
Published as a conference paper at ICLR 2019

LOCAL SGD CONVERGES FAST
AND COMMUNICATES LITTLE

Sebastian U. Stich
EPFL, Switzerland
sebastian.stich@epfl.ch

ABSTRACT

Mini-batch stochastic gradient descent (SGD) is state of the art in large scale
distributed training. The scheme can reach a linear speedup with respect to the
number of workers, but this is rarely seen in practice as the scheme often suffers
from large network delays and bandwidth limits. To overcome this communication
bottleneck recent works propose to reduce the communication frequency. An
algorithm of this type is local SGD that runs SGD independently in parallel on
different workers and averages the sequences only once in a while. This scheme
shows promising results in practice, but eluded thorough theoretical analysis.
We prove concise convergence rates for local SGD on convex problems and show
that it converges at the same rate as mini-batch SGD in terms of number of evaluated
gradients, that is, the scheme achieves linear speedup in the number of workers
and mini-batch size. The number of communication rounds can be reduced up
to a factor of T 1/2—where T denotes the number of total steps—compared to
mini-batch SGD. This also holds for asynchronous implementations.
Local SGD can also be used for large scale training of deep learning models. The
results shown here aim serving as a guideline to further explore the theoretical and
practical aspects of local SGD in these applications.

1 INTRODUCTION

Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) consists of iterations of the form

xt+1 := xt − ηtgt , (1)

for iterates (weights) xt,xt+1 ∈ Rd, stepsize (learning rate) ηt > 0, and stochastic gradient gt ∈ Rd
with the property Egt = ∇f(xt), for a loss function f : Rd → R. This scheme can easily be
parallelized by replacing gt in (1) by an average of stochastic gradients that are independently
computed in parallel on separate workers (parallel SGD). This simple scheme has a major drawback:
in each iteration the results of the computations on the workers have to be shared with the other
workers to compute the next iterate xt+1. Communication has been reported to be a major bottleneck
for many large scale deep learning applications, see e.g. (Seide et al., 2014; Alistarh et al., 2017;
Zhang et al., 2017; Lin et al., 2018b). Mini-batch parallel SGD addresses this issue by increasing
the compute to communication ratio. Each worker computes a mini-batch of size b ≥ 1 before
communication. This scheme is implemented in state-of-the-art distributed deep learning frameworks
(Abadi et al., 2016; Paszke et al., 2017; Seide & Agarwal, 2016). Recent work in (You et al., 2017;
Goyal et al., 2017) explores various limitations of this approach, as in general it is reported that
performance degrades for too large mini-batch sizes (Keskar et al., 2016; Ma et al., 2018; Yin et al.,
2018).

In this work we follow an orthogonal approach, still with the goal to increase the compute to
communication ratio: Instead of increasing the mini-batch size, we reduce the communication
frequency. Rather than keeping the sequences on different machines in sync, we allow them to evolve
locally on each machine, independent from each other, and only average the sequences once in a
while (local SGD). Such strategies have been explored widely in the literature, under various names.

An extreme instance of this concept is one-shot SGD (McDonald et al., 2009; Zinkevich et al., 2010)
where the local sequences are only exchanged once, after the local runs have converged. Zhang
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Figure 1: Illustration of the speedup (3) for time-to-accuracy when either increasing mini-batch size
b (1→ 2) or communication inverval H (1→ 2), for compute to communication ratio ρ = 25.

et al. (2013) show statistical convergence (see also (Shamir & Srebro, 2014; Godichon-Baggioni &
Saadane, 2017; Jain et al., 2018)), but the analysis restricts the algorithm to at most one pass over the
data, which is in general not enough for the training error to converge. More practical are schemes
that perform more frequent averaging of the parallel sequences, as e.g. (McDonald et al., 2010) for
perceptron training (iterative parameter mixing), see also (Coppola, 2015), (Zhang et al., 2014; Bijral
et al., 2016; Zhang et al., 2016) for the training of deep neural networks (model averaging) or in
federated learning (McMahan et al., 2017).

The question of how often communication rounds need to be initiated has eluded a concise theoretical
answer so far. Whilst there is practical evidence, the theory does not even resolve the question
whether averaging helps when optimizing convex functions. Concretely, whether running local SGD
on K workers is K times faster than running just a single instance of SGD on one worker.1

We fill this gap in the literature and provide a concise convergence analysis of local SGD. We show
that averaging helps. Frequent synchronization of K local sequences increases the convergence rate
by a factor of K, i.e. a linear speedup can be attained. Thus, local SGD is as efficient as parallel
mini-batch SGD in terms of computation, but the communication cost can be drastically reduced.

1.1 CONTRIBUTIONS

We consider finite-sum convex optimization problems f : Rd → R of the form

f(x) =
1

n

n∑
i=1

fi(x) , x∗ := arg minx∈Rd f(x) , f? := f(x?) , (2)

where f is L-smooth2 and µ-strongly convex3. We consider K parallel mini-batch SGD sequences
with mini-batch size b that are synchronized (by averaging) after at most every H iterations. For
appropriate chosen stepsizes and an averaged iterate x̂T after T steps (for T sufficiently large, see
Section 3 below for the precise statement of the convergence result with bias and variance terms) and
synchronization delay H = O(

√
T/(Kb)) we show convergence

E f(x̂T )− f? = O

(
G2

µbKT

)
, (3)

with second moment bound G2 ≥ E ‖∇fi(x)‖2. Thus, we see that compared to parallel mini-
batch SGD the communication rounds can be reduced by a factor H = O(

√
T/(Kb)) without

hampering the asymptotic convergence. Equation (3) shows perfect linear speedup in terms of
computation, but with much less communication that mini-batch SGD. The resulting speedup when
taking communication cost into account is illustrated in Figure 1 (see also Section D below). Under the
assumption that (3) is tight, one has thus now two strategies to improve the compute to communication
ratio (denoted by ρ): (i) either to increase the mini-batch size b or (ii) to increase the communication
interval H . Both strategies give the same improvement when b and H are small (linear speedup).
Like mini-batch SGD that faces some limitations for b� 1 (as discussed in e.g. (Dekel et al., 2012;
Ma et al., 2018; Yin et al., 2018)), the parameter H cannot be chosen too large in local SGD. We give
some pratical guidelines in Section 4.

