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Abstract Conceptual models such as database schemas, on-
tologies or process models have been established as a means
for effective engineering of information systems. Yet, for
complex systems, conceptual models are created by a variety
of stakeholders, which calls for techniques to manage con-
sistency among the different views on a system. Techniques
for model matching generate correspondences between the
elements of conceptual models, thereby supporting effective
model creation, utilization, and evolution. Although various
automatic matching tools have been developed for different
types of conceptual models, their results are often incom-
plete or erroneous. Automatically generated correspondences,
therefore, need to be reconciled, i.e., validated by a human
expert. We analyze the reconciliation process in a network
setting, where a large number of conceptual models need to
be matched. Then, the network induced by the generated cor-
respondences shall meet consistency expectations in terms
of mutual reinforcing relations between the correspondences.
We develop a probabilistic model to identify the most uncer-
tain correspondences in order to guide the expert’s validation
work. We also show how to construct a set of high-quality
correspondences, even if the expert does not validate all gen-
erated correspondences. We demonstrate the efficiency of our
techniques for real-world datasets in the domains of schema
matching and ontology alignment.
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4 Université de Rennes 1
5 Technion – Israel Institute of Technology

1 Introduction

Conceptual models are an important means to design, ana-
lyze, and improve information systems. For instance, database
schemas describe the structure of processed entities; ontolo-
gies ground their interpretation in terms of well-defined se-
mantics; and process models specify behavioral aspects of
information systems. Regardless of the specific model, the
creation, utilization, and evolution of conceptual models is
supported by manifold concepts and techniques that offer, for
instance, re-use driven modeling support, harmonization of
model variants, model-based system validation, and effective
management of model repositories. Many of these techniques
have in common that they rely on model matching—the iden-
tification of correspondences between the model elements.
As such, the accuracy and, therefore, usefulness of techniques
supporting the creation, utilization, and evolution of models
is highly dependent on the correctness and completeness of
model matching.

Model Matching. There is a large body of work on model
matching techniques; numerous commercial and academic
matching tools, called matchers, have been developed to gen-
erate correspondences between pairs of database schemas [13,
72,46,45], ontologies [67,26], and process models [22,15,
7]. Even though matchers achieve impressive performance
for some datasets, they cannot be expected to yield a correct
result in the general case. Since matchers rely on heuristic
techniques, their result is inherently uncertain. In practice,
therefore, model management in general and model match-
ing in particular include a post-matching phase, in which
correspondences are reviewed and validated by an expert.

Matching Networks. In this work, we focus on a setting in
which matching is conducted for a set of related models. The
vast majority of existing matchers generate correspondences
between pairs of conceptual models. Hence, matching a set of
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related models requires the repeated application of a matcher
to generate a matching network, spanned by the correspon-
dences between elements of the respective models. Such a
network, however, shall meet consistency expectations in
terms of global integrity constraints. Correspondences gen-
erated by a matcher for a pair of conceptual models in iso-
lation may turn out to be problematic when considering the
network-level. Correspondences between one pair of mod-
els may be inconsistent with correspondences between other
models. This raises the question of how to model matching
networks and their integrity constraints.

The presence of network-level integrity constraints im-
poses challenges for the manual validation of the matching
result obtained for a set of models. The dependencies be-
tween correspondences that are induced by constraints are
hard to overlook especially in large-scale networks. Also, rec-
onciliation can hardly be shared among several experts since
validation of a single correspondence may have far-reaching
consequences due to the integrity constraints. Despite these
challenges, integrity constraints also open up an opportunity
to guide the expert’s work by defining the order in which the
expert’s input is sought. Validation of a particular correspon-
dence may enable reasoning about the correctness of other
correspondences, which raises the question of how to select
correspondences to achieve effort-effective reconciliation.

In real-world settings, an expert has a limited effort-
budget and complete reconciliation of a network of corre-
spondences is typically not a feasible option. Rather, there is
a need to generate a single trusted set of correspondences that
satisfy the integrity constraints and maximize the benefits of
the expert input obtained so far. This is the question of how
to instantiate an effective set of consistent correspondences.

Contributions. In this paper, we address the above research
questions based on the notion of a probabilistic matching
network that assigns probabilities to correspondences in order
to represent the uncertainty induced by integrity constraints.
Using this model, we develop a pay-as-you-go approach
to reconciliation that guides an expert in the validation of
correspondences. More specifically, our contributions and
the outline of this paper are summarized as follows.
– Section 2: We first discuss different types of conceptual

models and their matching problem. We argue that these
problems can be generalized into the notion of a matching
network and elaborate on the need for reconciliation.

– Section 3: We present a generic formal model for match-
ing networks that includes a probabilistic formulation of
network-level integrity constraints.

– Section 4: We provide an overview of our approach for
reconciliation that incorporates three elementary steps:
the computation of the uncertainty of a matching network,
the reduction of the network uncertainty based on expert
input, and the instantiation of a matching.

– Section 5: We show how to compute the uncertainty of
a matching network using the probabilistic model of a
factor graph. To cope with computational challenges, we
also introduce methods to deal with large-scale data and
incremental updates.

– Section 6: We define the process of reducing the uncer-
tainty of a matching network under a limited budget of
expert input as an optimization problem. As a heuristic
solution to this problem, we develop a method to order
correspondences for which feedback shall be sought us-
ing a decision theoretic model.

– Section 7: We develop a method that instantiates an ef-
fective set of consistent correspondences, referred to as
selective matching. We show that this instantiation can
be formulated as an optimization problem and propose a
heuristic to approximate a solution to this problem.

This paper extends our earlier work on reconciliation of net-
works of database schemas [64,65]. In particular, we gener-
alize the existing approaches from the domain of databases
to conceptual modeling in two dimensions: (1) instead of
considering models simply as sets of model elements, we
take into account the intra-model structure; (2) we include a
notion of soft constraints, for which satisfaction is preferred,
but not required. To support the generalized model, this pa-
per presents a novel method to measure the uncertainty of
a network based on the notion of a factor graph and a re-
vised instantiation mechanism to obtain a selective matching.
We also introduce batch selection of top-k correspondences
for expert input, which improves reconciliation efficiency
compared to the existing techniques.

The remaining part of the paper is structured as follows.
Section 8 demonstrates experimental results. Section 9 sum-
marizes related work, before Section 10 concludes the paper.

2 Background

We first elaborate on matching of conceptual models, before
turning to the intuition of matching networks.

2.1 Matching of Conceptual Models

In this work, we explore a generalization of different match-
ing problems between specific types of conceptual models.
Below, we outline these matching problems for database
schemas, ontologies, and process models.

Schema Matching. Schema matching is the process of gener-
ating correspondences between the attributes of two database
schemas, for the purpose of some data integration task. An
example is the often quoted coffee consumption data found
in Google Fusion Tables, which is distributed among differ-
ent tables that represent a specific region [42]. Extraction
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of information over all regions requires means to query and
aggregate across multiple tables, thereby raising the need
of an integrated view of the data. Further applications that
require schema matching include:
– Corporate data: Databases of large enterprises are often

developed independently to cater for particular require-
ments imposed by legal regulations, business models,
or value chains. Hence, data resides in multiple sources
in an enterprise. To support cross-database queries, the
schemas of the databases need to be matched [53,80].

– P2P networks: A P2P network is a decentralized and
distributed architecture in which participating nodes act
as peers that share data. Searching in these networks re-
quires means to query across multiple peers, and schema
matching helps to overcome the heterogeneity typically
observed in P2P networks [5,6].

– Cloud platforms: Cloud applications enable storage and
processing of data distributed across PCs, mobile devices,
and online services [2,4,3]. To realize a unified view on
such data, see [8], schema matching supports the horizon-
tal integration of data across different cloud solutions.

Solutions to the matching problem for database schemas have
been developed for decades, see [13] for a recent survey.

Ontology Alignment. Ontologies enable the definition of
the semantics and concepts of the Web contents. An ontology
can be viewed as a vocabulary to define models of a particular
domain that makes explicit the relations between the under-
lying concepts. Ontologies developed for independent Web
sources, however, are heterogeneous due to differences in the
syntactic, terminological, and conceptual representation of
concepts at these sources. This motivates ontology alignment,
which aims at generating semantic correspondences between
the concepts of ontologies [67] for various use cases:
– Product catalogs: In business-to-business applications,

online portals and shopping sites store information about
their products in electronic catalogs. However, the on-
tology used to describe products is often designed dif-
ferently among available sellers. To create a common
market place, ontology alignment identifies correspon-
dences between the concepts used to describe products.

– Web services: Ontologies provide a rich and precise lan-
guage to describe the functionality of Web services that
expose data via programmable interfaces for information
search and discovery [33]. Yet, data and services of differ-
ent providers are described in terms of diverse ontologies.
In this context, ontology alignment helps to identify cor-
respondences between service interfaces for the purpose
of web service discovery and comparison [69].

Many matchers developed for schema matching have been
adapted to support ontology alignment, e.g., COMA [9],
YAM [59], and Harmony [78]. They are complemented by
dedicated matchers for ontologies—see the studies conducted
by the Ontology Alignment Evaluation Initiative (OAEI) [26].

Process Model Matching. Process models capture the dy-
namics of a system and play a central role in the design,
analysis, implementation, and monitoring of information sys-
tems [29]. A process model comprises a set of activities along
with causal dependencies for their execution. To compare
the behavior described by different process models, process
model matching aims at the creation of an alignment between
process models by identifying correspondences between their
activities [22]. Specifically, the following applications rely
on process model matching:

– System Validation: Process models are used to document
requirements for system implementation, but may also
serve as implementation artifacts, defining how enter-
prise services are orchestrated to support the execution
of the process. In this context, the validation of the im-
plementation against the requirements specification can
be conducted directly based on the two types of process
models [14]. Yet, this requires the identification of cor-
responding sets of activities in either model, which is
supported by process model matching.

– Variation Management: In large enterprises, a single pro-
cess often exists in multiple variations, due to differences
among the organizational units in terms of legal require-
ments, the IT infrastructure, or business strategies. These
variants are documented in separate process models and
harmonization efforts aim at reducing the number of vari-
ation points [87]. Process model matching helps to sepa-
rate commonalities and differences of process variants.

Matchers for process models adopt similarity measures de-
veloped for database schemas and ontologies, yet tailor them
to the specifics of process models. Examples include match-
ers that exploit grammatical structures commonly found in
activity labels or the execution semantics of process models.
Evaluations of matchers have been published as part of the
Process Model Matching Contest [15,7].

