
Published as a conference paper at ICLR 2019

LOCAL SGD CONVERGES FAST
AND COMMUNICATES LITTLE

Sebastian U. Stich
EPFL, Switzerland
sebastian.stich@epfl.ch

ABSTRACT

Mini-batch stochastic gradient descent (SGD) is state of the art in large scale
distributed training. The scheme can reach a linear speedup with respect to the
number of workers, but this is rarely seen in practice as the scheme often suffers
from large network delays and bandwidth limits. To overcome this communication
bottleneck recent works propose to reduce the communication frequency. An
algorithm of this type is local SGD that runs SGD independently in parallel on
different workers and averages the sequences only once in a while. This scheme
shows promising results in practice, but eluded thorough theoretical analysis.
We prove concise convergence rates for local SGD on convex problems and show
that it converges at the same rate as mini-batch SGD in terms of number of evaluated
gradients, that is, the scheme achieves linear speedup in the number of workers
and mini-batch size. The number of communication rounds can be reduced up
to a factor of T 1/2—where T denotes the number of total steps—compared to
mini-batch SGD. This also holds for asynchronous implementations.
Local SGD can also be used for large scale training of deep learning models. The
results shown here aim serving as a guideline to further explore the theoretical and
practical aspects of local SGD in these applications.

1 INTRODUCTION

Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951) consists of iterations of the form

xt+1 := xt − ηtgt , (1)

for iterates (weights) xt,xt+1 ∈ Rd, stepsize (learning rate) ηt > 0, and stochastic gradient gt ∈ Rd
with the property Egt = ∇f(xt), for a loss function f : Rd → R. This scheme can easily be
parallelized by replacing gt in (1) by an average of stochastic gradients that are independently
computed in parallel on separate workers (parallel SGD). This simple scheme has a major drawback:
in each iteration the results of the computations on the workers have to be shared with the other
workers to compute the next iterate xt+1. Communication has been reported to be a major bottleneck
for many large scale deep learning applications, see e.g. (Seide et al., 2014; Alistarh et al., 2017;
Zhang et al., 2017; Lin et al., 2018b). Mini-batch parallel SGD addresses this issue by increasing
the compute to communication ratio. Each worker computes a mini-batch of size b ≥ 1 before
communication. This scheme is implemented in state-of-the-art distributed deep learning frameworks
(Abadi et al., 2016; Paszke et al., 2017; Seide & Agarwal, 2016). Recent work in (You et al., 2017;
Goyal et al., 2017) explores various limitations of this approach, as in general it is reported that
performance degrades for too large mini-batch sizes (Keskar et al., 2016; Ma et al., 2018; Yin et al.,
2018).

In this work we follow an orthogonal approach, still with the goal to increase the compute to
communication ratio: Instead of increasing the mini-batch size, we reduce the communication
frequency. Rather than keeping the sequences on different machines in sync, we allow them to evolve
locally on each machine, independent from each other, and only average the sequences once in a
while (local SGD). Such strategies have been explored widely in the literature, under various names.

An extreme instance of this concept is one-shot SGD (McDonald et al., 2009; Zinkevich et al., 2010)
where the local sequences are only exchanged once, after the local runs have converged. Zhang

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211998087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Published as a conference paper at ICLR 2019

1 4 16 64 256

1

4

16

64

256

communication overhead

b=1, H=1
perfect speedup

1 4 16 64 256

1

4

16

64

256

communication overhead gain

b=1, H=1
b=2, H=1
b=1, H=2
b=2, H=2

Figure 1: Illustration of the speedup (3) for time-to-accuracy when either increasing mini-batch size
b (1→ 2) or communication inverval H (1→ 2), for compute to communication ratio ρ = 25.

et al. (2013) show statistical convergence (see also (Shamir & Srebro, 2014; Godichon-Baggioni &
Saadane, 2017; Jain et al., 2018)), but the analysis restricts the algorithm to at most one pass over the
data, which is in general not enough for the training error to converge. More practical are schemes
that perform more frequent averaging of the parallel sequences, as e.g. (McDonald et al., 2010) for
perceptron training (iterative parameter mixing), see also (Coppola, 2015), (Zhang et al., 2014; Bijral
et al., 2016; Zhang et al., 2016) for the training of deep neural networks (model averaging) or in
federated learning (McMahan et al., 2017).

The question of how often communication rounds need to be initiated has eluded a concise theoretical
answer so far. Whilst there is practical evidence, the theory does not even resolve the question
whether averaging helps when optimizing convex functions. Concretely, whether running local SGD
on K workers is K times faster than running just a single instance of SGD on one worker.1

We fill this gap in the literature and provide a concise convergence analysis of local SGD. We show
that averaging helps. Frequent synchronization of K local sequences increases the convergence rate
by a factor of K, i.e. a linear speedup can be attained. Thus, local SGD is as efficient as parallel
mini-batch SGD in terms of computation, but the communication cost can be drastically reduced.

1.1 CONTRIBUTIONS

We consider finite-sum convex optimization problems f : Rd → R of the form

f(x) =
1

n

n∑
i=1

fi(x) , x∗ := arg minx∈Rd f(x) , f? := f(x?) , (2)

where f is L-smooth2 and µ-strongly convex3. We consider K parallel mini-batch SGD sequences
with mini-batch size b that are synchronized (by averaging) after at most every H iterations. For
appropriate chosen stepsizes and an averaged iterate x̂T after T steps (for T sufficiently large, see
Section 3 below for the precise statement of the convergence result with bias and variance terms) and
synchronization delay H = O(

√
T/(Kb)) we show convergence

E f(x̂T )− f? = O

(
G2

µbKT

)
, (3)

with second moment bound G2 ≥ E ‖∇fi(x)‖2. Thus, we see that compared to parallel mini-
batch SGD the communication rounds can be reduced by a factor H = O(

√
T/(Kb)) without

hampering the asymptotic convergence. Equation (3) shows perfect linear speedup in terms of
computation, but with much less communication that mini-batch SGD. The resulting speedup when
taking communication cost into account is illustrated in Figure 1 (see also Section D below). Under the
assumption that (3) is tight, one has thus now two strategies to improve the compute to communication
ratio (denoted by ρ): (i) either to increase the mini-batch size b or (ii) to increase the communication
interval H . Both strategies give the same improvement when b and H are small (linear speedup).
Like mini-batch SGD that faces some limitations for b� 1 (as discussed in e.g. (Dekel et al., 2012;
Ma et al., 2018; Yin et al., 2018)), the parameter H cannot be chosen too large in local SGD. We give
some pratical guidelines in Section 4.

Our proof is simple and straightforward, and we imagine that—with slight modifications of the
proof—the technique can also be used to analyze other variants of SGD that evolve sequences on

1On convex functions, the average of the K local solutions can of course only decrease the objective value,
but convexity does not imply that the averaged point is K times better.

2f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L
2
‖y − x‖2, ∀x,y ∈ Rd.

3f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µ
2
‖y − x‖2, ∀x,y ∈ Rd.

2



Published as a conference paper at ICLR 2019

different worker that are not perfectly synchronized. Although we do not yet provide convergence
guarantees for the non-convex setting, we feel that the positive results presented here will spark
further investigation of local SGD for this important application (see e.g. (Yu et al., 2018)).