Our proof is simple and straightforward, and we imagine that—with slight modifications of the
proof—the technique can also be used to analyze other variants of SGD that evolve sequences on

1On convex functions, the average of the K local solutions can of course only decrease the objective value,
but convexity does not imply that the averaged point is K times better.

2f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L
2
‖y − x‖2, ∀x,y ∈ Rd.

3f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µ
2
‖y − x‖2, ∀x,y ∈ Rd.
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different worker that are not perfectly synchronized. Although we do not yet provide convergence
guarantees for the non-convex setting, we feel that the positive results presented here will spark
further investigation of local SGD for this important application (see e.g. (Yu et al., 2018)).

1.2 RELATED WORK

A parallel line of work reduces the communication cost by compressing the stochastic gradients before
communication. For instance, by limiting the number of bits in the floating point representation (Gupta
et al., 2015; Na et al., 2017; Sa et al., 2015), or random quantization (Alistarh et al., 2017; Wen
et al., 2017). The ZipML framework applies this technique also to the data (Zhang et al., 2017).
Sparsification methods reduce the number of non-zero entries in the stochastic gradient (Alistarh
et al., 2017; Wangni et al., 2017). A very aggressive—and promising—sparsification method is to
keep only very few coordinates of the stochastic gradient by considering only the coordinates with
the largest magnitudes (Seide et al., 2014; Strom, 2015; Dryden et al., 2016; Aji & Heafield, 2017;
Sun et al., 2017; Lin et al., 2018b; Stich et al., 2018).

Allowing asynchronous updates provides an alternative solution to disguise the communication
overhead to a certain amount (Niu et al., 2011; Sa et al., 2015; Lian et al., 2015), though alter-
native strategies might be better when high accuracy is desired (Chen et al., 2016). The analysis
of Agarwal & Duchi (2011) shows that asynchronous SGD on convex functions can tolerated delays
up to O(

√
T/K), which is identical to the maximal length of the local sequences in local SGD.

Asynchronous SGD converges also for larger delays (see also (Zhou et al., 2018)) but without linear
speedup, a similar statement holds for local SGD (see discussion in Section 3). The current frame-
works for the analysis of asynchronous SGD do not cover local SGD. A fundamental difference is
that asynchronous SGD maintains a (almost) synchronized sequence and gradients are computed
with respect this unique sequence (but just applied with delays), whereas each worker in local SGD
evolves a different sequence and computes gradient with respect those iterates.

For the training of deep neural networks, Bijral et al. (2016) discuss a stochastic averaging schedule
whereas Zhang et al. (2016) study local SGD with more frequent communication at the beginning of
the optimization process. The elastic averaging technique (Zhang et al., 2015) is different to local
SGD, as it uses the average of the iterates only to guide the local sequences but does not perform a
hard reset after averaging. Among the first theoretical studies of local SGD in the non-convex setting
are (Coppola, 2015; Zhou & Cong, 2018) that did not establish a speedup, in contrast to two more
recent analyses (Yu et al., 2018; Wang & Joshi, 2018). Yu et al. (2018) show linear speedup of local
SGD on non-convex functions for H = O(T 1/4K−3/4), which is more restrictive than the constraint
on H in the convex setting. Lin et al. (2018a) study empirically hierarchical variants of local SGD.

Local SGD with averaging in every step, i.e. H = 1, is identical to mini-batch SGD. Dekel et al.
(2012) show that batch sizes b = T δ , for δ ∈ (0, 12 ) are asymptotically optimal for mini-batch SGD,
however they also note that this asymptotic bound might be crude for practical purposes. Similar
considerations might also apply to the asymptotic upper bounds on the communication frequency H
derived here. Local SGD with averaging only at the end, i.e. H = T , is identical to one-shot SGD.
Jain et al. (2018) give concise speedup results in terms of bias and variance for one-shot SGD with
constant stepsizes for the optimization of quadratic least squares problems. In contrast, our upper
bounds become loose when H → T and our results do not cover one-shot SGD.

Recently, Woodworth et al. (2018) provided a lower bound for parallel stochastic optimization (in the
convex setting, and not for strongly convex functions as considered here). The bound is not known to
be tight for local SGD.

1.3 OUTLINE

We formally introduce local SGD in Section 2 and sketch the convergence proof in Section 3. In
Section 4 show numerical results to illustrate the result. We analyze asynchronous local SGD in
Section 5. The proof of the technical results, further discussion about the experimental setup and
implementation guidelines are deferred to the appendix.
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Algorithm 1 LOCAL SGD

1: Initialize variables xk0 = x0 for workers k ∈ [K]
2: for t in 0 . . . T − 1 do
3: parallel for k ∈ [K] do
4: Sample ikt uniformly in [n]
5: if t+ 1 ∈ IT then
6: xkt+1 ← 1

K

∑K
k=1

(
xkt − ηt∇fikt (xkt )