2.2 Matching Networks

The above applications, regardless of the type of conceptual
model, have in common the need to match sets of related mod-
els. Matchers developed for database schemas, ontologies, or
process models proceed pair-wise, constructing correspon-
dences between elements (attributes, concepts, or activities,
respectively) of two models. Applying these matchers re-
peatedly for pairs of models induces a matching network
that is spanned by correspondences between elements of the
respective models.

An Example Matching Network. To give the intuition of
matching networks, we consider the scenario of three on-
line video content providers, EoverI, BBC, and DVDizzy.
Each provider runs a Web portal, which enables potential
customers to search for content (e.g., based on title or release
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SA: EoverI 

SB: BBC 

SC: DVDizzy 
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Fig. 1 A matching network of real-world conceptual models.

date). Now, we consider the case that the three providers
would like to offer their content via a shared marketplace.
Then, as a first step, the databases storing information about
the content need to be integrated. The structure of each of
these databases is described by a schema and matching these
schemas pair-wise creates correspondences between their at-
tributes. Taking the real-world forms of the above mentioned
video content providers as a representation of the underlying
database schemas, a simplified view on a matching network
is shown in Figure 1. It lists some attributes (record, date,
screenDate, movieDetails, productionDate, and releaseDate)
of the three schemas, some structural dependencies between
them (date is part of record, while productionDate and re-
leaseDate are part of movieDetails), and correspondences
identified by pair-wise automated matching.

Reconciling Matching Networks. The result of automatic
matching of conceptual models is inherently uncertain and
it is widely acknowledged that general-purpose matching
algorithms cannot be expected to yield results that are al-
ways correct. In particular, since matchers identify correspon-
dences between pairs of models, the identification of corre-
spondences is agnostic to global consistency expectations
regarding the matching network. These expectations can be
formalized as integrity constraints that, unlike those extracted
from experts’ knowledge [24], are domain-independent. Ex-
amples of network-level integrity constraints include the 1-1
constraint and the cycle constraint [20,65].

The 1-1 constraint enforces that each element of one
model should be matched to at most one element of any other
model. In Figure 1, for instance, the set of correspondences
{c3,c5} violates the 1-1 constraint, since attribute date of
schema SA is matched to both productionDate, and release-
Date of schema SC. The cycle constraint, in turn, enforces
consistency in the sense that any cycle formed by the corre-
spondences is closed [20]. For Figure 1, the set {c1,c2,c5}
yields a violation: there is a path of correspondences between
different elements (attributes productionDate and release-
Date) of a single model (schema SC).

We further note that the structural relations between the
elements of a model impose consistency expectations. For
instance, the set of correspondences {c3,c6} is arguably in
line with the relations in model SA (date being part of record)
and model SC (releaseDate being part of movieDetails): the
relations are preserved by the correspondences.

Due to the inherent uncertainty of automatic matching,
it was advocated to include a post-matching phase, in which
correspondences are reviewed and validated by an expert,
a process known as reconciliation [10]. However, most ex-
isting approaches study the reconciliation of a results of
automatic matching at a pair-wise level; i.e. the correspon-
dences between the elements of a pair of conceptual models
are considered in isolation [48,77,88]. These approaches fail
to ensure global integrity of the matching network as, e.g.,
defined by the cycle constraint.

In this paper, we go beyond the common practice of pair-
wise reconciliation and include network-level integrity con-
straints in the reconciliation process to improve the overall
matching quality.

3 A Model of Matching Networks

Having introduced the intuition of matching networks in the
previous section, this section answers the question of how to
model matching networks and their integrity constraints.

Conceptual Models. We capture a conceptual model as a
tuple 〈A,R〉 with A = {a1, ...,an} being a set of elements
and R ⊆ A× A as a structure relation defined over these
elements. As such, we capture the essence of a model in
terms of its defining elements and its structure, yet largely
abstracting from the peculiarities of diverse types of concep-
tual models and their representation languages. For instance,
elements and the structure relation can be interpreted in terms
of database schemas (attributes and functional dependencies),
ontologies (concepts and generalization dependencies), and
process models (activities and sequential ordering).

A matching network is defined for a finite set of con-
ceptual models S = {〈A1,R1〉, . . . ,〈Am,Rm〉}, that are built
of unique elements, i.e., A∩A′ = /0 for 〈A,R〉,〈A′,R′〉 ∈ S
and A 6= A′. Further, AS =

⋃
〈A,R〉∈S A and RS =

⋃
〈A,R〉∈S R

denote the union of elements and relations in S respectively.
In the example in Figure 1, it holds S = {SA,SB,SC}. Model
SA further comprises elements ASA = {movieDetails, produc-
tionDate, releaseDate} and its structure relation is defined
as RSA = {(movieDetails, productionDate),(movieDetails,
releaseDate)}.

Interaction Graphs. In many application scenarios, not all
given conceptual models are matched pair-wise when con-
structing a matching network, e.g., due to business require-
ments or privacy policies. Formally, we capture this aspect
by means of an interaction graph, an undirected graph GS =

(V,E), such that edges indicate which pairs of models in S
need to be matched. For Figure 1, the interaction graph is
given as GS = ({SA,SB,SC},{{SA,SB},{SA,SC},{SB,SC}}).

Correspondences. A correspondence represents the (seman-
tic and/or syntactic) equivalence relation between model ele-



Reconciling Matching Networks of Conceptual Models 5

ments. Formally, we write

A =
⋃

〈A,R〉,〈A′,R′〉∈S, A 6=A′

⋃
a∈A, a′∈A′

{a,a′}

to denote the set of all possible correspondences, i.e., all
two-sets of elements of distinct models. Then, {a,a′} ∈A
denotes an individual correspondence. Note that even though
many matchers generate solely simple one-to-one correspon-
dences, our formulation does not preclude handling of one-to-
many or many-to-many relations, which may be represented
by the Cartesian product of the respective elements.

We refer to correspondences generated by automatic
matchers as candidate correspondences since there is no
guarantee that they are indeed correct [35,38]. Given two
distinct models 〈A,R〉,〈A′,R′〉 ∈ S, we write CA,A′ ⊆ A to
denote the set of all candidate correspondences returned by
automatic matchers. In the example in Figure 1, c1 = {date,
screenDate} is one of the illustrated correspondences.

Integrity Constraints. A finite set Γ = {γ1, . . . ,γn} models
the integrity constraints that formalize consistency expecta-
tions regarding the matching network, such as the 1-1 con-
straint or cycle constraint. In earlier work, we showed how
Answer Set Programming is used as a formal foundation to
define these constraints [65]. Such a constraint formalization,
however, neglects that the constraints may occasionally be
violated due to differences in the abstraction level assumed
by the models and correspondences that encode only par-
tial semantic equivalence of model elements. Turning to the
above example, for instance, a database schema may encode
production details about a movie with a single attribute for
the distributor, or a set thereof (one per continent).

Against this background, we formalize network-level in-
tegrity constraints based on a probabilistic model. Given a set
of candidate correspondences C, this model defines the prob-
ability of a constraint being satisfied. However, to capture the
dependencies between constraint satisfaction and correspon-
dences on a fine-granular level, this probability is not defined
globally for the matching network, but locally for a particu-
lar set of correspondences. That is, an integrity constraint is
encoded as a probability P(π |C), which represents the prob-
ability that a set of possible correspondences π ⊆A satisfies
the constraint given a set of candidate correspondences C.

We exemplify this model using several example con-
straints. We first define generalizations of the two aforemen-
tioned constraints, the 1-1 constraint and the cycle constraint.
In addition, we present the structure constraint that encodes
consistency requirements that are grounded in the structure
relation of conceptual models.
– Generalized 1-1 constraint. Let π = {π1, . . . ,πk} ⊆ A

be a set of possible correspondences. Given a set of can-
didate correspondences C, the generalized 1-1 constraint

for π , denoted by γ1-1(π), is satisfied with probability

P(γ1-1(π) |C) =


1 if ∀ {a,a′} ∈ π :
|{c ∈C | a ∈ c}| ≤ 1

∆ otherwise
(1)

where ∆ ∈ [0,1] is a relaxation parameter and ∆ = 0
yields a hard constraint.

– Generalized cycle constraint. Let π = {π1, . . . ,πk} ⊆A
be a set of possible correspondences that form a cycle, i.e.,
π j = {a j,a j+1} for 1 ≤ j < k and πk = {ak,a1}. Given
a set of candidate correspondences C, the generalized
cycle constraint for π , denoted by γ�(π), is satisfied with
probability

P(γ�(π) |C) =


1 if π ⊆C
0 if |π \C|= 1
∆ otherwise

(2)

where ∆ ∈ [0,1] is a relaxation parameter modeling the
probability of compensating errors (i.e., two or more
incorrect correspondences yielding a correct cycle).

– Structure constraint. Let S = {〈A1,R1〉, . . . ,〈Am,Rm〉}
be a set of conceptual models. Furthermore, let π =

{π1, . . . ,πk,π
′
1, . . . ,π

′
k} ⊆A , k < m, be a set of possible

correspondences, such that:
– the correspondences form two paths, π j = {a j,a j+1}

and π ′j = {a′j,a′j+1} for 1≤ j ≤ k;
– the paths visit the same models, a j,a′j ∈ A j for 1 ≤

j ≤ k;
– the structure relation in the first and last model is

inconsistent, (a1,a′1) ∈ R1 and (a′k+1,ak+1) ∈ Rk+1.
Given a set of candidate correspondences C, the struc-
ture constraint for π , denoted by γR(π), is satisfied with
probability

P(γR(π) |C) =


0 if π ⊆C
1 if |π \C|= 1
∆ otherwise

(3)

where ∆ ∈ [0,1], again, is a relaxation parameter model-
ing the probability of compensating errors.

Relaxation parameters ∆ of constraints may be provided
by application experts or be set based on an adaptive learn-
ing strategy. While this parameter configuration is not the
focus of this paper, we outline a basic learning strategy in
Appendix A.

Matching Networks. Combining the above notions, we de-
fine a matching network as a tuple N = 〈S,GS,Γ ,C〉, where
S is a set of conceptual models, GS is an interaction graph de-
fined between these models, Γ is a set of integrity constraints,
and C is a set of candidate correspondences.
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4 Pay-As-You-Go Reconciliation

Given a matching network, formalized as N = 〈S,GS,Γ ,C〉
according to the above model, reconciliation aims at identify-
ing a selective matching M⊆C, i.e., a subset of the candidate
correspondences that are most likely correct and consistent in
terms of the specified integrity constraints. A selective match-
ing can be seen as an approximation of the unknown ground
truth based on the current knowledge about the correctness
of correspondences.

