projection operator I1;1 we use the inequality
|(PoTt )Py gy < 27 M P11

for suitable o5 > 0, which is proved exactly like (3.14). Assuming then Equation (3.18) and re-scaling, we
get the bound

[(PoTTae) (X (=2)% (ugy X (—)71) —u x (g, x (—Au))

< 2527 @ g g g+ o e o)
keZ

HL} H!

which yields the assertion of the lemma after summing over ;.
To prove (3.18) we again split into different cases depending on k;:

(i): ki < —10. Decompose into an easy and a more delicate term:
1 1
Polu x (—=2)2 (g, x (—=2)2u) —u x (g, x (—2u))]
1 1
= Poluzi—10 % (—8)7 (ugy x (—=2)2u) =tz —10 % (uy x (—2u))]

+ Poluck,—10 % (=)

DI—=

(g, % (—2)7u) — tcgy—10 % (g, ¥ (—2u))]

Then we bound the first term on the right as follows: we have

Poufi, ~10.-10] X (=)7 (% (—2)7u) — Uik, —10-10) X (g, x (—au))]

1 1
= PO[”[klflo,flo] x (—A)%(ukl X (=A)2up_n2)) — Ufg,—10,—10] ¥ (U, X (—Au[fz,z]))]

Applying the multiplier lemma, i.e. Equation (3.7), we find

Nl

(=) (e, x (=2)2up209) = (g x (=2up2)] 2

<2 H”kl

k
ez b2l oz < 27 e s Ll

Then
1 1
HPO[u[kl—lo,—lo] X (=48)2 (ury % (—A)2up_27) — U —10,—10] ¥ (g, X (—Au[—z,z]))]HLtly;

k k1 —k
|L,2L§C‘ 'Z%H””ﬂ HSH”[—M]HS S Z Z%HL‘szs””kl ”s“uHs
kze[k]—]o,—]o]

< Hu[kl—lo,—lo]

o g el g1 -

which is as desired. We omit the contributions when the first factor is replaced by u~ _j¢, which is handled
similarly.
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Thus consider now the more interesting term

Po[u<k1_1() X (—A)%(ukl X (—A)%u) — U<f—10 X (ukl X (—AM))]

1 1 (3.19)
= Po[u<k1,10 X (—A)Z(Mkl X (—A)Zuo) — U<f;—10 X (ukl X (—Auo))]
In order to handle it, we shall invoke the relation
ax (bxc)=bla-c)—c(a-b), (3.20)

but we have to take into account the non-local operator (—A) 3, Using the proof of Lemma 3.2, we can write
1 L
(—a)2 (g, x (—5)2ug) — (ug, X (—Aug))
= Z AmpUg, (X + 27k‘m) X U (X + p),

meZ4,pez*

where we have the bound ’amp‘ <y 28 [|m| + |p|]_N. Thus using (3.20) we can write (3.19) in the form

Z A, (X + Z*k‘m) (u<k1_1o(x) “up(x + p))
meZ*,peZ*

— Z amputo(x + p) (u<k1_10(x) Sug (x + 27k‘m)).
meZ*,peZ*
Then the idea is to reduce to (3.8). For this write

1

Uty —10(X) = U<t —10(x + p) — J p - Vucg —10(x + ps)ds.
0

Note that the integral term is bounded by

1
|f0 P - Vitck,—10(x + ps) ds”Lfo;O < |pl- “V”<’<1—10HL,2L§°’

and so replacing the factor 1.k, 10 by the integral term in the above sum, we get the bound
1

I Z Ui, (x+2_k1m)((j .

.ds) - up(x + p)) HL,‘HXl
meZ*,peZ* '

1
L sy

S D0 amplun (r+27Fm) e

mezZ*,peZ4

”0||L;DL§

< D0 |plamplu|s|uls|uols,
mezZ*,peZ4

where the sum over m, p converges due to the rapid decay of a,,),.
It follows that we have reduced to estimating

Z Amplti, (X + 2_k1m) (u<kl_10(x + p) - up(x + p)),

mez4, pezt
for which we can use (3.8). More precisely, write
g, (x + 275m) (u<ty—10(x + p) - uo(x + p))
= ug, (x + 2751 m) (u<—10(x + p) - up(x + p))

— gy (x + 2_k'm) (“[klflo,flo] (x+ p) - uo(x + P))
10



To bound the contribution from the second term on the right, we use
HPO [”k] (x+27"m) (”[klflo,fm] (x+ p) - uo(x + P))] HL}H;

< o, (x + 2 ki) HLZQL;D

”[/<1—10,—10]HL12L;D ”OHLfﬁLi

_ktky
O lwelsluls2™ = fuolss-
sz[klflo,flo]