)
. global synchronization

7: else
8: xkt+1 ← xkt − ηt∇fikt (xkt ) . local update
9: end if

10: end parallel for
11: end for

2 LOCAL SGD

The algorithm local SGD (depicted in Algorithm 1) generates in parallel K sequences {xkt }Tt=0 of
iterates, k ∈ [K]. Here K denotes the level of parallelization, i.e. the number of distinct parallel
sequences and T the number of steps (i.e. the total number of stochastic gradient evaluations is TK).
Let IT ⊆ [T ] with T ∈ IT denote a set of synchronization indices. Then local SGD evolves the
sequences {xkt }Tt=0 in the following way:

xkt+1 :=

{
xkt − ηt∇fikt (xkt ) , if t+ 1 /∈ IT
1
K

∑K
k=1

(
xkt − ηt∇fikt (xkt )

)
if t+ 1 ∈ IT

(4)

where indices ikt ∼u.a.r. [n] and {ηt}t≥0 denotes a sequence of stepsizes. If IT = [T ] then the
synchronization of the sequences is performed every iteration. In this case, (4) amounts to parallel or
mini-batch SGD with mini-batch size K.4 On the other extreme, if IT = {T}, the synchronization
only happens at the end, which is known as one-shot averaging.

In order to measure the longest interval between subsequent synchronization steps, we introduce the
gap of a set of integers.
Definition 2.1 (gap). The gap of a set P := {p0, . . . , pt} of t + 1 integers, pi ≤ pi+1 for i =
0, . . . , t− 1, is defined as gap(P) := maxi=1,...,t(pi − pi−1).

2.1 VARIANCE REDUCTION IN LOCAL SGD

Before jumping to the convergence result, we first discuss an important observation.

Parallel (mini-batch) SGD. For carefully chosen stepsizes ηt, SGD converges at rate O
(
σ2

T

)
5 on

strongly convex and smooth functions f , where σ2 ≥ E‖∇fikt (xkt )−∇f(xkt )‖2 for t > 0, k ∈ [K]
is an upper bound on the variance, see for instance (Zhao & Zhang, 2015). By averaging K stochastic
gradients—such as in parallel SGD—the variance decreases by a factor of K, and we conclude that
parallel SGD converges at a rate O

(
σ2

TK

)
, i.e. achieves a linear speedup.

Towards local SGD. For local SGD such a simple argument is elusive. For instance, just capitaliz-
ing the convexity of the objective function f is not enough: this will show that the averaged iterate of
K independent SGD sequences converges at rate O

(
σ2

T

)
, i.e. no speedup can be shown in this way.

This indicates that one has to show that local SGD decreases the variance σ2 instead, similar as in
parallel SGD. Suppose the different sequences xkt evolve close to each other. Then it is reasonable to
assume that averaging the stochastic gradients ∇fikt (xkt ) for all k ∈ [K] can still yield a reduction
in the variance by a factor of K—similar as in parallel SGD. Indeed, we will make this statement
precise in the proof below.

4For the ease of presentation, we assume here that each worker in local SGD only processes a mini-batch of
size b = 1. This can be done without loss of generality, as we discuss later in Remark 2.4.

5For the ease of presentation, we here assume that the bias term is negligible compared to the variance term.
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2.2 CONVERGENCE RESULT AND DISCUSSION

Theorem 2.2. Let f be L-smooth and µ-strongly convex, Ei
∥∥∇fi(xkt )−∇f(xkt )

∥∥2 ≤ σ2,

Ei
∥∥∇fi(xkt )

∥∥2 ≤ G2, for t = 0, . . . , T − 1, where {xkt }Tt=0 for k ∈ [K] are generated according
to (4) with gap(IT ) ≤ H and for stepsizes ηt = 4

µ(a+t) with shift parameter a > max{16κ,H}, for
κ = L

µ . Then

E f(x̂T )− f? ≤ µa3

2ST
‖x0 − x?‖2 +

4T (T + 2a)

µKST
σ2 +

256T

µ2ST
G2H2L , (5)

where x̂T = 1
KST

∑K
k=1

∑T−1
t=0 wtx

k
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3.

We were not especially careful to optimize the constants (and the lower order terms) in (5), so we
now state the asymptotic result.
Corollary 2.3. Let x̂T be as defined as in Theorem 2.2, for parameter a = max{16κ,H}. Then

E f(x̂T )− f? = O

(
1

µKT
+
κ+H

µKT 2

)
σ2 +O

(
κH2

µT 2
+
κ3 +H3

µT 3

)
G2 . (6)

For the last estimate we used Eµ ‖x0 − x?‖ ≤ 2G for µ-strongly convex f , as derived in (Rakhlin
et al., 2012, Lemma 2).
Remark 2.4 (Mini-batch local SGD). So far, we assumed that each worker only computes a single
stochastic gradient. In mini-batch local SGD, each worker computes a mini-batch of size b in each
iteration. This reduces the variance by a factor of b, and thus Theorem (2.2) gives the convergence
rate of mini-batch local SGD when σ2 is replaced by σ2

b .

We now state some consequences of equation (6). For the ease of the exposition we omit the
dependency on L, µ, σ2 and G2 below, but depict the dependency on the local mini-batch size b.

Convergence rate. For T large enough and assuming σ > 0, the very first term is dominating in (6)
and local SGD converges at rate O(1/(KTb)). That is, local SGD achieves a linear speedup in
both, the number of workers K and the mini-batch size b.

Global synchronization steps. It needs to hold H = O(
√
T/(Kb)) to get the linear speedup. This

yields a reduction of the number of communication rounds by a factor O(
√
T/(Kb)) compared

to parallel mini-batch SGD without hurting the convergence rate.
Extreme Cases. We have not optimized the result for extreme settings of H , K, L or σ. For

instance, we do not recover convergence for the one-shot averaging, i.e. the setting H = T
(though convergence for H = o(T ), but at a lower rate).