Following common models for reconciliation [10], we as-
sume the presence of an expert that reviews and validates cor-
respondences. However, we argue that, due to network-level
integrity constraints, the order in which an expert validates
correspondences influences the result quality and the required
reconciliation effort. In addition, it is not realistic to assume
that an expert can validate all candidate correspondences. To
answer the questions of how to select correspondences to
achieve effort-effective reconciliation and how to instantiate
an effective set of consistent correspondences, we present an
approach to pay-as-you-go reconciliation that is grounded in
the model of probabilistic matching networks.

Below, we first clarify the notion of expert input obtained
in the reconciliation process, before defining the notion of a
probabilistic matching network. Finally, we give an overview
of our overall reconciliation approach.

Expert Input. We model expert input as a tuple U = 〈U+,U−〉
of assertions, where U+ ⊆ A and U− ⊆ A are sets of ap-
proved and disapproved correspondences, respectively. That
is, after expert input has been sought for a candidate corre-
spondence c∈C, the assertions U are updated, yielding either
〈U+∪{c},U−〉 (c is approved) or 〈U+,U−∪{c}〉 (c is dis-
approved). In this work, we assume a feedback model, where
expert input is considered to be correct, such that correspon-
dences in U+ must be included in a selective matching M,
whereas correspondences in U− must be excluded.

Probabilistic Matching Networks. Our approach relies on
the notion of a probabilistic matching network to decide
in which order expert input shall be sought and which of
the candidate correspondences that have not been validated
(C \U+ \U−) shall be included in a selective matching. A
probabilistic matching network is a tuple 〈N,P〉 that extends
a matching network N = 〈S,GS,Γ ,C〉 with a probability
model P. The latter assigns a probability P(c) to each candi-
date correspondence c ∈C, indicating how likely it is that c
is correct. This model integrates the user assertions U : since
expert input is assumed to be correct, the probabilities of
asserted correspondences are one or zero.

Overview of the Approach. Our approach to pay-as-you-
go reconciliation is illustrated in Figure 2. We start from a
set of candidate correspondences that are generated by auto-
matic matchers. Based on these candidate correspondences,

Pay-As-You-Go Reconciliation

Expert 

Conceptual 
Models

Probability 
Computation

User 
Assertions

Instantiation

Uncertainty Reduction

Probabilistic Matching Network

Matchers

Selective 
Matching

Fig. 2 Overview of our approach to pay-as-you-go reconciliation

we construct a probabilistic matching network by means of
Probability Computation. As will be explained in detail in
Section 5, each candidate correspondence is assigned a cor-
rectness probability based on information on the integrity
constraints of the network and the user input obtained so far.

The model of a probabilistic matching network encodes
for each correspondence the uncertainty of whether the corre-
spondence is part of the matching result. Uncertainty Reduc-
tion, therefore, aims at increasing the quality of the matching
result by selecting and ranking candidate correspondences
that shall be asserted by user. As will be described in Sec-
tion 6, the ranking is based on a decision theoretic model,
measuring the information gain of expert input for a certain
correspondence.

Instantiation, in turn, constructs a selective matching
from the probabilistic matching network. As will be shown
in Section 7, this step retains a maximal subset of candidate
correspondences that are likely to be correct and consistent
with the integrity constraints.

Based on the obtained user input, the probabilistic match-
ing network is updated by recomputing the probabilities of
candidate correspondences. Consequently, the network is up-
dated incrementally by the user, whereas a selective matching
can be instantiated at any time, thereby achieving pay-as-you-
go reconciliation.

5 Probability Computation

Construction of a probabilistic matching network requires
the computation of probabilities: for each correspondence,
we need to determine the probability of it being correct. Ini-
tially, these probabilities are computed solely from the set
of candidate correspondences produced by automatic match-
ers. Often, matchers assign a so called confidence value to
each candidate correspondence [72]. However, it has been
observed that these confidence values are not normalized,
often unreliable, dependent on the used matcher, and are un-
related to application goals [13]. Consequently, a confidence
value cannot reliably be interpreted in terms of a probability.

In the context of this work, therefore, we ground the com-
putation of probabilities for correspondences in the integrity
constraints defined for the matching network. From this start-
ing point, we adopt a model in which a correspondence is
a random variable. Then, integrity constraints express de-
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pendencies between these random variables and assertions
obtained by expert input are evidence for their truth values.
Below, we first show how this idea is formalized using the
model of a factor graph, before we turn to the actual compu-
tation of probabilities for the correspondences.

5.1 The Factor Graph of a Matching Network

We capture the dependencies between the random variables
of correspondences, integrity constraints, and expert input by
means of a probabilistic graphical model, namely a factor
graph [51]. In general, a factor graph establishes a relation
between functions (called factors) that are defined over po-
tentially overlapping sets of random variables. The model
enables self-configuration when new information becomes
available, which is an important asset to support pay-as-you-
go reconciliation: With the arrival of new expert inputs, con-
ceptual models, or candidate correspondences, the model is
updated incrementally by adding variables and factors.

A factor graph is a bipartite graph 〈V,F,E〉 where V
is a set of random variables or evidence, F is a set of func-
tions (factors), and E ⊆{{v, f} | v∈V, f ∈ F} are undirected
edges. A set of random variables V and a set of factors F
fully characterizes a factor graph. The definition of the edges
relates each factor f (v1, . . . ,vd) ∈ F to the random variables
over which it is defined, i.e., { f ,vi} ∈ E for vi ∈V , 1≤ i≤ d.

In our context, there are three types of random variables
representing candidate correspondences, constraints, and ex-
pert inputs. We overload notation and use C, Γ , and U to refer
to the actual correspondences, constraints, and expert inputs,
as well as the associated random variables, i.e., V =C∪Γ ∪U
defines the variable nodes of the factor graph. Further, the
model includes correspondence factors fC, constraint factors
fΓ , and expert factors fU to encode relations between the
variables, i.e., F = fC ∪ fΓ ∪ fU defines the factor nodes of
the factor graph.

Correspondence Variables. As mentioned above, each cor-
respondence c ∈ C is assigned a random variable, also de-
noted by c ∈ {0,1}, that indicates the correctness of the
correspondence (1 denotes correctness).

Constraint Variables (Evidence). We refer to a set of cor-
respondences that violate or satisfy an integrity constraint as
constraint evidence. Each of these sets is assigned a variable
node Π ⊂C in the factor graph.

Expert Variables. Expert input u ∈U is directly considered
as an (observed variable) u ∈ {0,1} (1 denotes approval).

Correspondence Factors. Each correspondence variable c
is associated with a prior-distribution factor fc : {c}→ [0,1]
that is determined either in a training phase or stems from
automatic matchers (e.g., based on the confidence value as-
signed by these matchers). If no information is available,

we start with fc(c) = 0.5 following the maximum entropy
principle. The set of correspondence factors is fC =

⋃
c∈C fc.

Constraint Factors. A constraint factor node cf connects a
correspondence to the constraint violations it involves. As
a result, the correspondences are dependent on each other
through multiple factors, which encodes their stochastic de-
pendency. For illustration, we rely on the three aforemen-
tioned constraints. Let π = {π1, . . . ,πk} ⊆ A bet a set of
possible correspondences. Then, constraint factors are de-
fined as follows:

– The function for a factor that represents the generalized
1-1 constraint π is defined as:

cf γ1-1(π)
(c1, . . . ,ck) = P(γ1-1(π) |C) (4)

where ci ∈ π ∩C and ci 6= c j for 1≤ i, j ≤ k and i 6= j.
– If the correspondences in π form a cycle (see, Equation 2),

the factor representing the generalized cycle constraint is
defined as:

cf γ�(π)(c1, . . . ,ck) = P(γ�(π) |C) (5)

where ci ∈ π ∩C and ci 6= c j for 1≤ i, j ≤ k and i 6= j.
– If the correspondences in π form two inconsistent paths

(see, Equation 3), the factor representing the structure
constraint is defined as:

cf γR(π)
(c1, . . . ,ck) = P(γR(π) |C) (6)

where ci ∈ π ∩C and ci 6= c j for 1≤ i, j ≤ k and i 6= j.

Note that probability computation is also applicable for hard
constraints (studied in our previous work [64]), as the proba-
bility of these constraints becomes zero or one.

Expert Feedback Factors. To incorporate expert input, each
correspondence variable c is connected with an expert input u
via a factor node fu. This factor directly encodes the response
of the expert to accept or reject the respective correspondence:

fu(c,u) =


1 If u = 1 ∧ c = 1
1 If u = 0 ∧ c = 0
0 Otherwise

(7)

Under a different model for expert input, this formulation
can be adapted to include experts that, for instance, are not
fully reliable, so that their assertion may be wrong. However,
such extended formalizations are beyond the scope of this
work and we refer interested readers to [60,63] for possible
implementations of such adapted models.

Taking up the example matching network of Figure 1, Fig-
ure 3 illustrates a respective factor graph. It comprises vari-
ables (shown as circles) for five correspondences c1, . . . ,c5
and four variables for evidence Π1, . . . ,Π4, each represent-
ing a set of possible correspondences that violate one of the
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Fig. 3 Factor graph representation of a matching network

integrity constraints. For instance, Π1 = {c1,c2,c5}. Expert
variables are not visualized. The figure also illustrates vari-
ous factors, i.e., fc1() is the correspondence factor assigning
a prior for the correctness of correspondence c1 to the re-
spective random variable. Factor uf 1() links the latter to the
observed variable of expert input for this correspondence
(the variable is not visualized). Further, cf 1() is a constraint
factor that connects the set of possible correspondences Π1 to
the variables of the correspondences c1,c2, and c5, implying
that {c1,c2,c5} is a violation of a constraint—specifically,
the cycle constraint is violated in this example. Note that
the correspondence c6 is not visualized here since it is not
involved in any constraint violation; i.e., it is represented by
an isolated variable with only a correspondence factor fc6()

and a feedback factor u f6() connected to it.

5.2 Computing the Probabilities for Correspondences

The model of a factor graph enables us to compute the cer-
tainty of a correspondence in a matching network. This com-
putation exploits the (marginal) probabilities of the random
variables representing the correctness of correspondences.
Following the model introduced above, correspondence vari-
ables are binary, so that P(c = 1) (or P(c) for short) is the
probability that a correspondence c ∈C is correct. The com-
putation of this probability is grounded in the correlations
defined by the factor functions that relate the random vari-
ables to each other.