1.2 RELATED WORK

A parallel line of work reduces the communication cost by compressing the stochastic gradients before
communication. For instance, by limiting the number of bits in the floating point representation (Gupta
et al., 2015; Na et al., 2017; Sa et al., 2015), or random quantization (Alistarh et al., 2017; Wen
et al., 2017). The ZipML framework applies this technique also to the data (Zhang et al., 2017).
Sparsification methods reduce the number of non-zero entries in the stochastic gradient (Alistarh
et al., 2017; Wangni et al., 2017). A very aggressive—and promising—sparsification method is to
keep only very few coordinates of the stochastic gradient by considering only the coordinates with
the largest magnitudes (Seide et al., 2014; Strom, 2015; Dryden et al., 2016; Aji & Heafield, 2017;
Sun et al., 2017; Lin et al., 2018b; Stich et al., 2018).

Allowing asynchronous updates provides an alternative solution to disguise the communication
overhead to a certain amount (Niu et al., 2011; Sa et al., 2015; Lian et al., 2015), though alter-
native strategies might be better when high accuracy is desired (Chen et al., 2016). The analysis
of Agarwal & Duchi (2011) shows that asynchronous SGD on convex functions can tolerated delays
up to O(

√
T/K), which is identical to the maximal length of the local sequences in local SGD.

Asynchronous SGD converges also for larger delays (see also (Zhou et al., 2018)) but without linear
speedup, a similar statement holds for local SGD (see discussion in Section 3). The current frame-
works for the analysis of asynchronous SGD do not cover local SGD. A fundamental difference is
that asynchronous SGD maintains a (almost) synchronized sequence and gradients are computed
with respect this unique sequence (but just applied with delays), whereas each worker in local SGD
evolves a different sequence and computes gradient with respect those iterates.

For the training of deep neural networks, Bijral et al. (2016) discuss a stochastic averaging schedule
whereas Zhang et al. (2016) study local SGD with more frequent communication at the beginning of
the optimization process. The elastic averaging technique (Zhang et al., 2015) is different to local
SGD, as it uses the average of the iterates only to guide the local sequences but does not perform a
hard reset after averaging. Among the first theoretical studies of local SGD in the non-convex setting
are (Coppola, 2015; Zhou & Cong, 2018) that did not establish a speedup, in contrast to two more
recent analyses (Yu et al., 2018; Wang & Joshi, 2018). Yu et al. (2018) show linear speedup of local
SGD on non-convex functions for H = O(T 1/4K−3/4), which is more restrictive than the constraint
on H in the convex setting. Lin et al. (2018a) study empirically hierarchical variants of local SGD.

Local SGD with averaging in every step, i.e. H = 1, is identical to mini-batch SGD. Dekel et al.
(2012) show that batch sizes b = T δ , for δ ∈ (0, 12 ) are asymptotically optimal for mini-batch SGD,
however they also note that this asymptotic bound might be crude for practical purposes. Similar
considerations might also apply to the asymptotic upper bounds on the communication frequency H
derived here. Local SGD with averaging only at the end, i.e. H = T , is identical to one-shot SGD.
Jain et al. (2018) give concise speedup results in terms of bias and variance for one-shot SGD with
constant stepsizes for the optimization of quadratic least squares problems. In contrast, our upper
bounds become loose when H → T and our results do not cover one-shot SGD.

Recently, Woodworth et al. (2018) provided a lower bound for parallel stochastic optimization (in the
convex setting, and not for strongly convex functions as considered here). The bound is not known to
be tight for local SGD.

1.3 OUTLINE

We formally introduce local SGD in Section 2 and sketch the convergence proof in Section 3. In
Section 4 show numerical results to illustrate the result. We analyze asynchronous local SGD in
Section 5. The proof of the technical results, further discussion about the experimental setup and
implementation guidelines are deferred to the appendix.

3



Published as a conference paper at ICLR 2019

Algorithm 1 LOCAL SGD

1: Initialize variables xk0 = x0 for workers k ∈ [K]
2: for t in 0 . . . T − 1 do
3: parallel for k ∈ [K] do
4: Sample ikt uniformly in [n]
5: if t+ 1 ∈ IT then
6: xkt+1 ← 1

K

∑K
k=1

(
xkt − ηt∇fikt (xkt )

)
. global synchronization

7: else
8: xkt+1 ← xkt − ηt∇fikt (xkt ) . local update
9: end if

10: end parallel for
11: end for

2 LOCAL SGD

The algorithm local SGD (depicted in Algorithm 1) generates in parallel K sequences {xkt }Tt=0 of
iterates, k ∈ [K]. Here K denotes the level of parallelization, i.e. the number of distinct parallel
sequences and T the number of steps (i.e. the total number of stochastic gradient evaluations is TK).
Let IT ⊆ [T ] with T ∈ IT denote a set of synchronization indices. Then local SGD evolves the
sequences {xkt }Tt=0 in the following way:

xkt+1 :=

{
xkt − ηt∇fikt (xkt ) , if t+ 1 /∈ IT
1
K

∑K
k=1

(
xkt − ηt∇fikt (xkt )

)
if t+ 1 ∈ IT

(4)

where indices ikt ∼u.a.r. [n] and {ηt}t≥0 denotes a sequence of stepsizes. If IT = [T ] then the
synchronization of the sequences is performed every iteration. In this case, (4) amounts to parallel or
mini-batch SGD with mini-batch size K.4 On the other extreme, if IT = {T}, the synchronization
only happens at the end, which is known as one-shot averaging.

In order to measure the longest interval between subsequent synchronization steps, we introduce the
gap of a set of integers.
Definition 2.1 (gap). The gap of a set P := {p0, . . . , pt} of t + 1 integers, pi ≤ pi+1 for i =
0, . . . , t− 1, is defined as gap(P) := maxi=1,...,t(pi − pi−1).

2.1 VARIANCE REDUCTION IN LOCAL SGD

Before jumping to the convergence result, we first discuss an important observation.

Parallel (mini-batch) SGD. For carefully chosen stepsizes ηt, SGD converges at rate O
(
σ2

T

)
5 on

strongly convex and smooth functions f , where σ2 ≥ E‖∇fikt (xkt )−∇f(xkt )‖2 for t > 0, k ∈ [K]
is an upper bound on the variance, see for instance (Zhao & Zhang, 2015). By averaging K stochastic
gradients—such as in parallel SGD—the variance decreases by a factor of K, and we conclude that
parallel SGD converges at a rate O

(
σ2

TK

)
, i.e. achieves a linear speedup.

Towards local SGD. For local SGD such a simple argument is elusive. For instance, just capitaliz-
ing the convexity of the objective function f is not enough: this will show that the averaged iterate of
K independent SGD sequences converges at rate O

(
σ2

T

)
, i.e. no speedup can be shown in this way.

This indicates that one has to show that local SGD decreases the variance σ2 instead, similar as in
parallel SGD. Suppose the different sequences xkt evolve close to each other. Then it is reasonable to
assume that averaging the stochastic gradients ∇fikt (xkt ) for all k ∈ [K] can still yield a reduction
in the variance by a factor of K—similar as in parallel SGD. Indeed, we will make this statement
precise in the proof below.

4For the ease of presentation, we assume here that each worker in local SGD only processes a mini-batch of
size b = 1. This can be done without loss of generality, as we discuss later in Remark 2.4.

5For the ease of presentation, we here assume that the bias term is negligible compared to the variance term.

