
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Wajeb SAAB

Présentée le 3 mai 2019

Thèse N° 9161

Reliable and Robust Cyber-Physical Systems for Real-Time Control
of Electric Grids

Prof. P. Thiran, président du jury
Prof. J.-Y. Le Boudec, directeur de thèse
Dr S. Bliudze, rapporteur
Dr F. Cadoux, rapporteur
Prof. M. Paolone, rapporteur

à la Faculté informatique et communications
Laboratoire pour les communications informatiques et leurs applications 2
Programme doctoral en informatique et communications

Throughout human history,
we have been dependent on machines to survive.

Fate, it seems, is not without a sense of irony.
— Morpheus, The Matrix

To my parents. . .

Acknowledgements
This thesis would not have been possible without the vision, supervision, guidance,
and motivation of Professor Jean-Yves Le Boudec. I cannot imagine a better supervisor
and role model. He was always there when we needed him, whether the situation
required a three-hour meeting or simply his trust in me to choose my own research
direction. His influence on me will go far beyond my PhD journey.

I would like to express my deepest gratitude to Dr. Simon Bliudze, my unofficial
co-supervisor, without whom I would not have made it to this stage. I have always,
and will always, hold you in the highest of regards. I would also like to thank Professor
Mario Paolone, Dr. Florent Cadoux, and Professor Patrick Thiran, for being part of my
PhD committee, providing valuable feedback and interesting discussions.

On the topic of interesting discussions, nothing has been more fulfilling or mentally
stimulating than the numerous discussions with Dr. Maaz Mohiuddin and Professor
Lorenzo Reyes. Lorenzo has constantly been the go-to person for matters of electric
grids, on which I am no expert. His future PhD students will be very lucky to have him
as a supervisor. Maaz has been with me throughout this journey, both as a research
collaborator and a best friend. The past four years would not have been nearly as
enjoyable without him.

I was lucky to be a part of the harmonious collaboration between LCA2 and DESL,
in which I had the privilege of working with extraordinary people. A special mention
goes to Roman for his collaboration, for the fun road trip, and for the Matryoshka.

A big part of ensuring the smooth and seamless experience of PhD students in
LCA2 relies on the exemplary dedication of its backroom staff. I would like to thank the
secretaries Patricia and Angela, the system administrators, Yves and Marc-André, and
our amazing editor, Holly, who has read my thesis with more care than anyone else.

I would like to thank Hussein Kassir for following me everywhere I go, for the hikes,
and for the board game nights with Taha, Mira, Mahdi, Hala, and Hajj. You guys were
my home away from home.

My best friends away from Switzerland might not have been here, but they were
the ones that kept me going. Thank you Wael, Ryan, Reem, Abed, Nadim, Tala, Lama,
Raed, Rawad, Razan, and Abdullah. Thank you for your friendship, for your support,
and for all that is to come. Thank you Haya for celebrating every single section of this
thesis with me, and for keeping me sane throughout the process.

i

Acknowledgements

Last, but not least, I am nothing if not for the support of my family. Thank you
Mom, Dad, and Manal for always believing in me. Thank you Jihad, Wida, Nader, Vida,
Wissam, Ziad, Aida, and Amal for being in my life.

Lausanne, 15th of March 2019 W. S.

ii

Abstract
Real-time control of electric grids is a novel approach to handling the increasing pen-
etration of distributed and volatile energy generation brought about by renewables.
Such control occurs in cyber-physical systems (CPSs), in which software agents main-
tain safe and optimal grid operation by exchanging messages over a communication
network.

We focus on CPSs with a centralized controller that receives measurements from the
various resources in the grid, performs real-time computations, and issues setpoints.
Long-term deployment of such CPSs makes them susceptible to software agent faults,
such as crashes and delays of controllers and unresponsiveness of resources, and to
communication network faults, such as packet losses, delays, and reordering. CPS
controllers must provide correct control in the presence of external non-idealities, i.e.,
be robust, and in the presence of controller faults, i.e., be reliable. In this thesis, we
design, test, and deploy solutions that achieve these goals for real-time CPSs.

We begin by abstracting a CPS for electric grids into four layers: the control layer,
the network layer, the sensing and actuation layer, and the physical layer. Then, we
provide a model for the components in each layer, and for the interactions among
them. This enables us to formally define the properties required for reliable and robust
CPSs.

We propose two mechanisms — Robuster and intentionality clocks — for making a
single controller robust to unresponsive resources and non-ideal network conditions.
These mechanisms enable the controller to compute and issue setpoints even when
some measurements are missing, rather than to have to wait for measurements from
all resources. We show that our proposed mechanisms guarantee grid safety and
outperform state-of-the-art alternatives.

Then, we propose Axo: a framework for crash- and delay-fault tolerance via active
replication of the controller. Axo ensures that faults in the controller replicas are
masked from the resources, and it provides a mechanism for detecting and recovering
faulty replicas. We prove the reliable validity and availability guarantees of Axo and
derive the bounds on its detection and recovery time. We showcase the benefits of Axo
via a stability analysis of an inverted pendulum system.

Solutions based on active replication must guarantee that the replicas issue consis-
tent setpoints. Traditional consensus-based schemes for achieving this are not suitable
for real-time CPSs, as they incur high latency and low availability. We propose Quarts,

v

Abstract

an agreement mechanism that guarantees consistency and a low bounded latency-
overhead. We show, via extensive simulations, that Quarts provides an availability at
least an order of magnitude higher than state-of-the-art solutions.

In order to test the effect of our proposed solutions on electric grids, we developed
T-RECS, a virtual commissioning tool for software-based control of electric grids.
T-RECS enables us to test the proper functioning of the software agents both in ideal
and faulty conditions. This provides insight into the effect of faults on the grid and
helps us to evaluate the impact of our reliability solutions.

We show how our proposed solutions fit together, and that they can be used to
design a reliable and robust CPS for real-time control of electric grids. To this end,
we study a CPS with COMMELEC, a real-time control framework for electric grids
via explicit power setpoints. We analyze the reliability issues of this CPS, and show
how our solutions can be used to improve its reliability and robustness. We test our
proposed solutions in T-RECS, and finally deploy them in a real-scale low-voltage
CIGRÉ benchmark microgrid for experimental validation.

Key words: reliability, real-time control, cyber-physical systems, centralized control,
robust, electric grids, latency, non-ideal conditions, mission-critical, availability, delay
faults, crash faults, lossy communication network, consistency, agreement, consensus,
replication, redundancy, fault masking, fault detection, fault recovery, software agents,
commercial off-the-shelf, islanding, microgrids, smartgrids, grid safety.

vi

Résumé
Le contrôle en temps réel des réseaux électriques est une nouvelle approche pour gérer
l’augmentation de la génération distribuée et volatile d’énergie due aux énergies renou-
velables. Ce contrôle s’effectue dans des systèmes cyber-physiques (“Cyber-Physical
System”, CPS), dans lesquels des agents logiciels garantissent une exécution sûre et
optimale du réseau en échangeant des messages par un réseau de communication.

Nous nous concentrons sur les CPS avec un contrôleur centralisé qui reçoit des
mesures de la part des ressources dans le réseau, effectue des calculs en temps réel,
et émet des valeurs de consigne. Le déploiement à long terme de ces CPS les rend
vulnérables aux erreurs logicielles des agents, telles que des arrêts, des délais, et des
manques de réponses, ainsi qu’aux erreurs dans les réseaux de communication, telles
que des pertes de paquets, des délais, et des changements dans l’ordre des paquets.
Les contrôleurs des CPS doivent fournir des instructions correctes en la présence
de non-idéalités externes, c’est-à-dire être robustes, ainsi qu’en présence d’erreurs
des contrôleurs, c’est-à-dire être fiables. Dans cette thèse, nous concevons, testons et
déployons des solutions qui atteignent ces objectifs pour des CPS en temps réel.

Nous commençons par abstraire un CPS pour réseaux électriques en quatre couches :
la couche de contrôle, la couche de réseau, la couche de détection et d’actionnement,
ainsi que la couche physique. Ensuite, nous fournissons un modèle pour les compo-
sants de chaque couche, ainsi que pour leurs interactions. Ceci nous permet de définir
formellement les propriétés requises pour des CPS robustes et fiables.

Nous proposons deux mécanismes — Robuster et les horloges d’intentionnalité
— pour rendre un seul contrôleur robuste aux ressources qui ne réagissent pas à
temps ainsi qu’aux conditions de réseau non-idéales. Ces mécanismes permettent au
contrôleur de calculer et d’envoyer des valeurs de consignes même quand certaines
mesures manquent, plutôt que d’attendre des mesures de toutes les ressources. Nous
démontrons que les mécanismes que nous proposons garantissent la sûreté du réseau
électrique et surpassent les alternatives de l’état de l’art.

Puis nous proposons Axo : une solution pour la tolérance d’arrêts et de délais par
la réplication active du contrôleur. Axo garantit que les erreurs dans les répliques du
contrôleur sont invisibles pour les ressources, et fournit un mécanisme pour détecter et
corriger les répliques fautives. Nous prouvons les garanties de validité et la disponibilité
robustes d’Axo et dérivons les bornes pour son temps de détection et de correction.
Nous démontrons les avantages d’Axo par une analyse de la stabilité d’un système de

ix

Résumé

pendule inversé.
Les solutions basées sur la réplication active doivent garantir que les répliques

émettent des valeurs de consignes cohérentes. Les approches traditionnelles basées
sur le consensus pour atteindre cet objectif ne sont pas adaptées aux CPS en temps réel,
car elles causent de hautes latences et une disponibilité faible. Nous proposons Quarts,
un mécanisme de consensus qui garantit la cohérence et une faible augmentation de
latence. Nous démontrons, par des simulations approfondies, que Quarts fournit une
disponibilité au moins un ordre de magnitude plus élevée que les solutions de l’état de
l’art.

Pour tester l’effet des solutions que nous proposons sur des réseaux électriques,
nous avons développé T-RECS, un outil de mise en service virtuelle pour le contrôle
logiciel de réseaux électriques. T-RECS nous permet de tester le fonctionnement des
agents logiciels dans des conditions idéales ainsi que dans des conditions probléma-
tiques. Ceci nous fournit un aperçu des effets des erreurs dans le réseau, et nous aide à
évaluer l’impact de nos solutions pour la fiabilité.

Nous montrons comment les solutions que nous proposons fonctionnent en-
semble, et montrons qu’elles peuvent être utilisées pour concevoir un CPS fiable
et robuste pour le contrôle en temps réel de réseaux électriques. à cet effet, nous
étudions un CPS avec COMMELEC, une solution pour le contrôle en temps réel de
réseaux électriques utilisant des valeurs de consignes explicites. Nous analysons les
problèmes de fiabilité de ce CPS, et montrons comment nos solutions peuvent être
utilisées pour améliorer sa fiabilité et sa robustesse. Nous testons nos solutions avec
T-RECS, et les déployons dans un micro-réseau électrique CIGRE de faible voltage à
l’échelle réelle afin d’effectuer une validation empirique.

Mots clés : fiabilité, contrôle en temps réel, systèmes cyber-physiques, contrôle
centralisé, robuste, réseaux électriques, latence, conditions non-idéales, critique, dis-
ponibilité, erreurs de délai, erreurs d’arrêt, réseaux de communication avec pertes, co-
hérence, consensus, réplication, redondance, masquage d’erreurs, détection d’erreurs,
récupération, agents logiciels, produit informatique COTS, isolation, micro-réseaux,
réseaux intelligents, sécurité du réseau.

x

List of Abbreviations

API Application Programming Interface
BFT Byzantine Fault-Tolerance
CDF Cumulative Distribution Function

COTS Commercial Off-the-Shelf
CPS Cyber-Physical System

ECDF Empirical Cumulative Distribution Function
EV Electric Vehicle
GA Grid Agent

GPS Global Positioning System
IP Internet Protocol

iPRP IP-friendly Parallel Redundancy Protocol
LQR Linear Quadratic Regulator

MAC Media Access Control
MPC Model Predictive Control

MTTF Mean Time to Failure
MTTI Mean Time to Instability

MTTR Mean Time to Repair
NTP Network Time Protocol

PC Personal Computer
PCC Point of Common Coupling
PDC Phasor Data Concentrator
PDF Probability Density Function
PLC Programmable Logic Controller

PMU Phasor Measurement Unit
PRP Parallel Redundancy Protocol
PTP Precision Time Protocol

PV Photovoltaic
QUIC Quick UDP Internet Connections1

1QUIC is no longer an acronym in IETF QUIC under standardization since May 2018

xiii

List of Abbreviations

RA Resource Agent
RAM Random Access Memory

RMSE Root Mean Square Error
RTT Round-Trip Time

SE State Estimator
SoC State of Charge
TCB Timely Computing Base
TCP Transmission Control Protocol
TTA Time-Triggered Architecture

UDP User Datagram Protocol

xiv

List of Notations

Advertisement-related notations

F feasibility set of a resource
Fr feasibility set in advertisement of round r
Fn long-term feasibility set, valid for n rounds
U uncertainty function of a resource
Ur uncertainty function in advertisement of round r
Un long-term uncertainty function, valid for n rounds
Tval validity horizon of an advertisement

Setpoint-related notations

X vector of setpoints
Xr vector of setpoints in round r; elements are xr
x̂r actual implemented setpoint by resource in round r
Ir(Xr) set of vectors of actual setpoint implementations in round r,

considering uncertainties of resources in round r − 1

Jr(Xr) set of vectors of actual setpoint implementations in round r,
considering uncertainties of resources in round r − 1

and possibility of missing setpoints
Tv vector of validity times of setpoints; elements are tv
Tctrl control period: upper bound duration of control round
τ validity horizon of a setpoint

Miscellaneous

δi upper bound on implementation time by an RA
δn upper bound on one-way network latency
p probability of packet loss in a network

xvii

Contents
Acknowledgements i

Abstracts (English and French) v

List of Abbreviations xiii

List of Notations xvii

List of Figures xxv

List of Tables xxix

1 Introduction 1
1.1 Background . 2

1.1.1 Real-Time Control of Electric Grids 3
1.1.2 Cyber-Physical Systems in the Wild 4
1.1.3 Reliability and Robustness . 6

1.2 Contributions . 6
1.3 Roadmap . 8

2 State of the Art 11
2.1 Communication Network Reliability . 11
2.2 Robust Cyber-Physical Systems . 12

2.2.1 State Estimator Robustness . 13
2.2.2 Grid Agent Robustness . 13

2.3 Reliable Cyber-Physical Systems . 14
2.3.1 Deterministic System Design . 15
2.3.2 Consensus . 15
2.3.3 Active Replication . 17
2.3.4 Passive Replication . 19

3 System Model 21
3.1 Model of a Cyber-Physical System for Electric Grids 21
3.2 The Bottom Three Layers . 23

3.2.1 Physical Layer . 23

xix

Contents

3.2.2 Sensing and Actuation Layer . 24
3.2.3 Network Layer . 25

3.3 Control Layer . 25
3.3.1 Resource Agents . 25
3.3.2 State Estimator . 28
3.3.3 Grid Agent . 30

3.4 Formal Requirements . 34
3.4.1 Formal Computation & Implementation Model 35
3.4.2 Robustness Requirements . 35
3.4.3 Reliability Requirements . 38

3.5 Conclusion . 39

4 Robust Real-Time Control of Electric Grids 43
4.1 Robust and Reliable Ordering . 44

4.1.1 Motivation . 44
4.1.2 Control Rounds & Round Numbers 46
4.1.3 Labeling in the Literature . 47
4.1.4 Intentionality Clocks Design . 50
4.1.5 Formal Guarantees . 54

4.2 Robust Safety, Availability, and Optimality 57
4.2.1 Overview . 57
4.2.2 Robuster Design . 59
4.2.3 Formal Guarantees . 63
4.2.4 Construction of Long-Term Fields 64

4.3 Experimental Comparison & Validation 67
4.3.1 Experimental Setup . 68
4.3.2 Results . 69

4.4 Conclusion . 74

5 Axo: Tolerating Delay Faults in Cyber-Physical Systems 77
5.1 Overview . 78

5.1.1 Problem Description . 78
5.1.2 Challenges in Delay Fault Detection & Recovery 79

5.2 Related Work . 80
5.2.1 Masking Delay Faults . 80
5.2.2 Detection & Recovery of Delay Faults 81

5.3 System Model . 82
5.3.1 Required CPS Properties . 82
5.3.2 The Validity Horizon . 84
5.3.3 Fault Model . 85

5.4 Axo Design . 85
5.4.1 Controller & Resource Agent Modifications 88
5.4.2 Fault Masking: Tagger & Masker 90

xx

Contents

5.4.3 Fault Detection: Detector . 93
5.4.4 Fault Recovery: Rebooter . 96

5.5 Formal Guarantees . 98
5.6 Performance Analysis . 99

5.6.1 Analytical Evaluation of Recovery Time 100
5.6.2 Experimental Validation . 102

5.7 Stability Analysis: An Inverted Pendulum 103
5.8 Conclusion . 106

6 Quarts: Quick Agreement in Cyber-Physical Systems 109
6.1 The Split-Brain Syndrome . 111

6.1.1 Causes . 111
6.1.2 Effects . 111
6.1.3 Proposed Solution: Quarts . 113

6.2 Related Work . 113
6.2.1 Passive Replication . 114
6.2.2 Active Replication with Consensus 114

6.3 Required CPS Properties for Quarts . 115
6.4 Quarts Design . 117

6.4.1 The Collection Phase . 118
6.4.2 The Voting Phase . 121
6.4.3 Optimization for the Best Case 124
6.4.4 The Two-Replica Case . 126

6.5 Applying Quarts to CPS Controllers . 127
6.5.1 Quarts in Grid Agents . 127
6.5.2 Quarts in State Estimators . 132

6.6 Formal Guarantees . 132
6.7 Simulation Results . 137

6.7.1 Performance Metrics . 137
6.7.2 Agreement Protocols . 138
6.7.3 Simulation Methodology . 138
6.7.4 Results . 140

6.8 Conclusion . 144

7 T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric Grids147
7.1 Introduction . 148

7.1.1 Problem . 148
7.1.2 Proposed Virtual Commissioning Tool 148

7.2 Related Work . 150
7.3 T-RECS Design . 153

7.3.1 Physical Layer . 154
7.3.2 Sensing and Actuation Layer . 155
7.3.3 Network Layer . 156

xxi

Contents

7.3.4 Control Layer . 157
7.4 Validation . 157
7.5 Performance Evaluation . 160

7.5.1 CPU and Memory Usage . 160
7.5.2 Load-Flow Computation . 162

7.6 Conclusion . 163

8 Case Study: COMMELEC - A Cyber-Physical System for Real-Time Control of
Electric Grids 165
8.1 The COMMELEC Framework . 166

8.1.1 Architecture . 166
8.1.2 Grid-Connected Operation . 167

8.2 Effect of Non-Idealities on COMMELEC 168
8.3 Application of Axo to COMMELEC . 170
8.4 Application of Quarts to COMMELEC . 172
8.5 Islanding in COMMELEC . 173

8.5.1 Architecture . 174
8.5.2 Slack Ranking . 176
8.5.3 Applicability of Proposed Mechanisms to Slack Ranking 177

8.6 A Slack Switching Protocol for Islanding Maneuvers and Operation . . 178
8.6.1 Requirements . 178
8.6.2 Disconnection Maneuver . 180
8.6.3 Reconnection Maneuver . 182
8.6.4 Islanded Mode Operation: Slack Switching Maneuver 183
8.6.5 Applicability of Proposed Mechanisms to Slack Switching 184

8.7 Conclusion . 185

9 Conclusions and Directions for Future Work 189

A Derivation of Axo Performance Analysis Results 195
A.1 Proof of Theorem 5.3: Delay-Faulty Controller 195
A.2 Proof of Theorem 5.4: Crash-Faulty Controller 197

Bibliography 201

List of Publications 217

Curriculum Vitae 221

xxii

List of Figures
1.1 Emerging grids . 2

1.2 Architecture of a CPS for real-time control of electric grids 3

1.3 Response time of a grid controller deployed on a CompactRIO as a
function of running time . 5

3.1 Abstract model of a CPS for electric grids 22

3.2 Layers and components in a CPS for electric grids 23

3.3 Fault model of the SE and GA . 29

3.4 Message sequence chart showing control rounds between a GA and an RA 32

4.1 Communication between GA and RAs in a CPS 45

4.2 Shortcomings of temporal order in the presence of delays 47

4.3 Shortcomings of causal order in the presence of GA replication 49

4.4 CIGRÉ low-voltage benchmark microgrid. The resources not used for
our experiments are greyed-out . 68

4.5 Frequency signal imposed by the main grid used to provide frequency
support . 70

4.6 Root mean square error (in Watts) between the real power at the slack
bus and the requested tracking signal, for a 10-minute interval 71

4.7 Tracking experiment of Only-long GA with binding grid conditions and
a 2% loss rate . 72

4.8 Tracking experiment of Robust GA with binding grid conditions and a
2% loss rate . 72

4.9 Robust GA 24-hour frequency support experiment with a 2% link loss
rate. The power at the slack is not shown as it would be hidden by the
reference signal . 73

4.10 Battery state-of-charge (SoC) during the 24-hour experiment 74

5.1 Message sequence chart showing the cut-off for accepting setpoints as
a function of the control period Tctrl and the upper bound on setpoint
implementation time δi . 83

5.2 Axo architecture and library components 86

5.3 Time to recover from delay-faults for varying fault rate θ 103

xxv

List of Figures

5.4 Time to recover from crash-faults for varying fault rate θ 103
5.5 Step response of the pendulum with a non-replicated controller 105
5.6 Stability of the pendulum with a replicated controller 105

6.1 Interleaving of setpoints as a result of the split-brain syndrome 112
6.2 Collection and voting phases of Quarts with three controller replicas . 118
6.3 Unavailability with varying g and varying p. Unavailability of Quarts with

more than 3 replicas is less than 4× 10−10 141
6.4 Mean and 99th percentile of latency in different scenarios 143
6.5 Mean and 99th percentile of messaging cost in different scenarios . . . 143

7.1 T-RECS design highlighting the mapping between the layers and the
implementation . 154

7.2 Grid topology used for validation. The resources not used in our experi-
ments are greyed-out . 158

7.3 Voltage at the battery bus (B05) obtained from measurements and from
grid model . 159

7.4 Empirical CDF of the relative error in voltage at all the buses 160
7.5 CPU and memory usage of T-RECS, on a laptop with 3.7 GB RAM and

a 2.67GHz Intel Core i7 processor, as a function of number of software
agents. CPU usage in percentage is cumulative of all four CPUs of the i7
processor . 161

8.1 Power profiles for the tracking scenario in COMMELEC under ideal
conditions . 168

8.2 Power profiles for the tracking scenario in COMMELEC under varying
network loss probabilities . 169

8.3 Delay profile of the controller replicas in COMMELEC with and without
Axo. τ represents the validity horizon of the setpoint 170

8.4 Energy mismatch over time in COMMELEC with and without Quarts . 172
8.5 Architecture and components of COMMELEC required for islanding. L

is the ranked list of slack candidates. 175

xxvi

List of Tables
4.1 Root mean square error (in Watts) between the real power at the slack

bus and the requested tracking signal, for a 10-minute interval 70

5.1 Results of select scenarios with varying θd 104

6.1 Select scenarios with their parameter values 140
6.2 Inconsistency results for the selected scenarios. Inconsistency of Quarts

and Fast Paxos is zero . 142

7.1 Comparative summary of different testbeds 150
7.2 Average execution times (in ms) of the the load-flow implementation

used in T-RECS and the Newton-Raphson method, for three different
CIGRÉ benchmark grids, measured at 95% confidence 162

8.1 Energy mismatch (in kWh) for the tracking scenario in COMMELEC
under varying network loss probabilities. Robust COMMELEC controller
refers to a controller that implements intentionality clocks and Robuster 169

8.2 Summary of the proposed properties and the corresponding mecha-
nisms that achieve them . 186

xxix

1 Introduction

Anything that can go wrong, will go wrong.
— Murphy’s Law

A Cyber-Physical System (CPS) is an integration of the computation, networking,
and physical domains [1]. It is a system in which software agents monitor and control
physical processes and resources. Examples of CPSs can be found in autonomous
vehicles [2, 3], robotics [4, 5], process control automation [6, 7], and the focus of this
thesis, smartgrids [8, 9, 10].

Smartgrids are CPSs in which the state of the grid and the various electric resources
is monitored and controlled in order to maintain grid safety. As these CPSs interact
with the physical world, they must adhere to a set of requirements different than
traditional computing systems such as databases or datacenters for Web applications.

In contrast with the requirements of web applications mentioned above, CPSs must
react quickly in order to account for changes in grid conditions, as the state of the grid
is constantly evolving. A response time that is sufficiently fast, compared to the rate of
change of the physical process, is referred to as real-time [11]. Hence, latency is a key
performance metric.

Furthermore, a failure in electric-grid control can have serious safety and economic
consequences [12]. Hence, a CPS must handle faults both in the physical process (i.e.,
the grid and the resources) and in the computation and networking infrastructure.
Although such faults are typically rare, CPSs are deployed for long periods, making the
occurrence of faults in the lifetime of a CPS inevitable. The inevitability of faults with
serious implications creates a pressing demand for reliable and robust CPSs.

In this thesis, we define the requirements of reliability and robustness for real-time
CPSs and propose methods to achieve these requirements. We then test our proposed
methods through real-life deployments of a CPS for real-time control of electric grids.

1

Chapter 1. Introduction

1.1 Background

Traditional electric grids are divided into three parts: generation, transmission, and
distribution. Under this neat division, energy production takes place in the generation
grid and energy consumption in the distribution grid. These grids are known for
their high inertia, as consumption in the distribution grids slowly changes, and as
production is likewise slowly changed to match it.

Figure 1.1 – Emerging grids

Emerging grids offer a different story. Renewable penetration, such as rooftop
solar, has moved some production into the distribution grids. Furthermore, these
new sources of energy are intermittent and have low inertia. For example, a passing
cloud could significantly drop the power produced by a solar panel in less than a
second. Consumption is also becoming less predictable and more volatile, for example,
the emergence of electric vehicle (EV) charging stations in distribution grids [13, 14].
Therefore, to avoid exporting the issues to the upper-level grids, both production and
consumption must now be predicted and matched at the distribution level.

This is where CPSs come into play. A network of distributed computers can be used
to monitor and predict production and consumption patterns for resources in the grid.
The predictions can then be used to compute a safe and desirable point of operation
for the grid. Consider, for example, the grid in Figure 1.1. Assume that, at a given
point, the solar panel is producing 250 kW to match the consumption of the building
and the EV charging station. A change in weather conditions is about to drop the
solar production to 200 kW , thus creating a deficit of 50 kW in the grid, which would
create voltage violations. A CPS monitoring and controlling this grid can mitigate
the imminent drop by curtailing the EV charging power accordingly. Alternatively, if
the EV charging station is uncontrollable or if it is undesirable to curtail it, then an
alternative source of energy, such as the battery storage device, could be utilized to
close the deficit.

2

1.1. Background

1.1.1 Real-Time Control of Electric Grids

Figure 1.2 – Architecture of a CPS for real-time control of electric grids

We consider CPSs for real-time control of electric grids, with an architecture as
depicted in Figure 1.2. The physical components are shown in blue and the cyber
components in black. We start at the lowest level, in which the grid consists of the
buses, lines, transformers, and breakers. Electric resources, such as batteries, solar
panels, heaters, and residential appliances are located at different buses in the grid.

A resource agent (RA) monitors and possibly controls each of these resources,
through its corresponding sensors and actuators. RAs communicate information
about their resources as advertisements to a grid agent (GA). Additionally, sensors at
various locations in the grid monitor quantities such as bus voltages and line currents.
This information is sent as measurements to a state estimator (SE) that computes and
sends an estimate of the entire grid state to the GA. The GA uses its inputs to compute
and issue setpoints to the RAs, which in turn instruct the resources to implement these
setpoints, if applicable.

The main use-case for real-time control is maintaining grid safety, i.e., keeping the

3

Chapter 1. Introduction

bus voltages and line currents within given thresholds. The standards specifying such
thresholds permit a maximum violation time of 500 ms [15, 16, 17]. Therefore, such a
task requires low response times, especially in grids with low inertia.

We note that the discussion on grid safety, in this thesis, refers to the consequences
of violating voltage and current thresholds. Such consequences involve invoking fail-
safe mechanisms such as tripping of breakers, which is deemed as a failure of the
control. The issues tackled, therefore, are less about ensuring quality of service, and
more about protecting against non-routine system failure. While traditional grids
might not suffer from such issues, emergent grids relying on real-time control require
this protection.

In addition to maintaining grid safety, several ancillary services can be performed
with real-time control. This includes following a dispatch signal thus acting as a virtual
power plant to an upper-level grid [18], providing frequency support [19], localization
of line faults [20], and enabling demand response [21].

We highlight an emerging use-case for real-time control, namely, islanding [22,
23]. Islanding is the process of disconnecting a microgrid from an upper-level grid,
either intentionally for grid maintenance or unintentionally due to some natural
disaster that causes a far reaching failure in the main grid [24]. In addition to the
disconnection maneuver, the microgrid must also be operated in islanded mode and,
possibly, reconnected to the main grid when the condition for islanding no longer
holds. Grid safety must be maintained during such mission-critical operations.

1.1.2 Cyber-Physical Systems in the Wild

The aforementioned operations typically require performing complex computations
at high levels of abstraction. These include manipulation of high-dimensional objects
[23, 25], projection and gradient descent [8], non-linear optimization [26], and state-
estimation [27, 28]. This complexity precludes the use of low-level computing devices,
such as PLCs [29], traditionally used for non-complex and non-real-time electric grid
control [30, 31].

This paradigm shift requires the use of commercial-off-the-shelf (COTS) compo-
nents [32], in order to leverage their powerful computing capabilities. COTS refers to
both hardware and software. COTS hardware includes computers such as the NI Co-
mactRIO [33], B&R Automation PC [34], and the PINE ROCKPro64 [35]. The term COTS
software refers to both the commodity operating system run by the COTS hardware [36],
and the high-level programming languages (such as C/C++) used in developing such
applications, typically using third-party software libraries.

COTS offers powerful computing, large memory, high flexibility and adaptability,

4

1.1. Background

Figure 1.3 – Response time of a grid controller deployed on a CompactRIO as a function
of running time

and ease of maintenance. However, these advantages are to be balanced against
the lack of predictability [32]. Whereas PLCs offer strict real-time guarantees, COTS
components provide best-effort performance.

Figure 1.3 shows the computation time of an NI CompactRIO device performing
load flow operations [37], the deadline of which is 40 ms. We observe that although
such an operation takes less than 1 ms in most cases, its duration might rise to over
200 ms. The figure includes 140 million samples, of which the median is 0.47 ms, the
99.99th percentile is 1.89 ms, and the 99.999th percentile is 205 ms. Although these
high response times only occur at the tail of the distribution, the unpredictability of
the performance of COTS components poses reliability concerns.

The above discussion is an example of delays that affect COTS-based devices. In
addition to this type of fault, these devices might crash due to a software bug, an
OS glitch, or a hardware failure. Moreover, CPSs rely on IP-based communication
networks that are built using COTS hardware. These networks might not guarantee
correct packet delivery within a given time [38].

Lastly, CPSs using COTS components are also susceptible to Byzantine faults [39].

5

Chapter 1. Introduction

These are faults that produce erroneous computation results or message contamina-
tion. Such faults might be unintentional, resulting from a software bug, or intentional,
resulting from a compromised component in a security attack [40]. We do not consider
such faults in this thesis, we instead focus on the aforementioned crash and delay
faults. However, advances in correct-by-construction software design [41], formal
verification techniques [42], as well as smartgrid security [43], provide orthogonal
methods for eliminating the root causes of Byzantine faults.

1.1.3 Reliability and Robustness

In this thesis, we consider reliability and robustness from the point of view of the
central controller. As we will see, this is enough to render the entire CPS reliable and
robust.

A controller is said to be reliable, if the faults it experiences are masked from the
rest of the CPS: If the crashes and delays of the controller are not observed by other
components in the CPS hence do not affect grid safety or performance. For example,
if the task of the controller is to maintain the bus voltages in the grid within certain
limits, then a reliable controller would ensure that these limits are respected, even
when it is slow to react to changes in grid conditions.

A controller is said to be robust if it can maintain grid safety and good performance
in spite of non-ideal conditions resulting from faults in the rest of the CPS. In other
words, unresponsive resource agents and network faults such as message losses, delays,
and reordering, are handled by the controller. In the above example, the controller
is said to be robust if it can maintain the voltage within its limits, in spite of missing
advertisements or measurements from resources.

Reliability, therefore, is concerned with faults affecting the controller itself. Whereas
robustness is concerned with faults affecting the rest of the CPS. A controller that can
maintain correct operation despite both kinds of faults is said to be reliable and robust.

These definitions are re-iterated in Chapter 3 and distilled into formal requirements.
We go over the challenges in achieving them, as we survey the literature in Chapter 2.

1.2 Contributions

Our contributions in this thesis are summarized as follows.

1. We provide an abstraction of a CPS for electric grids, by dividing it into four
layers: the control layer, the network layer, the sensing and actuation layer, and
the physical layer. We define the components of each layer, thus providing a

6

1.2. Contributions

model for each component and for the interactions among them.

2. Using the abstraction and models in item 1, we formally define the required
properties of a reliable and robust CPS. These properties can be divided into two
main categories: robustness and reliability. The robustness properties are for
ensuring grid safety in the presence of unresponsive resources and communi-
cation network losses, delays, and reordering. The reliability properties are for
ensuring grid safety in the presence of crash and delay faults of the controller. As
grid safety could be ensured by a complete shutdown of the system, all of these
properties must be satisfied while preserving availability, i.e., without sacrificing
grid operation.

3. We propose intentionality clocks, a labeling scheme that captures the inherent
round-based ordering in CPSs. Intentionality clocks enable a CPS controller
to be robust against message reordering due to communication network non-
idealities.

4. We propose Robuster, a mechanism that enables a CPS controller to compute and
issue setpoints with partial information from the resources. Robuster guarantees
that grid safety is maintained despite missing advertisements from resource.
Thus, along with intentionality clocks in item 3, it guarantees all the robustness
properties.

5. We propose Axo, a framework for tolerating delay and crash faults in CPS con-
trollers by active replication of the controller. Axo enables the replication of the
controller and ensures that delay and crash faults in the controller replicas are
masked from the rest of the CPS. Axo also increases the long-term reliability of
the CPS by detecting and recovering faulty controllers.

6. To demonstrate the necessity and improvement brought about by Axo, we per-
form a case study, considering an inverted pendulum system. We show how
controller faults negatively affect the stability of the pendulum, and how the
incorporation of Axo maintains the stability.

7. We propose Quarts, a mechanism for quick agreement among replicas in a CPS.
We prove that Quarts guarantees consistency and maintains an availability higher
than state-of-the-art consensus algorithms. Along with Axo from item 6, Quarts
guarantees the reliability properties defined in item 2.

8. We show how Quarts can be used in CPS controllers that receive both advertise-
ments and measurements. This enables the use of Quarts in any CPS for real-time
control of electric grids.

9. We design and implement T-RECS, a virtual commissioning tool for real-time
control of electric grids. Using T-RECS, we can test CPS control algorithms and

7

Chapter 1. Introduction

their effect on grid safety and operation. We can also study the effects of faults and
non-idealities on the grid and validate the benefits of our reliability mechanisms.

10. We validate T-RECS with a real-scale microgrid, and we show that performing
tests in T-RECS produces results with insignificant error.

11. We study a CPS with COMMELEC [8], a framework for real-time control of electric
grids via explicit power setpoints. We highlight the reliability and robustness
issues of COMMELEC, and we show how our solutions can be used to produce a
reliable and robust CPS. We analyze the full system and show how the various
mechanisms cooperate seamlessly both in regular grid-connected operation,
and during islanding maneuvers and operation.

12. We consider a specific case of grid control in COMMELEC, namely, the islanding
operation. We define the required properties for handling such an operation
and propose a robust protocol for performing it. Our protocol orchestrates the
selection of a slack resource, and it maintains grid safety in the presence of
non-ideal conditions.

13. We implement our mechanisms and deploy them with COMMELEC, both in
T-RECS and in a real-scale CIGRÈ low-voltage benchmark microgrid. Our de-
ployments validate that the proposed mechanisms guarantee robust and reliable
operation and maintain a high availability and low latency.

1.3 Roadmap

The rest of the thesis proceeds as follows.

In Chapter 2, we evaluate the literature on reliability and robustness, highlighting
the drawbacks of existing solutions when dealing with real-time CPSs.

In Chapter 3, we define the abstractions of the different layers of a CPS for electric
grids. We provide a model of the operation of the components and the interactions
among them, and we specify the possible faults considered in each. Then, using these
models and abstractions, we formally define the required properties for reliable and
robust real-time CPSs.

In Chapter 4, we introduce intentionality clocks, a mechanism for labeling mes-
sages in a CPS, based on round numbers. Intentionality clocks make the CPS robust to
message reordering. Then, we introduce Robuster, a mechanism to ensure that the con-
troller is robust to the other considered non-idealities, namely, unresponsive resources
and message losses and delays. We prove that intentionality clocks and Robuster
guarantee the robustness properties of CPSs. Finally, we evaluate these mechanisms

8

1.3. Roadmap

in a grid deployment, and we show that they perform better than state-of-the-art
alternatives.

In Chapter 5, we introduce Axo, a framework for tolerating delay and crash faults
in controllers of CPSs. Axo uses active replication of the controller and a discard
mechanism that together ensure that delay and crash faults in the controllers are
masked from the rest of the CPS. Axo also provides a mechanism for detecting and
promptly recovering faulty replicas, thereby increasing the long-term availability of the
CPS. We prove the reliability properties guaranteed by Axo, and we derive bounds on
its detection and recovery time. Finally, we evaluate the performance of Axo through a
stability analysis of an inverted pendulum system, showing the improved metrics with
Axo.

In Chapter 6, we address the consistency issue brought about by active replication.
We propose Quarts, a mechanism for quick agreement between replicas in CPSs. We
prove that Quarts guarantees consistency and maintains an availability higher than
state-of-the-art consensus solutions. We show that Quarts is generic and can be
applied to CPS controllers with different inputs.

In Chapter 7, we introduce T-RECS, a virtual commissioning tool for real-time con-
trol of electric grids. T-RECS can be used to study the effect of CPS control, non-ideal
conditions, and reliability mechanisms on the grid. We present the design of T-RECS,
highlighting the layering approach it follows. Then, we validate the simulated grid
model in T-RECS with measurements from a real-life on-campus microgrid. Finally,
we analyze the performance of T-RECS on a standard laptop, thus showing that it can
be used to test CPSs for real-time control of electric grids.

In Chapter 8, we present a case study of COMMELEC [8] in a CPS for real-time
control of electric grids. We analyze the reliability and robustness issues of the CPS and
show how our mechanisms can be combined to transform it to a reliable and robust
CPS. We showcase a deployment of our mechanisms with COMMELEC, both in T-RECS
and in a real-scale low-voltage CIGRÈ benchmark microgrid [44]. Our deployment
shows the significant improvement in grid safety and performance when applying
our reliability and robustness mechanisms. Then, we consider operations related
to islanding, namely, the islanding and reconnection maneuvers and the operation
of a microgrid in islanded mode. We propose a robust protocol for performing the
mission-critical task of switching the mode of operation of the resources to and from
slack, in order to maintain grid safety.

Finally, in Chapter 9, we offer our concluding remarks, in addition to possible
directions for future work.

9

2 State of the Art

Those who cannot remember the past are condemned to repeat it.
— George Santayana

In this chapter, we survey the state of the art on reliability and robustness mech-
anisms both for CPSs in general and for smartgrids in particular. We highlight the
drawbacks of existing solutions in addressing the issues raised by real-time control of
electric grids, all the while reiterating our contributions in light of this literature review.

We begin with communication network reliability, as CPSs heavily rely on the
communication network for message exchange. Thus, the reliability of this network
must be considered. Although it is a well-studied problem in the literature, we discuss
it here for completeness.

2.1 Communication Network Reliability

Communication network reliability can be achieved through either packet retransmis-
sion or packet replication.

The traditional go-to protocol for communication network reliability via retrans-
mission is TCP [45]. TCP is a transport layer protocol that ensures in-order packet
delivery through the retransmission of lost packets and acknowledgement of received
packets. However, this in-order delivery constraint leads to the head-of-line blocking
phenomena, whereby later messages are delayed until earlier ones have been deliv-
ered [46, 47]. Furthermore, due to congestion control in TCP, a packet loss decreases
the rate of transmission, thereby increasing the delay.

Such behavior is necessary in traditional systems, because the application requires
earlier messages to be received before later ones are processed. However, this is not
the case for CPSs. CPS messages are ephemeral in nature, i.e., the reception of a

11

Chapter 2. State of the Art

new message invalidates earlier ones. An example of this is the reception of voltage
measurements from sensors in a grid. Once the controller receives the value of the
voltage at time t1, the value of the voltage at a time t2 < t1 becomes redundant, because
the state of the grid has already changed.

QUIC [48] is a recently proposed protocol that relies on multiplexing UDP streams.
Data within a stream is delivered in-order with reliability guarantees provided by QUIC.
However, data across multiple streams can be delivered out of order, thereby enabling
retransmission without head-of-line blocking. QUIC has been shown to improve the
network reliability over TCP, decreasing latency and loss rates in an Internet-wide
deployment [49]. This makes QUIC more suitable for CPSs.

Packet retransmission, however, inherently incurs additional latency, as a retran-
mission of a lost packet only takes place when the original packet is detected to be lost
by the sender. An alternative is packet replication, whereby two or more copies of the
same packet are simultaneously sent over redundant network paths to the same desti-
nation. Redundancy in network paths is essential for alleviating component failures.
Hence, it will be available in networks in which reliability is important.

PRP [50, 51] is a MAC-layer solution that exploits redundant network paths for
packet replication. iPRP [52] extends PRP to cover IP networks, which cover a wider
area and are usually used for CPSs, especially smartgrids [53]. Packet replication over
redundant network paths not only improves reliability, but also reduces the overall
latency, as the first packet to be delivered will be taken. This so-called 0 ms repair time
is essential for CPSs with real-time constraints.

The aforementioned protocols only serve to improve the reliability of the com-
munication network, but packet losses, delays, and reordering can still occur. Other
protocols, such as time-triggered Ethernet [54], FlexRay [55], and CAN [56], aim to
eliminate such non-idealities by requiring specialized hardware and a message send-
ing schedule from the communicating agents. Although these schemes work well in
traditional real-time systems in which the agents are highly deterministic, they are not
amenable to emerging CPSs, especially when computation delays are considered. Also,
the guarantees provided by such protocols no longer hold when component failure is
considered [57, 58].

2.2 Robust Cyber-Physical Systems

A CPS controller must handle non-idealities in the rest of the CPS to be considered
robust. Such non-idealities include message losses, delays, or reordering that might
result from faults in the communication network, or in the resources, RAs, and sensors
it communicates with.

12

2.2. Robust Cyber-Physical Systems

Several CPS controllers in the literature, particularly in the domain of grid control,
are designed assuming an ideal communication network [59, 60, 61]. However, as
we have seen in Section 2.1, despite advances in communication network reliability,
non-idealities in a CPS deployment cannot be disregarded.

2.2.1 State Estimator Robustness

The problem of handling non-idealities in SEs has been well studied in the literature.
Several approaches propose the design of robust SEs using Kalman filters in the pres-
ence of intermittent input measurements [62,63,64,65]. These enable the SE to provide
an output with a bounded error, despite missing measurements that might result from
non-idealities in the network or the sensors. These techniques meet the requirements
for real-time control.

Another approach is to use redundancy in the sensing infrastructure, where multi-
ple sensors have visibility of the same node in the grid [66, 67]. Thus, if a measurement
from one redundant sensor is lost or delayed, the SE maintains visibility of the en-
tire grid hence can perform correct computation. Sensor redundancy has the added
benefit of enabling the SE to perform bad-data detection [68, 69].

Others consider the dual problem of missing output at the actuators (the recipients
of the SE output) and propose techniques such as model predictive control (MPC) with
buffered actuation [70, 71, 72]. In these approaches, the SE computes output for the
next k sampling periods and sends them to the actuators. The actuators use the first
output, and they buffer (save) the rest for later use, in case of missing data from the SE.

MPC relies on modeling and forecasting uncertain quantities in the grid [73, 74, 75].
Although MPC is applicable for real-time control, it can incur a high computational
complexity, especially in cases with non-negligible losses in the grid [76] or large
prediction horizons [73, 77].

In conclusion, the state of the art for robust SEs is solid and, with the exception of
MPC in some cases, can be used for real-time control.

2.2.2 Grid Agent Robustness

In this section, we consider the robustness of the GA, a component that communicates
with RAs in a round-based model, thus sending setpoints and receiving advertisements.
Non-idealities in the rest of the CPS might cause the input advertisements of the GA
to be lost, delayed, or reordered. It must nonetheless be able to compute setpoints to
maintain control over the grid. To the best of our knowledge, we are the first to attempt
to solve this problem in this context.

13

Chapter 2. State of the Art

A prerequisite for the techniques used for SE robustness is a labeling mechanism
that provides an ordering among the measurements received by the SE and the outputs
it issues. Such labeling is presupposed by the SE robustness mechanisms discussed
earlier and is required for GA robustness as well.

Labeling can be done using either timestamps or logical clocks. Timestamp-based
approaches require time-synchronization. This can be achieved through network-
based time-synchronization protocols (e.g., NTP [78], PTP [79]) or GPS-based syn-
chronization [80]. However, timestamps cannot be used to reliably order messages
in a general distributed system [81]. In specific cases, such as sensors and SEs, time-
alignment can be used to provide such an order [82].

For GAs and RAs, time-alignment cannot be applied, as their form of communi-
cation is round-based. Such communication requires the use of logical clocks that
capture the round numbers. In the literature, logical clocks are achieved through Lam-
port clocks [81], the prominent example of scalar clocks, or through Vector clocks [83].

These labeling mechanisms, however, are designed for generic distributed systems.
Hence, they do not capture the inherent round-based communication between GAs
and RAs. In Chapter 4, we propose a modification to Lamport clocks, called inten-
tionality clocks, which suits this form of communication. Moreover, intentionality
clocks work seamlessly with GA replication (required for reliability as discussed below),
whereas traditional mechanisms require further modification.

Additionally, in Chapter 4, we propose Robuster, a mechanism that enables the
GA to compute setpoints in the presence of non-idealities in the rest of the CPS. In
Chapter 8, we consider the case when the GA is controlling an islanded microgrid, and
we augment the robustness mechanism to work in this context.

2.3 Reliable Cyber-Physical Systems

A robust CPS controller is still susceptible to crash faults, in which it ceases to process
input and issue output, and to delay faults, in which it is slow in doing so. Additionally,
a CPS controller can exhibit a wide range of faults that cause it to produce erroneous
output, ranging from software bugs to security attacks [40]. These faults are classified
as Byzantine [39], and are handled by Byzantine-fault tolerance (BFT) techniques
[84, 85, 86]. However, BFT suffers from poor latency performance, both in the best case,
which requires a minimum of two rounds of message exchange, and in the worst case,
which takes unbounded time. This makes BFT unsuitable for real-time CPSs.

In this thesis, Byzantine faults are out of scope, as we focus on crash and delay
faults. Several approaches have been proposed to address such faults in traditional
computing systems. In this section, we go over some of these approaches, and highlight

14

2.3. Reliable Cyber-Physical Systems

their drawbacks when applied to real-time CPSs.

2.3.1 Deterministic System Design

Delay faults in the literature are referred to as timing faults, i.e., faults that affect
the time at which a message is received. One approach to handling timing faults
is deterministic system design, with the two prominent examples being the timely
computing base (TCB) [87, 88], and the time-triggered architecture (TTA) [89, 90].

TCB is a framework that provides a strict real-time component, in which time-
critical functions can be executed. In order to provide real-time guarantees, TCB
presupposes that these functions can be separated from the main code base and
rewritten in TCB format. TTA also requires similar modifications.

Both frameworks can be used for the detection of timing faults. However, TCB
requires a known bound on the computation time of the time-critical functions [91],
and TTA requires that the intended send and receive instants of messages be known a
priori [92].

The requirements posed by these frameworks make them unsuitable for CPSs for
several reasons. CPSs typically have a large code base, mainly consisting of third-party
libraries. Hence, rewriting and encapsulating certain time-critical functions might
not be feasible. Furthermore, CPSs execute complex functions, the execution time of
which cannot always be known. Similarly, sending and reception instances at CPSs
depend on both the software agents and the communication network among them,
thus making them difficult to predict.

The drawbacks of these frameworks are shared with controller modeling techniques
[93,94,95], in which a trained model of the controller classifies it as faulty or not during
run-time. Such methods are prone to modeling errors and are limited to CPSs with
constant or predictable workloads. Thus, they are inapplicable to the generic CPSs we
consider in this work.

2.3.2 Consensus

The alternative to deterministic system design for handling crash and delay faults is
redundancy through controller replication, in which two or more replicas of the same
controller are used to mask, detect, and recover from faults. We go over the two main
replication approaches in the next two subsections. Here, we discuss an element that
is central to both, namely, consensus [96].

Consensus is at the heart of every distributed computing system. Consensus is
performed among a set of distributed software agents, in which each software agent

15

Chapter 2. State of the Art

proposes a value, and must decide on a value. Formally, consensus has four properties:

• Agreement: Every correct software agent that decides on a value, decides on the
same value.

• Termination: Every correct software agent decides on some value.

• Validity: If a correct agent decides on a value, then this value must have been
proposed by some correct agent.

• Integrity: If all correct agents propose the same value, then any correct agent
decides on that value.

If a protocol achieves all four properties, it is said to provide consensus. The
word correct refers to agents that do not experience a fault when consensus is being
performed. Consensus protocols usually provide guarantees only when the number of
correct agents is large enough. For example, consensus in BFT [84] can handle f faulty
agents, if the system consists of at least 3f + 1 agents in total.

The validity and integrity properties are specified to eliminate trivial protocol
designs, such as all processes agreeing on some statically set non-proposed value, and
to handle Byzantine [39] agents that behave erroneously.

Agreement is a safety [97] property that ensures that no two correct agents decide
on different values. Termination is a liveness [97] property that ensures that correct
agents eventually decide on a value. Depending on the requirements of the protocol,
the termination property might have a certain deadline, given in time or in number of
“consensus rounds”.

Consensus (specifically, agreement and termination) is proven to be impossible
to guarantee in bounded time in the presence of faults [98]. The result states that
given at least one crash faulty software agent and a non-ideal communication network,
consensus might require an unbounded number of steps for all correct agents to
satisfy agreement and reach termination. Thus, for the fault model we consider, which
includes software agent crashes and delays, in addition to network non-idealities,
agreement and termination remain impossible to guarantee together.

In spite of the impossibility result, several protocols have been proposed to provide
consensus [99, 100, 101], relying on the observation that faults are rare in practice.
Paxos [102, 103] is a widely-used consensus protocol that guarantees agreement under
a crash-only fault model. However, Paxos requires at least three rounds of message
exchange between the software agents in order to reach termination. The number of
rounds can grow indefinitely when the network conditions are bad.

16

2.3. Reliable Cyber-Physical Systems

Other protocols have been proposed that incur less minimum rounds of message
exchange, but they require additional assumptions on the system or trade-off best-case
performance with average-case performance [104, 105]. FastPaxos [104] is one such
example that reduces the minimum number of rounds to one but has poorer latency
performance than Paxos when it encounters conflicts between software agents.

In Chapter 6, we present Quarts, a protocol that circumvents the impossibility
result by forgoing termination and focusing on agreement. We show that in CPSs that
satisfy certain requirements, generally true in real-time control, termination is not
necessary in every round to maintain correct control. Quarts outperforms state-of-the-
art consensus protocols, providing both a lower latency and a higher availability.

2.3.3 Active Replication

Fault Masking

Active replication [106, 107, 108, 109] involves two or more replicas of the controller
that simultaneously receive input, perform computations, and issue setpoints. Using
such a replication technique, if one of the controller replicas crashes, then the other
replicas continue operation, thus maintaining control over the system. Hence, active
replication is said to increase the availability of the system, as it reduces the impact of
crash faults.

The same applies for delay faults. If one replica experiences a slow computation
time upon receiving input, then the presence of other replicas increases the chances
that the RAs will receive setpoints with a low response time. However, in order to
properly mask delay faults from RAs, the setpoints issued by the delayed replica must
not be delivered to the RAs, as they represent an older state of the system. In Chapter 5,
we make use of active replication and extend it with a discard algorithm in order to
mask delay faults from RAs in a CPS.

Fault Detection

Additionally, in order to maintain the benefits of active replication over long periods of
CPS operation, replicas that experience faults must be detected and recovered. Perfect
fault detection is a problem similar to consensus [38], hence is impossible to guarantee
in real-time. However, fault detection need not be on the real-time path, thus practical
protocols for fault detection are suitable for CPSs.

Several techniques exist for crash-fault detection [110,111,112]. The most common
technique is using heartbeats: keep-alive messages that are periodically sent by replicas
in order to advertise that they are not faulty. Absence of successive heartbeat messages

17

Chapter 2. State of the Art

from a replica is cause to believe it has crashed.

In contrast, delay-fault detection is a more difficult process. Besides the techniques
in TCB [91] and TTA [92] mentioned in Section 2.3.1, this problem has not been ad-
dressed in the literature. Delay faults are an end-to-end phenomena. Hence, they can
be detected only by involving the RA in the process. Furthermore, as seen in Chapter 1,
delays are intermittent in nature, hence there is a trade-off between detection time
and detection accuracy. In Chapter 5, we present a mechanism for crash and delay
fault detection in CPSs.

Fault Recovery

Fault recovery is the process of resetting a replica that was detected as faulty into a
good state. One example is rebooting the entire replica, although microreboots of one
or more processes has also been suggested [113].

In a distributed system with multiple replicas attempting to reboot a faulty replica,
one issue is ensuring that the faulty replica is rebooted at most once after detection. In
general, this problem shares similarities with consensus and cannot be guaranteed
within bounded delay. However, in the presence of a total ordering [114] in the CPS,
rebooting no longer poses a difficult problem. In Chapter 5, we utilize a total ordering
provided by intentionality clocks in order to reboot faulty replicas after detection.

Proactive recovery [115, 116] is an alternative to fault detection and (reactive) re-
covery for maintaining long-term availability of the CPS. In such a scheme, replicas
are scheduled to reboot regularly, regardless of whether they experience faults. This
approach is desirable if the replicas are observed to experience more faults with an
increase in running time, a phenomena known as software aging [117, 118, 119]. How-
ever, as we have seen in Chapter 1, and from several of our experiments, aging has not
been observed in CPS controllers. Rather, CPS controllers tend to have intermittent
faults that occur at timescales that are significantly lower than aging timescales. These
must be detected and reactively recovered, which causes proactive recovery to be
superfluous.