Various techniques are available to compute probabili-
ties in a factor graph, most commonly belief propagation or
sampling. The former considers the (un)certainty as informa-
tion that is propagated through the factor graph and relies,
for instance, on message-passing algorithms [51]. Yet, it has
been observed that belief propagation converges slowly if the
graph is large and contains cycles [92]. When reconciling
matching networks, the number of variables grows quickly
and cyclic dependencies become the rule, rather than the
exception. To cope with large and dense factor graphs, we
resort to sampling to find the most probable values of random

variables. Specifically, Gibbs sampling proved to be a highly
efficient and effective mechanism for factor graphs [92].

In brief, given a probabilistic matching network 〈N,P〉,
probability computation yields, for each c ∈C, a probabil-
ity value P(c) indicating the likelihood of the respective
correspondence being correct. Note, again, that the factor
graph model encodes all the information given by automatic
matchers (in terms of priors) and expert input (in terms of
assertions).

Scalability Considerations. In general, computing proba-
bilities in the whole factor graph is an expensive compu-
tational task, which stands in contrast to the low response
times needed in reconciliation based on expert input. How-
ever, reconciliation is an incremental process, meaning that
only a few changes have to be incorporated at a time. Hence,
recomputing the whole graph is typically not necessary once
new expert input has been received. Following this line, an
implementation of probability computation shall incorporate
the following two techniques to achieve scalability:

– Incremental Gibbs sampling: The computation of Gibbs
sampling can be adapted to proceed incrementally [55],
rejuvenating the existing probability values in light of
new data. Then, the new data is propagated to neighbor-
ing nodes, while applying a decay function. The latter
limits the consequences of a local change, and thus makes
sampling faster.

– Network modularity: Even experts are typically over-
whelmed when presented with a complete matching net-
work. However, regardless of the type of conceptual
model, we observed that, in practice, these models are
typically built from disjoint groups of model elements.
Thus, candidate correspondences often relate to disjoint
subsets of model elements, so that graph decomposition
techniques [43] can be applied to decompose a large net-
work into smaller ones to handle them more efficiently.
In cases the disjoint groups are still large, the number of
correspondences and constraint violations can grow fast,
making it intractable to construct the factor graph. To han-
dle such cases, the decomposition strategies presented
in our previous work [61] for partitioning a matching
network into smaller parts can be applied. The resulting
partial networks can be efficiently transformed into fac-
tor graphs, with the trade-off of information loss regard-
ing constraint violations that involve correspondences
between elements of conceptual models in different parti-
tions. Yet, such information loss may be minimized by
tracing the decomposition back to hypergraph partition-
ing [61]. We note, though, that even for the large datasets
used in our experimental evaluation (see Section 8), the
construction of a factor graph did not turn out to be prob-
lematic and no decomposition of the matching network
had to be applied.
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6 Uncertainty Reduction in a Matching Network

Initially, a probabilistic matching network is constructed
purely based on the result of automatic matchers. This net-
work shows uncertainty in the sense that it comprises many
candidate correspondences, or sets thereof, that violate in-
tegrity constraints. This uncertainty is reduced by incorporat-
ing the input from an expert that asserts the correspondences.

Since expert input is a scarce resource, we need a tech-
nique that can effectively guide the uncertainty reduction.
To this end, we can exploit the fact that integrity constraints
induce dependencies between correspondences. Hence, the
selection of candidate correspondences for validation by an
expert can be driven by the expected benefit of having as-
serted the correctness of a certain correspondence.

Against this background, we address the question of how
to select correspondences to achieve effort-effective recon-
ciliation. We take into account that selection of a single
correspondence for validation by an expert (as done in [64])
incurs high overhead in terms of probability computation.
Consequently, we show how to select a set of top-k candidate
correspondences for eliciting expert input.

The section first proposes a measure for network uncer-
tainty. Next, we define the process of reducing uncertainty
in a probabilistic matching network, which gives raise to the
uncertainty minimization problem. Finally, we introduce a
heuristic solution based on the factor graph representation of
the probabilistic matching network.

6.1 A Measure for Network Uncertainty

Given a probabilistic matching network 〈N,P〉 with N =

〈S,GS,Γ ,C〉, we recall that each candidate correspondence
c ∈ C is assigned a correctness probability P(c). To mea-
sure the overall uncertainty of the network, we resort to the
Shannon entropy [79] over these probabilities, defined as
follows:

H(C,P) =−∑
c∈C

(P(c) logP(c)+(1−P(c)) log(1−P(c))) (8)

An overall uncertainty of the network of H(C,P) = 0 means
that all probabilities assigned to candidate correspondences
are equal to one or zero. Therefore, a selective matching
can be constructed directly: it comprises all candidate corre-
spondences that are assigned a correctness probability of one.
Hence, our goal when reconciling a probabilistic matching
network is to reduce the network uncertainty to zero.

We note that ‘certain’ correspondences—those having a
probability of zero or one regardless of the origin of this value
(automatic matcher, expert input, probability computation
using the factor graph)—do not contribute to the network
uncertainty: H(C,P) = H({c ∈C | 0 < P(c)< 1},P).

6.2 The Reconciliation Process

Reducing uncertainty in a pay-as-you-go fashion means that
the probabilistic matching network 〈N,P〉, N = 〈S,GS,Γ ,C〉,
is continuously updated by:
(1) selecting a set of candidate correspondences D⊆C;
(2) eliciting user assertion (approval or disapproval) on the

correspondences D; and
(3) updating the probability model P.
That is, by seeking user input for correspondences, the state
of the probabilistic matching network 〈N,P〉 is changed, lead-
ing to the new probabilistic matching network 〈N,P′〉, where
P′ is computed as detailed in Section 5. We denote this step
of reducing uncertainty with expert input on a set of cor-
respondences D ⊆ C by 〈N,P〉 D−→ 〈N,P′〉. The process of
reducing uncertainty may come to a halt once a reconcilia-
tion goal is reached. Such a reconciliation goal may be given,
for instance, in terms of an effort budget (i.e., the number of
assertions by an expert is limited) or a predefined threshold
for the desired network uncertainty.

A generic procedure of uncertainty reduction, referred
to as the reconciliation process, is illustrated in Algorithm 1.
It takes a probabilistic matching network 〈N,P〉 and a rec-
onciliation goal δ as input and returns a reconciled network
〈N,P′〉. The algorithm works as follows: First, a set of top-k
correspondences is selected from the candidate correspon-
dences. To this end, we postulate a function select that choses
a subset D of the candidate correspondences C, taking into
account the current probabilistic model P′. Second, expert in-
put is sought for these correspondences, represented here by
a function expert that returns 〈U+,U−〉, the sets of approved
and disapproved correspondences, respectively. Third, the ex-
pert input is integrated by updating the probabilistic model P′

and recomputing the network uncertainty H(C,P′). Function
update implements the approach to probability computation
introduced in Section 5.

Clearly, there is a trade-off between expert effort and
network uncertainty: the more expert input is sought, the
less overall uncertainty is expected in the network. Yet, in-
stantiations of Algorithm 1 lead to a different realization of
this trade-off, depending on the implementation of function
select. As a baseline, we consider an expert working without
any supporting tools. This scenario corresponds to the higher
curve (random feedback) in Figure 4, in which the select
routine selects candidate correspondences in a random order.
A more effective implementation of select would lower this
curve, leading to a higher reduction in network uncertainty
for the same amount of expert input compared to the baseline.

To approach an effective implementation of function
select, we address a concrete reconciliation goal. Since rea-
sonable thresholds for the overall network uncertainty are
hard to estimate and expert input is commonly the bottle-
neck for reconciliation, we focus on limited budget of expert
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Algorithm 1: Reconciliation process
input :a probabilistic matching network 〈N,P〉 with N = 〈S,GS,Γ ,C〉,

a reconciliation goal δ

output :a reconciled matching network 〈N,P′〉
1 P′← P;
2 while not δ do

// (1) Select a set of top-k correspondences
3 D← select(C,P′);

// (2) Elicit expert input
4 〈U+,U−〉 ← expert(D) ;

// (3) Integrate the expert input
5 P′← update(N,P′,〈U+,U−〉) ;
6 Recompute network uncertainty H(C,P′);

7 return 〈N,P′〉;

effort. In that case, we would like to minimize network un-
certainty under a fixed number of feedback steps. Formally,
our objective is defined as follows.

Problem 1 (Uncertainty Minimization with Limited Ef-
fort Budget) Let N = 〈S,GS,Γ ,C〉 be a matching network,
m be a budget of expert effort, and k be the number of selected
candidate correspondences per iteration of the reconciliation
process (k� m). The problem of uncertainty minimization
with limited effort budget is the identification of correspon-

dences C′ ⊆C with |C′| ≤ m · k, such that 〈N,P〉 C′−→ 〈N,P′〉
and H(C,P′) is minimal.

Finding a good selection strategy to solve the problem of
uncertainty minimization is challenging: in order to obtain
an optimal solution, all permutations of all subsets (with
size ≤ m× k) of candidate correspondences needed to be
investigated. This is computationally intractable.

6.3 Uncertainty Minimization by Heuristic Ordering

To avoid exploration of an exponential number of candidate
correspondences, we use a heuristic strategy to materialize
the select function in Algorithm 1. It orders candidate cor-
respondences according to their expected benefit to reduce
network uncertainty.

6.3.1 Measuring the Expected Benefit

To quantify the potential benefit of a set of correspondences,
we follow a decision theoretic approach, cf. [74]. Specifically,
we measure the information gain of a set of correspondences

D as the expected amount of uncertainty reduction obtained
when the correspondences are approved or disapproved. This
reduction is computed as the difference between network
uncertainty before and after the expert validates D. Since the
result of validation (i.e., approval or disapproval of each cor-
respondence in D) is not known before-hand, the uncertainty
of the network obtained after integrating the expert input is
conditioned on D.

Formally, we define network uncertainty conditioned by
the assertions for a particular set of correspondences as:

H(C | D,P) = ∑
c1,...,ck∈D

P(c1, . . . ,ck) ·H(C,P|{c1, . . . ,ck}) (9)

Here, ∑c1,...,ck∈D denotes the sum over all combinations of
binary values of the random variables representing the cor-
respondences in D; P(c1, . . . ,ck) is the probability of a par-
ticular value combination, and P|{c1, . . . ,ck} denotes the
probabilistic model for a particular value combination.