4



Published as a conference paper at ICLR 2019

2.2 CONVERGENCE RESULT AND DISCUSSION

Theorem 2.2. Let f be L-smooth and µ-strongly convex, Ei
∥∥∇fi(xkt )−∇f(xkt )

∥∥2 ≤ σ2,

Ei
∥∥∇fi(xkt )

∥∥2 ≤ G2, for t = 0, . . . , T − 1, where {xkt }Tt=0 for k ∈ [K] are generated according
to (4) with gap(IT ) ≤ H and for stepsizes ηt = 4

µ(a+t) with shift parameter a > max{16κ,H}, for
κ = L

µ . Then

E f(x̂T )− f? ≤ µa3

2ST
‖x0 − x?‖2 +

4T (T + 2a)

µKST
σ2 +

256T

µ2ST
G2H2L , (5)

where x̂T = 1
KST

∑K
k=1

∑T−1
t=0 wtx

k
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3.

We were not especially careful to optimize the constants (and the lower order terms) in (5), so we
now state the asymptotic result.
Corollary 2.3. Let x̂T be as defined as in Theorem 2.2, for parameter a = max{16κ,H}. Then

E f(x̂T )− f? = O

(
1

µKT
+
κ+H

µKT 2

)
σ2 +O

(
κH2

µT 2
+
κ3 +H3

µT 3

)
G2 . (6)

For the last estimate we used Eµ ‖x0 − x?‖ ≤ 2G for µ-strongly convex f , as derived in (Rakhlin
et al., 2012, Lemma 2).
Remark 2.4 (Mini-batch local SGD). So far, we assumed that each worker only computes a single
stochastic gradient. In mini-batch local SGD, each worker computes a mini-batch of size b in each
iteration. This reduces the variance by a factor of b, and thus Theorem (2.2) gives the convergence
rate of mini-batch local SGD when σ2 is replaced by σ2

b .

We now state some consequences of equation (6). For the ease of the exposition we omit the
dependency on L, µ, σ2 and G2 below, but depict the dependency on the local mini-batch size b.

Convergence rate. For T large enough and assuming σ > 0, the very first term is dominating in (6)
and local SGD converges at rate O(1/(KTb)). That is, local SGD achieves a linear speedup in
both, the number of workers K and the mini-batch size b.

Global synchronization steps. It needs to hold H = O(
√
T/(Kb)) to get the linear speedup. This

yields a reduction of the number of communication rounds by a factor O(
√
T/(Kb)) compared

to parallel mini-batch SGD without hurting the convergence rate.
Extreme Cases. We have not optimized the result for extreme settings of H , K, L or σ. For

instance, we do not recover convergence for the one-shot averaging, i.e. the setting H = T
(though convergence for H = o(T ), but at a lower rate).

Unknown Time Horizon/Adaptive Communication Frequency Zhang et al. (2016) empirically
observe that more frequent communication at the beginning of the optimization can help to get
faster time-to-accuracy (see also Lin et al. (2018a)). Indeed, when the number of total iterations
T is not known beforehand (as it e.g. depends on the target accuracy, cf. (6) and also Section 4
below), then increasing the communication frequency seems to be a good strategy to keep the
communication low, why still respecting the constraint H = O(

√
T/(Kb)) for all T .

3 PROOF OUTLINE

We now give the outline of the proof. The proofs of the lemmas are given in Appendix A.

Perturbed iterate analysis. Inspired by the perturbed iterate framework of (Mania et al., 2017) we
first define a virtual sequence {x̄t}t≥0 in the following way:

x̄0 = x0 , x̄t =
1

K

K∑
k=1

xkt , (7)

where the sequences {xkt }t≥0 for k ∈ [K] are the same as in (4). Notice that this sequence never has
to be computed explicitly, it is just a tool that we use in the analysis. Further notice that x̄t = xkt for

5



Published as a conference paper at ICLR 2019

k ∈ [K] whenever t ∈ IT . Especially, when IT = [T ], then x̄t ≡ xkt for every k ∈ [K], t ∈ [T ]. It
will be useful to define

gt :=
1

K

K∑
k=1

∇fikt (xkt ) , ḡt :=
1

K

K∑
k=1

∇f(xkt ) . (8)

Observe x̄t+1 = x̄t − ηtgt and Egt = ḡt.

Now the proof proceeds as follows: we show (i) that the virtual sequence {x̄t}t≥0 almost behaves
like mini-batch SGD with batch size K (Lemma 3.1 and 3.2), and (ii) the true iterates {xkt }t≥0,k∈[K]

do not deviate much from the virtual sequence (Lemma 3.3). These are the main ingredients in the
proof. To obtain the rate we exploit a technical lemma from (Stich et al., 2018).
Lemma 3.1. Let {xt}t≥0 and {x̄t}t≥0 for k ∈ [K] be defined as in (4) and (7) and let f be L-smooth
and µ-strongly convex and ηt ≤ 1

4L . Then

E ‖x̄t+1 − x?‖2 ≤ (1− µηt)E ‖x̄t − x?‖2 + η2t E ‖gt − ḡt‖2

− 1

2
ηt E(f(x̄t)− f?) + 2ηt

L

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 . (9)

Bounding the variance. From equation (9) it becomes clear that we should derive an upper bound
on E ‖gt − ḡt‖2. We will relate this to the variance σ2.

Lemma 3.2. Let σ2 ≥ Ei‖∇fi(xkt )−∇f(xkt )‖2 for k ∈ [K], t ∈ [T ]. Then E ‖gt − ḡt‖2 ≤ σ2

K .

Bounding the deviation. Further, we need to bound 1
K

∑K
k=1 E

∥∥x̄t − xkt
∥∥2. For this we impose

a condition on IT and an additional condition on the stepsize ηt.
Lemma 3.3. If gap(IT ) ≤ H and sequence of decreasing positive stepsizes {ηt}t≥0 satisfying
ηt ≤ 2ηt+H for all t ≥ 0, then

1

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 ≤ 4η2tG
2H2 , (10)

where G2 is a constant such that Ei‖∇fi(xkt )‖2 ≤ G2 for k ∈ [K], t ∈ [T ].

Optimal Averaging. Similar as in (Lacoste-Julien et al., 2012; Shamir & Zhang, 2013; Rakhlin
et al., 2012) we define a suitable averaging scheme for the iterates {x̄t}t≥0 to get the optimal
convergence rate. In contrast to (Lacoste-Julien et al., 2012) that use linearly increasing weights, we
use quadratically increasing weights, as for instance (Shamir & Zhang, 2013; Stich et al., 2018).
Lemma 3.4 ((Stich et al., 2018)). Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0 be sequences satisfying

at+1 ≤ (1− µηt) at − ηtetA+ η2tB + η3tC , (11)

for ηt = 4
µ(a+t) and constants A > 0, B,C ≥ 0, µ > 0, a > 1. Then

A

ST

T−1∑
t=0

wtet ≤
µa3

4ST
a0 +

2T (T + 2a)

µST
B +

16T

µ2ST
C , (12)

for wt = (a+ t)2 and ST :=
∑T−1
t=0 wt = T

6

(
2T 2 + 6aT − 3T + 6a2 − 6a+ 1

)
≥ 1

3T
3.

Proof. This is a reformulation of Lemma 3.3 in (Stich et al., 2018).

Proof of Theorem 2.2. By convexity of f we have E f(x̂T )− f? ≤ 1
ST

∑T−1
t=0 wt E

(
f(x̄t)− f?

)
.