Replica Agreement

An emergent issue, when using active replication, is the split-brain syndrome [120,121]:
whereby two (or more) replicas are sending contradictory setpoints to the RAs. This
can occur due to the replicas computing with different input, a non-deterministic
compute function [122], or Byzantine faults [39]. In order to maintain correct control,
replicas in active replication must agree either on which replica sends the setpoints, or
on what setpoints the replicas must send.

18

2.3. Reliable Cyber-Physical Systems

As discussed in Section 2.3.2, this form of agreement requires a consensus protocol,
which is an expensive process with high tail latency. In Chapter 6, we highlight a set of
properties present in CPSs, which enables us to circumvent consensus, and we present
Quarts as a solution to the replica agreement problem.

2.3.4 Passive Replication

Passive replication [123, 124, 125, 126], also known as the primary-backup approach,
is another form of redundancy, in which one replica serves as the primary, receiving
input, computing, and issuing setpoints, and the others as standby. The primary
maintains control, while the standbys monitor the primary in order to detect it as
faulty. Once the primary is detected as faulty, the standbys perform leader election (via
consensus) and elect a new primary amongst themselves. The faulty primary can then
be recovered and set as standby.

Standby replicas in passive replication can be either hot [127, 128] or cold [129].
Hot standbys are state-synchronized by the primary after each computation, whereas
cold standbys are not. On one hand, once a hot standby becomes a primary, it can
immediately commence the control, as it has the most recent state. Cold standbys re-
quire additional time to get the current state, before taking part in further computation
rounds. On the other hand, maintaining hot standbys adds significant latency over-
head to each computation done by the primary. The choice is, therefore, a trade-off
between average-case performance, and worst-case performance.

Standby replicas in passive replication monitor the primary and detect it as faulty.
As mentioned earlier, perfect failure detection is impossible to guarantee in a bounded
time [38]. In this setting, imperfect failure detection might result in false negatives,
whereby a faulty primary is not detected, thereby reducing the availability of the system.
It might also result in false positives, whereby a non-faulty primary is considered to be
faulty. This is followed by the election of another primary among the standby replicas,
resulting in two primaries, and possibly in the split-brain syndrome.

Although failure detection is imperfect in theory, several proposed techniques
perform well in practice [110, 111, 112]. However, such techniques consider a crash-
only fault model. Delay faults further exacerbate the issue of imperfect detection, as
delay faults are intermittent in nature. On one hand, a primary replica that experiences
intermittent delays might not be detected, thereby suffering a reduced availability. On
the other hand, detecting an intermittently faulty primary and incurring the delay
of choosing a new primary via leader election further reduces availability. Therefore,
passive replication in the presence of delay faults is unsuitable for CPSs with real-time
constraints.

19

3 System Model

Don’t be fooled by the many books on complexity or by the
many complex and arcane algorithms you find in this book
or elsewhere. Although there are no textbooks on simplicity,

simple systems work and complex [ones] don’t.
— Jim Gray, “Transaction Processing: Concepts and Techniques”

In this chapter, we provide an abstraction of a CPS for electric grids, dividing it
into four layers. We introduce the operation model for the components in each layer,
the interactions among the different components, and the fault model. Finally, we
formally define the required properties for reliable and robust real-time CPSs.

3.1 Model of a Cyber-Physical System for Electric Grids

Figure 3.1 shows the abstract model of a CPS for electric grids. The grid in this example
comprises four buses, B0 − B3. Bus B0 is the slack bus, and buses B1, B2 and B3

have a generator (a producing resource), a battery (a prosuming resource) and a load
(a consuming resource), respectively. The control of the grid and the resources is
performed by software agents C1, C2, and RA1-RA3.

C1 and C2 are two controller replicas. Recall from Figure 1.2 in Chapter 1 that a
controller comprises a Grid Agent (GA) and a State Estimator (SE). Controllers receive,
from sensors, measurements on the state of the grid (voltage/power at each bus,
current at each line). In Figure 3.1, we see two controller replicas. Recall from Chapter 2
that active replication of the controller is necessary to handle delay faults.

Software agents RA1-RA3 are resource agents that read the state of the respective
resources, namely, the generator, the battery and the load, through a sensor interface
provided by the resource. For example, RA3 reads the internal state of the load, such

21

Chapter 3. System Model

RA1 RA2 RA3

C1

B1 B2 B3

B0

Sensors

C2

Figure 3.1 – Abstract model of a CPS for electric grids

as the temperature (for a thermal load), through the on-board thermostat.Then, the
sensed quantities are used to create an advertisement that encapsulates the state of
the resource. This advertisement is sent to the controllers C1 and C2.

In order to control the resources, the controllers perform computations and issue
setpoints, thereby keeping the grid in a desired state. The setpoints are received by
the RAs and implemented via the actuator interfaces at the resources. For example, a
setpoint for changing the injected power at a battery is implemented by the converter
on the battery, i.e., the actuator.

We divide the various components of the CPS into 4 layers, as shown in Figure 3.2.

1. Physical layer — consists of the electric grid and the resources (thermal load,
battery, generator, PV, supercapacitor, water pump).

2. Sensing and actuation layer — consists of sensors that read the state of the
physical layer and actuators that alter the state of the physical layer.

3. Network layer — consists of routers, links, and switches that represent the com-
munication infrastructure among software agents, sensors, and actuators.

4. Control layer — comprises the software agents (controllers and RAs) that receive
measurements from the sensors, perform computations, exchange messages
among themselves, and issue setpoints to the actuators.

22

3.2. The Bottom Three Layers

Physical layer

Network layer

Sensing and
Actuator layer

Control layer Software Agents

measurements

Resources	
 Grid	

Sensors	
 Actuators	

Routers
& links

setpoints

control
messages

C2 C1

RA1 RA2

B1 B2 B3

B0

Sensors

Figure 3.2 – Layers and components in a CPS for electric grids

3.2 The Bottom Three Layers

The focus in this thesis is on the control layer. The physical, sensing and actuation,
and network layers are not modified. However, it is essential to list the components in
these layers, to present their models, and to define the assumptions on each.

3.2.1 Physical Layer

The physical layer consists of the grid, comprising the buses, lines, transformers, and
breakers, in addition to the electric resources located at the different buses.

The grid topology includes the connections of the lines and buses, the line parame-
ters, the transformer locations and parameters, and the breaker locations and setting
(on/off). These, in addition to the bus voltage magnitudes and frequencies, and the
line currents, make up the state of the grid.

The electric resources are connected at different buses in the grid. They can be
production, consumption, or storage devices. They can either be controllable, via
setpoints sent to their actuators, or uncontrollable.

We make no assumptions on the physical layer. The grid might experience line
faults, and the resources might shut down or be unresponsive to actuation requests.

23

Chapter 3. System Model

3.2.2 Sensing and Actuation Layer

This layer consists of sensors and actuators, which are cyber components that interface
with the physical layer. Actuators are simple devices that interface with one electric
resource. They receive setpoints from RAs and implement them in their respective
resource. For example, a battery converter acts as an actuator that receives power
setpoints. One such setpoint might instruct it to implement +40 kW , to which it will
react by instructing the battery to inject 40 kW into the grid.

Sensors are of two types: synchronous and asynchronous. Synchronous sensors
are similar to actuators in that they interface with one electric resource. They receive
queries from RAs and respond with measurements capturing the current state of their
respective resource. For example, a battery sensor can be queried for the SoC of the
battery. The term “synchronous” refers to these sensors’ query-response model, i.e.,
they only send measurements when queried by an RA.

In contrast, asynchronous sensors send measurements to the controller without
being queried. We consider time-triggered asynchronous sensors that send measure-
ments at pre-determined time intervals. These sensors are placed at different locations
in the grid to ensure grid coverage or visibility [67]. The measurements they send con-
tain information on the voltage magnitudes and frequencies at certain buses, currents
at certain lines, etc.

We assume that asynchronous sensors send timestamped measurements, and that
they are time-synchronized with one another. Time-synchronization can be achieved
via GPS [80] for nanosecond accuracy, or network-based protocols, such as NTP [78]
or PTP [79], for an accuracy that ranges from microseconds to milliseconds. The
time-synchronization is assumed to be sufficient for the controller to time-align their
measurements [82]. We also assume that asynchronous sensors are not malicious, i.e.,
the measurements they send reflect the state of the grid at that time. Inaccuracies
are allowed by our model, as long as the redundancy in the sensor infrastructure is
sufficient for the controller to detect bad data [69].

Actuators and synchronous sensors are also assumed not to be malicious, i.e.,
actuators do not change the setpoints received before implementation, and sensors
do not contaminate the measurements before sending them to the RA. Inaccuracies
in sensing and implementation are allowed, as long as they are sufficiently bounded,
thus enabling the RA to account for them, as described in Section 3.3.1.

Both types of sensors can crash, be delayed, or be unresponsive to queries. Actua-
tors can crash or omit implementation requests. Actuators might also be delayed when
implementing setpoints, such as the case with thermal loads that are slow to react.
However, we consider that such delays are known to the RA, enabling it to account for
them in its advertisements, as seen in Section 3.3.1.

24

3.3. Control Layer

3.2.3 Network Layer

The network layer includes routers, switches, and links. It represents the infrastructure
required for the communication among the software agents in the control layer, and
between them and the components of the sensing and actuation layer.

The network is considered to be probabilistic synchronous [38]. That is, messages
might be dropped or delayed beyond a threshold δn. This occurs with a probability p.
Otherwise, messages are delivered within an upper bound on the one-way latency,
given by δn. Message reordering in the network is also considered as part of the model,
whereas message contamination is not.

The probability p, hereafter referred to as the loss probability, accounts for network
losses and delays that result from congestion, and from link or router failures. As
mentioned in Chapter 2, CPS networks can be enhanced via retransmissions using
QUIC [48], or via packet replication using iPRP [52]. The loss probability decreases
with the use of such protocols, but remains non-zero.

3.3 Control Layer

The control layer consists of the software agents that orchestrate the control of the
physical process. Recall from Chapter 1, Figure 1.2 that these comprise the RAs and
the controller. The controller is split into two components, namely, the SE and the GA,
that perform different functionalities.

3.3.1 Resource Agents

An RA is a software agent assigned to one electric resource. It is responsible for monitor-
ing the resource via the local synchronous sensor, and for controlling it via the actuator.
The RA model is shown in Algorithm 3.1. For a running example, we consider an RA of
a battery that receives setpoints instructing it to inject/absorb a certain current value.

The RA maintains two variables corresponding to advertisement fields (lines 1-2).
F represents the feasibility set of the electric resource. It is the region in which the
resource can operate. For example, F could be a current range in which the battery
can operate, specifying it can inject up to 40 A and absorb up to 30 A. In such a case,
F would contain all the numbers between -30 and +40 (positive current representing
injection into the grid). Setpoints outside this range cannot be implemented.

U represents the uncertainty of the resource in terms of actuation. It captures the
accuracy of both the actuator and the resource when implementing the setpoint. In
general, U is a set-valued function that depends on the value of the setpoint. For each

25

Chapter 3. System Model

Algorithm 3.1: Abstract model of an RA

1 F ← ∅; // feasibility set of the resource

2 U(.); // uncertainty function of the resource

3 Tval; // validity horizon of advertisement fields

4

5 on inititilization
6 Tval ← configure(); // initialize validity horizon from configuration file

7 end;
8

9 on reception of a setpoint sp from the controller
10 implement_setpoint(sp); // send sp to the local actuator

11 T ← get_current_time(); // get the current time

12 m ← sense_state(); // sense state of the resource via the local sensor

13 F , U ← update_state(m, Tval); // compute F and U with the given validity horizon

14 adv ← create_advertisement(F , U , T);
15 issue(adv); // send adv to the controller

16 end;

setpoint u in the feasibility set, U returns an uncertainty set that represents the set of
possible values the resource might actually implement, if instructed to implement u.
For example, U(u) = {u′ | 0.99 × u ≤ u′ ≤ 1.01 × u}, represents the uncertainty
function of a battery that has an uncertainty of 1% with respect to the setpoint value.
Alternatively, U could be absolute, i.e., independent of the setpoint value. For example,
U(u) = {u′ | − 30 A ≤ u′ ≤ 40 A}, represents an uncontrollable battery that might
implement any value in the given range, no matter what the setpoint is. We note
that setpoints might also contain active and reactive power (PQ), as shown in several
examples in Chapter 4.

These advertisement fields depend on time and on the state of the electric resource.
For example, the feasibility region of a battery depends on its SoC, and that of a PV
depends on the irradiance. A feasibility computed given a certain SoC would no
longer be valid when the SoC changes. We define the validity horizon (Tval) as the
time horizon during which advertisement fields are valid. Due to the low inertia of
some resources, such quantities can only be computed to be valid for a short time
[130, 131]. Furthermore, as we demonstrate in Chapter 4, it is desirable to compute
these fields with the minimum value of the validity horizon. The minimum value of the
validity horizon depends on the period of the control round, and is discussed further
in Section 3.3.3. The RA is assumed to be configured with this minimum value of the
validity horizon (lines 5-7).

Note that an RA might maintain additional variables for its advertisement fields,
such as the preference of the resource in terms of setpoint implementation. For
example, a battery with a low SoC might prefer setpoints that instruct it to absorb
current rather than to inject it, even though its feasibility set allows for either. We

26

3.3. Control Layer

focus on the aforementioned two fields, as they correspond to those required by the
controller to maintain grid safety and control the resources efficiently. In Chapter 8,
we discuss additional variables that might be useful in certain contexts.

The RA receives setpoints from the controller or, more specifically, the GA. Upon
receiving a setpoint (lines 9-16), the RA calls the implement_setpoint function (line
10), which sends the setpoint to the actuator for implementation. We consider that
this function only returns when the actuator finishes implementation. This enables
the RA to account for the time required for the implementation to fully take place and
to avoid reading a transient state from the sensor.

After implementing the setpoint, the RA measures the current time (line 11), then
it calls the sense_state function which queries the local synchronous sensor for the
state of the resource (line 12). This function returns a measurement, that is then used
by the RA to compute the advertisement fields, F and U , given the validity horizon Tval
(line 13). Then, it encapsulates the fields and the measured time in an advertisement
(line 14), which it sends to the GA (line 15). The time is measured after implementation,
and immediately prior to sensing the state of the resource. Thus, it represents the time
after the state of the resource changed due to the setpoint implementation.

Let us give an intuition behind the “meaning” of the advertisement fields. An
RA sends an advertisement to the GA in response to a setpoint received. This ad-
vertisement, along with advertisements from the other RAs, will be used by the GA
to compute the next setpoints that will be issued to the RAs. For each RA, the next
setpoint u, computed by the GA, must belong to the advertised feasibility set F , of that
RA. The advertisement also informs the GA that, given u, the resource might actually
implement any value in U(u), until the end of the validity horizon.

We note that the communication model between the GA and the RAs described
above is round-based. That is, in each round, the GA sends setpoints to its RAs, which
respond with advertisements. These advertisements are used to compute setpoints for
the next round. The notion of a control round will be discussed further in Section 3.3.3.

Moreover, as we explain in Section 3.3.3, some setpoints sent by the GA are not to
be implemented. Rather, they simply probe for an advertisement. For simplicity, we
do not explicitly account for such setpoints in the RA model. Instead, we assume that
the implement_setpoint function does not send these setpoint to the actuator.

Under our fault model, RAs might crash, be delayed in issuing advertisements, or
be unresponsive to the GA by dropping received setpoints. Erroneous behavior due to
software bugs or security attacks is not considered. Additionally, we consider that RA
delays in implementing setpoints are upper-bounded with a known upper bound δi.

27

Chapter 3. System Model

3.3.2 State Estimator

Algorithm 3.2: Abstract model of an SE

1 M ← ∅; // set of measurements received from sensors

2 Z ← []; // vector of measurements used in a computation

3 TZ ← 0; // timestamp of the measurements in Z

4 H ← ∅; // internal state of the SE

5

6 on reception of a measurement m from an asynchronous sensor i
7 M ← M ∪ {(m, i)}; // aggregate received measurements

8 end;
9

10 repeat
11 ready, Z, TZ ← ready_to_compute(M);
12 if ready then
13 st, H ← compute_state(Z, H);
14 issue(st, TZ); // send st to the GA

15 end
16 forever;

Algorithm 3.3: ready_to_compute(M) function in the SE

1 M′, TZ ← time_align(M);
2 ready, Z ← bad_data_detection(M′);
3 return ready, Z, TZ;

Recall from Chapter 1 that the SE is the component of the controller that is re-
sponsible for receiving measurements from the asynchronous sensors, computing the
state of the grid, and sending this state to the GA. A high-level SE model is shown in
Algorithm 3.2.

The SE maintains a setM of received measurements (line 1) that contains tuples
of the form (m, i), where m is a timestamped measurement received from the asyn-
chronous sensor with identifier i. The SE is pre-configured with the sensor identifiers.
M is updated upon the reception of a new measurement (lines 6-8).

Simultaneously, in the main thread (lines 10-16), the SE calls the ready_to_compute
function (line 11) with the parameterM. This function returns three values: (1) A
ready flag, indicating whether the SE should begin computation or wait for more
measurements otherwise, (2) a vector Z containing at most one measurement per
asynchronous sensor, to be used in the computation if the ready flag is set to true,
and (3) a timestamp TZ of the measurements in Z. If the ready flag is set to true, the
SE computes the current state of the grid st using Z and sends st and TZ to the GA
(lines 12-15). Note that we are considering a stateful SE, withH being its internal state,
updated after each computation, such as the gain matrix in a Kalman filter [132].

28

3.3. Control Layer

The ready_to_compute function is described in Algorithm 3.3. It first time-aligns
the received measurements (line 1). That is, it selects the set of measurementsM′
with the latest timestamps, selects a common timestamp TZ for these measurements,
and adjusts the values of the measurements accordingly. Then, bad_data_detection is
called onM′ (line 2). This function first checks whether enough measurements are
available to perform a computation, and if so, whether redundant measurements are
available to detect bad data and exclude it. It returns a ready flag and the vector of
measurements Z that can be used in computation if ready is set to true. Note that Z
contains the measurements inM′, excluding any bad data detected, indexed by the
identifier of the asynchronous sensor. Thus, Z contains at most one entry per sensor.

The SE, similarly to the GA, is susceptible to delay and crash faults. Whereas delay
faults are intermittent, crash faults are permanent until actively recovered. Such a fault
model can be represented by the Gilbert-Elliot model [133, 134], as shown in Figure 3.3.

Good (G)
P(fault) = pd

Crashed (C)
P(fault) = 1

qC

qG

Figure 3.3 – Fault model of the SE and GA

In this model, qC and qG are the transition probabilities from state G to state C per
computation round, and vice versa, respectively. pd is the probability of a fault in state
G, whereas the probability of a fault in stateC is 1. A fault, in this case, is defined as the
inability of the state estimator to issue a state to the GA within a predefined time limit.

We refer to faults occurring in state G as delay faults, and the ones in state C as
crash faults. An agent (SE or GA) in state G experiences intermittent faults, whereas
an agent in state C experiences faults until it is recovered, i.e., moves to state G. We
define θd and θc as the average probability of delay and crash faults, respectively, and
R as the rate of recovery from crash faults. From this model, we have the following:

θd = πG × pd =
qG

qG + qC
× pd

θc = πC × 1 =
qC

qG + qC

R = 1/qG

This model is used in Chapter 5 to formally characterize the benefits of Axo. It is
also used to define the simulation parameters in experiments throughout this thesis.

29

Chapter 3. System Model

3.3.3 Grid Agent

Algorithm 3.4: Abstract model of a GA

1 A ← ∅; // set of advertisements received from RAs

2 S ← ∅; // set of states received from the SE

3 ZA ← []; // vector of advertisements used in a computation

4 H ← ∅; // internal state of the GA

5

6 on initialization
7 X ← ∅; // initialize vector of setpoints to probes

8 issue(X); // send probes to the RAs

9 end;
10

11 on reception of an advertisement adv from an RA i
12 A ← A ∪ {(adv, i)}; // aggregate received advertisements

13 end;
14

15 on reception of a state st with timestamp T from the SE
16 S ← S ∪ {(st, T)}; // aggregate received states

17 end;
18

19 repeat
20 T ← current time; // get the current time

21 ready, timeout, ZA, st ← ready_to_compute(A, S, T);
22 if ready then
23 X, H ← compute_setpoints(ZA, st, timeout, H);
24 issue(X); // send X to the RAs

25 end
26 forever;

The other component of the controller is the GA. It is responsible for controlling
the entire grid by coordinating the various RAs. It receives advertisements from RAs
and the state of the grid from the SE, and computes and issues setpoints to the RAs.
Algorithm 3.4 shows a high-level model of the GA.

The GA maintains several variables. The first is a setA of received advertisements
(line 1) that contains tuples of the form (adv, i), where adv is a timestamped adver-
tisement received from the RA with identifier i. A is updated upon reception of a new
advertisement (lines 11-13). The second is a set S of received states and timestamps
from the SE (line 2), also updated upon reception (lines 15-17).

The main thread (lines 19-26) begins by recording the current time T (line 20),
then calls the ready_to_compute function, with the parametersA, S, and T (line 21).
Similar to its namesake in the SE model, this function returns a ready flag and a set of
variables to be used in the computation if the ready flag is true (lines 22-25).

30

3.3. Control Layer

A computation returns a vector X of exactly one setpoint per RA (line 23), each
of which is then issued to its corresponding RA (line 24). The GA can also have an
internal stateH (line 4) that influences the computation. This state is updated with
each computation (line 23).

There are two ways in which a computation can be invoked: the sets of advertise-
ments and states are enough to begin a computation or a timeout has occurred. The
former leads to what is referred to as implementation setpoints, whereas the latter
results in probe setpoints.

Implementation Setpoints

Implementation setpoints are control messages that carry information that the RA
must implement, such as a power setpoint or a current injection. Such setpoints are the
norm. They are computed and issued when the GA has enough information about the
current state of the grid and resources. In those cases, the ready_to_compute function
returns the following:

1. the ready flag set to true, indicating that the GA can begin a computation

2. the timeout flag set to false, indicating that no timeout has occurred

3. a vector ZA of at most one advertisement per RA, to be used in the computation

4. a state st to be used in the computation

The computation with these inputs returns a vector X containing one setpoint per
RA. The implementation of this set of setpoints by the RAs serves two purposes. First,
it maintains grid safety (formally defined in Section 3.4). Second, it optimizes for both
the preferences of the resources and the objective given to the GA, such as following
an external dispatch plan or providing frequency support to the main grid.

Under certain conditions, grid safety can be violated in order to maintain optimal
performance for the resources’ preference and the external request [135]. This can
be done as the standards allow limited violations [15, 16, 17]. However, in general,
maintaining grid safety takes precedence.

Probe Setpoints

In certain situations, and increasingly in the presence of non-idealities, the GA might
not have enough information to perform a computation. That is, a computation it
performs is not guaranteed to result in a vector of setpoints that maintains grid safety.
However, in order to maintain real-time control, the GA sends probe setpoints in those

31

Chapter 3. System Model

sp1

sp2

adv1 = (F1;U1)

Control Round

GA RA

sp3

adv2period ≈ Tctrl
Validity
Horizon

Figure 3.4 – Message sequence chart showing control rounds between a GA and an RA

situations. Probes do not carry information for implementation. Thus, RAs do not
implement these setpoints, but they generate new advertisements in response to them.

In such cases, the ready_to_compute function returns both the ready and timeout
flags set to true. The compute_setpoints function, when given a true timeout flag,
populates X with probes.

Probe setpoints are also issued when the GA is initialized (lines 6-9). The RAs
respond to these initial probes with advertisements, thereby completing the first
control round, and bootstrapping the CPS.

Control Rounds & Validity Horizon

As mentioned earlier, the communication between the GA and RAs occurs in rounds.
Here, in order to define the notions of a control period and a validity horizon, we
discuss the concept of a control round when the CPS has one GA replica. The for-
mal definition of a control round in a CPS with multiple GA replicas is presented in
Chapter 4.

As shown in Figure 3.4, a control round starts with the GA issuing setpoints to the
RAs. Each RA receives its setpoint and, if it is not a probe setpoint, implements it. The
RA then creates and sends an advertisement to the GA, which collects all received

32

3.3. Control Layer

advertisements, and computes setpoints for the next round.

A control round, therefore, is defined from one setpoint issue call at the GA to the
next. In real-time control, such rounds are pseudo-periodic, i.e., their duration lies in a
range [T1, T2] in non-faulty conditions. We define the period of the control round, Tctrl,
as the upper bound on the time between two setpoint issue calls (T2). Equivalently, the
duration of the control round can be measured from one advertisement issue call to
the next, i.e., from the point of view of RAs. This is useful for understanding the validity
horizon of advertisements.

Recall from Section 3.3.1 that an RA advertisement contains the feasibility region F
of the resource and its uncertainty U . These values are only valid for a time horizon,
referred to as the validity horizon. We re-iterate the meaning of an advertisement
through the example in Figure 3.4, in order to motivate the minimum value of the
validity horizon.

In Figure 3.4, the RA sends adv1 containing F1 and U1. The GA will use this ad-
vertisement to compute sp2. The RA, with this advertisement, is informing the GA
that sp2 must lie within F1, and that upon receiving sp2, it will have an uncertainty of
implementation given by U1(sp2). This is expected to hold until the following control
round, when the RA receives sp3. Therefore, the validity of the advertisement fields
must last for a duration equal to two control periods. We conclude that the validity
horizon Tval of an advertisement must be at least 2×Tctrl (including some buffer). This
value is configured in each RA, as mentioned in Section 3.3.1.

The minimum value of the validity horizon, however, does not take into account
probe setpoints, which extend the duration of the next implementation setpoint by
another period. In Chapter 4, we minimize the number of probe setpoints, by providing
a mechanism for the GA to compute implementation setpoints that maintain grid
safety, even when a timeout occurs.

Additionally, delay faults (in the GA, SE, RA, or network), can cause a setpoint
to be received, by the RA, at a time after the validity horizon of the advertisements
(used in its computation) has passed. The two problems this raises, specifically, the
delayed setpoint that must be discarded and the absence of a setpoint, are discussed
in Section 3.4.3, and are handled in Chapter 5.

Assumptions & Fault Model

We consider that the GA is pre-configured with the grid topology and the number of
RAs, their locations, and their identifiers. As the resources and RAs are susceptible to
faults, we consider that the GA has the ability to shed (disconnect) resources from the
grid, e.g., by disconnecting the breaker at the corresponding bus.

33

Chapter 3. System Model

Considering the non-idealities in the rest of the CPS, resulting from the fault models
of the other layers and components, the GA is susceptible to omissions of states and
advertisements. Additionally, it might receive them late or reordered. Moreover, as
mentioned in Section 3.3.2, the GA shares the same fault model as the SE, being
susceptible to delay and crash faults. Therefore, setpoints to RAs might be delayed, or
not issued at all.

In spite of this, the GA must maintain grid safety, both when controlling a grid
connected to an upper-level grid, and when controlling an islanded microgrid. We
formally define these requirements in what follows.

3.4 Formal Requirements

As mentioned earlier, the main goal of the CPS is to maintain grid safety. We formally
define grid safety as follows. Let vj(t), ik(t) be the voltage and current at bus j and in
line k, respectively, at time t. Let Vj and βj be the nominal voltage and the maximum
allowed voltage deviation at bus j. Let Ik be the ampacity limit for line k.

Definition 3.1 (Grid Safety). Grid safety is said to hold at time t if, and only if,

∀ j, Vj − βj ≤ vj(t) ≤ Vj + βj (3.1)

∀ k, ik(t) ≤ Ik (3.2)

Equations 3.1 and 3.2 provide bounds for the bus voltages and line currents. Typical
values for voltage bounds are ±10% of the nominal voltage, as specified by IEEE
standards [15]. Ampacity limits depend on the dimensions and material of the line.

The grid state evolves both in time and with the implementation of setpoints at the
RAs. Real-time control handles the evolution of state, by periodically sending setpoints
(every Tctrl) that maintain grid safety for the duration of the period.

In ideal conditions (i.e., when none of the CPS components experience faults), the
GA receives the state of the grid from the SE and all the advertisements from the RAs
“on time”. That is, it can compute setpoints that will be delivered to the RAs within
the validity horizon of the advertisements used for computation. These setpoints are
implemented by the RAs, thereby maintaining grid safety. Of course, setpoints under
these conditions are implementation setpoints, as no timeouts occur.

The challenge is to maintain grid safety in the presence of faults that might affect
the various components in all the layers.

34

3.4. Formal Requirements

3.4.1 Formal Computation & Implementation Model

Recall that the GA computes a vector of setpoints X that it issues to the RAs. Each
RA, upon reception of a setpoint xi, implements a setpoint according to its latest
uncertainty U . Therefore, the implemented setpoint x̂i is such that

x̂i ∈ U(xi) (3.3)

where U(sp) is the set of setpoints that the resource might implement in the validity
horizon of U if it is instructed to implement sp.

Define I(X) as the set of vectors of implemented setpoints that are the result of
applying Equation 3.3 to the elements of X. For example, consider a grid with a battery
and a load. The GA computes a vector of setpoints X = 〈20, 25〉, instructing the battery
to inject 20 A and the load to absorb 25 A. Given the uncertainty function of the
battery Ub and the load Ul are such that Ub(20) = [19, 20] and Ul(25) = [24, 26], then
I(X) = Ub(20)× Ul(25), i.e., the cross-product of the two uncertainty sets.

Definition 3.2 (Implementation Safety). Implementation safety is said to hold for a
vector of setpoints X if, and only if,

∀ X̂ ∈ I(X), implementing X̂ maintains grid safety

That is, X is said to be safe to implement if implementing it maintains grid safety,
even when the uncertainties of the resources are taken into consideration.

3.4.2 Robustness Requirements

Robustness is a property of the controller. Informally, a robust controller is one which
produces correct output, despite a non-ideal input. In our case, the GA is said to be
robust, if it computes a vector of setpoints that is safe to implement, despite missing,
delayed, or reordered input (state and advertisements). Such non-idealities to the
input of the GA are the result of faults that might affect the rest of the components in
the CPS. Recall from Chapter 2 that the state of the art for robust SEs is solid, hence we
do not discuss SE robustness.

We begin by considering input reordering that might result from network reorder-
ing, or from non-uniform delays across RAs. Recall that the communication between
the GA and RAs is round-based, with advertisements being in response to setpoints
in the same round. Thus, when the GA is computing setpoints, it must use the adver-
tisements that belong to the previous round, i.e., the ones that were in response to its
previous setpoint. Without such a property, the control round that a setpoint belongs
to offers no indication as to which advertisements were used in its computation. This

35

Chapter 3. System Model

property, therefore, is necessary to enable the RAs to provide reliable ordering (Defi-
nition 3.7), implementing only the setpoints that used the latest advertisements. We
formally define this as follows.

Definition 3.3 (Robust Ordering). Robust ordering is said to hold in a round r > 0 if,
and only if, the computation of implementation setpoints in round r takes as input
advertisements from round r − 1.

Non-idealities in the rest of the CPS (specifically the network) do not just affect the
GA input, they also affect the delivery of setpoints to the RAs. From the point of view of
the GA, this affects the set of possible setpoints that the RAs might implement. It also
raises other issues, which are discussed in the next subsection on reliability.

Recall that given a vector of setpoints X, I(X) represents the set of possible vectors
that the RAs might implement, considering their uncertainties at the time of reception.
We note that I(.) depends on the uncertainties of the resources advertised in the round
preceding the one in which X was computed. Thus, I(.) can be represented with a
subscript r, indicating that the uncertainties used belong to round r − 1. The set of
possible vectors in Ir(X), however, considers that all RAs will receive their setpoints.
In the presence of non-idealities, some RAs might not receive their setpoints, and they
will continue implementing the latest setpoint they received.

Consider a CPS in round r − 1 in which an RA is implementing x̂r−1. If this RA
receives setpoint xr in round r, it will implement a setpoint x̂r ∈ Ur−1(xr), as described
in Equation 3.3. The uncertainty is the one corresponding to the previous round, as this
was the one advertised by the RA and used in the computation of xr. It is to note that
the uncertainty of each resource changes with each setpoint implementation, i.e., in
each round, as shown in Algorithm 3.1. However, if the RA does not receive the setpoint
in round r, its resource will instead implement x̂r ∈ Ur−1(x̂r−1), as x̂r−1 represents
the latest setpoint it was implementing. Although Ur−1 would not be computed by the
RA in such a case, it still represents the state of the resource at that time.

We define Jr(X) as the set of vectors of implemented setpoints that are the result
of applying Equation 3.3, and considering the possibility of missing setpoints in some
RAs, to the elements of X. More precisely, in a given round r, Jr(Xr) is the set of all
possible vectors constructed as follows. The vector size is equal to the number of RAs.
Each element u of the vector corresponds to a setpoint implemented at a unique RA,
and is such that:

u ∈ Ur−1(xr) ∪ Ur−1(x̂r−1), (3.4)

where (1) Ur−1 is the uncertainty of the RA/resource in question, given in the advertise-
ment in round r − 1, (2) xr is the setpoint in Xr issued to this RA, and (3) x̂r−1 is the
actual setpoint implemented by the RA/resource at the time of the generation of the
advertisement of round r − 1.

36

3.4. Formal Requirements

In other words, for each RA, we consider the union of two sets: (1) the uncertainty
set of the issued setpoint in round r, considering it will be received, and (2) the un-
certainty set of the previous implementation, considering the issued setpoint is not
received. The assumption here, which follows from the model, is that the resource
continues implementing the previous setpoint, if it is not instructed to implement a
new one. The implementation, however, varies within the uncertainty set. Jr(Xr) is,
therefore, the cross product of the union of these two sets for each RA. We note that, by
construction, Ir(X) ⊆ Jr(X).

Definition 3.4 (Robust Safety). Robust safety is said to hold for a vector of implementa-
tion setpoints X computed in round r if, and only if,

∀ X̂ ∈ Jr(X), implementing X̂ maintains grid safety

Similar to implementation safety (Definition 3.2), a vector of setpoints X is ro-
bustly safe to implement, if implementing it maintains grid safety, even when the
uncertainties of the resources, and the possibility of network losses, are taken into
consideration.

We note that robust safety is defined only when a GA computes a vector of im-
plementation setpoints. Hence, it is trivial to avoid violating this property, by never
computing implementation setpoints. However, in order to maintain grid safety, the GA
must compute and issue such setpoints. Therefore, we introduce the robust availability
property, which requires the GA to compute implementation setpoints.

Definition 3.5 (Robust Availability). Robust availability is said to hold for a GA in a
round r if, and only if, it can compute a vector of implementation setpoints.

That is, despite missing or delayed advertisements, a robustly available GA, in a
given round, must compute implementation setpoints, i.e., it must not timeout and
issue probe setpoints.

Robust ordering, safety and availability are concerned with non-idealities, and
must be provided by a robustness mechanism. In addition to these properties, a robust
GA must not sacrifice its operation in ideal conditions, i.e., when it receives all its
inputs in a given round. That is, it must compute a vector of setpoints similar to that of
a GA that does not account for non-idealities.

Definition 3.6 (Robust Optimality). Robust optimality is said to hold for a GA in a
round r in which advertisements from all RAs are received if, and only if, its vector of
computed setpoints is the same as that computed by a GA in a CPS that implements
Algorithms 3.1-3.4.

Given the robustness properties (Definitions 3.3, 3.4, 3.5, 3.6), a robust GA can be

37

Chapter 3. System Model

defined as one that guarantees robust ordering, safety and optimality in all rounds,
and preserves robust availability, given the aforementioned guarantees.

In Chapter 4, we provide mechanisms for designing a robust GA for grids in grid-
connected mode, namely intentionality clocks and Robuster. In Chapter 8, we describe
the additional mechanisms required to handle islanded grids.

3.4.3 Reliability Requirements

Reliability is a also a property of the controller. Informally, a reliable controller is
one the faults of which are masked from the rest of the CPS. In our case, the GA
is said to be reliable if the RAs receive setpoints within the validity horizon of the
advertisements used in their computation. This must happen despite delay and crash
faults that might affect the GA, in addition to network faults that might drop, reorder,
or delay the setpoints. A similar definition can be given for an SE. In this section, we
discuss the requirements for a reliable GA. In upcoming chapters, we highlight how
the mechanisms designed for a reliable GA also apply for an SE.

As with the previous subsection, we begin by considering the reordering of set-
points. If an RA last issued an advertisement in round r, it must not implement
setpoints from rounds smaller than or equal to r. That is because an advertisement in
round r follows the implementation of a setpoint from round r. Only new setpoints,
i.e., from higher rounds, have considered this advertisement in their computation,
hence must be implemented.

Definition 3.7 (Reliable Ordering). Reliable ordering is said to hold for a GA if, and only
if, the RAs never implement setpoints from a round number smaller than or equal to the
round number of the last advertisement they issued.

Delay faults in the GA, or in the network, can cause setpoints to be received by RAs
at a time after the validity horizon of the advertisements used in their computation.
Such setpoints are henceforth referred to as invalid.

Definition 3.8 (Reliable Validity). Reliable validity is said to hold for a GA if, and only
if, the RAs never implement invalid setpoints.

As reliable ordering and reliable validity are properties that involve accounting for
non-idealities in the network between the GA and the RAs, they cannot be handled by
the GA itself. A GA cannot determine that a vector of setpoints is invalid before issuing
it, as it might become invalid only at the time of reception. It also cannot account
for reordering or message retransmission that might occur in the network. Therefore,
these properties can only be provided by a layer at each RA, which discards setpoints
that are invalid or out of order.

38

3.5. Conclusion

Additionally, it is trivial to satisfy these two properties by simply discarding all
received setpoints. This is accounted for with the following property.

Definition 3.9 (Reliable Availability). Reliable availability is said to hold for a GA in a
round r if, and only if, all the RAs implement a setpoint in that round.

That is, to preserve reliable availability, the aforementioned layer at each RA must
only discard setpoints that are out of order or invalid. However, in the presence of
delay and crash faults that affect the GA, the GA might not be able to compute and
issue setpoints in each round. In these cases, the GA is referred to as a single point of
failure. For this reason, the GA must be replicated, so that if one replica is experiencing
a fault, other replicas can maintain control by computing and issuing setpoints.

As discussed in Section 3.1, we consider CPSs with active replication of the GA (see
Figure 3.1). This enables handling delay faults and avoids having a single point of
failure in the CPS. However, setpoints from multiple replicas might be contradictory,
resulting in the split-brain syndrome (discussed in Section 2.3.3). Thus, the following
property must also hold.

Definition 3.10 (Reliable Consistency). Reliable consistency is said to hold for a set of
replicated GAs in round r if, and only if, any two vectors of setpoints issued by the GAs
in round r have the same setpoint values.

That is, all replicas that issue setpoints in a given round, issue the same setpoints.
Given the reliability properties (Definitions 3.7, 3.8, 3.9, 3.10), a reliable GA can be
defined as one that guarantees reliable ordering, validity, and consistency in all rounds,
and preserves reliable availability, given the aforementioned guarantees.

In Chapter 4, we describe intentionality clocks, a mechanism that guarantees
robust and reliable ordering. In Chapters 5 and 6, we introduce Axo and Quarts, which
together, along with intentionality clocks, enable designing a reliable GA.

3.5 Conclusion

In this chapter, we have presented an abstraction of a CPS for real-time control of
electric grids, in which we divide the CPS into four layers: the physical layer, the sensing
and actuation layer, the network layer, and the control layer. We have presented
the model of the components in each layer and discussed the interactions among
the various components. We have also described the fault model for each of the
components.

The presented models are simple enough to enable (1) analyzing the reliability and
robustness problems that exist in real-time CPSs, and (2) characterizing the utility and

39

Chapter 3. System Model

performance of the mechanisms introduced to mitigate these problems. The models
are also expressive enough to enable the construction of formal requirements for
designing reliable and robust CPS controllers. These requirements — robust ordering,
safety, availability, and optimality (Definitions 3.3-3.6) and reliable ordering, validity,
availability and consistency (Definitions 3.7-3.10) — are the basis for the provably
correct solutions presented in the rest of the thesis.

The layering approach we have followed in this chapter was also useful in design-
ing a virtual commissioning tool for real-time control of electric grids — T-RECS. In
Chapter 7, we discuss the design of T-RECS, highlighting the same layering approach.

40

4 Robust Real-Time Control of
Electric Grids

Success comes not from having certainty,
but being able to live with uncertainty.

— Jeffrey Fry

In Chapter 3, we introduced the properties required to design a robust GA, namely
robust ordering, safety, availability, and optimality. In this chapter, we propose two
mechanisms, intentionality clocks and Robuster, that together satisfy these properties.

Intentionality clocks is a labeling scheme tailored for round-based communication.
It uses logical clocks to assign a label to each message exchanged between the GA and
the RAs. That is, each setpoint and advertisement is assigned a label. This label reflects
the round number that this message belongs to. As mentioned in Chapter 3, the notion
of a round number is non-trivial in the presence of GA replication. We define this
notion in this chapter.

Intentionality clocks is used to satisfy robust ordering (Definition 3.3), ensuring
that the GA only uses, in its computation, advertisements that belong to the previous
control round. This mechanism also satisfies reliable ordering (Definition 3.7), by
discarding setpoints from previous rounds, before they reach the RAs. Recall from
Chapter 3 that these properties are trivial to satisfy, by never computing at the GA
for robust ordering, and by discarding all setpoints at the RA for reliable ordering.
However, we show that intentionality clocks preserves robust and reliable availability
(Definitions 3.5, 3.9), ensuring that in-order setpoints are always computed and never
discarded.

Robuster is an advertisement generation and setpoint computation mechanism.
In Robuster, the RAs create advertisement fields with both short-term and long-term
validity horizons. These are sent to the GA, which can then use the short-term fields
when they are available, maintaining robust optimality (Definition 3.6), and store the

43

Chapter 4. Robust Real-Time Control of Electric Grids

long-term fields for later use. If an advertisement is not available in a certain control
round from some RAs, the GA can use the long-term fields of previous advertisements
from those RAs, if these are still valid. Thus, Robuster enables the GA to compute
robustly safe setpoints in more control rounds, thereby increasing robust availability
(Definitions 3.4-3.5).

In this chapter, we first present intentionality clocks in Section 4.1. We motivate the
need for a labeling mechanism (Section 4.1.1), formally define the concept of control
rounds and round numbers (Section 4.1.2), highlight the labeling mechanisms in the
literature (Section 4.1.3), present the design of intentionality clocks (Section 4.1.4),
and formally prove its guarantees (Section 4.1.5). Then, in Section 4.2, we present
Robuster, which uses intentionality clocks to guarantee robust safety and optimality.
We introduce the problem Robuster is solving (Section 4.2.1), present the method
(Section 4.2.2) and the formal proofs (Section 4.2.3), and provide several examples
of how Robuster can generate advertisements for different resources (Section 4.2.4).
Finally, in Section 4.3, we evaluate these mechanisms through experiments in a grid
deployment, and we show that they perform better than state-of-the-art alternatives.
We offer concluding remarks in Section 4.4.

4.1 Robust and Reliable Ordering

4.1.1 Motivation

We consider the communication exchange between a GA and one or more RAs in
a CPS, as shown in Figure 4.1a. Such an exchange occurs in rounds, referred to as
control rounds. Recall from Figure 3.4 that a control round begins with the GA issuing
setpoints, which is followed by the RAs receiving these setpoints, implementing them,
generating advertisements, and issuing them to the GA, which in turn uses the received
advertisements to compute new setpoints. The issuing of the newly computed set-
points signals the end of the previous control round, and the beginning of a new one.
This is formally defined in Section 4.1.2.

On the implementation of a setpoint by an RA, the state of the resource, and conse-
quently that of the grid, is altered. The new state is encapsulated in the subsequent
advertisements sent to the GA. The GA can then use the advertisements from all the
RAs to recreate the new state of the resources and grid, and subsequently compute
setpoints that maintain grid safety.

If the state of the resources is different than the one the GA considers when com-
puting, then grid safety might be violated. Therefore, the computation of setpoints in
a round r must only take as input advertisements from round r − 1, as advertisements
from earlier rounds no longer reflect the actual state of the grid and electric resources.

44

4.1. Robust and Reliable Ordering

GA#

RA#

PV#

RA# RA#

Load# Ba,ery#

setpoint#
adver:sement#

(a) Non-replicated GA

GA#
GA1# GA2#

(b) Replicated GA with two replicas

Figure 4.1 – Communication between GA and RAs in a CPS

Hence, robust ordering must be satisfied (Definition 3.3).

Furthermore, an RA must only implement setpoints that were computed given the
current state of its resource. That is, only certain setpoints — those the computation of
which took as input the advertisement last issued by this RA — must be implemented.
Hence, reliable ordering must be satisfied (Definition 3.7).

In order to guarantee the aforementioned properties, messages exchanged between
the GA and RAs must be labeled with the round number they belong to. The labeling
scheme designed for this purpose must maintain correct labeling in the presence of
non-idealities and faults. These include the following: (1) Communication network
non-idealities, namely message losses, delays, retransmissions, and reordering (as
discussed in Section 3.2.3), (2) resource and RA faults, including crashes and unrespon-
siveness (as discussed in Section 3.3.1), and (3) GA crash and delay faults (as discussed
in Section 3.3.3).

Additionally, as the GA is a single point of failure, susceptible to crash and delay
faults, it is often replicated, as discussed in Chapter 3. The GA replication, shown in
Figure 4.1b, is presented in Chapters 5 and 6. In this chapter, we design the labeling
scheme — intentionality clocks — to be correct in the presence of GA replication.

Note that, in this discussion, we use the terms “state of the resource” and “state
of the grid” as a proxy for the state of the RAs. While the state of the physical layer
is continuous and evolving, the state of the RAs is discrete and only changes upon
a setpoint implementation. In real-time control of electric grids, the rate at which
setpoints are issued is comparable to the dynamics of the underlying grid. Thus, the
evolution of the state of the grid between two setpoint implementations (i.e., two
control rounds) is minimal, thereby justifying our usage of the term. In Section 4.2, we
revisit this issue and handle the evolution of state that occurs between control rounds,
as we discuss the validity horizon of advertisements.

45

Chapter 4. Robust Real-Time Control of Electric Grids

4.1.2 Control Rounds & Round Numbers

As mentioned in Chapter 3, a control round in a CPS with non-replicated GAs consists
of the following four steps: (1) It begins with the GA issuing setpoints to the RAs, then (2)
the RAs receive and implement these setpoints, then (3) the RAs issue advertisements
to the GA, and finally, (4) the GA uses these advertisements to compute new setpoints.
The new setpoints are issued in the next control round. All messages exchanged in
steps 1-4 are said to belong to a single control round.

However, in the presence of GA replication, multiple GA replicas are computing and
issuing setpoints to the RAs. Therefore, the above illustration can no longer uniquely
define a control round. Instead, we require a more elaborate definition of control
rounds and round numbers in such a case.

We make use of the property that GA replicas, given the same input, (i.e., the
same advertisements and internal state, reflecting the same state of the grid at a given
point) will issue the same output setpoints. This is the reliable consistency property
(Definition 3.10), which can be guaranteed as described in Chapter 6. This property
enables us to define the notion of control rounds and round numbers as follows.

The following three rules define a control round in a CPS with replicated GAs:

1. Upon booting, the initial setpoints issued by a GA replica belong to round 0.

2. An advertisement issued by an RA belongs to round number r, where r is the
maximum round number of a setpoint received by this RA, prior to the generation
of the advertisement.

3. A setpoint issued by a GA replica belongs to round number r + 1, where r is the
maximum round number of an advertisement received by this GA replica, prior
to the computation of the setpoint.

A control round, therefore, might be perceived differently at different GA replicas.
An external observer can assign round numbers to messages by following a given
execution trace of the CPS. However, the challenge is for distributed agents, with a
limited view of the CPS, to assign such round numbers. Intentionality clocks, presented
in Section 4.1.4, is a mechanism that enables distributed agents to assigned labels to
messages, which reflect the round numbers they belong to.

We note that, although control rounds are perceived differently at different GA
replicas, the control round period Tctrl remains valid. Tctrl is defined as the upper-
bound between two setpoint issue calls at a single GA replica, in non-faulty conditions.

46

4.1. Robust and Reliable Ordering

sp1

sp2

adv1

Computation
Delay

GA RA

t2

t1

Figure 4.2 – Shortcomings of temporal order in the presence of delays

4.1.3 Labeling in the Literature

Intentionality clocks is the first mechanism that assigns round numbers to messages in
CPSs with replicated controllers. Here, we summarize the different bodies of work that
address the problem of labeling messages to achieve ordering in distributed systems,
and we note their shortcomings when applied to round-based communication.

Temporal Order: Labeling via Timestamps

As CPSs are real-time systems, they generally keep track of physical time. To maintain
synchronized global time on all software agents, their physical clocks are synchronized
either using GPS-based synchronization [80] or network-based synchronization (e.g.,
NTP [78], PTP [79]). These time-synchronization solutions provide a synchronization
accuracy δ that ranges from sub-microsecond to one millisecond.

CPSs often leverage the availability of a synchronized time to reason about the
temporal ordering of messages. However, as we see in the following example, temporal
ordering does not coincide with round-based ordering in the presence of delays.

Consider a CPS in which a GA is communicating with several RAs, only one of
which is shown in Figure 4.2. We will consider a perfect time-synchronization (δ = 0).
Due to a delay at the RA shown, adv1 was generated a time t2 > t1, with t1 being the
time at which the GA computed the setpoints for round 2. Therefore, based on the
temporal ordering, adv1 occurs after sp2. A GA relying on timestamps and temporal
ordering might use adv1 in the computation of setpoints for round 3, thereby violating
robust ordering.

47

Chapter 4. Robust Real-Time Control of Electric Grids

Note that, in the earlier example, the GA computed setpoints for round 2 without
the advertisement from the delayed RA. This is due to a timeout triggering the com-
putation at the GA. Recall, from Section 3.3.3, that timeouts result in probe setpoints
being issued. The GA, therefore, might consider that adv1 was a response to the probe.
In this chapter (Section 4.2), we present a mechanism to enable computing implemen-
tation setpoints when timeouts occur. In that case, the GA might consider that adv1

was a response to the issued implementation setpoint.

We conclude that, on its own, timestamping is not sufficient to capture the round-
based ordering between the GA and RAs. In Section 4.1.4, we present intentionality
clocks, which provides such an ordering by using logical clocks instead of physical
clocks. This mechanism does not require synchronized physical time.

We note that the communication model between asynchronous sensors and the SE
is not round-based. Hence, measurements sent by asynchronous sensors to the SE can
be labeled and ordered via timestamps. As mentioned in Section 3.2.2, we assume for
this purpose that the sensors are time-synchronized with one another, and that their
time-synchronization enables the SE to time-align their measurements. That is, based
on the timestamps, the SE can infer a round associated with the measurements. Such
a round is independent of the round of the message exchange between GAs and RAs.

Causal Order: Lamport Clocks & Vector Clocks

Ordering in traditional distributed systems is done through a causal order, captured by
the happened-before relation [81]. Providing a causal order adheres to what is referred
to as the real-time causal consistency semantic [136]. This is achieved through one of
several mechanisms such as timestamps, Lamport clocks [81], or vector clocks [83].

As mentioned earlier, timestamps cannot capture the round-based ordering be-
tween GAs and RAs in the presence of delays. Here, we show that logical clocks provid-
ing a causal order also cannot capture the same, in the presence of GA replication.

Lamport clocks and vector clocks are complementary examples of logical clocks
that provide causal order. Lamport clocks describe the happened-before relation, i.e.,
if message m1 happened before message m2, then the label of m1 will be less than
the label of m2. The complementary approach using vector clocks infers this relation,
i.e., if the label of m1 is less than that of m2, then m1 happened before m2. However,
vector clocks can only provide a partial order between messages, as two labels might be
incomparable. This does not suit the round-based ordering of CPSs we aim to capture,
as a total order between messages is required for such an order. Therefore, we do not
consider vector clocks as an avenue in what follows.

Intentionality clocks use a scalar clock inspired from Lamport clocks. In Section

48

4.1. Robust and Reliable Ordering

sp1

adv1

adv0

Computation
Delay

GA1 RA GA2

adv0

adv1

sp01

Figure 4.3 – Shortcomings of causal order in the presence of GA replication

4.1.4, we discuss the differences between intentionality clocks and Lamport clocks in
greater detail. In the following example, we illustrate the shortcomings of the causal
order provided by Lamport clocks when GA replication is considered.

Consider a replicated GA, with two replicas GA1 and GA2 controlling a single RA, as
shown in Figure 4.3. GA1 and GA2 receive the advertisement adv0 from the RA. This
advertisement is used by each replica in the computation of a setpoint, resulting in
sp1 and sp′1 issued by GA1 and GA2, respectively. In such a scenario, sp1 and sp′1 belong
to the same control round. sp1 is received by the RA, and its implementation results
in adv1 being issued. However, due to a delay at GA2, adv1 is received before sp′1 is
issued. Under the causal order, adv1 is said to have happened before sp′1, and a labeling
mechanism based on Lamport clocks assigns adv1 with a label smaller than that of
sp′1. However, adv1 is in response to sp1, the setpoint issued by the other replica in the
same control round as sp′1. Under this round-based ordering, adv1 belongs to the same
control round as sp′1, and therefore must be considered as having happened after it, as
advertisements happen after setpoints of the same round.

The contrast between causal and round-based ordering, presented in the example
above, shows that Lamport clocks cannot be used for labeling messages in a CPS.

Order Without Labeling

Several industrial solutions circumvent the ordering problem by using frameworks,
such as the timely computing base (TCB) [87] or the time-triggered architecture (TTA)
[90], which provide synchrony guarantees. However, as mentioned in Chapter 2, using
such frameworks requires specialized hardware, in addition to a complete redesigning
of the application to fit the framework. In contrast, we propose a solution that requires

49

Chapter 4. Robust Real-Time Control of Electric Grids

neither. This facilitates deployment in existing CPSs.

Another approach is to hold consensus between the GAs and RAs, to agree on which
messages belong to each round. This handles the aforementioned non-idealities, faults,
and GA replication. However, consensus is unsuitable for real-time CPSs, due to its
high latency overhead, as mentioned in Chapter 2. In contrast, intentionality clocks
performs simple operations, hence incurs negligible latency overhead.

4.1.4 Intentionality Clocks Design

Intentionality clocks is a labeling mechanism that assigns labels to outgoing messages,
and that uses message labels to selectively discard incoming messages. To do this, this
mechanism maintains eventually synchronized logical clocks across all software agents,
namely GAs and RAs. Although it relies on eventual synchronization, intentionality
clocks guarantees robust and reliable ordering, as shown in Section 4.1.5.

Intentionality clocks is an adaptation of the Lamport clocks abstraction [81]. It is
designed to accommodate the round-based communication between GAs and RAs in
CPSs. Being an adaptation of Lamport clocks, it uses scalar clocks, whereby each agent
maintains a local logical clock C, which is a non-negative integer.