The information gain of a set of correspondences D is
then computed as the difference of the network uncertainty
resulting from expert input on correspondences in D:

IG(D) = H(C,P)−H(C | D,P) (10)

Using this measure of information gain, we implement func-
tion select of the reconciliation process (Algorithm 1), such
that we choose the top-k correspondences with the maximal
information gain. That is, select is defined as

argmax
D⊆C,|D|=k

IG(D) (11)

If the maximal information gain is observed for multiple
subsets, one is randomly chosen. We note that for all corre-
spondences with probabilities being one or zero, the informa-
tion gain is zero. Hence, only uncertain correspondences are
qualified for selection.

However, to solve Equation 11, we need to tackle two ma-
jor complexity issues, when the number of correspondences
is large and k is large. First, calculating Equation 9 requires
iterating over all possible combinations of binary values of
the random variables of the k given correspondences, i.e. k!
binary permutations. Second, a naive solution to find the
maximal set of candidate correspondences requires iterating
over all possible subsets of correspondences with size k, i.e.
exploration of

(n
k

)
subsets. To overcome these two challenges,

we resort to an approximate computation of the benefit and a
greedy algorithm for the actual selection, respectively.

6.3.2 Approximate Benefit Computation

The computation of the (joint) information gain of a set of
correspondences is intractable. Therefore, we resort to an
alternative utility function. It combines the individual benefit



Reconciling Matching Networks of Conceptual Models 11

of each correspondence and a redundancy penalty that takes
into account dependencies between correspondences.

Individual benefit. The expected benefit of a single corre-
spondence is calculated as follows:

IG(c) = H(C,P)−H(C | {c},P). (12)

In this case, according to Equation 9, H(C | {c},P) collapses
to P(c) ·H(C,P|c = 1)+ (1−P(c)) ·H(C,P|c = 0), which
is tractable.

Following this idea, one could select, one-by-one, the
correspondences with maximal information gain, i.e., the
correspondences for which the probability is close to 0.5.
However, this method may be non-optimal due to the com-
plex joint distribution of random variables representing the
correspondences. Simply accumulating candidate correspon-
dences with maximal individual information gain does not
necessarily mean that the resulting set has the maximal infor-
mation gain. In terms of the factor graph used to compute the
correctness probabilities of correspondences, the truth value
of a correspondence variable also influences its surrounding
variables and factors.

Redundancy Penalty. Neglecting the dependencies between
correspondences variables in the factor graph may yield re-
dundant validation effort. For example, in Figure 3, without
prior information, the correspondences c3 and c5 are highly
uncertain. However, seeking expert input for both of them
is redundant: approval/disapproval of c3 can directly lead to
disapproval/approval of c5, due to the 1-1 constraint.

Therefore, selecting a candidate correspondence shall
aim at low information overlap. Formally, the redundancy of
a set of correspondences is quantified as:

R(D) = ∑
c,c′∈D

IG(c)M(c,c′)IG(c′) (13)

where M(c,c′) = 1
Z |{cf ∈ F |c,c′ ∈ cf}| is a correlation ma-

trix that is grounded in the number of constraint factors that
are connected to both c and c′ and normalized to the unit
interval by Z = maxc,c′∈C |{cf ∈ F |c,c′ ∈ cf}|. Intuitively,
integrating the redundancy penalty helps to avoid selecting
correspondences that are correlated, to each other and to those
already validated in previous iterations of the reconciliation
process.

The Approximated Benefit. The utility function to approxi-
mate the benefit of a set of correspondences combines the two
aforementioned measures. Yet, it also weights the importance
of correspondences. Here, the idea is that correspondences
stemming from a large group of dependent correspondences
have a high chance to propagate information. To exploit this
effect, we define q(c) = ∑c′∈C M(c,c′)IG(c′) as the impor-
tance of correspondence c.

Putting it all together, we define the utility function as:

Q(D) = w ∑
c∈D

q(c)IG(c)− ∑
c,c′∈D

IG(c)M(c,c′)IG(c′) (14)

where w ∈ R+ is a positive weight parameter to balance the
terms related to individual benefit and redundancy. The im-
plementation of function select of the reconciliation process
then becomes:

argmax
D⊆C,|D|=k

Q(D). (15)

Finally, we note that our notion of utility to approximate
the benefit of a set of correspondences shows two intuitive
properties, namely monotonicity and submodularity.

Property 1 (Monotonicity) Q is monotonic: for all D1 ⊆
D2 ⊆C, we have: Q(D1)≤ Q(D2).
Proof (Sketch) With w≥ 2, we have:

Q(D1∪D2)−Q(D1)=w ∑
c∈D2

q(c)IG(c)−( ∑
c∈D2,c′∈D1

IG(c)M(c,c′)IG(c′)

+ ∑
c∈D1,c′∈D2

IG(c)M(c,c′)IG(c′)+ ∑
c,c′∈D2

IG(c)M(c,c′)IG(c′))

= w ∑
c∈D2

IG(c) ∑
c′∈V

M(c,c′)IG(c′)− (2 ∑
c∈D1,c′∈D2

IG(c)M(c,c′)IG(c′)

+ ∑
c,c′∈D2

IG(c)M(c,c′)IG(c′))≥ 2 ∑
c∈D2

IG(c) ∑
c′∈V

M(c,c′)IG(c′)

− (2 ∑
c∈D1,c′∈D2

IG(c)M(c,c′)IG(c′)+ ∑
c,c′∈D2

IG(c)M(c,c′)IG(c′))

= 2 ∑
c∈D2

( ∑
c′∈V

M(c,c′)IG(c′)− ∑
c′∈D1∪D2

M(c,c′)IG(c′))

= 2 ∑
c∈D2

∑
c′ /∈D1∪D2

M(c,c′)IG(c′)≥ 0

which completes the proof of monotonicity.

Property 2 (Submodularity) Q is submodular: for all D⊆V
and c1,c2 ∈ (V \D), we have:

Q(D∪{c1})+Q(D∪{c2})≥ Q(D∪{c1,c2})+Q(D)

Proof (Sketch) We have:
Q(D∪{x})−Q(D) = wq(x)IG(x)−2IG(x) ∑

c∈D
M(x,c)IG(c)+ IG2(x)

Then with w > 0, we have:

Q(D∪{c1})+Q(D∪{c2})≥ Q(D∪{c1,c2})+Q(D)

⇔ Q(D∪{c1})−Q(D)≥ Q(D∪{c2}∪{c1})−Q(D∪{c2})

⇔ wq(c1)IG(c1)−2IG(c1) ∑
c∈D

IG(c)M(c,c1)+ IG2(c1)

≥ wq(c1)IG(c1)−2IG(c1) ∑
c∈D∪{c2}

IG(c)M(c,c1)+ IG2(c1)

⇔ 2IG(c1)IG(c2)M(c1,c2)≥ 0

which completes the proof of submodularity.

While computation of the utility function Q is tractable,
the induced optimization problem (Equation 15) is not.

Theorem 1 Solving Equation 15 is NP-complete.

Proof Q(D) is a submodular set function. Maximization of
submodular set functions is known to be NP-complete [58].
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6.3.3 Greedy Correspondence Selection

To avoid the complexity of solving the optimization problem
based on the utility function, we approximate its solution
with a greedy selection strategy. Exploiting the aforemen-
tioned properties of the utility function Q, i.e., monotonicity
and submodularity, we construct a greedy algorithm with a
provably near-optimal result as follows.

For any monotone, submodular function f with f ( /0) = 0
it is known that an iterative algorithm selecting the element
e with maximal value of f (D∪{e})− f (D) with D as the
elements selected so far has a performance guarantee of (1−
1/e)≈ 0.63 [57]. Applying this procedure in our context, we
iteratively expand the selection of correspondences by adding
the correspondence through k iterations. At each of the k
iterations, we traverse all non-validated correspondences to
identify the correspondence c∗ to maximize Q(D′ ∪{c∗}),
where D′ is the set of correspondences selected in previous
iterations.

The time and space complexity of this heuristic selection
strategy are O(|C|2 + k|C|) and O(|C|2), respectively. The
quadratic term |C|2 in time and space complexity stems from
the calculation of the correlation matrix M(., .). The linear
term k|C| is explained by k iterations, each requiring con-
sideration of the whole set of candidate correspondences to
compute Q and select c∗.

7 Instantiation of the Selective Matching

A distinguishing feature of our approach to pay-as-you-go
reconciliation is the fact that a matching can be instantiated at
all times, even if the matching network is not fully reconciled.
The instantiation of such a matching is particularly important
for applications that value a fast setup time above waiting
for full validation [34]. Also, various applications explicitly
require a deterministic matching, e.g., to query or aggregate
a collection of conceptual models, see Section 2.

In this section, we first formulate an optimization prob-
lem for the instantiation of a selective matching, i.e., a match-
ing that comprises candidate correspondences that are most
likely correct and consistent in terms of the specified integrity
constraints. Since this problem turns out to be computation-
ally costly, we then propose a heuristic-based algorithm to
construct a near optimal solution.

7.1 The Instantiation Problem

Given a matching network, a set of candidate correspon-
dences is called a matching instance. Ideally, a matching
(instance) is the ground truth, which would be obtained af-
ter all candidate correspondences have been validated by
means of expert input. Yet, this is impractical in most cases,

so that the uncertainty in a probabilistic matching network
induces a set of matching instances that approximate the
ground truth. To assess the quality of a particular matching
instance I ⊆ C of a probabilistic matching network 〈N,P〉
with N = 〈S,GS,Γ ,C〉, we consider three dimensions:

– Violation Degree: A matching instance of high quality
should be likely to satisfy the integrity constraints. For-
mally, we capture this requirement by the violation degree
per integrity constraint γ ∈ Γ , a function vγ : 2C→ [0,1]
that denotes the probability of a set of correspondences to
violate the constraint. We exemplify the definition of this
function for the 1-1 constraint formalized in Section 3.
Let I ⊆ C be a matching instance. Then, the violation
degree is the probability of violating the constraint of the
matching instance, i.e., vγ1-1(I) = (1−P(γ1-1(I) | I)).

– Size: A matching instance should relate a large number
of model elements to each other. Given a matching in-
stance I =C, its size in terms of the number of contained
correspondences |I| is a straightforward measure for this
quality dimension.