The proof of the theorem thus follows immediately from the four lemmas that we have presented, i.e.
by Lemma 3.4 with et := E(f(x̄t)− f?) and constants A = 1

2 , (Lemma 3.1), B = σ2

K , (Lemma 3.2)
and C = 8G2H2L, (Lemma 3.3). Observe that the stepsizes ηt = 4

µ(a+t) satisfy both the conditions
of Lemma 3.1 (η0 = 4

µa ≤
1
4L , as a ≥ 16κ) and of Lemma 3.3

(
ηt

ηt+H
= a+t+H

a+t ≤ 2, as a ≥ H
)
. �

6



Published as a conference paper at ICLR 2019

1 2 4 8 16 32 64 128 256 512 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(a) Theoretical speedup S(K) (ε > 0, T small).

1 2 4 8 16 32 64 128 256 512 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(b) Theoretical speedup S(K) (ε = 0, T →∞).

Figure 2: Theoretical speedup of local SGD for different numbers of workers K and H .

1 4 16 64 256 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(a) Measured speedup, ε = 0.005.

1 4 16 64 256 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(b) Measured speedup, ε = 0.0001.

Figure 3: Measured speedup of local SGD with mini-batch b = 4 for different numbers of workers K
and parameters H .

4 NUMERICAL ILLUSTRATION

In this section we show some numerical experiments to illustrate the results of Theorem 2.2.

Speedup. When Algorithm 1 is implemented in a distributed setting, there are two components
that determine the wall-clock time: (i) the total number of gradient computations, TK, and (ii) the
total time spend for communication. In each communication round 2(K − 1) vectors need to be
exchanged, and there will be T/H communication rounds. Typically, the communication is more
expensive than a single gradient computation. We will denote this ratio by a factor ρ ≥ 1 (in practice,
ρ can be 10–100, or even larger on slow networks). The parameter T depends on the desired accuracy
ε > 0, and according to (6) we roughly have T (ε,H,K) ≈ 1

Kε

(
1
2 + 1

2

√
1 + ε(1 +H +H2K)

)
.

Thus, the theoretical speedup S(K) of local SGD on K machines compared to SGD on one machine
(H = 1, K = 1) is

S(K) =
K(

1
2 + 1

2

√
1 + ε(1 +H +H2K)

)(
1 + 2ρ (K−1)

H

) . (13)

Theoretical. Examining (13), we see that (i) increasing H can reduce negative scaling effects due
to parallelization (second bracket in the denominator of (13)), and (ii) local SGD only shows linear
scaling for ε� 1 (i.e. T large enough, in agreement with the theory). In Figure 2 we depict S(K),
once for ε = 0 in Figure 2b, and for positive ε > 0 in Figure 2a under the assumption ρ = 25. We see
that for ε = 0 the largest values of H give the best speedup, however, when only a few epochs need
to be performed, then the optimal values of H change with the number of workers K. We also see
that for a small number of workers H = 1 is never optimal. If T is unknown, then these observations
seem to indicate that the technique from (Zhang et al., 2016), i.e. adaptively increasing H over time
seems to be a good strategy to get the best choice of H when the time horizon is unknown.

Experimental. We examine the practical speedup on a logistic regression problem, f(x) =
1
n

∑n
i=1 log(1 + exp(−bia>i x)) + λ

2 ‖x‖
2, where ai ∈ Rd and bi ∈ {−1,+1} are the data sam-

ples. The regularization parameter is set to λ = 1/n. We consider the w8a dataset (Platt, 1999)
(d = 300, n = 49749). We initialize all runs with x0 = 0d and measure the number of iterations
to reach the target accuracy ε. We consider the target accuracy reached, when either the last iterate,
the uniform average, the average with linear weights, or the average with quadratic weights (such
as in Theorem 2.2) reaches the target accuracy. By extensive grid search we determine for each
configuration (H,K,B) the best stepsize from the set {min(32, cnt+1 ), 32c}, where c can take the
values c = 2i for i ∈ Z. For more details on the experimental setup refer Section D in the appendix.
We depict the results in Figure 3, again under the assumption ρ = 25.

7



Published as a conference paper at ICLR 2019

Algorithm 2 ASYNCHRONOUS LOCAL SGD (SCHEMATIC)
1: Initialize variables xk0 = x0, rk = 0 for k ∈ [K], aggregate ¯̄x = x0.
2: parallel for k ∈ [K] do
3: for t in 0 . . . T − 1 do
4: Sample ikt uniformly in [n]
5: xkt+1 ← xkt − ηt∇fikt (xkt ) . local update
6: if t+ 1 ∈ IkT then
7: ¯̄x← add(¯̄x, 1

K (xkt+1 − xkrk)) . atomic aggregation of the updates
8: xkt+1 ← read(¯̄x);
9: rk ← t+ 1 . iteration/time of last read

10: end if
11: end for
12: end parallel for

Conclusion. The restriction on H imposed by theory is not severe for T →∞. Thus, for training
that either requires many passes over the data or that is performed only on a small cluster, large values
of H are advisable. However, for smaller T (few passes over the data), the O(1/

√
K) dependency

shows significantly in the experiment. This has to be taken into account when deploying the algorithm
on a massively parallel system, for instance through the technique mentioned in (Zhang et al., 2016).

5 ASYNCHRONOUS LOCAL SGD

In this section we present asynchronous local SGD that does not require that the local sequences are
synchronized. This does not only reduce communication bottlenecks, but by using load-balancing
techniques the algorithm can optimally be tuned to heterogeneous settings (slower workers do less
computation between synchronization, and faster workers do more). We will discuss this in more
detail in Section C.

Asynchronous local SGD generates in parallel K sequences {xkt }Tt=0 of iterates, k ∈ [K]. Similar as
in Section 2 we introduce sets of synchronization indices, Ikt ⊆ [T ] with T ∈ IkT for k ∈ [K]. Note
that the sets do not have to be equal for different workers. Each worker k evolves locally a sequence
xkt in the following way:

xkt+1 =

{
xkt − γt∇fikt (xkt ) if t+ 1 /∈ IkT
¯̄xkt+1 if t+ 1 ∈ IkT

(14)

where ¯̄xkt+1 denotes the state of the aggregated variable at the time when worker k reads the aggregated
variable. To be precise, we use the notation

¯̄xkt = x0 −
1

K

K∑
h=1

t−1∑
j=0

1j∈Wk,h
t

(γj∇fikj (xkj )) , (15)

whereWk,h
t ⊆ [T ] denotes all updates that have been written at the time the read takes place. The

sets Wk,h
t are indexed by iteration t, worker k that initiates the read and h ∈ [K]. Thus Wk,h

t
denotes all updates of the local sequence {xht }t≥0, that have been reported back to the server at
the time worker k reads (in iteration t). This notation is necessary, as we don’t necessarily have
Wk,h
t =Wk′,h

t for k 6= k′. We haveWk,h
t ⊆ Wk,h

t′ for t′ ≥ t, as updates are not overwritten. When
we cast synchronized local SGD in this notation, then it holdsWk,h

t =Wk′,h′

t for all k, h, k′, h′, as
all the writes and reads are synchronized.
Theorem 5.1. Let f , σ, G and κ be as in Theorem 5.1 and sequences {xkt }Tt=0 for k ∈ [K] generated
according to (14) with gap(IkT ) ≤ H for k ∈ K and for stepsizes ηt = 4

µ(a+t) with shift parameter

a > max{16κ,H + τ} for delay τ > 0. IfWk,h
t ⊇ [t− τ ] for all k, h ∈ [K], t ∈ [T ], then

E f(x̂T )− f? ≤ µa3

2ST
‖x0 − x?‖2 +

4T (T + 2a)

µKST
σ2 +

768T

µ2ST
G2(H + σ)2L , (16)

where x̂T = 1
KST

∑K
k=1

∑T−1
t=0 wtx

k
t , for wt = (a+ t)2 and ST =

∑T−1
t=0 wt ≥ 1

3T
3.