Unknown Time Horizon/Adaptive Communication Frequency Zhang et al. (2016) empirically
observe that more frequent communication at the beginning of the optimization can help to get
faster time-to-accuracy (see also Lin et al. (2018a)). Indeed, when the number of total iterations
T is not known beforehand (as it e.g. depends on the target accuracy, cf. (6) and also Section 4
below), then increasing the communication frequency seems to be a good strategy to keep the
communication low, why still respecting the constraint H = O(

√
T/(Kb)) for all T .

3 PROOF OUTLINE

We now give the outline of the proof. The proofs of the lemmas are given in Appendix A.

Perturbed iterate analysis. Inspired by the perturbed iterate framework of (Mania et al., 2017) we
first define a virtual sequence {x̄t}t≥0 in the following way:

x̄0 = x0 , x̄t =
1

K

K∑
k=1

xkt , (7)

where the sequences {xkt }t≥0 for k ∈ [K] are the same as in (4). Notice that this sequence never has
to be computed explicitly, it is just a tool that we use in the analysis. Further notice that x̄t = xkt for

5
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k ∈ [K] whenever t ∈ IT . Especially, when IT = [T ], then x̄t ≡ xkt for every k ∈ [K], t ∈ [T ]. It
will be useful to define

gt :=
1

K

K∑
k=1

∇fikt (xkt ) , ḡt :=
1

K

K∑
k=1

∇f(xkt ) . (8)

Observe x̄t+1 = x̄t − ηtgt and Egt = ḡt.

Now the proof proceeds as follows: we show (i) that the virtual sequence {x̄t}t≥0 almost behaves
like mini-batch SGD with batch size K (Lemma 3.1 and 3.2), and (ii) the true iterates {xkt }t≥0,k∈[K]

do not deviate much from the virtual sequence (Lemma 3.3). These are the main ingredients in the
proof. To obtain the rate we exploit a technical lemma from (Stich et al., 2018).
Lemma 3.1. Let {xt}t≥0 and {x̄t}t≥0 for k ∈ [K] be defined as in (4) and (7) and let f be L-smooth
and µ-strongly convex and ηt ≤ 1

4L . Then

E ‖x̄t+1 − x?‖2 ≤ (1− µηt)E ‖x̄t − x?‖2 + η2t E ‖gt − ḡt‖2

− 1

2
ηt E(f(x̄t)− f?) + 2ηt

L

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 . (9)

Bounding the variance. From equation (9) it becomes clear that we should derive an upper bound
on E ‖gt − ḡt‖2. We will relate this to the variance σ2.

Lemma 3.2. Let σ2 ≥ Ei‖∇fi(xkt )−∇f(xkt )‖2 for k ∈ [K], t ∈ [T ]. Then E ‖gt − ḡt‖2 ≤ σ2

K .

Bounding the deviation. Further, we need to bound 1
K

∑K
k=1 E

∥∥x̄t − xkt
∥∥2. For this we impose

a condition on IT and an additional condition on the stepsize ηt.
Lemma 3.3. If gap(IT ) ≤ H and sequence of decreasing positive stepsizes {ηt}t≥0 satisfying
ηt ≤ 2ηt+H for all t ≥ 0, then

1

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 ≤ 4η2tG
2H2 , (10)

where G2 is a constant such that Ei‖∇fi(xkt )‖2 ≤ G2 for k ∈ [K], t ∈ [T ].

Optimal Averaging. Similar as in (Lacoste-Julien et al., 2012; Shamir & Zhang, 2013; Rakhlin
et al., 2012) we define a suitable averaging scheme for the iterates {x̄t}t≥0 to get the optimal
convergence rate. In contrast to (Lacoste-Julien et al., 2012) that use linearly increasing weights, we
use quadratically increasing weights, as for instance (Shamir & Zhang, 2013; Stich et al., 2018).
Lemma 3.4 ((Stich et al., 2018)). Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤ (1− µηt) at − ηtetA+ η2tB + η3tC , (11)

for ηt = 4
µ(a+t) and constants A > 0, B,C ≥ 0, µ > 0, a > 1. Then

A

ST

T−1∑
t=0

wtet ≤
µa3

4ST
a0 +

2T (T + 2a)

µST
B +

16T

µ2ST
C , (12)

for wt = (a+ t)2 and ST :=
∑T−1
t=0 wt = T

6

(
2T 2 + 6aT − 3T + 6a2 − 6a+ 1

)
≥ 1

3T
3.

Proof. This is a reformulation of Lemma 3.3 in (Stich et al., 2018).

Proof of Theorem 2.2. By convexity of f we have E f(x̂T )− f? ≤ 1
ST

∑T−1
t=0 wt E

(
f(x̄t)− f?

)
.

The proof of the theorem thus follows immediately from the four lemmas that we have presented, i.e.
by Lemma 3.4 with et := E(f(x̄t)− f?) and constants A = 1

2 , (Lemma 3.1), B = σ2

K , (Lemma 3.2)
and C = 8G2H2L, (Lemma 3.3). Observe that the stepsizes ηt = 4

µ(a+t) satisfy both the conditions
of Lemma 3.1 (η0 = 4

µa ≤
1
4L , as a ≥ 16κ) and of Lemma 3.3

(
ηt

ηt+H
= a+t+H

a+t ≤ 2, as a ≥ H
)
. �
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(a) Theoretical speedup S(K) (ε > 0, T small).
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(b) Theoretical speedup S(K) (ε = 0, T →∞).

Figure 2: Theoretical speedup of local SGD for different numbers of workers K and H .
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(a) Measured speedup, ε = 0.005.
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(b) Measured speedup, ε = 0.0001.

Figure 3: Measured speedup of local SGD with mini-batch b = 4 for different numbers of workers K
and parameters H .