– Likelihood: A matching instance should comprise corre-
spondences that are likely to be correct. Therefore, we
consider the likelihood of matching instances, which is
defined by a function u : 2C → [0,1]. Given a matching
instance I = {c1, . . . ,ck} ⊆C, it captures the joint proba-
bility of the correspondences, u(I) = P(c1, . . . ,ck). It is
worth noting that using the factor graph representation
of a probabilistic matching network, this joint probabil-
ity is computed via the associated factors using message
passing algorithms or Gibbs sampling.

Using these measures, we model instantiation of a matching
as an optimization problem. In model matching, we prioritize
the violation degree, since any output presented to a user
should be consistent. However, given the probabilistic nature
of constraints, we adopt some tolerance threshold θ ∈ [0,1]
for the violation degree. From all matching instances that
show a violation degree that is less than the threshold, we
identify one that has maximal size and maximal likelihood.
Formally, the problem is described as follows.

Problem 2 (Matching Instantiation) Let 〈N,P〉 with N =

〈S,GS,Γ ,C〉 be a probabilistic matching network and θ ∈
[0,1] be a tolerance threshold. The problem of matching
instantiation is the identification of a matching instance I⊆C
that satisfies the following conditions, in the descending order
of priority:

i) θ -satisfaction for all constraints: for all constraints γ ∈
Γ , it holds that vγ(I)≤ θ .

ii) Maximal size: for all matching instances I′ ⊆C, I′ 6= I,
that show θ -satisfaction for all constraints holds that
|I| ≥ |I′|.

iii) Maximal likelihood: for all matching instances I′ ⊆C,
I′ 6= I, that show θ -satisfaction for all constraints and
maximal size holds that Q(I)≥ Q(I′).
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An exact solution to the matching instantiation problem
is called a selective matching. Note that the problem is
grounded solely in the correctness probabilities of correspon-
dences since expert input is incorporated in the probabilistic
model.

Solving the problem of matching instantiation requires
knowledge about the integrity constraints in the network. Un-
fortunately, even under the simplistic 1-1 constraint and even
without the maximal likelihood condition, the instantiation
problem is computationally hard.

Theorem 2 Let 〈N,P〉 with N = 〈S,GS,Γ ,C〉 be a proba-
bilistic matching network, such that Γ = {γ1-1} defines only
the 1-1 constraint. Then, given a tolerance threshold θ ∈
[0,1] and an integer δ ∈ N, the problem of deciding whether
there exists a matching instance of 〈N,P〉 that shows θ -
satisfaction of Γ and is of size larger than δ is NP-complete.

Proof To prove the NP-completeness of our decision prob-
lem, we show that: (i) it is in NP and (ii) it is NP-hard. Given
a matching instance I, one can check in polynomial time
whether its size is larger than δ and whether I shows θ -
satisfaction of Γ (using the factor graph representation). So
(i) is true. Next, we argue that there is a polynomial time
reduction of the maximum independent set (MIS), which is
NP-complete [49], to our problem. MIS requires the identi-
fication of a maximal set of vertices in a graph G = (V,E)
such that no two vertices are adjacent. We construct a prob-
abilistic matching network as follows: each vertex v ∈ V
is a correspondence. An edge {vi,v j} ∈ E is represented
by a pair of distinct correspondences that do not show θ -
satisfaction of the 1-1 constraint, i.e., {vi,v j} ∈ E iff vi,v j ∈
{c∈C | (1−P(γ1-1(c) | I))> θ}. This construction requires
iterating over all pairs of nodes, i.e., polynomial time. Then,
solving our decision problem yields a solution to MIS, so
that (ii) is true.

7.2 A Heuristic Solution to Matching Instantiation

In light of Theorem 2, we develop a heuristic solution to
find an approximation of a selective matching efficiently. The
approximate solution is found in polynomial time, yet may
be non-optimal w.r.t. size and likelihood.

Developing a heuristic solution for the problem of match-
ing instantiation is challenging due to the complex depen-
dencies between correspondences that are induced by the
integrity constraints. Some correspondences always go to-
gether, whereas others are mutually exclusive because of
the integrity constraints. These dependencies create a non-
uniform joint distribution incorporating all possible matching
instances. Our approach, therefore, is to rely on a randomized
local search. The main idea is to keep exploring the neighbors
of recent matching instances until termination (in our case,

Algorithm 2: Heuristic matching instantiation
input : a probabilistic matching network 〈N,P〉 with N = 〈S,GS,Γ ,C〉,

an upper bound for the number of iterations k,
a tolerance threshold θ

output :a matching instance H

// Initilization
1 H←{c ∈C | P(c) = 1} ;
2 I← H;
3 i← 0 ;
4 T ← /0 ;

5 while i < k do
// Fitness proportionate selection

6 ĉ← RouletteWheelc({〈c,P(c)〉 | c ∈ (C \ I \T )});
7 I← I∪{ĉ};
8 T ← T ∪{ĉ};

// Adjust matching, so that it shows θ-satisfaction
9 I← adjust(P, I, ĉ,Γ ,θ) ;

// Keep track of the best instance
10 if |H|< |I| then H← I ;
11 if |H|= |I| ∧ Q(H)< Q(I) then H← I ;
12 i← i+1;

13 return H

an upper bound of iterations), and record the one with the
best size and likelihood.

Overview. Our approach to heuristic matching instantiation
is formalized in Algorithm 2. It takes a probabilistic matching
network, an upper bound for the number of iterations, and
a tolerance threshold as input. It returns the best matching
instance that is found during the search. Technically, the algo-
rithm starts with a trivial matching instance that contains all
correspondences for which the assigned probability is equal
to one. This instance typically comprises a small number
of correspondences. The instance is then extended until the
termination condition is satisfied (line 5). In each iteration,
we first consider a set of remaining correspondences and their
probabilities. One of these correspondences is added to the
current matching instance I based on Roulette wheel selec-
tion [40]. Once a correspondence has been added, the current
matching instance may no longer show θ -satisfaction for all
constraints. Therefore, the adjust function (defined below)
potentially removes problematic correspondences from I to
ensure θ -satisfaction (line 9). However, a correspondence
could be added to I and then removed immediately by the
adjust function. In that case, I would be left unchanged and
the algorithm would be trapped in a local optima. Therefore,
we employ the Tabu search method [39] that uses a ‘tabu’
(forbidden) set of correspondences, so that the algorithm
does not consider these correspondences repeatedly (line 8).
Finally, a matching instance H is returned by evaluating the
size and likelihood of matching instances explored so far.

Adjusting a Matching Instance. Algorithm 3 details func-
tion adjust in Algorithm 2, which adjusts a matching instance
that does not show θ -satisfaction. The key idea is to greedily
remove correspondences that are involved in likely constraint
violations, until the matching instance shows θ -satisfaction
(line 2). We do so by first extracting all subsets of corre-
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spondences of the matching instance that contain the corre-
spondence that has just been added (ĉ) and are problematic
in terms of the constraints (line 3). We then identify corre-
spondences that may be removed, because their correctness
probability is less than one and the have not been just added
(line 4). For these correspondences, we count how often
they are part of subsets of correspondences that do not show
θ -satisfaction (line 5) and remove the correspondences for
which the largest count is obtained (line 7). The greediness of
this approach is motivated by the idea that correspondences
that are likely to cause the absence of θ -satisfaction of the
original matching instance are removed first. This way, many
of the correspondences of the matching instance are retained.

Algorithm 3: Adjusting a matching instance
input : a probabilistic model P,

a matching instance I,
an added correspondence ĉ,
a set of integrity constraints Γ ,
a tolerance threshold θ

output : a matching instance Î that shows θ -satisfaction for all constraints Γ

1 Î← I

2 while ∃ γ ∈ Γ : vγ (Î)> θ do
// Get all sets of problematic correspondences

containing ĉ
3 W ←{C′ ⊆ Î | ĉ ∈C′ ∧ ∃ γ ∈ Γ : vγ (C′)> θ};
4 IP←{c ∈ ∪C′∈W | c 6= ĉ ∧ P(c)< 1};

// For each correspondence, count in how many
problematic sets it occurs

5 for c ∈ IP do bc← |{C′ ∈W | c ∈C′}| ;
// Greedily remove the one that occurs in the largest

number of problematic sets
6 c∗← argmaxc∈IP

bc;
7 Î← Î \{c∗};

8 return Î

Properties of the Heuristic Solution. For the presented
heuristic solution, we provide guarantees in terms of cor-
rectness and runtime performance.

Guarantee 1 Algorithm 2 terminates and is correct.

Proof Termination follows directly from the upper bound
k for the number of iterations in Algorithm 2 and the fact
that in each iteration in Algorithm 3, one correspondence is
removed, but none is added.
Correctness follows directly from the following points. (1)
A new correspondence is chosen from probable correspon-
dences (line 6). (2) When a correspondence ĉ added to I
(line 7) leads to absence of θ -satisfaction of the matching
instance I, I is adjusted immediately (line 9). (3) H always
maintains the instance that is best in terms of size and like-
lihood. Therefore, the algorithm’s output is a near-optimal
solution to the problem of matching instantiation.

Finally, we observe that the presented heuristic solution in-
deed allows for efficient instantiation of a matching for the

aforementioned integrity constraints (see Section 3). For the
1-1 constraint and cycle constraint, the algorithm requires
quadratic time in the number of candidate correspondences,
which, as we demonstrate in our experimental evaluation, is
tractable.

Guarantee 2 For the 1-1 constraint and the cycle constraint,
the runtime complexity of Algorithm 2 is O(k×|C|2).

Proof We start with the function adjust, i.e., Algorithm 3.
First, all sets of correspondences that contain ĉ, but do not
show θ -satisfaction are extracted. For the considered 1-1 con-
straint and cycle constraint, we note that the constraints in
these sets are necessarily connected. Hence, the sets can be
derived by depth-first-search, starting with correspondence
ĉ. Visiting each correspondence at most once, this yields a
runtime complexity of O(|I|). Moreover, there are at most
|I| iterations (in the worst case, all correspondences are re-
moved). As a result, the overall complexity is O(|I|2).
Finally, the most expensive operation in Algorithm 2 is the
function adjust, which has a runtime complexity of O(|I|2).
Since I ⊆ C and there are at most k iterations of the local
search, we arrive at O(k×|C|2).

For the structure constraint, the size of the structure rela-
tion also influences the runtime complexity. However, in prac-
tice, the number of entries in the structure relation is signifi-
cantly less than the number of correspondences |RS| � |C|,
which means that the complexity is actually close to the one
obtained for the other constraints.