8



Published as a conference paper at ICLR 2019

Hence, for T large enough and (H + τ) = O(
√
T/K), asynchronous local SGD converges with rate

O
(
G2

KT

)
, the same rate as synchronous local SGD.

6 CONCLUSION

We prove convergence of synchronous and asynchronous local SGD and are the first to show that local
SGD (for nontrivial values of H) attains theoretically linear speedup on strongly convex functions
when parallelized among K workers. We show that local SGD saves up to a factor of O(T 1/2) in
global communication rounds compared to mini-batch SGD, while still converging at the same rate
in terms of total stochastic gradient computations.

Deriving more concise convergence rates for local SGD could be an interesting future direction that
could deepen our understanding of the scheme. For instance one could aim for a more fine grained
analysis in terms of bias and variance terms (similar as e.g. in Dekel et al. (2012); Jain et al. (2018)),
relaxing the assumptions (here we relied on the bounded gradient assumption), or investigating the
data dependence (e.g. by considering data-depentent measures like e.g. gradient diversity Yin et al.
(2018)). There are also no apparent reasons that would limit the extension of the theory to non-convex
objective functions; Lemma 3.3 does neither use the smoothness nor the strong convexity assumption,
so this can be applied in the non-convex setting as well. We feel that the positive results shown here
can motivate and spark further research on non-convex problems. Indeed, very recent work (Zhou &
Cong, 2018; Yu et al., 2018) analyzes local SGD for non-convex optimization problems and shows
convergence of SGD to a stationary point, though the restrictions on H are stronger than here.

ACKNOWLEDGMENTS

The author thanks Jean-Baptiste Cordonnier, Tao Lin and Kumar Kshitij Patel for spotting various
typos in the first versions of this manuscript, as well as Martin Jaggi for his support.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural Information Processing
Systems 24, pp. 873–881. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4247-distributed-delayed-stochastic-optimization.pdf.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 440–445. Association for
Computational Linguistics, 2017. URL http://aclweb.org/anthology/D17-1045.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient
SGD via gradient quantization and encoding. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
1709–1720. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/6768-qsgd-
communication-efficient-sgd-via-gradient-quantization-and-encoding.pdf.

Avleen S Bijral, Anand D Sarwate, and Nathan Srebro. On data dependence in distributed stochastic optimization.
arXiv.org, 2016.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. Revisiting distributed synchronous SGD.
CoRR, abs/1604.00981, 2016. URL http://arxiv.org/abs/1604.00981.

Greg Coppola. Iterative parameter mixing for distributed large-margin training of structured predictors for
natural language processing. PhD thesis, The University of Edinburgh, 2015.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches. J. Mach. Learn. Res., 13(1):165–202, January 2012. ISSN 1532-4435. URL http://
dl.acm.org/citation.cfm?id=2503308.2188391.

9

http://papers.nips.cc/paper/4247-distributed-delayed-stochastic-optimization.pdf
http://papers.nips.cc/paper/4247-distributed-delayed-stochastic-optimization.pdf
http://aclweb.org/anthology/D17-1045
http://papers.nips.cc/paper/6768-qsgd-communication-efficient-sgd-via-gradient-quantization-and-encoding.pdf
http://papers.nips.cc/paper/6768-qsgd-communication-efficient-sgd-via-gradient-quantization-and-encoding.pdf
http://arxiv.org/abs/1604.00981
http://dl.acm.org/citation.cfm?id=2503308.2188391
http://dl.acm.org/citation.cfm?id=2503308.2188391


Published as a conference paper at ICLR 2019

N. Dryden, T. Moon, S. A. Jacobs, and B. V. Essen. Communication quantization for data-parallel training of
deep neural networks. In 2016 2nd Workshop on Machine Learning in HPC Environments (MLHPC), pp.
1–8, Nov 2016. doi: 10.1109/MLHPC.2016.004.

Antoine Godichon-Baggioni and Sofiane Saadane. On the rates of convergence of parallelized averaged stochastic
gradient algorithms. arXiv preprint arXiv:1710.07926, 2017.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ImageNet in 1 hour. CoRR,
abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.02677.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pp. 1737–1746. JMLR.org, 2015. URL http://dl.acm.org/
citation.cfm?id=3045118.3045303.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing stochastic
gradient descent for least squares regression: Mini-batching, averaging, and model misspecification. Jour-
nal of Machine Learning Research, 18(223):1–42, 2018. URL http://jmlr.org/papers/v18/16-
595.html.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

Simon Lacoste-Julien, Mark W. Schmidt, and Francis R. Bach. A simpler approach to obtaining an O(1/t)
convergence rate for the projected stochastic subgradient method. CoRR, abs/1212.2002, 2012.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. In Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’15, pp. 2737–2745, Cambridge, MA, USA, 2015. MIT Press. URL http:
//dl.acm.org/citation.cfm?id=2969442.2969545.

Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local SGD. CoRR,
abs/1808.07217, 2018a. URL https://arxiv.org/abs/1808.07217.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. In ICLR 2018 - International Conference on Learning
Representations, 2018b. URL https://openreview.net/forum?id=SkhQHMW0W.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effectiveness of
SGD in modern over-parametrized learning. In ICML, 2018.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael I.
Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on Optimization,
27(4):2202–2229, 2017. doi: 10.1137/16M1057000.

Ryan McDonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S. Mann. Efficient large-scale dis-
tributed training of conditional maximum entropy models. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta (eds.), Advances in Neural Information Processing Systems 22, pp. 1231–1239.
Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/3881-efficient-large-
scale-distributed-training-of-conditional-maximum-entropy-models.pdf.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured perceptron.
In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, HLT ’10, pp. 456–464, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics. ISBN 1-932432-65-5. URL http://dl.acm.org/citation.cfm?id=
1857999.1858068.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Aarti Singh and Jerry Zhu (eds.), Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pp. 1273–1282, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR. URL
http://proceedings.mlr.press/v54/mcmahan17a.html.

T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay. On-chip training of recurrent neural networks with limited
numerical precision. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3716–3723,
May 2017. doi: 10.1109/IJCNN.2017.7966324.

10

http://arxiv.org/abs/1706.02677
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://jmlr.org/papers/v18/16-595.html
http://jmlr.org/papers/v18/16-595.html
http://dl.acm.org/citation.cfm?id=2969442.2969545
http://dl.acm.org/citation.cfm?id=2969442.2969545
https://arxiv.org/abs/1808.07217
https://openreview.net/forum?id=SkhQHMW0W
http://papers.nips.cc/paper/3881-efficient-large-scale-distributed-training-of-conditional-maximum-entropy-models.pdf
http://papers.nips.cc/paper/3881-efficient-large-scale-distributed-training-of-conditional-maximum-entropy-models.pdf
http://dl.acm.org/citation.cfm?id=1857999.1858068
http://dl.acm.org/citation.cfm?id=1857999.1858068
http://proceedings.mlr.press/v54/mcmahan17a.html


Published as a conference paper at ICLR 2019

Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In Proceedings of the 24th International Conference on Neural
Information Processing Systems, NIPS’11, pp. 693–701, USA, 2011. Curran Associates Inc. ISBN 978-1-
61839-599-3. URL http://dl.acm.org/citation.cfm?id=2986459.2986537.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

John C. Platt. Advances in kernel methods. chapter Fast Training of Support Vector Machines Using Sequential
Minimal Optimization, pp. 185–208. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-19416-3. URL
http://dl.acm.org/citation.cfm?id=299094.299105.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of the 29th International Coference on International Conference
on Machine Learning, ICML’12, pp. 1571–1578, USA, 2012. Omnipress. ISBN 978-1-4503-1285-1. URL
http://dl.acm.org/citation.cfm?id=3042573.3042774.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathematical Statistics,
22(3):400–407, September 1951.

Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified analysis of
HOG WILD!-style algorithms. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, pp. 2674–2682, Cambridge, MA, USA, 2015. MIT Press. URL
http://dl.acm.org/citation.cfm?id=2969442.2969538.

Frank Seide and Amit Agarwal. CNTK: Microsoft’s open-source deep-learning toolkit. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2135–2135.
ACM, 2016.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech DNNs. In Haizhou Li, Helen M. Meng, Bin Ma, Engsiong Chng,
and Lei Xie (eds.), INTERSPEECH, pp. 1058–1062. ISCA, 2014. URL http://dblp.uni-trier.de/
db/conf/interspeech/interspeech2014.html#SeideFDLY14.

O. Shamir and N. Srebro. Distributed stochastic optimization and learning. In 2014 52nd Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp. 850–857, Sep. 2014. doi: 10.1109/
ALLERTON.2014.7028543.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pp. 71–79, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL http://proceedings.mlr.press/
v28/shamir13.html.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31, pp. 4452–4463. Curran Associates, Inc., 2018. URL http:
//papers.nips.cc/paper/7697-sparsified-sgd-with-memory.pdf.

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In INTERSPEECH,
pp. 1488–1492. ISCA, 2015. URL http://dblp.uni-trier.de/db/conf/interspeech/
interspeech2015.html#Strom15.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation for accelerated
deep learning with reduced overfitting. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 3299–3308, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/sun17c.html.

Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis of
communication-efficient SGD algorithms. CoRR, abs/1808.07576, 2018.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient
distributed optimization. CoRR, abs/1710.09854, 2017. URL http://arxiv.org/abs/1710.09854.

11

http://dl.acm.org/citation.cfm?id=2986459.2986537
http://dl.acm.org/citation.cfm?id=299094.299105
http://dl.acm.org/citation.cfm?id=3042573.3042774
http://dl.acm.org/citation.cfm?id=2969442.2969538
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2014.html#SeideFDLY14
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2014.html#SeideFDLY14
http://proceedings.mlr.press/v28/shamir13.html
http://proceedings.mlr.press/v28/shamir13.html
http://papers.nips.cc/paper/7697-sparsified-sgd-with-memory.pdf
http://papers.nips.cc/paper/7697-sparsified-sgd-with-memory.pdf
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2015.html#Strom15
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2015.html#Strom15
http://proceedings.mlr.press/v70/sun17c.html
http://arxiv.org/abs/1710.09854


Published as a conference paper at ICLR 2019

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Tern-
grad: Ternary gradients to reduce communication in distributed deep learning. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30, pp. 1509–1519. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/6749-terngrad-ternary-gradients-to-
reduce-communication-in-distributed-deep-learning.pdf.

Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph ora-
cle models, lower bounds, and gaps for parallel stochastic optimization. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31, pp. 8505–8515. Curran Associates, Inc., 2018. URL
http://papers.nips.cc/paper/8069-graph-oracle-models-lower-bounds-and-
gaps-for-parallel-stochastic-optimization.pdf.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter Bartlett.
Gradient diversity: a key ingredient for scalable distributed learning. In Amos Storkey and Fernando Perez-
Cruz (eds.), Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pp. 1998–2007, Playa Blanca, Lanzarote, Canary
Islands, 09–11 Apr 2018. PMLR. URL http://proceedings.mlr.press/v84/yin18a.html.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for ImageNet training. CoRR,
abs/1708.03888, 2017.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD for non-convex optimization with faster
convergence and less communication. CoRR, abs/1807.06629, 2018.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear models
with end-to-end low precision, and a little bit of deep learning. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 4035–4043, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR. URL http://proceedings.mlr.press/v70/zhang17e.html.

Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Parallel SGD: When does averaging
help? arXiv, 2016.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging SGD. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 28, pp. 685–693. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5761-deep-learning-with-elastic-averaging-sgd.pdf.

X. Zhang, J. Trmal, D. Povey, and S. Khudanpur. Improving deep neural network acoustic models using
generalized maxout networks. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 215–219, May 2014. doi: 10.1109/ICASSP.2014.6853589.

Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. Communication-efficient algorithms for statistical
optimization. Journal of Machine Learning Research, 14:3321–3363, 2013. URL http://jmlr.org/
papers/v14/zhang13b.html.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss minimization.
In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pp. 1–9, Lille, France, 07–09 Jul 2015. PMLR.
URL http://proceedings.mlr.press/v37/zhaoa15.html.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradient descent al-
gorithm for nonconvex optimization. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, pp. 3219–3227. International Joint Conferences on Artificial Intelligence Or-
ganization, 7 2018. doi: 10.24963/ijcai.2018/447. URL https://doi.org/10.24963/ijcai.2018/
447.

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, Yinyu Ye, Li-Jia Li, and Li Fei-Fei.
Distributed asynchronous optimization with unbounded delays: How slow can you go? In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 5970–5979, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/zhou18b.html.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J. Smola. Parallelized stochastic gradient descent.
In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (eds.), Advances in
Neural Information Processing Systems 23, pp. 2595–2603. Curran Associates, Inc., 2010. URL http:
//papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent.pdf.

12

http://papers.nips.cc/paper/6749-terngrad-ternary-gradients-to-reduce-communication-in-distributed-deep-learning.pdf
http://papers.nips.cc/paper/6749-terngrad-ternary-gradients-to-reduce-communication-in-distributed-deep-learning.pdf
http://papers.nips.cc/paper/8069-graph-oracle-models-lower-bounds-and-gaps-for-parallel-stochastic-optimization.pdf
http://papers.nips.cc/paper/8069-graph-oracle-models-lower-bounds-and-gaps-for-parallel-stochastic-optimization.pdf
http://proceedings.mlr.press/v84/yin18a.html
http://proceedings.mlr.press/v70/zhang17e.html
http://papers.nips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf
http://papers.nips.cc/paper/5761-deep-learning-with-elastic-averaging-sgd.pdf
http://jmlr.org/papers/v14/zhang13b.html
http://jmlr.org/papers/v14/zhang13b.html
http://proceedings.mlr.press/v37/zhaoa15.html
https://doi.org/10.24963/ijcai.2018/447
https://doi.org/10.24963/ijcai.2018/447
http://proceedings.mlr.press/v80/zhou18b.html
http://papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent.pdf


Published as a conference paper at ICLR 2019

A MISSING PROOFS FOR SYNCHRONIZED LOCAL SGD

In this section we provide the proofs for the three lemmas that were introduced in Section 3.