4 NUMERICAL ILLUSTRATION

In this section we show some numerical experiments to illustrate the results of Theorem 2.2.

Speedup. When Algorithm 1 is implemented in a distributed setting, there are two components
that determine the wall-clock time: (i) the total number of gradient computations, TK, and (ii) the
total time spend for communication. In each communication round 2(K − 1) vectors need to be
exchanged, and there will be T/H communication rounds. Typically, the communication is more
expensive than a single gradient computation. We will denote this ratio by a factor ρ ≥ 1 (in practice,
ρ can be 10–100, or even larger on slow networks). The parameter T depends on the desired accuracy
ε > 0, and according to (6) we roughly have T (ε,H,K) ≈ 1

Kε

(
1
2 + 1

2

√
1 + ε(1 +H +H2K)

)
.

Thus, the theoretical speedup S(K) of local SGD on K machines compared to SGD on one machine
(H = 1, K = 1) is

S(K) =
K(

1
2 + 1

2

√
1 + ε(1 +H +H2K)

)(
1 + 2ρ (K−1)

H

) . (13)

Theoretical. Examining (13), we see that (i) increasing H can reduce negative scaling effects due
to parallelization (second bracket in the denominator of (13)), and (ii) local SGD only shows linear
scaling for ε� 1 (i.e. T large enough, in agreement with the theory). In Figure 2 we depict S(K),
once for ε = 0 in Figure 2b, and for positive ε > 0 in Figure 2a under the assumption ρ = 25. We see
that for ε = 0 the largest values of H give the best speedup, however, when only a few epochs need
to be performed, then the optimal values of H change with the number of workers K. We also see
that for a small number of workers H = 1 is never optimal. If T is unknown, then these observations
seem to indicate that the technique from (Zhang et al., 2016), i.e. adaptively increasing H over time
seems to be a good strategy to get the best choice of H when the time horizon is unknown.

Experimental. We examine the practical speedup on a logistic regression problem, f(x) =
1
n

∑n
i=1 log(1 + exp(−bia>i x)) + λ

2 ‖x‖
2, where ai ∈ Rd and bi ∈ {−1,+1} are the data sam-

ples. The regularization parameter is set to λ = 1/n. We consider the w8a dataset (Platt, 1999)
(d = 300, n = 49749). We initialize all runs with x0 = 0d and measure the number of iterations
to reach the target accuracy ε. We consider the target accuracy reached, when either the last iterate,
the uniform average, the average with linear weights, or the average with quadratic weights (such
as in Theorem 2.2) reaches the target accuracy. By extensive grid search we determine for each
configuration (H,K,B) the best stepsize from the set {min(32, cnt+1 ), 32c}, where c can take the
values c = 2i for i ∈ Z. For more details on the experimental setup refer Section D in the appendix.
We depict the results in Figure 3, again under the assumption ρ = 25.
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Algorithm 2 ASYNCHRONOUS LOCAL SGD (SCHEMATIC)
1: Initialize variables xk0 = x0, rk = 0 for k ∈ [K], aggregate ¯̄x = x0.
2: parallel for k ∈ [K] do
3: for t in 0 . . . T − 1 do
4: Sample ikt uniformly in [n]
5: xkt+1 ← xkt − ηt∇fikt (xkt ) . local update
6: if t+ 1 ∈ IkT then
7: ¯̄x← add(¯̄x, 1

K (xkt+1 − xkrk)) . atomic aggregation of the updates
8: xkt+1 ← read(¯̄x);
9: rk ← t+ 1 . iteration/time of last read

10: end if
11: end for
12: end parallel for

Conclusion. The restriction on H imposed by theory is not severe for T →∞. Thus, for training
that either requires many passes over the data or that is performed only on a small cluster, large values
of H are advisable. However, for smaller T (few passes over the data), the O(1/

√
K) dependency

shows significantly in the experiment. This has to be taken into account when deploying the algorithm
on a massively parallel system, for instance through the technique mentioned in (Zhang et al., 2016).

5 ASYNCHRONOUS LOCAL SGD

In this section we present asynchronous local SGD that does not require that the local sequences are
synchronized. This does not only reduce communication bottlenecks, but by using load-balancing
techniques the algorithm can optimally be tuned to heterogeneous settings (slower workers do less
computation between synchronization, and faster workers do more). We will discuss this in more
detail in Section C.

Asynchronous local SGD generates in parallel K sequences {xkt }Tt=0 of iterates, k ∈ [K]. Similar as
in Section 2 we introduce sets of synchronization indices, Ikt ⊆ [T ] with T ∈ IkT for k ∈ [K]. Note
that the sets do not have to be equal for different workers. Each worker k evolves locally a sequence
xkt in the following way:

xkt+1 =

{
xkt − γt∇fikt (xkt ) if t+ 1 /∈ IkT
¯̄xkt+1 if t+ 1 ∈ IkT

(14)

where ¯̄xkt+1 denotes the state of the aggregated variable at the time when worker k reads the aggregated
variable. To be precise, we use the notation

¯̄xkt = x0 −
1

K

K∑
h=1

t−1∑
j=0

1j∈Wk,h
t

(γj∇fikj (xkj )) , (15)

whereWk,h
t ⊆ [T ] denotes all updates that have been written at the time the read takes place. The

sets Wk,h
t are indexed by iteration t, worker k that initiates the read and h ∈ [K]. Thus Wk,h

t
denotes all updates of the local sequence {xht }t≥0, that have been reported back to the server at
the time worker k reads (in iteration t). This notation is necessary, as we don’t necessarily have
Wk,h
t =Wk′,h

t for k 6= k′. We haveWk,h
t ⊆ Wk,h

t′ for t′ ≥ t, as updates are not overwritten. When
we cast synchronized local SGD in this notation, then it holdsWk,h

t =Wk′,h′

t for all k, h, k′, h′, as
all the writes and reads are synchronized.
Theorem 5.1. Let f , σ, G and κ be as in Theorem 5.1 and sequences {xkt }Tt=0 for k ∈ [K] generated
according to (14) with gap(IkT ) ≤ H for k ∈ K and for stepsizes ηt = 4