The logical clock at each agent serves two purposes. (1) The value of the logical
clock immediately before sending a message is used to assign a label of that message.
(2) The value of the logical clock immediately after receiving a message is used to
ascertain whether or not to discard that message, based on its label.

The labels are assigned such that they reflect the control round number that the
message belongs to. Messages are discarded at the GAs and RAs such that robust and
reliable ordering are satisfied. Additionally, only messages that violate robust and
reliable ordering are discarded, so that robust and reliable availability is preserved.

The design of intentionality clocks is given in Algorithms 4.1-4.3. The rules govern-
ing intentionality clocks are the following:

1. The value of the logical clock C at an agent, immediately before an issue call, is
assigned as the label of outgoing messages in that call.

2. At an RA with logical clock C, messages received with label ` ≤ C are discarded.

3. At a GA with logical clock C, messages received with label ` < C are discarded.

4. On reception of a message with a label ` at a software agent with logical clock C,
C takes the maximum value of C and `.

5. At a GA, the logical clock is incremented once before each computation.

50

4.1. Robust and Reliable Ordering

The main distinction between intentionality clocks and Lamport clocks is that, in
intentionality clocks, the logical clock is only incremented at a GA, and only when the
GA performs a computation. This enables the software agents to infer the control round
that the message belongs to. In contrast, Lamport clocks increment the logical clock at
each agent, every time that agents receives a message. First, this causes the agent to
lose the notion of a control round, as messages are not labeled accordingly. Second,
with Lamport clocks, in the presence of GA replication and network retransmissions,
the reception of multiple messages in the same control round causes the clock at the
receiving agents to diverge indefinitely. Consequently, Lamport clocks cannot be used
to guarantee robust and reliable ordering.

GA Design

Algorithm 4.1 describes the design of a GA with intentionality clocks. This is the same
as Algorithm 3.4, with the additions in red serving to integrate intentionality clocks.
Refer to Section 3.3.3 for an overview of the specifics of that algorithm. Together with
the complementary part at the RAs (see Algorithm 4.3), this algorithm guarantees
robust and reliable ordering, and preserves robust and reliable availability.

Each GA replica maintains a logical clock C, initialized to zero, when that GA boots
or reboots (line 5). C represents the current control round of the CPS, from the point
of view of this GA. Upon reception of an advertisement with label `, this advertisement
is aggregated into the set of received advertisementsA, along with its label (line 13).
Note that although we do not explicitly discard advertisements with labels less than C,
we do not use them in computation, as shown later.

Following rule #4, C is set to the maximum of ` and C (line 14). This serves to
re-synchronize delayed GA replicas. It is also applicable in the case of no replication,
when the GA reboots, which will be further discussed when describing Algorithm 4.3.

In the computation thread, the function choose_advertisements is called, passing
it as parametersA and C. This function, described in Algorithm 4.2, essentially returns
the subset of received advertisements with label equal to C, as these are the only
advertisements that can be used in the computation of setpoints for round C + 1.
This is in accordance with rule #3 of intentionality clocks, as advertisements with
smaller labels will not be used in subsequent computations. The chosen subset of
advertisementsA′ is passed as a parameter to the ready_to_compute function (line 24),
which is left unchanged. Note that in this case, each element in ZA will either contain
an advertisement with label C, or be empty otherwise.

The algorithm proceeds as described in Section 3.3.3. That is, if the ready flag
is set to true, either because of a timeout or because the advertisements in A′ are
sufficient to begin a computation, then a computation is performed (lines 25-29).

51

Chapter 4. Robust Real-Time Control of Electric Grids

Algorithm 4.1: Abstract model of a GA with intentionality clocks. The parts in red
are added to Algorithm 3.4

1 A ← ∅; // set of advertisements received from RAs

2 S ← ∅; // set of states received from the SE

3 ZA ← []; // vector of advertisements used in a computation

4 H ← ∅; // internal state of the GA

5 C ← 0; // logical clock on this GA

6

7 on initialization
8 X ← ∅; // initialize vector of setpoints to probes

9 issue(X, C); // send probes to the RAs

10 end;
11

12 on reception of an advertisement adv with label ` from an RA i
13 A ← A ∪ {(adv, i, `)}; // aggregate received advertisements

14 C ← max(C, `);
15 end;
16

17 on reception of a state st with timestamp T from the SE
18 S ← S ∪ {(st, T)}; // aggregate received states

19 end;
20

21 repeat
22 A′ ← choose_advertisements(A, C);
23 T ← current time; // get the current time

24 ready, timeout, ZA, st ← ready_to_compute(A′, S, T);
25 if ready then
26 C ← C + 1;
27 X, H ← compute_setpoints(ZA, st, timeout, H);
28 issue(X, C); // send X to the RAs

29 end
30 forever;

Algorithm 4.2: choose_advertisements(A, C) function in the GA

1 A′ ← ∅;
2 for each (adv, i, `) ∈ A do
3 if ` = C then
4 A′ ← A′ ∪ {(adv, i)};
5 end
6 end
7 returnA′;

52

4.1. Robust and Reliable Ordering

Before the computation, C is incremented1 (line 26), in accordance with rule #5. After
the computation, as mentioned in rule #1, the setpoints are issued with a label of C.

The selection of the state of the grid st, to be used in computation, is left for the GA
to decide in its ready_to_compute function. This selection depends on the internals
of the GA computation, and how it uses the state of the grid. We note that in certain
situations, a specific state of the grid — one which corresponds to the state of the
resources, as captured by the advertisements in that round — must be used. We
discuss how to handle such a situation in Chapter 6.

Note that timeouts are still a part of this model. Hence, probe setpoints might still
be issued. As probes in this case will have a label corresponding to the actual round
number, an RA receiving such a probe does not violate reliable ordering. Moreover,
probes are not implemented by RAs, so it is safe not to discard them. However, probes
are also issued by newly booted or rebooted replicas, with a label of 0. Such probes
would be discarded at the RA if the CPS has already been bootstrapped. We discuss
this case in what follows.

RA Design: Masker

At each RA, we propose an external component, which maintains the logical clock, in-
tercepts the received setpoints, discards out-of-order setpoints, and forwards in-order
ones. We call this component the masker, and its design is presented in Algorithm 4.3.

The masker is a component or a layer that resides at each RA. It maintains the
logical clock C of the RA, initialized to -1 (line 1) and the last advertisement issued by
the RA (line 2). The masker intercepts communication to and from the RA.

When the masker intercepts a setpoint with a label ` from a GA replica to the RA,
it discards it if ` ≤ C. Otherwise, the setpoint is forwarded to the RA (line 10). After
this step, the RA is assumed to have implemented that setpoint. Therefore, the logical
clock is updated to reflect the round number of the last setpoint implemented by the
RA (line 11). Then, the masker waits to intercept the advertisement issued by the RA to
the GA (line 13), and issues that advertisement, assigning it a label of C (line 14). This
procedure follows rules #1, #2, and #4 of intentionality clocks.

The special case, when ` = 0 and ` ≤ C, occurs when the masker has already
received and forwarded some setpoints to the RA (C > −1), and receives a setpoint
with label 0 (line 15). This case arises (1) when a GA is rebooted, initializing its logical
clock to zero and sending probe setpoints, (2) when a GA replica newly joins the system,

1The logical clock is constantly increasing. In theory, this might cause an overflow during deployment.
However, in practice, a 64-bit counter that is incremented once every millisecond (a comfortable lower
bound on Tctrl) requires over 500 million years to overflow.

53

Chapter 4. Robust Real-Time Control of Electric Grids

Algorithm 4.3: Masker component at an RA

1 C ← −1; // logical clock on the corresponding RA

2 adv ← ∅; // last issued advertisement by the RA

3

4 on reboot
5 C ← stored C; // read value of C from hard storage

6 end;
7

8 on reception of a setpoint sp with label ` from the GA
9 if ` > C then

10 forward(sp); // forward sp to the RA

11 C ← `;
12 store C; // store value of C in hard storage

13 adv ← receive_from_RA(); // wait for adv from the RA

14 issue(adv, C); // issue adv to the GA

15 else if ` = 0 then
16 issue(adv, C); // re-issue previous advertisement to the GA

17 end
18 end;

and does the same, or (3) when a retransmission causes an initialization probe to be
sent again. In such cases, the masker re-issues the last issued advertisement, assigning
it the same label that was assigned when it was last issued (line 16). This serves to re-
synchronize delayed GAs, by providing them with the latest advertisement and round
number. It also responds to probes without invoking the RA, thereby maintaining
reliable ordering.

As the RA must never receive (and implement) setpoints with labels smaller than
the round number of an implemented setpoint, the masker must keep track of the
highest round number seen. This must hold in spite of faults that might cause the
masker to reboot. Although this is not explicitly part of the system model, we account
for this possibility. To do so, we store the value of C in hard storage (i.e., on disk) after
each update (line 12), and read this value on reboot (line 5).

Note that although we say that the masker at each RA issues an advertisement to
“the GA”, we consider GA replication. Thus, we consider that the issue call sends the
message to all GAs, either using multicast or several unicasts. This can be done at the
masker without giving the RA knowledge of the GA replication, thereby maintaining
the design of the RAs unchanged.

4.1.5 Formal Guarantees

We formally prove that intentionality clocks, implemented in Algorithms 4.1-4.3, guar-
antees robust and reliable ordering. Then, we show that robust and reliable availability

54

4.1. Robust and Reliable Ordering

are preserved with intentionality clocks. For these, we make the assumption that, in
the presence of GA replication, setpoints issued by different replicas with the same
label to the same RA have the same value. That is, we assume that reliable consistency
holds (Definition 3.10). This allows us to consider advertisements in a given round to
be in response to setpoints of that round from any GA replica. In Chapter 6, we show
how this can be guaranteed.

Theorem 4.1 (Robust & Reliable Ordering). A CPS that implements Algorithms 4.1, 4.2
and 4.3 guarantees robust and reliable ordering. A message label provided by intention-
ality clocks is the round number of the message.

Proof. The proof uses strong induction on the control round r. We prove the following:
(1) The GAs do not violate robust ordering.
(2) The maskers do not violate reliable ordering.
(3) Setpoints with label ` = r belong to round r.
(4) Advertisements with label ` = r belong to round r.

Base Case:

Recall, from Definition 3.3, that robust ordering is defined for control rounds r > 0.
The computation of setpoints in the initial round (r = 0) does not use advertisements,
as they are probe setpoints with label 0 (Algorithm 4.1, lines 7-10).
Initially, the RAs have not issued any advertisement, so the reception of these probes
in round 0 does not violate reliable ordering (Definition 3.7).
These probes are forwarded to the RAs, and advertisements with label 0 are issued in
round 0 to the GAs (Algorithm 4.3, lines 10-14).

For a summary of the base case:
(1) The GAs do not violate robust ordering in round r = 0.
(2) The maskers do not violate reliable ordering in round r = 0.
(3) Setpoints with label ` = 0 belong to round r = 0.
(4) Advertisements with label ` = 0 belong to round r = 0.

Inductive Step:

We proceed to show that these four statements hold for round r, assuming they hold
for all rounds r′ < r.

From Algorithm 4.1 lines 22, 26, 28, we see that setpoints issued with a label ` = r use,
in their computation, advertisements with label ` = r − 1.
From the inductive assumption (4), these advertisements belong to round r − 1.
Recall from Section 4.1.2 that setpoints using advertisements from round r − 1, belong
to round r.
Therefore, setpoints with label ` = r belong to control round r.

55

Chapter 4. Robust Real-Time Control of Electric Grids

This proves statement (3) and, consequently, statement (1).

From Algorithm 4.3 lines 11, 14, the masker assigns a label ` to advertisements that are
in response to setpoints with label `.
Using statement (3), if ` = r, then these setpoints belong to round r.
Therefore, the advertisements belong to round r.
This proves statement (4).

From Algorithm 4.3 line 9, the RAs receive setpoints only if their label is larger than C.
From Algorithm 4.3 lines 11, 14, C is the label of the last advertisement issued.
Using statements (3) and (4), reliable ordering is maintained in round r.
This proves statement (2).

As mentioned in Chapter 3, robust ordering can be trivially satisfied by never
computing at the GA. Similarly, reliable ordering can be trivially satisfied by always
discarding setpoints, before implementation, at the RA. However, such a trivial mecha-
nism violates robust and reliable availability (Definitions 3.5, 3.9).

Robust and reliable availability cannot be guaranteed, as they depend on sev-
eral factors. For example, a network partition would cause the RAs to never receive
setpoints, thereby violating reliable ordering. Similarly, all GA replicas might crash,
thereby violating robust ordering. Therefore, the best a labeling scheme can achieve is
preserving robust and reliable availability if they hold.

However, as seen in Section 4.1.4, intentionality clocks discards some advertise-
ments rather than use them in computation, and it discards some setpoints rather
than forward them to the RAs for implementation. In the following two theorems, we
show that intentionality clocks only discards advertisements and setpoints that violate
robust and reliable ordering. We say that this preserves robust and reliable availability.

Theorem 4.2 (Robust Availability: Intentionality Clocks). Intentionality clocks only
discards advertisements from a computation if using these advertisements violates
robust ordering.

Proof. In Algorithm 4.1, line 22, the choose_advertisements function discards some
advertisements.
These advertisements are discarded so they will not be used in computation of set-
points with label C + 1 (lines 26-27).
Hence, these setponits belong to round C + 1 (Theorem 4.1).
In Algorithm 4.2, we see that the only advertisements discarded are ones with la-
bel ` < C.
Hence, these advertisements belong to rounds less than C (Theorem 4.1).
Therefore, using these advertisements would violate robust ordering.

56

4.2. Robust Safety, Availability, and Optimality

Theorem 4.3 (Reliable Availability: Intentionality Clocks). Intentionality clocks only
discards setpoints if implementing these setpoints violates reliable ordering.

Proof. In Algorithm 4.3 line 9, the masker discards setpoints with label ` ≤ C.
C is the highest label of an advertisement issued (lines 11, 14).
Hence, discarded setpoints belong to round numbers smaller or equal than the round
number of the last advertisement issued by the RA (Theorem 4.1).
Therefore, implementing these setpoints violates reliable ordering.

4.2 Robust Safety, Availability, and Optimality

4.2.1 Overview

In Section 4.1, we handled the case of message reordering affecting the GA and RAs.
Here, we handle the case of message losses or delays. During long-term deployment of
a CPS, and due to the reliance of real-time CPSs on COTS components [32], communi-
cation network non-idealities arise. This, in addition to faults affecting the resources
and the software agents, might cause certain messages to be omitted, lost, or delayed.
Such non-idealities increase the uncertainty in the operation of the GA, and limits
its ability to maintain a feasible control over the grid resources, i.e., to maintain grid
safety. Given the mission-critical nature of real-time grid control, and the possible
consequences that might arise in case of failure [12], it is essential for GAs to be robust
in the presence of such non-idealities and uncertainties.

As an example, consider a grid-connected microgrid, as shown in Figure 4.1a, that
consists of a battery, a PV panel, and a load. Let us suppose that the GA has the
objective of providing primary frequency support to the main grid by controlling the
battery power flow injection/absorption. It also needs to ensure that the bus-voltage
and line-current magnitudes are within the safety limits, despite the stochastic profile
of the PV injections and load consumption. A quick change in the frequency signal, PV
production, or load consumption, coupled with a loss of advertisements, renders the
GA unaware of the present and future state of the grid resources, and thus incapable of
computing setpoints that maintain grid safety in the next round.

Several controller designs presented in the literature assume an ideal communi-
cation network [8, 59, 60]. However, despite advances in improving the resiliency and
reliability of communication in power grids [52, 137, 138], non-idealities cannot be
eliminated due to the stochastic nature of wide-spread communication networks. This
is especially true for real-time applications, in which low latencies are required.

As mentioned in Chapter 2, the state of the art on SE robustness is solid. Therefore,
we consider that state-of-the-art techniques for handling missing state (from the SE) at

57

Chapter 4. Robust Real-Time Control of Electric Grids

the GA can be used. In this section, we reiterate the issue and the solution to missing
setpoints at the RAs, that was discussed in Chapter 3. The main focus, however, is on
handling missing advertisements at the GA.

Recall, from Chapter 3, that the ready_to_compute function at the GA decides when
the GA has sufficient information to begin a computation. More specifically, it checks
whether the set of received advertisements can be used to compute a vector of imple-
mentation setpoints that maintain grid safety. When advertisements are occasionally
lost to the GA, the ready_to_compute might deem the set of advertisements insuffi-
cient to begin a computation, eventually signaling a timeout. Timeouts result in probe
setpoints being issued, decreasing the availability of the CPS.

In Section 4.1, we limit the advertisements that a GA can use in its computation.
More specifically, to compute a setpoint in round r, a GA must only use advertisements
from round r − 1. The reason behind this restriction is that the validity horizon of
advertisements is such that they will not be valid beyond the next round, after they are
generated and issued at the RAs. Increasing the validity horizon of all advertisements
would allow the GA to use advertisements from earlier rounds. However, as mentioned
in Chapter 3, this results in advertisements with larger uncertainties, which affects
the optimality of the computation. This is not desirable in the average case, when all
advertisements are received. Formally, this violates robust optimality (Definition 3.6).

We propose Robuster, a mechanism for generating advertisements and computing
setpoints that maintains robust safety and optimality, and increases robust availability
(Definitions 3.4-3.6). Robuster uses a technique similar to buffered actuation [70,71,72]
used by SEs. It enables the RAs to compute advertisement fields with both short-term
and long-term validity horizons. Short-term fields are valid for one control round, as
earlier, and are used by the GA when they are present, thereby maintaining robust
optimality. Long-term fields are valid for the n controls rounds, and can be used by
the GA in rounds when an advertisement from that RA is missing. This enables the GA
to compute implementation setpoints in those rounds, providing robust availability.
Robust safety is not violated, as the validity horizon of the long-term fields extends to
those control rounds.

We note that by allowing the GA to use advertisements from older rounds, we are
relaxing the robust ordering property. However, we ensure that the advertisements
used in a given computation round are valid for that round. We also note that we refer
to validity horizons in terms of both time and control rounds. From the point of view
of RAs, validity horizons are computed to be valid for a certain horizon measured in
time, for example 2× Tctrl for the short-term fields. This time is selected such that it
represents a given number of control rounds, one control round in this case. From the
point of view of the GA, validity horizons are only treated in terms of rounds, assuming
no delays have occurred or will occur. In Chapter 5, we discuss how the RA discards

58

4.2. Robust Safety, Availability, and Optimality

setpoints that are received after the validity horizon (in terms of time) has passed.

4.2.2 Robuster Design

Handling Missing Setpoints

Recall, from Chapter 3, the definition of J(X) (Equation 3.4). Given for a vector of
implementation setpoints X, Jr(X) is a set that includes all the possible vectors of
actually implemented setpoints at the RAs, after X is issued by the GA. For each RA,
this includes the uncertainties associated with its uncertainty field U , in addition to
the possibility of the setpoint in X not being received at the RA.

Given that the setpoints represent power, voltage, or current values, that are real
numbers, the cardinality of the set of possible implemented setpoints (u) for each RA
might be infinite. In turn, the set of possible vectors of implemented setpoints (Jr(Xr))
might have infinite cardinality. However, we do not claim that the GA must store or
even compute this set. We state that the GA, given the required input, can compute
a vector of setpoints Xr, such that robust safety holds. That is, the GA can guarantee
that every possible vector in Jr(Xr) maintains grid safety if it represents the actual
implementation. This, so-called admissibility test in the literature, can be performed
without computing the infinite set, and in real-time [139, 140].

In what follows, we assume that the compute_setpoints function at the GA per-
forms this admissibility test. If the test fails, the GA might respond by sending probe
setpoints, waiting for the conditions to change, or by shedding resources in order to en-
sure grid safety. If the test succeeds, then the vector of computed setpoints guarantees
robust safety. This, however, only holds if the validity horizon of the advertisements
used in computation is valid. Thus, for each RA, the advertisement from the previ-
ous control round is required to compute a robustly safe vector of implementation
setpoints. Next, we show how we can construct and use long-term fields in advertise-
ments, in order to enable the GA to compute setpoints that maintain robust safety,
even when some advertisements are missing.

Properties of Long-Term Fields of an Advertisement

Here, we consider that the feasibility region is a set, and that the uncertainty is a
set-valued function with its domain being values from the feasibility region. Such a
representation is generic, as any form of feasibility and uncertainty can be transformed
into this representation. We note that we do not discuss the preference of the resource.
We do not provide guarantees on the preference of resources when advertisements
from those resources are missing. Instead, in those cases, we only guarantee that
robust safety is maintained, and that robust availability is preserved.

59

Chapter 4. Robust Real-Time Control of Electric Grids

We augment the advertisements at the RAs to include three new fields: (1) the
measured implemented setpoint at the resource (x̂r in Equation 3.4) after the RA calls
implement_setpoint (Algorithm 3.1), (2) a long-term feasibility region Fn valid for the
next n > 1 control rounds, and (3) a long-term uncertainty function Un also valid for
the next n rounds.

The original feasibility region (F) and uncertainty function (U) are henceforth
referred to as short-term fields. As mentioned earlier, the short-term fields have an
associated validity horizon λ = 2 × Tctr, measured in time. In other words, F(t),
measured and computed at time t, is only valid in the range [t, t + λ]. This is used
by the masker at the RA in Chapter 5 to discard setpoints that are received outside
that range. We say F(t) = F [r] if F(t) belongs to an advertisement from round r. The
validity horizon for short-term fields is one control round. This is used by the GA to
ascertain whether an advertisement is still valid to be used in a computation.

Short-term fields estimate the behavior of the resource in the horizon that the next
control action (i.e., setpoint) is expected to be implemented. Hence, λ is equal to twice
the control period (2× Tctrl). In general, this horizon should be short enough to allow
the GA to cope with the fastest dynamics in the system, and long enough considering
the computing capabilities of the GA and the latency of the communication network.

Long-term fields must be valid for a longer horizon Λ. Thus, we sayFn(t), measured
and computed at time t, is only valid in the range [t, t+Λ]. Λ must be such that the range
[t, t+ Λ] includes the next n expected setpoint implementations (assuming no delays).
Hence, following a similar line of reasoning as in Figure 3.4, Λ = (n+1)×Tctrl. Therefore,
Fn(t) = Fn[r] can be used in the computation of setpoints in rounds r′ ∈ [r+1, r+n],
i.e., it has a validity horizon of n rounds.

Long-term fields estimate the behavior of the resource, including the uncertainties,
in the larger validity horizon. Additionally, as long-term fields span multiple control
rounds, they must account for all the possible setpoint implementations that take place
during these rounds. That is, for controllable resources, the state of the resource might
change because of a setpoint implementation in one of the control rounds captured
by the validity horizon. This is to handle cases when the RA implements a setpoint
sent by a GA in round r, but the advertisement issued by the RA is not received by the
GA. In such cases, the GA will use the long-term fields of a previous advertisement
from this RA, for the next setpoint computation. These fields must account for both
the possibilities that the setpoint was, or was not, implemented.

Formally, the following properties must hold for the long-term fields.

Property 4.1 (Long-Term Feasibility).

∀ r′ ∈ [r, r + n− 1], Fn[r] ⊆ F [r′]

60

4.2. Robust Safety, Availability, and Optimality

In other words, the long-term feasibility should be a subset of all short-term feasi-
bility sets that lie within its horizon. This equates to the intersection of all short-term
feasibility sets of the next n control rounds. This property ensures that any setpoint in
Fn[r] lies within the feasibility region of the resource for the entire long-term horizon.
Therefore, if the GA chooses a setpoint from Fn[r] for some RA, it is guaranteed to be
within the actual feasibility region of the RA, if it is received at a time t′ ≤ t+ Λ, where t
is the timestamp of the advertisement in round r, and Λ = (n+ 1)× Tctrl.
Property 4.2 (Long-Term Uncertainty).

∀ r′ ∈ [r, r + n− 1], ∀ u ∈ Fn[r], U [r′](u) ⊆ Un[r](u)

As the uncertainty function encapsulates the uncertainty of the resource when
instructed to implement a setpoint u, the uncertainty set of a setpoint should contain
all the short-term uncertainty sets of that setpoint in the long-term horizon. This
equates to the union of all short-term uncertainty sets of that setpoint in the next n
rounds. This ensures that any actual implementation in the next n rounds lies within
the long-term uncertainty set of the issued setpoint. Therefore, if the GA computes
a setpoint, in round r, that passes the admissibility test (i.e., maintains robust safety)
when considering the uncertainty advertised in Un[r], then it maintains robust safety
given the actual uncertainty U(t′), for t′ ≤ t + Λ, where t is the timestamp of the
advertisement in round r, and Λ = (n+ 1)× Tctrl.

Note that the condition in Property 4.2 must hold for all u in Fn[r]. Given that the
domain of Un[r] is Fn[r], and the domain of U [r′] is F [r′], then Property 4.1 guarantees
that all the elements of Fn[r] are in the domain of U [r′] as well, for all valid values of r′.

The choice of the long-term horizon (n or Λ) is a trade-off between several factors.
A smaller horizon requires less time to compute, provides a more accurate prediction,
and exports less uncertainty to the GA. However, as the horizon decreases, the GA
becomes less robust to losses, as it is only robust to n − 1 consecutive losses from
a single RA. Sending both fields allows us to take advantage of the accuracy of the
short-term prediction, and the robustness of having a longer-term horizon. In general,
one can compute and send fields for several long-term horizons in each advertisement,
and use the most accurate available one at the GA for computation. We show the case
of only one long-term and one short-term horizon, as the general case becomes a
simple extension. Note that the value of n could be different for different RAs. For
simplicity, we maintain a single value when describing the design.

GA Design

The design of the GA for Robuster remains largely unchanged from Algorithm 4.1,
except for two functions. The first is compute_setpoints (line 27). This function must

61

Chapter 4. Robust Real-Time Control of Electric Grids

Algorithm 4.4: choose_advertisements(A, C) function in the GA with Robuster

1 A′ ← ∅; // set of chosen advertisements

2 L ← {0}; // vector of highest label seen for each RA

3 n; // pre-configured value of long-term horizon

4

5 for each (adv, i, `) ∈ A do
6 if ` > C − n and ` > L[i] then
7 if ` = C then
8 adv′ ← (adv.F , adv.U , adv.T);
9 else

10 adv′ ← (adv.Fn, adv.Un, adv.T);
11 end
12 Remove advertisement with identifier i fromA′;
13 A′ ← A′ ∪ {(adv′, i)};
14 L[i] ← `;
15 end
16 end
17

18 returnA′;

perform the admissibility test [139, 140], as mentioned in the previous subsection. We
do not go into the details of the test, as it is beyond the scope of this thesis.

The second function is the choose_advertisements function, previously described
in Algorithm 4.2. The modified function is presented in Algorithm 4.4. In this function,
the GA maintains, in addition to the set A′ of chosen advertisements, a vector L of
labels, corresponding to the highest label stored for each RA in A′ (lines 1-2). We
consider that the GA is pre-configured with the long-term validity horizon, given as n
to this function.

The function iterates through the set A of all advertisements, only selecting ad-
vertisements with labels greater than C − n (line 6), as other advertisements are no
longer valid. It also does not consider advertisements from an RA which already has
an advertisement inA′ with a higher label (line 6). Thus, for each RA, only the latest
valid advertisement, if any, is finally stored inA′.

Among the latest valid advertisements for each RA, if the label of the advertisement
is equal to C, i.e., if the advertisement belongs to the immediately previous control
round, then the short-term fields of that advertisement are stored in adv′ (line 8), as
their validity horizon has not passed. Otherwise, the advertisement belongs to an
earlier round, but its long-term fields are still valid. In these cases, the long-term fields
are stored in adv′ (line 10). We note that adv′ always contains the timestamp of the
advertisement, and any other field that the RA includes in the advertisement, such as
the preference. As mentioned earlier, the preference does not affect grid safety, and
can be considered of secondary importance when an advertisement loss occurs.

62

4.2. Robust Safety, Availability, and Optimality

After computing adv′, it is inserted intoA′, replacing any advertisement from that
RA inA′, if any (lines 12, 13). Then, L is updated to reflect that the latest label for the
RA in question has changed (line 14).

Recall, from Algorithm 4.1 that the returned A′ is passed as a parameter to the
ready_to_compute function, which in turn decides whether the advertisements present
are sufficient for a computation. Robuster makes no changes to that function. Rather,
it maximizes the chances that that function returns a ready flag set to true, as it maxi-
mizes the number of available advertisements that are valid, hence safe to use.

4.2.3 Formal Guarantees

We say a CPS implements Robuster if its RAs generate short-term and long-term
fields for advertisements, satisfying Properties 4.1, 4.2, and its GAs are designed as
described in the previous subsection, specifically Algorithm 4.4. We show that a CPS
that implements Robuster guarantees robust safety and robust optimality. As Robuster
enables the GA to compute setpoints in control rounds in which it could not previously
compute, we say Robuster increases robust availability.

Theorem 4.4 (Robust Safety). A CPS that implements Robuster guarantees robust safety.

Proof. Given that the GA implementing Robuster performs the admissibility test before
issuing a vector of implementation setpoints, it suffices to show that the advertise-
ments used in the computation of that vector are valid in the round of computation.

From Algorithm 4.4 line 6, we see that A′ returned by the choose_advertisements
function only contains advertisements with label ` > C − n.
From Algorithm 4.1 line 22, in a computation for round r, the parameter C passed to
the choose_advertisements function is equal to r − 1.
Therefore, only advertisements with label ` > r − n− 1 are used.
Also ` < r, as we are computing for round r.
Therefore, advertisements used have a label ` ∈ [r − n, r − 1].

If ` = r − 1, the short-term fields of this advertisement are used (line 8).
These fields are valid for round r by construction.
Otherwise, when ` ∈ [r − n, r − 2], long-term fields are used (line 10).
From Properties 4.1, 4.2, long-term fields for an advertisement from round r′ are valid
to be used in computation for rounds I(r′) = [r′ + 1, r′ + n].
∀ ` ∈ [r − n, r − 2], r ∈ I(`).

Robust optimality (Definition 3.6) requires that the vector of computed setpoints
be unaffected by Robuster when all advertisements are received. However, Robuster

63

Chapter 4. Robust Real-Time Control of Electric Grids

requires an admissibility test to be performed by the GA. Although such a test is
to be performed by a non-robust GA, Robuster increases the set of possibilities by
considering setpoint losses. Even when all advertisements are received, Robuster
must maintain this consideration. Therefore, in some rounds, the admissibility test
might fail due to this additional consideration, thus affecting the vector of computed
setpoints. Hence, robust optimality can only be guaranteed when the admissibility
test succeeds.

Theorem 4.5 (Robust Optimality). A CPS that implements Robuster guarantees robust
optimality in all rounds in which the admissibility test succeeds.

Proof. From Algorithm 4.1, the vector X of computed setpoints in a round r depends
on parameters that are the output of the ready_to_compute function (lines 24, 27).
Robuster only modifies one parameter of the ready_to_compute function, namelyA′.
Therefore, it suffices to show that when all advertisements are received, A′ is left
unchanged by Robuster. In that case, the ready_to_compute function would return the
same values, and the compute function would compute the same vector of setpoints, if
the admissibility test succeeds.

We compare Algorithm 4.4 with Algorithm 4.2 when all advertisements from round r−1

have been received.
If the GA is computing setpoints for round r, then the choose_advertisements function
is passed C = r − 1.
Algorithm 4.2, therefore, returns a setA′ that contains one advertisement from each
RA with label C (line 3).
These advertisements only contain short-term fields, as no robustness mechanism is
implemented.

Algorithm 4.4 will find an advertisement with label C from each RA (line 7).
It inserts that advertisement intoA′, including only its short-term fields (lines 8, 13).
It also removes any advertisement from that RA with a smaller label (line 12).
Therefore, Algorithm 4.4 and Algorithm 4.2 return the sameA′.

4.2.4 Construction of Long-Term Fields

The construction of long-term fields of advertisements depends on the specifics of
both the CPS and the resource. Here, we show how these can be constructed for three
types of resources in the COMMELEC framework [8]. COMMELEC is described in detail
in Chapter 8. For the purpose of this section, it suffices to know that in COMMELEC,
the GA sends AC active and reactive power setpoints.

The three types of resources considered here are (1) a fully controllable battery,
(2) an uncontrollable PV, and (3) an uncontrollable load. The methods presented for

64

4.2. Robust Safety, Availability, and Optimality

Algorithm 4.5: Power bounds for the short-term feasibility of a battery

Function: getShortTermBounds(P, Q, Tctrl, SoC)

1: λ = 2× Tctrl
2: Use a converter model to get the corresponding DC power p from the AC

setpoint (P, Q) implemented at time t
3: Use p and SoC to estimate the SoCλ: the SoC of the battery at t+ λ
4: Use SoCλ to compute the DC power bounds, pλmin, pλmax, that respect the DC

voltage and current limits, as in [141]
5: Use the converter model to get P λmin, P λmax from pλmin, pλmax
6: return P λmin, P λmax, SoCλ

Algorithm 4.6: Power bounds for the long-term feasibility of a battery

Function: getLongTermBounds(P, Q , Tctrl, SoC, n, S)

1: [P λmin, P λmax, SoC
λ] = getShortTermBounds(P, Q, Tctrl, SoC)

2: SoCλmin = SoCλmax = SoCλ

3: for all i ∈ [1, n− 1] do
4: [P

(i+1)λ
min ,−, SoC(i+1)λ

min] = getShortTermBounds(P iλmin, Q, Tctrl, SoC
iλ
min)

5: [−, P (i+1)λ
max , SoC

(i+1)λ
max] = getShortTermBounds(P iλmax, Q, Tctrl, SoC

iλ
max)

6: end for
7: PΛ

min = maxi∈[1,n] P
iλ
min

8: PΛ
max = mini∈[1,n] P

iλ
max

9: return PΛ
min, PΛ

max

constructing long-term fields builds on the methods for constructing short-term fields
for these resources in COMMELEC, as defined in [141].

Controllable Batteries

To compute the short-term fields, the battery RA makes use of the battery model
proposed in [142]. The batteries are considered to be ideal, i.e., their uncertainty
function U(u) = u, for all u ∈ F . Thus, the long-term uncertainty is the same as the
short-term uncertainty. The feasibility region of the batteries depends on the SoC, and
can be summarized with two limit values, providing the minimum and maximum AC
active power, Pmin and Pmax. Formally, the feasibility and uncertainty are defined as
follows:

F = {(P,Q) ∈ IR2|Pmin ≤ P ≤ Pmax,
√
P 2 +Q2 ≤ S}, (4.1)

U(P,Q) = {(P,Q)}, (4.2)

where S represents the rated power of the battery converter.

Given the power setpoint (P, Q), the control period Tctrl, and the state-of-charge

65

Chapter 4. Robust Real-Time Control of Electric Grids

of the battery SoC, the battery RA can compute Pmin and Pmax, for a time horizon
λ = 2 × Tctrl. It will also estimate the resulting SoC at the end of the time horizon
(SoCλ). The pseudo-algorithm of this process is detailed in Algorithm 4.5.

In order to compute the long-term feasibility for a horizon of n control rounds,
we follow the procedure described in Algorithm 4.6, in which we call the function in
Algorithm 4.5 a total of 2n− 1 times.

First, we compute the short-term power bounds P λmin and P λmax. This gives us the
minimum and maximum power setpoints that the battery might implement in the next
time horizon [t, t+ λ], where t is the timestamp of the advertisement being computed.
Then, we follow two different tracks of computation. The first assumes that the RA
will receive minimum possible power setpoint to implement in the next control round
P λmin. We use that as input to the function in Algorithm 4.5, to get the new minimum
for the next round. This process is repeated n − 1 times. The second does the same
assuming the maximum power setpoint is received in each round.

After computing the n values of Pmin — one for each of the following n control
rounds — we take the maximum of these n values to be the long-term minimum bound
PΛ
min (line 7). The same is done for the maximum bound, except the minimum of the n

values is taken (line 8). In certain situations, the power bounds are monotonic with
time, thereby removing the need to perform this last step. However, we maintain it to
satisfy Property 4.1 in the general case.

Uncontrollable PV

For uncontrollable resources, the value of the setpoint issued by the GA is largely
irrelevant, as the resource is uncontrollable, and will inject/absorb power based on its
internal state. The setpoints acts as a probe, instructing the RA to issue an advertise-
ment to the GA. The feasibility, therefore, is irrelevant. The uncertainty, however, must
be advertised, as it affects the admissibility test that the GA performs, thus affecting
the value of setpoints to other RAs of controllable resources.

In COMMELEC, the short-term fields of an uncontrollable PV are defined as follows:

F = {(Pf , Qf)}, (4.3)

U(Pf , Qf) = {(P,Q) ∈ IR2|Pmin ≤ P ≤ Pmax, Qmin ≤ Q ≤ Qmax}, (4.4)

where (Pf , Qf) are the forecasted power injection in the next control round. Essentially,
the feasibility region attempts to inform the GA about the implementation in the next
control round, and the uncertainty provides a two-dimensional range around that
point.

66

4.3. Experimental Comparison & Validation

The method for computing the short-term uncertainty limits is presented in [143].
It relies on a forecasting method for solar irradiance that uses past measurements,
sampled at the desired horizon, as training data. As the method is parameterizable with
respect to the desired horizon, the RA can run two instances of the method, thereby
computing both the short-term and long-term uncertainties.

In practice, the long-term PV dynamics are larger than the short-term ones. How-
ever, to ensure Property 4.2 is satisfied in all cases, the long-term uncertainty should
be set to be the union of itself and the short-term uncertainty.

Uncontrollable Load

The case of the uncontrollable load is very similar to that of the PV. Being an uncon-
trollable resource, its advertisement is defined as in Equations 4.3, 4.4, with (Pf , Qf)

representing the current power absorption instead.

However, the forecasting method for the uncertainty limits is different, as con-
sumption profiles cannot be predicted using the same approach in [143]. Instead, the
persistence method is used, whereby the uncertainty limit is given as follows:

Pmin(t+ λ) = (1− αλP)P̂ (t),

Pmax(t+ λ) = (1 + αλP)P̂ (t),

Qmin(t+ λ) = (1− αλQ)Q̂(t),

Qmax(t+ λ) = (1 + αλQ)Q̂(t),

(4.5)

where (P̂ (t), Q̂(t)) is the measured power at time t, and αλP , α
λ
Q ∈ (0, 1] are the forecast-

ing parameters, obtained a priori using a model of the load.

The long-term uncertainty limits can be computed in a similar way, by obtaining
αΛ
P and αΛ

Q. In order to guarantee Property 4.2, it must hold that αΛ
P ≥ αλP and αΛ

Q ≥ αλQ.

4.3 Experimental Comparison & Validation

We implemented intentionality clocks and Robuster for the COMMELEC framework
[8]. In this section, we experimentally validate our methods and compare them to
alternative techniques for achieving robustness. We perform our experiments using
T-RECS (refer to Chapter 7 for its design), a virtual commissioning tool that simulates
the CIGRÉ benchmark low-voltage microgrid [44] consisting of a battery, a PV plant,
and a load. T-RECS enables us to emulate non-ideal network conditions and study
the behavior of the actual COMMELEC implementations under such conditions. Our
methods are then deployed on a real-scale microgrid for a 24-hour validation.

67

Chapter 4. Robust Real-Time Control of Electric Grids

PV2
FC

EL

D

PV1

B

L3
L4

L2

L1

B11

B07

B05

B03

B09

B06

B08

B04

B02

B10

B01
FD1SC6

SC5

SC4

SC3

SC2

F
D
5

F
D
4

F
D
3

F
D
2

Figure 4.4 – CIGRÉ low-voltage benchmark microgrid. The resources not used for our
experiments are greyed-out

In our experiments, the GA is instructed to provide frequency support [19], or to
track a dispatch plan signal [18] at the point of common coupling (PCC). This is in
addition to maintaining grid safety and yielding to the preference of the resources.

4.3.1 Experimental Setup

We test our method on the CIGRÉ benchmark low-voltage microgrid [44], shown in
Figure 4.4. The microgrid is connected to the main grid, and consists of a 25 kW

uncontrollable PV, a 30 kW / 90 kWh battery, and a 5 kW uncontrollable load. As
mentioned earlier, the GA is instructed to track a pre-determined power profile, and,
in some cases, to additionally provide frequency support to the main grid.

We modify the code of the COMMELEC RAs to include the long-term fields in the
advertisements. We also modify the GA code, implementing intentionality clocks and
Robuster, as in Algorithms 4.1, 4.4. Finally, we implement and deploy a master at each
RA, as described in Algorithm 4.3.

In our setup, we compare four different alternatives of the COMMELEC GA, all
of which implement intentionality clocks. (1) The Normal GA, which is the original
implementation that requires the most recent advertisement from each RA. Otherwise,

68

4.3. Experimental Comparison & Validation

it sends probes after 5× Tctrl. (2) The Robust GA, which implements Robuster. This
GA replaces any missing short-term advertisement with valid long-term fields from
that resource, if available. (3) The Only-long GA, which is a variation of the Robust GA,
in that it only uses long-term fields throughout its operation (i.e., just by replacing λ
by Λ in the Normal GA). This decreases the size of an advertisement and simplifies
the design of the GA. However, it violates robust optimality. (4) The Previous-short
GA, which replaces any missing advertisement with the latest previously received
advertisement from that RA. This eliminates the need to construct, send, or handle
long-term fields. However, it violates robust safety.

In COMMELEC, the control round occurs roughly every 100ms. In our experiments,
we consider Tctrl = 100ms, and n = 10. This gives us a validity horizon of 10 control
rounds. From these, we get λ = 200ms and Λ = 1100ms.

T-RECS enables us to use the actual GA and RA code and a simulated version of the
resources and the grid. The messages are exchanged over an emulated communication
network, the topology of which consists of one router, with each software agent (GA
and RAs) on a different subnet. Resources are run on the same host machine as the
RAs. With T-RECS, we are able to vary the link loss rate, and we analyze different values
between 0% and 20%.

We use the root mean square error (RMSE) as a metric to measure the performance
of the different GA implementations. The RMSE is calculated between the measured
power at the slack and the requested frequency support signal (or dispatch plan signal).
This shows how well each implementation can track the signal, and how robust each is
to message losses.

4.3.2 Results

In this section, we illustrate the performance of our mechanisms under different
conditions, and compare the results for the four different GAs described in Section
4.3.1. Several scenarios are considered in order to highlight the conditions under which
each GA alternative performs well.

Frequency Support with Non-Binding Grid Constraints

We first study the performance of the methods when the grid state is far from the
operational limits in terms of bus voltages and line currents. The GA is instructed to
provide frequency support to the main grid, based on the frequency signal of Figure 4.5,
which represents quick dynamics. As we are interested in studying the effects of the
losses in the network, we vary the link loss rate between the GA and the RAs in the
range [0%, 20%].

69

Chapter 4. Robust Real-Time Control of Electric Grids

Figure 4.5 – Frequency signal imposed by the main grid used to provide frequency
support

Method / Loss rate 0% 5% 10% 15% 20%

Normal 121.65 198.95 317.48 541.52 1442.98
Robust 120.44 129.03 147.25 150.55 188.12

Only-long 121.65 130.36 153.84 154.99 178.85
Previous-short 121.65 122.18 139.40 154.77 451.17

Table 4.1 – Root mean square error (in Watts) between the real power at the slack bus
and the requested tracking signal, for a 10-minute interval

Table 4.1 and Figure 4.6 show the resulting RMSE for the different methods across
the different link loss rates, for an interval of 10 minutes. The RMSE is calculated
between the actual power at the slack, and the result of S = −σ(f − f0), where S
is the expected power at the PCC when providing frequency support, computed by
multiplying the droop parameter σ with the divergence of the grid frequency f from
the reference frequency f0 = 50 Hz.2

We observe that the performance of the Normal GA rapidly deteriorates as the link
loss rate increases. This follows directly from the fact that it is extremely sensitive to the
amount of available information, and fails to follow the request in our quick dynamic
scenario, as it suffers from decreased availability. The Previous-short GA maintains a
good level of tracking until the loss rate is too high. This is expected as the information
it uses in case of a loss (the previous advertisements) is invalid, and as the loss rate
increases, tracking the quick frequency changes becomes increasingly unlikely. In
other words, violating robust safety not only makes it susceptible to violating grid
safety, it also affects performance.

The Robust and Only-long GA manage to provide frequency support even under
20% link loss rate, although the Only-long GA obtains slightly worse performance,

2We take σ = 100 kW/Hz in our experiments.

70

4.3. Experimental Comparison & Validation

0 5 10 15 20
Link Loss Rate (%)

0

200

400

600

800

1000

1200

1400

1600

R
M

S
E
 (

W
)

Normal GA

Previous-short GA

Only-long GA

Robust GA

Figure 4.6 – Root mean square error (in Watts) between the real power at the slack bus
and the requested tracking signal, for a 10-minute interval

especially for lower loss rates. This stems from the fact that its computations are always
conservative, as they all use advertisements with a long-term horizon Λ. The effects
of this are not drastic in such a scenario, but will appear when the grid conditions are
binding, as presented in the next section.

Tracking a Dispatch Plan with Binding Grid Constraints

In order to study the behavior of the Robust and Only-long GA under binding grid
conditions, we consider a scenario in which the GA is instructed to follow a pre-
computed dispatch plan. The slower dynamics in this experiment allow us to better
visualize the tracking performance. Moreover, we artificially limit the ampacity of
the line connecting the microgrid to the main grid (FD1) to 16 A, i.e. a power limit
of c.a. 11 kV A. Note that, even though the dispatcher is allowed to request an active
power close to 11 kW , the GA, due to the combined uncertainty of the PV and the
load, might prefer not to track the plan to avoid limit violations. This conservative
behavior is accentuated when the uncertainty is larger, as when using the long-term
advertisements.

Figures 4.7 and 4.8 show the tracking results of Only-long GA and Robust GA,
respectively, when the link loss rate is 2%. We observe that, although both manage to
track the 10 kW request fully (as it results in a current far away from the ampacity limit
of line FD1). However, only the Robust GA manages to track the 11 kW signal. The
Only-long GA uses advertisements with larger uncertainty, and is thus conservative in
order to avoid current violations. The Robust GA maintains tracking as it can safely
do so without risking violation, due to the accuracy of the short-term advertisements
it uses. The RMSE values are also indicative, with the Robust GA having 191.54 W ,
and the Only-long GA having 320.91W . This highlights the importance of the robust
optimality property.

The Previous-short GA is not conservative, and thus maintains tracking (under low

71

Chapter 4. Robust Real-Time Control of Electric Grids

10 15 20 25 30 35 40
Time since start (s)

9500

10000

10500

11000

11500
Re

al
 P

ow
er

 (W
) power at slack

reference signal

Figure 4.7 – Tracking experiment of Only-long GA with binding grid conditions and a
2% loss rate

10 15 20 25 30 35 40
Time since start (s)

9500

10000

10500

11000

11500

Re
al

 P
ow

er
 (W

) power at slack
reference signal

Figure 4.8 – Tracking experiment of Robust GA with binding grid conditions and a 2%
loss rate

loss rates) even in binding grid conditions. However, as it uses invalid information, it
might cause voltage and/or current violations, as mentioned earlier.

Experimental Validation in a Real-Scale Microgrid

As mentioned earlier, the experiments in previous subsections were performed in
T-RECS. Here, we experimentally validate our mechanisms through a deployment in a
real-scale microgrid on-campus. The microgrid has the same specifications as the one
used in earlier experiments and presented in Figure 4.4.

We validate the Robust method via a 24-hour frequency support experiment with a
2% link loss rate. The 24-hour experiment, with the profiles of the PV and the load taken
from an actual experimental run, enables us to see the performance under different
and realistic grid conditions. In this particular case, the battery power is used by the GA
as the slack variable, compensating for the PV and load power-variations and adapting
to the frequency signal, in order to provide frequency support. The initial state of
charge of the battery (20%) is pre-defined by the forecasted PV and load profiles on the
day before.

72

4.3. Experimental Comparison & Validation

0 5 10 15 20 25
Time since start (hours)

20

15

10

5

0

5

10

15

20
Re

al
 P

ow
er

 (k
W

)
PV
reference signal
load
battery

Figure 4.9 – Robust GA 24-hour frequency support experiment with a 2% link loss rate.
The power at the slack is not shown as it would be hidden by the reference signal

Figure 4.9 shows the results of the tracking, in addition to the power at the buses
of the battery, the PV, and the load. The measured power at the slack would not be
visible if shown, as it would be hidden by the reference signal. Instead we compute the
RMSE, which turns out to be 145.67 W for the entire day. We also measure the RMSE
over a rolling window of 20 minutes, and the resulting average and maximum RMSE
are 142.40 W and 263.53 W, respectively. This shows the robustness of our method
throughout the daily cycle. Furthermore, the SoC of the battery during the experiment
is shown in Figure 4.10, showing the capabilities of the battery to provide such an
ancillary service to the main grid.

73

Chapter 4. Robust Real-Time Control of Electric Grids

Figure 4.10 – Battery state-of-charge (SoC) during the 24-hour experiment

4.4 Conclusion

In this chapter, we have presented two mechanisms, intentionality clocks and Robuster,
that together enable the design of a robust GA.

We have highlighted the need for robust and reliable ordering in a CPS for real-time
control of electric grids, and have shown how state-of-the-art ordering mechanisms
fail to support the round-based communication scheme between the GA and the RAs.
Then, we have discussed the design of intentionality clocks, including its integration
with the GA and RA models presented in Chapter 3. Intentionality clocks was proven
to satisfy robust and reliable ordering, and to preserve robust and reliable availability.

Using intentionality clocks, we were able to design Robuster, a mechanism for
generating advertisements and computing setpoints that enables the GA to maintain
grid safety in the presence of non-idealities in the communication network, RAs,
or resources. The RAs — in a CPS implementing Robuster — generate and issue
advertisements that contain fields with a long-term validity horizon, in addition to the
short-term fields previously included. The GA then uses the short-term fields when
an advertisement from the previous round is available, and the long-term fields from
earlier advertisements otherwise. The long-term validity of the new fields is guaranteed
by their generation at the RAs.

We have presented the design of Robuster, highlighting the required properties on
the long-term fields of an advertisement, and showing the minimal changes required at
the GA in order to implement it. Then, a formal proof has been presented that Robuster
guarantees robust safety and optimality. Robuster increases robust availability, as it
enables the GA to compute setpoints in more control rounds. We have discussed
several examples of how the long-term fields can be generated in different kinds of
resources in the COMMELEC framework.

Finally, we have experimentally validated our methods, via a deployment both in a

74

4.4. Conclusion

real-scale microgrid and in T-RECS, a virtual commissioning tool. Our comparative
analysis has shown that by maintaining robust safety and optimality, Robuster out-
performs state-of-the-art alternatives under various binding and non-binding grid
conditions, and under varying rates of losses in the communication network. A full-
day validation has shown that Robuster maintains its performance in a long-running
experiment with realistic conditions.

This chapter has dealt with the operation of a GA when controlling a grid that is
connected to an upper-level main grid at a PCC. However, the GA might be requested
to, or even decide to, disconnect the two grids. Such a condition is referred to as
islanding. Islanding introduces several challenges that must be addressed by the GA.
In Chapter 8, we go over these challenges, and discuss the additional mechanisms
necessary to design a robust GA that is capable of performing islanding maneuvers.

75

5 Axo: Tolerating Delay Faults in
Cyber-Physical Systems

You may delay, but time will not.
— Benjamin Franklin

In previous chapters, we have discussed mechanisms for controller robustness,
which is concerned with handling non-idealities in the various CPS components, ex-
cept the controller. In this chapter, we discuss controller reliability, which is concerned
with handling controller faults. Specifically, we focus on delay faults incurred when
the GA is computing a vector of setpoints. Such faults might result in the setpoints
reaching the RAs at a time later than the validity horizon of the advertisements used in
the computation. This raises two issues, one being the loss of reliable availability due
to the absence of a valid setpoint, and the other being the violation of reliable validity
due to the presence of an invalid setpoint.

We introduce Axo, a framework for tolerating delay and crash faults in CPS con-
trollers. Axo uses active replication of the controller to handle the former problem
of missing valid setpoints. In active replication, if one of the replicas experiences a
delay fault, the RAs might still receive valid setpoints computed and issued by the other
replicas. Axo also extends the masker component, presented in Chapter 4, to discard
invalid setpoints before they reach the RA. Thus, Axo guarantees reliable validity and
preserves reliable availability (Definitions 3.8, 3.9).

Over long periods of CPS deployment, controller replicas might crash or experience
an increased probability of incurring delay faults. Moreover, multiple replicas might
become faulty, rendering the CPS uncontrollable. Axo also provides a mechanism to
detect and recover faulty replicas, ensuring the long-term reliability of the CPS.

We provide an overview of Axo, and of the problems addressed in this chapter
in Section 5.1. In Section 5.2, we survey the related work on tolerating delay and
crash faults. In Section 5.3, we define the fault model and the required properties

77

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

on a CPS for Axo. We present the design of Axo in Section 5.4, and prove its formal
guarantees in Section 5.5. Then, we analyze the performance of Axo and derive bounds
on the detection and recovery time in Section 5.6. In Section 5.7, we highlight the
generic nature of Axo, by applying it to an inverted pendulum system, and we show
the improved stability metrics it provides. We conclude this chapter in Section 5.8.

5.1 Overview

5.1.1 Problem Description

We consider CPSs as described in Chapter 3, and as shown in Figure 1.2, consisting
of a controller, RAs, and sensors. The model and architecture applies to a wide range
of CPSs. In addition to real-time control of electric grids [8, 9, 144], this includes
manufacturing processes [145], autonomous vehicles [146, 147], and robotics [4, 5].

As mentioned in Chapter 1, such CPSs are mission-critical: their failure can lead to
serious damage [12, 148]. Yet, there is a trend in increasingly relying on commercial
off-the-shelf (COTS) hardware such as cRIO (from NI), DAP server (from Alstom), and
MGC600 (from ABB). Also, as CPS controllers have a large code base, they often use
third-party libraries, including COTS software. Such CPSs are susceptible to faults
incurred by their hardware and software components [32].

Recall that setpoints are computed and issued by the controller of a CPS in order
to drive the state of the system in a certain direction. Therefore, the setpoints are a
function of the perceived current state of the system and will become invalid when
the state drifts by some threshold. This is captured by the validity horizon of the
advertisements used in the computation of these seetpoints. Each RA computes its
advertisements such that they are valid for a certain time, which is based on the inertia
of the underlying grid or process. Setpoints received beyond the validity horizon must
not be implemented. This motivates the need for reliable validity (Definition 3.8).

A validity horizon implies that setpoints are subject to strict real-time constraints.
Therefore, a delay incurred due to software/hardware faults in the controller, or due to
transmission delays in the network, could violate such constraints and lead to failure.
We refer to such faults as delay faults. It is worth noting that crash faults are an extreme
case of delay faults, where the delay is infinite.