Proof of Lemma 3.1. Using the update equation (7) we have

‖x̄t+1 − x?‖2 = ‖x̄t − ηtgt − x?‖2 = ‖x̄t − ηtgt − x? − ηtḡt + ηtḡt‖2 (17)

= ‖x̄t − x? − ηtḡt‖2 + η2t ‖gt − ḡt‖2 + 2ηt 〈x̄t − x? − ηtḡt, ḡt − gt〉 . (18)

Observe that

‖x̄t − x? − ηtḡt‖2 = ‖x̄t − x?‖2 + η2t ‖ḡt‖
2 − 2ηt 〈x̄t − x?, ḡt〉 (19)

= ‖x̄t − x?‖2 + η2t ‖ḡt‖
2 − 2ηt

1

K

K∑
k=1

〈
x̄t − x?,∇f(xkt )

〉
(20)

≤ ‖x̄t − x?‖2 + η2t
1

K

K∑
k=1

∥∥∇f(xkt )
∥∥2

− 2ηt
1

K

K∑
k=1

〈
x̄t − xtk + xtk − x?,∇f(xkt )

〉 (21)

= ‖x̄t − x?‖2 + η2t
1

K

K∑
k=1

∥∥∇f(xkt )−∇f(x?)
∥∥2

− 2ηt
1

K

K∑
k=1

〈
xtk − x?,∇f(xkt )

〉
− 2ηt

1

K

K∑
k=1

〈
x̄t − xtk,∇f(xkt )

〉
,

(22)

where we used the inequality ‖
∑K
i=1 ai‖2 ≤ K

∑K
i=1 ‖ai‖

2 in (21). By L-smoothness,∥∥∇f(xkt )−∇f(x?)
∥∥2 ≤ 2L(f(xkt )− f?) , (23)

and by µ-strong convexity

−
〈
xkt − x?,∇f(xkt )

〉
≤ −(f(xkt )− f?)− µ

2

∥∥xkt − x?
∥∥2 . (24)

To estimate the last term in (22) we use 2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2, for γ > 0. This gives

−2
〈
x̄t − xtk,∇f(xkt )

〉
≤ 2L

∥∥x̄t − xtk
∥∥2 +

1

2L

∥∥∇f(xkt )
∥∥2 (25)

= 2L
∥∥x̄t − xtk

∥∥2 +
1

2L

∥∥∇f(xkt )−∇f(x?)
∥∥2 (26)

≤ 2L
∥∥x̄t − xtk

∥∥2 + (f(xkt )− f?) , (27)

where we have again used (23) in the last inequality. By applying these three estimates to (22) we get

‖x̄t − x? − ηtḡt‖2 ≤ ‖x̄t − x?‖2 + 2ηt
L

K

K∑
k=1

∥∥x̄t − xtk
∥∥2

+ 2ηt
1

K

K∑
k=1

((
ηtL−

1

2

)
(f(xkt )− f?)− µ

2

∥∥xkt − x?
∥∥2) .

(28)

For ηt ≤ 1
4L it holds

(
ηtL− 1

2

)
≤ − 1

4 . By convexity of a (f(x)− f?) + b ‖x− x?‖2 for a, b ≥ 0:

− 1

K

K∑
k=1

(
a(f(xkt )− f?) + b

∥∥xkt − x?
∥∥2) ≤ −(a(f(x̄t)− f?) + b ‖x̄t − x?‖2

)
, (29)

13



Published as a conference paper at ICLR 2019

hence we can continue in (28) and obtain

‖x̄t − x? − ηtḡt‖2 ≤ (1− µηt) ‖x̄t − x?‖2 − 1

2
ηt(f(x̄t)− f?) + 2ηt

L

K

K∑
k=1

∥∥x̄t − xkt
∥∥2 . (30)

Finally, we can plug (30) back into (18). By taking expectation we get

E ‖x̄t+1 − x?‖2 ≤ (1− µηt)E ‖x̄t − x?‖2 + η2t E ‖gt − ḡt‖2

− 1

2
ηt E(f(x̄t)− f?) + 2ηt

L

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 .
Proof of Lemma 3.2. By definition of gt and ḡt we have

E ‖gt − ḡt‖2 = E
∥∥∥ 1

K

K∑
k=1

(
∇fikt (xkt )−∇f(xkt )

)∥∥∥2= 1

K2

K∑
k=1

E
∥∥∥∇fikt (xkt )−∇f(xkt )

∥∥∥2 ≤ σ2

K
,

(31)

where we used Var(
∑K
k=1Xk) =

∑K
k=1 Var(Xk) for independent random variables.

Proof of Lemma 3.3. As the gap(IT ) ≤ H , there is an index t0, t− t0 ≤ H such that x̄t0 = xkt0 for
k ∈ [K]. Observe, using E ‖X − EX‖2 = E ‖X‖2 − ‖EX‖2 and ‖

∑H
i=1 ai‖2 ≤ H

∑H
i=1 ‖ai‖

2,

1

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 =
1

K

K∑
k=1

E
∥∥xkt − xt0 − (x̄t − xt0)

∥∥2 (32)

≤ 1

K

K∑
k=1

E
∥∥xkt − xt0

∥∥2 (33)

≤ 1

K

K∑
k=1

Hη2t0

t−1∑
h=t0

E
∥∥∥∇fikh(xkh)

∥∥∥2 (34)

≤ 1

K

K∑
k=1

H2η2t0G
2 , (35)

where we used ηt ≤ ηt0 for t ≥ t0 and the assumption E‖∇fikh(xkh)‖2 ≤ G2. Finally, the claim
follows by the assumption on the stepsizes, ηt0ηt ≤ 2.

B MISSING PROOF FOR ASYNCHRONOUS LOCAL SGD

In this Section we prove Theorem 5.1. The proof follows closely the proof presented in Section 3.
We again introduce the virtual sequence

x̄t = x0 −
1

K

K∑
h=1

t−1∑
j=0

ηj∇fikj (xkj ) , (36)

as before. By the property T ∈ IkT for k ∈ K we know that all workers will have written their
updates when the algorithm terminates. This assumption is not very critical and could be relaxed, but
it facilitates the (already quite heavy) notation in the proof.

Observe, that Lemmas 3.1 and 3.2 hold for the virtual sequence {x̄t}Tt=0. Hence, all we need is a
refined version of Lemma 3.3 that bounds how far the local sequences can deviate from the virtual
average.

14



Published as a conference paper at ICLR 2019

Lemma B.1. If gap(IkT ) ≤ H and ∃τ > 0, s.t. Wk,h
t ⊇ [t − τ ] for all k, h ∈ [K], t ∈ [T ], and

sequence of decreasing positive stepsizes {ηt}t≥0 satisfying ηt ≤ 2ηt+H+τ for all t ≥ 0, then

1

K

K∑
k=1

E
∥∥x̄t − xkt

∥∥2 ≤ 12η2tG
2(H + τ)2 , (37)

where G2 is a constant such that Ei‖∇fi(xkt )‖2 ≤ G2 for k ∈ [K], t ∈ [T ].

Here we use the notation [s] = {} for s < 0, such that [t− τ ] is also defined for t < τ .

Proof. As gap(IkT ) ≤ H there exists for every k ∈ K a tk, t − tk ≤ H , such that xktk = ¯̄xktk . Let
t0 := min{t1, . . . , tK} and observe t0 ≥ t−H . Let t′0 = max{t0 − τ, 0}. AsWk,h

t ⊇ [t− τ ] for
all k, h ∈ [K], t ∈ [T ], it holds

¯̄xktk = x̄t′0 −
1

K

K∑
h=1

tk−1∑
j=t′0

1j∈Wk,h
tk

(ηj∇fikj (xkj )) , (38)

for each k ∈ [K]. In other words, all updates up to iteration t′0 have been written to the aggregated
sequence.