µ(a+t) with shift parameter

a > max{16κ,H + τ} for delay τ > 0. IfWk,h
t ⊇ [t− τ ] for all k, h ∈ [K], t ∈ [T ], then

E f(x̂T )− f? ≤ µa3

2ST
‖x0 − x?‖2 +

4T (T + 2a)

µKST
σ2 +

768T

µ2ST
G2(H + σ)2L , (16)

where x̂T = 1
KST

∑K
k=1

∑T−1
t=0 wtx

k
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3.
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Hence, for T large enough and (H + τ) = O(
√
T/K), asynchronous local SGD converges with rate

O
(
G2

KT

)
, the same rate as synchronous local SGD.

6 CONCLUSION

We prove convergence of synchronous and asynchronous local SGD and are the first to show that local
SGD (for nontrivial values of H) attains theoretically linear speedup on strongly convex functions
when parallelized among K workers. We show that local SGD saves up to a factor of O(T 1/2) in
global communication rounds compared to mini-batch SGD, while still converging at the same rate
in terms of total stochastic gradient computations.

Deriving more concise convergence rates for local SGD could be an interesting future direction that
could deepen our understanding of the scheme. For instance one could aim for a more fine grained
analysis in terms of bias and variance terms (similar as e.g. in Dekel et al. (2012); Jain et al. (2018)),
relaxing the assumptions (here we relied on the bounded gradient assumption), or investigating the
data dependence (e.g. by considering data-depentent measures like e.g. gradient diversity Yin et al.
(2018)). There are also no apparent reasons that would limit the extension of the theory to non-convex
objective functions; Lemma 3.3 does neither use the smoothness nor the strong convexity assumption,
so this can be applied in the non-convex setting as well. We feel that the positive results shown here
can motivate and spark further research on non-convex problems. Indeed, very recent work (Zhou &
Cong, 2018; Yu et al., 2018) analyzes local SGD for non-convex optimization problems and shows
convergence of SGD to a stationary point, though the restrictions on H are stronger than here.
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A MISSING PROOFS FOR SYNCHRONIZED LOCAL SGD

In this section we provide the proofs for the three lemmas that were introduced in Section 3.

Proof of Lemma 3.1. Using the update equation (7) we have

‖x̄t+1 − x?‖2 = ‖x̄t − ηtgt − x?‖2 = ‖x̄t − ηtgt − x? − ηtḡt + ηtḡt‖2 (17)

= ‖x̄t − x? − ηtḡt‖2 + η2t ‖gt − ḡt‖2 + 2ηt 〈x̄t − x? − ηtḡt, ḡt − gt〉 . (18)

Observe that

‖x̄t − x? − ηtḡt‖2 = ‖x̄t − x?‖2 + η2t ‖ḡt‖
2 − 2ηt 〈x̄t − x?, ḡt〉 (19)

= ‖x̄t − x?‖2 + η2t ‖ḡt‖
2 − 2ηt

1

K

K∑
k=1

〈
x̄t − x?,∇f(xkt )

〉
(20)

≤ ‖x̄t − x?‖2 + η2t
1

K

K∑
k=1

∥∥∇f(xkt )
∥∥2

− 2ηt
1

K

K∑
k=1

〈
x̄t − xtk + xtk − x?,∇f(xkt )

〉 (21)

= ‖x̄t − x?‖2 + η2t
1

K

K∑
k=1

∥∥∇f(xkt )−∇f(x?)
∥∥2

− 2ηt
1

K

K∑
k=1

〈
xtk − x?,∇f(xkt )

〉
− 2ηt

1

K

K∑
k=1

〈
x̄t − xtk,∇f(xkt )

〉
,

(22)

where we used the inequality ‖
∑K
i=1 ai‖2 ≤ K

∑K
i=1 ‖ai‖

2 in (21). By L-smoothness,∥∥∇f(xkt )−∇f(x?)
∥∥2 ≤ 2L(f(xkt )− f?) , (23)

and by µ-strong convexity

−
〈
xkt − x?,∇f(xkt )

〉
≤ −(f(xkt )− f?)− µ

2

∥∥xkt − x?
∥∥2 . (24)

To estimate the last term in (22) we use 2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2, for γ > 0. This gives

−2
〈
x̄t − xtk,∇f(xkt )

〉
≤ 2L

∥∥x̄t − xtk
∥∥2 +

1

2L

∥∥∇f(xkt )
∥∥2 (25)

= 2L
∥∥x̄t − xtk

∥∥2 +
1

2L

∥∥∇f(xkt )−∇f(x?)
∥∥2 (26)

≤ 2L
∥∥x̄t − xtk

∥∥2 + (f(xkt )− f?) , (27)

where we have again used (23) in the last inequality. By applying these three estimates to (22) we get

‖x̄t − x? − ηtḡt‖2 ≤ ‖x̄t − x?‖2 + 2ηt
L

K

K∑
k=1

∥∥x̄t − xtk
∥∥2

+ 2ηt
1

K

K∑
k=1

((
ηtL−

1

2

)
(f(xkt )− f?)− µ

2

∥∥xkt − x?
∥∥2) .