Delay faults not only might violate reliable validity, they might also result in the
loss of reliable availability (Definition 3.9). Reliable availability states that all RAs must
receive and implement setpoints in a given control round. Therefore, we must handle
both the problem of receiving delayed setpoints and the problem of not receiving
setpoints at all.

78

5.1. Overview

We designed Axo, a fault-tolerance protocol that targets delay faults in real-time
CPSs. Axo is transparent to the CPS, i.e., it imposes no interference with the CPS
functionality, and it can be used with minor additions to the controller software, as
elaborated in Section 5.4. It is applicable to a wide range of CPSs that exhibit the
properties described in Section 5.3.

Axo uses active replication of the controller, whereby multiple replicas of the con-
troller simultaneously receive advertisements and measurements, compute setpoints,
and issue the computed setpoints to the RAs. The presence of multiple replicas in-
creases the chances that setpoints are received by RAs. That is, if one of the replicas
experiences a delay, the other replicas are simultaneously computing and issuing
setpoints, essentially masking this fault from the RAs.

However, to truly mask the fault, RAs must not receive the setpoint issued by the
delayed replica, if it is delayed beyond the validity horizon. Axo uses a component at
each RA, namely the masker (proposed in Chapter 4), to discard delayed setpoints.
This enables Axo to guarantee reliable validity, and to preserve reliable availability.

5.1.2 Challenges in Delay Fault Detection & Recovery

Axo guarantees reliable validity despite any number of faults affecting the controller
or other CPS components. However, in order to preserve reliable availability, and
maintain real-time control, it must ensure the reception of setpoints at the RAs. Conse-
quently, it must ensure the existence of at least one non-faulty replica at all times.

Although transient in nature, delay faults can occur more frequently over long
periods of CPS deployment, if not detected and recovered. In such cases, the CPS
might end up with no non-faulty replicas, and availability will be lost. Hence, to
continuously mask delay faults, faulty replicas need to be detected and recovered.

Delay faults are an end-to-end phenomena, the two ends being the controller and
the RAs. Existing fault-detection mechanisms (see Section 5.2) rely on polling the state
of the controller hence cannot be used for detecting delay faults.

To detect delay faults in the controller replicas, Axo introduces feedback, from the
RAs, about the validity of the setpoints received. If an RA receives a valid setpoint, then
the corresponding controller is deemed to not have a delay fault, and vice versa. The
main challenge in developing such a design is the possibility of the messages being lost,
reordered, retransmitted, or delayed. This can be handled with a partial order provided
by temporal ordering via timestamps, or with a total order provided by intentionality
clocks. Also, after a single setpoint computation, a controller with multiple RAs will
receive multiple feedbacks, one from each RA. These potentially different feedbacks
need to be efficiently aggregated for fault detection.

79

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

The design of a detection and recovery protocol also faces several other challenges.
First, the transient nature of delay faults makes their detection nontrivial. For instance,
a replica might experience a delay fault for one setpoint only, and then proceed with
non-delayed operation. In such cases, it is not only nontrivial to detect the transient
delay-fault but also superfluous, as it would be more advantageous to avoid recovering
that replica, and losing availability in the meantime. Second, as CPS communication
networks are non-ideal, they are susceptible to packet losses, messages delays, re-
transmissions, and reordering. This could affect recovery, causing a replica to reboot
multiple times for a single fault, or not at all.

Furthermore, as Axo operates without the knowledge of the inner workings of
the CPS, the rate at which a CPS controller issues setpoints is not known. For real-
time control of electric grids, we can rely on the pseudo-periodic operation of the
GA. However, in general, conventional techniques for detecting crash faults, such as
monitoring the frequency at which setpoints are issued, are ineffective.

The detection and recovery algorithms provided by Axo are designed to be soft
state [149], i.e., their state can be reconstructed from received messages after a reboot.
This enables the seamless addition and removal of replicas, as discussed in Section 5.4.

Note that throughout this chapter, we discuss controllers and controller replicas.
The replication involves the entire controller, with both its components: the SE and
the GA. Recall that the SE performs an intermediate computation, then sends the
state of the grid to the GA. The GA, therefore, is the only component issuing messages
(setpoints) to the RAs, and any faults affecting the computation of the SE also affects
that of the GA. The masking, detection, and recovery algorithms, presented in this
chapter, tolerate delay and crash faults that occur in either component.

5.2 Related Work

To the best of our knowledge, Axo is the first fault-tolerance protocol that addresses
delay faults in real-time CPSs composed of COTS components.

5.2.1 Masking Delay Faults

In the literature, delay faults for real-time systems have been studied under the name
of timing faults [87, 88, 92, 150]. The closest existing technique is the work done by
Veríssimo and Casimiro on the timely computing base (TCB) [87]. They propose an
architecture and programming model that can be used to provide generic delay-fault
tolerance for real-time systems [88]. As mentioned in Chapter 2, this fault-tolerance
approach relies on encapsulating and rewriting the time-critical functions of the real-
time system in the TCB module: a strictly real-time component. This method does

80

5.2. Related Work

not apply for CPSs that are characterized by their large code-base that consists of
third-party libraries and generally complex functions, for which it is not feasible to
rewrite and implement in the TCB.

Furthermore, several components of the TCB architecture require an implemen-
tation specific to each CPS. This drawback is shared with other generic architectures
such as the time-triggered architecture (TTA) [92]. In contrast, Axo is a layer of software
that can be used on any CPS that satisfies the system model (see Section 5.3) and
requires only minor additions to the CPS controller software (see Section 5.4). This
enables the deployment of Axo on existing CPSs.

Other work in this field has focused on improving the quality-of-service and re-
sponse time of the systems [150]. However, that work focuses on traditional transaction-
based systems, which have different requirements and pose different challenges than
those associated with CPSs. Specifically, the method presented does not aim at provid-
ing hard real-time guarantees, such as the reliable validity property that Axo satisfies.

Traditional Byzantine-fault tolerance (BFT) protocols [84, 151] do not generally
consider the timing attributes of the setpoints. Moreover, as mentioned in Chapter
2, all BFT protocols require consensus among the replicas. The consensus can take
unbounded time [98], delaying delivery of setpoints to RAs indefinitely. This property
makes them unsuitable for tolerating delay faults, even in the cases when they are
designed for real-time applications [151].

Active replication protocols, such as [123], use multiple controller, all of which
simultaneously compute setpoints. The use of multiple replicas incurs zero delay in
issuing the setpoints, which makes it attractive for CPSs, especially in the context of
delay faults. Although active replication preserves reliable availability, when one replica
is delay faulty, it can still send a setpoint at some time after its validity horizon, thereby
violating reliable validity. Axo uses active replication with an added mechanism to
discard invalid setpoints before they reach the RA, in order to provide reliable validity
in the presence of delay faults.

5.2.2 Detection & Recovery of Delay Faults

In order to detect timing faults, the aforementioned TCB and TTA frameworks also
require additional information from the CPS. Timing-failure detection under the TTA
framework requires a priori knowledge of intended send and receive instants of mes-
sages [92]. Similarly, detection under the TCB framework requires a known bound
on the computation times of the time-critical functionalities of the CPS [91]. This re-
quires static analysis of generally complex functions that might include COTS software.
Additionally, as we have seen in Chapter 1, the execution time of real-time CPSs is
generally variable and unpredictable. This would require further dynamic analysis of

81

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

the execution time, a task that does not fit within the real-time constraints of CPSs. In
contrast, Axo provides delay-fault detection, and does not require such information.

Existing mechanisms for fault detection rely on monitoring the replica, such as
using heartbeats [124], or on probing the replica for its current state so as to detect in-
consistencies [123]. Such mechanisms target crash-only faults and cannot be extended
to delay faults that are inherently an end-to-end property. Replicas themselves do not
contain any state to indicate whether or not they are delay faulty, hence probing or
monitoring the replicas will not provide insight for delay-fault detection. Axo makes
use of the round-based communication scheme between GAs and RAs in order to
correctly detect delay faults.

Another approach to detecting faults is through detailed modelling of the controller
under faulty and non-faulty conditions [93, 94]. The trained models are then used to
classify a replica as faulty during run-time. Such methods are prone to modeling errors
and are limited to CPSs that have constant workloads, making them unsuitable for
generic CPSs where the workload of the controller is not known a priori.

Fault recovery is a challenging problem in the presence of message losses, delays,
and reordering. These non-idealities pose a challenge to the main requirement of
fault recovery: ensuring that each replica is recovered only once after detection. This
type of problem can be solved using consensus. However, as mentioned in Chapter 2,
consensus does not guarantee termination under these conditions [98]. Furthermore,
the delays brought about by the multiple rounds of message exchange in state-of-the-
art consensus protocols [152] are not suitable for CPSs. To avoid using consensus, Axo
makes use of the total order provided by intentionality clocks (Chapter 4), enabling it
to recover a faulty replica with minimal delay, at most once after detection.

5.3 System Model

5.3.1 Required CPS Properties

As mentioned in Section 5.1, Axo applies to a wide range of CPSs [8,9,144,145,146,147].
However, it requires that the CPS exhibit the following properties that are satisfied by
the model presented in Chapter 3:

Property 5.1. Advertisements have a known validity horizon (Tval), measured in time.

Property 5.2. RAs are able to handle duplicate setpoints.

The validity horizon, mentioned in Property 5.1, is specific to each CPS, and it
depends on the inertia of the underlying process. In Chapter 3, we have discussed
the validity horizon for advertisements in CPSs for real-time control of electric grids.

82

5.3. System Model

sp1

sp2

adv1 = (F1,U1)

GA RA

sp3

adv2

Tctrl

Tctrl

δi
cut-off

Figure 5.1 – Message sequence chart showing the cut-off for accepting setpoints as a
function of the control period Tctrl and the upper bound on setpoint implementation
time δi

Additionally, in Chapter 4, we have shown how to create advertisements with two
separate sets of fields, each with its own validity horizon. Here, we give the GA access
to the validity horizon for each advertisement used in computation. Note that this
might be different for different RAs.

Property 5.2 requires RAs to handle duplicate setpoints. This property is provided by
intentionality clocks, presented in Chapter 4, as only one setpoint issued a given control
round is forwarded by the masker to the RA. Alternatively, this property is inherent
in CPSs that use absolute, rather than differential, setpoints. Absolute setpoints are
idempotent: implementing two or more duplicate setpoints has the same effect on the
system as implementing only the first one received. An example of absolute setpoints
would be a GA that instructs a battery RA that is injecting 8 kW to ‘set the injected power
to 10 kW ’, rather than a differential setpoint that would be to ‘increase the injected
power by 2 kW ’.

The computation model of the CPS is assumed to be the same as the one presented
in Chapter 3. Specifically, the GA receives advertisements from RAs, uses at most
one advertisement from each RA to perform setpoint computations, and issues at
most one setpoint to each RA. The RAs implement the received setpoints, then issue
advertisements to the GA.

83

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

5.3.2 The Validity Horizon

Recall from Chapter 3, Figure 3.4, that the validity horizon of an advertisement (with
short-term fields) is Tval = 2× Tctrl. That is, an advertisement in round r must be valid
until the setpoint from round r + 2 is received, as shown in Figure 5.1. Although the
setpoints that use this advertisement in its computation can only do so in round r + 1,
the advertisement must be valid for an additional round, to allow the controller enough
time to compute a new setpoint, ensuring that the uncertainty advertised still holds.

Therefore, there exists an inherent cut-off time, after which a setpoint in round
r+ 1 must not be implemented, as shown in Figure 5.1. The time left after that setpoint
finishes implementation must be enough for another control round to take place (i.e.,
Tctrl). Additionally, recall from Chapter 3 that the upper-bound on the implementation
time of a setpoint by an RA is given by δi. Therefore, we define the validity horizon of a
setpoint (τ) as follows:

τ = Tval − Tctrl − δi (5.1)

That is, the setpoint must be implemented before T+τ , where T is the timestamp of
the advertisement, from the same RA, that was used in the computation of the setpoint.
The difference between Tval and τ , is to allow enough time for the implementation
to take place (δi), and for the next setpoint to be received (Tctrl). Implementing the
setpoint after this time might result in the RA exceeding the validity horizon of the
advertisement, before receiving a new setpoint.

This enables us to formally define the notion of valid and invalid setpoints, previ-
ously mentioned in Chapter 3.

Definition 5.1 (Valid Setpoint). Consider a setpoint sp, issued to an RA with identifier i,
which used, in its computation, an advertisement adv from RA i. Let T be the timestamp
of adv, and τ be the validity horizon of sp. sp is said to be valid, if and only if, the time of
reception (tr) at the RA is such that tr ≤ T + τ . Else, it is said to be invalid.

As each setpoint is issued to one RA, each setpoint has a well-defined time of
reception. Setpoints that are never received, due to network losses or software agent
omissions, are not labeled as either valid or invalid, as they are only labeled at the RA as
such. Note that, as the controller issues multiple setpoints during a single computation
— one to each RA — some of these setpoints might be valid, others invalid, and others
not received at all.

The above definition of the validity horizon of a setpoint can be extended for adver-
tisements that are valid for n rounds. Recall from Chapter 4, that an advertisement con-
structed by the RA to be valid for n rounds has a validity horizon of Tval = (n+1)×Tctrl.
From Equation 5.1, we say the validity horizon of a setpoint computed using such an

84

5.4. Axo Design

advertisement is τ = Tval − Tctrl − δi = n× Tctrl − δi. In what follows, we denote to the
validity horizon of such setpoints as τn.

5.3.3 Fault Model

The fault model considered for Axo is also the same as the one presented in Chapter 3.
We consider that the software agents are susceptible to crash and delay faults, and that
the network can drop, delay, and reorder messages. Generic Byzantine faults, such as
the controller performing an incorrect setpoint computation or the network changing
the contents of messages, are not considered.

We define a delay-faulty and a crash-faulty controller as follows.

Definition 5.2 (Delay Faulty Controller). Consider a setpoint-issuing instant T1 at a
controller. If all the received setpoints issued at T1 are invalid, then the controller is said
to be delay faulty in [T1, T2), where T2 is the next issuing instant at this controller.

A delay-faulty controller is, therefore, one which has delivered invalid setpoints to
all its RAs, excluding the setpoints that were lost. It remains classified as delay faulty
until it issues setpoints, at least one of which is valid. In case the controller never issues
setpoints after T1, it is classified as crash faulty, as seen in the following definition.

Definition 5.3 (Crash Faulty Controller). A controller is said to be crash faulty at a
time t, if and only if, ∀T ≥ t, it does not issue setpoints at time T .

Although crash faults can be considered as a special case of delay faults, in which
the computation delay is infinite, here we consider separate the two cases as it allows
us to detect them in different methods. Definition 5.2, on its own, does not suffice. A
controller that issues valid setpoints at T1, then fails to issue subsequent setpoints, is
not classified as delay faulty. In contrast, a controller that is classified as delay faulty at
T1, then fails to issue subsequent setpoints, is also classified as crash faulty.

5.4 Axo Design

Axo uses active replication of the controller and requires minimal replication over-
head: g + 1 replicas can tolerate g delay and crash faults. With active replication, all
controller replicas receive measurements from sensors and advertisements from RAs,
compute setpoints, and issue these setpoints to the RAs. Thus, without additional
mechanisms, the replication is exposed to the RAs, which end up receiving setpoints
from multiple replicas. Recall that we consider that the RAs are capable of handling
such duplicate setpoints (Property 5.2).

85

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

 Controller
Controller Library

RA

RA Library

MaskerTagger

Detector

Rebooter

1

1 Setpoint

3 Setpoint + Axo Header
Setpoint 4

4

5 Validity Report

6 INT_DET

EXT_REC 7

EXT_DET 6

2 Replica
 Information

Figure 5.2 – Axo architecture and library components

We present Axo as an extension to the algorithms presented in Chapter 4, which
included the two robustness mechanisms, intentionality clocks and Robuster. Recall
that the intentionality clocks design (Section 4.1.4) includes a masker component at
each RA, which serves, among other things, to mask the replication from the RA. The
presence of this component makes the CPS satisfy Property 5.2, by ensuring that the
RAs at most one instance of each setpoint.

However, the first setpoint received in each round might still be delayed, thereby
violating reliable validity. In order to guarantee reliable validity, Axo extends the design
of the masker with a mechanism to discard invalid setpoints. Thus, the masker only
forwards valid setpoints to the RA.

Axo requires minor modifications to the designs of the RA and the GA, as presented
in Section 5.4.1. The RA augments the timestamped advertisements it issues with the
corresponding validity horizon τ . The GA can the compute the latest time at which
each setpoint is valid, by adding the validity horizon to the value of the advertisement
timestamp T . In addition to the vector of setpoints, the GA also issues a vector contain-
ing the latest times at which each setpoint is valid, henceforth referred to as a vector of
validity times.

Axo uses a controller library on each controller replica and an RA library on each
RA, as shown in Figure 5.2. The controller library is composed of three modules: (1)
the tagger for intercepting setpoints issued by the GA and tagging them with the latest
validity time, (2) the detector for detecting faulty controller replicas, and (3) the rebooter

86

5.4. Axo Design

for recovering the replicas that were detected as faulty. The RA library has the masker
that discards invalid setpoints. The detailed design of the tagger and the masker is
presented in Section 5.4.2. The operation of the detector and the rebooter are discussed
in Section 5.4.3 and Section 5.4.4, respectively.

Each controller replica is assigned a unique replica identifier that serves as its
identifier for all ensuing Axo-related communication. When a controller replica issues
a vector of setpoints and a vector of validity times, these are intercepted by the tagger
on this same replica. The tagger forms a 28-byte Axo header and prepends to each
setpoint, before forwarding it to the masker of its original RA destination, accord-
ing to Algorithm 5.3. The utility of the different fields in the header is explained in
Section 5.4.2.

On receiving the setpoint, the masker checks the validity of the setpoint, by com-
paring the time in the Axo header to the time of reception, according to Algorithm 5.4.
The masker forwards the setpoint to the RA if it is valid and discards it otherwise. Then,
the masker then sends a validity report to the detectors of all replicas.

As explained in Section 5.1, delay faults cannot be detected using conventional
techniques such as time-out or heartbeat between the replicas. Furthermore, feedback
from the RA is needed for fault detection, as the validity of a setpoint, and consequently
the presence or absence of a delay fault, can only be established at the RA side (specifi-
cally, the masker). To this end, the detectors use validity reports to check if the replica
is crash or delay faulty, as in Algorithm 5.5. If the detector on a replica detects the same
replica as faulty, then an internal detection message (INT_DET) is sent to the local
rebooter. This triggers the rebooter to initiate the recovery of this replica according
to Algorithm 5.7. If the detector detects another replica to be faulty, then an external
detection message (EXT_DET) is sent to the local rebooter that then sends an external
recovery (EXT_REC) message to the rebooter of the faulty replica.

Axo modifies the setpoints sent by the controllers to the RAs (by adding an Axo
header), which requires the RA library to be present on all RAs. This thin layer is
transparent to the RA. In particular, any authentication and encryption of the setpoint
is left untouched. However, as additional Axo messages are exchanged, these messages
need to be authenticated and encrypted in order to avoid spurious recoveries. This can
be achieved by using general-purpose security libraries such as datagram transport
layer security. Furthermore, Axo only requires minor modifications to the controller
and RAs. Consequently, it remains agnostic to any changes, updates, or patches
performed to these software agents.

87

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

5.4.1 Controller & Resource Agent Modifications

We consider that the RA augments each advertisement with the setpoint validity hori-
zon. An RA implementing Robuster (see Chapter 4), must include two setpoint validity
horizons, one for the short-term fields (τ), and one for the long-term fields of the
advertisement (τn). Recall that the advertisement also contains a timestamp T , corre-
sponding to the time of its generation.

Algorithm 5.1 and Algorithm 5.2 describe the modifications to the GA required for
Axo. These extends Algorithm 4.1 and Algorithm 4.4 with the red lines.

The GA maintains an additional vector Tv, indexed by the RA identifier, containing
the setpoint validity times for each RA. Note that these represent the actual cut-off
times, calculated by adding the advertisement timestamp to the validity horizon, as
described in Algorithm 5.2. Tv is issued in each issue call (lines 10, 32).

Tv is updated in the choose_advertisements function, described in Algorithm 5.2.
As mentioned earlier, this algorithm assigns, to each RA, a setpoint validity time equal
to the validity horizon (τ or τn) added to the timestamp of the advertisement from that
RA (lines 10, 10). The choice of τ depends on whether the short-term or long-term
fields of the advertisement from that RA are chosen for computation.

Recall that the GA might probe setpoints, either during initialization (Algorithm 5.1
line 10), or due to a timeout flag being set (line 29). In both cases, the values of the
validity horizon must be disregarded, as a probe setpoint does not use advertisements
in its computation, and can always be received by the RA without violating reliable
validity. We set the entries of Tv to all-zeros in those cases, and handle them explicitly
at the masker side.

The vector of setpoints, the vector of validity times, and the message label are
issued by the GA and intercepted by the tagger. We describe the operation of the tagger
in the following subsection.

We note that the timestamping performed at the RAs for Axo requires no time syn-
chronization. Each RA is comparing two instances of its local time, and the GA is only
relaying the value of the timestamp after adding to it the absolute time corresponding
to the validity horizon.

Recall from Chapter 2 that we do not consider, in our fault model, delays in setpoint
implementation at the RA or at the actuators. Such an assumption is necessary, as
one can only guarantee no time violations until the last check, which in this case is
performed at the masker. Thus, the assumption of an upper bound on implementation
time (δi) is justified. This, however, does not eliminate the possibility of delays in
the RA when issuing advertisements. The presence of such delays might render the

88

5.4. Axo Design

Algorithm 5.1: Abstract model of a GA with Axo. The parts in red are added to
Algorithm 4.1

1 A ← ∅; // set of advertisements received from RAs

2 S ← ∅; // set of states received from the SE

3 ZA ← []; // vector of advertisements used in a computation

4 Tv ← [0, 0,, 0]; // vector of validity times

5 H ← ∅; // internal state of the GA

6 C ← 0; // logical clock on this GA

7

8 on initialization
9 X ← ∅; // initialize vector of setpoints to probes

10 issue(X,Tv, C); // send probes to the RAs

11 end;
12

13 on reception of an advertisement adv with label ` from an RA i
14 A ← A ∪ {(adv, i, `)}; // aggregate received advertisements

15 C ← max(C, `);
16 end;
17

18 on reception of a state st with timestamp T from the SE
19 S ← S ∪ {(st, T)}; // aggregate received states

20 end;
21

22 repeat
23 A′,Tv← choose_advertisements(A, C);
24 T ← current time; // get the current time

25 ready, timeout, ZA, st ← ready_to_compute(A′, S, T);
26 if ready then
27 C ← C + 1;
28 X, H ← compute_setpoints(ZA, st, timeout, H);
29 if timeout then
30 Tv ← [0, 0,, 0]; // reset to all-zeros

31 end
32 issue(X,Tv, C); // send X to the RAs

33 end
34 forever;

89

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

Algorithm 5.2: choose_advertisements(A, C) function in the GA with Axo. The
parts in red are added to Algorithm 4.4

1 A′ ← ∅; // set of chosen advertisements

2 L ← {0}; // vector of highest label seen for each RA

3 Tv ← [0, 0,, 0]; // vector of computed validity times

4 n; // pre-configured value of long-term horizon

5

6 for each (adv, i, `) ∈ A do
7 if ` > C − n and ` > L[i] then
8 if ` = C then
9 adv′ ← (adv.F , adv.U , adv.T);

10 Tv[i] ← adv.τ + adv.T ;
11 else
12 adv′ ← (adv.Fn, adv.Un, adv.T);
13 Tv[i] ← adv.τn + adv.T ;
14 end
15 Remove advertisement with identifier i fromA′;
16 A′ ← A′ ∪ {(adv′, i)};
17 L[i] ← `;
18 end
19 end
20

21 returnA′,Tv;

computed timestamp unreliable. However, as mentioned in Chapter 3, the timestamp
is taken after the implementation is performed, but before the state of the resource is
measured, thus it is always conservative.

5.4.2 Fault Masking: Tagger & Masker

Together, the tagger and the masker achieve fault masking. The design of the tagger
is shown in Algorithm 5.3. The tagger is configured with the unique identifier of
the replica on which it resides (line 1). It also maintains two variables, `d and h,
corresponding to the latest label and the latest health received from the detector,
respectively (lines 2, 3). These are updated upon reception of new values from the
detector (lines 5-8). They are further discussed in Section 5.4.3.

The tagger intercepts the messages issued by the controller. Specifically, for each
destination RA i, the tagger receives the setpoint sp, its validity time tv, and its label `
(line 10). Recall that tv is computed as in Algorithm 5.2, and ` is computed as in
Algorithm 4.1. The tagger then forms the axoHeader (line 11), and prepends it to the
setpoint that it then sends to the masker of the RA i (line 12).

The Axo header consists of (1) a 1-byte unique replica identifier id, which serves to

90

5.4. Axo Design

Algorithm 5.3: Tagger

1 id; // unique identifier of this replica

2 `d ← 0; // latest label received from detector

3 h ← Hmax; // latest replica health received from detector

4

5 on reception of update {L, H} from the detector
6 `d ← L;
7 h ← H ;
8 end;
9

10 on interception of {sp, tv, `} from the controller to RA i
11 axoHeader← (id, `, tv, `d, h, i); // populate axo header

12 send (axoHeader, sp) to the masker of RA i
13 end;

identify the issuing replica and is used for fault detection, (2) an 8-byte label ` specifying
the round number this setpoint belongs to (see Chapter 4), (3) an 8-byte timestamp tv
specifying the validity time of the setpoint, which is used at the masker for fault
masking, (4) an 8-byte label `d, which along with (5) a 1-byte health field h, are later
relayed by the masker to the detector and used for fault detection. Finally, (6) a 2-byte
RA identifier i is included, enabling the masker to forward the setpoint to the correct
RA port number. This adds up to a 28-byte Axo header.

The setpoint, along with the Axo header, is sent to the masker that processes it, as
described in Algorithm 5.4. The masker was previously described in Algorithm 4.3, in
which its role was to forward setpoints to the RA if the label of the setpoint is larger
than the logical clock, corresponding to the highest label received. The parts in red
in Algorithm 5.4 are the added parts that enable the masker to also account for the
validity of the setpoint.

In line 11, the masker checks not only for the label of the setpoint, but also for the
validity time. Only setpoints with a validity time greater than or equal to the reception
time tr are forwarded to the RA. This is in line with the definition of a valid setpoint
(Definition 5.1). Additionally, probe setpoints with a validity time of zero are also
forwarded, as discussed in Section 5.3.2.

The masker marks the validity of setpoints with the valid flag (lines 10, 17, 20). This
flag, along with the contents of the Axo header, except the RA identifier and the validity
time, is used to form a validity report (line 23). This report is sent to the detectors of all
controller replicas.

As mentioned in Section 5.1, our goal is to tolerate delay faults in the controller and
the network. However, Axo cannot mask delay faults that occur in the masker, after
the validity check is performed. Therefore, the only operation performed after this

91

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

Algorithm 5.4: Masker. The parts in red are added to Algorithm 4.3

1 C ← −1; // logical clock on the corresponding RA

2 adv ← ∅; // last issued advertisement by the RA

3

4 on reboot
5 C ← stored C; // read value of C from hard storage

6 end;
7

8 on reception of a setpoint sp with header axoHeader from the GA
9 tr ← current time; // get current reception time

10 valid ← false; // initialize the valid boolean

11 if axoHeader.` > C and (tr ≤ axoHeader.tv or axoHeader.tv = 0) then
12 forward(sp); // forward sp to the RA

13 C ← max(C, axoHeader.`);
14 store C; // store value of C in hard storage

15 adv ← receive_from_RA(); // wait for adv from the RA

16 issue(adv, C); // issue adv to the GA

17 valid ← true; // setpoint was valid

18 else if axoHeader.` = 0 then
19 issue(adv, C); // re-issue previous advertisement to the GA

20 valid ← true; // probe setpoints are always valid

21 end
22

23 report ← (axoHeader.id, axoHeader.`, axoHeader.`d, axoHeader.h, valid);
24 Send report to detectors of all controller replicas;
25 end;

check, in both the design and implementation of the masker, is the forwarding of the
setpoint to the RA. Then, this part of the masker can be regarded as a thin layer that
is not susceptible to delay faults. This is in line with previous work in fault-tolerance
literature [84, 151]. Furthermore, recall from Section 5.3.2 that we assume that the
RA and the actuator will implement the forwarded setpoint within a duration upper
bounded by δi. This is included in the computation of the validity horizon at the RA.
Thus, reliable validity is guaranteed as shown in Theorem 5.1.

As Axo modifies the setpoints sent by the controllers to the RAs (by adding an Axo
header), RAs that do not contain the RA library cannot process the modified setpoints.
Therefore, Axo is not backward compatible: the RA library must be present on all RAs.
Although reliable validity is guaranteed without the presence of the RA library, as no
setpoints will be received by the RA, hence no invalid setpoints will be received, reliable
availability suffers.

The computation of the validity times in the controller (Algorithm 5.2), the inter-
ception of the setpoint and populating the Axo header at the tagger (Algorithm 5.3),
and the validity check performed at the masker (Algorithm 5.4), constitute the real-

92

5.4. Axo Design

time path of a setpoint. We see that the aforementioned algorithms perform simple
operations and do not require additional communication over the network. Hence,
they add negligible latency.

5.4.3 Fault Detection: Detector

The detection mechanism (Algorithm 5.5) is triggered at a replica when a validity report
(vr) is received from the masker. As no assumptions about synchronicity are made on
the communication network, validity reports can be delayed, lost, retransmitted or
reordered, making detection challenging.

Each validity report consists of the five following fields: (1) the ID of the replica
that issued the setpoint (vr.id), (2) the label of the setpoint (vr.`), (3) the health of the
replica that issued the setpoint, as seen internally by that replica (vr.h), (4) the detector
label computed as the highest setpoint label that the detector of the issuing replica
had processed (vr.`d), and (5) a flag that shows whether the setpoint received at the
masker was valid (vr.valid).

The detector maintains a database DB of replicas, indexed by replica IDs. For a
replica with ID id, the fields of the database are (1) the highest received setpoint label
(`) DB[id].`, (2) the highest received detector label DB[id].`d, (3) the replica’s health as
seen by this replica DB[id].h, and (4) a flag DB[id].nf , denoting whether the replica is
considered non-faulty for the setpoint with label ` = DB[id].`. We denote one record
of DB with db.

When the detector boots, it initializes the fields in the database corresponding to its
replica’s ID (line 1). The health field (h) is set to its maximum value Hmax, the setpoint
timestamp (`) and the detector timestamp (`d) are set to zero, and the non-faulty flag
(nf) field is set to true.

A validity report (vr) is identified by its setpoint label field (vr.`). This enables
aggregating the reports that originated from a single computation. Then, a replica
will be considered to have made a faulty computation if and only if all of the reports
received corresponding to that computation are invalid (the vr.valid flag is set to false).
To achieve this, the detector performs a logical OR of the vr.valid flags received in
reports from the same replica with the same setpoint timestamp (lines 37-39). The
database is updated (according to Algorithm 5.6) only after a new report is received,
i.e., report with a higher ` field. Consequently, the replica is not penalized when it
is actually not delay faulty, but a few of the setpoints that it sent experience a high
network-delay.

In Algorithm 5.6 lines 1-2, the labels ` and `d are set to the corresponding ones
received in the validity report. Lines 4-8 show how the health of a replica is updated.

93

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

Algorithm 5.5: Detector

1 initialize DB[myID]; // initialize database entry of this replica

2

3 on reception of a report vr from a masker
4 if vr.id 6∈ DB or vr.` > DB[vr.id].` then
5 if vr.id 6∈ DB then
6 create DB[vr.id]; // create new entry in database

7 DB[vr.id].`← vr.`;
8 DB[vr.id].`d ← vr.`d;
9 DB[vr.id].nf ← vr.valid;

10 DB[vr.id].h← Hmax;
11 else
12 DB[vr.id].h← min(vr.h, DB[vr.id].h);
13 updateDB(DB[vr.id], vr); // update database entry

14 end
15

16 DB[myID].`d ← max(DB.`); // update detector label

17 Send DB[myID].h,DB[myID].`d to local tagger;
18

19 if vr.id 6= myID and DB[vr.id].h ≤ Hext then
20 EXT_DET(DB[vr.id].`, vr.id); // trigger external delay detection

21 delete DB[vr.id]; // delete entry from database

22 else if DB[myID].h ≤ Hint then
23 INT_DET(DB[myID].`); // trigger internal delay detection

24 end
25

26 for each id ∈ DB do
27 if max(DB.`)−DB[id].` > Lc or max(DB.`d)−DB[id].`d > Lc then
28 if id = myID then
29 INT_DET(max(DB.`)); // trigger internal crash detection

30 else
31 EXT_DET(max(DB.`), id); // trigger external crash detection

32 delete DB[id]; // delete entry from database

33 end
34 end
35 end
36

37 else if vr.` = DB[vr.id].` then
38 DB[vr.id].nf ← DB[vr.id].nf ∨ vr.valid; // update non-faulty flag

39 end
40 end;

94

5.4. Axo Design

Algorithm 5.6: updateDB(db, vr) function in the detector

1 db.` ← vr.`;
2 db.`d ← vr.`d;
3

4 if db.nf then
5 db.h ← α× db.h+ (1− α)×Hmax; // increase health of non-faulty replica

6 else
7 db.h ← α× db.h− (1− α)×Hmax; // decrease health of -faulty replica

8 end
9

10 db.nf ← vr.valid;

If the replica was delay faulty in its last computation, i.e., the non-faulty flag set to
false, then the updated health is computed by exponentially averaging the old health
with a penalty of −Hmax and a parameter α, else the updated health is computed
with a bonus of +Hmax. The exponential averaging enables considering the rate of
delay faults, rather than the presence or absence of faults in a given round. Thus, it
considers a sliding window of previous rounds, depending on the value of α. This
serves two purposes: (1) It smoothens out the health and dampens the effect of outliers
thereby preventing the triggering of fault recovery due to transient delay faults, and (2)
it keeps the health between−Hmax and +Hmax thereby avoiding overflow. The value
of α (0 ≤ α ≤ 1) represents the weight assigned to the history. Lastly, the non-faulty
flag is set according to the valid flag of the newly received validity report (line 10).

In Algorithm 5.5 at line 16, the detector label of this replica is computed as the
highest setpoint label processed by this detector. This field is used by other detectors
to detect crashes of this detector. The detector label and the health of this replica is
sent to the tagger as a part of the Axo header, and is in turn echoed in the validity
report so that newly added replicas can learn of existing replicas. Furthermore, when
a validity report corresponding to a replica that is already present in the database is
received (lines 11-14), the health in the database is updated to the minimum of the
existing health and the received health. In this way, a newly added replica learns of the
health of existing replicas and instantly joins the detection process, thereby making
detection soft state.

A replica is detected as delay faulty (lines 19-24) when its health in the database falls
below a threshold. For a replica to be detected as delay faulty by its own detector, the
threshold Hint is used. Whereas, detecting other replicas makes use of the threshold
Hext < Hint. This enables a replica to be detected by its own detector, before it is
detected by others. This is particularly useful, as the routine for internal recovery is
quicker than that for external recovery (see Section 5.4.4).

The parameter α and the two thresholds for health, Hint and Hext, can be varied to
trade-off speed of detection for tolerance of transient delay-faults. A higher α gives less

95

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

weight to the penalty term causing slower detection, and vice versa. On the contrary,
a higher Hint or Hext reduces the number of invalid setpoints permitted by a replica
before being deemed faulty, causing faster detection.

Crash faults are detected as shown in lines 26-35. The detector compares, for
each replica in its database, the value of the setpoint label ` with the maximum of all
`’s. If the difference is greater than some threshold Lc, then that replica is deemed
crash faulty, as it has not sent setpoints in Lc control rounds. In this way, a replica is
only considered to be crash faulty if it has been inactive for a Lc rounds, while other
replicas have been active. This relative comparison allows incorporating CPSs with a
non-constant rate of issuing setpoints. A similar comparison is done for `d’s, to detect
crashes in the detector.

5.4.4 Fault Recovery: Rebooter

The rebooter, according to Algorithm 5.7, (1) reboots its own replica when it receives an
internal detection (INT_DET) message from the local detector, (2) reboots its own replica
when it receives an external recovery (EXT_REC) messages from another rebooter, and
(3) sends EXT_REC messages to another rebooter when it receives an external detection
(EXT_DET) message from the local detector.

The messages received by the rebooter contain a label that corresponds to the
report that triggered the detection (see Algorithm 5.5, lines 20, 23, 29, 31). The rebooter
saves this label on disk when it triggers a reboot, and loads it upon booting. The loaded
label `r is used to order the received messages and to avoid rebooting multiple times
for the same detection. This enables the algorithm to deal with message delays and
reordering without using consensus. A threshold of Tr is also used to avoid multiple
reboots in the presence of message losses. For example, a lost report to one controller
replicaC1 might cause replicasC1 andC2 to detect a delay fault inC0 at different times,
as C2 would detect it immediately but C1 will only detect it after it receives the next
report. So, they will send EXT_REC messages with different labels.

When the rebooter receives EXT_DET messages from the local detector, it sends
EXT_REC messages to the faulty replica, until it receives an ACK (Algorithm 5.7, lines 27-
36). This is done at mostmaxSend times, once every Tr. The ACKs sent also contain the
label of the received EXT_REC message, plus the threshold Lr. This enables the rebooter
issuing the EXT_REC messages to differentiate the ACKs that correspond to the current
exchange from the delayed ones.

From Algorithm 5.7, note that internal recovery is faster than external recovery, as it
is performed locally and does not require communication between the rebooters over
the network. This makes it more desirable and is the reason behind settingHext < Hint,
as mentioned in Section 5.4.3.

96

5.4. Axo Design

Algorithm 5.7: Rebooter

1 `r ← 0; // label of last reboot

2

3 on reboot
4 `r ← stored `r;
5 end;
6

7 on reception of INT_DET[`]
8 if ` > `r + Lr then
9 `r ← `;

10 store `r;
11 reboot the replica;
12 end
13 end;
14

15 on reception of EXT_DET[`1, id]
16 sentCtr ← 0;
17 while sentCtr < maxSend do
18 send EXT_REC(`1) to replica id;
19 sentCtr++;
20 listen for Tr ;
21 if (ACK(`2) received) and (`2 ≥ `1) then
22 break;
23 end
24 end
25 end;
26

27 on reception of EXT_REC[`]
28 if ` > `r + Lr then
29 send ACK(`+ Tr) to all replicas;
30 `r ← `;
31 store `r;
32 reboot the replica;
33 else
34 send ACK(`r + Tr) to all replicas;
35 end
36 end;

97

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

Given that the rebooter needs to respond to remote reboot requests, it needs to
be non-susceptible to crash faults. Otherwise, the replica cannot be recovered, as it is
not possible to remotely reboot an unresponsive machine. In our analysis, we assume
that the part of the rebooter that handles external recovery requests is non-faulty. In
our implementation, we achieve this by using a simple heartbeat mechanism on the
detector that monitors the rebooter and re-instantiates it in case of faults.

5.5 Formal Guarantees

We say that a CPS implements Axo if (1) its RAs include the validity horizon in the
advertisement as described in Section 5.4.1, (2) its GA is modified according to Algo-
rithm 5.1, (3) a tagger, detector, and rebooter are present on all GA replicas, according
to Algorithms 5.3, 5.5, 5.7, and (4) a masker is present on all RAs, according to Algo-
rithm 5.4.

In this section, we prove that Axo guarantees reliable validity by discarding invalid
setpoints at the masker before they reach the RA. Then, we show that Axo only discards
invalid setpoints, thereby preserving reliable availability. Recall the definitions of
reliable validity (Definition 3.8), reliable availability (Definition 3.9), and valid setpoints
(Definition 5.1).

Theorem 5.1 (Reliable Validity). A CPS that implements Axo guarantees reliable validity.

Proof. Let adv be an advertisement computed with a timestamp T at some RA i.
The RA includes the validity horizon τ = n× Tctrl − δi in adv (Section 5.3.2).
If a GA computes and issues a setpoint sp to RA i that uses adv in its computation, the
GA includes tv = T + τ when issuing sp (Algorithm 5.2, lines 10, 13).
If the GA does not use any advertisement from RA i in its computation of sp, then sp is
a probe and cannot be invalid.

The tagger intercepts sp and tv.
If the tagger is faulty, the setpoint does not reach the masker or the RA and cannot
violate reliable validity.
The tagger preprends the Axo header to sp, including tv in the header, and sends it
to the masker or RA i (Algorithm 5.3, lines 11-12). If the message is lost, then reliable
validity cannot be violated.

Otherwise, the masker computes the reception time tr after receiving sp (Algorithm 5.4).
The masker only forwards sp to the RA in two conditions.
The first is if tv = 0, which means according to Algorithm 5.1, that the setpoint is a
probe issued because of a timeout.
Thus, it cannot be invalid.
The second is if tv ≥ tr.

98

5.6. Performance Analysis

This implies that tr ≤ T + τ , which is the definition of a valid setpoint (Definition 5.1).
Therefore, for any setpoint sp that is invalid, sp is not forwarded to the RA.

Besides proving the statement of the theorem, we discuss the computation of the
validity horizon at the RAs.
The advertisement fields are computed at time t0 ≥ T (Algorithm 3.1, lines 11, 13).
Thus, if tr ≤ T + τ , then tr ≤ t0 + τ .
Moreover, as discussed in Section 5.3.2, after the masker forwards the setpoint to the
RA, the RA implements the setpoint after a duration upper-bounded by δi.
Recall that τ = n× Tctrl − δi.
Therefore, if an RA receives a setpoint at tr ≤ t0 + τ , it will implement it at ti ≤ tr + δi.
Thus, ti ≤ t0 + n× Tctrl.
This ensures that the setpoint is implemented within the validity horizon of the adver-
tisement used in its computation.
It also ensures that the RA can continue implementing the setpoint for a duration
of Tctrl (included in that validity horizon), until it receives the next setpoint.
Recall that the GAs account for the possibility of a fault preventing the RA from receiv-
ing the next setpoint, as they guarantee robust safety (Theorem 4.4).

Theorem 5.2 (Reliable Availability: Axo). Axo never discards valid setpoints.

Proof. As Axo uses active replication, and does not interfere with the issuing of set-
points to the RAs, then the maskers receive as many setpoints as with any CPS us-
ing g replicas.
The maskers discard some setpoints instead of forwarding them to the RAs.
We show that Axo minimizes the number of setpoints discarded, while guaranteeing
reliable ordering and validity.

The masker for RA i discards setpoints such that their reception time tr > T + τ ,
where T is the timestamp of the advertisement from RA i used in the computation of
the setpoint, and τ is the validity time of that setpoint.
By Definition 5.1, all such setpoints are invalid.
Therefore, Axo only discards invalid setpoints.

5.6 Performance Analysis

In this section, we analytically characterize recovery time, i.e., the time taken to detect
and recover a faulty replica by Axo. This time depends on the number of replicas, the
fault-arrival rate, the frequency of setpoints issued by the controller replicas, and the
delays and losses in the network. We derive the relationship between the time to detect
and recover, and the aforementioned parameters. Then, we compare and validate
these expressions with results obtained from experiments.

99

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

We consider a CPS that consists of controller replicas that issues setpoints according
to a Poisson process of rate λn when non-faulty and rate λf when faulty. This follows
from the fault model described in Chapter 3, Figure 3.3. On one hand, we approximate
the rate of issuing setpoints when the replica is non-faulty as λn ≈ 1/Tctrl. As the rate is
small in real-time systems, this approximation is justified. It also allows us to consider
slight variations in the control period, brought about by the jitter in computation and
communication latency. On the other hand, when the replica is faulty, the rate of
issuing setpoints decreases. Therefore, λf < λn.

Furthermore, recall that θd and θc represent the probability of a delay fault and a
crash fault, respectively. We define θ as the probability that either fault occurs, such
that θ = θc + θc. This simplifies the Gilbert-Elliot model presented in Section 3.3.2,
allowing us to derive the results in Theorem 5.3 and Theorem 5.4.

Using the previously defined terms, the stationary probability of a replica being
non-faulty (πn) can be derived as πn =

λf (1−θ)
λf (1−θ)+λnθ , and the average rate of sending

setpoints λ0 = λf (1− πn) + λn πn.

The network between controller replicas and the RAs is considered to have a round-
trip time upper bounded by 2δn and a packet loss probability of p, as described in
Section 3.2.3.

We assume that at least one RA, including its masker, is non-faulty. This assumption
is valid as it would not make sense to speak of fault tolerance when all RAs are faulty:
the processes would be uncontrollable. Additional non-faulty RAs will only improve
the time for detection and recovery.

5.6.1 Analytical Evaluation of Recovery Time

The exact evaluation of the expression of recovery time appears to be mathematically
intractable. Instead, we derive a lower bound and an upper bound on the recovery
time. In Section 5.6.2, we validate these bounds by comparing them with experimental
results.

Theorem 5.3 gives the expressions for the detection and recovery of a delay-faulty
controller replica. Theorem 5.4 gives the same for a crash-faulty controller replica. The
proofs of these theorems can be found in Appendix A.1 and Appendix A.2, respectively.

Theorem 5.3 (Delay-Faulty Controller). In a CPS with g controller replicas, if a replica
C0 starts to be delay faulty at time t = 0 and remains faulty till time t, then a lower
bound (Pld(t)) and upper bound (Pud(t)) on the probability that it is recovered by time t is
given as follows:

100

5.6. Performance Analysis

Pld(t+ 2∆) =
γNπnβ

β + η
×
[

1

(γ + η)N
(1− Γ(N, γt)

(N − 1)!
)− e−(β+η)t

(γ − β)N
(1− Γ(N, (γ − β)t)

(N − 1)!
)

]
Pud(t) = 1− (1− P1(t))g−1

P1(t) = 1− Γ(N, γt)

(N − 1)!
− γN

(γ − β)N
e

−(1−p)
Tr

t

[
1− Γ(N, (γ − β)t)

(N − 1)!

]
where,

β = (1−p)/Tr, γ = λf (1−p)2, η = λnθ, N =
log(1

2(HextHmax
+ 1))

log(α)
, Γ(x, s) =

∫ ∞
s

tx−1e−tdt

Theorem 5.4 (Crash-Faulty Controller). In a CPS with g controller replicas, if a replica
C0 starts to be crash faulty at time t = 0 and remains faulty till time t, then a lower
bound (Plc(t)) and upper bound (Puc (t)) on the probability that it is recovered by time t is
given as follows:

Plc(t) = P2(t− 2δn)

P2(t) =



Be
−(D+G) τc

Tr

D+E+G

(
A(1−p)Tr
E+G e−(E+G) t

Tr + e
D t
Tr

D+F+G

)
−Be

−(D+G) τc
Tr

F+G

(
A(1−p)Tr
D+F+G e

−(F+G) t
Tr + 1

E+G

)
t ≤ τc

e−(E+G) t
Tr

AB(1−p)Tr
(
e
−(D+G) τc

Tr −eE
τc
Tr

)
(E+G)(D+E+G)

 t > τc

−e−(F+G) t
Tr

AB(1−p)Tr
(
e
−(D+G) τc

Tr −eF
τc
Tr

)
(F+G)(D+F+G)

− B

(
e
−(D+G) τc

Tr −e−G
τc
Tr

)
(F+G)(E+G)

Puc (t) = 1− (1− P3(t))g−1

P3(t) =



e−D
τc
Tr

[
EJ

(D+E)(D+J)e
D t
Tr + DJ

(D+E)(J−E)e
−E t

Tr t ≤ τc
− DE

(D+J)(J−E)e
−J t

Tr − 1
]

DJ
(J−E)(D+E)(e−D

τc
Tr − eE

τc
Tr)e−E

t
Tr t > τc

− DE
(J−E)(D+J)(e−D

τc
Tr − eJ

τc
Tr)e−J

t
Tr − (e−D

τc
Tr − 1)

where,

τc = Lc × Tctrl, A =
λ0

λn(1− p)Tr − 1
, B = (1− p)3Trλnπn, D = (1− p)2Trλo

E = (1− p), F = λn(1− p)2Tr, G = λnθTr, J = (g − 1)λn(1− p)2Tr

101

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

5.6.2 Experimental Validation

We implemented the Axo components in C++, and use them along with a test controller
for these experiments. We use three replicas (g = 3) each with a test controller and the
Axo controller library, and one RA with an Axo RA library. The controller replicas run on
64-bit Ubuntu Virtual Machines that are configured with 1 GB RAM using VirtualBox
on a Macbook Pro with MacOS 10.10.5, a 2 GHz Intel Core i7 processor and 16 GB RAM.
The test controller begins a computation according to a Poisson process with rate
λn = 1/100 s−1 (considering that the control period Tctrl is 100ms) when the controller
is non-faulty and λf = 1/200 s−1 when the controller is faulty. The RA runs on a Lenovo
T410 laptop with a 2.67 GHz Intel Core i7 processor with 4 GB RAM running a 64-bit
Ubuntu operating system.

As described by Definition 5.2, a replica is considered delay faulty if the last setpoint
it sent to the RA is received after T+τ . We configure the validity horizon to be τ = 97 ms,
and the one-way network latency to be δn = 2 ms. We take the crash-fault detection
threshold Lc to be 5 control rounds. Thus, τc = 5× Tctrl = 500ms.

We study the variation of the distribution of recovery time as a function of the
probability of a controller fault θ. We perform experiments for p = 0.01 and θ =

0.01, 0.02. In each experiment, C0 is configured to start being faulty at a random time
and remain so until recovered, whereasC1 andC2 follow the parameters of the scenario.
Each time C0 is recovered, the total time elapsed, from the time it started being faulty
until the time it was recovered, is recorded as the recovery time.

We noticed both from our experiments and from the analytical lower and upper
bounds that the packet loss probability p did not have a major effect on the probability
of detection. The range of values under consideration is between 0% and 2% loss
probability, which is a realistic figure for CPSs. This shows that the detection and
recovery algorithms of Axo are resilient to network losses in this range.

However, the effect of fault rate of replicas (θ) is significant. Figure 5.3 shows the
results of the experimental simulation of a delay-faulty C0, with p = 1% and a varying
θ. Figure 5.4 shows the same for a crash-faulty C0. In addition to validating the lower
and upper bounds, these results show the effect of a higher fault rate on the detection
and recovery performance. We also notice that the lower and upper bounds are close
to each other, which provides a good estimate of the real values.

102

5.7. Stability Analysis: An Inverted Pendulum

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0.0

0.5

1.0
θ=0. 01, p=0. 01

Upper Bound
Experimental
Lower Bound

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0.0

0.5

1.0
θ=0. 02, p=0. 01

Upper Bound
Experimental
Lower BoundC

u
m
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n

Figure 5.3 – Time to recover from delay-faults for varying fault rate θ

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time [s]

0.0

0.5

1.0
θ=0. 01, p=0. 01

Upper Bound
Experimental
Lower Bound

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time [s]

0.0

0.5

1.0
θ=0. 02, p=0. 01

Upper Bound
Experimental
Lower BoundC

u
m
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n

Figure 5.4 – Time to recover from crash-faults for varying fault rate θ

5.7 Stability Analysis: An Inverted Pendulum

In this section, we demonstrate how applying Axo affects the stability of an inverted
pendulum system. We use the example in [153], of an inverted pendulum mounted on
a motorized cart, in which a Linear Quadratic Regulation (LQR) controller attempts to
balance the pendulum by applying a force on the cart.

For the implementation, we use Mininet [154], and we separate the controller
from the actuator and have them communicate over a network with loss probability
p = 0.1%, and with a one-way delay of 0.5ms in case of no loss. The controller operates
at 100 Hz, resulting in a control cycle of 10 ms. Using Mininet enables us to run the
actual Axo code, rather than simulate it.

Figure 5.5 shows the step response of the system for different delay profiles of a
non-replicated controller, when a step of 1N is applied as an external force. We see that
the pendulum angle (φ) and position (x) experience a higher overshoot, and a longer

103

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

Scenario Instability (%) MTTI (s) MTTF (s)
(θd) No Axo Axo No Axo Axo No Axo Axo

#1: 1E-3 19.56 1.86 57.89 79.16 73.30 118.32
#2: 2E-3 23.93 2.78 25.33 31.70 22.29 47.06
#3: 5E-3 54.04 6.25 7.31 7.42 1.28 32.73

Table 5.1 – Results of select scenarios with varying θd

resting time as the mean delay of the controller increases. For delays greater than 20ms,
the system becomes entirely unstable. This shows the real-time requirements of an
inverted pendulum system, and hence the applicability of Axo in masking, detecting,
and recovering from delay faults.

Next, we perform step response experiments with a replicated controller with two
replicas and a bursty delay fault model. In these experiments, the delay is exponentially
distributed with a mean of 2 ms in the good state and 80 ms in the bad state; the
probability of transition to the bad state is θd, which is varied across several scenarios;
and the mean burst length is 20 computation cycles.

We evaluate three metrics: the instability rate, mean time to instability (MTTI), and
mean time to failure (MTTF). Instability rate is the fraction of the time the pendulum
experiences an overshoot (φ > 20◦ or x > 0.2 m), and the MTTI is defined as the
mean time until an overshoot occurs. The MTTF is the mean time until the pendulum
reaches an angle that the LQR controller is not tuned to handle (φ > 35◦).

Figure 5.6 shows the additional stability brought about by using Axo for a repre-
sentative fault-scenario (θd = 10−3). Table 5.1 shows the computed metrics after a
large number of runs. The results are to be interpreted as the mean of an exponential
distribution obtained by fitting. The results show that, for all scenarios, Axo improves
stability in all the metrics by up to 25x, with the improvement becoming more apparent
as the probability of delay faults increases.

104

5.7. Stability Analysis: An Inverted Pendulum

1.0 1.5 2.0 2.5
Time [s]

−0.05

0.00

0.05

0.10

0.15

x
 [

m
]

0 ms 10 ms

1 2 3 4 5
Time [s]

−250

−200

−150

−100

−50

0

50

x
 [

m
]

20 ms 23 ms

1.0 1.5 2.0 2.5
Time [s]

−5

−4

−3

−2

−1

0

1

2

3

φ
 [

d
e
g
re

e
s]

1 2 3 4 5
Time [s]

−200

−150

−100

−50

0

50

100

150

200

φ
 [

d
e
g
re

e
s]

1.0 1.5 2.0 2.5

0.0

0.4

0.2

−0.2

Figure 5.5 – Step response of the pendulum with a non-replicated controller

0 50 100 150
Time [s]

−10
−5

0
5

10
Without Axo

0 50 100 150
Time [s]

−10
−5

0
5

10
With Axo

φ
 [

d
e
g
re

e
s]

Figure 5.6 – Stability of the pendulum with a replicated controller

105

Chapter 5. Axo: Tolerating Delay Faults in Cyber-Physical Systems

5.8 Conclusion

We have presented Axo, the first protocol that enables real-time CPSs to tolerate delay
and crash faults of its controller. Axo uses active replication of the controller, ensuring
that one controller replica is always available to receive input, perform computations,
and issue setpoints to the RAs. In order to mask delay faults, Axo discards invalid set-
points at the masker, before the reach the RAs. We have proven that the fault-masking
mechanism of Axo guarantees reliable validity and preserves reliable availability.