Guarantee 3 For the structure constraint, the runtime com-
plexity of Algorithm 2 is O(k×|C|× (|C|+ |RS|)).

Proof Similar to the proof of Guarantee 2, we also need
to perform depth-first-search. The only difference is that
now we have to include the relations in RS as connections,
which yields a runtime complexity of O(|I|+ |RS|) for the
correspondence ĉ. Since remaining operations are similar, we
arrive at the overall complexity O(k×|C|× (|C|+ |RS|)).

8 Experimental Evaluation

This section presents a comprehensive experimental evalua-
tion of the proposed methods using real-world datasets and
state-of-the-art matching tools. The results highlight that the
presented approach supports pay-as-you-go reconciliation
by effective and efficient computation of probabilities. We
are able to precisely guide expert users, so that the amount
of expert input needed for reconciliation is reduced to 50%
or less compared to baseline solutions. We demonstrate that
the approach improves the quality of instantiated matchings
significantly in both precision and recall.
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We proceed as follows: We first discuss the experimental
setup (Section 8.1). Then, we report on the results of ap-
plying the proposed methods for probability computation
(Section 8.2), reduction of network uncertainty (Section 8.3),
and instantiation of a matching (Section 8.4).

8.1 Experimental Setup

Datasets and Matching Tools. We relied on four real-world
datasets spanning various application domains, from Web
forms to business schemas as observed in data marketplaces.
(1) Business Partner (BP): The dataset comprises database
schemas that model business partners in enterprise systems.
(2) PurchaseOrder (PO): We extracted purchase order e-
business schemas from various resources.
(3) University Application Form (UAF): We extracted schemas
from Web interfaces of American university application forms.
(4) WebForm: The schemas for this dataset have been auto-
matically extracted from Web forms using OntoBuilder [73].
(5) Conference (OAEI): This is a collection of 16 ontologies
about conference organization, from the ‘conference’ track of
Ontology Alignment Evaluation Initiative (OAEI) 2014 [26].
These datasets are publicly available [1] and descriptive statis-
tics for the schemas are given in Table 1. To generate candi-
date correspondences for schema matching datasets (BP, PO,
UAF, WebForm), we used two well-known schema matchers
(with default parameters), COMA++ [23,9] and AMC [70].
For ontology matching datasets (OAEI), we use the AML
matcher [32] due to its good performance in the 2014 edition
of the OAEI [26].

Integrity Constraints. In our experiments, we consider two
of the aforementioned constraints, the 1-1 constraint and the
cycle constraint, cf., Section 3. Table 2 lists the number of
candidate correspondences (or sets thereof) generated by the
matcher for which the constraint satisfaction probability is
less than one. Rather independently of the applied dataset
and matching tool, we observe a large number of problematic
correspondences, which precludes an exhaustive investiga-
tion by an expert. Hence, there is a clear need for efficient
and effective pay-as-you-go reconciliation.

Table 1 Datasets

Dataset #Models #Elements
(Min/Max)

BP 3 80/106
PO 10 35/408
UAF 15 65/228
WebForm 89 10/120
OAEI 16 23/140

Table 2 Problematic correspondences

Dataset # Correspondences ( vγ < 1)
COMA AMC AML

BP 252 244 N/A
PO 10078 11320 N/A
UAF 40436 41256 N/A
WebForm 6032 6367 N/A
OAEI N/A N/A 9352
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Fig. 5 Effects of network size on probability computation

Evaluation Measures. In addition to the network uncertainty
as defined in Equation 8, we rely on the following evaluation
measures:

– Precision & Recall are measures for the quality of a
matching V (i.e. a set of correspondences) compared to
the exact matching R (e.g. a set of referenced correspon-
dences given by the dataset provider): Prec(V )=(|V ∩
R|)/|V | and Rec(V )=(|V ∩R|)/|R|.

– User effort: To quantify the relative amount of expert
input, we compute the effort as the number of asserted
correspondences relative to the size of the matcher’s out-
put: E = |U+∪U−|/|C|.

Experimental Environment. All results have been obtained
on an Intel Core i7 system (2.8GHz, 4GB RAM). Factor
graph modeling and computing have been conducted using
Elementary [92].

8.2 Evaluation of the Probability Computation

For the step of computing the correctness probabilities of cor-
respondences in a matching network, we study the efficiency
and effectiveness of the presented approach that exploits a
factor graph.

Computation Time. In this experiment, we study the effects
of network size (i.e., number of candidate correspondences)
on the computation time required for probability computation.
We use the Elementary framework [92] that computes prob-
abilities in a factor graph by Gibbs sampling. The reported
time is measured by computing the average sampling time
over 1000 samples for each setting of network size. Each
setting is constructed with a different interaction graph GS
using the Erdős-Rényi random graph model. We then derived
the average time over all settings and datasets.

Figure 5 shows the resulting computation time per sam-
ple relative to the number of correspondences with values
ranging from 27 to 212. Clearly, as the number of correspon-
dences grows, the computation time increases. Yet, absolute
numbers are low. For instance, for a network with 4000 can-
didate correspondences, computation based on 1000 samples
takes only ≈ 2.4ms ·103 = 2.4s. Hence, the presented ap-
proach is well applicable for datasets with a large number of
correspondences.
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Fig. 6 Relation between probability and correctness of correspondences

Relation between Probability and Correctness. Our ap-
proach is based on the hypothesis that a correspondence with
high probability is likely to be correct, and vice-versa. To
validate this hypothesis, we first compare the candidate cor-
respondences with the exact matching to categorize them as
correct or incorrect. Then, we compute the probability of
each correspondence. Figure 6 presents a histogram of the
probability distribution in the BP dataset (representative for
schema matching, other datasets have similar results) and
the OAEI dataset for correct and incorrect correspondences.
Here, the X-axis depicts the probability ranges and the Y-axis
measures the frequency in percentages.

We observe that the probability distribution of correspon-
dences is matched well with their correctness. For example,
in the BP dataset, most of the correspondences (more than
75%) have the probability value in the range from 0.5 to 1.0.
This is reasonable, since the precision of the generated candi-
date correspondences in this dataset is about 0.67. Another
key finding is that at higher levels of probability, the ratio of
correct correspondences over incorrect correspondences is
significantly larger. For the OAEI dataset, for instance, in the
[0.8,0.9] range, there are about 19% correct and about 2% in-
correct correspondences; whereas the ratio is about 14%/1%
in the [0.9,1.0] range. This indicates that the probability val-
ues indeed reflect the correctness of correspondences.

8.3 Evaluation of the Uncertainty Reduction

In this set of experiments, we study to which extent our ap-
proach reduces network uncertainty. For each dataset, we
generate a complete interaction graph and obtain candidate
correspondences using automatic matchers. Then, we simu-
late the pay-as-you-go reconciliation process where expert
input is generated using the exact matches, which had been
constructed by the dataset provider. The number of corre-
spondences for each expert interaction is set to k = 10.

User guiding strategies. We explored how the quality of the
match result in terms of precision improved when eliciting
expert input according to different strategies. The BP and
OAEI datasets are used for schema matching and ontology
alignment, respectively. Figure 7 and 8 depict the improve-
ments in precision and network uncertainty (Y-axes) with
increased feedback percentage (X-axis, out of the total num-
ber of correspondences) using two strategies, namely

(1) Rand: reconciliation using random selection of corre-
spondences, which acts as a baseline for our experiment.

(2) Heuristic: we select correspondences using our method
that exploits the information-gain (Section 6).

The results depicted in Figure 7 and 8 show the average
over 50 experiment runs. The other datasets demonstrate
similar results and are omitted for the sake of brevity. We
observe a significant reduction of expert effort for our strategy
with respect to the baseline. More precisely, applying our
solution when selecting correspondences requires only about
50% or less of the expert interactions. Another key finding
is that the trends of network uncertainty and precision are
inversely similar. This implies that network uncertainty is a
good indicator for reconciling the matching results. Note that
when network uncertainty is zero (i.e. all integrity constraints
are satisfied with a probability of one), the precision is not
necessarily guaranteed to be 1.0.

 0.6

 0.7

 0.8

 0.9

 1

 0  25  50  75  100

P
re

c
 (

C
 \
 U
-  )

Expert Effort (%)

Random Heuristic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  25  50  75  100N
e

tw
o

rk
 U

n
c
e

rt
a

in
ty

Expert Effort (%)

Fig. 7 User effort needed during the reconciliation (BP dataset)
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Fig. 8 User effort needed during the reconciliation (OAEI dataset)

Effects of the network topology. We have analyzed the in-
fluence of the topology of the interaction graph on the re-
duction of the required expert input. For this purpose, we
used randomly generated interaction graphs, instead of the
complete graphs of the previous experiments. We constructed
these graphs G(|S |, p) using the Erdős-Rényi random graph
model [31], where p is the inclusion probability that deter-
mines whether an edge is included in a graph. We have con-
structed 10 graphs, and applied the reconciliation procedure.
The results are averaged over 5 runs per graph.

Figure 9 (for the BP dataset and the OAEI dataset) de-
picts the improvements in terms of required expert input, for
different graphs. The X-axis corresponds to the inclusion
probability used to construct the interaction graphs, while
the Y-axis shows the expert efforts. One can observe that our
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technique significantly reduces the required effort, indepen-
dently of the topology of the interaction graph. Also these
methods are robust w.r.t. the structure of the graph. Moreover,
we achieved greater effort reduction in cases where the inter-
action graph was more dense. This is explained by the richer
information on mutual reinforcing dependencies between the
random variables in the factor graph representation.

 0

 25

 50

 75

 100

 0.4  0.5  0.6  0.7  0.8  0.9  1

U
s
e
r 

E
ff
o
rt

 (
%

)

Inclusion Probability

OAEI dataset

Random Heuristic

 0

 25

 50

 75

 100

 0.4  0.5  0.6  0.7  0.8  0.9  1

U
s
e

r 
E

ff
o

rt
 (

%
)

Inclusion Probability

BP dataset

Fig. 9 Effect of network topology

Effects of user knowledge limitation. So far, we assumed
that it is always possible to elicit expert input for a corre-
spondence. One may argue that in many practical scenarios,
however, this assumption does not hold true. Experts may
have only partial knowledge of a domain, which means that
for some correspondences feedback cannot be obtained. We
studied the performance of our approach in this setting, by
including the possibility of skipping a correspondence in the
reconciliation process. Thus, for certain correspondences, we
never elicit any feedback. However, the probabilistic model
allows us to conclude on the assertions for these correspon-
dences as consequences of available expert input. Correspon-
dences that are assigned a probability larger than 0.5 are
considered as being correct, whereas the remaining ones are
not included in the resulting matching.