We decompose the error term as∥∥x̄t − xkt
∥∥2 ≤ 3

(∥∥xkt − xktk
∥∥2 +

∥∥xktk − x̄t′0
∥∥2 +

∥∥x̄t′0 − x̄t
∥∥2) . (39)

Now, using ηt ≥ ηt+1, and t− tk ≤ H , we conclude (as in (35))∥∥xkt − xktk
∥∥2 ≤ η2tkH2G2 ≤ η2t′0H

2G2 . (40)

As tk − t′0 ≤ τ , ∥∥xktk − x̄t′0
∥∥2 ≤ η2t′0τ2G2 , (41)

and similarly, as t− t′0 ≤ H + τ ,∥∥x̃t′0 − x̃t
∥∥2 ≤ η2t′0(H + τ)2G2 . (42)

Finally, as
ηt′0
ηt
≤ 2, we can conclude∥∥x̄t − xkt

∥∥2 ≤ 12η2t (H + τ)2G2 . (43)

and the lemma follows.

Now the proof of Theorem 5.1 follows immediately.

Proof of Theorem 5.1. As in the proof of Theorem 2.2 we rely on Lemma 3.4 to derive the conver-
gence rate. Again, we have A = 1

2 , B = σ2

K , and C = LG2(H + τ)2 (Lemma B.1). It is easy to see

that the stepsizes satisfy the condition of Lemma B.1, as clearly
ηt′0
ηt
≤

ηt′0
ηt′0+H+τ

= a+t+H+τ
a+t ≤ 2, as

a ≥ H + τ .

C COMMENTS ON IMPLEMENTATION ISSUES

C.1 SYNCHRONOUS LOCAL SGD

In Theorem 5 we do not prove convergence of the sequences {xkt }t≥0 of the iterates, but only
convergence of a weighted average of all iterates. In practice, the last iterate might often be sufficient,
but we like to remark that the weighted average of the iterates can easily be tracked on the fly with an
auxiliary sequence {yt}t>0, y0 = x0, without storing all intermediate iterates, see Table 1 for some
examples.

15



Published as a conference paper at ICLR 2019

criteria weights formula recursive update
last iterate - yt = xt yt = xt
uniform average wt = 1 yt = 1

t+1

∑t
i=0 xi yt = 1

t+1xt + t
t+1yt−1

linear weights wt = (t+ 1) yt = 2
(1+t)(2+t)

∑t
i=0(i+ 1)xi yt = 2

2+txt + t
t+2yt−1

quadratic weights wt = (t+ 1)2 yt = 6
(t+1)(t+2)(2t+3)

∑t
i=0(i+ 1)2xi yt = 6(t+1)

(t+2)(2t+3)xt + t(1+2t)
6+7t+2t2yt−1

Table 1: Formulas to recursively track weighted averages.

C.2 ASYNCHRONOUS LOCAL SGD

As for synchronous local SGD, the weighted averages of the iterates (if needed), can be tracked on
each worker locally by a recursive formula as explained above.

A more important aspect that we do not have discussed yet, is that Algorithm 2 allows for an easy
procedure to balance the load in heterogeneous settings. In our notation, we have always associated
the local sequences {xkt } with a specific worker k. However, the computation of the sequences does
not need to be tied to a specific worker. Thus, a fast worker k that has advanced his local sequence
too much already, can start computing updates for another sequence k′ 6= k, if worker k′ is lagged
behind. This was not possible in the synchronous model, as there all communications had to happen
in sync. We demonstrate this principle in Table 2 below for two workers. Note that also the running
averages can still be maintained.

wall clock time → → → → → →
worker 1 x1

H ← U(¯̄x) x1
2H ← U(¯̄x) x1

3H ← U(¯̄x) x2
2H ← U(¯̄x) x2

4H ← U(¯̄x) x1
4H ← U(¯̄x) · · ·

worker 2 x2
H ← U(¯̄x) x2

3H ← U(¯̄x) · · ·

Table 2: Simple load balancing. The faster worker can advance both sequences, even when the slower
worker has not yet finished the computation. In the example each worker does H steps of local SGD
(denoted by the operator U : Rd → Rd) before writing back the updates to the aggregate ¯̄x. Due to
the load balancing, τ ≤ 3H .

D DETAILS ON EXPERIMENTS

We here state the precise procedure that was used to generate the figures in this report. As briefly
stated in Section 4 we examine empirically the speedup on a logistic regression problem, f(x) =
1
n

∑n
i=1 log(1 + exp(−bia>i x)) + λ

2 ‖x‖
2, where ai ∈ Rd and bi ∈ {−1,+1} are the data samples.

The regularization parameter is set to λ = 1/n. We consider the small scale w8a dataset (Platt, 1999)
(d = 300, n = 49749).

For each run, we initialize x0 = 0d and measure the number of iterations6 (and number of stochastic
gradient evaluations) to reach the target accuracy ε ∈ {0.005, 0.0001}. As we prove convergence
only for a special weighted sum of the iterates in Theorem 2.2 and not for standard criteria (last
iterate or uniform average), we evaluate the function value for different weighted averages yt =

1∑t
i=0 wi

∑t
i=0 wixt, and consider the accuracy reached when one of the averages satisfies f(yt)−

f? ≤ ε, with f? := 0.126433176216545 (numerically determined). The precise formulas for the
averages that we used are given in Table 1.

For each configuration (K,H, b, ε), we report the best result found with any of the following two
stepsizes: ηt := min(32, cnt+1 ) and ηt = 32c. Here c is a parameter that can take the values c = 2i for
i ∈ Z. For each stepsize we determine the best parameter c by a grid search, and consider parameter
c optimal, if parameters {2−2c, 2−1c, 2c, 22c} yield worse results (i.e. more iterations to reach the
target accuracy).

6Note, that besides the randomness involved the stochastic gradient computations, the averaging steps of
synchronous local SGD are deterministic. Hence, these results (convergence in terms if numbers of iterations)
can be reproduced by just simulating local SGD by using virtual workers (which we did for large number of
K). For completeness, we report that all experiments were run on an an Ubuntu 16.04 machine with a 24 cores
processor Intel R© Xeon R© CPU E5-2680 v3 @ 2.50GHz.

16



Published as a conference paper at ICLR 2019

In Figures 4 and 5 we give additional results for mini-batch sizes b ∈ {1, 16}.

1 4 16 64 256 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(a) Measured speedup, ε = 0.005.

1 4 16 64 256 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(b) Measured speedup, ε = 0.0001.

Figure 4: Measured speedup of local SGD with mini-batch b = 1 for different numbers of workers K
and parameters H .

1 4 16 64 256 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(a) Measured speedup, ε = 0.005.

1 4 16 64 256 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(b) Measured speedup, ε = 0.0001.

Figure 5: Measured speedup of local SGD with mini-batch b = 16 for different numbers of workers
K and parameters H .

17


	Introduction
	Contributions
	Related Work
	Outline

	Local SGD
	Variance reduction in local SGD
	Convergence Result and Discussion

	Proof Outline
	Numerical Illustration
	Asynchronous Local SGD
	Conclusion
	Missing Proofs for Synchronized Local SGD
	Missing Proof for Asynchronous Local SGD
	Comments on Implementation Issues
	Synchronous Local SGD
	Asynchronous Local SGD

	Details on Experiments