In order to detect and recover from delay and crash faults, Axo makes use of the
round-based communication scheme between the controller and the RAs, and sends
validity reports from the masker to the detector of each replica. The detection and
recovery mechanisms of Axo are designed to be soft state, to enable the seamless addi-
tion of new replicas and removal of faulty replicas. We have analytically characterized
the time to recover a faulty replica, and have experimentally validated the expressions.

Finally, we have performed a stability analysis of an inverted pendulum system, to
study the effect of delay faults on the stability. We have shown that, by detecting and
recovering from delay faults, Axo improves the stability.

Axo is designed to be controller-agnostic. This enables it to be generic, and fa-
cilitates its deployment to a wide range of CPSs. In Chapter 8, we deploy Axo with
COMMELEC [8], and we demonstrate the fault-tolerance properties of Axo in greater
detail.

As mentioned in Chapter 2, active replication might introduce inconsistencies,
resulting in the split-brain syndrome [121]. This issue is handled in Chapter 6, in which
we introduce Quarts, an agreement protocol that guarantees reliable consistency in
real-time CPSs.

106

6 Quarts: Quick Agreement in Cyber-
Physical Systems

A distributed system is one in which the failure
of a computer you didn’t even know existed

can render your own computer unusable.
— Leslie Lamport

In Chapter 5, we have presented Axo, a fault-tolerance solution based on active
replication. With active replication, each of the controller replicas receives measure-
ments and advertisements, computes setpoints, and issues them. In Chapter 4, we
have presented Robuster, a mechanism that enables a GA to compute setpoints even
when some advertisements are missing. Due to non-uniform network losses, two
replicas might receive a different subset of advertisements in a given control round.
With Robuster, both replicas can compute a vector setpoints that maintains robust
safety (Theorem 4.4). However, these vectors might differ, and the interleaving of their
setpoints at the RAs results in what is referred to as the split-brain syndrome [121].
The split-brain syndrome and its effect on CPS correctness are further discussed in
Section 6.1.

In order to address the split-brain syndrome, we have introduced the reliable
consistency property (Definition 3.10), which states that setpoints issued in the same
control round to the same RA must have the same value. Traditional methods of
guaranteeing consistency rely on consensus [96]. However, as we have discussed in
Chapter 2, consensus mechanisms incur a high latency-overhead and suffer from a
reduced availability.

In Section 6.3, we identify and present a set of properties, of the controllers and
RAs, generally exhibited by CPSs for real-time control of electric grids. With these
properties in mind, we are able to relax the requirements on consensus for these types
of systems. Specifically, they enable us to forgo the termination requirement, which,
for generic consensus protocols, requires all non-faulty replicas to decide on a value.

109

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

We designed Quarts, an agreement protocol that suits CPSs with the aforemen-
tioned properties. Quarts guarantees agreement between the replicas, and forgoes
termination. That is, it does not require all replicas to decide on a value in each round,
thus permitting some to not perform a computation. Instead, Quarts re-synchronizes
such replicas, called stragglers, in the following rounds.

The design of Quarts is presented in Section 6.4. Quarts is designed to provide
agreement on a vector of messages with a specific property (see Equation 6.1). This
property applies to the input messages to the controller in a CPS. Thus, Quarts can
be used in the replicas to agree on the input used for computation. Considering a
deterministic computation function, this in turn provides agreement on the output.

In Section 6.5, we show how Quarts can be applied to CPSs. Specifically, we use
Quarts to provide agreement between SE replicas, ensuring that the states they send to
their corresponding GAs are consistent. Then, we use Quarts to provide agreement
between GA replicas, ensuring that the vectors of setpoints they compute and issue to
the RAs are consistent. Thus, the controller output is guaranteed to be consistent.

In Section 6.6, we provide a formal proof that applying Quarts to CPSs guarantees
reliable consistency. Also, we show that the latency overhead incurred by CPSs due to
Quarts is upper-bounded. Recall that, in contrast, consensus mechanisms incur an
unbounded latency-overhead.

Finally, we use discrete-event simulation to compare the performance of Quarts
with Fast Paxos [104], a state-of-the-art consensus mechanism. We also compare
Quarts with passive-replication solutions that attempt to circumvent the consistency
issue by having only one replica compute and issue setpoints. The performance
metrics considered in our evaluation are availability, latency, and messaging cost.

We show that, as mentioned in Chapter 2, passive replication cannot guarantee
consistency, as it relies on failure detection, which is inherently imperfect [38]. Passive
replication was designed for a crash-only fault model, and we observe that in scenarios
in which we do not consider delay faults, passive replication performs as intended.
However, when delay faults are introduced, we observe inconsistencies, in addition to
an increase in latency and a decrease in availability. We also observe that Fast Paxos
suffers from high latency and low availability, when compared to Quarts.

Quarts provides an availability that is one order of magnitude higher than that of
other solutions when two controller replicas are used, and its availability increases
with the number of replicas, as opposed to other solutions. Quarts also provides lower
latency than Fast Paxos, both in the average case and in the tail. The price to pay for
guaranteeing consistency, both for Quarts and Fast Paxos, is a marginal increase in
message cost. Our results are presented in Section 6.7.

110

6.1. The Split-Brain Syndrome

6.1 The Split-Brain Syndrome

The split-brain syndrome [121] is a term used in distributed computing to refer to a
process receiving conflicting control messages from multiple controllers. In traditional
computing, this might refer to multiple computers simultaneously writing to disk,
which causes data contamination. In CPSs, an example would be an autonomous
vehicle receiving an instruction to turn left from one controller, and to turn right
from another. This would result in the vehicle exhibiting an undefined behavior, and
potentially leads to safety hazards.

6.1.1 Causes

Recall from Chapter 3 that, in this thesis, we consider software agent delays and
crashes, and message losses, omissions, delays, and reordering. Delays might lead to
different controller replicas receiving their input messages at different time instances.
Losses, omissions, and crashes might lead to them receiving different subsets of input
messages, due to non-uniform losses. With Robuster (Chapter 4), controller replicas
can compute setpoints that maintain grid safety, even when some input advertisements
are missing. Therefore, two different controller replicas, with a different subset of input
advertisements, might both compute and issue a vector of setpoints in a given control
round r. Given that these vectors were computed using a different combination of
short-term fields and long-term fields of advertisements, they will not necessarily have
the same setpoint values. We observe the effect this might have on the CPS in the
example in the following subsection.

Several other factors might result in the split-brain syndrome, most of which we
have addressed in earlier chapters. For example, a delayed or an out-of-order setpoint
received at an RA might be in conflict with another valid in-order setpoint. However,
intentionality clocks (Chapter 4), and Axo (Chapter 5) guarantee reliable ordering and
validity (Definitions 3.7, 3.8), respectively, ensuring that such a cause does not affect
CPSs that use these solutions.

Another possible cause for the split-brain syndrome are Byzantine faults [39]. Such
faults are caused by software bugs, security attacks, and hardware faults, and might
result in an erroneous computation by one of the replicas. Byzantine-fault tolerance
(BFT) solutions address this particular cause, but, as mentioned earlier, Byzantine
faults are not considered in the fault model in this thesis, and are hence not addressed.

6.1.2 Effects

Consider the example shown in Figure 6.1. Two GA replicas, GA1 and GA2, monitor
and control a grid that consists of two resources: a battery and a PV. The main line of

111

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

+300 kW -200 kW

GA1 GA2 GA1 GA2

+50 kW -50 kW

GA1 GA2

-50 kW +300 kW

Figure 6.1 – Interleaving of setpoints as a result of the split-brain syndrome

grid has an ampacity limit of 200 A, which corresponds to approximately 140 kW . The
GAs, therefore, must maintain the power imbalance in the grid below this limit.

Suppose that in control round 9, both GAs received advertisements from both
RAs. The PV RA included in that advertisement, a conservative long-term uncertainty,
accounting for a possible change in weather conditions in the next second.

In control round 10, GA1 receives advertisements from both RAs. The PV RA in-
dicates in its short-term fields that it can inject up to 300 kW , and the battery indi-
cates it can absorb up to 200 kW . GA1 computes and issues the vector of setpoints
X1 =< +300,−200 >1. This maximizes the utilization of the PV, and maintains the
imbalance to 100 kW , well under the 140 kW limit.

GA2, in control round 10, receives an advertisement only from the battery RA. It
computes, using the long-term fields of the previous advertisement of the PV, a vector
of setpoints X2 =< +50,−50 >. This considers the possibility that the PV might not
be capable of exporting its maximum of 300 kW , due to the increased uncertainty in
its long-term fields. It also decreases the battery absorption to match the PV injection,
and to maintain a low power imbalance.

Although an implementation of either one of these computed vectors X1 and X2

maintains grid safety, an interleaving of their setpoints at the RAs might not. Consider a
sequence of message losses that causes both the following: (1) the PV RA receives only
the setpoint from GA1, instructing it to inject 300 kW , and (2) the battery RA receives
only the setpoint from GA2, instructing it to absorb 50 kW . The resulting power
imbalance would be 250 kW , violating the ampacity limit, and possibility causing
damage to the grid and the resources.

In Chapter 4, we have discussed that a robust GA must consider all the possibilities
of implementation, taking into account the uncertainties of the resources, and the
possibilities of message losses. However, a GA cannot take into account all the possible
computations its replicas might perform. In order to circumvent this issue, the GA

1Note that the subscript in this example refers to the GA that computed the vector of setpoints, rather
than the round number r.

112

6.2. Related Work

replicas must guarantee reliable consistency (Definition 3.10). If reliable consistency
were satisfied in the example above, X1 and X2 would contain the same setpoints,
thereby eliminating the problem of interleaving, and consequently handling the split-
brain issue.

We note that the above example is a pathological case. However, as we have men-
tioned, the GA can account for a loss in availability, but not for a violation of consistency.
Even though consistency might be violated only in rare occasions, over the long-term
deployment of a CPS, it becomes a rather likely possibility.

6.1.3 Proposed Solution: Quarts

We propose Quarts, an agreement protocol that is tailored for real-time CPSs. Quarts
guarantees consistency with a low bounded latency-overhead and a high availability.
Therefore, it does not suffer from the same drawbacks as traditional, more generic,
consensus solutions. However, Quarts can only be used to agree on messages of a
specific format, hence can only be applied to CPSs that satisfy a certain set of require-
ments (mentioned in Section 6.3). These requirements are generally satisfied by CPSs
for real-time control of electric grids.

When applied to CPS controllers, Quarts is used to agree on the input used for
computation, rather than the output issued. SE replicas use Quarts to agree on the
set of measurements to be used in a computation of the state to be sent to the GAs.
Similarly, GA replicas use Quarts to agree on the set of advertisements, and on the SE
state, to be used in the computation of setpoints in each control round. Additionally,
as SEs and GAs have an internal state (represented asH in Algorithms 3.2, 3.4), Quarts
is also used to synchronize this internal state between the replicas. Therefore, as all
the parameters used for computation are agreed upon by the replicas, the resulting
output (SE state or GA setpoints) are guaranteed to be the same.

Note that Quarts assumes a deterministic computation. That is, for the same set
of parameters (input messages and internal state) to the computation function, the
output is the same.

6.2 Related Work

Ensuring consistency among replicated controllers is a well-studied problem in the
literature. Two types of solutions tackle this problem from different perspectives:
passive replication [123, 124, 125, 126] and consensus-based active replication [96, 101,
102, 104].

113

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

6.2.1 Passive Replication

Passive-replication solutions circumvent the consistency problem by having only one
replica — the primary — receive inputs, and compute and issue setpoints. As other
replicas — the standbys — are not issuing any output, the consistency problem is
virtually non-existent. Instead of computing, standby replicas monitor the primary in
order to detect it when it is faulty. Upon detecting the primary as faulty, the standby
replicas elect, among themselves, a replica to act as the new primary.

This approach was designed for crash-only faults, and performs best when only
crashes are considered. However, as discussed in Chapter 2, passive replication expe-
riences deteriorating performance, in terms of consistency, availability, and latency,
when delay faults occur. Most importantly for consistency, an imperfect failure detec-
tion can render the system with two primaries, resulting in potential inconsistencies,
as they are not explicitly handled.

Although the rest of the chapters focus on active replication, in this chapter we cover
passive replication for completeness, and to highlight its drawbacks in the presence
of delay faults. In Section 6.7, we simulate two types of passive-replication schemes,
which we refer to as passive hot (PH) and passive cold (PC). PH is a passive-replication
in which the standby replicas are hot, i.e., they are constantly synchronized with the
primary. In contrast, the standby replicas in PC are not synchronized, and are referred
to as cold. PH incurs additional latency and messaging cost in each control round with
respect to PC. However, in PH, when the primary fails and a standby replica is elected
as a new primary, the latter can immediately participate in the computation of the next
control round, as it is already synchronized. In contrast, in PC, the new primary has to
wait an additional round to synchronize, thereby suffering from reduced availability.

6.2.2 Active Replication with Consensus

With active replication, ensuring consistency requires reaching an agreement between
the replicas. Traditionally, such agreement is reached using consensus [96], whereby
the replicas agree on either: (1) the output to send (vector of setpoints or SE state
in our case), or (2) which replica issues the output. As discussed in Section 2.3.2,
consensus has four main properties: agreement, termination, validity, and integrity.
Validity and integrity are mainly included to handle Byzantine faults, hence can be left
aside. However, agreement and termination are impossible together, in the presence
of faults [98].

The impossibility result [98] stipulates that any consensus protocol involves a
trade-off between availability (termination) and consistency (agreement). Several
protocols [101,102,104] have been proposed to provide consensus under different fault
conditions. Fast Paxos [104] is a state-of-the-art protocol that provides a low-latency

114

6.3. Required CPS Properties for Quarts

agreement when no faults occur. However, as with any generic consensus protocol, its
latency-overhead cannot be bounded under faulty conditions. Consequently, it suffers
from reduced availability. In Section 6.7, we simulate Fast Paxos (FP), and compare it
with Quarts and the previously mentioned passive-replication solutions.

In contrast, Quarts is not a generic consensus protocol. Quarts can only be used
to reach agreement on messages of a specific format, and hence it only applies to
CPSs that satisfy the requirements mentioned in Section 6.3. Controller replicas in
CPSs to which Quarts applies are soft state, i.e., they can be re-synchronized in one
time step in case they do not take part in some control rounds. Therefore, Quarts is
able to forgo termination in favor of agreement. That is, Quarts does not require all
replicas to terminate in each control round. Instead, the replicas that do terminate are
guaranteed to have agreement, and the other replicas do not issue any output.

Furthermore, Quarts is used to agree on the inputs used for computation, rather
than on the output as in traditional consensus protocols. This is done in two phases:
(1) the collection phase involves the replicas exchanging the input they received in
each control round, and (2) the voting phase involves the replicas performing a vote to
reach an agreement on which set of input to use in the computation.

The collection phase is used to increase the number of common messages in the
replicas, thereby facilitating the voting phase and increasing the chances of a successful
vote. The voter used in Quarts is plurality-based [155]. In plurality voting, also known
as relative-majority voting, the option with the most votes is chosen. In contrast,
(absolute-) majority voting requires the option to have more than half of the total votes
to be chosen. Plurality, therefore, is more suited for CPSs in which availability hinges
on a successful vote. The voter in Quarts is also composite [156], i.e., when there is a tie
between multiple options, one is chosen based on a predetermined priority. However,
unlike in [156], in which the priority is replica-based, the priority in Quarts is based on
the number of input messages received. This has two advantages: (1) it enables the
CPS to give higher priority to replicas with more recent information, and (2) it does not
restrict the priority to a replica that might become faulty.

6.3 Required CPS Properties for Quarts

In this section, we enumerate, and give the intuition behind, the CPS properties
required to apply Quarts. The properties mentioned here all hold for CPSs for real-time
control of electric grids. They are either assumed in the system model described in
Chapter 3, or provided by the mechanisms described in Chapter 4. In Section 6.4, we
highlight the necessity of these properties as we describe the design of Quarts.

Property 6.1. Control messages, exchanged by software agents, are labeled such that
they can be grouped into computation rounds.

115

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Property 6.1 refers to two types of messages. First, it refers to the measurements
issued by asynchronous sensors. These must be labeled in such a way to enable the SE
to group them into a vector that will be used in a given computation. As mentioned in
Chapter 3, we consider that the asynchronous sensors send timestamped measure-
ments that can be time-aligned by the SE, thereby assigning a common timestamp
(label) to these measurements in each computation round.

The second type of message the property refers to are the advertisements issued by
RAs. These can be labeled using intentionality clocks (Chapter 4) that assigns round-
based labels to such messages. Quarts is designed to agree on a vector of messages to
be used in a computation, hence this property is necessary.

Property 6.2. The controllers can compute with intermittent input messages.

This property is two-fold. First, it means that the controller can compute and
issue output even when some input messages are missing in a certain round. Second,
it means that controllers that miss a computation round, due to a delay fault for
example, can still take part in the next computation round. That is, the input messages
received are enough to perform a correct computation, regardless of internal state.
This property enables Quarts to forgo termination of some replicas in a control round,
without sacrificing availability in the next rounds.

State-of-the-art SEs, as discussed in Chapter 2, can compute with missing measure-
ments [62, 63]. Their internal state, e.g. the gain matrix in a Kalman filter [132], serves
to improve the accuracy of the computation. They can, however, perform a correct
computation even if the state is not up-to-date, albeit with degraded accuracy. The
input measurements, therefore, are enough to perform a correct computation.

Robuster (Chapter 4) provides a mechanism for the GA to compute with missing
input advertisements. Moreover, the state in the GA with Robuster consists of the
latest advertisement received from each RA (containing the long-term fields). Hence,
missing a computation round does not negate the ability of the GA to take part in
future computation rounds.

Property 6.3. The internal state of a controller can be known exactly.

As replicas applying Quarts must use the same internal state to compute a con-
sistent output, the state of the controller must be known exactly so that it can be
exchanged with stragglers. This property holds for state-of-the-art SEs using Kalman
filters, as their internal state is the gain matrix. It also holds for GAs implementing
Robuster, as their internal state consists of the latest advertisements received from
each RA. We consider that any additional internal state that the GA maintains can be
similarly known and extracted.

116

6.4. Quarts Design

Property 6.4. RAs are able to handle duplicate setpoints.

This is the same as Property 5.2 required in Axo (Chapter 5). It is required for Quarts
as well, since Quarts relies on active replication and issues multiple setpoints for each
RA. However, as mentioned in Chapter 5, the masker discards duplicate setpoints
before they are implemented at the RA. Therefore, this property is trivially satisfied.

Property 6.5. RAs and asynchronous sensors are time-synchronized.

Property 6.6. There exists a lower bound (σ) on the time interval between two measuring
events at asynchronous sensors.

Properties 6.5 and 6.6 are essential for a GA using Quarts to group the advertise-
ments in a given round r, to the SE state with a timestamp T . As we describe in
Section 6.5, the GA uses the timestamps of the chosen advertisements in order to select
a timestamp of the SE state. The time-synchronization serves to ensure that the SE
state, used in a given computation, represents the same state of the grid encapsulated
in the advertisements. We discuss the need for the lower bound (σ) in Sections 6.4, 6.5.

Throughout this chapter, we assume that the number of replicas (g) in the CPS
is known to all controller replicas. Addition and removal of replicas occurs on the
non-real-time path. When adding or removing replicas, an upper-bound on their
number is maintained. This marginally reduces the availability until the new number
is agreed upon, but does not affect the correctness guarantees.

6.4 Quarts Design

Quarts is an agreement protocol for replicated controllers. A instance of the Quarts
protocol is instantiated at each controller replica, with an input being a set of messages
of the form (r, i, v), where r is a common label across all messages, i is a unique
identifier in the set, and v is the value. All possible identifiers are known a priori, which
means that an upper bound n on their number is also known. Across replicas, the sets
having the same label r must maintain the following:

∀ (r, i1, v1), (r, i2, v2), i1 = i2 =⇒ v1 = v2 (6.1)

In other words, for a given label r, each replica instantiates Quarts with a vector V
of size n. Each element of V corresponds to one unique identifier, either containing the
value of the message with that identifier, or being empty. Across replicas, non-empty
elements of the same identifier must have the same value.

Consider the example shown in Figure 6.2, in which 3 controller replicas instantiate
Quarts for a common label r. In the example, the number of identifiers n is 5. Initially,

117

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

C1	
 C3 C2

Ini'ally:	

A-er	
 collec'on:	

Digest	
 issued:	
 11101	
 11110	
 11101	

Digests	
 received:	
 11101,	
 11101	
 11110	
 11101,	
 11110,	
 11101	

V’:	

a	
 b	
 c	
 e	

a	
 b	
 c	
 e	

a	
 b	
 c	
 e	

a	
 c	
 d	
 a	
 b	
 e	

a	
 b	
 c	
 d	
 a	
 b	
 c	
 e	

a	
 b	
 c	
 e	

Figure 6.2 – Collection and voting phases of Quarts with three controller replicas

replica C1 has the value of 4 messages, whereas replicas C2 and C3 only have the value
of 3 messages. Notice that when a certain identifier is present in multiple replicas, it
has the same value across these replicas.

Quarts outputs at each replica, within a bounded-latency, the following two vari-
ables: (1) a boolean flag success, indicating whether that replica successfully termi-
nated, and (2) a vector V′ containing the result of the vote if the success flag is set
to true. Quarts guarantees that across all replicas in which success is true for a given
label r, the vectors V′ are exactly identical. For a subset of the identifiers, referred to
as the chosen identifiers, V′ contains the value of the message of that identifier, as
present in some of the input vectors V. The rest of the elements in V′ are empty. In
Figure 6.2, we see that replica C2 does not terminate successfully, whereas replicas C1

and C3 terminate and agree on a vector containing 4 messages.

Quarts also provides the option to agree on a state variableH that can be included
in the input with a state label r−. In that case, Quarts additionally outputs the post-
agreement state variableH′ with its label r′. Across all replicas in which success is true
for a given label r, the variablesH′ and the labels r′ are identical.

The Quarts protocol is composed of two phases: the collection phase and the voting
phase. We present the design of each phase in what follows, and we refer back to the
example in Figure 6.2 for illustration. Sections 6.4.1 and 6.4.2 present an overview
of the design of these phases. Section 6.4.3 presents the modifications that can be
performed during implementation, in order to optimize for the best case.

6.4.1 The Collection Phase

Collection is a bounded-latency phase in which each replica attempts to “collect”, from
other replicas, (1) the message values for any of its missing messages, and (2) the state
variable corresponding to the most recent state, if it does not already have it. These are
presented separately in Algorithms 6.1 and 6.2, respectively.

118

6.4. Quarts Design

Algorithm 6.1: collect_missing_messages(V, r, Tcoll)

1 S ← identifiers of missing messages in V;
2 Send Query<S , r> to all replicas; // request value of missing messages

3

4 repeat
5 if Query<Q , `> received and ` = r then
6 // received query, send response

7 Send Response<V [Q \ S], r> to all replicas;
8 else if Response<P, `> received and ` = r then
9 // received response, update set of messages

10 Update V to include P;
11 Remove received identifiers from S ;
12 end
13 until timer Tcoll expires;
14

15 return V; // return set of messages after collection

Collecting Messages

Algorithm 6.1 shows how each replica performs the collection phase for messages. It
describes the function collect_missing_messages which takes as input a vector V of
messages, a label r corresponding to the messages in V, and an upper-bound Tcoll on
the execution time of the function.

The function first populates a set S with the identifiers that do not contain values
in V (line 1). Then, it sends a Query to all other replicas, containing the elements of S
and the label r (line 2). It then listens for messages from other replicas for a period of
Tcoll (line 13).

During that period, the replica might receive queries of the form Query<Q , `>,
where Q is the set of identifiers requested by some other replica, and ` is the label
of the messages that replica is collecting (line 5). The function only responds if the
labels ` and r are the same, in which case it sends a Response. This response contains
the values of the identifiers in Q that this replica possesses (line 7).

The replica might also receive responses, either to its own query or to queries from
other replicas, since all queries and responses are sent to all replicas (line 8). The
response contains the value of some identifiers, in addition to a label. Again, the
replica only accepts response that have a label equal to r, in which case it updates
its vector V to include the values of the elements received (line 10) and removes the
identifiers received from the set S (line 11). After the timer expires, the function returns
the updated vector of messages V (line 15).

For example, in Figure 6.2, controller C3 sends a query asking for the values of
identifiers 3 and 4. We observe that it received a response fromC1 containing the value

119

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Algorithm 6.2: collect_missing_state(H, r−, Tcoll)
1 Send State<r−> to all replicas; // advertise state label

2

3 repeat
4 if State<`> received and ` < r− then
5 // received state advertisement with smaller label, send my state

6 Send Update<H, r−> to all replicas;
7 else if Update<H′, `> received and ` > r− then
8 // received state update with higher label, update my state

9 H ← H′;
10 r−← `;
11 end
12 until timer Tcoll expires;
13

14 returnH, r−; // return state and label after collection

of the 3rd identifier. In the example, either the query issued by C3 was not received by
C2, or the response issued by C2 was not received by C3, since C3 did not receive the
value of the 4th identifier, present at C2.

We note that message are always exchanged with all other replicas. This gossip-like
communication scheme increases the chances of having a common vector of messages
between all replicas at the end. It comes at the expense of an increased messaging cost,
but as the number of replicas is usually not very high, the incurred messaging cost is
only marginally higher than state-of-the-art protocols, as seen in Section 6.7.

Collecting State

Algorithm 6.2 presents the mechanism for collecting state. The collect_missing_state
function takes as input the state variableH, the state label r−, and an upper-bound
Tcoll on the execution time of the function. The goal of this function is to retrieve, from
the other replicas, the state variable with the highest state label. Of course, each replica
must also help other replicas achieve their goal.

The replica first sends a State message, to all other replicas, containing its state
label r− (line 1). This serves to advertise, to the other replicas, the state label it has.
Then, the replica listens for messages for a period of Tcoll (line 12).

During that period, it might receive State messages from other replicas with state
labels ` (line 4). If ` is smaller than r−, then those replicas are stragglers, and must be
re-synchronized. In that case, the replica sends an Update message containing its state
variableH, and its state label r− to all other replicas (line 6).

If the replica receives an Update message with a state variableH′ and a state label `,

120

6.4. Quarts Design

it checks whether ` is bigger than its own state label r− (line 7). In that case, it updates
its own state variable and state label (lines 9-10). After the timer expires, the function
returns the updated state variable and state label (line 14).

6.4.2 The Voting Phase

After the collection phase, the replicas attempt to vote on (1) the subset of identifiers,
and (2) the state variable, to be used in computation. The mechanism for performing
this vote is presented in Algorithm 6.3. The vote function takes as input the vector
of messages V, the label of messages r, the state label r−, and the upper bound on
execution time Tvote.

Digests: Format, Priorities, & The Full Digest

The function begins by creating a digest out of V and r− (line 1). A digest is an encoding
of the set of identifiers, and the state label, present at this replica. It can be formed in
several ways.

In our implementation, we encode the messages present as a bitstream of size n.
For example, in Figure 6.2, C1 creates a digest “11101”, which represents that it has
the value for messages with identifiers 1, 2, 3, and 5. State collection and voting is not
shown in that example. We encode the state as follows: if r− is 6 in the example above,
then the digest would be “6.11101”.

We assign priorities to digests in order to compare them. We say a digestD1 is larger
than D2 if it has a higher priority. Thus, among a set of digests, the maximum is the
one with the highest priority. The priority rules are given as follows. DigestD1 is larger
than digestD2 if:

1. D1 has a higher state label thanD2.

2. D1 andD2 have the same state label, butD1 contains more messages thanD2.

3. D1 andD2 have the same state label and the same number of messages, butD1

has a message with a smaller identifier.

One example corresponding to each of the above conditions is listed in what follows:
(1) “6.11001” > “5.11101”, (2) “6.11101” > “6.10001”, and (3) “6.11101” > “6.11011”.

From the above definition, if we know that the most recent state label possible is `,
then the digest formed from ` and the set of all messages (all 1’s in the bitstream) is
the largest possible digest. Consider an example where we are agreeing on messages
with label r in a round-based communication scheme. The maximum state label is

121

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Algorithm 6.3: vote(V, r, r−, Tvote)

1 Dmy ← create_digest(V, r−); // create this replica’s digest

2 Send Digest<Dmy, r> to all replicas;
3 D ← [Dmy, ..., ...]; // vector of digests from each replica

4

5 Dmc; // set of most common digests in D

6 Dsec; // set of second most common digests in D

7 fmc; // count of each element of Dmc in D

8 fsec; // count of each element of Dsec in D

9 f0; // number of empty cells in D

10

11 repeat
12 // receive collection message

13 if Digest<D, `> received from replica j and ` = r then
14 D[j]← D;
15 Update Dmc,Dsec, fmc, fsec, f0 using D;
16 // attempt vote

17 if f0 = 0 then
18 // all digests received, pick max of Dmc
19 return True, max(Dmc);
20 else if |Dmc| = 1 and fmc > fsec + f0 then
21 // only one most common digest, and clearly the majority

22 return True, Dmc[0];
23 else if |Dmc| = 1 and fmc = fsec + f0 and fsec 6= 0 then
24 // second most common digests could have equal count

25 if Dmc[0] > max(Dsec) then
26 // most common digest is the largest

27 return True, Dmc[0];
28 end
29 else if |Dmc| = 1 and fmc = fsec + f0 then
30 // other digests could have equal count

31 if Dmc[0] = full_digest then
32 // most common digest is the largest

33 return True, Dmc[0];
34 end
35 end
36 end
37 until timer Tvote expires;
38

39 return False, NULL; // return false because vote was unsuccessful

122

6.4. Quarts Design

the one corresponding to the previous control round ` = r − 1. Therefore, the digest
composed of “`.11111” is the largest possible digest any replica could have. We call this
the full_digest. We see its significance in voting in the next subsection.

Voting

After the digest is created (Algorithm 6.3, line 1), it is sent to all replicas along with the
message label r (line 2). Each replica maintains a vector D of size g (where g is the
number of replicas). This vector contains the digest received from each replica. It is
initialized to contain the digest created by this replica (line 3).

Additionally, each replica maintains the following 5 variables (lines 5-9): (1) a set
Dmc containing the most common digests in D, i.e., the set of digests that appear
most frequently, (2) a set Dsec containing the second most common digest in D, (3)
an integer fmc representing the count (frequency) in D of the digests from Dmc, (4) an
integer fsec representing the count in D of the digests from Dsec, and (5) and integer f0

representing the number of empty cells in D, i.e., the number of replicas from which
we have not received a digest.

Upon reception of a digestD with a label ` = r, the digest is inserted into D. Then,
the five aforementioned variables are updated according to the changes in D. That is,
the most common digests are placed in Dmc, their count in fmc, and so on.

Afterwards, the replica attempts to select a digest from D. A digest will only be
selected if it is sure that no other replica will select a different digest. Otherwise, once
the timer expires (line 37), the success flag is returned as false (line 39).

The vote is successful in one of the following 4 conditions:

1. If a digest from all the replicas is received, i.e., f0 = 0 (lines 17-19), then out of
the most common digests, the maximum is chosen. That is, first we check for the
digest that appears most frequently, i.e., that has plurality or relative-majority,
then if there are multiple of those, we choose the one that has the highest priority
among them.

2. In lines 20-22, If the set of most common digests has a cardinality of 1, then only
one digest (D) appears most frequently. In that case, we compare its count fmc to
the count fsec of the second most common digest. If there are not enough empty
cells in D to make one of the second most common digests as common as D,
thenD is returned.

3. Alternatively, in the previous case, if there are enough empty elements to make
the second most common digest appear just as frequently asD, thenD can only

123

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

be chosen if it is larger than all the digests in Dsec (lines 23-28). This assumes that
Dsec is not empty, i.e., that fsec > 0.

4. In the previous case, if fsec = 0, then we do not know what other digests might be
received and appear just as frequently asD. We are only sure thatD has a higher
priority than any of those digests ifD is actually the full_digest. In that case, it
is selected (lines 29-35).

In the example shown in Figure 6.2, replica C3 receives all the digests, thus using
condition #1, selects the most common digest that appears (“11101”). C1 only receives
the digest from C3, in addition to its own digest. However, condition #3 applies in this
case, as these digests are similar, and g = 3. Therefore, the digest will remain the most
common digest, and can be returned. Replica C2 does not receive digests other than
its own, hence does not successfully return.

We note that in addition to the success flag, the function in Algorithm 6.3 returns
the digest, rather than the vector of messages and the state label. However, as we
describe in the next subsection, the latter results can be reconstructed from the digest.

6.4.3 Optimization for the Best Case

The functions for collection and voting presented in Section 6.4.1 only return after
the timer expires. That means that their actual execution time is always equal to the
upper bound Tcoll. However, these functions could return as soon as they have the
information they require. The collect_missing_messages function could return as
soon as it receives the values of the messages of all identifiers. Similarly, if the most
recent state label is known in advance, the function collect_missing_state could
return once it receives the state corresponding to that state label.

However, these functions also serve the purpose of helping other replicas collect
messages and state. Therefore, that part must continue executing until the other
replicas finish their operation. Algorithm 6.4 presents an implementation-view of
Quarts collection and voting. It is optimized for the best-case scenario, which occurs
often in CPSs with low fault-rates. In the best case, the replica receives all messages
and already has the most recent internal state. Notice that in that case, the function
incurs minimal latency-overhead, as it incurs zero overhead for collection.

The quarts function takes as input the following: (1) a vector V of messages, (2) a
state variableH, (3) a label r corresponding to the messages, (4) a label r− correspond-
ing to the state variable, (5) a label r∗ representing the highest possible state label, and
(6) Tcoll and (7) Tvote representing upper-bounds on execution time.

r∗ is the highest possible state label that exists at all replicas when r is the message

124

6.4. Quarts Design

Algorithm 6.4: quarts(V, H, r, r−, r∗, Tcoll, Tvote)
1 S ← identifiers of missing messages in V;
2 Send Query<S , r> to all replicas; // request value of missing messages

3 Send State<r−> to all replicas; // advertise state label

4

5 // threads can continue running even if function returns

6 Call a thread to respond to queries until Tcoll + Tvote;
7 Call a thread to respond to state advertisements until Tcoll + Tvote;
8

9 repeat
10 if Response<P, `> received and ` = r then
11 // collect missing messages

12 Update V to include P;
13 Remove received identifiers from S ;
14 else if Update<H′, `> received and ` > r− then
15 // collect missing state

16 H ← H′;
17 r−← `;
18 end
19 until timer Tcoll expires or all messages received and r− = r∗ ;
20

21 success, D ← vote(V, r, r−, Tvote); // call the vote function

22

23 if success and V contains all the messages inD and r− is the state label inD then
24 return True, V[D], H;
25 else
26 return False, NULL, NULL;
27 end

label. In a round-based communication scheme, r∗ = r−1, as the latest state is the one
the controller has after computing in the previous round. In Section 6.5, we discuss
how to compute r∗ when the labels are timestamps, as in the case for SEs.

In lines 1-3, the function sends a Query for missing messages and a State advertise-
ment for collecting state. This is as in Algorithms 6.1, 6.2. Then, it calls two threads,
which take care of responding to queries and state advertisements from other replicas,
as in the aforementioned algorithms (lines 6-7). These threads can continue execut-
ing even after the quarts function returns. However, we bound their execution to
Tcoll + Tvote, which is when other replicas would have finished executing.

Lines 9-19 perform the collection of missing messages and state. Notice from
line 19 that this returns as soon as all the messages are present and the state received
is the most recent state. Therefore, this step incurs zero latency-overhead if the replica
already has all this information. This is optimized for the best-case scenario when no
faults occur.

125

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Afterwards, the vote function is called (described in Algorithm 6.3). This function
returns the success flag and the digest D. The replica can compute only if all the
following three conditions hold: (1) success is set to true, indicating that this replica
has successfully voted on a digest, (2) its vector of messages V contains values for all
the identifiers that are included in the digestD, and (3) its state label is that represented
in D. If all these conditions hold, then the function returns the vector of messages,
only including the chosen identifiers, and the state variable (line 24). Otherwise, it
returns a false flag, indicating that the replica cannot compute in this round (line 24).

6.4.4 The Two-Replica Case

For any number of controller replicas g, Quarts guarantees consistency in a bounded
latency-overhead, as shown in Section 6.6. Quarts also outperforms state-of-the-art
consensus protocols in terms of both latency and availability, as shown in Section 6.7.
Additionally, when the number of controller replicas is two (g = 2), Quarts incurs
zero latency-overhead in the majority of the scenarios. We illustrate this case in this
subsection.

Recall from Section 6.4.3 that a replica incurs zero latency-overhead in collection, in
rounds when it contains all the most recent information. In a typical CPS deployment,
the fault rate in software agents and the network loss rate are both low. Therefore, in
most computation rounds, replicas contain the most recent state and have the values
of all messages. In addition to the zero-latency collection incurred in this case, we
show that Quarts incurs zero latency-overhead when voting in a two-replica CPS.

We consider a two-replica CPS, where one replica has the most recent state and
the values of all messages. This replica skips collection as mentioned earlier, and calls
the vote function (Algorithm 6.3). During voting, it starts by creating a digest, which in
this case would be the full_digest, described in Section 6.4.2.

Notice that case #4 immediately applies (lines 29-35). The set of most common
digests Dmc contains only the digest of this replica. The frequency of that digest is
fmc = 1. No second most common digest exists, so fsec = 0, and the number of empty
cells is f0 = 1, as only the other replica (in a two-replica system) has not sent its digest
yet. Therefore, no matter what digest the other replica sends, it will never be more
frequent that the digest created by this replica. Furthermore, the digest created by this
replica is the full_digest, i.e., it has the highest priority out of any digest created in
round r. Thus, voting incurs zero latency-overhead as well.

In conclusion, a controller replica, in a two-replica CPS, containing all the most
recent information, can begin computation immediately, without waiting for commu-
nication from the other replica, and without the risk of violating consistency.

126

6.5. Applying Quarts to CPS Controllers

6.5 Applying Quarts to CPS Controllers

In this section, we discuss how Quarts can be applied to CPS controllers in order to
guarantee reliable consistency. First, we discuss how Quarts can be applied to GAs in
Section 6.5.1. Then, we discuss the additional mechanisms required to apply Quarts to
SEs in Section 6.5.2.

6.5.1 Quarts in Grid Agents

In order to apply Quarts to GAs, we need to know when to instantiate Quarts, and what
parameters to instantiate Quarts with. As mentioned in Section 6.1, Quarts must first be
used to agree on which set of advertisements to be used in a computation. Recall, from
Chapter 4, that in a computation for round r, advertisements from round r − 1 must
be used, if available. For RAs from which the GA does not have an advertisement
from round r − 1, it must use the most recent advertisement available. This can be
captured in theH state variable, which we assume here to hold the latest agreed upon
advertisement from each resource. With this in mind, a GA replica computing in
round r must select, for each RA, the advertisement from the same round as other
replicas.

After agreeing on the advertisements and the state variable, the GAs must choose
an SE state to use in computation. This choice must be consistent among GA replicas
computing in this round. There are several methods to choose such the SE state, but
we consider an additional requirement: the timestamp of the SE state chosen must be
greater than the timestamps of the advertisements chosen. That is, we consider that
the SE state must reflect the same state of the grid encapsulated by the advertisements
used in the computation. For this step, we assume that the SE replicas send consistent
SE state to the GAs, i.e., SE states with the same timestamp, received at different
GA replicas, have the same value. This is guaranteed by applying Quarts to SEs, as
described in Section 6.5.2.

Algorithm 6.5 describes the mechanism of applying Quarts to GAs. This algorithm
extends Algorithm 5.1 with the lines in red. The GA maintains 3 additional variables:
(1) a vector V of advertisements received from RAs in the latest round (line 1), (2) an
integer r corresponding to the last round number in which Quarts agreement was
performed (line 7), and (3) an integer r− corresponding to the last round number in
which a computation was performed (line 8). r−, therefore, represents the state label.

When to Instantiate Quarts: Accounting for Jitter

As mentioned in Section 6.4, Quarts must be passed a vector of messages as one of
the arguments. However, the GA receives each advertisement separately. Therefore, it

127

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Algorithm 6.5: Abstract model of a GA with Quarts. The parts in red are added to
Algorithm 5.1 (Algorithm is continued on next page)

1 V ← []; // vector of advertisements received from RAs

2 S ← ∅; // set of states received from the SE

3 ZA ← []; // vector of advertisements used in a computation

4 Tv ← [0, 0,, 0]; // vector of validity times

5 H ← ∅; // internal state of the GA

6 C ← 0; // logical clock on this GA

7 r ← −1; // last round in which Quarts was performed

8 r− ← −1; // last round in which we computed

9

10 on initialization
11 X ← ∅; // initialize vector of setpoints to probes

12 issue(X, Tv, C); // send probes to the RAs

13 end;
14

15 on reception of an advertisement adv with label ` from an RA i
16 if ` > r then
17 Start timer for δn; // reset and start the jitter timer

18 V ← []; // reset vector of advertisements

19 end
20 if ` ≥ r then
21 V[i] ← {(adv, `)}; // update vector of advertisements

22 end
23 C ← max(C, `);
24 end;
25

26 on reception of a state st with timestamp T from the SE
27 S ← S ∪ {(st, T)}; // aggregate received states

28 end;

must decide when to stop waiting for advertisements in a single control round, and
instantiate a Quarts instance.

Recall, from Chapter 3, that the upper bound on one-way network latency for
messages that are not lost is δn. Hence, the maximum time difference (or jitter) between
receiving the first and last advertisement in a given control round is δn. In the algorithm,
when an advertisement from a new round is received (line 16), a timer is started that will
fire after δn (line 17). The vector V of advertisements in the latest control round is also
reset, as a new control round has started (line 18). Until the timer fires, advertisements
from the same control round are added to V (line 21).

In line 31, we see the conditions under which Quarts is instantiated. First, the
largest label of advertisement received (C) must be larger than r. This is to avoid
instantiating Quarts with the same label multiple times. If that holds, then Quarts is

128

6.5. Applying Quarts to CPS Controllers

29 repeat
30 success ← False;
31 if C > r and (timer expired or all advertisements received) then
32 r ← C; // performing Quarts, update r

33 success, V′, H ← quarts(V, H, r, r−, r∗ = r, Tcoll = 3δn, Tvote = 5δn)
34 end
35

36 if success then
37 AQ, Tv ← select_advertisements(V′, H);
38 SQ ← select_state(V′, S);
39 T ← current time; // get the current time

40 ready, timeout, ZA, st ← ready_to_compute(AQ, SQ, T);
41

42 if ready then
43 C ← C + 1;
44 X, H ← compute_setpoints(ZA, st, timeout, H);
45 if timeout then
46 Tv ← [0, 0,, 0]; // reset to all-zeros

47 end
48 issue(X, Tv, C); // send X to the RAs

49 end
50

51 H ← update(H, AQ);
52 r− ← r;
53 end
54 forever;

instantiated either when the timer fires, or when all advertisements from that round are
received, whichever comes first. This enables replicas that receive all advertisements
to begin agreement immediately, whereas replicas with some missing advertisements
wait for the remaining jitter.

Assigning Values for Tcol and Tvote

Quarts requires two parameters, Tcol and Tvote, representing the upper bound on the
execution time of the collection and voting phases, respectively. The value of Tcol
depends on how long a controller must wait before it is sure it will not receive any
responses or state updates from its replicas. Recall that the collection phase involves
sending a query and state advertisement, followed by reception of responses and state
updates. This message exchange involves one round-trip time (RTT). Additionally,
replicas wait for a jitter of δn before instantiating Quarts. Hence, Tcol = 3δn.

Similarly, Tvote represents the maximum time a replica must wait for digests from
other replicas, before declaring an unsuccessful vote. Again, we must account for the

129

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

slowest replica, which started Quarts after the timer fired (δn), and required the full
Tcol in collection phase. In contrast, the fastest replica immediately started Quarts
and skipped the collection phase. The time taken for a digest to be received is upper-
bounded by δn. Therefore, adding these terms, the fastest replica must wait a maximum
of Tvote = 5δn, before giving up on a successful vote.

The Most Recent State r∗

Quarts requires a parameter, r∗, representing the label of the most recent state. When
agreeing on advertisements with label r (for the computation of setpoints in round
r + 1), the most recent state belongs to the replica that successfully finished Quarts in
round r, i.e., before issuing setpoints with label r. These replicas do not need to collect
state, as they have the most recent one. Therefore, r∗ = r.

Choosing a Consistent Set of Advertisements

The quarts function on line 33 returns the success flag, a vector V′ of advertisements,
and an updated state variableH. Recall from Section 6.4 that in a given round, across
all replicas in which the success flag is set to true, V′ and H are consistent. This is
formally proven in Section 6.6.

The GA must then choose a consistent set of advertisements to perform the com-
putation with. This is done via the select_advertisements function (line 37). In a
manner similar to the choose_advertisements function in Algorithm 5.1, this function
populatesAQ with the advertisements in V′, and for identifiers not present in V′, the
latest advertisement inH, if any, is used as a long-term advertisement inAQ.

As V′ andH are common across all replicas with a true success flag in a given round,
AQ is also guaranteed to be common.

Choosing a Consistent SE State

In addition to choosing a consistent set of advertisements and a consistent state
variable, the GA must choose a consistent SE state to use in computation. This is done
via the choose_state function on line 38, which is described in Algorithm 6.6.

This function makes use of Property 6.5 and Property 6.6, described in Section 6.3.
The RAs and the asynchronous sensors are considered to be time-synchronized, and
the interval between two measuring instances at an asynchronous sensor is lower
bounded by σ. This in turn means that the interval between any two SE state times-
tamps is lower bounded by σ, as the SE state timestamp is derived from the asyn-
chronous sensors timestamps, as described in Algorithm 3.2.

130

6.5. Applying Quarts to CPS Controllers

Algorithm 6.6: select_state(V′, S) function in the GA

1 Tmax ← maximum timestamp of advertisements in V′;
2 Tlast ← maximum timestamp of states in S smaller than Tmax;
3

4 I1 ← [Tmax, Tlast + 2σ); // first interval

5 I2 ← [Tmax, Tmax + σ); // second interval

6

7 if there exists st ∈ S such that st.T ∈ I1 ∪ I2 then
8 return {st};
9 else

10 return ∅;
11 end

The choose_state function (Algorithm 6.6), checks for an SE state with a timestamp
in a given interval. As shown in Lemma 6.5, the interval chosen is guaranteed to have
at most one element. Furthermore, if an SE state is found with a timestamp in that
interval, it is guaranteed to be the same across all replicas. The function returns ∅ if the
replica does not have the required SE state.

Computing Consistent Setpoints

After choosing a set of advertisements, a state variable, and an SE state, all consis-
tently among all replicas, a GA calls the ready_to_compute function, and subsequently
the compute function. As these functions are passed the same parameters across all
replicas in a given control round, they will return the same value for all replicas. That
is, all replicas that issue setpoints, will issue the same setpoints, whether these are
implementation or probe setpoints.

After the computation, the state variable and the state label are updated. With
this update, the state variableH includes the latest agreed upon advertisement from
each RA. Only adding the agreed upon advertisementsH enables subsequent control
rounds to remain consistent as well.

Note that we consider that replicas that do not possess the chosen SE state do not
compute in the corresponding control round, as the ready_to_compute function would
return a false ready flag. An alternative would be to perform another Quarts instance,
attempting a collection phase to receive the required SE state, and subsequently voting
on whether or not to use it. However, in our simulations (Section 6.7), we do not
perform this additional step. The alternatives are a trade-off between availability and
additional latency-overhead.

131

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

6.5.2 Quarts in State Estimators

Similar to the mechanism shown in Section 6.5.1 applying Quarts to GAs, Quarts can
be applied to SEs. SEs must agree on the measurements used in computation, in
addition to the state variable. The measurements, however, are timestamped, rather
than labeled using logical clocks. With time-alignment, however, the measurements
can be grouped into rounds [82].

The same arguments apply, as in Section 6.5.1. First, the SE must account for a jitter
of δn. Second, the values of Tcol and Tvote are the same — 3δn and 5δn, respectively.

The main difference is the value of r∗, representing the label of the latest state in
which the SE computed. Given that t represents the timestamp of the measurements
passed to Quarts, and given that σ is a lower bound on the interval between two
measurements at an asynchronous sensor, we conclude that the last computation
performed by an SE was with a timestamp T < t− σ. Also, for any timestamp T such
that, t− 2σ < T < t− σ, if a state label with a value of T exists, then T represents the
latest state label before t. The proof is similar to the proof of Lemma 6.5.

Therefore, we pass r∗ = t− 2σ + ε to Quarts, where ε represents an infinitesimally
small number. However, we modify Algorithm 6.4 line 19, to end collection when
r− ≥ r∗. This covers both the case of GA agreement, where r∗ is an integer exactly
equal to the latest possible label, and the case of the SE described here.

As the SE replicas agree on the measurements used for computation of an SE state
of a given timestamp, multiple GA replicas choosing SE states with the same timestamp
are guaranteed to choose the same SE state value, as shown in the next section.

6.6 Formal Guarantees

In this section, we prove that applying Quarts to CPSs guarantees reliable consistency
(Definition 3.10). That is, we show that setpoints issued to the same RAs in the same
round have the same value. Additionally, we prove that Quarts incurs a bounded
latency-overhead.

Theorem 6.1 (Reliable Consistency). A CPS that implements Quarts, as in Algorithms 6.4-
6.6, guarantees reliable consistency.

Proof. From Algorithm 6.5, we see that the setpoints are computed in a given control
round r, only if the success flag returned by Quarts is true (line 36).
The computation in that case depends entirely on the values of ZA, st, andH (line 44).
These values, in turn, depend on the values ofAQ and SQ (lines 37-38).
The proof then follows directly from the results of Lemmas 6.1, 6.2, 6.3, 6.4, 6.5.

132

6.6. Formal Guarantees

Lemma 6.1. For any two GA replicas GA1 and GA2, in which the function quarts (Al-
gorithm 6.5 line 33) returns, respectively, (success1, V

′
1, H1) and (success2, V

′
2, H2),

when called in a given round r, the following holds:

(success1 = true) and (success2 = true) =⇒ V′1 = V′2

Proof. If success1 in GA1 is true, in a given round r, then the function quarts, imple-
mented as in Algorithm 6.4, must have the following conditions:
(1) The vote function returned true (line 21) and
(2) the vote function returned a digestD, and V contains advertisement values for all
the identifiers inD (line 24).
The same applies to GA2 in round r. The return vector V′ contains the value of the
advertisements in V that are also inD.
V contains advertisements received from RAs in round r.
Therefore, if both replicas have an advertisement from a given RA in V, then the values
of the advertisement are the same.
Therefore, it suffices to show thatD is the same across both replicas.

If the vote returns true in round r, then a digest D is selected only if: (1) a relative
majority of the replicas proposesD, and
(2) in case of ties, a static priority is used.
This would be trivial to show if the voter at each replica waited to receive all the other
digests before selecting the result.
As Quarts is only called once in round r at each replica, this would guarantee thatD is
the same across all replicas.

Condition #1 in the voter waits for all digests to be received, then picks the one with
the highest priority among the digests with relative majority (lines 17-19).
The other conditions return prematurely.
We show that they only return if, no matter what other digests are received, condition
#1 will hold for the return valueD.

Condition #2 (lines 20-22) returns if there is only one digest that is most common
among the received ones, and no matter what the remaining replicas send, this digest
will remain the most common, with no ties.
That digest is guaranteed to have relative majority, with no ties, when condition #1 is
reached.

Condition #3 (lines 23-28) returns if
(1) there is only one most common digest among the received ones,
(2) no matter what the remaining replicas send, the other received digests can only
become equal in frequency to the currently most common, and
(3) the current most common has a higher priority than all the other digests that might

133

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

reach its frequency. That digest is guaranteed to have relative majority when condition
#1 is reached.
It might have ties with some of the currently received digests, but it has higher priority
than all of them.

Condition #4 (lines 29-35) returns if
(1) there is only one digest typeD in D,
(2) that digest will remain the relative majority even if all remaining digests have the
same value, different thanD, and
(3)D is the full_digest.
This is similar to condition #3, except the other digests that might have the same
frequency asD are not seen yet.
Therefore, the replica can only be sure that D has the highest priority if it is the
full_digest.
The full_digest always has the highest priority.

Lemma 6.2. For any two GA replicas GA1 and GA2, in which the function quarts (Al-
gorithm 6.5 line 33) returns, respectively, (success1, V

′
1, H1) and (success2, V

′
2, H2),

when called in a given round r, the following holds:

(success1 = true) and (success2 = true) =⇒ H′1 = H′2

Proof. From Lemma 6.1, we know that the digests, returned by the vote function, is
the same in both replicas. From Section 6.4.2, we see that if two digest are equal, then
they have the same state labels.
From Algorithm 6.4, we see that the state variableH is updated according to messages
received from other replicas.
Therefore, it suffices to show that when two replicas pass H1 and H2 to the quarts
function, with the same state label r−, thenH1 = H2.

We prove this by strong induction on r, the control round in which Quarts is instanti-
ated.
Base Case: When r = 0, r−i = r−j = −1, then the states used for computing the first
setpoint areHr1 = Hr2 = ∅. Thus, the statement holds for r = 0.

Induction Hypothesis: Let the statement hold of the labels in [0, `], where ` > 0.
Thus, ∀ r ∈ [0, `− 1], i, j, r−1 = r−2 =⇒ Hr1 = Hr2
This means that, if both replicas computed setpoints for a label r ∈ [0, `− 1] and had
the same state label, they had the same state.

Inductive Step: To show that, for label `, if both replicas compute setpoints in round `
then, r−1 = r−2 =⇒ H`1 = H`2.

134

6.6. Formal Guarantees

When a replica computes a setpoint, its state is updated by lines 44, 51 of Algorithm 6.5.
As both replicas have the same state label r− ≤ `− 1, then they computed in the same
previous control round, and had their state labels updated (line 52).
From the induction hypothesis, the state variable used in the computation of that
round is the same.
From Lemma 6.1, the vector of advertisements used in that computation is the same.
From Lemma 6.5, the SE state used in that computation is the same.
Therefore, the updated state in line 44 is the same.
Moreover, in line 51, the state variable is updated using the set of chosen advertise-
ments, which is also the same as shown in Lemma 6.4.
Therefore, we haveH`1 = H`2
Lemma 6.3. For any two SE replicas SE1 and SE2, that issue an SE state in round r, the
value of the SE state is the same.

Proof. The proof follows the same reasoning as Lemmas 6.1, 6.2.
The SE replicas agree on what measurements and state variable to use in the computa-
tion of a given SE state.
The resulting values computed are the same.