(28)

For ηt ≤ 1
4L it holds

(
ηtL− 1

2

)
≤ − 1

4 . By convexity of a (f(x)− f?) + b ‖x− x?‖2 for a, b ≥ 0:

− 1

K

K∑
k=1

(
a(f(xkt )− f?) + b

∥∥xkt − x?
∥∥2) ≤ −(a(f(x̄t)− f?) + b ‖x̄t − x?‖2

)
, (29)

13
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hence we can continue in (28) and obtain

‖x̄t − x? − ηtḡt‖2 ≤ (1− µηt) ‖x̄t − x?‖2 − 1

2
ηt(f(x̄t)− f?) + 2ηt

L

K

K∑
k=1

∥∥x̄t − xkt
∥∥2 . (30)

Finally, we can plug (30) back into (18). By taking expectation we get

E ‖x̄t+1 − x?‖2 ≤ (1− µηt)E ‖x̄t − x?‖2 + η2t E ‖gt − ḡt‖2

− 1

2
ηt E(f(x̄t)− f?) + 2ηt

L

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 .
Proof of Lemma 3.2. By definition of gt and ḡt we have

E ‖gt − ḡt‖2 = E
∥∥∥ 1

K

K∑
k=1

(
∇fikt (xkt )−∇f(xkt )

)∥∥∥2= 1

K2

K∑
k=1

E
∥∥∥∇fikt (xkt )−∇f(xkt )

∥∥∥2 ≤ σ2

K
,

(31)

where we used Var(
∑K
k=1Xk) =

∑K
k=1 Var(Xk) for independent random variables.

Proof of Lemma 3.3. As the gap(IT ) ≤ H , there is an index t0, t− t0 ≤ H such that x̄t0 = xkt0 for
k ∈ [K]. Observe, using E ‖X − EX‖2 = E ‖X‖2 − ‖EX‖2 and ‖

∑H
i=1 ai‖2 ≤ H

∑H
i=1 ‖ai‖

2,

1

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 =
1

K

K∑
k=1

E
∥∥xkt − xt0 − (x̄t − xt0)

∥∥2 (32)

≤ 1

K

K∑
k=1

E
∥∥xkt − xt0

∥∥2 (33)

≤ 1

K

K∑
k=1

Hη2t0

t−1∑
h=t0

E
∥∥∥∇fikh(xkh)

∥∥∥2 (34)

≤ 1

K

K∑
k=1

H2η2t0G
2 , (35)

where we used ηt ≤ ηt0 for t ≥ t0 and the assumption E‖∇fikh(xkh)‖2 ≤ G2. Finally, the claim
follows by the assumption on the stepsizes, ηt0ηt ≤ 2.

B MISSING PROOF FOR ASYNCHRONOUS LOCAL SGD

In this Section we prove Theorem 5.1. The proof follows closely the proof presented in Section 3.
We again introduce the virtual sequence

x̄t = x0 −
1

K

K∑
h=1

t−1∑
j=0

ηj∇fikj (xkj ) , (36)

as before. By the property T ∈ IkT for k ∈ K we know that all workers will have written their
updates when the algorithm terminates. This assumption is not very critical and could be relaxed, but
it facilitates the (already quite heavy) notation in the proof.

Observe, that Lemmas 3.1 and 3.2 hold for the virtual sequence {x̄t}Tt=0. Hence, all we need is a
refined version of Lemma 3.3 that bounds how far the local sequences can deviate from the virtual
average.

14
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Lemma B.1. If gap(IkT ) ≤ H and ∃τ > 0, s.t. Wk,h
t ⊇ [t − τ ] for all k, h ∈ [K], t ∈ [T ], and

sequence of decreasing positive stepsizes {ηt}t≥0 satisfying ηt ≤ 2ηt+H+τ for all t ≥ 0, then

1

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 ≤ 12η2tG
2(H + τ)2 , (37)

where G2 is a constant such that Ei‖∇fi(xkt )‖2 ≤ G2 for k ∈ [K], t ∈ [T ].

Here we use the notation [s] = {} for s < 0, such that [t− τ ] is also defined for t < τ .

Proof. As gap(IkT ) ≤ H there exists for every k ∈ K a tk, t − tk ≤ H , such that xktk = ¯̄xktk . Let
t0 := min{t1, . . . , tK} and observe t0 ≥ t−H . Let t′0 = max{t0 − τ, 0}. AsWk,h

t ⊇ [t− τ ] for
all k, h ∈ [K], t ∈ [T ], it holds

¯̄xktk = x̄t′0 −
1

K

K∑
h=1

tk−1∑
j=t′0

1j∈Wk,h
tk

(ηj∇fikj (xkj )) , (38)

for each k ∈ [K]. In other words, all updates up to iteration t′0 have been written to the aggregated
sequence.

We decompose the error term as∥∥x̄t − xkt
∥∥2 ≤ 3

(∥∥xkt − xktk
∥∥2 +

∥∥xktk − x̄t′0
∥∥2 +

∥∥x̄t′0 − x̄t
∥∥2) . (39)

Now, using ηt ≥ ηt+1, and t− tk ≤ H , we conclude (as in (35))∥∥xkt − xktk
∥∥2 ≤ η2tkH2G2 ≤ η2t′0H

2G2 . (40)

As tk − t′0 ≤ τ , ∥∥xktk − x̄t′0
∥∥2 ≤ η2t′0τ2G2 , (41)

and similarly, as t− t′0 ≤ H + τ ,∥∥x̃t′0 − x̃t
∥∥2 ≤ η2t′0(H + τ)2G2 . (42)

Finally, as
ηt′0
ηt
≤ 2, we can conclude∥∥x̄t − xkt

∥∥2 ≤ 12η2t (H + τ)2G2 . (43)

and the lemma follows.