Table 3 Ability to conclude assertions

Dataset p : skipping probability

5% 10% 15% 20% 25% 30%

BP 0.89 0.86 0.87 0.83 0.80 0.78
PO 0.81 0.80 0.76 0.72 0.72 0.66
UAF 0.81 0.80 0.76 0.75 0.74 0.71
WebForm 0.71 0.72 0.76 0.79 0.76 0.70
OAEI 0.78 0.77 0.79 0.73 0.72 0.69

In our experiments, we used a probability p for skipping
a correspondence and measured the ratio of true assertions
(related to skipped correspondences that are concluded cor-
rectly against ground truth) and all skipped correspondences.
Table 3 shows the obtained results. Even with p = 30%, the
ratio is about 0.7, which means that about 70% of the asser-
tions that could not be elicited from the expert have been
correctly classified based on the information propagation in
factor graph. As expected, this ratio increases as p decreases;

skipping less correspondences provides the information prop-
agation with more useful information.

8.4 Evaluation of the Matching Instantiation

Finally, we study the effectiveness of our method for instanti-
ating a matching from a probabilistic matching network.

Effects of Ordering Strategies. Clearly, the two above or-
dering strategies used for reducing the network uncertainty
(i.e., Rand and Heuristic) have a great influence on the qual-
ity of the instantiated matching. We investigate this aspect
with an experiment in which, given a predefined amount of
expert input (e.g., validation of 5% of all candidate correspon-
dences), we reduce network uncertainty with these strategies.
Then, we compare the results in terms of precision and recall
of the matching derived by instantiation (Algorithm 2).

Figure 10 and 11 illustrate the influence of the ordering
strategies on quality of the instantiated matching for the
BP dataset and the OAEI dataset respectively (again, the
other datasets showed the same trend). We varied the amount
of expert input (x-axis), considering validation of 0% to
15% of the candidate correspondences. A key finding is that
our heuristic ordering strategy generally outperforms the
baseline in terms of both precision and recall. Note that
initially, with 0% expert input, there is no difference between
two ordering strategies since none of the correspondences has
been validated. We conclude that our approach to ordering
the correspondences to seek expert input plays an important
role in improving the quality of the instantiated matching.

Effects of Maximal Likelihood. Instantiation is guided by
the size and the likelihood of a particular matching, see Sec-
tion 7 and we argued that the size shall be maximal to keep
us much information on correspondences as possible in the
instantiated matching. Yet, in this experiment, we study the
importance of also considering the likelihood of correspon-
dences for instantiation. To this end, we compare the result
of instantiation with and without the likelihood criterion. We
quantify the results in terms of precision and recall for the
instantiated matching.

Figure 12 and 13 illustrate the percentage of expert input
relative to the precision and recall of the instantiated match-
ing for the BP dataset and OAEI dataset, respectively. We
observe that considering the likelihood criterion indeed leads
to a matching of better quality. The results underline the ben-
efits of our probabilistic model in quantifying the uncertainty
of correspondences as well as of the network as a whole.

9 Related Work

We now review the work in pair-wise matching of conceptual
models, matching networks, and user feedback that is close
to our research.
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Fig. 10 Effects of correspondence ordering strategies on instantiation.
H is the matching instantiated by our algorithm (BP dataset)
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Fig. 11 Effects of correspondence ordering strategies on instantiation.
H is the matching instantiated by our algorithm (OAEI dataset)
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Fig. 12 Effects of the likelihood function on instantiation. H is the
matching instantiated by our algorithm (BP dataset)
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Fig. 13 Effects of the likelihood function on instantiation. H is the
matching instantiated by our algorithm (OAEI dataset)

Pair-wise Matching of Conceptual Models. Matching of
database schemas is an active research field. The develop-
ments of this area have been summarized in several surveys,
e.g., [72,13,11,62]. Existing works focused mainly on im-
proving the quality parameters of matchers, such as precision
or recall of the generated correspondences [36,93,94,63],
or leveraging matching results for further management op-
erations [66,82,83,90]. Recently, however, it was realized
that the extent to which precision and recall can be improved
may be limited for general-purpose matching algorithms. In-
stead of designing new algorithms, there has been a shift
towards matching combination and tuning methods. These
works include YAM [28], systematic matching ensemble
selection [37,84,86] or automatic tuning of the matcher pa-
rameters [52,36,30,47,71].

Similar research trends and results are also found for
other types of conceptual models, such as ontologies [67,
85] or process models [15,7]. Ontology matching focuses on
leveraging semantic information such as taxonomies, domain
vocabularies, and resource descriptions, to improve matching
techniques proposed for database schemas, which lack such
semantic information [68]. Process model matching, in turn,
also exploits the structure and execution semantics of formal
process models, matching on their elements based on a com-
bination of textual, structural, and semantical features [22,21,
12]. Despite having different techniques, existing works on
conceptual models only consider pair-wise matching once at
a time, thus neglecting a significant amount of network-wise
information.

In this paper, we use results from matching tools as input
for our approach. Uncertain matching for conceptual models
has been studied in many works, see, for instance, [25,76,
35,75,41]. Yet, our approach is the first to consider integrity
constraints defined for a matching network to assess the

correctness probabilities of correspondences and guide the
reconciliation by an expert user.

Matching Networks. The idea of exploiting a set of concep-
tual models as a whole to improve the matching has been
studied before. Holistic matching [81] attempted to exploit
statistical co-occurrences of attributes in different database
schemas and use them to derive complex correspondences.
Corpus-based matching [54] uses a ‘corpus’ of schemas to
augment the evidence that improves existing matching and
exploit constraints between attributes by applying statisti-
cal techniques. Nevertheless, these works follow a mediated
approach, which constructs one conceptual model as a single-
point reference for all original models. The mediated ap-
proach has two limitations: it could be impossible to develop
a consensus model that captures all different characteristics
of original models and it is difficult to update the mediated
model when the original ones are changed. Our matching net-
work approach is applicable for large-scale contexts, where
the computation with a monolithic, mediated schema is too
costly or simply infeasible.

Network-level constraints were originally considered in [5,
20], in which the establishment of semantic interoperability
in large-scale P2P networks was studied. In this paper, we
study such integrity constraints in the matching problem of
conceptual models and use constraint violations as evidence
of matching uncertainty.

User Feedback. The post-matching reconciliation process
has also received considerable attention in the literature
for database schemas, ontologies, and process models alike.
The systems in [48,77,88,27,19,50] rely on one user only,
whereas the frameworks in [95,56,63,18,10,60] rely on mul-
tiple users. Although our scope involves only a single expert
user, our framework is extensible as the underlying proba-
bilistic model is independent of the number of users.
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The idea of pay-as-you-go approaches to improve the
matching quality has been brought forward in [76,44,91,
17]. However, we note that the approach in [76] requires the
creation of a mediated model, whereas we study reconcilia-
tion for a network of conceptual models. Moreover, unlike
many existing works, e.g., [77,88,89,16] that incorporate
user feedback implicitly through keywords, our approach lets
experts give input explicitly on the correspondences. This
results in a clear quantification of expert effort.

10 Conclusions and Future Work

This paper presented an approach to pay-as-you-go reconcili-
ation in matching networks of conceptual models. We defined
the notion of a matching network and its representation as a
factor graph as the backbone of the approach. Most impor-
tantly, our probabilistic graphical model enables us to capture
of the uncertainty in the matching network in a unified way,
integrating the output of automatic matching, expert feed-
back, and the model management tasks that shall be solved.
Our approach involves three elementary steps that realize a
pay-as-you-go setup: establishing the network uncertainty
by computing correctness probabilities for correspondences;
reducing the network uncertainty with expert input; and in-
stantiating a trusted set of consistent correspondences. As
such, the approach can be used for supporting model manage-
ment at any point in time, while still continuously improving
the quality of the instantiated matching by reconciliation of
the network. Finally, we presented a comprehensive experi-
mental evaluation of each of the three steps, indicating that
the approach is applicable for large, real-world datasets and
allows for effective and efficient reconciliation.

Our techniques open up several future directions of re-
search. First, our probabilistic formulation can be extended
to further develop the quality measurement of matching net-
works. Second, although the proposed pay-as-you-go ap-
proach can be already applied to many model matching tasks
(schema matching, ontology alignment, process model match-
ing), more applications which could be transformed into a
matching network shall be devised. On top of matching net-
works, we can develop a wide range of potential utilities in
data management systems. Examples of such utilities include
visualizing a matching network at large scales, searching
& filtering network-level information and data sources effi-
ciently, and reconciling the network dynamically when a new
data source arrives.
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92. Zhang, C., Ré, C.: Towards high-throughput gibbs sampling: A
study across storage managers. In: SIGMOD, pp. 397–408 (2013)

93. Zhang, C.J., Chen, L., Jagadish, H., Cao, C.C.: Reducing uncer-
tainty of schema matching via crowdsourcing. In: VLDB, pp.
757–768 (2013)

94. Zhang, C.J., Zhao, Z., Chen, L., Jagadish, H.V., Cao, C.C.: Crowd-
matcher: crowd-assisted schema matching. In: SIGMOD, pp. 721–
724 (2014)

95. Zhdanova, A.V., Shvaiko, P.: Community-Driven Ontology Match-
ing. In: ESWC, pp. 34–49 (2006)

A Learning Constraint Parameter

Under our probabilistic model, each constraint γ ∈ Γ is associated with
a parameter ∆ , as illustrated above with the 1-to-1 constraint, the cycle
constraint, and the structure constraint. In practice, the parameter ∆

is often specified by the application expert or administrator. However,
as reconciliation is an incremental process, in this work we propose

an adaptive learning method to adjust ∆ based on the user answers
obtained so far.

More precisely, we use the following heuristic to learn the param-
eter ∆ for each constraint γ . The idea is that the more violations the
user make, the more the associated constraints should be hardened; and
vice-versa. Initially, we set ∆ = 0.5 since the integrity constraints do not
affect the correctness of validated correspondences. Then periodically
(e.g. after obtaining other 20 answers from the user), we compute the
set of constraint violations on top of all correspondences he approved.
Denote V = {v1, . . . ,vn} as the union set of all constraint violations
(note that two different violations can be of the same constraint). For
each violation vi ∈V , we count the number of correspondences in this
violation. Then for each constraint γ involved in V , we set its new
parameter ∆ to the average value of the percentages of its violations.
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