Lemma 6.4. If the function select_advertisements (Algorithm 6.5 line 37) returns two
setsAQ1 andAQ2, at two GA replicas, given the same input parameters V′ andH, then
AQ1 andAQ2 have the same value.

Proof. The function is not described explicitly, but is very similar to Algorithm 5.2.
The advertisements in V′ are placed in AQ, along with the short-term validity time
(check Chapter 5).
The rest of the RAs, with no advertisements in V′, are chosen fromH, such that the
advertisement with the highest label is chosen for each RA.
Given that V′ andH are the same, the resultingAQ is guaranteed to be the same.

Lemma 6.5. If the function select_state (Algorithm 6.5 line 38) returns two non-
empty sets SQ1 and SQ2, at two GA replicas, given the same input parameter V′, then
SQ1 and SQ2 have the same value, regardless of the input parameter S at the different
replicas.

Proof. The function select_state is implemented in Algorithm 6.6.
As V′ is the same for both replicas, Tmax chosen in line 1, is also the same.
Tmax represents the maximum timestamp of an advertisement in V′.

Due to message losses, S might contain different SE states in both replicas.
However, from Lemma 6.3, if two SE states, across the two replicas, have the same
timestamp, then they have the same value.

135

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

We show that if the function returns a non-empty set, then it returns a state with the
same timestamp in both replicas.
The SE state chosen has a timestamp that belongs in the union of two intervals:
(1) I1 ← [Tmax, Tlast + 2σ) (line 4), and
(2) I2 ← [Tmax, Tmax + σ) (line 5),
where σ represents the minimum interval between timestamps of SE state issue by the
SEs, and Tlast represents the highest timestamp in S that is smaller than Tmax.
Note that Tlast might be different in different replicas.
However, we show that there exists at most one timestamp in I1 ∪ I2 for which an SE
state has been issued.
Therefore, if both replicas find an element in I1 ∪ I2, it is the same element.

We prove this by contradiction.
Let t1, t2 ∈ I1 ∪ I2 = [Tmax,max(Tmax + σ, Tlast + 2σ)).
t1 ≥ Tmax.
As σ is the minimum interval between two timestamps, t2 ≥ t1 + σ.
Thus, t2 ≥ Tmax + σ.
Also, as Tlast is also a timestamp of an SE state, and t1 > Tlast, then t1 ≥ Tlast + σ.
Thus, t2 ≥ Tlast + 2σ.
Hence, t2 ≥ max(Tmax + σ, Tlast + 2σ).
Therefore, t2 6∈ I1 ∪ I2.

A real-time CPS aims to have minimal latency between the generation of advertise-
ments and issuing of setpoints. Hence, agreement protocols for CPSs must have a low
latency-overhead. The latency overhead of a replica due to Quarts is the execution time
in the quarts function (Algorithm 6.5, line 33). Other functions used by Quarts incur
negligible latency, as they perform simple tasks without network communication. The
quarts function is shown in Algorithm 6.4. The execution time of this function depends
on the upper-bound of the one-way network latency δn, as discussed in Section 6.5.

Theorem 6.2 (Bounded Latency-Overhead). If the quarts function (Algorithm 6.4)
returns true, its execution time is upper-bounded by 5δn.

Proof. We consider the viewpoint of the slowest replica.
The slowest replica calls the quarts function after the timer fires, incurring a delay of
δn over the fastest replica to start Quarts.
The slowest replica, then, requires Tcoll = 3δn to finish the collection phase.
Afterwards, that replica sends its digest.
The digest will be received at other replicas within δn. Therefore, the latest digest
received in a given round r, is after 5δn from when the fastest replica started Quarts.
If the vote function does not successfully return after 5δn, it never will.
Hence, the upper bound on the execution time of quarts, if it returns true, is 5δn.

136

6.7. Simulation Results

6.7 Simulation Results

We perform discrete-event simulations to study the performance of Quarts, and to
compare it to state-of-the-art protocols for agreement [104, 124]. The performance
metrics used for comparison are consistency, availability, latency, and messaging cost.
These are defined in Section 6.7.1. The protocols we compare are Quarts, Fast Paxos,
and two flavors of passive replication. These are described in Section 6.7.2. We define
our simulation methodology in Section 6.7.3, and present our results in Section 6.7.4.

6.7.1 Performance Metrics

From Definition 3.10, reliable consistency is said to hold in a round r, if no two setpoints
to the same RA in round r have different values. We obtain a measure of consistency as
follows. If reliable consistency holds in a round r, then we say γr = 1, otherwise γr = 0.
As consistency is a safety property, if no setpoints are issued in a given round r, then
consistency is not violated. In those cases, γr = 1. The consistency metric of a CPS
execution is thus given by Γ = E [γr].

Availability is defined per RA in a given round. If an RA j receives a setpoint in
round r, we sayψjr = 1. Otherwise, ψjr = 0. We measure the availability in a given round
as the fraction of RAs that receive setpoints: ψr = 1

n

∑n
j=1 ψ

j
r . The overall availability

metric of a CPS execution is given by Ψ = E [ψr].

The latency of a CPS in a given round r is the duration from the time an RA first
issued an advertisement in round r − 1, until the time a GA replica first issued a
setpoint in round r. Formally, we define Sjr , 1 ≤ j ≤ n, as the time instant at which
RA j issued an advertisement in round r, and Ikr , 1 ≤ k ≤ g, as the time instant at
which the GA GAk issues the setpoints in round r. The latency in round r is defined as
δr = mink∈[1,g] I

k
r −minj∈[1,n] S

j
r−1. We consider two latency metrics in our analysis: (1)

the mean latency, computed as ∆ = E[δr], and (2) the 99th percentile of latency (δp99),
computed from the ECDF.

Finally, we consider the messaging cost of a protocol as the number of messages
exchanged among the controller replicas and between the replicas and RAs. The
messaging cost in a given round r (ωr) is the number of messages exchanged that carry
the label r. We consider the mean messaging cost (Ω) and the 99th percentile (ωp99) in
our analysis.

To sum up, the metrics of interest are consistency (Γ), availability (Ψ), the mean
and 99th percentile of latency (∆, δp99), and the mean and 99th percentile of messaging
cost (Ω, ωp99).

137

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

6.7.2 Agreement Protocols

As mentioned in Section 5.2, we simulate, in addition to Quarts (Q), three protocols:
Fast Paxos (FP), passive replication with hot standbys (PH), and passive replication
with cold standbys (PC).

• Quarts (Q): Quarts is simulated as described in Sections 6.4, 6.5. Quarts guaran-
tees reliable consistency, so the consistency metric will always be 1.

• Fast Paxos (FP): This is an active-replication protocol in which all replicas receive
input, perform computations, then agree on which replica issues the output
setpoints in a given round. This form of agreement is equivalent to agreeing on
which setpoints to issue. Fast Paxos [104] is used to perform the agreement. It
guarantees consistency, and is optimized for low latency.

• Passive Hot (PH): Passive replication with hot standbys is similar to active repli-
cation in that all replicas receive input and compute setpoints. However, one
replica is designated as the primary, and only the primary issues setpoints. The
other replicas serve as standbys. The primary sends regular heartbeat messages
to the standbys. The absence of heartbeats for several rounds signals that the pri-
mary is faulty, in which case the standbys elect a new primary among themselves.
Heartbeats also serve to synchronize the state of the standbys with the primary
after each computation. As the standbys receive input, compute setpoints, and
are state-synchronized, they can immediately take part in issuing setpoints when
they are elected.

• Passive Cold (PC): Cold standbys in passive replication do not receive input.
They only monitor the primary and perform leader election when the primary
fails. In both protocols, leader election is performed using Fast Paxos in our
simulations. As the standbys do not receive input and are not state-synchronized
with the primary, they cannot take part in issuing setpoints in the same control
round they are elected in.

PH and PC are expected to have lower latency than FP and Q, as they do not perform
agreement between the replicas in each control round. However, as mentioned in
Section 6.2, passive-replication protocols cannot guarantee consistency. We include
them in our evaluation to compare their latency and availability performance with
Quarts, highlighting their deteriorating performance when delay faults are introduced.

6.7.3 Simulation Methodology

We consider the fault model described in Chapter 3, Figure 3.3, which shows the Gilbert-
Elliot model [133,134]. Each controller replica is considered to have independent faults,

138

6.7. Simulation Results

that are either crashes or delays. We consider several scenarios, in which we vary the
probability of crash faults (θc), the probability of delay faults (θd), the mean-time-
to-recovery (MTTR) from crash faults (R). Given the values of these variables, the
simulation parameters (qC , qN , pd) of the Gilbert-Elliot model can be calculated, using
the equations in Section 3.3.2.

We consider a delay threshold τ , i.e., we consider that a replica with a computation
time higher than τ in a given round is delay-faulty. We simulate the computation time
as an exponential distribution with mean 1/µ, where µ is calculated as follows:

pd = e−τ/µ =⇒ µ = − ln(pd)

τ

In our simulations, we consider a control round period Tctrl = 20 ms, and we
consider the delay threshold τ = 8 ms. If a replica is delayed beyond Tctrl in a given
round, it is considered unavailable in that round. Additionally, for PC and PH, the
standbys detect the primary as faulty if it fails to send heartbeats for a duration of τ .
The upper-bound on one-way network latency is considered to be δn = 0.5ms. Hence,
the standbys are left with 12 round-trip times (RTTs) to elect a new primary.

Quality of Simulation Results

We use the relative accuracy (β) of an estimate (â) of a probability (either availability or
consistency) at a confidence level 1− α as the measure of the quality of the estimate.
Specifically, a 1 − α confidence interval of â has a length of η times the standard
deviation of â, where η is obtained from the relation N0,1(η) = 1− α/2. Then, c is given

by c =

√
â(1−â)/N

â ≈ 1√
Nâ

, where N is the number of rounds. Therefore, we obtain
β = η√

Nâ
. To obtain a relative accuracy of 10% with a 95% confidence level, we obtain

β = 10% and η = 1.96.

We run each simulation until the relative accuracy of the estimate is less than 10%

at a 95% confidence level. In other words, the 95% confidence interval of the estimated
value has a half width, from the central value, less than 5%. Hence, all our results can
be interpreted with the 95% confidence interval as [0.95â, 1.05â].

Simulation Scenarios

We simulate four protocols (Q, FP, PH, PC) for several scenarios. The number of replicas
(g) is varied between 1 and 5. The network loss probability (p) is varied between 10−4

and 0.05, for a total of 10 values. The number of RAs (n) is varied between 10 and 100,
for a total of 5 values.

139

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Scenario n g θc θd

#1 10 2 10−4 10−3

#2 100 2 10−4 10−3

#3 10 2 10−5 10−4

#4 10 2 10−4 0

#5 10 3 10−4 0

Table 6.1 – Select scenarios with their parameter values

Unless otherwise specified, the parameters take their nominal values, given by
the following: g = 2, n = 10, p = 10−3, θc = 10−4, θd = 10−3, R = 1 s, δn = 0.5 ms,
τ = 8ms, and Tctrl = 20ms.

We present the availability as function of varying g and p. Then, we present the
results of five representative scenarios, described in Table 6.1, in which we vary the
number of RAs, the number of replicas, and the fault probabilities. Scenario #1 is the
nominal scenario, in which the parameters take their nominal values. Scenario #2
increases the number of RAs to 100, showing the effect of a large number of RAs on the
performance of the various protocols. Scenario #3 corresponds to a less severe fault
model than scenario #1. Scenarios #4 and #5 correspond to a fault model with no delay
faults. These show the performance of passive-replication protocols in the crash-only
fault model they were designed for. Moreover, scenario #5 has an additional replica
(g = 3), and shows the performance with 3 controller replicas.

6.7.4 Results

Figure 6.3 shows the unavailability (1 - Ψ) as a function of varying g and p. The first
plot shows the results for varying the number of replicas. We see that, with 2 replicas,
the unavailability of Quarts is an order of magnitude lower than that of other proto-
cols. This difference increases to 4 orders of magnitude when the number of replicas
becomes 3. The unavailability incurred by other protocols remains constant with addi-
tional replicas, whereas that of Quarts decreases. With 4 or 5 replicas, Quarts showed
no unavailability after 10 billion simulation rounds (around 3 days of simulation).
We conclude that the value is decreasing, but finding it requires more sophisticated
techniques such as importance sampling and palm calculus [157].

The second plot shows the result of unavailability for a varying network loss proba-
bility. We see that, for all protocols, the unavailability increases as the loss probability
increases. However, the unavailability of Quarts remains at least an order of magnitude
lower than that of other protocols. Finding 6.1 summarizes the results of this figure.

Finding 6.1. Quarts provides an availability higher than that of FP, PC, and PH. The
availability of Quarts increases with the number of replicas.

140

6.7. Simulation Results

Figure 6.3 – Unavailability with varying g and varying p. Unavailability of Quarts with
more than 3 replicas is less than 4× 10−10

Table 6.2 shows the results for inconsistency in the selected scenarios. As expected,
Quarts and Fast Paxos guarantee consistency, hence provide zero inconsistency. How-
ever, as seen earlier, the consistency guarantee of Fast Paxos comes at the expense of
low availability.

Additionally, we see that passive-replication protocols suffer from inconsistency
in scenarios #1-#3. These are the scenarios in which delay faults are present. In
scenarios #4 and #5, no inconsistency was observed in 10 billion runs, so we provide
the confidence interval of the result. This reaffirms our premise that passive-replication
protocols perform well when crash-only faults are considered, but their performance
suffers in the presence of delay faults. These results are summarized in Finding 6.2.

Finding 6.2. Quarts and FP guarantee consistency. PC and PH suffer from inconsisten-
cies in the presence of delay faults.

Figure 6.4 shows the mean and 99th percentile of latency for the selected scenarios.
We see that the mean latency of Quarts is less than that of Fast Paxos with a factor of
4. PC and PH have a latency comparable to Quarts, but this comes at the expense of
inconsistencies as shown earlier. Fast Paxos has a high mean latency as it performs
consensus in each control round. In contrast, Quarts incurs zero low latency-overhead
with two replicas in most rounds, as discussed in Section 6.4.4.

141

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

Inconsistency (1− Γ)
Scenario: (n, g, θc, θd) PH PC

#1: (10, 2, 10−4, 10−3) 1.92×10−4 1.28×10−3

#2: (100, 2, 10−4, 10−3) 1.68×10−3 1.50×10−3

#3: (10, 2, 10−5, 10−4) 2.40×10−5 1.38×10−4

#4: (10, 2, 10−4, 0) (0, 4× 10−10]∗2 (0, 4× 10−10]∗

#5: (10, 3, 10−4, 0) (0, 4× 10−10]∗ (0, 4× 10−10]∗

Table 6.2 – Inconsistency results for the selected scenarios. Inconsistency of Quarts
and Fast Paxos is zero

Furthermore, the tail latency of Quarts is lower than that of all other protocols in
scenarios that include delay faults. In the absence of delay faults, the tail-latency for
Quarts, PC, and PH is very low and comparable. Recall that the latency-overhead of
Quarts is bounded, as shown in Theorem 6.2.

Finding 6.3. Quarts has a lower average- and tail-latency than FP in all scenarios, and
a lower average- and tail- latency than PC and PH in the presence of delay faults.

Figure 6.5 shows the mean and 99th percentile of messaging for the selected sce-
narios. We see that the results are comparable for all protocols. However, Quarts and
Fast Paxos have a marginally higher messaging cost than PC and PH. Additionally, the
messaging cost of Quarts and Fast Paxos increases with the number of replicas, as
expected. This is due to the additional control messages being exchanged to guarantee
consistency. We conclude the following.

Finding 6.4. Guaranteeing consistency comes at the marginal expense of a higher mes-
saging cost. This cost increases with the number of replicas.

2∗ no inconsistency was observed in 10 billion runs

142

6.7. Simulation Results

Figure 6.4 – Mean and 99th percentile of latency in different scenarios

Figure 6.5 – Mean and 99th percentile of messaging cost in different scenarios

143

Chapter 6. Quarts: Quick Agreement in Cyber-Physical Systems

6.8 Conclusion

In this chapter, we have discussed the need for reliable consistency between controller
replicas in a CPS. We have discussed the split-brain syndrome, which arises when
consistency is not guaranteed, and have shown its effects on a CPS for real-time
control of electric grids.

We have presented the shortcomings of state-of-the-art solutions for guaranteeing
consistency, which suffer from reduced availability and a high latency-overhead, espe-
cially in the presence of delay faults. We have proposed Quarts, an agreement protocol
designed for real-time CPSs. We have presented the design of Quarts, and have shown
how it can be applied to CPSs. We have formally proven that Quarts guarantees reliable
consistency with a bounded latency-overhead.

We have performed extensive performance evaluation of Quarts, and compared its
performance with that of existing agreement protocols using discrete-event simulation
under different conditions of number of replicas, network losses, fault profiles, etc. The
results show that besides guaranteeing consistency, Quarts improves the availability of
a CPS by more than an order of magnitude, when compared with existing agreement
protocols. Moreover, Quarts also improves the tail-latency performance of the CPS.
These benefits come at the expense of a marginal increase in messaging cost when
compared to passive-replication schemes.

Quarts combines with Axo (presented in Chapter 5) to enable the design of an ac-
tively replicated controller that tolerates delay and crash faults affecting the individual
controller replicas. Thus, a reliable controller can be designed.

In Chapter 8, we deploy Quarts with COMMELEC [8], a CPS for real-time control of
electric grids. We perform additional tests, both in T-RECS, a virtual commissioning
tool, and on a real microgrid. These tests highlight the relevance of guaranteeing
consistency in real-life CPSs.

144

7 T-RECS: Virtual Commissioning
Tool for Real-Time Control of
Electric Grids

Testing is an infinite process of comparing the invisible to the ambiguous
in order to avoid the unthinkable happening to the anonymous.

— James Bach

In real-time control of electric grids using multiple software agents, the control
performance depends on (1) the proper functioning of the software agents, i.e., absence
of software faults, and (2) the behavior of software agents in the presence of non-
idealities, such as communication network losses and delays and software agent
crashes and delays. To evaluate the control performance of such systems, we propose
T-RECS, a virtual commissioning tool. T-RECS enables testing the performance of
software-based control in-silico (before the actual deployment of software agents in
the grid), saving both time and money. T-RECS can be used to study the effect of CPS
control, on the grid, in both ideal and non-ideal conditions. It can also be used to study
the effect of the robustness and reliability mechanisms, proposed in earlier chapters,
on grid safety and operation.

Developers can run the binaries of their software agents in T-RECS where these
binaries exchange real messages by using an emulated network and simulated models
of the electric grid and resources. Consequently, the control of an entire microgrid can
be tested on a standard computer. In this chapter, we first describe the design and the
open-source implementation of T-RECS. Second, we measure its CPU and memory
usage and show that our implementation can accommodate eight software agents on
a standard laptop computer. Third, we validate the simulated grid used in T-RECS by
replaying data collected from experiments performed in a real low-voltage microgrid.
We find that the average error is 0.037% and the 99th percentile of the error is less
than 0.1%. This shows that T-RECS can replace in-field testing in the initial phases of
development, providing accurate results for a fraction of the time and money.

147

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

7.1 Introduction

Real-time software-based systems for control of electric grids have the core of their
control logic in software that is executed by multiple agents [8, 9, 144, 158]. These
agents are typically distributed all over the grid and communicate using a communica-
tion network. They usually either control other lower-level agents or directly control
different resources such as a battery, a super-capacitor, or an array of solar panels. As
mentioned in Chapter 1, the rate of control varies depending on the system but for
real-time systems, such as [8], it is typically sub-second.

7.1.1 Problem

As developers of these systems need to test their software agents before the actual
deployment in the field, various testbeds [159, 160, 161, 162, 163, 164, 165] are proposed
in the literature. For real-time software-based systems, the testing mainly concerns
(1) the correct implementation of their distributed control logic and (2) the reliable
communication among software agents. We find, however, that these testbeds are not
appropriate for such testing.

First, current testbeds cannot test the final executables of software agents that are
going to be deployed in the field. Instead these testbeds require either modeling of
the control logic or the development of the control system in their specific language
or framework. Second, for simulating the electric grid, these testbeds use physical
equipment or hardware-in-the-loop, e.g., OPAL-RT eMEGAsim simulator or real-time
digital simulator. This incurs a high cost and imposes serious limitations on the ease
of use of such testbeds. Moreover, physical equipment cannot be used to study the
grid in extreme conditions as this could cause potential damage.

To summarize, the main requirements of such a testbed are (1) the ability to use
existing software agents with minimal modifications, (2) to avoid the use of physical
equipment, and (3) to enable inducing non-idealities in the communication network
and software agents. A testbed that satisfies these properties can be used by developers
of software agents to design, test, and commission the agents before actual deployment
in the field. As such tests can be performed entirely in-silico, we term such a testbed as
a virtual commissioning tool.

7.1.2 Proposed Virtual Commissioning Tool

We propose a virtual commissioning tool, called T-RECS, for developers of multi-agent
software-based control of electric grids. The design of T-RECS is divided into the same
four layers that were discussed in Chapter 3: (1) the physical layer, (2) the sensing and
actuation layer, (3) the network layer, and (4) the control layer.

148

7.1. Introduction

The first and second layers in T-RECS are simulated in software. The physical grid
in the first layer is modeled using the three-phase nodal-admittance matrix (Y-matrix)
representation. The evolution of the grid is tracked through complex voltage phasors
at each bus. These phasors are obtained by performing a load flow whenever there is a
change in the grid state. Electric resources in the first layer, such as batteries, loads,
and PV panels, are also simulated using state-of-the-art models, e.g., a battery model
proposed in [142]. Sensors at the second layer are modeled in such a way that they can
read the state of the grid from the simulated grid in layer one and then, can send this
state to a software agent.

The third layer, i.e., the communication network layer, is emulated using the
Mininet framework [154]. This enables real packets to be exchanged between software
agents, and we can easily study the effect of communication bandwidth, losses, and
delays on the control performance. For the fourth layer, T-RECS provides users with
virtual containers where software agents can be run without any modifications. There-
fore, using T-RECS, we can verify whether the final executables of software agents are
free from software bugs and if they correctly implement the control logic. The use of
virtual containers also gives us the possibility to simulate the delays and crashes of
agents or other software-related issues, hence enables developers to quickly investigate
their effect on the control performance.

As described in Chapter 3, these four layers form the basic architecture of almost
all multi-agent software-based control systems for electric grids. As T-RECS applies to
all control systems that adhere to this architecture, it can be used seamlessly with a
wide-range of control systems [8, 9, 144, 158].

Besides satisfying the requirements of a virtual commissioning tool listed earlier,
T-RECS is designed to support real-time control systems. This entails fast updates of
the simulated physical layer to reflect the changes in the grid and the electric resources,
due to sub-second rate of control. This is possible due to our implementation of a fast,
recent algorithm for solving the load-flow problem [139].

T-RECS is implemented entirely in software, and its implementation is made open-
source1. Therefore, it reduces the barrier to study software-based control of electric
grids. It is worth noting that the design of T-RECS involves the integration of several
existing concepts such as Mininet [154], fast load-flow [139], and resource models, to
obtain a usable and high-performing tool. This is particularly challenging in terms of
interoperability between layers due to the heterogeneity of each layer.

T-RECS can only be used to study the steady-state behavior of the grid, as the
software models it uses cannot capture the system transients and switching harmonics.
Therefore, T-RECS cannot capture, test, or analyze the consequences of a frequency

1https://smartgrid.epfl.ch/?q=t-recs

149

https://smartgrid.epfl.ch/?q=t-recs

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

Testbed
Enables inducing

non-idealities
Enables using

existing software
Avoids using

physical equipment
[159] 7 3 7

[160] 7 3 7

[161, 162] 7 7 7

[163] 7 7 3

[164, 165] 7 7 3

T-RECS 3 3 3

Table 7.1 – Comparative summary of different testbeds

collapse, nor can it reflect the malfunctioning of PMUs due to such transients.

The rest of this chapter is structured as follows. In Section 7.2, we survey the
literature on testbeds and compare T-RECS with the state of the art. We detail the design
of T-RECS in Section 7.3. In Section 7.4, we present the results from the validation of
T-RECS’ grid model, by comparing its measurements to that from a real low-voltage
microgrid. The successful validation confirms that T-RECS can be used to replicate
results of experiments in real electric grids, thus supporting reproducible research.
In Section 7.5, we evaluate the CPU and memory usage of T-RECS, in order to show
that it can easily support control systems with multiple software-agents in a standard
computer. Finally, we offer concluding remarks in Section 7.6.

7.2 Related Work

To the best of our knowledge, T-RECS is the first virtual commissioning tool that enables
studying the performance of real-time software-based control systems, entirely in-
silico.

Table 7.1 presents a comparative summary of the requirements (specified in Sec-
tion 7.1) that are satisfied by T-RECS and other existing testbeds. We see that none of
the existing testbeds satisfies all the three requirements of a testbed for software-based
control of electric grids. Below we individually discuss the advantages and limitations
of each testbed and compare it with T-RECS.

A testbed for decentralized control of active distribution networks is proposed
in [161]. It consists of three main layers. The first layer performs the real-time simu-
lation of physical power system elements in the OPAL-RT eMEGAsim simulator. The
second layer requires the development of the multi-agent control system in the Java
Agent Development Framework (JADE). Finally, the third layer models and simulates
the communication network with OPNET Modeler. T-RECS also has these three layers,
but they are managed differently. The first layer, i.e., the simulation of physical power
system elements, is done in T-RECS using software models instead of using the OPAL-

150

7.2. Related Work

RT eMEGAsim simulator. This has both an advantage and a drawback. The advantage
is that T-RECS is inexpensive, scalable, portable, and easily distributable as it does
not require the physical equipment (OPAL-RT eMEGAsim simulator). The drawback
is that T-RECS cannot study the effect of system transients or switching harmonics
on the control software. This is because, in T-RECS, the software models of both the
physical grid and electric resources are modeled in the phasor domain. The second
layer in [161], i.e., running multi-agent control software, is managed in T-RECS by
using software containers provided by the Mininet framework. These containers can
directly run existing or developed executables of software agents hence, as opposed
to [161], T-RECS permits testing these final agent executables. Finally, the third layer,
i.e., the network layer, is emulated in the software using the Mininet framework. As the
emulation of communication networks exchanges real packets, T-RECS enables easy
and accurate study of the effects of different network bandwidths, losses, and delays in
the communication network on the control performance.

Another testbed is proposed in [163]. Like T-RECS, this testbed is completely
software-defined and does not involve physical equipment. However, it is not possible
to test the effects of network communication technologies on the performance of
software agents. This is because the communication network is neither simulated
nor emulated. As today’s distributed software-based control systems heavily rely on
communication among different agents, the communication network is the main
source of unexpected behavior of such agents, and not being able to measure it is
a limitation of this testbed. Furthermore, as opposed to T-RECS, this testbed does
not provide users with software containers, hence executables of multiple software
agents cannot be directly run and tested with it. For example, in [163], the authors
implemented their energy management software in one of the components of the
testbed itself.

Another multi-agent testbed for power systems is proposed in [159]. This testbed
is composed of a power-system simulator, computational platforms, and a data-
communication infrastructure. As the testbed uses real hardware (computation plat-
forms and communication infrastructure), it is neither inexpensive, portable, easily
deployable, nor scalable. According to the authors of [159], these limitations can be
removed if the computation platforms can somehow be virtualized or be placed in
software containers and if the communications infrastructure can be emulated in the
software. However, as noted in Section 7.3, this exercise poses several challenges due
to the heterogeneity of the different components. In T-RECS, we divided the control
framework into four manageable layers. This allows us to emulate the network infras-
tructure (in the network layer) and run different agents in multiple software containers
(in the control layer). Thus, we overcome the limitations of [159].

A real-time testbed for operation, control and cyber-security of power systems is
proposed in [160]. It targets the testing of low-level power-system control mechanisms,

151

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

such as system monitoring and fault detection. However, as opposed to T-RECS, this
testbed is not software-defined and consists of many hardware devices such as the
real-time digital simulator, the programmable logic controller, NI-PXI controller, and
the Ethernet network. Although hardware-in-the-loop might have some benefits, it
is not necessary if we target a testbed for the evaluation of effects of software and
communication non-idealities on the control performance using software agents. This
is the reason T-RECS is designed completely in software and has all the benefits of
a pure software solution. Additionally, we find that these hardware devices, used
in [160], run modified software (as compared to what runs in the real grid) or run
software specifically developed for testbed purposes. This means that the testbed
in [160] cannot test and validate the real software that is going to be deployed in the
grid. On the contrary, T-RECS runs unmodified executables of software agents, hence
a T-RECS user can easily figure out the runtime behavior and bugs of these software
agents. Moreover, T-RECS support reproducible research.

In [162], the authors developed an agent-based testbed simulator for power grid
modeling and control. They model the agents of the grid, instead of running the real
agents in the testbed. As the modeling of software agents puts an additional burden
on the testbed user and can test only the correctness of the logic, it is not enough
to assess the correctness of software agents. The proposed testbed is hybrid: a part
of the testbed is in software, but other parts require the presence of some minimal
hardware and actual I/O signals. According to the authors, the hardware-in-the-loop
is a complicated architecture and is therefore, not well suited for testing and validating
the software-based multi-agent control systems that extensively rely on computational
and communication technologies.

To investigate the effects of cyber-contingency on power system operations, a
co-simulation model, based on information flow, is proposed in [164]. The authors
model the network contingencies at a low level, e.g., delayed, disordered, dropped,
and distorted information flows. The authors claim that these low-level parameters
are easier to model than high-level network parameters such as denial-of-service and
man-in-the-middle attacks. In contrast to this work, where they simulate the communi-
cation network with these low-level parameters, T-RECS emulates the communication
network by using Mininet, which enables us to study the effects of different network
bandwidths, losses, and delays corresponding to multiple real-world scenarios. As mes-
sage exchanges are emulated in T-RECS, it accurately captures the real-time properties
of the control protocol. Another important distinction of this work with T-RECS is that,
in [164], the decision-making layer, i.e., software agents, is also simulated, whereas
T-RECS can run the real software agents without requiring the development of models
of software agents.

To run software agents, Mosaik [165] uses process-based software containers, based
on SimPy (a discrete event simulation platform). However, it has two drawbacks. First,

152

7.3. T-RECS Design

it does not model or emulate the communication network between different agents,
thus it cannot be used to study the effect of non-ideal communication networks on
the software-based control systems. Second, the control agents need to be re-written
using Mosaik API, whereas T-RECS does not suffer from these limitations.

Next we discuss our choices for the different software solutions used in the T-RECS
layers. To simulate the physical grid in the phasor domain, we use the three-phase
load-flow algorithm proposed in [139]. We do not use the Newton-Raphson (NR)
method for our load-flow computations, because the computation time of the chosen
algorithm is faster than the load-flow implementation using NR (see Section 7.5). With
regard to modeling the electric resources, we use existing state-of-the-art models, e.g.,
the battery model proposed in [142]. Moreover, T-RECS is designed such that users
can plug in new models of electric resources as/if needed.

Apart from the testbeds designed for control of electric systems, there exists a
vast amount of literature on modeling or simulating the electric resources and grid.
Authors in [166, 167, 168] propose models for the most common resources such as
loads, converters, batteries, solar panels, and electric vehicles, whereas the grid is sim-
ulated in phasor domain in [166, 167, 169]. With regard to modeling electric resources,
T-RECS provides users with some state-of-the-art models but lets users plug in new
models as needed. To simulate the electric grid in the phasor domain, we do not use
PyPower [169] as it supports only single-phase load flow. Also, the grid model provided
by GridLAB-D [166] is not appropriate because (1) it neglects phase-to-ground cou-
pling capacitance, (2) it cannot take as input the new power setpoint at sub-second
level on a given node, and (3) the inputs to the grid model are physical parameters of
lines such as the type and length of wires instead of a Y-matrix. In T-RECS, to simulate
the grid, we use the three-phase load flow algorithm proposed in [139].

7.3 T-RECS Design

Figure 7.1 shows the overview of T-RECS design. It follows the layering approach
presented in Chapter 3, Figure 3.2. The physical layer and the sensing and actuation
layer are simulated using state-of-the-art models of the grid and electric resources,
respectively. To this end, T-RECS requires the grid topology, the resource types, and
their parameters, as input. The details of the design of the physical layer and the
sending and actuation layer are described in Sections 7.3.1 and 7.3.2, respectively.

The network layer is emulated in Mininet [154], which uses virtual switches and
hosts to simulate the switches and routers in the network. For this layer, T-RECS takes
as input the topology of the communication network, the bandwidths, the losses,
and delays of different links. The detailed design of the network layer is presented in
Section 7.3.3.

153

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

Software
executables

Network
topology

Grid topology
Resource types Physical

layer

Network layer

Sensing and
Actuator layer

Sensors &
actuators

configurations

Real

Software Agents

T-RECS

Emulated Simulated

Lo
gg

in
g

an
d

Vi
su

al
iz

at
io

n

Control layer

Mininet Emulation

Sensor & actuator modules

Grid & Resource models

User Input

Figure 7.1 – T-RECS design highlighting the mapping between the layers and the
implementation

The control layer is built through unmodified software agents that are run in Linux
containers [170] provided by Mininet. The detailed design of the control layer is
presented in Section 7.3.4.

In line with the requirements of a virtual commissioning tool listed in Section 7.1,
the layers of T-RECS are built in software, thus making it feasible to study all elements
of real-time control of the grid within a computer.

7.3.1 Physical Layer

The two components of the physical layer are the grid and the resources.

Grid

The grid is represented as a set of complex voltage phasors at each bus. To this end,
the grid is modeled by its nodal-admittance matrix. We use a three-phase model in
order to be able to simulate distribution networks, which are often unbalanced. The
grid model takes as input the grid topology (connection between the buses and the
line parameters) and computes the nodal-admittance matrix. The frequency of the
grid is taken as a dynamic input that can change during the execution, e.g., it could be
dictated by the slack bus or by some generator.

For each change of voltage or power at a bus, the grid model performs a three-phase
load flow to obtain the voltage at all the buses and the current in all the lines of the
grid. As the speed of the load-flow computation dictates the responsiveness of the grid

154

7.3. T-RECS Design

model, we chose to implement the method proposed in [139], as it boasts a significant
decrease in computation time when compared to the classic Newton-Raphson method.
In Section 7.5.2, we evaluate how the computation time of the load flow varies with
different sizes of the grid.

As the load-flow analysis is a light-weight representation of the grid, it provides the
steady-state information of the grid without considering system transient processes.
We make this trade-off in order to be able to simulate the grid in-silico. In Section 7.4,
we compare results from the load-flow analysis of the grid model to those obtained
from a real grid and show that the average error is 0.037% and the 99th percentile of
the error is less than 0.1%.

Resources

The resources in T-RECS are simulated using existing models of electrical resources.
As mentioned in Chapter 3, there are two types of resources: controllable and uncon-
trollable. For example, a battery is a controllable resource if its output power can be
modulated through setpoints, whereas a load that cannot be curtailed is an example of
an uncontrollable resource.

In our open-source implementation, we make four resource models available: a
controllable battery, an uncontrollable PV, an uncontrollable load, and a controllable
flex-house. The battery is modeled using the two-time constant model described
in [142]. The uncontrollable load and PV resources are simulated by replaying a
timestamped trace of the power injections. The flex-house model captures the heat
dynamics of buildings and is used to simulate controllable thermal loads, as described
in [171]. The change in the output of a resource is reflected as a change in the state of
the bus on which the resource is placed.

The open-source implementation of T-RECS enables the addition of new resource
models. Each resource model performs three tasks. First, the resource periodically
updates its state according to the resource dynamics. For example, the battery updates
its state-of-charge (SoC) based on the elapsed time and output power. Second, when
it receives a request from a sensor, it responds with its internal state. Lastly, when it
receives a request from an actuator, it changes the output power and the power at the
corresponding bus in the grid model.

7.3.2 Sensing and Actuation Layer

The sensors and actuators are simulated as application programming interfaces (APIs)
that act as an interface between the physical layer and the control layer. There are two
types of APIs: the grid API and the resource API. The grid API provides methods to get

155

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

the state of the grid and set the power at each bus (except slack bus) in the grid. The
state of the grid consists of voltage phasors and active/reactive power at each bus, and
line currents. The resource API provides functions for reading and changing the state
of the resource model, such as the power injected by a battery. These APIs can be used
to create specific sensors and actuators, as required by the user’s configuration.

In the current release, T-RECS provides an implementation of a simulator for a
real-time state estimator that periodically calls the grid API to get the state of the grid
and then, periodically sends the state of the grid in a given format to a list of agents
specified by the user. We also provide an implementation of an actuator that alters the
state of the battery resource used in the experiments in Section 7.4.

Recall from Chapter 3 that sensors might be synchronous or asynchronous. Syn-
chronous sensors are queried by software agents (specifically, the RAs) for measure-
ments. In contrast, asynchronous sensors stream measurements to software agents
(specifically, the controllers) without being queried. The measurements are sent as
real packets via the network layer.

7.3.3 Network Layer

The network layer in T-RECS is emulated using virtual switches, routers, and hosts,
provided by Mininet [154]. The main advantages of using an emulated network as op-
posed to a simulated network done by other works are the following: (1) real messages
are exchanged in Mininet in contrast to the discrete-event simulation of messages, (2)
the effect of bandwidth limitations can be accurately studied because real switches are
emulated, and (3) newly developed network protocols can be easily studied without
any modification to the protocol implementation.

The switches are realized by Open vSwitch [172], a programmable multi-layer
switch that can be used to accurately emulate practically any L2 and/or L3 network
topology. It can also be interfaced with a software-defined networking controller to
emulate a large-scale managed network used in sub-station automation networks.

Using the rich set of tools from the Linux traffic-control suite tc-netem [173], we
impose bandwidth and delay restrictions on the links to replicate a real-life network
topology. Additionally, T-RECS enables us to use message-loss profiles provided by
tc-netem and queuing disciplines, in order to capture the real-life network more ac-
curately. This facilitates studying the performance of the control system in non-ideal
network conditions, a requirement of such a virtual commissioning tool.

The end hosts of the network are Linux containers (provided by Mininet) that are
used to run the software agents in the control layer. The network topology and the link
configurations are taken as an input.

156

7.4. Validation

7.3.4 Control Layer

The control layer is identical to the real world. T-RECS takes the executables of the
software agents as input and executes them in the software containers provided by
Mininet. Just as in an actual deployment, the unmodified executables receive messages
from sensors and other software agents, perform computations, exchange messages,
and send setpoints.. The control layer is realized by executing one software agent in
each Mininet host, with controllers receiving real measurements and advertisements
and sending real setpoints, and RAs receiving measurements from sensors and set-
points from controllers, just as they would when run in the field. In this way, T-RECS
recreates an environment in which the software agents can be executed and tested
without modifying their code, as envisioned in our requirements for such a tool.

Although our current implementation runs on a single computer, it is straight-
forward to extend to run on a cluster of many computers for high scalability. A single
computer in a cluster could host several software agents, and the communication links
between them can be modified to reflect the real-life network by using the same set of
tools from the Linux traffic-control suite.

Note that, although the focus is on control systems for electric grids, the layering
scheme utilized here can be applied to other domains. Consider the example of a
self-driving car [146]. The physical layer comprises the dynamics of the car and the
dynamics of the environment it runs in, both of which are governed by laws of classic
mechanics. The sensing and actuation layer sensors include the speedometer for the
current speed, and the actuators include a PID controller that maintains the speed at
a given setpoint. The control layer includes the software agents that detect objects,
perform obstacle-avoidance and navigation, etc. In fact, the same design philosophy
used in T-RECS can be used to design low-cost, in-silico, virtual-commissioning tools
for multi-agent software-based control systems in other domains.

7.4 Validation

In this section, we validate the T-RECS grid model described in Section 7.3.1. Recall
that the T-RECS grid model performs load-flow computation and updates the state of
the grid whenever there is a power injection or absorption at a bus. Thus, this section
aims to quantify the error committed by the load-flow solver of the T-RECS grid model
as compared to the measured state of a real grid.

Figure 7.2 shows the topology of our in-house microgrid at EPFL. This microgrid
is used in the experiments described below. It consists of 13 buses, labeled B01-
B13, and reproduces, in real scale, the topology defined by the CIGRÉ Task Force
C6.04.02 [44]. The resources used in our experiments are shown in solid points in

157

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

Figure 7.2 – Grid topology used for validation. The resources not used in our experi-
ments are greyed-out

Figure 7.2. They consist of a 24 kW controllable load on bus B03, a 20 kW , 25 kWh

controllable battery on bus B05, and an uncontrollable PV generator of 13 kWp on bus
B09. The microgrid is monitored in real-time using phasor measurement units (PMUs),
a phasor data concentrator (PDC), and a real-time state estimator (SE) [53]. From the
SE, we obtain the timestamped traces of voltage and current phasors at each bus, with
one measurement every 20 ms.

The traces are collected during an experimental validation [174] of a real-time
control framework, called COMMELEC, further described in Chapter 8. COMMELEC
is a real-time framework that controls the given resources in real-time using explicit
power setpoints [8].

We validate the T-RECS grid model under two different scenarios described in [174],
using two separate objectives for the GA. The first scenario is concerned with grid
safety. In this scenario, the GA maintains the grid in a feasible state, i.e., respects the
ampacity limits of all the lines, voltage limits of all the buses, and the constraints of
all the resources, in a grid with an uncertainty in power prosumption due to the load
and the PV. The second scenario is real-time dispatchability, in which the GA tracks an
external dispatch signal, while also maintaining the grid in a feasible state.

In order to quantify the error between the measurements from the experiments
and the output of the load-flow solver in T-RECS, we use measured voltage and power

158

7.4. Validation

50 100 150 200
Time [s]

402

403

404

405

406

407

V
o
lt
a
g
e
 a
t
b
u
s
B
0
5
 [
V
]

Scenario: Grid Safety

Real-world measurements

T-RECS grid model

50 100 150 200
Time [s]

406

407

408

409

410

411

412

413

414

V
o
lt
a
g
e
 a
t
b
u
s
B
0
5
 [
V
]

Scenario: Real-Time Dispacthability

Real-world measurements

From T-RECS grid model

Figure 7.3 – Voltage at the battery bus (B05) obtained from measurements and from
grid model

traces from the two experiments as follows. At every 20 ms timestamp, we use the
power injections at all the buses and give them, along with the voltage magnitude
at the slack bus, as input to the grid model. The grid model performs the load-flow
computation and returns the voltage at each bus, and the power at the slack. At each
bus, we compare this voltage against the voltage obtained from the measurement
traces at the same timestamp.

For the two scenarios mentioned earlier, Figure 7.3 shows the voltage at the battery
bus (B05) obtained from the measurements and from the grid model during a three-
minute window. We see that the voltage from the grid model closely follows the
measurements. However, we note that the error is relatively higher in the second
scenario of real-time dispatchability. This is because the instantaneous grid parameters
(resistance, reactance, and susceptance of lines) are a function of the temperature
and frequency of the line. The voltage error depends on the difference between the
instantaneous grid parameters of the real grid and the static grid parameters used
by T-RECS. The impact of this difference in parameters is higher for higher voltage
amplitudes. This error is unavoidable because it is hard to estimate the instantaneous
grid parameters, but we observe that it is below 0.1%.

159

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Relative error of voltage at the slack bus [%]

0.0

0.2

0.4

0.6

0.8

1.0
E
m

p
ir

ic
a
l
C

D
F

value at 99%-ile : 0.093%

Figure 7.4 – Empirical CDF of the relative error in voltage at all the buses

Figure 7.4 shows the empirical cumulative-distribution function (CDF) of the error
between the voltage measured by PMUs at each bus and the voltage obtained by
load-flow from the grid model. The CDF is computed using the entire data from the
experiments, which amounts to 750,000 data points. We see that the average value of
the relative error is 0.037% and its value at the 99%-ile is 0.093%. Thus, we conclude
that the error incurred by the grid model is negligible.

7.5 Performance Evaluation

In this section, we perform two performance studies of our T-RECS implementation.
First, in Section 7.5.1, we evaluate the CPU and memory usage of T-RECS as a function
of number of software agents in the control system. The goal of this performance
evaluation is to show that T-RECS can easily accommodate several software agents on
a standard laptop computer. Then, in Section 7.5.2, we study the execution time of
the load-flow computations by the grid model for three benchmark grids of different
sizes. The aim of this study is to show that due to its ability to quickly update the state
of the grid, T-RECS is suitable for real-time control systems for electric grids, which
have sub-second rate of control.

All experiments are performed on a Lenovo T400 laptop with 3.7 GB RAM and
2.67GHz Intel Core i7 processor. The operating system is 64-bit Ubuntu 16.04 LTS with
the Intel virtualization technology enabled.

7.5.1 CPU and Memory Usage

We use the COMMELEC control system with the same CIGRÉ benchmark low-voltage
microgrid used in Section 7.4. In our setup, COMMELEC consists of one GA and several
RAs. Recall that each RA is attached to one resource. For example, if COMMELEC

160

7.5. Performance Evaluation

2 3 4 5 6 7 8
Number of software agents

0

20

40

60

80

100

C
P
U

 U
sa

g
e
 (

%
) CPU Usage

200

300

400

500

600

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

Memory Usage

Figure 7.5 – CPU and memory usage of T-RECS, on a laptop with 3.7 GB RAM and
a 2.67GHz Intel Core i7 processor, as a function of number of software agents. CPU
usage in percentage is cumulative of all four CPUs of the i7 processor

monitors and controls two resources, then it has to run three software agents: one GA
and two RAs corresponding to the two resources.

To better interpret our performance results, it is important to highlight that the
COMMELEC control system is run at the pace of 100 ms, i.e., RAs send state of their
controlled resources every 100 ms to the GA, and the GA sends power setpoints to
RAs every 100 ms. This has two implications for T-RECS: (1) there is a heavy load
of messages to emulate in the network layer, and (2) there are frequent load-flow
computations to be performed in the grid module. Additionally, as the GA requires
the state of the grid every 20 ms as input, the T-RECS sensor module must send this
information every 20 ms.

We run multiple experiments with different numbers of COMMELEC software
agents (and corresponding resources) and record the CPU and memory usage of
T-RECS in each case. The CPU usage reported below is cumulative of all four CPUs of
the i7 processor and is solely due to T-RECS processes.

When T-RECS is not running, the CPU usage is 1.5% and the memory usage is
563 MB. Figure 7.5 shows how the CPU and memory usage scales with the number
of software agents. We find that the CPU usage of T-RECS starts off at 44.1% in case
of 2 software agents and increases linearly with a rate of 6% per additional software
agent or resource. Moreover, the memory footprint of T-RECS is close to 200 MB with
2 software agents and increases at a rate of around 55 MB per additional resource or
software agent.

The initial high CPU usage can be explained by the initialization of all the T-RECS
components. Also, the increase in the CPU usage with the number of software agents
is linear, as expected. This is because, with an additional software agent, the burden of
T-RECS increases linearly in the following three directions. First, it needs to run one
additional resource model of the resource managed by the new software agent. Second,

161

Chapter 7. T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric
Grids

Benchmark Grid T-RECS Load-Flow (in ms) Newton-Raphson (in ms)

CIGRÉ 4-bus 0.75± 0.02 23.28± 0.39

CIGRÉ 13-bus 1.13± 0.02 232.19± 1.05

CIGRÉ 34-bus 7.42± 0.14 1594.26± 5.29

Table 7.2 – Average execution times (in ms) of the the load-flow implementation used
in T-RECS and the Newton-Raphson method, for three different CIGRÉ benchmark
grids, measured at 95% confidence

the number of load-flow computations in the grid engine increases linearly with the
number of resource models because the number of updates sent to the grid module
increases. Finally, the communication network emulation layer needs to emulate a
fixed number of additional packets.

We see that, when running on a modest laptop, T-RECS can support up to eight
software agents (1 GA and 7 RAs). To put this in perspective, a typical microgrid is
controlled with one GA and about five RAs. Hence, we conclude that developers
of software-based control systems can use T-RECS, for virtual commissioning, on a
general-purpose desktop/laptop.

7.5.2 Load-Flow Computation

Recall from Section 7.3.1, that every time the power injected or consumed by a resource
changes, a load-flow computation is triggered by the grid model. This serves to reflect
the effect of the new power injection or consumption on the other buses in the grid.
The time taken by the load-flow computation is, therefore, the time taken for a given
update to be reflected in the simulated grid of T-RECS. Therefore, it is important to
quantify the execution time of the load-flow computation performed by the grid model
of our implementation. This importance is even more prominent in case of real-time
control systems with a sub-second rate of control.

The load-flow computation algorithm used by T-RECS is described in [139]. We
compare the time taken by the Python implementation of this algorithm in T-RECS for
three different CIGRÉ benchmark grids [175]. These grids are of different sizes and con-
sist of 4, 13, and 34 buses, respectively. In our tests, we set the desired relative accuracy
of load-flow results as 10−6, and we set the maximum number of iterations performed
by the load-flow solvers to be 100. To highlight the improvement in computation time
over traditional load-flow solvers that use Newton-Raphson method, we have also
implemented the load-flow computation by using state-of-the-art Newton-Raphson
algorithm in Python. We also run the same test cases with this algorithm.

In Table 7.2, for the three grids of different sizes, we report the mean computation
time and the confidence interval for the mean at 95% confidence, computed from 100

162

7.6. Conclusion

samples. We see that the average computation time of the T-RECS grid model for grids
of 4, 13 and 34 buses are 0.75 ms, 1.13 ms and 7.4 ms, respectively. This computation
time is well below the required update time (of 100 ms) for a real-time control system
like COMMELEC, thereby confirming the real-time capability of T-RECS. We also
observe a sharp decrease in computation time when compared to a traditional load-
flow solver that takes 23 ms, 232 ms, and 1.6 seconds for the same grids, respectively.
This affirms our choice to use the fast, recent load-flow algorithm proposed in [139].

7.6 Conclusion

We have presented T-RECS, a virtual commissioning tool that is used for designing,
testing, and validating multi-agent real-time control software for electric grids. It
enables developers to test the executables of their software agents without requiring
any modifications to them. The effect of non-ideal communication networks on the
control performance can be studied using T-RECS, as real packets are being exchanged
between the software agents. This is made possible by emulating the communication
network layer in T-RECS using Mininet. T-RECS simulates the physical grid using
a phasor-domain load-flow solver, and uses state-of-the-art models to simulate the
electric resources. To the best of our knowledge, T-RECS is the first virtual commission-
ing tool for real-time software-based control of electric grids.

The main design criteria for T-RECS are the ability to run unmodified code, operate
in real-time, and study the effect of non-ideal communication network on the control
performance, all without requiring physical equipment. Indeed, T-RECS can be run
entirely on a standard laptop or desktop computer. This makes T-RECS the ideal tool
for reproducible research in the field of control of electric grids.

We have made available an implementation of T-RECS and have validated the
load-flow solver in T-RECS by running the same experiment in a real microgrid. We
have found that the tail relative error is less than 0.1% when comparing the results
from the two experiments.

T-RECS was used in Chapter 4 to evaluate the benefits of applying, to COMMELEC,
the robustness mechanisms proposed in that chapter. In fact, T-RECS is actively
being used in the co-development of the COMMELEC framework, as it facilitates and
accelerates the design-test cycles of that process. In the next chapter, we use T-RECS
to study the effect of network non-idealities on the performance of COMMELEC. Then,
we show, using T-RECS, how applying Axo (Chapter 5) and Quarts (Chapter 6) improves
the performance of COMMELEC.

163

8 Case Study: COMMELEC - A Cyber-
Physical System for Real-Time
Control of Electric Grids

The true method of knowledge is experiment.
— William Blake

In previous chapters, we have presented the system model for CPSs for real-time
control of electric grids, proposed robustness and reliability mechanisms for such CPSs
in the presence of communication network non-idealities and software agent delays
and crashes, and proposed T-RECS, a virtual commissioning tool for co-designing and
testing such CPSs. In this chapter, we highlight a case study of an existing framework
for real-time control of electric grids: COMMELEC [8].

We introduce the COMMELEC framework and briefly discuss its architecture in
relation to the system model presented in Chapter 3. We discuss the operational sce-
narios and objectives of COMMELEC when it monitors and controls a microgrid in
grid-connected mode. Then, we study the effect of non-idealities in a CPS with COM-
MELEC, both on grid safety and on performance in terms of meeting the objectives.

In Chapter 4, we have seen the improvements brought about by applying intention-
ality clocks and Robuster to COMMELEC, in the presence of non-ideal communication.
In this chapter, we showcase the improvements brought about by applying Axo (Chap-
ter 5) and Quarts (Chapter 6) to COMMELEC, in the presence of software agent crashes
and delays and communication network non-idealities.

The enhanced robustness and reliability of COMMELEC enables performing mission-
critical tasks with strict real-time requirements. We introduce one such use-case sce-
nario of COMMELEC, namely the islanding maneuver and operation. The islanding
functionality in COMMELEC is split into two parts: slack ranking and slack switching.
We present the existing mechanism used in COMMELEC for performing slack ranking.

165

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

Then, we propose a mechanism to perform slack switching for all the islanding sce-
narios: disconnection, reconnection, and islanded mode. Our proposed mechanism
takes into account the possible non-idealities in the communication network and in
the resources being controlled. Finally, we discuss how the robustness and reliability
mechanisms, proposed throughout this thesis, are applicable to the islanding scenario
in COMMELEC.

8.1 The COMMELEC Framework

COMMELEC [8] is a framework for real-time control of electric grids via explicit power
setpoints. Software agents in COMMELEC communicate, in a control period of 100ms,
by using an abstract device-independent language, thereby hiding the complexity of
the resource they monitor and control. This enables COMMELEC to be composable
and scalable, as a generic software agent implementation can be used to monitor and
control grids, independent of the number and types of resources. This is further dis-
cussed as we go over the architecture and components of COMMELEC in Section 8.1.1.

The main goal of COMMELEC is to maintain grid safety, ensuring that voltage and
current bounds are not violated. Additionally, it can perform various ancillary services.
In Section 8.1.2, we enumerate some of these services when COMMELEC is control-
ling a grid-connected microgrid. In Section 8.5, we discuss, in further detail, how
COMMELEC can perform islanding, and subsequently handle an islanded microgrid.

8.1.1 Architecture

As COMMELEC is a framework for real-time control of electric grids, a CPS with
COMMELEC has an architecture that closely follows the system model presented in
Chapter 3.

In COMMELEC, the grid is monitored by phasor measurement units (PMUs) [176],
located at various buses. The PMUs are time-synchronized with one another via
GPS [80], and they are configured to send a voltage-phasor measurement every 20 ms.
The measurements sent by PMUs are received and aggregated by a phasor data con-
centrator (PDC) that time-aligns these measurements and forwards them to the state
estimator (SE) component of the COMMELEC controller. The PMU/PDC pairing,
therefore, acts as a time-triggered asynchronous sensor, as described in Chapter 3.