A

The coeflicient a,,, furnishes an extra 2% and so inserting the previous bound we obtain

|22 ampPolu, (x +27m) (g, 10,101 (x + P) - o + P s S o el o] -

meZ4,pez*

It remains to deal with the contribution of
Polug, (x + 275 m) (u<_10(x + p) - up(x + p))]-
Here we use (3.8), which gives
[Polu<—10(x + p) - uo(x + )] 2~ [[Poluz-10(x + p) - u=—10(x + p)]| 12,

S [l

and so we have

I Z ampPolutk, (x + 275 m) (u<_10(x + p) - uo(x + P))]”L;H;,

mezZ*,peZ*

S Z |amp| i HL,ZLQO
meZ*, peZ*

2 K 2
ullg <27 ug, | Jufs-

It remains to deal with the expression

Z amptto(x + p) (<t —10(%) - g (x +2751m)),
meZ“,peZ4

which is done in essentially identical fashion.

(ii): k1 € [—10, 10]. Here we split things into

NI—=
<
~—
\
<
X
—
S

=
X
—
>
<
~—
~—
—

Pou x (—a)2 (g, x (—2)
= Po[u X (—A)%(ukl X (—A)%Mgzo
+ Pofu x (=) (g, x (—1)2uzn
Then we can write the first term as
Polu x (—1)? (g, x (—2)2u20) — u % (g, X (—Atiz20))]

= Po[u>15 X ((—A)%(Mk] X (—A)%bzo) — (ug, x (—Auzzo))> ]

which is straightforward to estimate by placing u- 5 into L2LY and the other factor into L?L2:

H(_A)%(”ku X (_A)%M>20)“L,2L§ S Z 2k1+€H”/ﬂ HL%Lgo
£>20

2
W”L,OOL% < [luls
and similarly for ug, x (—Au=20).
Then consider the more delicate term

Po[u X (—A)%(ukl X (—A)%u<2o) —u X (g, X (—Au<20))].
11
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We treat
1 1
Po[I/t;,l() X (—A)Z(ukl X (—A)2u<20) —U>_10 X (ukl X (—Au<20))].

similar to Equation (3.21) above (but placing uy, into L°L? and u—g into L>L%). Thus we are left with the

term
1

1
Po[u<_10 X (—A)fpo(uk] X (—A)7u<20) —Uc—_10 X Po(uk] X (—Au<20))].
Similar to case (i), write
Po((—A)%(ukl x (—8)2u<a0) — (g, % (—2u<x)))

= 3 ampttiy (x +275m) x (=) 2ucz) (x +27%p),

m,peZ4

where |a,| < (|m| + |p|)~". Thus using Equation (3.20) we can rewrite

Uc_10 X P()((—A)i(l/tkl X (—A)%u<20) — Uy, X (—Au<20))

= 2% amp (e (27 Om) e 0() - () a6 +2720p)) -

m,peZ*

(=) buc20)(x + 272p) (g (x + 270m) - uz10())).

Let us estimate the first of the two terms in brackets. As before write u~_19(x) = u<_jo(x + 272017) —
27 S(l) Vu_19(x +27°ps)ds. Then

|3 it (5 27 Om) 100 - (=) o)+ 2209 €
m peZ*

1
3 lempl e (]p‘ [[ ¥t 2 s

m,peZ*

o 8 nl o o tncnly ).
+ Lox

The integral term is bounded by |p||Vi<_10] 2, < |p||u ¢» the term Hu<,1o-(—A)%MQOHLILQO is estimated
t bx t ox

using Equation (3.12). The sum over m, p converges due to the decay of |a,,,| and so the whole expression

is bounded by ||uH§
It remains to estimate

|30 amp(=a) ucao(x + 272p) (g, (x +270m) - e 10(0)) | 12

m,peZ*

For this we write as before u~_19(x) = u<_10(x + 27 %) — 27 10m . S(l) Vu<_10(x + 27 %ms)ds. The part
involving the integral is easy to estimate. For the other part we put (—A)%u<20 into L2L% and estimate

lui—10.01 - w0 212 < g—r0.10) - ais] 22 + =100 - 15101 212
= [Pz (u—1000) - <15 212 + Ju-10.0) - w15 -101[ 122
<[Py (s s - usis) o + [ul
~ Py (s - usis) 2 + Juls < Jul

where in the last line we have used Equation (3.9) to turn the low-frequency factor into a high frequency
one.
12



(ii): ky > 10. We decompose

Polux ((—2)2 (ug, % (—2)7u) — (g, x (—2u)))]
:Po[u X (( A)% Up, X (—A)%u<k1 5) — (ug, ¥ (—Au<k1_5)))] 3.22)
+Po[ X ( )2 (ury % (=) g, —s gy +5)) — (4, X (_A”[krS,lirS])))
+Po[u x ((=1)? (g, X (=A)2uspy15) — (0, X (—Ausg15)))]-

The first and the last line are easy to handle since in both cases the first factor u can be restricted to
frequencies > k; and placed into L?L? and the other factor can be placed into L21.2 e.g.