Now the proof of Theorem 5.1 follows immediately.

Proof of Theorem 5.1. As in the proof of Theorem 2.2 we rely on Lemma 3.4 to derive the conver-
gence rate. Again, we have A = 1

2 , B = σ2

K , and C = LG2(H + τ)2 (Lemma B.1). It is easy to see

that the stepsizes satisfy the condition of Lemma B.1, as clearly
ηt′0
ηt
≤

ηt′0
ηt′0+H+τ

= a+t+H+τ
a+t ≤ 2, as

a ≥ H + τ .

C COMMENTS ON IMPLEMENTATION ISSUES

C.1 SYNCHRONOUS LOCAL SGD

In Theorem 5 we do not prove convergence of the sequences {xkt }t≥0 of the iterates, but only
convergence of a weighted average of all iterates. In practice, the last iterate might often be sufficient,
but we like to remark that the weighted average of the iterates can easily be tracked on the fly with an
auxiliary sequence {yt}t>0, y0 = x0, without storing all intermediate iterates, see Table 1 for some
examples.

15
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criteria weights formula recursive update
last iterate - yt = xt yt = xt
uniform average wt = 1 yt = 1

t+1

∑t
i=0 xi yt = 1

t+1xt + t
t+1yt−1

linear weights wt = (t+ 1) yt = 2
(1+t)(2+t)

∑t
i=0(i+ 1)xi yt = 2

2+txt + t
t+2yt−1

quadratic weights wt = (t+ 1)2 yt = 6
(t+1)(t+2)(2t+3)

∑t
i=0(i+ 1)2xi yt = 6(t+1)

(t+2)(2t+3)xt + t(1+2t)
6+7t+2t2yt−1

Table 1: Formulas to recursively track weighted averages.

C.2 ASYNCHRONOUS LOCAL SGD

As for synchronous local SGD, the weighted averages of the iterates (if needed), can be tracked on
each worker locally by a recursive formula as explained above.

A more important aspect that we do not have discussed yet, is that Algorithm 2 allows for an easy
procedure to balance the load in heterogeneous settings. In our notation, we have always associated
the local sequences {xkt } with a specific worker k. However, the computation of the sequences does
not need to be tied to a specific worker. Thus, a fast worker k that has advanced his local sequence
too much already, can start computing updates for another sequence k′ 6= k, if worker k′ is lagged
behind. This was not possible in the synchronous model, as there all communications had to happen
in sync. We demonstrate this principle in Table 2 below for two workers. Note that also the running
averages can still be maintained.

wall clock time → → → → → →
worker 1 x1

H ← U(¯̄x) x1
2H ← U(¯̄x) x1

3H ← U(¯̄x) x2
2H ← U(¯̄x) x2

4H ← U(¯̄x) x1
4H ← U(¯̄x) · · ·

worker 2 x2
H ← U(¯̄x) x2

3H ← U(¯̄x) · · ·

Table 2: Simple load balancing. The faster worker can advance both sequences, even when the slower
worker has not yet finished the computation. In the example each worker does H steps of local SGD
(denoted by the operator U : Rd → Rd) before writing back the updates to the aggregate ¯̄x. Due to
the load balancing, τ ≤ 3H .

D DETAILS ON EXPERIMENTS

We here state the precise procedure that was used to generate the figures in this report. As briefly
stated in Section 4 we examine empirically the speedup on a logistic regression problem, f(x) =
1
n

∑n
i=1 log(1 + exp(−bia>i x)) + λ

2 ‖x‖
2, where ai ∈ Rd and bi ∈ {−1,+1} are the data samples.

The regularization parameter is set to λ = 1/n. We consider the small scale w8a dataset (Platt, 1999)
(d = 300, n = 49749).

For each run, we initialize x0 = 0d and measure the number of iterations6 (and number of stochastic
gradient evaluations) to reach the target accuracy ε ∈ {0.005, 0.0001}. As we prove convergence
only for a special weighted sum of the iterates in Theorem 2.2 and not for standard criteria (last
iterate or uniform average), we evaluate the function value for different weighted averages yt =

1∑t
i=0 wi

∑t
i=0 wixt, and consider the accuracy reached when one of the averages satisfies f(yt)−

f? ≤ ε, with f? := 0.126433176216545 (numerically determined). The precise formulas for the
averages that we used are given in Table 1.

For each configuration (K,H, b, ε), we report the best result found with any of the following two
stepsizes: ηt := min(32, cnt+1 ) and ηt = 32c. Here c is a parameter that can take the values c = 2i for
i ∈ Z. For each stepsize we determine the best parameter c by a grid search, and consider parameter
c optimal, if parameters {2−2c, 2−1c, 2c, 22c} yield worse results (i.e. more iterations to reach the
target accuracy).

6Note, that besides the randomness involved the stochastic gradient computations, the averaging steps of
synchronous local SGD are deterministic. Hence, these results (convergence in terms if numbers of iterations)
can be reproduced by just simulating local SGD by using virtual workers (which we did for large number of
K). For completeness, we report that all experiments were run on an an Ubuntu 16.04 machine with a 24 cores
processor Intel R© Xeon R© CPU E5-2680 v3 @ 2.50GHz.
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In Figures 4 and 5 we give additional results for mini-batch sizes b ∈ {1, 16}.
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(a) Measured speedup, ε = 0.005.
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(b) Measured speedup, ε = 0.0001.

Figure 4: Measured speedup of local SGD with mini-batch b = 1 for different numbers of workers K
and parameters H .
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(a) Measured speedup, ε = 0.005.
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(b) Measured speedup, ε = 0.0001.

Figure 5: Measured speedup of local SGD with mini-batch b = 16 for different numbers of workers
K and parameters H .
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