Each resource in the grid is assigned a resource agent (RA) that monitors its state
through a local synchronous sensor and, possibly, controls it through a local actuator.
The setpoints received by the RAs are active and reactive power values, which must
be implemented in the resource. The RA translates the internal state of the resource
into a device-independent language, by creating advertisements that consists of the

166

8.1. The COMMELEC Framework

following three mathematical terms:

• a PQ-profile (F): a region in the PQ-plane to which setpoints, sent to this resource,
must belong.

• a belief function (U): a function that maps a PQ power setpoint to a set that
represents the uncertainty of the resource.

• a virtual cost function (P): a function that maps a PQ power setpoint to a real
number that represents the cost, or preference, of the resource in implementing
this setpoint.

These terms represent the feasibility, uncertainty, and preference of the resource,
respectively, as described in Chapter 3. The advertisement formed of these terms is
sent to the grid agent (GA) component of the COMMELEC controller.

The GA receives advertisements from the RAs and state messages from the SE.
These are used to compute setpoints that are then issued to the RAs. This control
round is repeated every 100 ms.

8.1.2 Grid-Connected Operation

As mentioned earlier, the main goal of COMMELEC is to maintain grid safety (Defi-
nition 3.1). That is, the voltage at each bus in the grid must be maintained within its
bounds [15], and the current in each line must be maintained below the ampacity of
the corresponding line. COMMELEC ensures this by performing a load-flow computa-
tion [37], considering the set of setpoints being issued, in addition to the uncertainty of
the resources in implementing them (as given in the belief functions). Such a check is
called the admissibility test [139], and it can be extended to account for non-idealities,
as mentioned in Chapter 4.

In addition to maintaining grid safety, COMMELEC enables a wide range of ancillary
services. One example is tracking a dispatch plan in a grid-connected microgrid,
thereby acting as a virtual power plant to the main grid [18]. In such a scenario, the GA
is configured with a power profile that it must track at the point of common coupling
(PCC). That is, the GA must steer the power of the resources in the grid in order to
track the power profile requested at the slack. It must do so in the presence of variable
consumption and production in the grid, and it must maintain grid safety throughout
this operation. We show an example of tracking a dispatch plan in Section 8.2.

Another ancillary service is frequency support, whereby the microgrid controlled
by COMMELEC can counteract frequency fluctuations in the main grid by adjusting
the power imbalance at the PCC. The COMMELEC GA can perform frequency support

167

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

0 50 100 150 200 250 300
Elapsed time (sec)

12.5
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

A
ct

iv
e
 P

o
w

e
r

(k
W

)

Dispatch plan

Measured at slack

Battery

PV

Figure 8.1 – Power profiles for the tracking scenario in COMMELEC under ideal condi-
tions

along with the tracking of a dispatch plan. In Chapter 4, we have seen examples of
COMMELEC performing frequency support.

8.2 Effect of Non-Idealities on COMMELEC

In this section, we study the effect of communication network non-idealities on the
performance of COMMELEC when tracking a dispatch plan. In this experiment, we run
a single non-replicated COMMELEC controller, without any robustness mechanisms.
We perform the experiment in T-RECS (described in Chapter 7), and we do not subject
the software agents to delays or crashes, in order to focus on the effect of message
losses, in the communication network, on the performance of COMMELEC.

We study a setup that consists of two resources: a 20 kW / 20 kWh controllable
battery, and an 11 kW uncontrollable PV installation. These resources are located on
different buses of a CIGRÉ low-voltage benchmark microgrid [44] — the same one that
was described in Chapter 7. The PV power trace is taken from real measurements.

Figure 8.1 shows the power profiles during the experiment, under ideal conditions.
This includes (1) the dispatch plan for the given 5-minute interval, (2) the power trace
of the PV resource, (3) the measured power at the battery bus, and (4) the measured
power at the slack bus. We observe that COMMELEC attempts to counteract the
variations in the PV production with the flexible battery resource, in order to track the
dispatch plan at the slack bus. We see that the measured power at the slack closely
follows the dispatch plan, albeit with some delay.

Figure 8.2 shows the effect of network losses on the performance of COMMELEC.

168

8.3. Application of Axo to COMMELEC

0 50 100 150 200 250 300
Elapsed time (sec)

5.0

2.5

0.0

2.5

5.0

7.5

A
ct

iv
e
 P

o
w

e
r

(k
W

)

Dispatch plan

No packet loss

1% packet losses

10% packet losses

Figure 8.2 – Power profiles for the tracking scenario in COMMELEC under varying
network loss probabilities

Packet loss probability 0% 0.5% 1% 5% 10%
Normal COMMELEC controller 0.09 0.10 0.12 0.15 0.18
Robust COMMELEC controller 0.09 0.09 0.09 0.10 0.10

Table 8.1 – Energy mismatch (in kWh) for the tracking scenario in COMMELEC under
varying network loss probabilities. Robust COMMELEC controller refers to a controller
that implements intentionality clocks and Robuster

The dispatch plan and the measured power at the slack in the absence of packet
losses are the same as shown in Figure 8.1. We see that, with a 1% packet loss rate,
the measured power at the slack increasingly deviates from the dispatch plan. This
deviation becomes more profound with higher loss rates, as observed with the plot for
10% loss rate.

We also measure the energy mismatch, during the 5-minute interval, for various
loss rates. The results are shown in Table 8.1. As expected, the energy mismatch
increases with an increasing loss probability.

In Chapter 4, we have shown how applying intentionality clocks and Robuster
to COMMELEC results in a robust controller that is capable of maintaining tracking
performance, in spite of non-idealities. We observe this behavior as well in Table 8.1.
The robust COMMELEC controller maintains a tracking performance close to ideal
conditions, even under 10% packet loss probability.

169

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

Time in ms
87 88 89 90 91 92

E
m

p
ir
ic

a
l C

D
F

0

0.2

0.4

0.6

0.8

1

Delay of C1
Delay of C2
Delay of C3
Delay of Axo
τ

Figure 8.3 – Delay profile of the controller replicas in COMMELEC with and without
Axo. τ represents the validity horizon of the setpoint

8.3 Application of Axo to COMMELEC

We study the improvements brought about by applying Axo, a fault-tolerance protocol
for delay and crash faults, to COMMELEC. We perform two long-running experiments:
one in T-RECS, and one in a real-life microgrid. The setup is the same as the one in
Section 8.2, with a battery and a PV. However, the COMMELEC controller is replicated,
an Axo controller library is implemented on all the replicas, and an Axo RA library is
implemented on all the RAs.

In the first experiment, we run three replicas of the controller (C1, C2, C3) in T-RECS.
Recall from Chapter 5 that the validity horizon of setpoints is equal to τ = n×Tctrl− δi,
where n is the number of rounds for which advertisements are valid, Tctrl is the control
period, and δi is the upper bound on implementation time of a setpoint at the RAs. As
we only consider short-term advertisements in this experiment, n = 1. The control
period in COMMELEC is Tctrl = 100 ms. The upper bound on implementation time
was measured to be 3ms, which results in τ = 97ms.

First, we perform the experiment for around 10 million control rounds (approxi-
mately 12 days). We observe that 32 setpoints (0.00032%) incurred a delay greater than
τ = 97ms. Therefore, we conclude that although very rare, delay faults are observed in
CPSs.

In order to demonstrate the fault-tolerance capabilities of Axo, we artificially reduce
τ to 92 ms, thereby increasing the number of delay faults in the CPS. We also inject
bursty delay faults and crash faults with different fault rates in the different controller
replicas in T-RECS. The probabilities that C1, C2, and C3 experience a delay fault are
set as 0.02, 0.01 and 0.001, respectively. C1 has no crash faults, whereas C2 and C3

have a crash fault with probabilities of 0.001 and 0.0001, respectively. Furthermore, the
network is configured to have a loss probability of 0.01.

170

8.3. Application of Axo to COMMELEC

Figure 8.3 shows the ECDF of the delays of the controller replicas with and without
Axo. We observe that the delays incurred by setpoints sent by the individual replicas,
as measured at the maskers, is sometimes greater than τ = 92ms. However, as seen in
Chapter 5, the masker discards such delayed setpoints, so that the delay observed at the
RAs is always less than the validity horizon, ensuring that the implemented setpoints
are valid. We see that, in addition to ensuring that invalid setpoints are discarded,
Axo decreases the overall delay perceived by the RAs, as it uses active replication
and accepts the first valid setpoint in each control round. This is shown in the plot
corresponding to the delay profile of Axo, which represents the delay profile of the first
setpoint received in each control round.

We also measure the availability of each controller replica as the percentage of
control rounds in which valid setpoints from that replica were received at both maskers.
The availabilities of C1, C2, and C3 were observed to be 81.31%, 89.37% and 91.31%,
respectively. The loss of availability is due to the delay and crash faults incurred, in
addition to the detection and recovery time for faulty replicas. The overall availability
provided by Axo, measured as the percentage of control rounds in which valid setpoints
from any replica are received at both maskers, was observed to be 99.97%. This
highlights the improved availability brought about by active replication, in spite of the
time required to detect and recover faulty replicas.

In the second experiment, we control a real-life on-campus microgrid via two
controller replicas that are running on dedicated desktop computers, with off-the-
shelf Scientific Linux version 7.1. The setup remains the same, with one battery and one
PV resource. We observe similar results for safety and availability, as in the previous
experiment. However, we take this opportunity to highlight some findings on the
detection and recovery algorithms of Axo.

The experiment duration was 24 hours, during which the controller replicas were
recovered 38 times, thereby demonstrating the importance of fault recovery in pro-
viding high availability. We measure the time taken to compute setpoints, at each
replica, from the time of reception of the first advertisement in a control round to the
time of issuing the setpoints. In order to quantify the overhead in the computation of
setpoints by the controller due to the proposed detection and recovery algorithms, we
repeat these measurements when the detection and recovery algorithms of Axo are not
running. The reported measurements are reported at 95% confidence interval. We find
that, during control rounds in which a replica is non-faulty, the mean computation
time is 0.893± 0.0004 ms with detection and recovery, whereas it is 0.274± 0.0001 ms
without. During control rounds in which a replica is faulty, the mean computation
time is 14.18 ± 4.05 ms with detection and recovery, and 14.45 ± 2.76 ms without.
As the additional delay brought about by these algorithms is sub-millisecond in the
non-faulty case, we conclude that they do not affect the real-time path.

171

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

Figure 8.4 – Energy mismatch over time in COMMELEC with and without Quarts

8.4 Application of Quarts to COMMELEC

In the previous section, we have shown how Axo guarantees reliable validity by discard-
ing invalid setpoints, and how it improves the delay profile and increases availability
by using active replication of the controller. However, as discussed in Chapter 6, active
replication without agreement might result in inconsistencies and, consequently, in
the split-brain syndrome [121]. In this section, we show the undesirable effects, of such
inconsistencies, on the underlying grid. Thus, we close the gap between the abstract
concept of inconsistency and its possible effect on the control performance of a CPS
for electric grids, in practice.

We perform an experiment in T-RECS, with two resources: a battery and a PV,
as in the previous section. The COMMELEC GA is configured to assist in microgrid
autonomy, i.e., the power imported from, and exported to, the upper-level grid should
be minimized at all times. This is equivalent to tracking a dispatch profile of zero Watts.

To highlight the effect of inconsistencies, we perform stress tests, in which we
subject the controller replicas to artificial delays in computation and extreme network
conditions of 10% loss rate. The aim is to understand the effect of inconsistencies on a
CPS, without running experiments over several weeks, as would be required due to the
low probability of inconsistency, as observed in Chapter 6.

We run three different scenarios in which we record the power at the slack bus and
compute the energy mismatch in order to quantify the error in the control performance
of COMMELEC. The energy mismatch, in this case, is the integral of the absolute value
of the power profile, since the goal is to provide autonomy. We also compute the
maximum deviation from zero power at any given point, in order to check for grid
safety violations. The ampacity limit of the line connecting the microgrid to the main
grid is equivalent to a power of 28 kW .

172

8.5. Islanding in COMMELEC

First, we benchmark the performance of a single non-replicated controller that
is not exposed to delay faults or messages losses (ideal). Then, we compare this
to two cases, one with two replicated controllers that do not perform agreement
(no agreement), and one in which the two replicas perform agreement using Quarts
(quarts).

We observe, in Figure 8.4, the energy mismatch of these three scenarios. The ideal
case provides the benchmark tracking-performance level, and it encounters some
mismatch due to the unpredictable nature of real-time PV production. We observe
the performance improvement brought about by applying Quarts, as compared to the
case with two non-agreeing replicas, throughout the entire duration of the experiment.
This shows how Quarts closes the gap between the in-field performance and the ideal
performance of COMMELEC.

Furthermore, we recorded the worst-case deviation from the tracking signal for
each scenario. For the ideal scenario, the worst-case deviation was 25 kW . For the non-
agreeing scenario, it was 33 kW : this exceeds the ampacity limit of the line connecting
the microgrid to the upper-level grid, thereby violating grid safety. We note that a
single replica would never compute setpoints that result in such a violation. The
inconsistency between the replicas producing different outputs, coupled with the
interleaving of setpoints, is what led to this violation. For the Quarts scenario, this
violation is not observed, as the maximum deviation was recorded at 26 kW .

8.5 Islanding in COMMELEC

We now discuss the islanding operation in COMMELEC, a mission-critical operation
that benefits from the aforementioned robustness and reliability properties. When
a microgrid is connected to an upper-level grid, power imbalances can be exported
to, or imported from, the main (upper-level) grid. Upon an intentional or emergency
disconnection from the main grid, the microgrid is expected to continue working in
islanded mode. During islanded mode, (at least) one resource needs to act as slack, i.e.,
it must compensate for power variations to keep the power balance and ensure the
security of supply.

COMMELEC, therefore, must maintain grid safety in either of the two modes of op-
eration: grid-connected mode and islanded mode. The inner workings of COMMELEC
is very similar in both modes of operation. Hence, the mechanisms for robustness and
reliability, proposed in earlier chapters, can be applied in both modes. COMMELEC
must also perform the transition maneuvers, successfully and safely, from one mode
to another. There are three maneuvers to be performed, and these are described next.

The first is the islanding maneuver, also known as the disconnection maneuver.

173

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

Such a maneuver might be necessary, when the main grid experiences a fault, in order
to isolate the microgrid. It might also be planned (intentional), in order to perform
maintenance for example. During the islanding maneuver, the breaker at the PCC
must be open, and one of the resources must be instructed to become slack.

During islanded mode, the chosen slack might lose its ability to maintain the
power balance in the grid. For example, a battery resource acting as slack might fully
discharge, thereby losing its ability to inject power into the grid. In such cases, an
islanded slack switching maneuver must be performed, in which another resource is
chosen to become slack. During the slack switching maneuver, the chosen resource is
instructed to become slack, replacing the existing slack resource. The existing slack is,
in turn, instructed to return to its original state, as a PQ resource that receives active
and reactive power setpoints.

The third transition is the reconnection maneuver, which can be performed when
the conditions that caused islanding to occur no longer hold. For example, after the
grid fault is handled, in the case of unintentional islanding. During the reconnection
maneuver, the existing slack resource is instructed to become a PQ resource, and the
breaker at the PCC must be closed.

Although several resources might be eligible to become slack, some are more
suitable than others (energy storage systems in particular) depending on the state of
both the resources and the grid before the islanding transition. COMMELEC maintains
a list of slack-candidate resources, ranked in real-time based on their suitability to
become slack [23, 177].

In this section, we first present the architecture and components of COMMELEC
required for islanding. Then, we present an overview of the operation of the slack
ranking method in COMMELEC. Finally, we discuss the applicability of the reliability
and robustness mechanisms, proposed throughout this thesis, to the slack ranking
operation of COMMELEC. In the next section, we present our proposed protocol that
performs the aforementioned three maneuvers, such that it maintains grid safety.

8.5.1 Architecture

Recall that the COMMELEC controller consists of a GA and an SE. As shown in Fig-
ure 8.5, in order to perform islanding, COMMELEC requires three additional compo-
nents: the slack ranker, the slack switcher, and the synchrocheck. The slack ranker
and the slack switcher are two sub-components of the GA. These are in addition to
the main component of the GA that receives advertisements and SE states, performs
computations, and issues setpoints. The synchrocheck is a separate device that is
located at the PCC, and that can open or close the breaker connecting the microgrid to
the main grid.

174

8.5. Islanding in COMMELEC

Grid Agent

Slack
Ranker

Slack
Switcher Advertisements

from resources
L

Synchrocheck

Imminent Islanding or
reconnection signal

Island/Reconnect

ACK/Rollback

Switching commands
to resources

Switch slack State Estimator

Figure 8.5 – Architecture and components of COMMELEC required for islanding. L is
the ranked list of slack candidates.

In each control round, the slack ranker receives the set of advertisements to be
used in the computation by the GA. Recall that the advertisements contain real-time
information about the internal state of the resource. The slack ranker uses these
advertisements to update a list L of slack candidates, ranked from best to worst, and
it sends this list to the slack switcher. The slack ranker can also detect, by using the
advertisements, when an existing slack resource has lost its ability to remain as slack.
It informs the slack switcher when this occurs.

We consider that the synchrocheck sends measurements to the SE, hence acts
as an asynchronous sensor. Being located at the PCC, the synchrocheck can sense
an imminent islanding condition. It can also sense the absence of the condition
that previously led to islanding. By sending this information to the SE, the SE can
then inform the slack switcher of one of these two imminent conditions (islanding or
reconnection).

The slack switcher receives, in each control round, an updated ranked listL of slack
candidates. Additionally, as mentioned earlier, it might receive one of three signals:
(1) an imminent islanding signal from the SE, which triggers the islanding maneuver,
(2) an imminent reconnection signal from the SE, which triggers the reconnection
maneuver, and (3) a slack switching signal from the slack ranker, which triggers the
islanded slack switching maneuver. These maneuvers are described in Section 8.6.

During islanding or reconnection maneuvers, the slack switcher sends a signal to
the synchrocheck informing it to open or close the breaker, at the PCC, respectively.
The synchrocheck, then, performs this operation if the conditions at the PCC are
suitable, in which case it replies with an acknowledgement (ACK) to the slack switcher.
In case the conditions are not suitable, for example if the main grid can no longer be
reconnected during a reconnection maneuver, the synchrochek sends a rollback signal
to the slack switcher, informing it of the failure of the operation.

175

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

8.5.2 Slack Ranking

Ranking Metrics

The main goal of the slack ranker is to rank the microgrid resources in the order of
their suitability to become slack. To do this, it uses the advertisement fields from each
resource as input, and computes a set of metrics for each resource [23, 177]. These
metrics are then used to rank the resources.

The metrics described in [23, 177] are the following: (1) power availability, (2)
voltage feasibility, (3) current feasibility, (4) survival time, and (5) number of resources
shed. In what follows, we describe the intuition behind each metric and briefly present
how they can be computed.

As the slack resource must handle the power imbalances in the grid, its feasibility
region (PQ profile) must include all the possible imbalances that might arise. Thus,
the power availability metric is a measure of the safety margin, between the feasibility
region of the resource and the maximum possible imbalance in the grid. Such a
metric also captures the controllability of the resource, as uncontrollable resources in
COMMELEC generally have a infinitesimally small feasibility region. The feasibility
region of each resource is included in its advertisement, and the maximum possible
imbalance can be computed by considering the uncertainty (belief function) of each
resource, also included in each advertisement.

The rated power of the resource limits its power availability. Hence, fully control-
lable resources with a large rated power, such as supercapacitors, typically have a large
power availability, thereby making them suitable slacks. However, the location of such
resources might limit the power they can inject/absorb, as the voltage bounds at its bus,
or the current limits at the line connecting it to the grid, might be violated. The voltage
and current feasibility metrics provide a measure of the safety margins between the
voltage and current bounds, and the voltages and currents resulting from appointing a
given resource as slack, respectively. These can be computed by performing several
load flow computations, by considering the extreme power injections in each resource.

A slack resource, ideally, must be capable of compensating for the power variations
throughout the duration of the islanded mode operation. Such a duration is not known
a priori. Therefore, we measure the survival time of a resource, as the duration after
which it might cease to be a suitable slack candidate. Such a metric is computed by
considering the rated energy of the resource, its current state-of-charge (SoC), and
the maximum power imbalances it might have to inject/absorb in each control round.
COMMELEC advertisements generally do not include the rated energy of the resource
nor its SoC , as these are device-specific properties. However, for energy storage devices,
advertisements are extended to include these two quantities that will only be used
for slack ranking. The rated energy can alternatively be statically configured for each

176

8.5. Islanding in COMMELEC

resource, as it does not change in real-time.

The power variations in the grid might be too large for any resource to be able to
handle. Hence, in order to maintain grid safety in islanded mode, the COMMELEC GA
might be required to shed (disconnect) some resources upon performing the islanding
maneuver. The last metric measures the number of resources shed, if a given resource
is chosen as slack. Shedding fewer resources is favorable.

After computing these metrics, the slack ranker uses them to compute and output
a list of possible slack candidates, ranked from best to worst. Slack candidates are
resources whose metrics all exceed some minimum set thresholds. For example,
resources whose survival time is less than 10 seconds are not considered as slack
candidates. The remaining resources are ranked based on the metrics in the above
listed order.

Thresholds for Slack Switching

During islanded mode, the existing slack resource might no longer be the best ranked
resource in the slack candidate list L. However, in order to avoid oscillations, COMM-
ELEC does not perform slack switching in such cases. Instead, an existing slack is only
replaced if one of its metrics falls below the minimum set thresholds.

In such cases, the slack ranker removes that resource from the list L and signals the
slack switcher to perform the islanded slack switching maneuver. The slack switcher
replaces the existing slack with the best ranked candidate resource in L.

8.5.3 Applicability of Proposed Mechanisms to Slack Ranking

Here, we discuss how our proposed mechanisms for reliability and robustness can be
applied for the slack ranking computation in COMMELEC.

Slack ranking is a side-computation in COMMELEC: it occurs alongside the compu-
tation of setpoints in each control round, and it takes as input the advertisements used
to perform the setpoint computation. Therefore, intentionality clocks and Robuster
can be easily applied. The label assigned to the list, issued by the slack ranker, is
the same label of the setpoints computed in the same control round. Also, the same
short-term and long-term advertisement fields used in the computation of the set-
points can be used to compute the slack candidate list. These mechanisms enable the
computation of the list to be robust.

The slack list is not issued to RAs, hence fault masking is not required. However,
the slack ranker might still incur delay and crash faults. These must be detected and
subsequently recovered. We can use Axo to perform detection and recovery of delay

177

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

and crash faults in the slack ranker. In order to detect such faults, the slack ranker must
send the latest label of the list it computes to the tagger in each control round. Thus,
similar to the mechanism for detecting faults in the detector in Axo, faults in the slack
ranker can be detected. Upon detection, the faulty slack ranker can be rebooted.

Finally, with active replication of the COMMELEC GA, the consistency between the
slack rankers at the different replicas must be ensured. However, the input advertise-
ments used to compute the ranked lists are the same as those used for computation of
setpoints. Therefore, they are already agreed upon using Quarts, thereby guarantee-
ing consistency among the slack rankers. Applying both Axo and Quarts enables the
computation of the slack candidate list to be reliable.

8.6 A Slack Switching Protocol for Islanding Maneuvers and
Operation

The protocol performed by the slack switcher involves three main functions.

1. Islanding (disconnection) maneuver: disconnection of a grid-connected micro-
grid from the main grid.

2. Reconnection maneuver: reconnection of an islanded microgrid to the main
grid.

3. Islanded slack switching: switching slacks during islanded operation.

These three functions involve switching the mode of operation of some resources
in the microgrid. In Section 8.6.1, we describe the possible modes of operation of a
resource, and we list the requirements of the slack switcher.

Although the three functions share a lot of common elements, in Sections 8.6.2-8.6.4
we describe each separately, while drawing on the parallels between them. Throughout,
we highlight the design choices and the reasons behind making them.

Finally, in Section 8.6.5 we discuss the applicability of the proposed mechanisms,
for reliability and robustness, to the proposed slack switching protocol.

8.6.1 Requirements

The resources in the grid operate in one of the following three modes:

• Grid-feeding mode: a grid-feeding resource is a PQ resource that follows the
frequency it measures at its bus, and that is given active and reactive power

178

8.6. A Slack Switching Protocol for Islanding Maneuvers and Operation

setpoints by the COMMELEC GA to implement. In grid-connected mode, all
resources are in grid-feeding mode.

• Grid-forming mode: a grid-forming resource is a slack resource. It sets the voltage
magnitude and frequency in the grid, as configured by the COMMELEC controller.
It also compensates for the power imbalance at its bus in order to maintain the
frequency.

• Grid-supporting mode: a grid-supporting resource, is also called a droop. It mea-
sures the power at its bus and changes the frequency accordingly. Its parameters
are also configured by the COMMELEC controller.

In grid-connected mode, COMMELEC requires all resources to be grid-feeding. In
this mode, the main grid acts as the slack, imposing the frequency, as it is generally
characterized by higher inertia than the microgrid. In islanded mode, COMMELEC
requires, at steady state, one resource to be in grid-forming mode, setting a fixed
voltage magnitude and frequency, and all other resources to be in grid-feeding mode.

Grid-supporting mode is an intermediate state that can temporarily act as slack,
albeit in degraded mode, as it does not set a fixed frequency. Multiple grid-supporting
resources can co-exist in a microgrid, performing conventional droop control.

The configuration of the parameters for grid-forming and grid-supporting mode are
not pertinent, hence their discussion is omitted. Instead, we focus on the protocol that
orchestrates the switching of the modes during the three aforementioned maneuvers.
The requirements of the protocol are the following:

1. At most one grid-forming resource at all times.

2. Zero grid-forming resources when grid-connected.

3. At least one grid-forming or grid-supporting resource at all times in islanded
operation.

4. Minimize the time in which resources are in grid-supporting mode.

5. Minimize the number of mode changes in resources.

The intuition behind each of the aforementioned requirements is as follows. (1)
Having multiple grid-forming resources, each imposing its own frequency on the grid,
might lead to instability due to frequency fluctuations. Additionally, these resources are
generally located at different buses in the grid, hence it is difficult to ensure that they
impose the same frequency on the rest of the grid. (2) When grid-connected, the upper-
level grid is imposing the frequency of the microgrid. Thus, having a grid-forming

179

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

resource would also lead to instability. (3) When islanded, at least one resource must
be compensating for the power imbalance, be that a grid-forming or a grid-supporting
resource. Coupled with the first requirement, this requirement permits multiple grid-
supporting resources and at most one grid-forming resource. This is because multiple
grid-supporting resources can co-exist together, and with a grid-forming resource, for
a brief duration, without causing instability.

In addition to the strict first three requirements that must be guaranteed, the last
two are best-effort. (4) This requirement ensures that grid-supporting resources will
eventually be switched to grid-feeding or grid-forming. Hence, it eliminates multiple
grid-supporting resources that might be present, thereby increasing the flexibility
of the grid, and eliminating the chances of instability. (5) Excessive mode switches
are undesirable as they cause unpredictable transients. Additionally, disturbing the
operation of a resource might cause it to become unresponsive, in which case it would
be shed.

8.6.2 Disconnection Maneuver

Here, we consider a grid-connected microgrid, with all k resources in grid-feeding,
and in which the upper-level grid acts as the slack. The goal is to end up with an
islanded microgrid with m (≤ k) resources: a single grid-forming resource and m− 1

grid-feeding resources. The number of resources might decrease due to shedding
performed during the islanding maneuver.

The protocol is presented is Algorithm 8.1. In addition to receiving a ranked list of
slack-candidates from the slack ranker, the slack switcher also receives signals from
the SE. In this case, it receives the “islanding” signal, with a timestamp T0 signaling the
latest time at which the microgrid will be islanded.

The best case proceeds as follows. We begin by selecting the top slack candidate
from the list, and instructing it to switch from grid-feeding to grid-supporting mode.
Then, the synchrocheck is instructed to preemptively island the microgrid. Finally, the
grid-supporting resource is instructed to switch to grid-forming.

However, due to network non-idealities, and the possibility of delayed responsive-
ness from the resources (or the synchrocheck), several issues might arise. First, in order
to account for transient network faults and partial unresponsive behavior, message
retransmission is used. Every message is retransmitted once every τ milliseconds, until
an acknowledgement is received, but at most n times. If a resource does not respond
after n retransmissions, it is declared unresponsive, and corrective action is performed.

In Step 1, if the chosen candidate is unresponsive to the mode switch from grid-

180

8.6. A Slack Switching Protocol for Islanding Maneuvers and Operation

Algorithm 8.1: Protocol for Islanding Maneuver

1: Upon receiving islanding(T0) from SE:
2:

3: i = 0
4: Step 1: Pick resource Ri from slack list
5: Switch Ri from grid-feeding to grid-supporting
6: if Ri is unresponsive then
7: Shed resource Ri
8: Increment i
9: Repeat Step 1

10: end if
11:

12: Step 2: Instruct syncrocheck to island microgrid
13: Wait until signal from synchrocheck or until T0

14:

15: Step 3: Switch Ri from grid-supporting to grid-forming
16: if Ri unresponsive then
17: Perform Step 1 starting from Ri+1

18: Shed resource Ri
19: Repeat Step 3 for new grid-supporting resource
20: end if

feeding to grid-supporting, it is shed1 (i.e. disconnected from the grid). Then, the next
best candidate is selected and the step is repeated. This step is guaranteed to converge,
either to a microgrid with one grid-supporting resource, or to a microgrid with all its
resources shed. Note that the resource cannot be directly switched to grid-forming, as
the microgrid is still connected to the upper-level grid.

In Step 2, if the synchrocheck does not perform the islanding immediately, we
can wait until T0 when islanding will occur in any case. After Step 2, the microgrid is
islanded with a single grid-supporting resource acting as a slack. The microgrid cannot
be islanded before Step 1 is performed, as this would violate the requirement of having
at least one grid-forming or grid-supporting resources at all times in islanded mode.

In Step 3, if this resource is unresponsive to switching to grid-forming, the next
best candidate is selected and switched to grid-supporting as in Step 1. Then, the
original unresponsive resource is shed. At this point, the microgrid is back to having
a single grid-supporting resource and the process is repeated. This process is also
guaranteed to converge to a microgrid with one grid-forming resource, or to one
with all its resources shed. The unresponsive grid-supporting resource cannot be
shed before another resource is switched to grid-supporting, as that would leave the
microgrid with no slack.

1Note that the load shedding discussed here is in addition to the load shedding that might be performed
by the slack ranker to guarantee grid stability. The slack switcher does not know for certain what mode
the unresponsive resource is in, so it must shed it.

181

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

The protocol is performed in such a way to fulfill the requirements presented in
Section 8.6.1.

1. Only one resource is switched to grid-forming, specifically in Step 3. Thus, the
microgrid has at most one grid-forming resource at all times.

2. Step 3 switches a resource to grid-forming after the microgrid is disconnected.
Thus, the microgrid has zero grid-forming resources when grid-connected.

3. In islanded operation, i.e., after Step 2, the microgrid has at least one grid-
supporting resource until it is successfully switched to grid-forming.

4. A resource is only maintained in grid-supporting mode until the disconnection
is successfully performed, after which it is promptly switched to grid-forming.

5. Two resource mode switches are performed, unless some resources are unre-
sponsive. Thus, the number of mode switches is kept to a minimum.

8.6.3 Reconnection Maneuver

Here, we consider an islanded microgrid with one grid-forming resource and k − 1

grid-feeding resources. The goal is to end up with a grid-connected microgrid with all
m (≤ k) resources in grid-feeding mode.

The protocol is presented is Algorithm 8.2. Again, we begin by analyzing the
best case. Upon receiving a “reconnection” signal from the synchroncheck, the slack
switcher instructs the grid-forming resource to become grid-supporting. Then, the
synchrocheck is instructed to reconnect the microgrid. After receiving the success
signal for reconnection, the grid-supporting resource is switched to grid-feeding.

The grid-forming resource might be unresponsive to switching to grid-supporting,
which poses a problem, as we require a grid-supporting resource before reconnecting
the main grid. In this case, we perform the first step of Algorithm 8.1, which will switch
some grid-feeding resource to grid-supporting, and will take the priority list into
account. After this step is successful, it is safe to shed the unresponsive grid-forming
resource.

The reconnection maneuver might fail, in which case the synchrocheck will send a
signal instructing us to rollback to an islanded microgrid with a grid-forming resource.
Hence, it is required to switch a grid-supporting resource to grid-forming, which is
similar to the third step of Algorithm 8.1.

In case the reconnection maneuver is successful, the grid-supporting resource
must be switched to grid-feeding mode. If this resource is unresponsive, it is simply

182

8.6. A Slack Switching Protocol for Islanding Maneuvers and Operation

Algorithm 8.2: Protocol for Reconnection Maneuver

1: Upon receiving reconnection from SE:
2:

3: Step 1: Switch grid-forming resource R to grid-supporting
4: if R is unresponsive then
5: Perform Step 1 of Algorithm 8.1
6: R′ is now grid-supporting
7: Shed R
8: end if
9:

10: Step 2: Instruct syncrocheck to reconnect microgrid
11: Wait until success or rollback signal from synchrocheck
12: if rollback signal received then
13: Perform Step 3 of Algorithm 8.1 on R/R′

14: Exit Algorithm
15: end if
16:

17: Step 3: Switch R/R′ from grid-supporting to grid-feeding
18: if R/R′ unresponsive then
19: Shed resource R/R′

20: end if

shed, resulting in a grid-connected microgrid with all the remaining resources in
grid-feeding mode.

As in the previous section, it can be observed that the requirements listed in Sec-
tion 8.6.1 are fulfilled.

8.6.4 Islanded Mode Operation: Slack Switching Maneuver

Finally, we consider an islanded microgrid with one grid-forming resourceR and k grid-
feeding resources. R can no longer sustain compensating for the power imbalance,
and must be switched. The goal is to end up with one grid-forming resource R′ 6= R,
and the remaining m ≤ k resources in grid-feeding mode.

The protocol is presented in Algorithm 8.3.The first and third step are exactly
the same as in Algorithm 8.1: the first selects the best-ranked slack candidate and
switches it to grid-supporting, and the third switches that resource to grid-forming.
The corrective actions are also the same in case of unresponsive resources.

The second step in Algorithm 8.1 involved disconnecting the microgrid from the
main grid that was acting as slack. In this case, the second step switches the grid-
forming slack resource to grid-feeding. It is shed if it is unresponsive.

183

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

Algorithm 8.3: Protocol for Slack Switching in Islanded Operation

1: Upon receiving switch() from slack ranker:
2:

3: i = 0
4: Step 1: Pick resource Ri from slack list
5: Switch Ri from grid-feeding to grid-supporting
6: if Ri is unresponsive then
7: Shed resource Ri
8: Increment i
9: Repeat Step 1

10: end if
11:

12: Step 2: Switch R from grid-forming to grid-feeding
13: if R is unresponsive then
14: Shed resource R
15: end if
16:

17: Step 3: Switch Ri from grid-supporting to grid-forming
18: if Ri unresponsive then
19: Perform Step 1 starting from Ri+1

20: Shed resource Ri
21: Repeat Step 3 for new grid-supporting resource
22: end if

8.6.5 Applicability of Proposed Mechanisms to Slack Switching

As in Section 8.5.3, here, we discuss the applicability of the proposed robustness and
reliability mechanisms to the slack switching protocol.

The slack switching protocol involves a round-based communication with a subset
of the resources. Therefore, intentionality clocks can be used to order the messages
exchanged. Recall that the slack switcher receives a list L with a given label ` that
represents the latest control round in COMMELEC. This label will be included in all
messages in the slack switching protocol. Thus, the resources will not perform mode
switches due to slack switching messages from previous rounds, which are no longer
valid. An additional label can then be included to indicate the step of the process being
performed, as in Algorithms 8.1-8.3. In this way, a resource that has performed Step 3
will not perform Step 1 again if it receives a retransmission or a duplicate message.

Robuster cannot be applied in this context. The messages received from the re-
sources are simple acknowledgments, indicating the success of the switching opera-
tion. The slack switcher needs these messages in order to continue. Retransmission is,
therefore, performed. Network reliability protocols, such as iPRP [52] and QUIC [48],
discussed in Chapter 2, can also be used here to decrease the effect of network losses
on the protocol.

184

8.7. Conclusion

Axo can be applied in the same way as discussed in Section 8.5.3. Recall that the
slack ranker sends the computed ranked list L, with a label, in each control round, to
the slack switcher. The slack switcher, after processing the list, can send the label to
the Axo tagger. This way, a fault in either component can be detected and recovered by
Axo.

Finally, Quarts can be applied on the input acknowledgments received from the
resources, in order to guarantee that the replicas consistently perform the steps of the
corresponding protocol, thereby instructing the same resources to switch modes. At
the beginning of Step 1, all replicas have the same input from the slack ranker and
the SE, hence all perform Step 1 by sending the same message to the same resource.
In subsequent steps, the controller replicas perform agreement on the received ac-
knowledgement signals from resources and the received acknowledgment or rollback
signal from the synchrocheck. By guaranteeing consistency at each step, consistency
is guaranteed throughout the protocol. For example, after requesting a resource to
switch modes, the replicas expect an acknowledgement from that resource. Therefore,
Quarts has to wait for some time to receive that message, then agree on whether or not
it was received. The following message sent will be a retransmission if it was agreed
that the acknowledgement was not received. Otherwise, it would be the message
corresponding to the next step in the protocol, if any.

8.7 Conclusion

In this chapter, we have presented COMMELEC [8], an existing framework for real-
time control of electric grid. The COMMELEC GA sends explicit active and reactive
power setpoints to the RAs, which implement them and reply with advertisements
encapsulating the internal state of the resources they control. COMMELEC ensures
that the grid is maintained in a feasible state and enables several ancillary services
such as tracking a dispatch plan, providing frequency support to the upper-level main
grid, and performing (intentional and unintentional) islanding and reconnection
maneuvers.

We have presented the effect of communication network non-idealities on the
performance of COMMELEC in a CPS for real-time control of electric grids. We have
shown that an increase in packet loss probability results in additional deviation from
the tracking signal and might result in violation of grid safety.

Table 8.2 provides a summary of the properties for robustness and reliability, pre-
sented in Chapter 3, in addition to the proposed mechanisms that achieve them. Recall
that robust availability (Definition 3.5) and reliable availability (Definition 3.9) are not
guaranteed by one specific mechanism. Rather, they are preserved by all applicable
mechanisms.

185

Chapter 8. Case Study: COMMELEC - A Cyber-Physical System for Real-Time
Control of Electric Grids

Property Mechanism Impact

Robust ordering and
reliable ordering
(Definitions 3.3, 3.7)

Intentionality clocks Total order of messages between soft-
ware agents

Robust safety and
robust optimality
(Definitions 3.4, 3.6)

Robuster Compute setpoints that maintain grid
safety, despite missing advertisements

Reliable validity
(Definition 3.8)

Axo Delay and crash fault tolerance

Reliable consistency
(Definition 3.10)

Quarts Avoid the split-brain syndrome among
replicated GAs

Table 8.2 – Summary of the proposed properties and the corresponding mechanisms
that achieve them

We have shown the impact of applying the mechanisms proposed throughout this
thesis on the performance of COMMELEC in grid-connected mode. Robuster and
intentionality clocks combine to enable the design of a robust COMMELEC controller,
thereby decreasing the effect of network non-idealities on the tracking performance.
Axo and Quarts combine to enable the design of an actively replicated COMMELEC
controller that is reliable, i.e., it maintains grid safety and close to optimal tracking
performance, in the presence of delay and crash faults affecting its replicas.

Then, we considered the operation of COMMELEC in islanded mode and in the
transitions from grid-connected to islanded mode. We have presented the two compo-
nents responsible for islanding in COMMELEC: the slack ranker and the slack switcher.
The slack ranker computes a list of slack-candidate resources, ranked based on their
suitability to become slack. Besides briefly presenting the design of the slack ranker, as
proposed in [23, 177], we have discussed the applicability of the robustness and relia-
bility mechanisms, proposed throughout this thesis, to the computation performed
by the slack ranker. Thus, we have shown how to ensure that such a computation is
performed robustly and reliably.

Finally, we designed a protocol for performing the islanding, reconnection, and
slack switching maneuvers in COMMELEC. We have presented a set of requirements
for such a protocol, and have shown that the design fulfills these requirements. We have
also discussed how the robustness and reliability mechanisms apply in this context.

186

9 Conclusions and Directions for
Future Work

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

— Alan Turing

We have studied the problem of designing reliable and robust real-time CPSs, specif-
ically in the context of real-time control of electric grids. To address the non-idealities
in the communication network, such as message losses, delays, and reordering, we
designed robustness mechanisms, called Robuster and intentionality clocks. These
mechanisms combine to design a robust controller, i.e., one that can continue to
operate correctly in the presence of the aforementioned non-idealities. To address
the faults that can affect software agents, such as delays and crashes, we designed
reliability mechanisms: Axo and Quarts. Axo enables masking delay and crash faults
in the controller from the rest of the CPS, by using active replication of the controller.
Quarts ensures that controller replicas send consistent setpoints, thereby avoiding the
split-brain syndrome [121]. These mechanisms combine to design a reliable controller,
i.e., one that can continue to operate correctly despite delay and crash faults.

We have presented a model of CPSs for real-time control of electric grids, which is
composed of four layers. Using this model, we have formulated a set of requirements
for designing robust and reliable CPSs. These requirements were the basis of the
provably correct mechanisms proposed throughout the thesis.

Using the layering approach, we developed T-RECS, a virtual commissioning tool
that enables testing CPSs for real-time control of electric grids in-silico, before field-
deployment. Using T-RECS, we have studied the effect of network and software non-
idealities on the performance of COMMELEC [8], a CPS for real-time control of grids.
We have also shown, both through simulations in T-RECS and through experiments in
a real-scale microgrid, the improvements in performance brought about by applying
our mechanisms for robustness and reliability to COMMELEC.

189

Chapter 9. Conclusions and Directions for Future Work

In Chapter 3, we have decomposed a CPS for real-time control of electric grids
into four layers: the physical layer, the sensing and actuation layer, the network layer,
and the control layer. We have discussed the operation models of the components in
each layer and have highlighted the interactions among them. We have also discussed
the fault models considered for each of the components, enumerating the type of
faults considered in this thesis as follows: (1) grid failures, such as line faults and
electric resource shut down or unresponsiveness, (2) sensor and actuator delays and
unresponsiveness, (3) communication network non-idealities, which include mes-
sage losses, delays, and reordering, and (4) software agent crashes and delays. Other
faults are not considered in this thesis, hence must be separately accounted for. In
particular, Byzantine faults [39], which include erroneous computations by software
agents and message contamination by the communication network, are not handled
by our proposed mechanisms. These types of faults occur due to software bugs and
cyber-security vulnerabilities [40], therefore can be reduced by software and system
verification techniques [41, 43].

Also in Chapter 3, we have introduced and motivated a set of formal requirements
for a reliable and robust CPS. In order to design a robust CPS controller, we have
introduced robust ordering, safety, availability, and optimality (Definitions 3.3-3.6).
A controller that guarantees robust ordering, safety, and optimality, and preserves
robust availability is said to be a robust controller. In order to design a reliable CPS
controller, we have introduced reliable ordering, validity, availability, and consistency
(Definitions 3.7-3.10). A set of replicated controllers that guarantee reliable ordering,
validity, and consistency, and preserve reliable availability are said to be reliable. These
properties do not form a comprehensive list of requirements for the reliability and
robustness of any CPS. Future work can extend these properties for specific classes of
CPSs.

In Chapter 4, we have defined the notion of a CPS control round in the presence
of controller replication. Then, we have proposed intentionality clocks, a mechanism
that assigns labels to the messages exchanged between software agents in a CPS, such
that each label corresponds to the round number each message belongs to. The inten-
tionality clocks mechanism guarantees robust and reliable ordering. That is to say, for
robust ordering, it guarantees that when the controllers compute setpoints for round r,
they only use advertisements from round r − 1. For reliable ordering, it guarantees
that setpoints implemented by an RA belong to a round number higher than the last
advertisement this RA issued. In addition to these guarantees, intentionality clocks
preserves robust and reliable availability, whereby it only discards advertisements
and setpoints that would otherwise violate robust and reliable ordering. One possible
avenue to explore, for an extension of this work, is to consider CPSs with hierarchical
controllers [144, 147]. This would require an analysis of the interdependence between
the control rounds at the different hierarchies, in addition to an extension of the
labeling mechanism to accommodate the new model.

190

Also in Chapter 4, we have proposed Robuster, a mechanism for generating ad-
vertisements at the RAs and for computing setpoints at the GA. Robuster guarantees
robust safety and optimality, and it increases the number of rounds in which robust
availability holds. Robuster augments the advertisements, issued by RAs, with long-
term fields, i.e., fields with a validity horizon that extends for the next n control rounds.
These fields, in addition to the short-term fields that are valid for one control round, are
used by the GA to compute setpoints. Advertisement fields are used only during rounds
in which they are valid, thereby guaranteeing robust safety. Furthermore, short-term
fields are always used when they are available, thereby guaranteeing robust optimality.
As the number of control rounds in which a setpoint computation can be performed
increases, robust availability holds in more control rounds in CPSs that implement
Robuster. We have presented the formal requirements for generating long-term fields
at an RA, and we have shown examples of generating such fields in RAs for several
resources in the COMMELEC framework [8]. In future work, we could explore the idea
of generating multiple sets of long-term fields, each valid for a different number of
rounds, a technique similar to the receding horizon control [178].

In Chapter 5, we have proposed Axo, a protocol for delay- and crash-fault tolerance
in real-time CPSs. Axo uses active replication of the controller, whereby multiple con-
troller replicas simultaneously receive input, perform computations, and issue output
setpoints. Active replication increases the probability of at least one non-delayed
replica in a given control round. Axo guarantees reliable validity by discarding invalid
setpoints before they are implemented at the RA. In order to preserve reliable availabil-
ity, Axo only discards invalid setpoints. Axo also ensures the long-term reliability of
a CPS by providing a mechanism for detecting and recovering from delay and crash
faults. We have presented the design of Axo, have formally proven its guarantees,
and have derived bounds on the recovery time from both delay and crash faults. We
have highlighted the utility of Axo via a stability analysis of an inverted pendulum
system. We have shown that Axo improves the stability of an inverted pendulum, in the
presence of delay and crash faults. The detection algorithm in Axo uses exponential
averaging, thereby declaring a delay fault when the rate of delays, in a given sliding
window, is above a certain threshold. In future work, we could consider a method
based on pattern recognition, in order to detect delay faults that might be missed by
the exponential averaging method.

In Chapter 6, we have proposed Quarts, an agreement protocol for real-time CPSs.
We have introduced the causes and effects of the split-brain syndrome [121], and
have shown that traditional agreement mechanisms are not suitable for CPSs for
real-time control of electric grids. We have highlighted a set of properties, generally
exhibited in such CPSs, that enable developing a better tailored agreement protocol
with a bounded low latency-overhead. We have described the design of the two phases
of Quarts: collection and voting. Then, we have shown how Quarts can be applied
to controllers of CPSs, in order to guarantee reliable consistency, thereby avoiding

191

Chapter 9. Conclusions and Directions for Future Work

the split-brain syndrome. We have performed extensive simulations of Quarts, in
comparison with consensus-based and passive-replication mechanisms. Through
these simulations we have reported several findings, as follows: (1) Quarts provides an
availability that is several orders of magnitude higher than state-of-the-art agreement
protocols, (2) the availability provided by Quarts increases with the number of replicas,
as opposed to other protocols, (3) passive-replication schemes cannot guarantee
consistency in the presence of delay faults, (4) Quarts has a lower average- and tail-
latency than consistency-guaranteeing consensus-based schemes, and (5) providing
consistency comes at the expense of a marginal increase in messaging cost. Quarts
requires modifications to the controllers in order to guarantee consistency. Future work
could explore the idea of designing Quarts as a layer that can be deployed alongside
the controller, in a manner similar to the Axo controller library. This would facilitate
the adoption of Quarts onto existing CPSs.

In Chapter 7, we have presented T-RECS, a virtual commissioning tool for software-
based real-time control of electric grids. Designed entirely in software, T-RECS can be
used to improve the efficiency of design-test cycles of CPSs, thereby assisting in their
co-development. T-RECS was designed to follow the layering approach presented in
Chapter 3. We have discussed three main requirements for such a tool: (1) the ability
to induce non-idealities into the communication network and the software agents,
(2) the ability to study the operation of the unmodified software agents, and (3) the
ability to perform such simulations entirely in-silico, without the need for physical
equipment. T-RECS simulates the electric grid and resources by using state-of-the-
art resource models and a load-flow solver [139]. It emulates the communication
network using Mininet [154], which also provides Linux containers [170] that can run
the unmodified software agent code. We have validated the load-flow solver used in
T-RECS, by comparing its results to measurements obtained from a measurement
campaign in an in-house microgrid on campus. We have shown that the tail relative
error is less than 0.1%, which validates that T-RECS can be used to study CPSs for
electric grids in-silico. We have also evaluated the performance of T-RECS, in terms
of CPU, memory usage, and load-flow computation time. T-RECS can run up to eight
software agents on a standard laptop computer, and the state-of-the-art load-flow
solver is faster than the Newton-Raphson method by up to two orders of magnitude.
In future work, a key feature to incorporate in T-RECS would be virtual time. In its
current form, T-RECS runs at a pace dictated by the software agents. Thus, in order
to run a day-long experiment, T-RECS requires one day. Incorporating virtual time
would enable bypassing the idle times of the software agents, without affecting their
behavior. This would enable running long-term experiments at a faster pace than the
one dictated by the software agents.

In Chapter 8, we have described COMMELEC [8], an existing framework for real-
time control of electric grids which uses explicit power setpoints. We have described
the architecture and operation of COMMELEC both in the grid-connected mode and

192

in the islanded mode. We have shown, via simulations in T-RECS, the effects of com-
munication network and software non-idealities on the performance of COMMELEC,
both in maintaining grid safety, and in tracking a given dispatch plan. This highlights
the need for applying the robustness and reliability mechanisms, discussed in this
thesis.

We have experimentally validated, both in T-RECS and in a real-scale microgrid, our
mechanisms for robustness and reliability when applied to COMMELEC. In Chapter 4,
we have shown the improvements brought about by applying intentionality clocks
and Robuster to COMMELEC. By guaranteeing robust ordering and safety and pre-
serving robust availability, these mechanisms provide a minimal root-mean-square
error (RMSE) in a scenario for frequency support. Additionally, by guaranteeing robust
optimality, these mechanisms maintain the ability to track a dispatch signal even under
binding grid conditions. In Chapter 8, we have applied both Axo and Quarts to COM-
MELEC. We have shown that by guaranteeing reliable safety and consistency, these
mechanisms maintain grid safety and improve the RMSE in dispatch plan tracking
scenarios.

The work done in this thesis is complementary to the work done on improving
the reliability, robustness, and resilience of the electric grid, i.e., the physical layer. A
potential avenue for future work is to develop a combined framework for analyzing
the reliability and robustness of both the cyber and physical components in real-time
control of electric grids. One work that goes in this direction is [179], in which they
model the various layers of the CPS and assign probabilities of failure to events in each
layer. This probabilistic study can be combined with a worst-case analysis to provide a
comprehensive framework.

193

A Derivation of Axo Performance
Analysis Results

A.1 Proof of Theorem 5.3: Delay-Faulty Controller

Delay-Faulty Controller: In a CPS with g controller replicas, if a replica C0 starts to be
delay-faulty at time t = 0 and remains faulty till time t, then a lower bound (Pld(t)) and
upper bound (Pud(t)) on the probability that it is recovered by time t is given.

Proof. First, we derive the probability for g = 2.

In a two-replica CPS, the probability that the delay-faulty replica C0 issues enough
delayed setpoints in [0, t1] to be detected by the second replica C1, given that C1 is
non-faulty throughout is computed as follows.

P∗det(t1) = P(C0 issuing i ≥ N setpoints in [0, t1] that are received by C1)

= 1−
N−1∑
i=0

(λf (1− p)2t1)ieλf (1−p)2t1

i!
(A.1)

Equation A.1 is based on the model of the controller described in Section 5.6: it
gives the cumulative distribution function (CDF) of a Poisson distribution, where the
rate is the rate of a faulty replica issuing setpoints (λf) multiplied by the probability
of the corresponding report being received (1− p)2. N is the number of consecutive
reports, corresponding to delayed setpoints, that are sufficient to detect a delay fault,
and can be derived from α,Hext, and Hmax, from Algorithms 5.5, 5.6, as shown in
Theorem 5.3.

The probability density function (PDF) of the above expression can be obtained by
taking the derivative, resulting in the Erlang distribution.

195

Appendix A. Derivation of Axo Performance Analysis Results

Pdet(t1) =
d

dt1
P∗det(t1) =

(λf (1− p)2)N tN−1
1 e−λf (1−p)2t1

(N − 1)!
(A.2)

In a two-replica CPS, the probability that C1 will recover a delay-faulty replica C0,
that was detected as faulty at t1+d, at [t2, t2+dt], given thatC1 is non-faulty throughout,
is given by Pr(∆t), where ∆t = t2 − (t1 + d).

Pr(∆t) = P(C0 receives one reboot message in [t2, t2 + dt])

=
d

d∆t
(1− e

−(1−p)∆t
Tr) =

1− p
Tr

e
−(1−p)∆t

Tr (A.3)

Equation A.3 can be obtained by modeling the process of receiving reboot messages
(Algorithm 5.7) as a Poisson process of rate (1− p)/Tr, where 1− p is the probability of
receiving a reboot message and 1/Tr is the rate at which they are sent. The approxima-
tion of the periodic sending process as an exponential one is justified by the low rate,
and facilitates the derivation of the above expression.

The probability of C1 being non-faulty in [0,∆t] is:

Pnf (∆t) = P(C1being non-faulty at t = 0 and in (0,∆t])

= πne
−λnθ∆t (A.4)

Equation A.4 considers the fault model of a controller replica, where πn is the
stationary probability of being in a non-faulty state. This is multiplied by the probability
of not transitioning to the faulty state within a period of ∆t.

Using Equations A.2, A.3, A.4, we can define the lower and upper bounds on recov-
ering a delay-faulty controller replica.

For a lower bound, we consider a two-replica system, the worst-case network delay,
and that a faulty replica cannot help in detection and recovery. Increasing the number
of replicas, decreasing the network delay, or considering the cases in which faulty
replicas can take part in detection or recovery, will increase the probability. Therefore,
the lower bound is justified. It is given as follows:

Pld(t) =

t−2∆∫
t1=0

Pdet(t1)

t∫
t2=t1+2∆

Pr(t2 − t1 − 2∆)Pnf (t2 − 2∆)dt2dt1

Note that the lower bound always considers two-replica CPSs regardless of g.