H(_A)%(”kl X (_A)%”<k1—5)HL?L§- S Z 2t H”leL,“’L% (—a %ukZHLZLOO 27 ? H”kl HS
k2<k1—5
s, (_A”>k|+5)||L,2L§ S Z Joae HL,Z o ”L;’OLi S foat [ ete.

ko>ki+5

Hence we have bounded the first and the last line in Equation (3.22) by 2*%1 Huk1 H s HuHé
Finally, for the term in the middle we first bound

[Pofus—s x (=) (e x (=8)2upey—spq+57) = (g % (=228, —s54,45))) |1 12

M 2
S H”>*5‘|L,2L;°22k1 ot | 212 u[kI*S,k1+5]HLfOL% s2 21H”kl I -

It remains to estimate
1 1
[Pofua—s x ((—2)2 (ur, x (—2)2up—sgy+57) — (% (= 2upp—s4,5))) ] 1112 (3.23)

For the second term we can directly apply Equation (3.20) to obtain

HPO [u<,5 X (ukl X (_A”[klfS,lirS]))] HL,' 2= HPO [ukl (u<75'(_A)”[kl75,k1+5])_(_A)u[k1*5,k1+5] (u<*5'uk1 )] HL} L2
(3.24)

Here the second term can be estimated easily after applying Equation (3.9) to turn the low frequency u into

a high-frequency one:

N D YN T R7) FYPRSD Y XS Raes | By
kelki— 1k +1] ke[ki— 1k +1]

For the first term we use Equation (3.13):

H”<—5'(_A)”[k1—5,k1+5]HL,ZL,% S Z | Prtas - (—2)u) HL,ZL,%
ke[lq —6,k; +6]
s Y (P ues wpp+ lizz)
ke[ky —6.k; +6] <—5

koelk—2.k+2]

which after again applying Equation (3.8) we bound by HuHiw
Finally, for the first term in Equation (3.23) we expand the Fourier multiplier m(&,n) := xo(¢ + n)|n| as
a Fourier series on the support of Y~ _5(&)x[—1,11(17) to obtain

Po[u<75 X (_A)%(ukl X (_A)%M[kl—ik1+5])](x) =

D ampti<—s(x+272m) x (g, (x + 27" p) x (=) 2wy, 54, 457(x +27'p))
m,peZ*

13



where |an,| Sy (Jm| + [p|) ™. As in the previous cases we then write

1
ue_s(x+27m) =u-_s(x+27'p) + 27°m —271p) J Vuo_s(x+ (272m — 27 p)s)ds.
0

The part involving the integral is easy to estimate. Thus we are left with estimating
1
[Pofuc—s x (e, % (—2)2upy—s 45D 12

This is done in the same way as above (Equation (3.24)) by writing the cross product in terms of inner
products and then turning the low frequency u into a high frequency one.
O

The preceding lemmas 3.4, 3.3 after re-scaling immediately yield (3.2), (3.3), and the difference estimate
(3.5) together with the corresponding difference estimate corresponding to (3.3) follows by using the same
proofs, involving the use of (3.8), and passing to the differences after this. Furthermore, one uses the
important fact that if limy_, 1 P—_yiil) = p € S2, then

|a9) — 2@ < @) —a®|s,

as follows from Bernstein’s inequality. This proves Proposition 3.1.

4. THE ITERATION

Here we use the results of the preceding section to construct a global solution for (1.3). Specifically, we
have

Proposition 4.1. Let u[0] = (u(0, ), u,(0,-) = (ug,u;) : R* —> % x TS? where u; = uy x (—A)%uo and
ug is C*-smooth, constant outside of a compact subset of R*, and

[uoll o1 < €

for sufficiently small € > 0. Then the problem (1.3) admits a global C* solution with initial data u[0)].
Furthermore, the solution satisfies

luls < e,
and u scatters in the sense that for suitable (fy,g+) € B§1 X Bé’l, we have
u(t,) = p =S (0)(frrg+) + 021, 5 (1)
as t — £oo. Finally, the solution also satisfies the bounds
Vi auls i 1
forany k > 1.

Remark 4.1. One can easily generalise the condition on the second component of the data u; in this propo-
sition. However, for the application in the proof of Theorem 1.1, we need precisely this type of data.