196

A.2. Proof of Theorem 5.4: Crash-Faulty Controller

For an upper bound, we relax the condition of dependence between replicas:
we consider that each additional replica in the system can detect and recover C0

independently. We also consider that all these replicas are always non-faulty, and that
the network has zero delay. These relaxations always result in an increase to the actual
probability. Therefore, the upper bound is justified. It is given as follows:

Pud(t) = 1− (1− P1(t))g−1

P1(t) =

t∫
t1=0

Pdet(t1)

t∫
t2=t1

Prec(t2 − t1)dt2dt1

The derivation of Pld(t) and Pud(t) results in the statement of the theorem.

A.2 Proof of Theorem 5.4: Crash-Faulty Controller

Crash-Faulty Controller: In a CPS with g controller replicas, if a replica C0 starts to be
crash-faulty at time t = 0 and remains faulty till time t, then a lower bound (Plc(t)) and
upper bound (Puc (t)) on the probability that it is recovered by time t is given.

Proof. We first derive the following probabilities.

We define the notion of awareness, where a replica Ci is aware of replica C0 at ta, if
the detector database at Ci contains an entry for C0 at ta. This condition is satisfied if
C0 issues a setpoint at t0 > ta−τc, the report of which is received byCi. The probability
of such an event, given that C0 issues another setpoint at ta and that Ci is non-faulty
throughout, is given as Pa(∆t), where ∆t = t0 − ta:

Pa(∆t) = P(C0 issues a setpoint at t0 −∆t, that is received by Ci)

= λ0(1− p)2e−λ0(1−p)2∆t (A.5)

Equation A.5 considers the controller model from Section 5.6, and uses the time-
reversal property of Poisson processes.

We now consider a g-replica CPS, in which C0 crashes at t0, and the other g − 1

replicas are assumed to be able to detect this independently, and are all non-faulty
throughout. For this, each controller can be modeled as receiving setpoints at a rate
of (g − 1)λn(1− p)2. The network is considered to have a fixed one-way delay of d for
packets that are not dropped. Under such conditions, the probability of a replica Ci
detecting C0 as crash faulty in the interval [t1, t1 + dt], given the above conditions and
that Ci was aware of C0, is given as Pc(∆t, g), where ∆t = t1 − t0 − d.

197

Appendix A. Derivation of Axo Performance Analysis Results

Pc(∆t, g) = P(Cj 6= C0 issues a setpoint at t1 − d,
the report of which is received by Ci at t1)

=

{
0 ∆t < τc

(g − 1)λn(1− p)2e−(g−1)λn(1−p)2(∆t−τc) ∆t ≥ τc
(A.6)

Note that the above expression is an upper bound when g > 2, but is exact when
g = 2, since the condition of independence is not required when there is only one
replica participating in detection.

In what follows, we derive a lower bound and upper bound on the probability of
recovering from a crash fault using Equations A.5 and A.6. We will also use Pr and Pnf
from Equations A.3 and A.4, respectively.

The conditions for lower and upper bound are similar to those presented in Ap-
pendix A.1. For a lower bound, we consider a two-replica CPS, the worst-case network
delay, and that a faulty replica cannot help in detection and recovery.

Plc(t) =

τc∫
t0=max(0,τc−t)

t−2∆∫
t1=τc−t0

t∫
t2=t1+2∆

Pa(t0)Pc(t1 + t0, 2)×

Pr(t2 − (t1 + 2∆))Pnf (t2 + (t0 + 2∆))dt2dt1dt0

For an upper bound, we relax the condition of dependence between replicas:
we consider that each additional replica in the system can detect and recover C0

independently. We also consider that all these replicas are always non-faulty, and that
the network has zero delay. These relaxations always result in an increase to the actual
probability. Therefore, the upper bound is justified. It is given as follows:

Puc (t) = 1− (1− P3(t))g−1

P3(t) =

τc∫
t0=max(0,τc−t)

t∫
t1=τc−t0

t∫
t2=t1

Pa(t0)Pc(t1 + t0, g)× Pr(t2 − t1)dt2dt1dt0

The derivation of Plc(t) and Puc (t) results in the statement of the theorem.

198

Bibliography

[1] W. H. Wolf, “Cyber-Physical Systems,” IEEE Computer, vol. 42, no. 3, pp. 88–89,
2009.

[2] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of Autonomous
Car—Part II: A Case Study on the Implementation of an Autonomous Driving
System Based on Distributed Architecture,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 8, pp. 5119–5132, Aug 2015.

[3] C. Berger and B. Rumpe, “Autonomous Driving—5 Years After the Urban Chal-
lenge: The Anticipatory Vehicle as a Cyber-Physical System,” arXiv preprint
arXiv:1409.0413, 2014.

[4] J. Michniewicz and G. Reinhart, “Cyber-Physical Robotics—Automated Analy-
sis, Programming and Configuration of Robot Cells Based on Cyber-Physical-
Systems,” Procedia Technology, vol. 15, pp. 566–575, 2014.

[5] J. Fink, A. Ribeiro, and V. Kumar, “Robust Control for Mobility and Wireless
Communication in Cyber-Physical Systems with Application to Robot Teams,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 164–178, 2012.

[6] L. Wang, M. Törngren, and M. Onori, “Current Status and Advancement of Cyber-
Physical Systems in Manufacturing,” Journal of Manufacturing Systems, vol. 37,
pp. 517–527, 2015.

[7] L. Monostori, “Cyber-Physical Production Systems: Roots, Expectations and
R&D Challenges,” Procedia CIRP, vol. 17, pp. 9–13, 2014.

[8] A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec, and M. Paolone, “A Compos-
able Method for Real-Time Control of Active Distribution Networks with Explicit
Power Setpoints. Part I: Framework,” Electric Power Systems Research, vol. 125,
pp. 254–264, 2015.

[9] K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, and M. Paolone, “GECN: Pri-
mary Voltage Control for Active Distribution Networks Via Real-Time Demand-
Response,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 622–631, 2014.

201

Bibliography

[10] Y. Tang, K. Dvijotham, and S. Low, “Real-Time Optimal Power Flow,” IEEE Trans-
actions on Smart Grid, vol. 8, no. 6, pp. 2963–2973, 2017.

[11] J. Martin, Programming Real-Time Computer Systems. Prentice Hall, 1965.

[12] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur,
N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, R. Schulz, A. Stankovic,
C. Taylor, and V. Vittal, “Causes of the 2003 Major Grid Blackouts in North Amer-
ica and Europe and Recommended Means to Improve System Dynamic Perfor-
mance,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1922–1928, Nov
2005.

[13] O. Ardakanian, C. Rosenberg, and S. Keshav, “Distributed Control of Electric
Vehicle Charging,” in Proceedings of the fourth international conference on Future
energy systems. ACM, 2013, pp. 101–112.

[14] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. Masoum, “Real-Time Coordi-
nation of Plug-in Electric Vehicle Charging in Smart Grids to Minimize Power
Losses and Improve Voltage Profile,” IEEE Transactions on Smart Grid, vol. 2,
no. 3, pp. 456–467, 2011.

[15] IEEE Power and Energy Society, “IEEE Guide for Voltage Sag Indices,” 2014.

[16] International Electrotechnical Commission, “International Standard: Electric
Cables – Calculation of the Current Rating,” 2007.

[17] IEEE Power Engineering Society, “IEEE Standard for Calculating the Current-
Temperature of Bare Overhead Conductors,” 2006.

[18] H. Saboori, M. Mohammadi, and R. Taghe, “Virtual Power Plant (VPP), Definition,
Concept, Components and Types,” in Power and Energy Engineering Conference
(APPEEC), 2011 Asia-Pacific. IEEE, 2011, pp. 1–4.

[19] A. Oudalov, D. Chartouni, and C. Ohler, “Optimizing a Battery Energy Storage
System for Primary Frequency Control,” IEEE Transactions on Power Systems,
vol. 22, no. 3, pp. 1259–1266, 2007.

[20] M. Pignati, L. Zanni, P. Romano, R. Cherkaoui, and M. Paolone, “Fault De-
tection and Faulted Line Identification in Active Distribution Networks Using
Synchrophasors-Based Real-Time State Estimation,” IEEE Transactions on Power
Delivery, vol. 32, no. 1, pp. 381–392, 2017.

[21] P. Palensky and D. Dietrich, “Demand Side Management: Demand Response,
Intelligent Energy Systems, and Smart Loads,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 3, pp. 381–388, 2011.

202

Bibliography

[22] P. C. Loh, Y. K. Chai, D. Li, and F. Blaabjerg, “Autonomous Operation of Dis-
tributed Storages in Microgrids,” IEEE Transactions on Power Electronics, vol. 7,
no. 1, pp. 23–30, 2014.

[23] A. Bernstein, J.-Y. Le Boudec, L. Reyes-Chamorro, and M. Paolone, “Real-Time
Control of Microgrids with Explicit Power Setpoints: Unintentional Islanding,”
in PowerTech. IEEE, 2015, pp. 1–6.

[24] C. Chen, J. Wang, F. Qiu, and D. Zhao, “Resilient Distribution System by Micro-
grids Formation After Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7,
no. 2, pp. 958–966, 2016.

[25] S. Barot and J. A. Taylor, “A Concise, Approximate Representation of a Collection
of Loads Described by Polytopes,” International Journal of Electrical Power &
Energy Systems, vol. 84, pp. 55–63, 2017.

[26] O. Sundstrom and C. Binding, “Flexible Charging Optimization for Electric Ve-
hicles Considering Distribution Grid Constraints,” IEEE Transactions on Smart
Grid, vol. 3, no. 1, pp. 26–37, 2012.

[27] W. K. Chai, N. Wang, K. V. Katsaros, G. Kamel, G. Pavlou, S. Melis, M. Hoefling,
B. Vieira, P. Romano, S. Sarri et al., “An Information-Centric Communication
Infrastructure for Real-Time State Estimation of Active Distribution Networks,”
IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 2134–2146, 2015.

[28] L. Zanni, S. Sarri, M. Pignati, R. Cherkaoui, and M. Paolone, “Probabilistic As-
sessment of the Process-Noise Covariance Matrix of Discrete Kalman Filter State
Estimation of Active Distribution Networks,” in Probabilistic Methods Applied to
Power Systems (PMAPS), 2014 International Conference on. IEEE, 2014, pp. 1–6.

[29] W. Bolton, Programmable Logic Controllers. Newnes, 2015.

[30] T. le Fevre Kristensen, R. L. Olsen, J. G. Rasmussen, and H.-P. Schwefel, “Informa-
tion Access for Event-Driven Smart Grid Controllers,” Sustainable Energy, Grids
and Networks, vol. 13, pp. 78–92, 2018.

[31] C. Lo and N. Ansari, “Decentralized Controls and Communications for Au-
tonomous Distribution Networks in Smart Grid,” IEEE Transactions on Smart
Grid, vol. 4, no. 1, pp. 66–77, March 2013.

[32] D. J. Reifer, V. R. Basili, B. W. Boehm, and B. Clark, “COTS-Based Systems–
Twelve Lessons Learned about Maintenance,” in COTS-Based Software Systems.
Springer, 2004, pp. 137–145.

[33] National Instruments, “NI CompactRIO,” http://www.ni.com/compactrio/, Ac-
cessed: 2018-10-07.

203

http://www.ni.com/compactrio/

Bibliography

[34] B&R Automation, “Automation PC 910,” https://www.br-automation.com/en/
products/industrial-pcs/automation-pc-910/, Accessed: 2018-10-07.

[35] PINE64, “ROCKPRO64,” https://www.pine64.org/?page_id=61454/, Accessed:
2018-10-07.

[36] M. Barabanov and V. Yodaiken, “Real-Time Linux,” Linux journal, vol. 23, no. 4.2,
p. 1, 1996.

[37] C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Existence and Unique-
ness of Load-Flow Solutions in Three-Phase Distribution Networks,” IEEE Trans-
actions on Power Systems, vol. 32, no. 4, pp. 3319–3320, 2017.

[38] D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet, “Never Say Never–
Probabilistic and Temporal Failure Detectors,” in Parallel and Distributed Pro-
cessing Symposium, 2016 IEEE International. IEEE, 2016, pp. 679–688.

[39] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3,
pp. 382–401, 1982.

[40] F. Aloul, A. Al-Ali, R. Al-Dalky, M. Al-Mardini, and W. El-Hajj, “Smart Grid Security:
Threats, Vulnerabilities and Solutions,” International Journal of Smart Grid and
Clean Energy, vol. 1, no. 1, pp. 1–6, 2012.

[41] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle, N. Ozay,
H. Peng, and P. Tabuada, “Correct-by-Construction Adaptive Cruise Control:
Two Approaches,” IEEE Transactions on Control Systems Technology, vol. 24,
no. 4, pp. 1294–1307, 2016.

[42] S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and Q. Wang,
“Formal Verification of Infinite-State BIP Models,” in International Symposium
on Automated Technology for Verification and Analysis. Springer, 2015, pp.
326–343.

[43] T. T. Tesfay, J.-P. Hubaux, J.-Y. Le Boudec, and P. Oechslin, “Cyber-Secure Com-
munication Architecture for Active Power Distribution Networks,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing. ACM, 2014, pp.
545–552.

[44] Taskforce C6.04.02, “Benchmark Systems for Network Integration of Renewable
and Distributed Energy Resources,” CIGRÉ, Tech. Rep., 2010.

[45] J. Postel, “Transmission Control Protocol,” Internet Requests for Comments,
RFC Editor, STD 7, September 1981. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc793.txt

204

https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
https://www.pine64.org/?page_id=61454/
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt

Bibliography

[46] J. C. R. Bennett, C. Partridge, and N. Shectman, “Packet Reordering is Not Patho-
logical Network Behavior,” IEEE/ACM Transactions on Networking, vol. 7, no. 6,
pp. 789–798, Dec 1999.

[47] M. Scharf and S. Kiesel, “Head-of-line Blocking in TCP and SCTP: Analysis and
Measurements,” in GLOBECOM, vol. 6, 2006, pp. 1–5.

[48] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Internet Engineering Task Force, Internet-Draft draft-
ietf-quic-transport-15, Oct 2018, Work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-15

[49] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-
nov, I. Swett, J. Iyengar et al., “The QUIC Transport Protocol: Design and Internet-
Scale Deployment,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 2017, pp. 183–196.

[50] H. Kirrmann, M. Hansson, and P. Muri, “IEC 62439 PRP: Bumpless Recovery for
Highly Available, Hard Real-Time Industrial Networks,” in Emerging Technologies
and Factory Automation, 2007. ETFA. IEEE Conference on, Sept 2007, pp. 1396–
1399.

[51] H. Kirrmann, K. Weber, O. Kleineberg, and H. Weibel, “HSR: Zero Recovery Time
and Low-cost Redundancy for Industrial Ethernet (High Availability Seamless
Redundancy, IEC 62439-3),” in Proceedings of the 14th IEEE International Confer-
ence on Emerging Technologies & Factory Automation, ser. ETFA’09. Piscataway,
NJ, USA: IEEE Press, 2009.

[52] M. Popovic, M. Mohiuddin, D. C. Tomozei, and J. Y. L. Boudec, “iPRP - the Parallel
Redundancy Protocol for IP Networks: Protocol Design and Operation,” IEEE
Transactions on Industrial Informatics, vol. PP, no. 99, pp. 1–1, 2016.

[53] M. Pignati, M. Popovic, S. Barreto, R. Cherkaoui, G. D. Flores, J.-Y. Le Boudec,
M. Mohiuddin, M. Paolone, P. Romano, S. Sarri et al., “Real-time State Estimation
of the EPFL-Campus Medium-Voltage Grid by Using PMUs,” in Innovative Smart
Grid Technologies Conference (ISGT), 2015 IEEE Power & Energy Society. IEEE,
2015, pp. 1–5.

[54] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, The Time-Triggered
Ethernet (TTE) Design. IEEE, 2005.

[55] F. Consortium et al., “FlexRay Communications System-Protocol Specification,”
Version, vol. 2, no. 1, pp. 198–207, 2005.

[56] M. Farsi, K. Ratcliff, and M. Barbosa, “An Overview of Controller Area Network,”
Computing & Control Engineering Journal, vol. 10, no. 3, pp. 113–120, 1999.

205

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-15

Bibliography

[57] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford, “Network Archi-
tecture for Joint Failure Recovery and Traffic Engineering,” in Proceedings of the
ACM SIGMETRICS Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’11). ACM, 2011, pp. 97–108.

[58] C. Sousa, G. e Souza, I. Moraes, R. C. Carrano, C. V. N. de Albuquerque, L. F. N.
Passos, A. Carniato, A. L. Bettiol, R. Z. Homma, R. C. Andrade et al., “Link Quality
Wstimation for AMI,” in Innovative Smart Grid Technologies Latin America (ISGT
LATAM), 2015 IEEE PES. IEEE, 2015, pp. 646–649.

[59] A. Lucas and S. Chondrogiannis, “Smart Grid Energy Storage Controller for
Frequency Regulation and Peak Shaving, Using a Vanadium Redox Flow Battery,”
International Journal of Electrical Power & Energy Systems, vol. 80, pp. 26–36,
2016.

[60] S. J. Crocker and J. L. Mathieu, “Adaptive State Estimation and Control of Ther-
mostatic Loads for Real-Time Energy Balancing,” in American Control Conference
(ACC), 2016. IEEE, 2016, pp. 3557–3563.

[61] W. M. H. Heemels, A. R. Teel, N. Van de Wouw, and D. Nesic, “Networked Control
Systems with Communication Constraints: Tradeoffs Between Transmission
Intervals, Delays and Performance,” IEEE Transactions on Automatic Control,
vol. 55, no. 8, pp. 1781–1796, 2010.

[62] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust Finite-Horizon Filtering for
Stochastic Systems with Missing Measurements,” IEEE Signal Processing Letters,
vol. 12, no. 6, pp. 437–440, June 2005.

[63] Y. Shi and H. Fang, “Kalman Filter-based Identification for Systems with Ran-
domly Missing Measurements in a Network Environment,” International Journal
of Control, vol. 83, no. 3, pp. 538–551, 2010.

[64] A. Gomez-Exposito, A. Abur, A. de la Villa Jaen, and C. Gomez-Quiles, “A Multi-
level State Estimation Paradigm for Smart Grids,” Proceedings of the IEEE, vol. 99,
no. 6, pp. 952–976, June 2011.

[65] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S.
Sastry, “Kalman Filtering with Intermittent Observations,” IEEE Transactions on
Automatic Control, vol. 49, no. 9, pp. 1453–1464, Sept 2004.

[66] S. Shakkottai, R. Srikant, and N. B. Shroff, “Unreliable Sensor Grids: Coverage,
Connectivity and Diameter,” Ad Hoc Networks, vol. 3, no. 6, pp. 702–716, 2005.

[67] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid Coverage for Surveillance
and Target Location in Distributed Sensor Networks,” IEEE Transactions on
Computers, vol. 51, no. 12, pp. 1448–1453, 2002.

206

Bibliography

[68] N. Xia, H. B. Gooi, S. Chen, and M. Wang, “Redundancy based PMU Placement
in State Estimation,” Sustainable Energy, Grids and Networks, vol. 2, pp. 23–31,
2015.

[69] J. Chen and A. Abur, “Placement of PMUs to Enable Bad Data Detection in State
Estimation,” IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1608–1615,
2006.

[70] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu, “Wireless Routing
and Control: a Cyber-Physical Case Study,” in Cyber-Physical Systems (ICCPS),
2016 ACM/IEEE 7th International Conference on. IEEE, 2016, pp. 1–10.

[71] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear Control of Constrained
Linear Systems via Predictive Reference Management,” IEEE transactions on
Automatic Control, vol. 42, no. 3, pp. 340–349, 1997.

[72] A. Bemporad, “Predictive Control of Teleoperated Constrained Systems with
Unbounded Communication Delays,” in Proceedings of the 37th IEEE Conference
on Decision and Control (Cat. No.98CH36171), vol. 2, Dec 1998, pp. 2133–2138
vol.2.

[73] L. Xie, Y. Gu, A. Eskandari, and M. Ehsani, “Fast MPC-Based Coordination of
Wind Power and Battery Energy Storage Systems,” Journal of Energy Engineering,
vol. 138, no. 2, pp. 43–53, 2012.

[74] I. Koutsopoulos, T. G. Papaioannou, V. Hatzi et al., “Modeling and Optimization
of the Smart Grid Ecosystem,” Foundations and Trends R© in Networking, vol. 10,
no. 2-3, pp. 115–316, 2016.

[75] F. Sossan, E. Namor, R. Cherkaoui, and M. Paolone, “Achieving the Dispatcha-
bility of Distribution Feeders Through Prosumers Data Driven Forecasting and
Model Predictive Control of Electrochemical Storage,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 4, pp. 1762–1777, 2016.

[76] E. Stai, L. Reyes-Chamorro, F. Sossan, J.-Y. Le Boudec, and M. Paolone, “Dis-
patching Stochastic Heterogeneous Resources Accounting for Grid and Battery
Losses,” IEEE Transactions on Smart Grid, 2017.

[77] P. Patrinos, S. Trimboli, and A. Bemporad, “Stochastic MPC for Real-Time Market-
Based Optimal Power Dispatch,” in Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 7111–
7116.

[78] D. L. Mills, “Internet Time Synchronization: The Network Time Protocol,” IEEE
Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, 1991.

207

Bibliography

[79] I. Instrumentation and M. Society, “IEEE Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement and Control Systems,” IEEE Std
1588-2002, pp. i–144, 2002.

[80] D. W. Allan and M. A. Weiss, “Accurate Time and Frequency Transfer During
Common-View of a GPS Satellite,” in 34th Annual Symposium on Frequency
Control, May 1980, pp. 334–346.

[81] L. Lamport, “Time Clocks and the Ordering of Events in a Distributed System,”
Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[82] A. Armenia and J. H. Chow, “A Flexible Phasor Data Concentrator Design Lever-
aging Existing Software Technologies,” IEEE Transactions on Smart Grid, vol. 1,
no. 1, pp. 73–81, 2010.

[83] C. J. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial
Ordering,” in Proceedings of 11th Australian Computer Science Conference. Aus-
tralian National University. Department of Computer Science, Feb 1988, pp.
56–66.

[84] M. Castro, B. Liskov et al., “Practical Byzantine Fault Tolerance,” in OSDI, vol. 99,
1999, pp. 173–186.

[85] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W. Schröder-
Preikschat, and K. Stengel, “CheapBFT: Resource-Efficient Byzantine Fault Toler-
ance,” in Proceedings of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 295–308.

[86] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ and the Art
of Practical BFT Execution,” in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 123–138.

[87] P. Veríssimo and A. Casimiro, “The Timely Computing Base Model and Architec-
ture,” IEEE Transactions on Computers, vol. 51, no. 8, pp. 916–930, 2002.

[88] A. Casimiro and P. Verissimo, “Generic Timing Fault Tolerance Using a Timely
Computing Base,” in Dependable Systems and Networks, 2002. DSN 2002. Pro-
ceedings. International Conference on, 2002, pp. 27–36.

[89] H. Kopetz and G. Grunsteidl, “TTP – A Time-Triggered Protocol for Fault-Tolerant
Real-Time Systems,” in Fault-Tolerant Computing, 1993. FTCS-23. Digest of
Papers., The Twenty-Third International Symposium on. IEEE, 1993, pp. 524–
533.

[90] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 112–126, 2003.

208

Bibliography

[91] A. Casimiro and P. Veríssimo, “Timing Failure Detection with a Timely Computing
Base,” in 3rd European Research Seminar on Advances in Distributed Systems
(ERSADS’99). Department of Informatics, University of Lisbon, 1999.

[92] H. Kopetz, “Fault Containment and Error Detection in the Time-Triggered Ar-
chitecture,” in Autonomous Decentralized Systems, 2003. The Sixth International
Symposium on. IEEE, 2003, pp. 139–146.

[93] K. Vaidyanathan and K. S. Trivedi, “A Comprehensive Model for Software Rejuve-
nation,” IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2,
pp. 124–137, 2005.

[94] T. Maniak, C. Jayne, R. Iqbal, and F. Doctor, “Automated Intelligent System for
Sound Signalling Device Quality Assurance,” Information Sciences, vol. 294, pp.
600–611, 2015.

[95] T. Maniak, R. Iqbal, F. Doctor, and C. Jayne, “Automated Sound Signalling De-
vice Quality Assurance Tool for Embedded Industrial Control Applications,” in
Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on.
IEEE, 2013, pp. 4812–4818.

[96] R. Guerraoui and L. Rodrigues, Introduction to Reliable Distributed Programming.
Springer Science & Business Media, 2006.

[97] A. Avizienis, J.-C. Laprie, B. Randell et al., Fundamental Concepts of Dependabil-
ity. University of Newcastle upon Tyne, Computing Science, 2001.

[98] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process,” Journal of the ACM (JACM), vol. 32, no. 2,
pp. 374–382, 1985.

[99] A. Schiper, “Early Consensus in an Asynchronous System with a Weak Failure
Detector,” Distributed Computing, vol. 10, no. 3, pp. 149–157, 1997.

[100] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft, “Raft Refloated:
Do We Have Consensus?” SIGOPS Operating Systems Review, vol. 49, no. 1, pp.
12–21, Jan. 2015.

[101] F. J. Meyer and D. K. Pradhan, “Consensus with Dual Failure Modes,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 2, no. 2, pp. 214–222, 1991.

[102] L. Lamport et al., “Paxos Made Simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25,
2001.

[103] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos Made Live: an Engineering
Perspective,” in Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing. ACM, 2007, pp. 398–407.

209

Bibliography

[104] L. Lamport, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103, 2006.

[105] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible Paxos: Quorum Intersection
Revisited,” in 20th International Conference on Principles of Distributed Systems
(OPODIS 2016), ser. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 70, 2017, pp. 25:1–25:14.

[106] A. L. Hopkins, T. B. Smith, and J. H. Lala, “FTMP – A Highly Reliable Fault-Tolerant
Multiprocess for Aircraft,” Proceedings of the IEEE, vol. 66, no. 10, pp. 1221–1239,
1978.

[107] F. B. Schneider, “The State Machine Approach: A Tutorial,” in Fault-tolerant
distributed computing. Springer, 1990, pp. 18–41.

[108] M. Chérèque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, “Active Replica-
tion in Delta-4,” in Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers.,
Twenty-Second International Symposium on. IEEE, 1992, pp. 28–37.

[109] R. Baldoni, C. Marchetti, and S. T. Piergiovanni, “Asynchronous Active Repli-
cation in Three-Tier Distributed Systems,” in Dependable Computing, 2002.
Proceedings. 2002 Pacific Rim International Symposium on. IEEE, 2002, pp.
19–26.

[110] T. D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed
Systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp. 225–267, 1996.

[111] R. Van Renesse, Y. Minsky, and M. Hayden, “A Gossip-Style Failure Detection Ser-
vice,” in Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer-Verlag, 2009, pp. 55–70.

[112] M. K. Aguilera, W. Chen, and S. Toueg, “Heartbeat: A Timeout-Free Failure
Detector for Quiescent Reliable Communication,” in International Workshop on
Distributed Algorithms. Springer, 1997, pp. 126–140.

[113] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot–A
Technique for Cheap Recovery,” arXiv preprint cs/0406005, 2004.

[114] B. Schröder, Ordered Sets: An Introduction with Connections from Combinatorics
to Topology. Birkhäuser, 2016.

[115] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, “Proactive Management of Software Ag-
ing,” IBM Journal of Research and Development, vol. 45, no. 2, pp. 311–332, 2001.

[116] M. Castro and B. Liskov, “Proactive recovery in a byzantine-fault-tolerant system,”
in Proceedings of the 4th conference on Symposium on Operating System Design
& Implementation-Volume 4. USENIX Association, 2000, p. 19.

210

Bibliography

[117] D. L. Parnas, “Software Aging,” in Proceedings of the 16th international conference
on Software engineering. IEEE Computer Society Press, 1994, pp. 279–287.

[118] Y. Bao, X. Sun, and K. S. Trivedi, “A Workload-Based Analysis of Software Aging,
and Rejuvenation,” IEEE Transactions on Reliability, vol. 54, no. 3, pp. 541–548,
2005.

[119] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software Aging Analysis
of the Linux Operating System,” in Software Reliability Engineering (ISSRE), 2010
IEEE 21st International Symposium on. IEEE, 2010, pp. 71–80.

[120] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in a Partitioned
Network: A Survey,” ACM Computer Surveys, vol. 17, no. 3, pp. 341–370, Sep 1985.

[121] Wikipedia, “Split-Brain (Computing),” Accessed: 2018-10-17. [Online]. Available:
https://en.wikipedia.org/wiki/Split-brain_(computing)

[122] S. Poledna, “Replica Determinism in Distributed Real-Time Systems: A Brief
Survey,” Real-Time Systems, vol. 6, no. 3, pp. 289–316, 1994.

[123] B. M. Oki and B. H. Liskov, “Viewstamped Replication: A New Primary Copy
Method to Support Highly-Available Distributed Systems,” in Proceedings of the
seventh annual ACM Symposium on Principles of distributed computing. ACM,
1988, pp. 8–17.

[124] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The Primary-Backup
Approach,” Distributed systems, vol. 2, pp. 199–216, 1993.

[125] H. Zou and F. Jahanian, “Real-Time Primary-Backup (RTPB) Replication with
Temporal Consistency Guarantees,” in Distributed Computing Systems, 1998.
Proceedings. 18th International Conference on. IEEE, 1998, pp. 48–56.

[126] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-Performance Broadcast
for Primary-Backup Systems,” in Dependable Systems & Networks (DSN), 2011
IEEE/IFIP 41st International Conference on. IEEE, 2011, pp. 245–256.

[127] D. Li, P. Morton, T. Li, and B. Cole, “Cisco Hot Standby Router Protocol (HSRP),”
in RFC 2281, 1998.

[128] S. Rizwan, V. Khurana, and G. Taneja, “Reliability Analysis of a Hot Standby
Industrial System,” International Journal of Modelling & Simulation, vol. 30,
no. 3, p. 315, 2010.

[129] L. Xing, O. Tannous, and J. Bechta Dugan, “Reliability Analysis of Nonrepairable
Cold-Standby Systems Using Sequential Binary Decision Diagrams,” IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 42,
no. 3, pp. 715–726, 2012.

211

https://en.wikipedia.org/wiki/Split-brain_(computing)

Bibliography

[130] E. Scolari, D. Torregrossa, J.-Y. Le Boudec, and M. Paolone, “Ultra-Short-Term
Prediction Intervals of Photovoltaic AC Active Power,” in Probabilistic Methods
Applied to Power Systems (PMAPS), 2016 International Conference on. IEEE,
2016, pp. 1–8.

[131] E. Scolari, F. Sossan, and M. Paolone, “Irradiance Prediction Intervals for PV
Stochastic Generation in Microgrid Applications,” Solar Energy, vol. 139, pp.
116–129, 2016.

[132] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Department of
Computer Science, University of North Carolina at Chapel Hill, Tech. Rep., 1995.

[133] E. N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell Labs Technical Journal,
vol. 39, no. 5, pp. 1253–1265, 1960.

[134] E. O. Elliott, “Estimates of Error Rates for Codes on Burst-Noise Channels,” The
Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, 1963.

[135] R. Rudnik, L. Reyes Chamorro, A. Bernstein, J.-Y. Le Boudec, and M. Paolone,
“Handling Large Power Steps in Real-Time Microgrid Control Via Explicit Power
Setpoints,” in 2017 IEEE Manchester PowerTech, June 2017, pp. 1–6.

[136] P. Mahajan, L. Alvisi, and M. Dahlin, “Consistency, Availability, and Convergence,”
University of Texas at Austin, Tech. Rep., 2011.

[137] E. Piatkowska, L. P. Bayarri, L. A. Garcia, K. Mavrogenou, K. Tsatsakis, M. Sand-
uleac, and P. Smith, “Enabling Novel Smart Grid Energy Services with the Nobel
Grid Architecture,” in 2017 IEEE Manchester PowerTech, June 2017, pp. 1–6.

[138] Y. Wu, J. Wei, and B. M. Hodge, “A Distributed Middleware Architecture for
Attack-Resilient Communications in Smart Grids,” in 2017 IEEE International
Conference on Communications (ICC), May 2017, pp. 1–7.

[139] C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Explicit Conditions on
Existence and Uniqueness of Load-Flow Solutions in Distribution Networks,”
IEEE Transactions on Smart Grid, 2016.

[140] C. Wang, E. Stai, and J.-Y. Le Boudec, “A Polynomial-Time Method for Test-
ing Admissibility of Uncertain Power Injections in Microgrids,” arXiv preprint
arXiv:1810.06256, 2018.

[141] L. Reyes-Chamorro, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “A Compos-
able Method for Real-Time Control of Active Distribution Networks with Explicit
Power Setpoints. Part II: Implementation and Validation,” Electric Power Systems
Research, vol. 125, pp. 265–280, 2015.

212

Bibliography

[142] M. Bahramipanah, D. Torregrossa, R. Cherkaoui, and M. Paolone, “Enhanced
Equivalent Electrical Circuit Model of Lithium-Based Batteries Accounting for
Charge Redistribution, State-of-Health, and Temperature Effects,” IEEE Trans.
Transport. Electrific, vol. 3, no. 3, pp. 589–599, Sept 2017.

[143] E. Scolari, F. Sossan, and M. Paolone, “Irradiance Prediction Intervals for PV
Stochastic Generation in Microgrid Applications,” Solar Energy, vol. 139, no.
Supplement C, pp. 116 – 129, 2016.

[144] Z. Xiao, T. Li, M. Huang, J. Shi, J. Yang, J. Yu, and W. Wu, “Hierarchical MAS Based
Control Strategy for Microgrid,” Energies, vol. 3, no. 9, pp. 1622–1638, 2010.

[145] P. Leitão, “Agent-Based Distributed Manufacturing Control: A State-of-the-Art
Survey,” Engineering Applications of Artificial Intelligence, vol. 22, no. 7, pp.
979–991, 2009.

[146] C. Urmson, J. A. Bagnell, C. R. Baker, M. Hebert, A. Kelly, R. Rajkumar, P. E. Rybski,
S. Scherer, R. Simmons, S. Singh et al., “Tartan Racing: A Multi-Modal Approach
to the Darpa Urban Challenge,” Carnegie Mellon University, Tech. Rep., 2007.

[147] T. Y. Teck, M. Chitre, and P. Vadakkepat, “Hierarchical Agent-Based Command
and Control System for Autonomous Underwater Vehicles,” in Autonomous and
Intelligent Systems (AIS), 2010 International Conference on. IEEE, 2010, pp. 1–6.

[148] M. Dunn, “Toyota’S Killer Firmware: Bad Design and its Consequences,” EDN
Network, October, vol. 28, 2013.

[149] J. C. Lui, V. Misra, and D. Rubenstein, “On the Robustness of Soft State Protocols,”
in Network Protocols, 2004. ICNP 2004. Proceedings of the 12th IEEE International
Conference on. IEEE, 2004, pp. 50–60.

[150] S. Krishnamurthy, W. H. Sanders, and M. Cukier, “A Dynamic Replica Selection
Algorithm for Tolerating Timing Faults,” in Dependable Systems and Networks,
2001. DSN 2001. International Conference on, July 2001, pp. 107–116.

[151] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare, “Survivable SCADA Via Intrusion-
Tolerant Replication,” Smart Grid, IEEE Transactions on, vol. 5, no. 1, pp. 60–70,
2014.

[152] L. Lamport, “The Part-Time Parliament,” ACM Transactions on Computer Systems
(TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[153] Carnegie Mellon, University of Michigan, “Control Tutorials for MAT-
LAB & Simulink,” http://ctms.engin.umich.edu/CTMS/index.php?example=
InvertedPendulum§ion=SystemModeling, 2012, Accessed: 2018-11-13.

[154] “Mininet,” http://mininet.org/, Accessed: 2018-11-13.

213

http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
http://mininet.org/

Bibliography

[155] D. M. Blough and G. F. Sullivan, “A Comparison of Voting Strategies for Fault-
Tolerant Distributed Systems,” in Reliable Distributed Systems, 1990. Proceedings.,
Ninth Symposium on. IEEE, 1990, pp. 136–145.

[156] J. L. Gersting, R. L. Nist, D. B. Roberts, and R. Van Valkenburg, “A Comparison
of Voting Algorithms for N-Version Programming,” in System Sciences, 1991.
Proceedings of the Twenty-Fourth Annual Hawaii International Conference on,
vol. 2. IEEE, 1991, pp. 253–262.

[157] J.-Y. Le Boudec, Performance Evaluation of Computer and Communication Sys-
tems. EPFL Press, 2010.

[158] J. Lin, K.-C. Leung, and V. O. Li, “Optimal Scheduling with Vehicle-to-Grid Regu-
lation Service,” IEEE Internet of Things Journal, vol. 1, no. 6, pp. 556–569, 2014.

[159] M. J. Stanovich, S. K. Srivastava, D. A. Cartes, and T. L. Bevis, “Multi-Agent Testbed
for Emerging Power Systems,” in Power and Energy Society General Meeting (PES),
2013 IEEE, 2013.

[160] R. M. Reddi and A. K. Srivastava, “Real Time Test Bed Development for Power
System Operation, Control and Cyber Security,” in North American Power Sym-
posium (NAPS), 2010, 2010.

[161] A. Saleem, N. Honeth, Y. Wu, and L. Nordstrom, “Integrated Multi-Agent Testbed
for Decentralized Control of Active Distribution Networks,” in Power and Energy
Society General Meeting (PES), 2013 IEEE, 2013.

[162] F. Maturana, R. Staron, K. Loparo, and D. Carnahan, “Agent-Based Testbed
Simulator for Power Grid Modeling and Control,” in Energytech, 2012 IEEE, 2012.

[163] A. Ravichandran, “Software-Defined MicroGrid Testbed for Energy Manage-
ment,” Master Thesis, 2011.

[164] Y. Cao, X. Shi, and Y. Li, “A Simplified Co-simulation Model for Investigating
Impacts of Cyber-Contingency on Power System Operations,” IEEE Transactions
on Smart Grid, 2017.

[165] S. Schutte, S. Scherfke, and M. Troschel, “Mosaik: A Framework for Modular Sim-
ulation of Active Components in Smart Grids,” in 2011 IEEE First International
Workshop on Smart Grid Modeling and Simulation (SGMS), Oct 2011.

[166] D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An Agent-Based Simulation
Framework for Smart Grids,” in Journal of Applied Mathematics, 2014.

[167] S. E. Mattsson, H. Elmqvist, and J. Broenink, “Modelica - An International Effort
to Design the Next Generation Modeling Language,” in Benelux Quarterly Journal
on Automatic Control, 1998.

214

Bibliography

[168] EPRI, “OpenDSS,” "http://smartgrid.epri.com/SimulationTool.aspx", Accessed:
2018-01-22.

[169] “PyPower,” "https://pypi.python.org/pypi/PYPOWER", Accessed: 2018-01-22.

[170] Wikipedia, “LXC,” https://en.wikipedia.org/wiki/LXC, Accessed: 2018-01-22.

[171] P. Bacher and H. Madsen, “Identifying Suitable Models for the Heat Dynamics of
Buildings,” Energy and Buildings, vol. 43, no. 7, pp. 1511–1522, 2011.

[172] Linux Foundation, “OvS: Open vSwitch,” http://openvswitch.org/, Accessed:
2018-01-22.

[173] S. Hemminger et al., “Network Emulation with NetEm,” in 6th Australia’s Na-
tional Linux Conference (LCA 2005), Canberra, Australia (April 2005). Citeseer,
2005, pp. 18–23.

[174] L. Reyes-Chamorro, A. Bernstein, N. J. Bouman, E. Scolari, A. Kettner, B. Cathiard,
J.-Y. Le Boudec, and M. Paolone, “Experimental Validation of an Explicit Power-
Flow Primary Control in Microgrid,” in IEEE Transactions on Industrial Informat-
ics, no. EPFL-ARTICLE-234511, 2018.

[175] IEEE PES Distribution System Analysis Subcommittee Distribution Test Feeder
Working Group, “Distribution Test Feeders,” https://ewh.ieee.org/soc/pes/
dsacom/testfeeders/index.html, accessed: 2018-01-22.

[176] P. Romano and M. Paolone, “Enhanced Interpolated-DFT for Synchrophasor
Estimation in FPGAs: Theory, Implementation, and Validation of a PMU Proto-
type,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12,
pp. 2824–2836, 2014.

[177] L. Reyes-Chamorro, W. Saab, R. Rudnik, A. M. Kettner, M. Paolone, and J.-Y.
Le Boudec, “Slack Selection for Unintentional Islanding: Practical Validation in a
Benchmark Microgrid,” in 2018 Power Systems Computation Conference (PSCC),
June 2018, pp. 1–7.

[178] H. Michalska and D. Q. Mayne, “Robust Receding Horizon Control of Constrained
Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 38, no. 11, pp.
1623–1633, Nov 1993.

[179] T. Balachandran, M. H. Kapourchali, M. Sephary, V. Aravinthan, M. Ni, S. Tin-
demans, H. Lei, C. Singh, M. Papic, M. Ben-Idris et al., “Reliability Modeling
Considerations for Emerging Cyber-Physical Power Systems,” in Probabilistic
Methods Applied to Power Systems (PMAPS), 2018 International Conference on.
IEEE, 2018.

215

http://smartgrid.epri.com/SimulationTool.aspx
https://pypi.python.org/pypi/PYPOWER
https://en.wikipedia.org/wiki/LXC
http://openvswitch.org/
https://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html
https://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html

List of Publications

Following is the list of all my publications written as a PhD student at EPFL.

Accepted

1. S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and Q. Wang,
“Formal Verification of Infinite-State BIP Models,” in International Symposium on
Automated Technology for Verification and Analysis. Springer, 2015, pp. 326–343.

2. M. Mohiuddin, W. Saab, S. Bliudze, and J.-Y. Le Boudec, “Axo: Masking Delay
Faults in Real-Time Control Systems,” in Industrial Electronics Society, IECON
2016-42nd Annual Conference of the IEEE. IEEE, 2016, pp. 4933–4940.

3. A. Bernstein, J.-Y. Le Boudec, M. Paolone, L. Reyes-Chamorro, and W. Saab,
“Aggregation of Power Capabilities of Heterogeneous Resources for Real-Time
Control of Power Grids,” in Power Systems Computation Conference (PSCC), 2016.
IEEE, 2016, pp. 1–7.

4. W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec, “Quarts: Quick Agree-
ment for Real-Time Control Systems,” in Emerging Technologies and Factory
Automation (ETFA), 2017 22nd IEEE International Conference on. IEEE, 2017,
pp. 1–8.

5. J. Achara, M. Mohiuddin, W. Saab, R. Rudnik, and J.-Y. Le Boudec, “T-RECS: A
Software Testbed for Multi-Agent Real-Time Control of Electric Grids,” in Emerg-
ing Technologies and Factory Automation (ETFA), 2017 22nd IEEE International
Conference on. IEEE, 2017, pp. 1–4.

6. M. Mohiuddin, W. Saab, S. Bliudze, and J.-Y. Le Boudec, “Axo: Detection and
Recovery for Delay and Crash Faults in Real-Time Control Systems,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 7, pp. 3065–3075, July 2018.

217

Bibliography

7. W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec, “Ordering Events Based
on Intentionality in Cyber-Physical Systems,” in Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems. IEEE Press, 2018, pp. 107–
118.

8. L. Reyes-Chamorro, W. Saab, R. Rudnik, A. M. Kettner, M. Paolone, and J.-Y. Le
Boudec, “Slack Selection for Unintentional Islanding: Practical Validation in a
Benchmark Microgrid,” in 2018 Power Systems Computation Conference (PSCC),
June 2018, pp. 1–7.

9. W. Saab, R. Rudnik, J.-Y. Le Boudec, L. Reyes-Chamorro, and M. Paolone, “Robust
Real-Time Control of Power Grids in the Presence of Communication Network
Non-Idealities,” in 2018 IEEE International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS), June 2018, pp. 1–6.

10. J. P. Achara, M. Mohiuddin, W. Saab, R. Rudnik, J.-Y. Le Boudec, and L. Reyes-
Chamorro, “T-RECS: A Virtual Commissioning Tool for Software-Based Control
of Electric Grids: Design, Validation, and Operation,” in Proceedings of the Ninth
International Conference on Future Energy Systems (e-Energy ’18). ACM, 2018,
pp. 303–313.

11. S. A. Sanaee Kohroudi, J. Mostafa, M. Mohiuddin, W. Saab, and J.-Y. Le Boudec,
“Experimental Validation of the Suitability of Virtualization-based Replication
for Fault Tolerance in Real-time Control of Electric Grids,” in Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM ’18). ACM, 2018, pp. 46:1–46:4.

Under Review

1. M. Mohiuddin, W. Saab, and J.-Y. Le Boudec, “CROC: Consistent Replication
of Controllers in a Cyber-Physical System with Asynchronous Sensors,” IEEE
Transactions on Industrial Informatics, 2018.

2. W. Saab, R. Rudnik, J.-Y. Le Boudec, L. Reyes-Chamorro, and M. Paolone, “A
Robust Protocol for Slack Switching During Islanded Operation and Islanding
Maneuvers,” IEEE Transactions on Industrial Informatics, 2018.

218

Wajeb Saab
Curriculum Vitae

Lausanne, Switzerland
H +41 763 61 47 44

B wajeb.saab@gmail.com
Í goo.gl/6FheGH

Research Interests
Cyber-Physical Systems, Distributed Systems, Reliability, Real-Time

Education
2014–present PhD in Computer Science & Communication Systems,

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Thesis: Reliable and Robust Cyber-Physical Systems for Real-Time Control of Electric Grids
Supervisor: Professor Jean-Yves Le Boudec

2010–2014 Bachelor in Computer & Communications Engineering,
American University of Beirut (AUB), Lebanon.
Graduated with High Distinction (GPA - 92/100)

Research Experience
2014–present Doctoral Assistant, Laboratory for Computer Communications and Applications (LCA2),

EPFL, Switzerland.
{ Designed state-of-the-art mechanisms for real-time distributed systems

- A fault-tolerance protocol for delay and crash faults
- An agreement protocol with bounded latency-overhead
- A labeling scheme for replicated controllers in cyber-physical systems
- A robust computation mechanism for controllers of electric grids

{ Implemented proposed mechanisms in Python/C/C++
{ Developed an emulation framework for testing these solutions on smart grid controllers
{ Field-deployed these solutions in several smart grids in Switzerland

Summer 2013 Research Intern, Rigorous System Design Laboratory (RiSD), EPFL, Switzerland.
{ Supervised by Professor Joseph Sifakis (Turing Award 2007)
{ Proposed a method for transforming BIP models into NuSMV models for model-checking
{ Developed a source-to-source tool in Java for automatically performing the transformation
{ The tool was used in the model-based system design course taught by Professor Sifakis at EPFL

2012–2013 Research Assistant, American University of Beirut, Lebanon.
{ Proposed several new truncated digital multiplier circuit designs
{ Calculated improvements in transistor count, circuit area, and energy consumption
{ Evaluated their performance on JPEG compression and edge detection algorithms

Teaching Experience
2015–2017 Teaching Assistant, TCP/IP Networking, EPFL.

Responsible for lab sessions on IPv4/IPv6 networking, routing, and UDP/TCP socket programming.
2017 Teaching Assistant, Performance Evaluation, EPFL.

Responsible for lab sessions on discrete-event simulation and queuing theory.
2015 Teaching Assistant, Real-Time Networks, EPFL.

Responsible for exercise sessions on CAN and time-triggered Ethernet.
2013 Teaching Assistant, Computer Networks, AUB.

Responsible for a project on client-server communication over TCP/IP.

1/3

Professional Activities
2017–2018 Co-Founder, RaaSS.

{ Co-founded a startup for enterprise reliability software for cyber-physical systems, such as smart
grids, autonomous vehicles, and datacenter SDN networks.

{ Carried out customer-discovery interviews to better understand the product-market fit.
{ Raised capital through the EPFL enable grant.

2017–2018 Project Demos, EPFL.
{ Demonstrated the islanding of an on-campus microgrid using a real-time control framework during

an SNSF visit in 2018.
{ Demonstrated a stability analysis of an inverted pendulum system in the presence of delays at the

IC Research day 2017.
2017–2018 Reviewer, EPFL.

{ Elsevier Journal on Sustainable Energy, Grids and Networks

Supervised Projects
2018 Reliable Communication Protocol for Smart Grids.

Semester Project, John Stephan, EPFL Master Student
Ephemeral QUIC for Distributed Real-Time Cyber-Physical Systems.
Master Thesis, Weiyu Zhang, EPFL Master Student

2017 Implementation of a Three-Phase Load-Flow Solver for a Microgrid Simulator.
Semester Project, Diana Rivera Villanueva, EPFL Master Student
Implementation of a Virtual Commissioning System for Electric Grids.
Semester Project, Firas Belhaj, EPFL Master Student
FRED: Fast Recovery for Ephemeral Data in Real-Time Systems.
Semester Project, Robin Solginac, EPFL Master Student
Implementation of Quarts in C++.
Summer Internship, Muhammad Tirmazi, Visiting Bachelor Student
Software Aging in Real-Time Control Systems.
Master Thesis, Jalal Mostafa, Visiting Master Student
Correlation in the Performance of Replicated Virtualized Controllers.
Summer Internship, Ali Reza Sanaee, Visiting Master Student

2016 Proactive Fault-Recovery For Real-Time Mission-Critical Systems.
Master Thesis, Aswin Suresh, EPFL Master Student
Modeling and Validation of a Fault-Tolerance Protocol.
Semester Project, Marco Zoveralli, EPFL Master Student

Extracurricular Activities
2015–present PolyProg Committee Member, EPFL.

{ Held the treasurer seat for the fiscal year 2016-2017
{ Organized three editions of HC2: the largest programming contest in Switzerland

- Led the organization team for two editions
- Set and tested problems for three editions

{ Proposed and set several problems for a programming contest for first-year students
{ Gave an algorithmic and programming seminar for first-year students

2012–2015 ACM Programming Team Member, AUB/EPFL.
{ Attended weekly training sessions; participated in several programming contests such as TopCoder,

Codeforces, Google Code Jam, Facebook Hacker Cup, and the IEEEXtreme
{ Winner - 2013 ACM Lebanese Collegiate Programming Competition (LCPC)
{ Participant - 2013 ACM Arab Collegiate Programming Competition (ACPC)
{ Bronze medalist - 2015 ACM South Western European Regional Competition (SWERC)

2/3

Skills
OS Linux, MacOS, Windows

Programming C/C++, Java, Python
Miscellaneous TCP/IP, Distributed Algorithms

Languages English, Arabic

Honors and Awards
2018 EPFL Teaching Award, Excellence in teaching a graduate TCP/IP networking course.
2017 Best Statup Pitch Award, Innosuisse Business Concept course, Lausanne.
2017 Venturelab AIT Participant, Top 10 Swiss researchers with entrepreneurial vision.
2016 Best Project Award, EPFL Applied Data Analysis course.
2014 EPFL Fellowship, PhD Fellowship for the Computer Science PhD program at EPFL.

3/3

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Acknowledgements
	Abstracts (English and French)
	List of Abbreviations
	List of Notations
	List of Figures
	List of Tables
	Introduction
	Background
	Real-Time Control of Electric Grids
	Cyber-Physical Systems in the Wild
	Reliability and Robustness

	Contributions
	Roadmap

	State of the Art
	Communication Network Reliability
	Robust Cyber-Physical Systems
	State Estimator Robustness
	Grid Agent Robustness

	Reliable Cyber-Physical Systems
	Deterministic System Design
	Consensus
	Active Replication
	Passive Replication

	System Model
	Model of a Cyber-Physical System for Electric Grids
	The Bottom Three Layers
	Physical Layer
	Sensing and Actuation Layer
	Network Layer

	Control Layer
	Resource Agents
	State Estimator
	Grid Agent

	Formal Requirements
	Formal Computation & Implementation Model
	Robustness Requirements
	Reliability Requirements

	Conclusion

	Robust Real-Time Control of Electric Grids
	Robust and Reliable Ordering
	Motivation
	Control Rounds & Round Numbers
	Labeling in the Literature
	Intentionality Clocks Design
	Formal Guarantees

	Robust Safety, Availability, and Optimality
	Overview
	Robuster Design
	Formal Guarantees
	Construction of Long-Term Fields

	Experimental Comparison & Validation
	Experimental Setup
	Results

	Conclusion

	Axo: Tolerating Delay Faults in Cyber-Physical Systems
	Overview
	Problem Description
	Challenges in Delay Fault Detection & Recovery

	Related Work
	Masking Delay Faults
	Detection & Recovery of Delay Faults

	System Model
	Required CPS Properties
	The Validity Horizon
	Fault Model

	Axo Design
	Controller & Resource Agent Modifications
	Fault Masking: Tagger & Masker
	Fault Detection: Detector
	Fault Recovery: Rebooter

	Formal Guarantees
	Performance Analysis
	Analytical Evaluation of Recovery Time
	Experimental Validation

	Stability Analysis: An Inverted Pendulum
	Conclusion

	Quarts: Quick Agreement in Cyber-Physical Systems
	The Split-Brain Syndrome
	Causes
	Effects
	Proposed Solution: Quarts

	Related Work
	Passive Replication
	Active Replication with Consensus

	Required CPS Properties for Quarts
	Quarts Design
	The Collection Phase
	The Voting Phase
	Optimization for the Best Case
	The Two-Replica Case

	Applying Quarts to CPS Controllers
	Quarts in Grid Agents
	Quarts in State Estimators

	Formal Guarantees
	Simulation Results
	Performance Metrics
	Agreement Protocols
	Simulation Methodology
	Results

	Conclusion

	T-RECS: Virtual Commissioning Tool for Real-Time Control of Electric Grids
	Introduction
	Problem
	Proposed Virtual Commissioning Tool

	Related Work
	T-RECS Design
	Physical Layer
	Sensing and Actuation Layer
	Network Layer
	Control Layer

	Validation
	Performance Evaluation
	CPU and Memory Usage
	Load-Flow Computation

	Conclusion

	Case Study: COMMELEC - A Cyber-Physical System for Real-Time Control of Electric Grids
	The COMMELEC Framework
	Architecture
	Grid-Connected Operation

	Effect of Non-Idealities on COMMELEC
	Application of Axo to COMMELEC
	Application of Quarts to COMMELEC
	Islanding in COMMELEC
	Architecture
	Slack Ranking
	Applicability of Proposed Mechanisms to Slack Ranking

	A Slack Switching Protocol for Islanding Maneuvers and Operation
	Requirements
	Disconnection Maneuver
	Reconnection Maneuver
	Islanded Mode Operation: Slack Switching Maneuver
	Applicability of Proposed Mechanisms to Slack Switching

	Conclusion

	Conclusions and Directions for Future Work
	Derivation of Axo Performance Analysis Results
	Proof of Theorem 5.3: Delay-Faulty Controller
	Proof of Theorem 5.4: Crash-Faulty Controller

	Bibliography
	List of Publications
	Curriculum Vitae