Proof. To begin with, observe that we have
1
luo > (=2)2uol gt < Juol -

We follow the same iterative scheme as in [KS], which we recall here for completeness’ sake. The solution
u(t, x) shall be obtained as the limit of a sequence of iterates u(/), starting with the constant function p :=
lim |, o uo(x). Next, uD (2, x) solves the wave maps equation with data u[0], i. e. it solves

(02 = A)uM = W (v . vu™ — 0,4 . 9,4 M), uD[0] = u[0].
14



)

This is obtained in the form u(!) = P+ e u,El by invoking Proposition 2.1 and the estimates (3.1), (3.4).

Further, for j > 2, we let u) solve the system
(07 — 2)u?
=4 (Vu(f) Vu) — o,ul) . 5,u(j))
4 Hu(f) ((_A)%u(jfl))(u(jfl) (—2)24UD)

1

T [ x (—a)7 (D % (—2)2ul=D) — U= 5 (u=D x (—a)ub=]
ui

As ul) is defined in terms of a nonlinear problem, we have to use a sub-iteration to find it, by means of
further iterates u(), i > 0, with u(%) solving the free wave equation with data u[0], and u(*), i > 1,
defined in terms of the previous iterate via

(67 — a)ulH)

— u(j,i—l)(vu(j,i—l) B L N A é’tu(j’i_l))

FTT iy (=) 2l D) (@D - (=) 2ulD) 4.1
uy

+ 11 i) [u(j_]) X (—A)%(u(j_l) X (—A)%u(j_l)) — w5 (U7 (—A)u(j_l))].
up

The convergence of (4.1) with respect to | - ||s is a consequence of (3.1) - (3.4), provided one checks that all
/) map into the sphere. This is clear for u(/), j = 0, 1, and follows from
o w1y = 2D - ) = 1)(VuD - VD) — 6 - 0D, @ . u — 1)[0] = 0

for all j > 2. Observe that the (/) are in fact C* by differentiating the equation and again using (3.1) - (3.4).
Convergence of the iterates /) then also follows from (3.1) - (3.4) by passing to the difference equations.
Finally, the scattering assertion follows in standard fashion from the fact that the right hand source terms in
(1.3) can all be placed in N, see e. g. [17].

O

5. Proor orF THEOREM 1.1

Given smooth ug — S? as in the statement of Theorem 1.1, we apply Proposition 4.1 to obtain a global

C® solution for (1.3) with initial data u[0] = (uo,uo x (—A)%uo)). It remains to show that this u actually
solves (1.1). We proceed as in [8], section 6, but need to modify the estimates there somewhat. Introduce

X:i=u —ux (—A)%u,
as well as the energy type functional

E@t) = %JW |(—2)iX(s, )| dx.

Observe that directly integrating (1.1) over compact time intervals and using the compact support of V,uy,
we have that H”tHH L+ HuHH 3 < ooatall times, which implies that £ () is well-defined, and smoothness of u

implies that it can be differentiated with respect to ¢. Proceeding as in [8], section 6, we deduce the relation
1 1 1

X ==Xx(=0)Tu—ux (—8)2X —u(X-(ux (—2)2u+u)),
and so we infer
d -
ZE(r) = f (—a)% (X x (=) 2u + u x (—A)2X) - (—A)i X dx

R4
G.n
1 1

(u(X - (ux (=2)2u+u))) - (—a)3Xdx.

15
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Then taking advantage of Lemma 3.2 we find
[(=2) (X x (—a)2u+u x (—=1)2X) —u x (—8)3X] 2

S (CINE (P [CNER

L2 L8

e * X[, g l=2)%
Su (=8)4%] .

where Sobolev’s inequality and the higher regularity of u are being used.
Another application of Lemma 3.2 gives

ux (—8)iX = ()7 (ux (—8)3X) + 02 (IVateliz | ()7 X] 2).
and since
fW(A)i (ux (—A)iX) - (—a)iXdx = 0,

we can estimate the first term on the right of (5.1) by

A=

AYH(X X (=8)2u+u x (—1)2X) - (—4) X dx|

|-
R4
< || (=8)T (X x (=a)7u+ux (=8)7X —u x (—A)iX) - (—a)I X dx]
R4
1
+ O Vst 1| (=) X]7,)
1
Su (=) X2,
The second term on the right hand side of (5.1) is estimated similarly, using

1 1
- (u — U+ u)lr2 Sull(— 2.
X (u x (=a)u+ )| 2 <u [(=4)7X] 2

‘We conclude that

SE() <0 E(),

and in light of £(0) = 0, we infer £(¢) = 0 for all ¢, which implies that u indeed solves (1.1).
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